]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_stacks/rack.c
RACK: fix an issue triggered by using the CDG CC module
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_stacks / rack.c
1 /*-
2  * Copyright (c) 2016-2020 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include <sys/param.h>
36 #include <sys/arb.h>
37 #include <sys/module.h>
38 #include <sys/kernel.h>
39 #ifdef TCP_HHOOK
40 #include <sys/hhook.h>
41 #endif
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>           /* for proc0 declaration */
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #ifdef STATS
53 #include <sys/qmath.h>
54 #include <sys/tree.h>
55 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
56 #else
57 #include <sys/tree.h>
58 #endif
59 #include <sys/refcount.h>
60 #include <sys/queue.h>
61 #include <sys/tim_filter.h>
62 #include <sys/smp.h>
63 #include <sys/kthread.h>
64 #include <sys/kern_prefetch.h>
65 #include <sys/protosw.h>
66
67 #include <vm/uma.h>
68
69 #include <net/route.h>
70 #include <net/route/nhop.h>
71 #include <net/vnet.h>
72
73 #define TCPSTATES               /* for logging */
74
75 #include <netinet/in.h>
76 #include <netinet/in_kdtrace.h>
77 #include <netinet/in_pcb.h>
78 #include <netinet/ip.h>
79 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
80 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
81 #include <netinet/ip_var.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet/tcp.h>
86 #define TCPOUTFLAGS
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_log_buf.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_hpts.h>
93 #include <netinet/tcp_ratelimit.h>
94 #include <netinet/tcpip.h>
95 #include <netinet/cc/cc.h>
96 #include <netinet/tcp_fastopen.h>
97 #include <netinet/tcp_lro.h>
98 #ifdef NETFLIX_SHARED_CWND
99 #include <netinet/tcp_shared_cwnd.h>
100 #endif
101 #ifdef TCPDEBUG
102 #include <netinet/tcp_debug.h>
103 #endif                          /* TCPDEBUG */
104 #ifdef TCP_OFFLOAD
105 #include <netinet/tcp_offload.h>
106 #endif
107 #ifdef INET6
108 #include <netinet6/tcp6_var.h>
109 #endif
110
111 #include <netipsec/ipsec_support.h>
112
113 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
114 #include <netipsec/ipsec.h>
115 #include <netipsec/ipsec6.h>
116 #endif                          /* IPSEC */
117
118 #include <netinet/udp.h>
119 #include <netinet/udp_var.h>
120 #include <machine/in_cksum.h>
121
122 #ifdef MAC
123 #include <security/mac/mac_framework.h>
124 #endif
125 #include "sack_filter.h"
126 #include "tcp_rack.h"
127 #include "rack_bbr_common.h"
128
129 uma_zone_t rack_zone;
130 uma_zone_t rack_pcb_zone;
131
132 #ifndef TICKS2SBT
133 #define TICKS2SBT(__t)  (tick_sbt * ((sbintime_t)(__t)))
134 #endif
135
136 struct sysctl_ctx_list rack_sysctl_ctx;
137 struct sysctl_oid *rack_sysctl_root;
138
139 #define CUM_ACKED 1
140 #define SACKED 2
141
142 /*
143  * The RACK module incorporates a number of
144  * TCP ideas that have been put out into the IETF
145  * over the last few years:
146  * - Matt Mathis's Rate Halving which slowly drops
147  *    the congestion window so that the ack clock can
148  *    be maintained during a recovery.
149  * - Yuchung Cheng's RACK TCP (for which its named) that
150  *    will stop us using the number of dup acks and instead
151  *    use time as the gage of when we retransmit.
152  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
153  *    of Dukkipati et.al.
154  * RACK depends on SACK, so if an endpoint arrives that
155  * cannot do SACK the state machine below will shuttle the
156  * connection back to using the "default" TCP stack that is
157  * in FreeBSD.
158  *
159  * To implement RACK the original TCP stack was first decomposed
160  * into a functional state machine with individual states
161  * for each of the possible TCP connection states. The do_segement
162  * functions role in life is to mandate the connection supports SACK
163  * initially and then assure that the RACK state matches the conenction
164  * state before calling the states do_segment function. Each
165  * state is simplified due to the fact that the original do_segment
166  * has been decomposed and we *know* what state we are in (no
167  * switches on the state) and all tests for SACK are gone. This
168  * greatly simplifies what each state does.
169  *
170  * TCP output is also over-written with a new version since it
171  * must maintain the new rack scoreboard.
172  *
173  */
174 static int32_t rack_tlp_thresh = 1;
175 static int32_t rack_tlp_limit = 2;      /* No more than 2 TLPs w-out new data */
176 static int32_t rack_tlp_use_greater = 1;
177 static int32_t rack_reorder_thresh = 2;
178 static int32_t rack_reorder_fade = 60000;       /* 0 - never fade, def 60,000
179                                                  * - 60 seconds */
180 /* Attack threshold detections */
181 static uint32_t rack_highest_sack_thresh_seen = 0;
182 static uint32_t rack_highest_move_thresh_seen = 0;
183
184 static int32_t rack_pkt_delay = 1;
185 static int32_t rack_early_recovery = 1;
186 static int32_t rack_send_a_lot_in_prr = 1;
187 static int32_t rack_min_to = 1; /* Number of ms minimum timeout */
188 static int32_t rack_verbose_logging = 0;
189 static int32_t rack_ignore_data_after_close = 1;
190 static int32_t rack_enable_shared_cwnd = 0;
191 static int32_t rack_limits_scwnd = 1;
192 static int32_t rack_enable_mqueue_for_nonpaced = 0;
193 static int32_t rack_disable_prr = 0;
194 static int32_t use_rack_rr = 1;
195 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */
196 static int32_t rack_persist_min = 250;  /* 250ms */
197 static int32_t rack_persist_max = 2000; /* 2 Second */
198 static int32_t rack_sack_not_required = 0;      /* set to one to allow non-sack to use rack */
199 static int32_t rack_default_init_window = 0;    /* Use system default */
200 static int32_t rack_limit_time_with_srtt = 0;
201 static int32_t rack_hw_pace_adjust = 0;
202 /*
203  * Currently regular tcp has a rto_min of 30ms
204  * the backoff goes 12 times so that ends up
205  * being a total of 122.850 seconds before a
206  * connection is killed.
207  */
208 static uint32_t rack_def_data_window = 20;
209 static uint32_t rack_goal_bdp = 2;
210 static uint32_t rack_min_srtts = 1;
211 static uint32_t rack_min_measure_usec = 0;
212 static int32_t rack_tlp_min = 10;
213 static int32_t rack_rto_min = 30;       /* 30ms same as main freebsd */
214 static int32_t rack_rto_max = 4000;     /* 4 seconds */
215 static const int32_t rack_free_cache = 2;
216 static int32_t rack_hptsi_segments = 40;
217 static int32_t rack_rate_sample_method = USE_RTT_LOW;
218 static int32_t rack_pace_every_seg = 0;
219 static int32_t rack_delayed_ack_time = 200;     /* 200ms */
220 static int32_t rack_slot_reduction = 4;
221 static int32_t rack_wma_divisor = 8;            /* For WMA calculation */
222 static int32_t rack_cwnd_block_ends_measure = 0;
223 static int32_t rack_rwnd_block_ends_measure = 0;
224
225 static int32_t rack_lower_cwnd_at_tlp = 0;
226 static int32_t rack_use_proportional_reduce = 0;
227 static int32_t rack_proportional_rate = 10;
228 static int32_t rack_tlp_max_resend = 2;
229 static int32_t rack_limited_retran = 0;
230 static int32_t rack_always_send_oldest = 0;
231 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
232
233 static uint16_t rack_per_of_gp_ss = 250;        /* 250 % slow-start */
234 static uint16_t rack_per_of_gp_ca = 200;        /* 200 % congestion-avoidance */
235 static uint16_t rack_per_of_gp_rec = 200;       /* 200 % of bw */
236
237 /* Probertt */
238 static uint16_t rack_per_of_gp_probertt = 60;   /* 60% of bw */
239 static uint16_t rack_per_of_gp_lowthresh = 40;  /* 40% is bottom */
240 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */
241 static uint16_t rack_atexit_prtt_hbp = 130;     /* Clamp to 130% on exit prtt if highly buffered path */
242 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */
243
244 static uint32_t rack_max_drain_wait = 2;        /* How man gp srtt's before we give up draining */
245 static uint32_t rack_must_drain = 1;            /* How many GP srtt's we *must* wait */
246 static uint32_t rack_probertt_use_min_rtt_entry = 1;    /* Use the min to calculate the goal else gp_srtt */
247 static uint32_t rack_probertt_use_min_rtt_exit = 0;
248 static uint32_t rack_probe_rtt_sets_cwnd = 0;
249 static uint32_t rack_probe_rtt_safety_val = 2000000;    /* No more than 2 sec in probe-rtt */
250 static uint32_t rack_time_between_probertt = 9600000;   /* 9.6 sec in us */
251 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0;       /* How many srtt periods does probe-rtt last top fraction */
252 static uint32_t rack_probertt_gpsrtt_cnt_div = 0;       /* How many srtt periods does probe-rtt last bottom fraction  */
253 static uint32_t rack_min_probertt_hold = 200000;        /* Equal to delayed ack time */
254 static uint32_t rack_probertt_filter_life = 10000000;
255 static uint32_t rack_probertt_lower_within = 10;
256 static uint32_t rack_min_rtt_movement = 250;    /* Must move at least 250 useconds to count as a lowering */
257 static int32_t rack_pace_one_seg = 0;           /* Shall we pace for less than 1.4Meg 1MSS at a time */
258 static int32_t rack_probertt_clear_is = 1;
259 static int32_t rack_max_drain_hbp = 1;          /* Extra drain times gpsrtt for highly buffered paths */
260 static int32_t rack_hbp_thresh = 3;             /* what is the divisor max_rtt/min_rtt to decided a hbp */
261
262 /* Part of pacing */
263 static int32_t rack_max_per_above = 30;         /* When we go to increment stop if above 100+this% */
264
265 /* Timely information */
266 /* Combine these two gives the range of 'no change' to bw */
267 /* ie the up/down provide the upper and lower bound  */
268 static int32_t rack_gp_per_bw_mul_up = 2;       /* 2% */
269 static int32_t rack_gp_per_bw_mul_down = 4;     /* 4% */
270 static int32_t rack_gp_rtt_maxmul = 3;          /* 3 x maxmin */
271 static int32_t rack_gp_rtt_minmul = 1;          /* minrtt + (minrtt/mindiv) is lower rtt */
272 static int32_t rack_gp_rtt_mindiv = 4;          /* minrtt + (minrtt * minmul/mindiv) is lower rtt */
273 static int32_t rack_gp_decrease_per = 20;       /* 20% decrease in multipler */
274 static int32_t rack_gp_increase_per = 2;        /* 2% increase in multipler */
275 static int32_t rack_per_lower_bound = 50;       /* Don't allow to drop below this multiplier */
276 static int32_t rack_per_upper_bound_ss = 0;     /* Don't allow SS to grow above this */
277 static int32_t rack_per_upper_bound_ca = 0;     /* Don't allow CA to grow above this */
278 static int32_t rack_do_dyn_mul = 0;             /* Are the rack gp multipliers dynamic */
279 static int32_t rack_gp_no_rec_chg = 1;          /* Prohibit recovery from reducing it's multiplier */
280 static int32_t rack_timely_dec_clear = 6;       /* Do we clear decrement count at a value (6)? */
281 static int32_t rack_timely_max_push_rise = 3;   /* One round of pushing */
282 static int32_t rack_timely_max_push_drop = 3;   /* Three round of pushing */
283 static int32_t rack_timely_min_segs = 4;        /* 4 segment minimum */
284 static int32_t rack_use_max_for_nobackoff = 0;
285 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */
286 static int32_t rack_timely_no_stopping = 0;
287 static int32_t rack_down_raise_thresh = 100;
288 static int32_t rack_req_segs = 1;
289
290 /* Weird delayed ack mode */
291 static int32_t rack_use_imac_dack = 0;
292 /* Rack specific counters */
293 counter_u64_t rack_badfr;
294 counter_u64_t rack_badfr_bytes;
295 counter_u64_t rack_rtm_prr_retran;
296 counter_u64_t rack_rtm_prr_newdata;
297 counter_u64_t rack_timestamp_mismatch;
298 counter_u64_t rack_reorder_seen;
299 counter_u64_t rack_paced_segments;
300 counter_u64_t rack_unpaced_segments;
301 counter_u64_t rack_calc_zero;
302 counter_u64_t rack_calc_nonzero;
303 counter_u64_t rack_saw_enobuf;
304 counter_u64_t rack_saw_enetunreach;
305 counter_u64_t rack_per_timer_hole;
306
307 /* Tail loss probe counters */
308 counter_u64_t rack_tlp_tot;
309 counter_u64_t rack_tlp_newdata;
310 counter_u64_t rack_tlp_retran;
311 counter_u64_t rack_tlp_retran_bytes;
312 counter_u64_t rack_tlp_retran_fail;
313 counter_u64_t rack_to_tot;
314 counter_u64_t rack_to_arm_rack;
315 counter_u64_t rack_to_arm_tlp;
316 counter_u64_t rack_to_alloc;
317 counter_u64_t rack_to_alloc_hard;
318 counter_u64_t rack_to_alloc_emerg;
319 counter_u64_t rack_to_alloc_limited;
320 counter_u64_t rack_alloc_limited_conns;
321 counter_u64_t rack_split_limited;
322
323 counter_u64_t rack_sack_proc_all;
324 counter_u64_t rack_sack_proc_short;
325 counter_u64_t rack_sack_proc_restart;
326 counter_u64_t rack_sack_attacks_detected;
327 counter_u64_t rack_sack_attacks_reversed;
328 counter_u64_t rack_sack_used_next_merge;
329 counter_u64_t rack_sack_splits;
330 counter_u64_t rack_sack_used_prev_merge;
331 counter_u64_t rack_sack_skipped_acked;
332 counter_u64_t rack_ack_total;
333 counter_u64_t rack_express_sack;
334 counter_u64_t rack_sack_total;
335 counter_u64_t rack_move_none;
336 counter_u64_t rack_move_some;
337
338 counter_u64_t rack_used_tlpmethod;
339 counter_u64_t rack_used_tlpmethod2;
340 counter_u64_t rack_enter_tlp_calc;
341 counter_u64_t rack_input_idle_reduces;
342 counter_u64_t rack_collapsed_win;
343 counter_u64_t rack_tlp_does_nada;
344 counter_u64_t rack_try_scwnd;
345
346 /* Temp CPU counters */
347 counter_u64_t rack_find_high;
348
349 counter_u64_t rack_progress_drops;
350 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
351 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
352
353 static void
354 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
355
356 static int
357 rack_process_ack(struct mbuf *m, struct tcphdr *th,
358     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
359     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
360 static int
361 rack_process_data(struct mbuf *m, struct tcphdr *th,
362     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
363     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
364 static void
365 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
366     struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
367 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
368 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
369     uint8_t limit_type);
370 static struct rack_sendmap *
371 rack_check_recovery_mode(struct tcpcb *tp,
372     uint32_t tsused);
373 static void
374 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
375     uint32_t type);
376 static void rack_counter_destroy(void);
377 static int
378 rack_ctloutput(struct socket *so, struct sockopt *sopt,
379     struct inpcb *inp, struct tcpcb *tp);
380 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
381 static void
382 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line);
383 static void
384 rack_do_segment(struct mbuf *m, struct tcphdr *th,
385     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
386     uint8_t iptos);
387 static void rack_dtor(void *mem, int32_t size, void *arg);
388 static void
389 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
390     uint32_t t, uint32_t cts);
391 static void
392 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
393     uint32_t flex1, uint32_t flex2,
394     uint32_t flex3, uint32_t flex4,
395     uint32_t flex5, uint32_t flex6,
396     uint16_t flex7, uint8_t mod);
397 static void
398 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
399    uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, struct rack_sendmap *rsm);
400 static struct rack_sendmap *
401 rack_find_high_nonack(struct tcp_rack *rack,
402     struct rack_sendmap *rsm);
403 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
404 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
405 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
406 static int
407 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
408     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
409 static void
410 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
411                             tcp_seq th_ack, int line);
412 static uint32_t
413 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss);
414 static int32_t rack_handoff_ok(struct tcpcb *tp);
415 static int32_t rack_init(struct tcpcb *tp);
416 static void rack_init_sysctls(void);
417 static void
418 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
419     struct tcphdr *th);
420 static void
421 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
422     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
423     uint8_t pass, struct rack_sendmap *hintrsm, uint32_t us_cts);
424 static void
425 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
426     struct rack_sendmap *rsm);
427 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm);
428 static int32_t rack_output(struct tcpcb *tp);
429
430 static uint32_t
431 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
432     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
433     uint32_t cts, int *moved_two);
434 static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
435 static void rack_remxt_tmr(struct tcpcb *tp);
436 static int
437 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
438     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
439 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
440 static int32_t rack_stopall(struct tcpcb *tp);
441 static void
442 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
443     uint32_t delta);
444 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
445 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
446 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
447 static uint32_t
448 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
449     struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
450 static void
451 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
452     struct rack_sendmap *rsm, uint32_t ts);
453 static int
454 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
455     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack);
456 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
457 static int
458 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
459     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
460     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
461 static int
462 rack_do_closing(struct mbuf *m, struct tcphdr *th,
463     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
464     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
465 static int
466 rack_do_established(struct mbuf *m, struct tcphdr *th,
467     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
468     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
469 static int
470 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
471     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
472     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
473 static int
474 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
475     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
476     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
477 static int
478 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
479     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
480     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
481 static int
482 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
483     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
484     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
485 static int
486 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
487     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
488     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
489 static int
490 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
491     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
492     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
493 struct rack_sendmap *
494 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
495     uint32_t tsused);
496 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt,
497     uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt);
498 static void
499      tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
500
501 int32_t rack_clear_counter=0;
502
503 static int
504 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
505 {
506         uint32_t stat;
507         int32_t error;
508
509         error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
510         if (error || req->newptr == NULL)
511                 return error;
512
513         error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
514         if (error)
515                 return (error);
516         if (stat == 1) {
517 #ifdef INVARIANTS
518                 printf("Clearing RACK counters\n");
519 #endif
520                 counter_u64_zero(rack_badfr);
521                 counter_u64_zero(rack_badfr_bytes);
522                 counter_u64_zero(rack_rtm_prr_retran);
523                 counter_u64_zero(rack_rtm_prr_newdata);
524                 counter_u64_zero(rack_timestamp_mismatch);
525                 counter_u64_zero(rack_reorder_seen);
526                 counter_u64_zero(rack_tlp_tot);
527                 counter_u64_zero(rack_tlp_newdata);
528                 counter_u64_zero(rack_tlp_retran);
529                 counter_u64_zero(rack_tlp_retran_bytes);
530                 counter_u64_zero(rack_tlp_retran_fail);
531                 counter_u64_zero(rack_to_tot);
532                 counter_u64_zero(rack_to_arm_rack);
533                 counter_u64_zero(rack_to_arm_tlp);
534                 counter_u64_zero(rack_paced_segments);
535                 counter_u64_zero(rack_calc_zero);
536                 counter_u64_zero(rack_calc_nonzero);
537                 counter_u64_zero(rack_unpaced_segments);
538                 counter_u64_zero(rack_saw_enobuf);
539                 counter_u64_zero(rack_saw_enetunreach);
540                 counter_u64_zero(rack_per_timer_hole);
541                 counter_u64_zero(rack_to_alloc_hard);
542                 counter_u64_zero(rack_to_alloc_emerg);
543                 counter_u64_zero(rack_sack_proc_all);
544                 counter_u64_zero(rack_sack_proc_short);
545                 counter_u64_zero(rack_sack_proc_restart);
546                 counter_u64_zero(rack_to_alloc);
547                 counter_u64_zero(rack_to_alloc_limited);
548                 counter_u64_zero(rack_alloc_limited_conns);
549                 counter_u64_zero(rack_split_limited);
550                 counter_u64_zero(rack_find_high);
551                 counter_u64_zero(rack_sack_attacks_detected);
552                 counter_u64_zero(rack_sack_attacks_reversed);
553                 counter_u64_zero(rack_sack_used_next_merge);
554                 counter_u64_zero(rack_sack_used_prev_merge);
555                 counter_u64_zero(rack_sack_splits);
556                 counter_u64_zero(rack_sack_skipped_acked);
557                 counter_u64_zero(rack_ack_total);
558                 counter_u64_zero(rack_express_sack);
559                 counter_u64_zero(rack_sack_total);
560                 counter_u64_zero(rack_move_none);
561                 counter_u64_zero(rack_move_some);
562                 counter_u64_zero(rack_used_tlpmethod);
563                 counter_u64_zero(rack_used_tlpmethod2);
564                 counter_u64_zero(rack_enter_tlp_calc);
565                 counter_u64_zero(rack_progress_drops);
566                 counter_u64_zero(rack_tlp_does_nada);
567                 counter_u64_zero(rack_try_scwnd);
568                 counter_u64_zero(rack_collapsed_win);
569         }
570         rack_clear_counter = 0;
571         return (0);
572 }
573
574 static void
575 rack_init_sysctls(void)
576 {
577         struct sysctl_oid *rack_counters;
578         struct sysctl_oid *rack_attack;
579         struct sysctl_oid *rack_pacing;
580         struct sysctl_oid *rack_timely;
581         struct sysctl_oid *rack_timers;
582         struct sysctl_oid *rack_tlp;
583         struct sysctl_oid *rack_misc;
584         struct sysctl_oid *rack_measure;
585         struct sysctl_oid *rack_probertt;
586
587         rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
588             SYSCTL_CHILDREN(rack_sysctl_root),
589             OID_AUTO,
590             "sack_attack",
591             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
592             "Rack Sack Attack Counters and Controls");
593         rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
594             SYSCTL_CHILDREN(rack_sysctl_root),
595             OID_AUTO,
596             "stats",
597             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
598             "Rack Counters");
599         SYSCTL_ADD_S32(&rack_sysctl_ctx,
600             SYSCTL_CHILDREN(rack_sysctl_root),
601             OID_AUTO, "rate_sample_method", CTLFLAG_RW,
602             &rack_rate_sample_method , USE_RTT_LOW,
603             "What method should we use for rate sampling 0=high, 1=low ");
604         /* Probe rtt related controls */
605         rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
606             SYSCTL_CHILDREN(rack_sysctl_root),
607             OID_AUTO,
608             "probertt",
609             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
610             "ProbeRTT related Controls");
611         SYSCTL_ADD_U16(&rack_sysctl_ctx,
612             SYSCTL_CHILDREN(rack_probertt),
613             OID_AUTO, "exit_per_hpb", CTLFLAG_RW,
614             &rack_atexit_prtt_hbp, 130,
615             "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%");
616         SYSCTL_ADD_U16(&rack_sysctl_ctx,
617             SYSCTL_CHILDREN(rack_probertt),
618             OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW,
619             &rack_atexit_prtt, 130,
620             "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%");
621         SYSCTL_ADD_U16(&rack_sysctl_ctx,
622             SYSCTL_CHILDREN(rack_probertt),
623             OID_AUTO, "gp_per_mul", CTLFLAG_RW,
624             &rack_per_of_gp_probertt, 60,
625             "What percentage of goodput do we pace at in probertt");
626         SYSCTL_ADD_U16(&rack_sysctl_ctx,
627             SYSCTL_CHILDREN(rack_probertt),
628             OID_AUTO, "gp_per_reduce", CTLFLAG_RW,
629             &rack_per_of_gp_probertt_reduce, 10,
630             "What percentage of goodput do we reduce every gp_srtt");
631         SYSCTL_ADD_U16(&rack_sysctl_ctx,
632             SYSCTL_CHILDREN(rack_probertt),
633             OID_AUTO, "gp_per_low", CTLFLAG_RW,
634             &rack_per_of_gp_lowthresh, 40,
635             "What percentage of goodput do we allow the multiplier to fall to");
636         SYSCTL_ADD_U32(&rack_sysctl_ctx,
637             SYSCTL_CHILDREN(rack_probertt),
638             OID_AUTO, "time_between", CTLFLAG_RW,
639             & rack_time_between_probertt, 96000000,
640             "How many useconds between the lowest rtt falling must past before we enter probertt");
641         SYSCTL_ADD_U32(&rack_sysctl_ctx,
642             SYSCTL_CHILDREN(rack_probertt),
643             OID_AUTO, "safety", CTLFLAG_RW,
644             &rack_probe_rtt_safety_val, 2000000,
645             "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)");
646         SYSCTL_ADD_U32(&rack_sysctl_ctx,
647             SYSCTL_CHILDREN(rack_probertt),
648             OID_AUTO, "sets_cwnd", CTLFLAG_RW,
649             &rack_probe_rtt_sets_cwnd, 0,
650             "Do we set the cwnd too (if always_lower is on)");
651         SYSCTL_ADD_U32(&rack_sysctl_ctx,
652             SYSCTL_CHILDREN(rack_probertt),
653             OID_AUTO, "maxdrainsrtts", CTLFLAG_RW,
654             &rack_max_drain_wait, 2,
655             "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal");
656         SYSCTL_ADD_U32(&rack_sysctl_ctx,
657             SYSCTL_CHILDREN(rack_probertt),
658             OID_AUTO, "mustdrainsrtts", CTLFLAG_RW,
659             &rack_must_drain, 1,
660             "We must drain this many gp_srtt's waiting for flight to reach goal");
661         SYSCTL_ADD_U32(&rack_sysctl_ctx,
662             SYSCTL_CHILDREN(rack_probertt),
663             OID_AUTO, "goal_use_min_entry", CTLFLAG_RW,
664             &rack_probertt_use_min_rtt_entry, 1,
665             "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry");
666         SYSCTL_ADD_U32(&rack_sysctl_ctx,
667             SYSCTL_CHILDREN(rack_probertt),
668             OID_AUTO, "goal_use_min_exit", CTLFLAG_RW,
669             &rack_probertt_use_min_rtt_exit, 0,
670             "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt");
671         SYSCTL_ADD_U32(&rack_sysctl_ctx,
672             SYSCTL_CHILDREN(rack_probertt),
673             OID_AUTO, "length_div", CTLFLAG_RW,
674             &rack_probertt_gpsrtt_cnt_div, 0,
675             "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)");
676         SYSCTL_ADD_U32(&rack_sysctl_ctx,
677             SYSCTL_CHILDREN(rack_probertt),
678             OID_AUTO, "length_mul", CTLFLAG_RW,
679             &rack_probertt_gpsrtt_cnt_mul, 0,
680             "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)");
681         SYSCTL_ADD_U32(&rack_sysctl_ctx,
682             SYSCTL_CHILDREN(rack_probertt),
683             OID_AUTO, "holdtim_at_target", CTLFLAG_RW,
684             &rack_min_probertt_hold, 200000,
685             "What is the minimum time we hold probertt at target");
686         SYSCTL_ADD_U32(&rack_sysctl_ctx,
687             SYSCTL_CHILDREN(rack_probertt),
688             OID_AUTO, "filter_life", CTLFLAG_RW,
689             &rack_probertt_filter_life, 10000000,
690             "What is the time for the filters life in useconds");
691         SYSCTL_ADD_U32(&rack_sysctl_ctx,
692             SYSCTL_CHILDREN(rack_probertt),
693             OID_AUTO, "lower_within", CTLFLAG_RW,
694             &rack_probertt_lower_within, 10,
695             "If the rtt goes lower within this percentage of the time, go into probe-rtt");
696         SYSCTL_ADD_U32(&rack_sysctl_ctx,
697             SYSCTL_CHILDREN(rack_probertt),
698             OID_AUTO, "must_move", CTLFLAG_RW,
699             &rack_min_rtt_movement, 250,
700             "How much is the minimum movement in rtt to count as a drop for probertt purposes");
701         SYSCTL_ADD_U32(&rack_sysctl_ctx,
702             SYSCTL_CHILDREN(rack_probertt),
703             OID_AUTO, "clear_is_cnts", CTLFLAG_RW,
704             &rack_probertt_clear_is, 1,
705             "Do we clear I/S counts on exiting probe-rtt");
706         SYSCTL_ADD_S32(&rack_sysctl_ctx,
707             SYSCTL_CHILDREN(rack_probertt),
708             OID_AUTO, "hbp_extra_drain", CTLFLAG_RW,
709             &rack_max_drain_hbp, 1,
710             "How many extra drain gpsrtt's do we get in highly buffered paths");
711         SYSCTL_ADD_S32(&rack_sysctl_ctx,
712             SYSCTL_CHILDREN(rack_probertt),
713             OID_AUTO, "hbp_threshold", CTLFLAG_RW,
714             &rack_hbp_thresh, 3,
715             "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold");
716         /* Pacing related sysctls */
717         rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
718             SYSCTL_CHILDREN(rack_sysctl_root),
719             OID_AUTO,
720             "pacing",
721             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
722             "Pacing related Controls");
723         SYSCTL_ADD_S32(&rack_sysctl_ctx,
724             SYSCTL_CHILDREN(rack_pacing),
725             OID_AUTO, "max_pace_over", CTLFLAG_RW,
726             &rack_max_per_above, 30,
727             "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)");
728         SYSCTL_ADD_S32(&rack_sysctl_ctx,
729             SYSCTL_CHILDREN(rack_pacing),
730             OID_AUTO, "pace_to_one", CTLFLAG_RW,
731             &rack_pace_one_seg, 0,
732             "Do we allow low b/w pacing of 1MSS instead of two");
733         SYSCTL_ADD_S32(&rack_sysctl_ctx,
734             SYSCTL_CHILDREN(rack_pacing),
735             OID_AUTO, "limit_wsrtt", CTLFLAG_RW,
736             &rack_limit_time_with_srtt, 0,
737             "Do we limit pacing time based on srtt");
738         SYSCTL_ADD_S32(&rack_sysctl_ctx,
739             SYSCTL_CHILDREN(rack_pacing),
740             OID_AUTO, "init_win", CTLFLAG_RW,
741             &rack_default_init_window, 0,
742             "Do we have a rack initial window 0 = system default");
743         SYSCTL_ADD_U32(&rack_sysctl_ctx,
744             SYSCTL_CHILDREN(rack_pacing),
745             OID_AUTO, "hw_pacing_adjust", CTLFLAG_RW,
746             &rack_hw_pace_adjust, 0,
747             "What percentage do we raise the MSS by (11 = 1.1%)");
748         SYSCTL_ADD_U16(&rack_sysctl_ctx,
749             SYSCTL_CHILDREN(rack_pacing),
750             OID_AUTO, "gp_per_ss", CTLFLAG_RW,
751             &rack_per_of_gp_ss, 250,
752             "If non zero, what percentage of goodput to pace at in slow start");
753         SYSCTL_ADD_U16(&rack_sysctl_ctx,
754             SYSCTL_CHILDREN(rack_pacing),
755             OID_AUTO, "gp_per_ca", CTLFLAG_RW,
756             &rack_per_of_gp_ca, 150,
757             "If non zero, what percentage of goodput to pace at in congestion avoidance");
758         SYSCTL_ADD_U16(&rack_sysctl_ctx,
759             SYSCTL_CHILDREN(rack_pacing),
760             OID_AUTO, "gp_per_rec", CTLFLAG_RW,
761             &rack_per_of_gp_rec, 200,
762             "If non zero, what percentage of goodput to pace at in recovery");
763         SYSCTL_ADD_S32(&rack_sysctl_ctx,
764             SYSCTL_CHILDREN(rack_pacing),
765             OID_AUTO, "pace_max_seg", CTLFLAG_RW,
766             &rack_hptsi_segments, 40,
767             "What size is the max for TSO segments in pacing and burst mitigation");
768         SYSCTL_ADD_S32(&rack_sysctl_ctx,
769             SYSCTL_CHILDREN(rack_pacing),
770             OID_AUTO, "burst_reduces", CTLFLAG_RW,
771             &rack_slot_reduction, 4,
772             "When doing only burst mitigation what is the reduce divisor");
773         SYSCTL_ADD_S32(&rack_sysctl_ctx,
774             SYSCTL_CHILDREN(rack_sysctl_root),
775             OID_AUTO, "use_pacing", CTLFLAG_RW,
776             &rack_pace_every_seg, 0,
777             "If set we use pacing, if clear we use only the original burst mitigation");
778
779         rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
780             SYSCTL_CHILDREN(rack_sysctl_root),
781             OID_AUTO,
782             "timely",
783             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
784             "Rack Timely RTT Controls");
785         /* Timely based GP dynmics */
786         SYSCTL_ADD_S32(&rack_sysctl_ctx,
787             SYSCTL_CHILDREN(rack_timely),
788             OID_AUTO, "upper", CTLFLAG_RW,
789             &rack_gp_per_bw_mul_up, 2,
790             "Rack timely upper range for equal b/w (in percentage)");
791         SYSCTL_ADD_S32(&rack_sysctl_ctx,
792             SYSCTL_CHILDREN(rack_timely),
793             OID_AUTO, "lower", CTLFLAG_RW,
794             &rack_gp_per_bw_mul_down, 4,
795             "Rack timely lower range for equal b/w (in percentage)");
796         SYSCTL_ADD_S32(&rack_sysctl_ctx,
797             SYSCTL_CHILDREN(rack_timely),
798             OID_AUTO, "rtt_max_mul", CTLFLAG_RW,
799             &rack_gp_rtt_maxmul, 3,
800             "Rack timely multipler of lowest rtt for rtt_max");
801         SYSCTL_ADD_S32(&rack_sysctl_ctx,
802             SYSCTL_CHILDREN(rack_timely),
803             OID_AUTO, "rtt_min_div", CTLFLAG_RW,
804             &rack_gp_rtt_mindiv, 4,
805             "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt");
806         SYSCTL_ADD_S32(&rack_sysctl_ctx,
807             SYSCTL_CHILDREN(rack_timely),
808             OID_AUTO, "rtt_min_mul", CTLFLAG_RW,
809             &rack_gp_rtt_minmul, 1,
810             "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt");
811         SYSCTL_ADD_S32(&rack_sysctl_ctx,
812             SYSCTL_CHILDREN(rack_timely),
813             OID_AUTO, "decrease", CTLFLAG_RW,
814             &rack_gp_decrease_per, 20,
815             "Rack timely decrease percentage of our GP multiplication factor");
816         SYSCTL_ADD_S32(&rack_sysctl_ctx,
817             SYSCTL_CHILDREN(rack_timely),
818             OID_AUTO, "increase", CTLFLAG_RW,
819             &rack_gp_increase_per, 2,
820             "Rack timely increase perentage of our GP multiplication factor");
821         SYSCTL_ADD_S32(&rack_sysctl_ctx,
822             SYSCTL_CHILDREN(rack_timely),
823             OID_AUTO, "lowerbound", CTLFLAG_RW,
824             &rack_per_lower_bound, 50,
825             "Rack timely lowest percentage we allow GP multiplier to fall to");
826         SYSCTL_ADD_S32(&rack_sysctl_ctx,
827             SYSCTL_CHILDREN(rack_timely),
828             OID_AUTO, "upperboundss", CTLFLAG_RW,
829             &rack_per_upper_bound_ss, 0,
830             "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)");
831         SYSCTL_ADD_S32(&rack_sysctl_ctx,
832             SYSCTL_CHILDREN(rack_timely),
833             OID_AUTO, "upperboundca", CTLFLAG_RW,
834             &rack_per_upper_bound_ca, 0,
835             "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)");
836         SYSCTL_ADD_S32(&rack_sysctl_ctx,
837             SYSCTL_CHILDREN(rack_timely),
838             OID_AUTO, "dynamicgp", CTLFLAG_RW,
839             &rack_do_dyn_mul, 0,
840             "Rack timely do we enable dynmaic timely goodput by default");
841         SYSCTL_ADD_S32(&rack_sysctl_ctx,
842             SYSCTL_CHILDREN(rack_timely),
843             OID_AUTO, "no_rec_red", CTLFLAG_RW,
844             &rack_gp_no_rec_chg, 1,
845             "Rack timely do we prohibit the recovery multiplier from being lowered");
846         SYSCTL_ADD_S32(&rack_sysctl_ctx,
847             SYSCTL_CHILDREN(rack_timely),
848             OID_AUTO, "red_clear_cnt", CTLFLAG_RW,
849             &rack_timely_dec_clear, 6,
850             "Rack timely what threshold do we count to before another boost during b/w decent");
851         SYSCTL_ADD_S32(&rack_sysctl_ctx,
852             SYSCTL_CHILDREN(rack_timely),
853             OID_AUTO, "max_push_rise", CTLFLAG_RW,
854             &rack_timely_max_push_rise, 3,
855             "Rack timely how many times do we push up with b/w increase");
856         SYSCTL_ADD_S32(&rack_sysctl_ctx,
857             SYSCTL_CHILDREN(rack_timely),
858             OID_AUTO, "max_push_drop", CTLFLAG_RW,
859             &rack_timely_max_push_drop, 3,
860             "Rack timely how many times do we push back on b/w decent");
861         SYSCTL_ADD_S32(&rack_sysctl_ctx,
862             SYSCTL_CHILDREN(rack_timely),
863             OID_AUTO, "min_segs", CTLFLAG_RW,
864             &rack_timely_min_segs, 4,
865             "Rack timely when setting the cwnd what is the min num segments");
866         SYSCTL_ADD_S32(&rack_sysctl_ctx,
867             SYSCTL_CHILDREN(rack_timely),
868             OID_AUTO, "noback_max", CTLFLAG_RW,
869             &rack_use_max_for_nobackoff, 0,
870             "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min");
871         SYSCTL_ADD_S32(&rack_sysctl_ctx,
872             SYSCTL_CHILDREN(rack_timely),
873             OID_AUTO, "interim_timely_only", CTLFLAG_RW,
874             &rack_timely_int_timely_only, 0,
875             "Rack timely when doing interim timely's do we only do timely (no b/w consideration)");
876         SYSCTL_ADD_S32(&rack_sysctl_ctx,
877             SYSCTL_CHILDREN(rack_timely),
878             OID_AUTO, "nonstop", CTLFLAG_RW,
879             &rack_timely_no_stopping, 0,
880             "Rack timely don't stop increase");
881         SYSCTL_ADD_S32(&rack_sysctl_ctx,
882             SYSCTL_CHILDREN(rack_timely),
883             OID_AUTO, "dec_raise_thresh", CTLFLAG_RW,
884             &rack_down_raise_thresh, 100,
885             "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)");
886         SYSCTL_ADD_S32(&rack_sysctl_ctx,
887             SYSCTL_CHILDREN(rack_timely),
888             OID_AUTO, "bottom_drag_segs", CTLFLAG_RW,
889             &rack_req_segs, 1,
890             "Bottom dragging if not these many segments outstanding and room");
891
892         /* TLP and Rack related parameters */
893         rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
894             SYSCTL_CHILDREN(rack_sysctl_root),
895             OID_AUTO,
896             "tlp",
897             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
898             "TLP and Rack related Controls");
899         SYSCTL_ADD_S32(&rack_sysctl_ctx,
900             SYSCTL_CHILDREN(rack_tlp),
901             OID_AUTO, "use_rrr", CTLFLAG_RW,
902             &use_rack_rr, 1,
903             "Do we use Rack Rapid Recovery");
904         SYSCTL_ADD_S32(&rack_sysctl_ctx,
905             SYSCTL_CHILDREN(rack_tlp),
906             OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW,
907             &rack_non_rxt_use_cr, 0,
908             "Do we use ss/ca rate if in recovery we are transmitting a new data chunk");
909         SYSCTL_ADD_S32(&rack_sysctl_ctx,
910             SYSCTL_CHILDREN(rack_tlp),
911             OID_AUTO, "tlpmethod", CTLFLAG_RW,
912             &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
913             "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
914         SYSCTL_ADD_S32(&rack_sysctl_ctx,
915             SYSCTL_CHILDREN(rack_tlp),
916             OID_AUTO, "limit", CTLFLAG_RW,
917             &rack_tlp_limit, 2,
918             "How many TLP's can be sent without sending new data");
919         SYSCTL_ADD_S32(&rack_sysctl_ctx,
920             SYSCTL_CHILDREN(rack_tlp),
921             OID_AUTO, "use_greater", CTLFLAG_RW,
922             &rack_tlp_use_greater, 1,
923             "Should we use the rack_rtt time if its greater than srtt");
924         SYSCTL_ADD_S32(&rack_sysctl_ctx,
925             SYSCTL_CHILDREN(rack_tlp),
926             OID_AUTO, "tlpminto", CTLFLAG_RW,
927             &rack_tlp_min, 10,
928             "TLP minimum timeout per the specification (10ms)");
929         SYSCTL_ADD_S32(&rack_sysctl_ctx,
930             SYSCTL_CHILDREN(rack_tlp),
931             OID_AUTO, "send_oldest", CTLFLAG_RW,
932             &rack_always_send_oldest, 0,
933             "Should we always send the oldest TLP and RACK-TLP");
934         SYSCTL_ADD_S32(&rack_sysctl_ctx,
935             SYSCTL_CHILDREN(rack_tlp),
936             OID_AUTO, "rack_tlimit", CTLFLAG_RW,
937             &rack_limited_retran, 0,
938             "How many times can a rack timeout drive out sends");
939         SYSCTL_ADD_S32(&rack_sysctl_ctx,
940             SYSCTL_CHILDREN(rack_tlp),
941             OID_AUTO, "tlp_retry", CTLFLAG_RW,
942             &rack_tlp_max_resend, 2,
943             "How many times does TLP retry a single segment or multiple with no ACK");
944         SYSCTL_ADD_S32(&rack_sysctl_ctx,
945             SYSCTL_CHILDREN(rack_tlp),
946             OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
947             &rack_lower_cwnd_at_tlp, 0,
948             "When a TLP completes a retran should we enter recovery");
949         SYSCTL_ADD_S32(&rack_sysctl_ctx,
950             SYSCTL_CHILDREN(rack_tlp),
951             OID_AUTO, "reorder_thresh", CTLFLAG_RW,
952             &rack_reorder_thresh, 2,
953             "What factor for rack will be added when seeing reordering (shift right)");
954         SYSCTL_ADD_S32(&rack_sysctl_ctx,
955             SYSCTL_CHILDREN(rack_tlp),
956             OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
957             &rack_tlp_thresh, 1,
958             "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
959         SYSCTL_ADD_S32(&rack_sysctl_ctx,
960             SYSCTL_CHILDREN(rack_tlp),
961             OID_AUTO, "reorder_fade", CTLFLAG_RW,
962             &rack_reorder_fade, 0,
963             "Does reorder detection fade, if so how many ms (0 means never)");
964         SYSCTL_ADD_S32(&rack_sysctl_ctx,
965             SYSCTL_CHILDREN(rack_tlp),
966             OID_AUTO, "pktdelay", CTLFLAG_RW,
967             &rack_pkt_delay, 1,
968             "Extra RACK time (in ms) besides reordering thresh");
969
970         /* Timer related controls */
971         rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
972             SYSCTL_CHILDREN(rack_sysctl_root),
973             OID_AUTO,
974             "timers",
975             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
976             "Timer related controls");
977         SYSCTL_ADD_U32(&rack_sysctl_ctx,
978             SYSCTL_CHILDREN(rack_timers),
979             OID_AUTO, "persmin", CTLFLAG_RW,
980             &rack_persist_min, 250,
981             "What is the minimum time in milliseconds between persists");
982         SYSCTL_ADD_U32(&rack_sysctl_ctx,
983             SYSCTL_CHILDREN(rack_timers),
984             OID_AUTO, "persmax", CTLFLAG_RW,
985             &rack_persist_max, 2000,
986             "What is the largest delay in milliseconds between persists");
987         SYSCTL_ADD_S32(&rack_sysctl_ctx,
988             SYSCTL_CHILDREN(rack_timers),
989             OID_AUTO, "delayed_ack", CTLFLAG_RW,
990             &rack_delayed_ack_time, 200,
991             "Delayed ack time (200ms)");
992         SYSCTL_ADD_S32(&rack_sysctl_ctx,
993             SYSCTL_CHILDREN(rack_timers),
994             OID_AUTO, "minrto", CTLFLAG_RW,
995             &rack_rto_min, 0,
996             "Minimum RTO in ms -- set with caution below 1000 due to TLP");
997         SYSCTL_ADD_S32(&rack_sysctl_ctx,
998             SYSCTL_CHILDREN(rack_timers),
999             OID_AUTO, "maxrto", CTLFLAG_RW,
1000             &rack_rto_max, 0,
1001             "Maxiumum RTO in ms -- should be at least as large as min_rto");
1002         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1003             SYSCTL_CHILDREN(rack_timers),
1004             OID_AUTO, "minto", CTLFLAG_RW,
1005             &rack_min_to, 1,
1006             "Minimum rack timeout in milliseconds");
1007         /* Measure controls */
1008         rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1009             SYSCTL_CHILDREN(rack_sysctl_root),
1010             OID_AUTO,
1011             "measure",
1012             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1013             "Measure related controls");
1014         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1015             SYSCTL_CHILDREN(rack_measure),
1016             OID_AUTO, "wma_divisor", CTLFLAG_RW,
1017             &rack_wma_divisor, 8,
1018             "When doing b/w calculation what is the  divisor for the WMA");
1019         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1020             SYSCTL_CHILDREN(rack_measure),
1021             OID_AUTO, "end_cwnd", CTLFLAG_RW,
1022             &rack_cwnd_block_ends_measure, 0,
1023             "Does a cwnd just-return end the measurement window (app limited)");
1024         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1025             SYSCTL_CHILDREN(rack_measure),
1026             OID_AUTO, "end_rwnd", CTLFLAG_RW,
1027             &rack_rwnd_block_ends_measure, 0,
1028             "Does an rwnd just-return end the measurement window (app limited -- not persists)");
1029         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1030             SYSCTL_CHILDREN(rack_measure),
1031             OID_AUTO, "min_target", CTLFLAG_RW,
1032             &rack_def_data_window, 20,
1033             "What is the minimum target window (in mss) for a GP measurements");
1034         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1035             SYSCTL_CHILDREN(rack_measure),
1036             OID_AUTO, "goal_bdp", CTLFLAG_RW,
1037             &rack_goal_bdp, 2,
1038             "What is the goal BDP to measure");
1039         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1040             SYSCTL_CHILDREN(rack_measure),
1041             OID_AUTO, "min_srtts", CTLFLAG_RW,
1042             &rack_min_srtts, 1,
1043             "What is the goal BDP to measure");
1044         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1045             SYSCTL_CHILDREN(rack_measure),
1046             OID_AUTO, "min_measure_tim", CTLFLAG_RW,
1047             &rack_min_measure_usec, 0,
1048             "What is the Minimum time time for a measurement if 0, this is off");
1049         /* Misc rack controls */
1050         rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1051             SYSCTL_CHILDREN(rack_sysctl_root),
1052             OID_AUTO,
1053             "misc",
1054             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1055             "Misc related controls");
1056         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1057             SYSCTL_CHILDREN(rack_misc),
1058             OID_AUTO, "shared_cwnd", CTLFLAG_RW,
1059             &rack_enable_shared_cwnd, 0,
1060             "Should RACK try to use the shared cwnd on connections where allowed");
1061         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1062             SYSCTL_CHILDREN(rack_misc),
1063             OID_AUTO, "limits_on_scwnd", CTLFLAG_RW,
1064             &rack_limits_scwnd, 1,
1065             "Should RACK place low end time limits on the shared cwnd feature");
1066         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1067             SYSCTL_CHILDREN(rack_misc),
1068             OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW,
1069             &rack_enable_mqueue_for_nonpaced, 0,
1070             "Should RACK use mbuf queuing for non-paced connections");
1071         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1072             SYSCTL_CHILDREN(rack_misc),
1073             OID_AUTO, "iMac_dack", CTLFLAG_RW,
1074             &rack_use_imac_dack, 0,
1075             "Should RACK try to emulate iMac delayed ack");
1076         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1077             SYSCTL_CHILDREN(rack_misc),
1078             OID_AUTO, "no_prr", CTLFLAG_RW,
1079             &rack_disable_prr, 0,
1080             "Should RACK not use prr and only pace (must have pacing on)");
1081         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1082             SYSCTL_CHILDREN(rack_misc),
1083             OID_AUTO, "bb_verbose", CTLFLAG_RW,
1084             &rack_verbose_logging, 0,
1085             "Should RACK black box logging be verbose");
1086         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1087             SYSCTL_CHILDREN(rack_misc),
1088             OID_AUTO, "data_after_close", CTLFLAG_RW,
1089             &rack_ignore_data_after_close, 1,
1090             "Do we hold off sending a RST until all pending data is ack'd");
1091         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1092             SYSCTL_CHILDREN(rack_misc),
1093             OID_AUTO, "no_sack_needed", CTLFLAG_RW,
1094             &rack_sack_not_required, 0,
1095             "Do we allow rack to run on connections not supporting SACK");
1096         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1097             SYSCTL_CHILDREN(rack_misc),
1098             OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
1099             &rack_use_proportional_reduce, 0,
1100             "Should we proportionaly reduce cwnd based on the number of losses ");
1101         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1102             SYSCTL_CHILDREN(rack_misc),
1103             OID_AUTO, "recovery_prop", CTLFLAG_RW,
1104             &rack_proportional_rate, 10,
1105             "What percent reduction per loss");
1106         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1107             SYSCTL_CHILDREN(rack_misc),
1108             OID_AUTO, "prr_sendalot", CTLFLAG_RW,
1109             &rack_send_a_lot_in_prr, 1,
1110             "Send a lot in prr");
1111         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1112             SYSCTL_CHILDREN(rack_misc),
1113             OID_AUTO, "earlyrecovery", CTLFLAG_RW,
1114             &rack_early_recovery, 1,
1115             "Do we do early recovery with rack");
1116         /* Sack Attacker detection stuff */
1117         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1118             SYSCTL_CHILDREN(rack_attack),
1119             OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
1120             &rack_highest_sack_thresh_seen, 0,
1121             "Highest sack to ack ratio seen");
1122         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1123             SYSCTL_CHILDREN(rack_attack),
1124             OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
1125             &rack_highest_move_thresh_seen, 0,
1126             "Highest move to non-move ratio seen");
1127         rack_ack_total = counter_u64_alloc(M_WAITOK);
1128         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1129             SYSCTL_CHILDREN(rack_attack),
1130             OID_AUTO, "acktotal", CTLFLAG_RD,
1131             &rack_ack_total,
1132             "Total number of Ack's");
1133         rack_express_sack = counter_u64_alloc(M_WAITOK);
1134         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1135             SYSCTL_CHILDREN(rack_attack),
1136             OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
1137             &rack_express_sack,
1138             "Total expresss number of Sack's");
1139         rack_sack_total = counter_u64_alloc(M_WAITOK);
1140         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1141             SYSCTL_CHILDREN(rack_attack),
1142             OID_AUTO, "sacktotal", CTLFLAG_RD,
1143             &rack_sack_total,
1144             "Total number of SACKs");
1145         rack_move_none = counter_u64_alloc(M_WAITOK);
1146         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1147             SYSCTL_CHILDREN(rack_attack),
1148             OID_AUTO, "move_none", CTLFLAG_RD,
1149             &rack_move_none,
1150             "Total number of SACK index reuse of postions under threshold");
1151         rack_move_some = counter_u64_alloc(M_WAITOK);
1152         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1153             SYSCTL_CHILDREN(rack_attack),
1154             OID_AUTO, "move_some", CTLFLAG_RD,
1155             &rack_move_some,
1156             "Total number of SACK index reuse of postions over threshold");
1157         rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
1158         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1159             SYSCTL_CHILDREN(rack_attack),
1160             OID_AUTO, "attacks", CTLFLAG_RD,
1161             &rack_sack_attacks_detected,
1162             "Total number of SACK attackers that had sack disabled");
1163         rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
1164         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1165             SYSCTL_CHILDREN(rack_attack),
1166             OID_AUTO, "reversed", CTLFLAG_RD,
1167             &rack_sack_attacks_reversed,
1168             "Total number of SACK attackers that were later determined false positive");
1169         rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
1170         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1171             SYSCTL_CHILDREN(rack_attack),
1172             OID_AUTO, "nextmerge", CTLFLAG_RD,
1173             &rack_sack_used_next_merge,
1174             "Total number of times we used the next merge");
1175         rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
1176         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1177             SYSCTL_CHILDREN(rack_attack),
1178             OID_AUTO, "prevmerge", CTLFLAG_RD,
1179             &rack_sack_used_prev_merge,
1180             "Total number of times we used the prev merge");
1181         /* Counters */
1182         rack_badfr = counter_u64_alloc(M_WAITOK);
1183         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1184             SYSCTL_CHILDREN(rack_counters),
1185             OID_AUTO, "badfr", CTLFLAG_RD,
1186             &rack_badfr, "Total number of bad FRs");
1187         rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
1188         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1189             SYSCTL_CHILDREN(rack_counters),
1190             OID_AUTO, "badfr_bytes", CTLFLAG_RD,
1191             &rack_badfr_bytes, "Total number of bad FRs");
1192         rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
1193         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1194             SYSCTL_CHILDREN(rack_counters),
1195             OID_AUTO, "prrsndret", CTLFLAG_RD,
1196             &rack_rtm_prr_retran,
1197             "Total number of prr based retransmits");
1198         rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
1199         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1200             SYSCTL_CHILDREN(rack_counters),
1201             OID_AUTO, "prrsndnew", CTLFLAG_RD,
1202             &rack_rtm_prr_newdata,
1203             "Total number of prr based new transmits");
1204         rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
1205         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1206             SYSCTL_CHILDREN(rack_counters),
1207             OID_AUTO, "tsnf", CTLFLAG_RD,
1208             &rack_timestamp_mismatch,
1209             "Total number of timestamps that we could not find the reported ts");
1210         rack_find_high = counter_u64_alloc(M_WAITOK);
1211         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1212             SYSCTL_CHILDREN(rack_counters),
1213             OID_AUTO, "findhigh", CTLFLAG_RD,
1214             &rack_find_high,
1215             "Total number of FIN causing find-high");
1216         rack_reorder_seen = counter_u64_alloc(M_WAITOK);
1217         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1218             SYSCTL_CHILDREN(rack_counters),
1219             OID_AUTO, "reordering", CTLFLAG_RD,
1220             &rack_reorder_seen,
1221             "Total number of times we added delay due to reordering");
1222         rack_tlp_tot = counter_u64_alloc(M_WAITOK);
1223         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1224             SYSCTL_CHILDREN(rack_counters),
1225             OID_AUTO, "tlp_to_total", CTLFLAG_RD,
1226             &rack_tlp_tot,
1227             "Total number of tail loss probe expirations");
1228         rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
1229         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1230             SYSCTL_CHILDREN(rack_counters),
1231             OID_AUTO, "tlp_new", CTLFLAG_RD,
1232             &rack_tlp_newdata,
1233             "Total number of tail loss probe sending new data");
1234         rack_tlp_retran = counter_u64_alloc(M_WAITOK);
1235         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1236             SYSCTL_CHILDREN(rack_counters),
1237             OID_AUTO, "tlp_retran", CTLFLAG_RD,
1238             &rack_tlp_retran,
1239             "Total number of tail loss probe sending retransmitted data");
1240         rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
1241         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1242             SYSCTL_CHILDREN(rack_counters),
1243             OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
1244             &rack_tlp_retran_bytes,
1245             "Total bytes of tail loss probe sending retransmitted data");
1246         rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
1247         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1248             SYSCTL_CHILDREN(rack_counters),
1249             OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
1250             &rack_tlp_retran_fail,
1251             "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
1252         rack_to_tot = counter_u64_alloc(M_WAITOK);
1253         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1254             SYSCTL_CHILDREN(rack_counters),
1255             OID_AUTO, "rack_to_tot", CTLFLAG_RD,
1256             &rack_to_tot,
1257             "Total number of times the rack to expired");
1258         rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
1259         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1260             SYSCTL_CHILDREN(rack_counters),
1261             OID_AUTO, "arm_rack", CTLFLAG_RD,
1262             &rack_to_arm_rack,
1263             "Total number of times the rack timer armed");
1264         rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
1265         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1266             SYSCTL_CHILDREN(rack_counters),
1267             OID_AUTO, "arm_tlp", CTLFLAG_RD,
1268             &rack_to_arm_tlp,
1269             "Total number of times the tlp timer armed");
1270         rack_calc_zero = counter_u64_alloc(M_WAITOK);
1271         rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
1272         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1273             SYSCTL_CHILDREN(rack_counters),
1274             OID_AUTO, "calc_zero", CTLFLAG_RD,
1275             &rack_calc_zero,
1276             "Total number of times pacing time worked out to zero");
1277         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1278             SYSCTL_CHILDREN(rack_counters),
1279             OID_AUTO, "calc_nonzero", CTLFLAG_RD,
1280             &rack_calc_nonzero,
1281             "Total number of times pacing time worked out to non-zero");
1282         rack_paced_segments = counter_u64_alloc(M_WAITOK);
1283         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1284             SYSCTL_CHILDREN(rack_counters),
1285             OID_AUTO, "paced", CTLFLAG_RD,
1286             &rack_paced_segments,
1287             "Total number of times a segment send caused hptsi");
1288         rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
1289         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1290             SYSCTL_CHILDREN(rack_counters),
1291             OID_AUTO, "unpaced", CTLFLAG_RD,
1292             &rack_unpaced_segments,
1293             "Total number of times a segment did not cause hptsi");
1294         rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
1295         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1296             SYSCTL_CHILDREN(rack_counters),
1297             OID_AUTO, "saw_enobufs", CTLFLAG_RD,
1298             &rack_saw_enobuf,
1299             "Total number of times a segment did not cause hptsi");
1300         rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
1301         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1302             SYSCTL_CHILDREN(rack_counters),
1303             OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
1304             &rack_saw_enetunreach,
1305             "Total number of times a segment did not cause hptsi");
1306         rack_to_alloc = counter_u64_alloc(M_WAITOK);
1307         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1308             SYSCTL_CHILDREN(rack_counters),
1309             OID_AUTO, "allocs", CTLFLAG_RD,
1310             &rack_to_alloc,
1311             "Total allocations of tracking structures");
1312         rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
1313         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1314             SYSCTL_CHILDREN(rack_counters),
1315             OID_AUTO, "allochard", CTLFLAG_RD,
1316             &rack_to_alloc_hard,
1317             "Total allocations done with sleeping the hard way");
1318         rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
1319         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1320             SYSCTL_CHILDREN(rack_counters),
1321             OID_AUTO, "allocemerg", CTLFLAG_RD,
1322             &rack_to_alloc_emerg,
1323             "Total allocations done from emergency cache");
1324         rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
1325         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1326             SYSCTL_CHILDREN(rack_counters),
1327             OID_AUTO, "alloc_limited", CTLFLAG_RD,
1328             &rack_to_alloc_limited,
1329             "Total allocations dropped due to limit");
1330         rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
1331         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1332             SYSCTL_CHILDREN(rack_counters),
1333             OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
1334             &rack_alloc_limited_conns,
1335             "Connections with allocations dropped due to limit");
1336         rack_split_limited = counter_u64_alloc(M_WAITOK);
1337         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1338             SYSCTL_CHILDREN(rack_counters),
1339             OID_AUTO, "split_limited", CTLFLAG_RD,
1340             &rack_split_limited,
1341             "Split allocations dropped due to limit");
1342         rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
1343         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1344             SYSCTL_CHILDREN(rack_counters),
1345             OID_AUTO, "sack_long", CTLFLAG_RD,
1346             &rack_sack_proc_all,
1347             "Total times we had to walk whole list for sack processing");
1348         rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
1349         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1350             SYSCTL_CHILDREN(rack_counters),
1351             OID_AUTO, "sack_restart", CTLFLAG_RD,
1352             &rack_sack_proc_restart,
1353             "Total times we had to walk whole list due to a restart");
1354         rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
1355         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1356             SYSCTL_CHILDREN(rack_counters),
1357             OID_AUTO, "sack_short", CTLFLAG_RD,
1358             &rack_sack_proc_short,
1359             "Total times we took shortcut for sack processing");
1360         rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
1361         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1362             SYSCTL_CHILDREN(rack_counters),
1363             OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
1364             &rack_enter_tlp_calc,
1365             "Total times we called calc-tlp");
1366         rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
1367         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1368             SYSCTL_CHILDREN(rack_counters),
1369             OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
1370             &rack_used_tlpmethod,
1371             "Total number of runt sacks");
1372         rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
1373         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1374             SYSCTL_CHILDREN(rack_counters),
1375             OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
1376             &rack_used_tlpmethod2,
1377             "Total number of times we hit TLP method 2");
1378         rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
1379         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1380             SYSCTL_CHILDREN(rack_attack),
1381             OID_AUTO, "skipacked", CTLFLAG_RD,
1382             &rack_sack_skipped_acked,
1383             "Total number of times we skipped previously sacked");
1384         rack_sack_splits = counter_u64_alloc(M_WAITOK);
1385         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1386             SYSCTL_CHILDREN(rack_attack),
1387             OID_AUTO, "ofsplit", CTLFLAG_RD,
1388             &rack_sack_splits,
1389             "Total number of times we did the old fashion tree split");
1390         rack_progress_drops = counter_u64_alloc(M_WAITOK);
1391         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1392             SYSCTL_CHILDREN(rack_counters),
1393             OID_AUTO, "prog_drops", CTLFLAG_RD,
1394             &rack_progress_drops,
1395             "Total number of progress drops");
1396         rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
1397         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1398             SYSCTL_CHILDREN(rack_counters),
1399             OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
1400             &rack_input_idle_reduces,
1401             "Total number of idle reductions on input");
1402         rack_collapsed_win = counter_u64_alloc(M_WAITOK);
1403         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1404             SYSCTL_CHILDREN(rack_counters),
1405             OID_AUTO, "collapsed_win", CTLFLAG_RD,
1406             &rack_collapsed_win,
1407             "Total number of collapsed windows");
1408         rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
1409         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1410             SYSCTL_CHILDREN(rack_counters),
1411             OID_AUTO, "tlp_nada", CTLFLAG_RD,
1412             &rack_tlp_does_nada,
1413             "Total number of nada tlp calls");
1414         rack_try_scwnd = counter_u64_alloc(M_WAITOK);
1415         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1416             SYSCTL_CHILDREN(rack_counters),
1417             OID_AUTO, "tried_scwnd", CTLFLAG_RD,
1418             &rack_try_scwnd,
1419             "Total number of scwnd attempts");
1420
1421         rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1422         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1423             SYSCTL_CHILDREN(rack_counters),
1424             OID_AUTO, "timer_hole", CTLFLAG_RD,
1425             &rack_per_timer_hole,
1426             "Total persists start in timer hole");
1427         COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1428         SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1429             OID_AUTO, "outsize", CTLFLAG_RD,
1430             rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1431         COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1432         SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1433             OID_AUTO, "opts", CTLFLAG_RD,
1434             rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1435         SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1436             SYSCTL_CHILDREN(rack_sysctl_root),
1437             OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1438             &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1439 }
1440
1441 static __inline int
1442 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1443 {
1444         if (SEQ_GEQ(b->r_start, a->r_start) &&
1445             SEQ_LT(b->r_start, a->r_end)) {
1446                 /*
1447                  * The entry b is within the
1448                  * block a. i.e.:
1449                  * a --   |-------------|
1450                  * b --   |----|
1451                  * <or>
1452                  * b --       |------|
1453                  * <or>
1454                  * b --       |-----------|
1455                  */
1456                 return (0);
1457         } else if (SEQ_GEQ(b->r_start, a->r_end)) {
1458                 /*
1459                  * b falls as either the next
1460                  * sequence block after a so a
1461                  * is said to be smaller than b.
1462                  * i.e:
1463                  * a --   |------|
1464                  * b --          |--------|
1465                  * or
1466                  * b --              |-----|
1467                  */
1468                 return (1);
1469         }
1470         /*
1471          * Whats left is where a is
1472          * larger than b. i.e:
1473          * a --         |-------|
1474          * b --  |---|
1475          * or even possibly
1476          * b --   |--------------|
1477          */
1478         return (-1);
1479 }
1480
1481 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1482 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1483
1484 static uint32_t
1485 rc_init_window(struct tcp_rack *rack)
1486 {
1487         uint32_t win;
1488
1489         if (rack->rc_init_win == 0) {
1490                 /*
1491                  * Nothing set by the user, use the system stack
1492                  * default.
1493                  */
1494                 return(tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)));
1495         }
1496         win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win;
1497         return(win);
1498 }
1499
1500 static uint64_t
1501 rack_get_fixed_pacing_bw(struct tcp_rack *rack)
1502 {
1503         if (IN_RECOVERY(rack->rc_tp->t_flags))
1504                 return (rack->r_ctl.rc_fixed_pacing_rate_rec);
1505         else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1506                 return (rack->r_ctl.rc_fixed_pacing_rate_ss);
1507         else
1508                 return (rack->r_ctl.rc_fixed_pacing_rate_ca);
1509 }
1510
1511 static uint64_t
1512 rack_get_bw(struct tcp_rack *rack)
1513 {
1514         if (rack->use_fixed_rate) {
1515                 /* Return the fixed pacing rate */
1516                 return (rack_get_fixed_pacing_bw(rack));
1517         }
1518         if (rack->r_ctl.gp_bw == 0) {
1519                 /*
1520                  * We have yet no b/w measurement,
1521                  * if we have a user set initial bw
1522                  * return it. If we don't have that and
1523                  * we have an srtt, use the tcp IW (10) to
1524                  * calculate a fictional b/w over the SRTT
1525                  * which is more or less a guess. Note
1526                  * we don't use our IW from rack on purpose
1527                  * so if we have like IW=30, we are not
1528                  * calculating a "huge" b/w.
1529                  */
1530                 uint64_t bw, srtt;
1531                 if (rack->r_ctl.init_rate)
1532                         return (rack->r_ctl.init_rate);
1533
1534                 /* Has the user set a max peak rate? */
1535 #ifdef NETFLIX_PEAKRATE
1536                 if (rack->rc_tp->t_maxpeakrate)
1537                         return (rack->rc_tp->t_maxpeakrate);
1538 #endif
1539                 /* Ok lets come up with the IW guess, if we have a srtt */
1540                 if (rack->rc_tp->t_srtt == 0) {
1541                         /*
1542                          * Go with old pacing method
1543                          * i.e. burst mitigation only.
1544                          */
1545                         return (0);
1546                 }
1547                 /* Ok lets get the initial TCP win (not racks) */
1548                 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp));
1549                 srtt = ((uint64_t)TICKS_2_USEC(rack->rc_tp->t_srtt) >> TCP_RTT_SHIFT);
1550                 bw *= (uint64_t)USECS_IN_SECOND;
1551                 bw /= srtt;
1552                 return (bw);
1553         } else {
1554                 uint64_t bw;
1555
1556                 if(rack->r_ctl.num_avg >= RACK_REQ_AVG) {
1557                         /* Averaging is done, we can return the value */
1558                         bw = rack->r_ctl.gp_bw;
1559                 } else {
1560                         /* Still doing initial average must calculate */
1561                         bw = rack->r_ctl.gp_bw / rack->r_ctl.num_avg;
1562                 }
1563 #ifdef NETFLIX_PEAKRATE
1564                 if ((rack->rc_tp->t_maxpeakrate) &&
1565                     (bw > rack->rc_tp->t_maxpeakrate)) {
1566                         /* The user has set a peak rate to pace at
1567                          * don't allow us to pace faster than that.
1568                          */
1569                         return (rack->rc_tp->t_maxpeakrate);
1570                 }
1571 #endif
1572                 return (bw);
1573         }
1574 }
1575
1576 static uint16_t
1577 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm)
1578 {
1579         if (rack->use_fixed_rate) {
1580                 return (100);
1581         } else if (rack->in_probe_rtt && (rsm == NULL))
1582                 return(rack->r_ctl.rack_per_of_gp_probertt);
1583         else if ((IN_RECOVERY(rack->rc_tp->t_flags) &&
1584                   rack->r_ctl.rack_per_of_gp_rec)) {
1585                 if (rsm) {
1586                         /* a retransmission always use the recovery rate */
1587                         return(rack->r_ctl.rack_per_of_gp_rec);
1588                 } else if (rack->rack_rec_nonrxt_use_cr) {
1589                         /* Directed to use the configured rate */
1590                         goto configured_rate;
1591                 } else if (rack->rack_no_prr &&
1592                            (rack->r_ctl.rack_per_of_gp_rec > 100)) {
1593                         /* No PRR, lets just use the b/w estimate only */
1594                         return(100);
1595                 } else {
1596                         /*
1597                          * Here we may have a non-retransmit but we
1598                          * have no overrides, so just use the recovery
1599                          * rate (prr is in effect).
1600                          */
1601                         return(rack->r_ctl.rack_per_of_gp_rec);
1602                 }
1603         }
1604 configured_rate:
1605         /* For the configured rate we look at our cwnd vs the ssthresh */
1606         if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1607                 return (rack->r_ctl.rack_per_of_gp_ss);
1608         else
1609                 return(rack->r_ctl.rack_per_of_gp_ca);
1610 }
1611
1612 static uint64_t
1613 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm)
1614 {
1615         /*
1616          * We allow rack_per_of_gp_xx to dictate our bw rate we want.
1617          */
1618         uint64_t bw_est;
1619         uint64_t gain;
1620
1621         gain = (uint64_t)rack_get_output_gain(rack, rsm);
1622         bw_est = bw * gain;
1623         bw_est /= (uint64_t)100;
1624         /* Never fall below the minimum (def 64kbps) */
1625         if (bw_est < RACK_MIN_BW)
1626                 bw_est = RACK_MIN_BW;
1627         return (bw_est);
1628 }
1629
1630 static void
1631 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
1632 {
1633         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1634                 union tcp_log_stackspecific log;
1635                 struct timeval tv;
1636
1637                 if ((mod != 1) && (rack_verbose_logging == 0)) {
1638                         /*
1639                          * We get 3 values currently for mod
1640                          * 1 - We are retransmitting and this tells the reason.
1641                          * 2 - We are clearing a dup-ack count.
1642                          * 3 - We are incrementing a dup-ack count.
1643                          *
1644                          * The clear/increment are only logged
1645                          * if you have BBverbose on.
1646                          */
1647                         return;
1648                 }
1649                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1650                 log.u_bbr.flex1 = tsused;
1651                 log.u_bbr.flex2 = thresh;
1652                 log.u_bbr.flex3 = rsm->r_flags;
1653                 log.u_bbr.flex4 = rsm->r_dupack;
1654                 log.u_bbr.flex5 = rsm->r_start;
1655                 log.u_bbr.flex6 = rsm->r_end;
1656                 log.u_bbr.flex8 = mod;
1657                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1658                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1659                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1660                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1661                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1662                     &rack->rc_inp->inp_socket->so_rcv,
1663                     &rack->rc_inp->inp_socket->so_snd,
1664                     BBR_LOG_SETTINGS_CHG, 0,
1665                     0, &log, false, &tv);
1666         }
1667 }
1668
1669 static void
1670 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
1671 {
1672         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1673                 union tcp_log_stackspecific log;
1674                 struct timeval tv;
1675
1676                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1677                 log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
1678                 log.u_bbr.flex2 = to * 1000;
1679                 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
1680                 log.u_bbr.flex4 = slot;
1681                 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
1682                 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1683                 log.u_bbr.flex7 = rack->rc_in_persist;
1684                 log.u_bbr.flex8 = which;
1685                 if (rack->rack_no_prr)
1686                         log.u_bbr.pkts_out = 0;
1687                 else
1688                         log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1689                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1690                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1691                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1692                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1693                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1694                     &rack->rc_inp->inp_socket->so_rcv,
1695                     &rack->rc_inp->inp_socket->so_snd,
1696                     BBR_LOG_TIMERSTAR, 0,
1697                     0, &log, false, &tv);
1698         }
1699 }
1700
1701 static void
1702 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm)
1703 {
1704         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1705                 union tcp_log_stackspecific log;
1706                 struct timeval tv;
1707
1708                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1709                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1710                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1711                 log.u_bbr.flex8 = to_num;
1712                 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
1713                 log.u_bbr.flex2 = rack->rc_rack_rtt;
1714                 if (rsm == NULL)
1715                         log.u_bbr.flex3 = 0;
1716                 else
1717                         log.u_bbr.flex3 = rsm->r_end - rsm->r_start;
1718                 if (rack->rack_no_prr)
1719                         log.u_bbr.flex5 = 0;
1720                 else
1721                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1722                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1723                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1724                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1725                     &rack->rc_inp->inp_socket->so_rcv,
1726                     &rack->rc_inp->inp_socket->so_snd,
1727                     BBR_LOG_RTO, 0,
1728                     0, &log, false, &tv);
1729         }
1730 }
1731
1732 static void
1733 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len,
1734                  struct rack_sendmap *rsm, int conf)
1735 {
1736         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1737                 union tcp_log_stackspecific log;
1738                 struct timeval tv;
1739                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1740                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1741                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1742                 log.u_bbr.flex1 = t;
1743                 log.u_bbr.flex2 = len;
1744                 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt * HPTS_USEC_IN_MSEC;
1745                 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest * HPTS_USEC_IN_MSEC;
1746                 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest * HPTS_USEC_IN_MSEC;
1747                 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
1748                 log.u_bbr.flex7 = conf;
1749                 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot * (uint64_t)HPTS_USEC_IN_MSEC;
1750                 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
1751                 if (rack->rack_no_prr)
1752                         log.u_bbr.pkts_out = 0;
1753                 else
1754                         log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
1755                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1756                 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtt;
1757                 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags;
1758                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1759                 if (rsm) {
1760                         log.u_bbr.pkt_epoch = rsm->r_start;
1761                         log.u_bbr.lost = rsm->r_end;
1762                         log.u_bbr.cwnd_gain = rsm->r_rtr_cnt;
1763                 } else {
1764                         /* Its a SYN */
1765                         log.u_bbr.pkt_epoch = rack->rc_tp->iss;
1766                         log.u_bbr.lost = 0;
1767                         log.u_bbr.cwnd_gain = 0;
1768                 }
1769                 /* Write out general bits of interest rrs here */
1770                 log.u_bbr.use_lt_bw = rack->rc_highly_buffered;
1771                 log.u_bbr.use_lt_bw <<= 1;
1772                 log.u_bbr.use_lt_bw |= rack->forced_ack;
1773                 log.u_bbr.use_lt_bw <<= 1;
1774                 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul;
1775                 log.u_bbr.use_lt_bw <<= 1;
1776                 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
1777                 log.u_bbr.use_lt_bw <<= 1;
1778                 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
1779                 log.u_bbr.use_lt_bw <<= 1;
1780                 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
1781                 log.u_bbr.use_lt_bw <<= 1;
1782                 log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
1783                 log.u_bbr.use_lt_bw <<= 1;
1784                 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom;
1785                 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight;
1786                 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts;
1787                 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered;
1788                 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts;
1789                 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt;
1790                 TCP_LOG_EVENTP(tp, NULL,
1791                     &rack->rc_inp->inp_socket->so_rcv,
1792                     &rack->rc_inp->inp_socket->so_snd,
1793                     BBR_LOG_BBRRTT, 0,
1794                     0, &log, false, &tv);
1795         }
1796 }
1797
1798 static void
1799 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
1800 {
1801         /*
1802          * Log the rtt sample we are
1803          * applying to the srtt algorithm in
1804          * useconds.
1805          */
1806         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1807                 union tcp_log_stackspecific log;
1808                 struct timeval tv;
1809
1810                 /* Convert our ms to a microsecond */
1811                 memset(&log, 0, sizeof(log));
1812                 log.u_bbr.flex1 = rtt * 1000;
1813                 log.u_bbr.flex2 = rack->r_ctl.ack_count;
1814                 log.u_bbr.flex3 = rack->r_ctl.sack_count;
1815                 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
1816                 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
1817                 log.u_bbr.flex8 = rack->sack_attack_disable;
1818                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1819                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1820                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1821                     &rack->rc_inp->inp_socket->so_rcv,
1822                     &rack->rc_inp->inp_socket->so_snd,
1823                     TCP_LOG_RTT, 0,
1824                     0, &log, false, &tv);
1825         }
1826 }
1827
1828 static inline void
1829 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
1830 {
1831         if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1832                 union tcp_log_stackspecific log;
1833                 struct timeval tv;
1834
1835                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1836                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1837                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1838                 log.u_bbr.flex1 = line;
1839                 log.u_bbr.flex2 = tick;
1840                 log.u_bbr.flex3 = tp->t_maxunacktime;
1841                 log.u_bbr.flex4 = tp->t_acktime;
1842                 log.u_bbr.flex8 = event;
1843                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1844                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1845                 TCP_LOG_EVENTP(tp, NULL,
1846                     &rack->rc_inp->inp_socket->so_rcv,
1847                     &rack->rc_inp->inp_socket->so_snd,
1848                     BBR_LOG_PROGRESS, 0,
1849                     0, &log, false, &tv);
1850         }
1851 }
1852
1853 static void
1854 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv)
1855 {
1856         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1857                 union tcp_log_stackspecific log;
1858
1859                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1860                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1861                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1862                 log.u_bbr.flex1 = slot;
1863                 if (rack->rack_no_prr)
1864                         log.u_bbr.flex2 = 0;
1865                 else
1866                         log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
1867                 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
1868                 log.u_bbr.flex8 = rack->rc_in_persist;
1869                 log.u_bbr.timeStamp = cts;
1870                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1871                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1872                     &rack->rc_inp->inp_socket->so_rcv,
1873                     &rack->rc_inp->inp_socket->so_snd,
1874                     BBR_LOG_BBRSND, 0,
1875                     0, &log, false, tv);
1876         }
1877 }
1878
1879 static void
1880 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
1881 {
1882         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1883                 union tcp_log_stackspecific log;
1884                 struct timeval tv;
1885
1886                 memset(&log, 0, sizeof(log));
1887                 log.u_bbr.flex1 = did_out;
1888                 log.u_bbr.flex2 = nxt_pkt;
1889                 log.u_bbr.flex3 = way_out;
1890                 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
1891                 if (rack->rack_no_prr)
1892                         log.u_bbr.flex5 = 0;
1893                 else
1894                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1895                 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
1896                 log.u_bbr.flex7 = rack->r_wanted_output;
1897                 log.u_bbr.flex8 = rack->rc_in_persist;
1898                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1899                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1900                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1901                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1902                     &rack->rc_inp->inp_socket->so_rcv,
1903                     &rack->rc_inp->inp_socket->so_snd,
1904                     BBR_LOG_DOSEG_DONE, 0,
1905                     0, &log, false, &tv);
1906         }
1907 }
1908
1909 static void
1910 rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm)
1911 {
1912         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
1913                 union tcp_log_stackspecific log;
1914                 struct timeval tv;
1915                 uint32_t cts;
1916
1917                 memset(&log, 0, sizeof(log));
1918                 cts = tcp_get_usecs(&tv);
1919                 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
1920                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
1921                 log.u_bbr.flex4 = len;
1922                 log.u_bbr.flex5 = orig_len;
1923                 log.u_bbr.flex6 = rack->r_ctl.rc_sacked;
1924                 log.u_bbr.flex7 = mod;
1925                 log.u_bbr.flex8 = frm;
1926                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1927                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1928                 TCP_LOG_EVENTP(tp, NULL,
1929                     &tp->t_inpcb->inp_socket->so_rcv,
1930                     &tp->t_inpcb->inp_socket->so_snd,
1931                     TCP_HDWR_TLS, 0,
1932                     0, &log, false, &tv);
1933         }
1934 }
1935
1936 static void
1937 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot,
1938                           uint8_t hpts_calling, int reason, uint32_t cwnd_to_use)
1939 {
1940         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1941                 union tcp_log_stackspecific log;
1942                 struct timeval tv;
1943
1944                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1945                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1946                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1947                 log.u_bbr.flex1 = slot;
1948                 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
1949                 log.u_bbr.flex4 = reason;
1950                 if (rack->rack_no_prr)
1951                         log.u_bbr.flex5 = 0;
1952                 else
1953                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1954                 log.u_bbr.flex7 = hpts_calling;
1955                 log.u_bbr.flex8 = rack->rc_in_persist;
1956                 log.u_bbr.lt_epoch = cwnd_to_use;
1957                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
1958                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1959                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1960                     &rack->rc_inp->inp_socket->so_rcv,
1961                     &rack->rc_inp->inp_socket->so_snd,
1962                     BBR_LOG_JUSTRET, 0,
1963                     tlen, &log, false, &tv);
1964         }
1965 }
1966
1967 static void
1968 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts,
1969                    struct timeval *tv, uint32_t flags_on_entry)
1970 {
1971         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
1972                 union tcp_log_stackspecific log;
1973
1974                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
1975                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
1976                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
1977                 log.u_bbr.flex1 = line;
1978                 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to;
1979                 log.u_bbr.flex3 = flags_on_entry;
1980                 log.u_bbr.flex4 = us_cts;
1981                 if (rack->rack_no_prr)
1982                         log.u_bbr.flex5 = 0;
1983                 else
1984                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
1985                 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
1986                 log.u_bbr.flex7 = hpts_removed;
1987                 log.u_bbr.flex8 = 1;
1988                 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags;
1989                 log.u_bbr.timeStamp = us_cts;
1990                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
1991                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
1992                     &rack->rc_inp->inp_socket->so_rcv,
1993                     &rack->rc_inp->inp_socket->so_snd,
1994                     BBR_LOG_TIMERCANC, 0,
1995                     0, &log, false, tv);
1996         }
1997 }
1998
1999 static void
2000 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
2001                           uint32_t flex1, uint32_t flex2,
2002                           uint32_t flex3, uint32_t flex4,
2003                           uint32_t flex5, uint32_t flex6,
2004                           uint16_t flex7, uint8_t mod)
2005 {
2006         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2007                 union tcp_log_stackspecific log;
2008                 struct timeval tv;
2009
2010                 if (mod == 1) {
2011                         /* No you can't use 1, its for the real to cancel */
2012                         return;
2013                 }
2014                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2015                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2016                 log.u_bbr.flex1 = flex1;
2017                 log.u_bbr.flex2 = flex2;
2018                 log.u_bbr.flex3 = flex3;
2019                 log.u_bbr.flex4 = flex4;
2020                 log.u_bbr.flex5 = flex5;
2021                 log.u_bbr.flex6 = flex6;
2022                 log.u_bbr.flex7 = flex7;
2023                 log.u_bbr.flex8 =  mod;
2024                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2025                     &rack->rc_inp->inp_socket->so_rcv,
2026                     &rack->rc_inp->inp_socket->so_snd,
2027                     BBR_LOG_TIMERCANC, 0,
2028                     0, &log, false, &tv);
2029         }
2030 }
2031
2032 static void
2033 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
2034 {
2035         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2036                 union tcp_log_stackspecific log;
2037                 struct timeval tv;
2038
2039                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2040                 log.u_bbr.flex1 = timers;
2041                 log.u_bbr.flex2 = ret;
2042                 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
2043                 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2044                 log.u_bbr.flex5 = cts;
2045                 if (rack->rack_no_prr)
2046                         log.u_bbr.flex6 = 0;
2047                 else
2048                         log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
2049                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2050                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2051                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2052                     &rack->rc_inp->inp_socket->so_rcv,
2053                     &rack->rc_inp->inp_socket->so_snd,
2054                     BBR_LOG_TO_PROCESS, 0,
2055                     0, &log, false, &tv);
2056         }
2057 }
2058
2059 static void
2060 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd)
2061 {
2062         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2063                 union tcp_log_stackspecific log;
2064                 struct timeval tv;
2065
2066                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2067                 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
2068                 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
2069                 if (rack->rack_no_prr)
2070                         log.u_bbr.flex3 = 0;
2071                 else
2072                         log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
2073                 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
2074                 log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
2075                 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
2076                 log.u_bbr.flex8 = frm;
2077                 log.u_bbr.pkts_out = orig_cwnd;
2078                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2079                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2080                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2081                     &rack->rc_inp->inp_socket->so_rcv,
2082                     &rack->rc_inp->inp_socket->so_snd,
2083                     BBR_LOG_BBRUPD, 0,
2084                     0, &log, false, &tv);
2085         }
2086 }
2087
2088 #ifdef NETFLIX_EXP_DETECTION
2089 static void
2090 rack_log_sad(struct tcp_rack *rack, int event)
2091 {
2092         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2093                 union tcp_log_stackspecific log;
2094                 struct timeval tv;
2095
2096                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2097                 log.u_bbr.flex1 = rack->r_ctl.sack_count;
2098                 log.u_bbr.flex2 = rack->r_ctl.ack_count;
2099                 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
2100                 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2101                 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
2102                 log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
2103                 log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
2104                 log.u_bbr.lt_epoch = (tcp_force_detection << 8);
2105                 log.u_bbr.lt_epoch |= rack->do_detection;
2106                 log.u_bbr.applimited = tcp_map_minimum;
2107                 log.u_bbr.flex7 = rack->sack_attack_disable;
2108                 log.u_bbr.flex8 = event;
2109                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2110                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2111                 log.u_bbr.delivered = tcp_sad_decay_val;
2112                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2113                     &rack->rc_inp->inp_socket->so_rcv,
2114                     &rack->rc_inp->inp_socket->so_snd,
2115                     TCP_SAD_DETECTION, 0,
2116                     0, &log, false, &tv);
2117         }
2118 }
2119 #endif
2120
2121 static void
2122 rack_counter_destroy(void)
2123 {
2124         counter_u64_free(rack_ack_total);
2125         counter_u64_free(rack_express_sack);
2126         counter_u64_free(rack_sack_total);
2127         counter_u64_free(rack_move_none);
2128         counter_u64_free(rack_move_some);
2129         counter_u64_free(rack_sack_attacks_detected);
2130         counter_u64_free(rack_sack_attacks_reversed);
2131         counter_u64_free(rack_sack_used_next_merge);
2132         counter_u64_free(rack_sack_used_prev_merge);
2133         counter_u64_free(rack_badfr);
2134         counter_u64_free(rack_badfr_bytes);
2135         counter_u64_free(rack_rtm_prr_retran);
2136         counter_u64_free(rack_rtm_prr_newdata);
2137         counter_u64_free(rack_timestamp_mismatch);
2138         counter_u64_free(rack_find_high);
2139         counter_u64_free(rack_reorder_seen);
2140         counter_u64_free(rack_tlp_tot);
2141         counter_u64_free(rack_tlp_newdata);
2142         counter_u64_free(rack_tlp_retran);
2143         counter_u64_free(rack_tlp_retran_bytes);
2144         counter_u64_free(rack_tlp_retran_fail);
2145         counter_u64_free(rack_to_tot);
2146         counter_u64_free(rack_to_arm_rack);
2147         counter_u64_free(rack_to_arm_tlp);
2148         counter_u64_free(rack_calc_zero);
2149         counter_u64_free(rack_calc_nonzero);
2150         counter_u64_free(rack_paced_segments);
2151         counter_u64_free(rack_unpaced_segments);
2152         counter_u64_free(rack_saw_enobuf);
2153         counter_u64_free(rack_saw_enetunreach);
2154         counter_u64_free(rack_to_alloc);
2155         counter_u64_free(rack_to_alloc_hard);
2156         counter_u64_free(rack_to_alloc_emerg);
2157         counter_u64_free(rack_to_alloc_limited);
2158         counter_u64_free(rack_alloc_limited_conns);
2159         counter_u64_free(rack_split_limited);
2160         counter_u64_free(rack_sack_proc_all);
2161         counter_u64_free(rack_sack_proc_restart);
2162         counter_u64_free(rack_sack_proc_short);
2163         counter_u64_free(rack_enter_tlp_calc);
2164         counter_u64_free(rack_used_tlpmethod);
2165         counter_u64_free(rack_used_tlpmethod2);
2166         counter_u64_free(rack_sack_skipped_acked);
2167         counter_u64_free(rack_sack_splits);
2168         counter_u64_free(rack_progress_drops);
2169         counter_u64_free(rack_input_idle_reduces);
2170         counter_u64_free(rack_collapsed_win);
2171         counter_u64_free(rack_tlp_does_nada);
2172         counter_u64_free(rack_try_scwnd);
2173         counter_u64_free(rack_per_timer_hole);
2174         COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
2175         COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
2176 }
2177
2178 static struct rack_sendmap *
2179 rack_alloc(struct tcp_rack *rack)
2180 {
2181         struct rack_sendmap *rsm;
2182
2183         rsm = uma_zalloc(rack_zone, M_NOWAIT);
2184         if (rsm) {
2185                 rack->r_ctl.rc_num_maps_alloced++;
2186                 counter_u64_add(rack_to_alloc, 1);
2187                 return (rsm);
2188         }
2189         if (rack->rc_free_cnt) {
2190                 counter_u64_add(rack_to_alloc_emerg, 1);
2191                 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2192                 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2193                 rack->rc_free_cnt--;
2194                 return (rsm);
2195         }
2196         return (NULL);
2197 }
2198
2199 static struct rack_sendmap *
2200 rack_alloc_full_limit(struct tcp_rack *rack)
2201 {
2202         if ((V_tcp_map_entries_limit > 0) &&
2203             (rack->do_detection == 0) &&
2204             (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
2205                 counter_u64_add(rack_to_alloc_limited, 1);
2206                 if (!rack->alloc_limit_reported) {
2207                         rack->alloc_limit_reported = 1;
2208                         counter_u64_add(rack_alloc_limited_conns, 1);
2209                 }
2210                 return (NULL);
2211         }
2212         return (rack_alloc(rack));
2213 }
2214
2215 /* wrapper to allocate a sendmap entry, subject to a specific limit */
2216 static struct rack_sendmap *
2217 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
2218 {
2219         struct rack_sendmap *rsm;
2220
2221         if (limit_type) {
2222                 /* currently there is only one limit type */
2223                 if (V_tcp_map_split_limit > 0 &&
2224                     (rack->do_detection == 0) &&
2225                     rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
2226                         counter_u64_add(rack_split_limited, 1);
2227                         if (!rack->alloc_limit_reported) {
2228                                 rack->alloc_limit_reported = 1;
2229                                 counter_u64_add(rack_alloc_limited_conns, 1);
2230                         }
2231                         return (NULL);
2232                 }
2233         }
2234
2235         /* allocate and mark in the limit type, if set */
2236         rsm = rack_alloc(rack);
2237         if (rsm != NULL && limit_type) {
2238                 rsm->r_limit_type = limit_type;
2239                 rack->r_ctl.rc_num_split_allocs++;
2240         }
2241         return (rsm);
2242 }
2243
2244 static void
2245 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
2246 {
2247         if (rsm->r_flags & RACK_APP_LIMITED) {
2248                 if (rack->r_ctl.rc_app_limited_cnt > 0) {
2249                         rack->r_ctl.rc_app_limited_cnt--;
2250                 }
2251         }
2252         if (rsm->r_limit_type) {
2253                 /* currently there is only one limit type */
2254                 rack->r_ctl.rc_num_split_allocs--;
2255         }
2256         if (rsm == rack->r_ctl.rc_first_appl) {
2257                 if (rack->r_ctl.rc_app_limited_cnt == 0)
2258                         rack->r_ctl.rc_first_appl = NULL;
2259                 else {
2260                         /* Follow the next one out */
2261                         struct rack_sendmap fe;
2262
2263                         fe.r_start = rsm->r_nseq_appl;
2264                         rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
2265                 }
2266         }
2267         if (rsm == rack->r_ctl.rc_resend)
2268                 rack->r_ctl.rc_resend = NULL;
2269         if (rsm == rack->r_ctl.rc_rsm_at_retran)
2270                 rack->r_ctl.rc_rsm_at_retran = NULL;
2271         if (rsm == rack->r_ctl.rc_end_appl)
2272                 rack->r_ctl.rc_end_appl = NULL;
2273         if (rack->r_ctl.rc_tlpsend == rsm)
2274                 rack->r_ctl.rc_tlpsend = NULL;
2275         if (rack->r_ctl.rc_sacklast == rsm)
2276                 rack->r_ctl.rc_sacklast = NULL;
2277         if (rack->rc_free_cnt < rack_free_cache) {
2278                 memset(rsm, 0, sizeof(struct rack_sendmap));
2279                 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
2280                 rsm->r_limit_type = 0;
2281                 rack->rc_free_cnt++;
2282                 return;
2283         }
2284         rack->r_ctl.rc_num_maps_alloced--;
2285         uma_zfree(rack_zone, rsm);
2286 }
2287
2288 static uint32_t
2289 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack)
2290 {
2291         uint64_t srtt, bw, len, tim;
2292         uint32_t segsiz, def_len, minl;
2293
2294         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
2295         def_len = rack_def_data_window * segsiz;
2296         if (rack->rc_gp_filled == 0) {
2297                 /*
2298                  * We have no measurement (IW is in flight?) so
2299                  * we can only guess using our data_window sysctl
2300                  * value (usually 100MSS).
2301                  */
2302                 return (def_len);
2303         }
2304         /*
2305          * Now we have a number of factors to consider.
2306          *
2307          * 1) We have a desired BDP which is usually
2308          *    at least 2.
2309          * 2) We have a minimum number of rtt's usually 1 SRTT
2310          *    but we allow it too to be more.
2311          * 3) We want to make sure a measurement last N useconds (if
2312          *    we have set rack_min_measure_usec.
2313          *
2314          * We handle the first concern here by trying to create a data
2315          * window of max(rack_def_data_window, DesiredBDP). The
2316          * second concern we handle in not letting the measurement
2317          * window end normally until at least the required SRTT's
2318          * have gone by which is done further below in
2319          * rack_enough_for_measurement(). Finally the third concern
2320          * we also handle here by calculating how long that time
2321          * would take at the current BW and then return the
2322          * max of our first calculation and that length. Note
2323          * that if rack_min_measure_usec is 0, we don't deal
2324          * with concern 3. Also for both Concern 1 and 3 an
2325          * application limited period could end the measurement
2326          * earlier.
2327          *
2328          * So lets calculate the BDP with the "known" b/w using
2329          * the SRTT has our rtt and then multiply it by the
2330          * goal.
2331          */
2332         bw = rack_get_bw(rack);
2333         srtt = ((uint64_t)TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT);
2334         len = bw * srtt;
2335         len /= (uint64_t)HPTS_USEC_IN_SEC;
2336         len *= max(1, rack_goal_bdp);
2337         /* Now we need to round up to the nearest MSS */
2338         len = roundup(len, segsiz);
2339         if (rack_min_measure_usec) {
2340                 /* Now calculate our min length for this b/w */
2341                 tim = rack_min_measure_usec;
2342                 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC;
2343                 if (minl == 0)
2344                         minl = 1;
2345                 minl = roundup(minl, segsiz);
2346                 if (len < minl)
2347                         len = minl;
2348         }
2349         /*
2350          * Now if we have a very small window we want
2351          * to attempt to get the window that is
2352          * as small as possible. This happens on
2353          * low b/w connections and we don't want to
2354          * span huge numbers of rtt's between measurements.
2355          *
2356          * We basically include 2 over our "MIN window" so
2357          * that the measurement can be shortened (possibly) by
2358          * an ack'ed packet.
2359          */
2360         if (len < def_len)
2361                 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz)));
2362         else
2363                 return (max((uint32_t)len, def_len));
2364
2365 }
2366
2367 static int
2368 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack)
2369 {
2370         uint32_t tim, srtts, segsiz;
2371
2372         /*
2373          * Has enough time passed for the GP measurement to be valid?
2374          */
2375         if ((tp->snd_max == tp->snd_una) ||
2376             (th_ack == tp->snd_max)){
2377                 /* All is acked */
2378                 return (1);
2379         }
2380         if (SEQ_LT(th_ack, tp->gput_seq)) {
2381                 /* Not enough bytes yet */
2382                 return (0);
2383         }
2384         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
2385         if (SEQ_LT(th_ack, tp->gput_ack) &&
2386             ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
2387                 /* Not enough bytes yet */
2388                 return (0);
2389         }
2390         if (rack->r_ctl.rc_first_appl &&
2391             (rack->r_ctl.rc_first_appl->r_start == th_ack)) {
2392                 /*
2393                  * We are up to the app limited point
2394                  * we have to measure irrespective of the time..
2395                  */
2396                 return (1);
2397         }
2398         /* Now what about time? */
2399         srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts);
2400         tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts;
2401         if (tim >= srtts) {
2402                 return (1);
2403         }
2404         /* Nope not even a full SRTT has passed */
2405         return (0);
2406 }
2407
2408 static void
2409 rack_log_timely(struct tcp_rack *rack,
2410                 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd,
2411                 uint64_t up_bnd, int line, uint8_t method)
2412 {
2413         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2414                 union tcp_log_stackspecific log;
2415                 struct timeval tv;
2416
2417                 memset(&log, 0, sizeof(log));
2418                 log.u_bbr.flex1 = logged;
2419                 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt;
2420                 log.u_bbr.flex2 <<= 4;
2421                 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt;
2422                 log.u_bbr.flex2 <<= 4;
2423                 log.u_bbr.flex2 |= rack->rc_gp_incr;
2424                 log.u_bbr.flex2 <<= 4;
2425                 log.u_bbr.flex2 |= rack->rc_gp_bwred;
2426                 log.u_bbr.flex3 = rack->rc_gp_incr;
2427                 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
2428                 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca;
2429                 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec;
2430                 log.u_bbr.flex7 = rack->rc_gp_bwred;
2431                 log.u_bbr.flex8 = method;
2432                 log.u_bbr.cur_del_rate = cur_bw;
2433                 log.u_bbr.delRate = low_bnd;
2434                 log.u_bbr.bw_inuse = up_bnd;
2435                 log.u_bbr.rttProp = rack_get_bw(rack);
2436                 log.u_bbr.pkt_epoch = line;
2437                 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
2438                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2439                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2440                 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
2441                 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
2442                 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom;
2443                 log.u_bbr.cwnd_gain <<= 1;
2444                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec;
2445                 log.u_bbr.cwnd_gain <<= 1;
2446                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
2447                 log.u_bbr.cwnd_gain <<= 1;
2448                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
2449                 log.u_bbr.lost = rack->r_ctl.rc_loss_count;
2450                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2451                     &rack->rc_inp->inp_socket->so_rcv,
2452                     &rack->rc_inp->inp_socket->so_snd,
2453                     TCP_TIMELY_WORK, 0,
2454                     0, &log, false, &tv);
2455         }
2456 }
2457
2458 static int
2459 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult)
2460 {
2461         /*
2462          * Before we increase we need to know if
2463          * the estimate just made was less than
2464          * our pacing goal (i.e. (cur_bw * mult) > last_bw_est)
2465          *
2466          * If we already are pacing at a fast enough
2467          * rate to push us faster there is no sense of
2468          * increasing.
2469          *
2470          * We first caculate our actual pacing rate (ss or ca multipler
2471          * times our cur_bw).
2472          *
2473          * Then we take the last measured rate and multipy by our
2474          * maximum pacing overage to give us a max allowable rate.
2475          *
2476          * If our act_rate is smaller than our max_allowable rate
2477          * then we should increase. Else we should hold steady.
2478          *
2479          */
2480         uint64_t act_rate, max_allow_rate;
2481
2482         if (rack_timely_no_stopping)
2483                 return (1);
2484
2485         if ((cur_bw == 0) || (last_bw_est == 0)) {
2486                 /*
2487                  * Initial startup case or
2488                  * everything is acked case.
2489                  */
2490                 rack_log_timely(rack,  mult, cur_bw, 0, 0,
2491                                 __LINE__, 9);
2492                 return (1);
2493         }
2494         if (mult <= 100) {
2495                 /*
2496                  * We can always pace at or slightly above our rate.
2497                  */
2498                 rack_log_timely(rack,  mult, cur_bw, 0, 0,
2499                                 __LINE__, 9);
2500                 return (1);
2501         }
2502         act_rate = cur_bw * (uint64_t)mult;
2503         act_rate /= 100;
2504         max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100);
2505         max_allow_rate /= 100;
2506         if (act_rate < max_allow_rate) {
2507                 /*
2508                  * Here the rate we are actually pacing at
2509                  * is smaller than 10% above our last measurement.
2510                  * This means we are pacing below what we would
2511                  * like to try to achieve (plus some wiggle room).
2512                  */
2513                 rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
2514                                 __LINE__, 9);
2515                 return (1);
2516         } else {
2517                 /*
2518                  * Here we are already pacing at least rack_max_per_above(10%)
2519                  * what we are getting back. This indicates most likely
2520                  * that we are being limited (cwnd/rwnd/app) and can't
2521                  * get any more b/w. There is no sense of trying to
2522                  * raise up the pacing rate its not speeding us up
2523                  * and we already are pacing faster than we are getting.
2524                  */
2525                 rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
2526                                 __LINE__, 8);
2527                 return (0);
2528         }
2529 }
2530
2531 static void
2532 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack)
2533 {
2534         /*
2535          * When we drag bottom, we want to assure
2536          * that no multiplier is below 1.0, if so
2537          * we want to restore it to at least that.
2538          */
2539         if (rack->r_ctl.rack_per_of_gp_rec  < 100) {
2540                 /* This is unlikely we usually do not touch recovery */
2541                 rack->r_ctl.rack_per_of_gp_rec = 100;
2542         }
2543         if (rack->r_ctl.rack_per_of_gp_ca < 100) {
2544                 rack->r_ctl.rack_per_of_gp_ca = 100;
2545         }
2546         if (rack->r_ctl.rack_per_of_gp_ss < 100) {
2547                 rack->r_ctl.rack_per_of_gp_ss = 100;
2548         }
2549 }
2550
2551 static void
2552 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack)
2553 {
2554         if (rack->r_ctl.rack_per_of_gp_ca > 100) {
2555                 rack->r_ctl.rack_per_of_gp_ca = 100;
2556         }
2557         if (rack->r_ctl.rack_per_of_gp_ss > 100) {
2558                 rack->r_ctl.rack_per_of_gp_ss = 100;
2559         }
2560 }
2561
2562 static void
2563 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override)
2564 {
2565         int32_t  calc, logged, plus;
2566
2567         logged = 0;
2568
2569         if (override) {
2570                 /*
2571                  * override is passed when we are
2572                  * loosing b/w and making one last
2573                  * gasp at trying to not loose out
2574                  * to a new-reno flow.
2575                  */
2576                 goto extra_boost;
2577         }
2578         /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */
2579         if (rack->rc_gp_incr &&
2580             ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) {
2581                 /*
2582                  * Reset and get 5 strokes more before the boost. Note
2583                  * that the count is 0 based so we have to add one.
2584                  */
2585 extra_boost:
2586                 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST;
2587                 rack->rc_gp_timely_inc_cnt = 0;
2588         } else
2589                 plus = (uint32_t)rack_gp_increase_per;
2590         /* Must be at least 1% increase for true timely increases */
2591         if ((plus < 1) &&
2592             ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0)))
2593                 plus = 1;
2594         if (rack->rc_gp_saw_rec &&
2595             (rack->rc_gp_no_rec_chg == 0) &&
2596             rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
2597                                   rack->r_ctl.rack_per_of_gp_rec)) {
2598                 /* We have been in recovery ding it too */
2599                 calc = rack->r_ctl.rack_per_of_gp_rec + plus;
2600                 if (calc > 0xffff)
2601                         calc = 0xffff;
2602                 logged |= 1;
2603                 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc;
2604                 if (rack_per_upper_bound_ss &&
2605                     (rack->rc_dragged_bottom == 0) &&
2606                     (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss))
2607                         rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss;
2608         }
2609         if (rack->rc_gp_saw_ca &&
2610             (rack->rc_gp_saw_ss == 0) &&
2611             rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
2612                                   rack->r_ctl.rack_per_of_gp_ca)) {
2613                 /* In CA */
2614                 calc = rack->r_ctl.rack_per_of_gp_ca + plus;
2615                 if (calc > 0xffff)
2616                         calc = 0xffff;
2617                 logged |= 2;
2618                 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc;
2619                 if (rack_per_upper_bound_ca &&
2620                     (rack->rc_dragged_bottom == 0) &&
2621                     (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca))
2622                         rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca;
2623         }
2624         if (rack->rc_gp_saw_ss &&
2625             rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
2626                                   rack->r_ctl.rack_per_of_gp_ss)) {
2627                 /* In SS */
2628                 calc = rack->r_ctl.rack_per_of_gp_ss + plus;
2629                 if (calc > 0xffff)
2630                         calc = 0xffff;
2631                 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc;
2632                 if (rack_per_upper_bound_ss &&
2633                     (rack->rc_dragged_bottom == 0) &&
2634                     (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss))
2635                         rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss;
2636                 logged |= 4;
2637         }
2638         if (logged &&
2639             (rack->rc_gp_incr == 0)){
2640                 /* Go into increment mode */
2641                 rack->rc_gp_incr = 1;
2642                 rack->rc_gp_timely_inc_cnt = 0;
2643         }
2644         if (rack->rc_gp_incr &&
2645             logged &&
2646             (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) {
2647                 rack->rc_gp_timely_inc_cnt++;
2648         }
2649         rack_log_timely(rack,  logged, plus, 0, 0,
2650                         __LINE__, 1);
2651 }
2652
2653 static uint32_t
2654 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff)
2655 {
2656         /*
2657          * norm_grad = rtt_diff / minrtt;
2658          * new_per = curper  * (1 - B * norm_grad)
2659          *
2660          * B = rack_gp_decrease_per (default 10%)
2661          * rtt_dif = input var current rtt-diff
2662          * curper = input var current percentage
2663          * minrtt = from rack filter
2664          *
2665          */
2666         uint64_t perf;
2667
2668         perf = (((uint64_t)curper * ((uint64_t)1000000 -
2669                     ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 *
2670                      (((uint64_t)rtt_diff * (uint64_t)1000000)/
2671                       (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/
2672                      (uint64_t)1000000)) /
2673                 (uint64_t)1000000);
2674         if (perf > curper) {
2675                 /* TSNH */
2676                 perf = curper - 1;
2677         }
2678         return ((uint32_t)perf);
2679 }
2680
2681 static uint32_t
2682 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt)
2683 {
2684         /*
2685          *                                   highrttthresh
2686          * result = curper * (1 - (B * ( 1 -  ------          ))
2687          *                                     gp_srtt
2688          *
2689          * B = rack_gp_decrease_per (default 10%)
2690          * highrttthresh = filter_min * rack_gp_rtt_maxmul
2691          */
2692         uint64_t perf;
2693         uint32_t highrttthresh;
2694
2695         highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
2696
2697         perf =  (((uint64_t)curper * ((uint64_t)1000000 -
2698                                     ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 -
2699                                         ((uint64_t)highrttthresh * (uint64_t)1000000) /
2700                                                     (uint64_t)rtt)) / 100)) /(uint64_t)1000000);
2701         return (perf);
2702 }
2703
2704 static void
2705 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff)
2706 {
2707         uint64_t logvar, logvar2, logvar3;
2708         uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val;
2709
2710         if (rack->rc_gp_incr) {
2711                 /* Turn off increment counting  */
2712                 rack->rc_gp_incr = 0;
2713                 rack->rc_gp_timely_inc_cnt = 0;
2714         }
2715         ss_red = ca_red = rec_red = 0;
2716         logged = 0;
2717         /* Calculate the reduction value */
2718         if (rtt_diff < 0) {
2719                 rtt_diff *= -1;
2720         }
2721         /* Must be at least 1% reduction */
2722         if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) {
2723                 /* We have been in recovery ding it too */
2724                 if (timely_says == 2) {
2725                         new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt);
2726                         alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
2727                         if (alt < new_per)
2728                                 val = alt;
2729                         else
2730                                 val = new_per;
2731                 } else
2732                          val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
2733                 if (rack->r_ctl.rack_per_of_gp_rec > val) {
2734                         rec_red = (rack->r_ctl.rack_per_of_gp_rec - val);
2735                         rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val;
2736                 } else {
2737                         rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
2738                         rec_red = 0;
2739                 }
2740                 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec)
2741                         rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
2742                 logged |= 1;
2743         }
2744         if (rack->rc_gp_saw_ss) {
2745                 /* Sent in SS */
2746                 if (timely_says == 2) {
2747                         new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt);
2748                         alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
2749                         if (alt < new_per)
2750                                 val = alt;
2751                         else
2752                                 val = new_per;
2753                 } else
2754                         val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff);
2755                 if (rack->r_ctl.rack_per_of_gp_ss > new_per) {
2756                         ss_red = rack->r_ctl.rack_per_of_gp_ss - val;
2757                         rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val;
2758                 } else {
2759                         ss_red = new_per;
2760                         rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
2761                         logvar = new_per;
2762                         logvar <<= 32;
2763                         logvar |= alt;
2764                         logvar2 = (uint32_t)rtt;
2765                         logvar2 <<= 32;
2766                         logvar2 |= (uint32_t)rtt_diff;
2767                         logvar3 = rack_gp_rtt_maxmul;
2768                         logvar3 <<= 32;
2769                         logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
2770                         rack_log_timely(rack, timely_says,
2771                                         logvar2, logvar3,
2772                                         logvar, __LINE__, 10);
2773                 }
2774                 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss)
2775                         rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
2776                 logged |= 4;
2777         } else  if (rack->rc_gp_saw_ca) {
2778                 /* Sent in CA */
2779                 if (timely_says == 2) {
2780                         new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt);
2781                         alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
2782                         if (alt < new_per)
2783                                 val = alt;
2784                         else
2785                                 val = new_per;
2786                 } else
2787                         val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff);
2788                 if (rack->r_ctl.rack_per_of_gp_ca > val) {
2789                         ca_red = rack->r_ctl.rack_per_of_gp_ca - val;
2790                         rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val;
2791                 } else {
2792                         rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
2793                         ca_red = 0;
2794                         logvar = new_per;
2795                         logvar <<= 32;
2796                         logvar |= alt;
2797                         logvar2 = (uint32_t)rtt;
2798                         logvar2 <<= 32;
2799                         logvar2 |= (uint32_t)rtt_diff;
2800                         logvar3 = rack_gp_rtt_maxmul;
2801                         logvar3 <<= 32;
2802                         logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
2803                         rack_log_timely(rack, timely_says,
2804                                         logvar2, logvar3,
2805                                         logvar, __LINE__, 10);
2806                 }
2807                 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca)
2808                         rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
2809                 logged |= 2;
2810         }
2811         if (rack->rc_gp_timely_dec_cnt < 0x7) {
2812                 rack->rc_gp_timely_dec_cnt++;
2813                 if (rack_timely_dec_clear &&
2814                     (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear))
2815                         rack->rc_gp_timely_dec_cnt = 0;
2816         }
2817         logvar = ss_red;
2818         logvar <<= 32;
2819         logvar |= ca_red;
2820         rack_log_timely(rack,  logged, rec_red, rack_per_lower_bound, logvar,
2821                         __LINE__, 2);
2822 }
2823
2824 static void
2825 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts,
2826                      uint32_t rtt, uint32_t line, uint8_t reas)
2827 {
2828         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2829                 union tcp_log_stackspecific log;
2830                 struct timeval tv;
2831
2832                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2833                 log.u_bbr.flex1 = line;
2834                 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts;
2835                 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts;
2836                 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
2837                 log.u_bbr.flex5 = rtt;
2838                 log.u_bbr.flex6 = rack->rc_highly_buffered;
2839                 log.u_bbr.flex6 <<= 1;
2840                 log.u_bbr.flex6 |= rack->forced_ack;
2841                 log.u_bbr.flex6 <<= 1;
2842                 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul;
2843                 log.u_bbr.flex6 <<= 1;
2844                 log.u_bbr.flex6 |= rack->in_probe_rtt;
2845                 log.u_bbr.flex6 <<= 1;
2846                 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt;
2847                 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt;
2848                 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca;
2849                 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec;
2850                 log.u_bbr.flex8 = reas;
2851                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2852                 log.u_bbr.delRate = rack_get_bw(rack);
2853                 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt;
2854                 log.u_bbr.cur_del_rate <<= 32;
2855                 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt;
2856                 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered;
2857                 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
2858                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2859                 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
2860                 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
2861                 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts;
2862                 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight;
2863                 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
2864                 log.u_bbr.rttProp = us_cts;
2865                 log.u_bbr.rttProp <<= 32;
2866                 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt;
2867                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2868                     &rack->rc_inp->inp_socket->so_rcv,
2869                     &rack->rc_inp->inp_socket->so_snd,
2870                     BBR_LOG_RTT_SHRINKS, 0,
2871                     0, &log, false, &rack->r_ctl.act_rcv_time);
2872         }
2873 }
2874
2875 static void
2876 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt)
2877 {
2878         uint64_t bwdp;
2879
2880         bwdp = rack_get_bw(rack);
2881         bwdp *= (uint64_t)rtt;
2882         bwdp /= (uint64_t)HPTS_USEC_IN_SEC;
2883         rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz);
2884         if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) {
2885                 /*
2886                  * A window protocol must be able to have 4 packets
2887                  * outstanding as the floor in order to function
2888                  * (especially considering delayed ack :D).
2889                  */
2890                 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs);
2891         }
2892 }
2893
2894 static void
2895 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts)
2896 {
2897         /**
2898          * ProbeRTT is a bit different in rack_pacing than in
2899          * BBR. It is like BBR in that it uses the lowering of
2900          * the RTT as a signal that we saw something new and
2901          * counts from there for how long between. But it is
2902          * different in that its quite simple. It does not
2903          * play with the cwnd and wait until we get down
2904          * to N segments outstanding and hold that for
2905          * 200ms. Instead it just sets the pacing reduction
2906          * rate to a set percentage (70 by default) and hold
2907          * that for a number of recent GP Srtt's.
2908          */
2909         uint32_t segsiz;
2910
2911         if (rack->rc_gp_dyn_mul == 0)
2912                 return;
2913
2914         if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) {
2915                 /* We are idle */
2916                 return;
2917         }
2918         if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
2919             SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
2920                 /*
2921                  * Stop the goodput now, the idea here is
2922                  * that future measurements with in_probe_rtt
2923                  * won't register if they are not greater so
2924                  * we want to get what info (if any) is available
2925                  * now.
2926                  */
2927                 rack_do_goodput_measurement(rack->rc_tp, rack,
2928                                             rack->rc_tp->snd_una, __LINE__);
2929         }
2930         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
2931         rack->r_ctl.rc_time_probertt_entered = us_cts;
2932         segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
2933                      rack->r_ctl.rc_pace_min_segs);
2934         rack->in_probe_rtt = 1;
2935         rack->measure_saw_probe_rtt = 1;
2936         rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
2937         rack->r_ctl.rc_time_probertt_starts = 0;
2938         rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt;
2939         if (rack_probertt_use_min_rtt_entry)
2940                 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
2941         else
2942                 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt);
2943         rack_log_rtt_shrinks(rack,  us_cts,  get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
2944                              __LINE__, RACK_RTTS_ENTERPROBE);
2945 }
2946
2947 static void
2948 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts)
2949 {
2950         struct rack_sendmap *rsm;
2951         uint32_t segsiz;
2952
2953         segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
2954                      rack->r_ctl.rc_pace_min_segs);
2955         rack->in_probe_rtt = 0;
2956         if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
2957             SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
2958                 /*
2959                  * Stop the goodput now, the idea here is
2960                  * that future measurements with in_probe_rtt
2961                  * won't register if they are not greater so
2962                  * we want to get what info (if any) is available
2963                  * now.
2964                  */
2965                 rack_do_goodput_measurement(rack->rc_tp, rack,
2966                                             rack->rc_tp->snd_una, __LINE__);
2967         } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
2968                 /*
2969                  * We don't have enough data to make a measurement.
2970                  * So lets just stop and start here after exiting
2971                  * probe-rtt. We probably are not interested in
2972                  * the results anyway.
2973                  */
2974                 rack->rc_tp->t_flags &= ~TF_GPUTINPROG;
2975         }
2976         /*
2977          * Measurements through the current snd_max are going
2978          * to be limited by the slower pacing rate.
2979          *
2980          * We need to mark these as app-limited so we
2981          * don't collapse the b/w.
2982          */
2983         rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
2984         if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
2985                 if (rack->r_ctl.rc_app_limited_cnt == 0)
2986                         rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
2987                 else {
2988                         /*
2989                          * Go out to the end app limited and mark
2990                          * this new one as next and move the end_appl up
2991                          * to this guy.
2992                          */
2993                         if (rack->r_ctl.rc_end_appl)
2994                                 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
2995                         rack->r_ctl.rc_end_appl = rsm;
2996                 }
2997                 rsm->r_flags |= RACK_APP_LIMITED;
2998                 rack->r_ctl.rc_app_limited_cnt++;
2999         }
3000         /*
3001          * Now, we need to examine our pacing rate multipliers.
3002          * If its under 100%, we need to kick it back up to
3003          * 100%. We also don't let it be over our "max" above
3004          * the actual rate i.e. 100% + rack_clamp_atexit_prtt.
3005          * Note setting clamp_atexit_prtt to 0 has the effect
3006          * of setting CA/SS to 100% always at exit (which is
3007          * the default behavior).
3008          */
3009         if (rack_probertt_clear_is) {
3010                 rack->rc_gp_incr = 0;
3011                 rack->rc_gp_bwred = 0;
3012                 rack->rc_gp_timely_inc_cnt = 0;
3013                 rack->rc_gp_timely_dec_cnt = 0;
3014         }
3015         /* Do we do any clamping at exit? */
3016         if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) {
3017                 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp;
3018                 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp;
3019         }
3020         if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) {
3021                 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt;
3022                 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt;
3023         }
3024         /*
3025          * Lets set rtt_diff to 0, so that we will get a "boost"
3026          * after exiting.
3027          */
3028         rack->r_ctl.rc_rtt_diff = 0;
3029
3030         /* Clear all flags so we start fresh */
3031         rack->rc_tp->t_bytes_acked = 0;
3032         rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND;
3033         /*
3034          * If configured to, set the cwnd and ssthresh to
3035          * our targets.
3036          */
3037         if (rack_probe_rtt_sets_cwnd) {
3038                 uint64_t ebdp;
3039                 uint32_t setto;
3040
3041                 /* Set ssthresh so we get into CA once we hit our target */
3042                 if (rack_probertt_use_min_rtt_exit == 1) {
3043                         /* Set to min rtt */
3044                         rack_set_prtt_target(rack, segsiz,
3045                                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3046                 } else if (rack_probertt_use_min_rtt_exit == 2) {
3047                         /* Set to current gp rtt */
3048                         rack_set_prtt_target(rack, segsiz,
3049                                              rack->r_ctl.rc_gp_srtt);
3050                 } else if (rack_probertt_use_min_rtt_exit == 3) {
3051                         /* Set to entry gp rtt */
3052                         rack_set_prtt_target(rack, segsiz,
3053                                              rack->r_ctl.rc_entry_gp_rtt);
3054                 } else  {
3055                         uint64_t sum;
3056                         uint32_t setval;
3057
3058                         sum = rack->r_ctl.rc_entry_gp_rtt;
3059                         sum *= 10;
3060                         sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt));
3061                         if (sum >= 20) {
3062                                 /*
3063                                  * A highly buffered path needs
3064                                  * cwnd space for timely to work.
3065                                  * Lets set things up as if
3066                                  * we are heading back here again.
3067                                  */
3068                                 setval = rack->r_ctl.rc_entry_gp_rtt;
3069                         } else if (sum >= 15) {
3070                                 /*
3071                                  * Lets take the smaller of the
3072                                  * two since we are just somewhat
3073                                  * buffered.
3074                                  */
3075                                 setval = rack->r_ctl.rc_gp_srtt;
3076                                 if (setval > rack->r_ctl.rc_entry_gp_rtt)
3077                                         setval = rack->r_ctl.rc_entry_gp_rtt;
3078                         } else {
3079                                 /*
3080                                  * Here we are not highly buffered
3081                                  * and should pick the min we can to
3082                                  * keep from causing loss.
3083                                  */
3084                                 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3085                         }
3086                         rack_set_prtt_target(rack, segsiz,
3087                                              setval);
3088                 }
3089                 if (rack_probe_rtt_sets_cwnd > 1) {
3090                         /* There is a percentage here to boost */
3091                         ebdp = rack->r_ctl.rc_target_probertt_flight;
3092                         ebdp *= rack_probe_rtt_sets_cwnd;
3093                         ebdp /= 100;
3094                         setto = rack->r_ctl.rc_target_probertt_flight + ebdp;
3095                 } else
3096                         setto = rack->r_ctl.rc_target_probertt_flight;
3097                 rack->rc_tp->snd_cwnd = roundup(setto, segsiz);
3098                 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) {
3099                         /* Enforce a min */
3100                         rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs;
3101                 }
3102                 /* If we set in the cwnd also set the ssthresh point so we are in CA */
3103                 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1);
3104         }
3105         rack_log_rtt_shrinks(rack,  us_cts,
3106                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3107                              __LINE__, RACK_RTTS_EXITPROBE);
3108         /* Clear times last so log has all the info */
3109         rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max;
3110         rack->r_ctl.rc_time_probertt_entered = us_cts;
3111         rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3112         rack->r_ctl.rc_time_of_last_probertt = us_cts;
3113 }
3114
3115 static void
3116 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts)
3117 {
3118         /* Check in on probe-rtt */
3119         if (rack->rc_gp_filled == 0) {
3120                 /* We do not do p-rtt unless we have gp measurements */
3121                 return;
3122         }
3123         if (rack->in_probe_rtt) {
3124                 uint64_t no_overflow;
3125                 uint32_t endtime, must_stay;
3126
3127                 if (rack->r_ctl.rc_went_idle_time &&
3128                     ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) {
3129                         /*
3130                          * We went idle during prtt, just exit now.
3131                          */
3132                         rack_exit_probertt(rack, us_cts);
3133                 } else if (rack_probe_rtt_safety_val &&
3134                     TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) &&
3135                     ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) {
3136                         /*
3137                          * Probe RTT safety value triggered!
3138                          */
3139                         rack_log_rtt_shrinks(rack,  us_cts,
3140                                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3141                                              __LINE__, RACK_RTTS_SAFETY);
3142                         rack_exit_probertt(rack, us_cts);
3143                 }
3144                 /* Calculate the max we will wait */
3145                 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait);
3146                 if (rack->rc_highly_buffered)
3147                         endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp);
3148                 /* Calculate the min we must wait */
3149                 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain);
3150                 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) &&
3151                     TSTMP_LT(us_cts, endtime)) {
3152                         uint32_t calc;
3153                         /* Do we lower more? */
3154 no_exit:
3155                         if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered))
3156                                 calc = us_cts - rack->r_ctl.rc_time_probertt_entered;
3157                         else
3158                                 calc = 0;
3159                         calc /= max(rack->r_ctl.rc_gp_srtt, 1);
3160                         if (calc) {
3161                                 /* Maybe */
3162                                 calc *= rack_per_of_gp_probertt_reduce;
3163                                 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc;
3164                                 /* Limit it too */
3165                                 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh)
3166                                         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh;
3167                         }
3168                         /* We must reach target or the time set */
3169                         return;
3170                 }
3171                 if (rack->r_ctl.rc_time_probertt_starts == 0) {
3172                         if ((TSTMP_LT(us_cts, must_stay) &&
3173                              rack->rc_highly_buffered) ||
3174                              (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) >
3175                               rack->r_ctl.rc_target_probertt_flight)) {
3176                                 /* We are not past the must_stay time */
3177                                 goto no_exit;
3178                         }
3179                         rack_log_rtt_shrinks(rack,  us_cts,
3180                                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3181                                              __LINE__, RACK_RTTS_REACHTARGET);
3182                         rack->r_ctl.rc_time_probertt_starts = us_cts;
3183                         if (rack->r_ctl.rc_time_probertt_starts == 0)
3184                                 rack->r_ctl.rc_time_probertt_starts = 1;
3185                         /* Restore back to our rate we want to pace at in prtt */
3186                         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3187                 }
3188                 /*
3189                  * Setup our end time, some number of gp_srtts plus 200ms.
3190                  */
3191                 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt *
3192                                (uint64_t)rack_probertt_gpsrtt_cnt_mul);
3193                 if (rack_probertt_gpsrtt_cnt_div)
3194                         endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div);
3195                 else
3196                         endtime = 0;
3197                 endtime += rack_min_probertt_hold;
3198                 endtime += rack->r_ctl.rc_time_probertt_starts;
3199                 if (TSTMP_GEQ(us_cts,  endtime)) {
3200                         /* yes, exit probertt  */
3201                         rack_exit_probertt(rack, us_cts);
3202                 }
3203
3204         } else  if((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) {
3205                 /* Go into probertt, its been too long since we went lower  */
3206                 rack_enter_probertt(rack, us_cts);
3207         }
3208 }
3209
3210 static void
3211 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est,
3212                        uint32_t rtt, int32_t rtt_diff)
3213 {
3214         uint64_t cur_bw, up_bnd, low_bnd, subfr;
3215         uint32_t losses;
3216
3217         if ((rack->rc_gp_dyn_mul == 0) ||
3218             (rack->use_fixed_rate) ||
3219             (rack->in_probe_rtt) ||
3220             (rack->rc_always_pace == 0)) {
3221                 /* No dynamic GP multipler in play */
3222                 return;
3223         }
3224         losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start;
3225         cur_bw = rack_get_bw(rack);
3226         /* Calculate our up and down range */
3227         up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up;
3228         up_bnd /= 100;
3229         up_bnd += rack->r_ctl.last_gp_comp_bw;
3230
3231         subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down;
3232         subfr /= 100;
3233         low_bnd = rack->r_ctl.last_gp_comp_bw - subfr;
3234         if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) {
3235                 /*
3236                  * This is the case where our RTT is above
3237                  * the max target and we have been configured
3238                  * to just do timely no bonus up stuff in that case.
3239                  *
3240                  * There are two configurations, set to 1, and we
3241                  * just do timely if we are over our max. If its
3242                  * set above 1 then we slam the multipliers down
3243                  * to 100 and then decrement per timely.
3244                  */
3245                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3246                                 __LINE__, 3);
3247                 if (rack->r_ctl.rc_no_push_at_mrtt > 1)
3248                         rack_validate_multipliers_at_or_below_100(rack);
3249                 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3250         } else if ((last_bw_est < low_bnd) && !losses) {
3251                 /*
3252                  * We are decreasing this is a bit complicated this
3253                  * means we are loosing ground. This could be
3254                  * because another flow entered and we are competing
3255                  * for b/w with it. This will push the RTT up which
3256                  * makes timely unusable unless we want to get shoved
3257                  * into a corner and just be backed off (the age
3258                  * old problem with delay based CC).
3259                  *
3260                  * On the other hand if it was a route change we
3261                  * would like to stay somewhat contained and not
3262                  * blow out the buffers.
3263                  */
3264                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3265                                 __LINE__, 3);
3266                 rack->r_ctl.last_gp_comp_bw = cur_bw;
3267                 if (rack->rc_gp_bwred == 0) {
3268                         /* Go into reduction counting */
3269                         rack->rc_gp_bwred = 1;
3270                         rack->rc_gp_timely_dec_cnt = 0;
3271                 }
3272                 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) ||
3273                     (timely_says == 0)) {
3274                         /*
3275                          * Push another time with a faster pacing
3276                          * to try to gain back (we include override to
3277                          * get a full raise factor).
3278                          */
3279                         if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) ||
3280                             (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) ||
3281                             (timely_says == 0) ||
3282                             (rack_down_raise_thresh == 0)) {
3283                                 /*
3284                                  * Do an override up in b/w if we were
3285                                  * below the threshold or if the threshold
3286                                  * is zero we always do the raise.
3287                                  */
3288                                 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1);
3289                         } else {
3290                                 /* Log it stays the same */
3291                                 rack_log_timely(rack,  0, last_bw_est, low_bnd, 0,
3292                                                 __LINE__, 11);
3293                         }
3294                         rack->rc_gp_timely_dec_cnt++;
3295                         /* We are not incrementing really no-count */
3296                         rack->rc_gp_incr = 0;
3297                         rack->rc_gp_timely_inc_cnt = 0;
3298                 } else {
3299                         /*
3300                          * Lets just use the RTT
3301                          * information and give up
3302                          * pushing.
3303                          */
3304                         goto use_timely;
3305                 }
3306         }  else if ((timely_says != 2) &&
3307                     !losses &&
3308                     (last_bw_est > up_bnd)) {
3309                 /*
3310                  * We are increasing b/w lets keep going, updating
3311                  * our b/w and ignoring any timely input, unless
3312                  * of course we are at our max raise (if there is one).
3313                  */
3314
3315                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3316                                 __LINE__, 3);
3317                 rack->r_ctl.last_gp_comp_bw = cur_bw;
3318                 if (rack->rc_gp_saw_ss &&
3319                     rack_per_upper_bound_ss &&
3320                      (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) {
3321                             /*
3322                              * In cases where we can't go higher
3323                              * we should just use timely.
3324                              */
3325                             goto use_timely;
3326                 }
3327                 if (rack->rc_gp_saw_ca &&
3328                     rack_per_upper_bound_ca &&
3329                     (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) {
3330                             /*
3331                              * In cases where we can't go higher
3332                              * we should just use timely.
3333                              */
3334                             goto use_timely;
3335                 }
3336                 rack->rc_gp_bwred = 0;
3337                 rack->rc_gp_timely_dec_cnt = 0;
3338                 /* You get a set number of pushes if timely is trying to reduce  */
3339                 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) {
3340                         rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3341                 } else {
3342                         /* Log it stays the same */
3343                         rack_log_timely(rack,  0, last_bw_est, up_bnd, 0,
3344                             __LINE__, 12);
3345                 }
3346                 return;
3347         } else {
3348                 /*
3349                  * We are staying between the lower and upper range bounds
3350                  * so use timely to decide.
3351                  */
3352                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3353                                 __LINE__, 3);
3354 use_timely:
3355                 if (timely_says) {
3356                         rack->rc_gp_incr = 0;
3357                         rack->rc_gp_timely_inc_cnt = 0;
3358                         if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) &&
3359                             !losses &&
3360                             (last_bw_est < low_bnd)) {
3361                                 /* We are loosing ground */
3362                                 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3363                                 rack->rc_gp_timely_dec_cnt++;
3364                                 /* We are not incrementing really no-count */
3365                                 rack->rc_gp_incr = 0;
3366                                 rack->rc_gp_timely_inc_cnt = 0;
3367                         } else
3368                                 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3369                 } else  {
3370                         rack->rc_gp_bwred = 0;
3371                         rack->rc_gp_timely_dec_cnt = 0;
3372                         rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
3373                 }
3374         }
3375 }
3376
3377 static int32_t
3378 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt)
3379 {
3380         int32_t timely_says;
3381         uint64_t log_mult, log_rtt_a_diff;
3382
3383         log_rtt_a_diff = rtt;
3384         log_rtt_a_diff <<= 32;
3385         log_rtt_a_diff |= (uint32_t)rtt_diff;
3386         if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) *
3387                     rack_gp_rtt_maxmul)) {
3388                 /* Reduce the b/w multipler */
3389                 timely_says = 2;
3390                 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3391                 log_mult <<= 32;
3392                 log_mult |= prev_rtt;
3393                 rack_log_timely(rack,  timely_says, log_mult,
3394                                 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3395                                 log_rtt_a_diff, __LINE__, 4);
3396         } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
3397                            ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
3398                             max(rack_gp_rtt_mindiv , 1)))) {
3399                 /* Increase the b/w multipler */
3400                 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
3401                         ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
3402                          max(rack_gp_rtt_mindiv , 1));
3403                 log_mult <<= 32;
3404                 log_mult |= prev_rtt;
3405                 timely_says = 0;
3406                 rack_log_timely(rack,  timely_says, log_mult ,
3407                                 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3408                                 log_rtt_a_diff, __LINE__, 5);
3409         } else {
3410                 /*
3411                  * Use a gradient to find it the timely gradient
3412                  * is:
3413                  * grad = rc_rtt_diff / min_rtt;
3414                  *
3415                  * anything below or equal to 0 will be
3416                  * a increase indication. Anything above
3417                  * zero is a decrease. Note we take care
3418                  * of the actual gradient calculation
3419                  * in the reduction (its not needed for
3420                  * increase).
3421                  */
3422                 log_mult = prev_rtt;
3423                 if (rtt_diff <= 0) {
3424                         /*
3425                          * Rttdiff is less than zero, increase the
3426                          * b/w multipler (its 0 or negative)
3427                          */
3428                         timely_says = 0;
3429                         rack_log_timely(rack,  timely_says, log_mult,
3430                                         get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6);
3431                 } else {
3432                         /* Reduce the b/w multipler */
3433                         timely_says = 1;
3434                         rack_log_timely(rack,  timely_says, log_mult,
3435                                         get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7);
3436                 }
3437         }
3438         return (timely_says);
3439 }
3440
3441 static void
3442 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
3443                             tcp_seq th_ack, int line)
3444 {
3445         uint64_t tim, bytes_ps, ltim, stim, utim;
3446         uint32_t segsiz, bytes, reqbytes, us_cts;
3447         int32_t gput, new_rtt_diff, timely_says;
3448
3449         us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
3450         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
3451         if (TSTMP_GEQ(us_cts, tp->gput_ts))
3452                 tim = us_cts - tp->gput_ts;
3453         else
3454                 tim = 0;
3455
3456         if (TSTMP_GT(rack->r_ctl.rc_gp_cumack_ts, rack->r_ctl.rc_gp_output_ts))
3457                 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts;
3458         else
3459                 stim = 0;
3460         /*
3461          * Use the larger of the send time or ack time. This prevents us
3462          * from being influenced by ack artifacts to come up with too
3463          * high of measurement. Note that since we are spanning over many more
3464          * bytes in most of our measurements hopefully that is less likely to
3465          * occur.
3466          */
3467         if (tim > stim)
3468                 utim = max(tim, 1);
3469         else
3470                 utim = max(stim, 1);
3471         /* Lets validate utim */
3472         ltim = max(1, (utim/HPTS_USEC_IN_MSEC));
3473         gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim;
3474         reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz));
3475         if ((tim == 0) && (stim == 0)) {
3476                 /*
3477                  * Invalid measurement time, maybe
3478                  * all on one ack/one send?
3479                  */
3480                 bytes = 0;
3481                 bytes_ps = 0;
3482                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
3483                                            0, 0, 0, 10, __LINE__, NULL);
3484                 goto skip_measurement;
3485         }
3486         if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) {
3487                 /* We never made a us_rtt measurement? */
3488                 bytes = 0;
3489                 bytes_ps = 0;
3490                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
3491                                            0, 0, 0, 10, __LINE__, NULL);
3492                 goto skip_measurement;
3493         }
3494         /*
3495          * Calculate the maximum possible b/w this connection
3496          * could have. We base our calculation on the lowest
3497          * rtt we have seen during the measurement and the
3498          * largest rwnd the client has given us in that time. This
3499          * forms a BDP that is the maximum that we could ever
3500          * get to the client. Anything larger is not valid.
3501          *
3502          * I originally had code here that rejected measurements
3503          * where the time was less than 1/2 the latest us_rtt.
3504          * But after thinking on that I realized its wrong since
3505          * say you had a 150Mbps or even 1Gbps link, and you
3506          * were a long way away.. example I am in Europe (100ms rtt)
3507          * talking to my 1Gbps link in S.C. Now measuring say 150,000
3508          * bytes my time would be 1.2ms, and yet my rtt would say
3509          * the measurement was invalid the time was < 50ms. The
3510          * same thing is true for 150Mb (8ms of time).
3511          *
3512          * A better way I realized is to look at what the maximum
3513          * the connection could possibly do. This is gated on
3514          * the lowest RTT we have seen and the highest rwnd.
3515          * We should in theory never exceed that, if we are
3516          * then something on the path is storing up packets
3517          * and then feeding them all at once to our endpoint
3518          * messing up our measurement.
3519          */
3520         rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd;
3521         rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC;
3522         rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt;
3523         if (SEQ_LT(th_ack, tp->gput_seq)) {
3524                 /* No measurement can be made */
3525                 bytes = 0;
3526                 bytes_ps = 0;
3527                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
3528                                            0, 0, 0, 10, __LINE__, NULL);
3529                 goto skip_measurement;
3530         } else
3531                 bytes = (th_ack - tp->gput_seq);
3532         bytes_ps = (uint64_t)bytes;
3533         /*
3534          * Don't measure a b/w for pacing unless we have gotten at least
3535          * an initial windows worth of data in this measurement interval.
3536          *
3537          * Small numbers of bytes get badly influenced by delayed ack and
3538          * other artifacts. Note we take the initial window or our
3539          * defined minimum GP (defaulting to 10 which hopefully is the
3540          * IW).
3541          */
3542         if (rack->rc_gp_filled == 0) {
3543                 /*
3544                  * The initial estimate is special. We
3545                  * have blasted out an IW worth of packets
3546                  * without a real valid ack ts results. We
3547                  * then setup the app_limited_needs_set flag,
3548                  * this should get the first ack in (probably 2
3549                  * MSS worth) to be recorded as the timestamp.
3550                  * We thus allow a smaller number of bytes i.e.
3551                  * IW - 2MSS.
3552                  */
3553                 reqbytes -= (2 * segsiz);
3554                 /* Also lets fill previous for our first measurement to be neutral */
3555                 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
3556         }
3557         if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) {
3558                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
3559                                            rack->r_ctl.rc_app_limited_cnt,
3560                                            0, 0, 10, __LINE__, NULL);
3561                 goto skip_measurement;
3562         }
3563         /*
3564          * We now need to calculate the Timely like status so
3565          * we can update (possibly) the b/w multipliers.
3566          */
3567         new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt;
3568         if (rack->rc_gp_filled == 0) {
3569                 /* No previous reading */
3570                 rack->r_ctl.rc_rtt_diff = new_rtt_diff;
3571         } else {
3572                 if (rack->measure_saw_probe_rtt == 0) {
3573                         /*
3574                          * We don't want a probertt to be counted
3575                          * since it will be negative incorrectly. We
3576                          * expect to be reducing the RTT when we
3577                          * pace at a slower rate.
3578                          */
3579                         rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8);
3580                         rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8);
3581                 }
3582         }
3583         timely_says = rack_make_timely_judgement(rack,
3584                 rack->r_ctl.rc_gp_srtt,
3585                 rack->r_ctl.rc_rtt_diff,
3586                 rack->r_ctl.rc_prev_gp_srtt
3587                 );
3588         bytes_ps *= HPTS_USEC_IN_SEC;
3589         bytes_ps /= utim;
3590         if (bytes_ps > rack->r_ctl.last_max_bw) {
3591                 /*
3592                  * Something is on path playing
3593                  * since this b/w is not possible based
3594                  * on our BDP (highest rwnd and lowest rtt
3595                  * we saw in the measurement window).
3596                  *
3597                  * Another option here would be to
3598                  * instead skip the measurement.
3599                  */
3600                 rack_log_pacing_delay_calc(rack, bytes, reqbytes,
3601                                            bytes_ps, rack->r_ctl.last_max_bw, 0,
3602                                            11, __LINE__, NULL);
3603                 bytes_ps = rack->r_ctl.last_max_bw;
3604         }
3605         /* We store gp for b/w in bytes per second  */
3606         if (rack->rc_gp_filled == 0) {
3607                 /* Initial measurment */
3608                 if (bytes_ps) {
3609                         rack->r_ctl.gp_bw = bytes_ps;
3610                         rack->rc_gp_filled = 1;
3611                         rack->r_ctl.num_avg = 1;
3612                         rack_set_pace_segments(rack->rc_tp, rack, __LINE__);
3613                 } else {
3614                         rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
3615                                                    rack->r_ctl.rc_app_limited_cnt,
3616                                                    0, 0, 10, __LINE__, NULL);
3617                 }
3618                 if (rack->rc_inp->inp_in_hpts &&
3619                     (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
3620                         /*
3621                          * Ok we can't trust the pacer in this case
3622                          * where we transition from un-paced to paced.
3623                          * Or for that matter when the burst mitigation
3624                          * was making a wild guess and got it wrong.
3625                          * Stop the pacer and clear up all the aggregate
3626                          * delays etc.
3627                          */
3628                         tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
3629                         rack->r_ctl.rc_hpts_flags = 0;
3630                         rack->r_ctl.rc_last_output_to = 0;
3631                 }
3632         } else if (rack->r_ctl.num_avg < RACK_REQ_AVG) {
3633                 /* Still a small number run an average */
3634                 rack->r_ctl.gp_bw += bytes_ps;
3635                 rack->r_ctl.num_avg++;
3636                 if (rack->r_ctl.num_avg >= RACK_REQ_AVG) {
3637                         /* We have collected enought to move forward */
3638                         rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_avg;
3639                 }
3640         } else {
3641                 /*
3642                  * We want to take 1/wma of the goodput and add in to 7/8th
3643                  * of the old value weighted by the srtt. So if your measurement
3644                  * period is say 2 SRTT's long you would get 1/4 as the
3645                  * value, if it was like 1/2 SRTT then you would get 1/16th.
3646                  *
3647                  * But we must be careful not to take too much i.e. if the
3648                  * srtt is say 20ms and the measurement is taken over
3649                  * 400ms our weight would be 400/20 i.e. 20. On the
3650                  * other hand if we get a measurement over 1ms with a
3651                  * 10ms rtt we only want to take a much smaller portion.
3652                  */
3653                 uint64_t  resid_bw, subpart, addpart, srtt;
3654
3655                 srtt = ((uint64_t)TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT);
3656                 if (srtt == 0) {
3657                         /*
3658                          * Strange why did t_srtt go back to zero?
3659                          */
3660                         if (rack->r_ctl.rc_rack_min_rtt)
3661                                 srtt = (rack->r_ctl.rc_rack_min_rtt * HPTS_USEC_IN_MSEC);
3662                         else
3663                                 srtt = HPTS_USEC_IN_MSEC;
3664                 }
3665                 /*
3666                  * XXXrrs: Note for reviewers, in playing with
3667                  * dynamic pacing I discovered this GP calculation
3668                  * as done originally leads to some undesired results.
3669                  * Basically you can get longer measurements contributing
3670                  * too much to the WMA. Thus I changed it if you are doing
3671                  * dynamic adjustments to only do the aportioned adjustment
3672                  * if we have a very small (time wise) measurement. Longer
3673                  * measurements just get there weight (defaulting to 1/8)
3674                  * add to the WMA. We may want to think about changing
3675                  * this to always do that for both sides i.e. dynamic
3676                  * and non-dynamic... but considering lots of folks
3677                  * were playing with this I did not want to change the
3678                  * calculation per.se. without your thoughts.. Lawerence?
3679                  * Peter??
3680                  */
3681                 if (rack->rc_gp_dyn_mul == 0) {
3682                         subpart = rack->r_ctl.gp_bw * utim;
3683                         subpart /= (srtt * 8);
3684                         if (subpart < (rack->r_ctl.gp_bw / 2)) {
3685                                 /*
3686                                  * The b/w update takes no more
3687                                  * away then 1/2 our running total
3688                                  * so factor it in.
3689                                  */
3690                                 addpart = bytes_ps * utim;
3691                                 addpart /= (srtt * 8);
3692                         } else {
3693                                 /*
3694                                  * Don't allow a single measurement
3695                                  * to account for more than 1/2 of the
3696                                  * WMA. This could happen on a retransmission
3697                                  * where utim becomes huge compared to
3698                                  * srtt (multiple retransmissions when using
3699                                  * the sending rate which factors in all the
3700                                  * transmissions from the first one).
3701                                  */
3702                                 subpart = rack->r_ctl.gp_bw / 2;
3703                                 addpart = bytes_ps / 2;
3704                         }
3705                         resid_bw = rack->r_ctl.gp_bw - subpart;
3706                         rack->r_ctl.gp_bw = resid_bw + addpart;
3707                 } else {
3708                         if ((utim / srtt) <= 1) {
3709                                 /*
3710                                  * The b/w update was over a small period
3711                                  * of time. The idea here is to prevent a small
3712                                  * measurement time period from counting
3713                                  * too much. So we scale it based on the
3714                                  * time so it attributes less than 1/rack_wma_divisor
3715                                  * of its measurement.
3716                                  */
3717                                 subpart = rack->r_ctl.gp_bw * utim;
3718                                 subpart /= (srtt * rack_wma_divisor);
3719                                 addpart = bytes_ps * utim;
3720                                 addpart /= (srtt * rack_wma_divisor);
3721                         } else {
3722                                 /*
3723                                  * The scaled measurement was long
3724                                  * enough so lets just add in the
3725                                  * portion of the measurment i.e. 1/rack_wma_divisor
3726                                  */
3727                                 subpart = rack->r_ctl.gp_bw / rack_wma_divisor;
3728                                 addpart = bytes_ps / rack_wma_divisor;
3729                         }
3730                         if ((rack->measure_saw_probe_rtt == 0) ||
3731                             (bytes_ps > rack->r_ctl.gp_bw)) {
3732                                 /*
3733                                  * For probe-rtt we only add it in
3734                                  * if its larger, all others we just
3735                                  * add in.
3736                                  */
3737                                 resid_bw = rack->r_ctl.gp_bw - subpart;
3738                                 rack->r_ctl.gp_bw = resid_bw + addpart;
3739                         }
3740                 }
3741         }
3742         /* We do not update any multipliers if we are in or have seen a probe-rtt */
3743         if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set)
3744                 rack_update_multiplier(rack, timely_says, bytes_ps,
3745                                        rack->r_ctl.rc_gp_srtt,
3746                                        rack->r_ctl.rc_rtt_diff);
3747         rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim,
3748                                    rack_get_bw(rack), 3, line, NULL);
3749         /* reset the gp srtt and setup the new prev */
3750         rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
3751         /* Record the lost count for the next measurement */
3752         rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count;
3753         /*
3754          * We restart our diffs based on the gpsrtt in the
3755          * measurement window.
3756          */
3757         rack->rc_gp_rtt_set = 0;
3758         rack->rc_gp_saw_rec = 0;
3759         rack->rc_gp_saw_ca = 0;
3760         rack->rc_gp_saw_ss = 0;
3761         rack->rc_dragged_bottom = 0;
3762 skip_measurement:
3763
3764 #ifdef STATS
3765         stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
3766                                  gput);
3767         /*
3768          * XXXLAS: This is a temporary hack, and should be
3769          * chained off VOI_TCP_GPUT when stats(9) grows an
3770          * API to deal with chained VOIs.
3771          */
3772         if (tp->t_stats_gput_prev > 0)
3773                 stats_voi_update_abs_s32(tp->t_stats,
3774                                          VOI_TCP_GPUT_ND,
3775                                          ((gput - tp->t_stats_gput_prev) * 100) /
3776                                          tp->t_stats_gput_prev);
3777 #endif
3778         tp->t_flags &= ~TF_GPUTINPROG;
3779         tp->t_stats_gput_prev = gput;
3780         /*
3781          * Now are we app limited now and there is space from where we
3782          * were to where we want to go?
3783          *
3784          * We don't do the other case i.e. non-applimited here since
3785          * the next send will trigger us picking up the missing data.
3786          */
3787         if (rack->r_ctl.rc_first_appl &&
3788             TCPS_HAVEESTABLISHED(tp->t_state) &&
3789             rack->r_ctl.rc_app_limited_cnt &&
3790             (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) &&
3791             ((rack->r_ctl.rc_first_appl->r_start - th_ack) >
3792              max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
3793                 /*
3794                  * Yep there is enough outstanding to make a measurement here.
3795                  */
3796                 struct rack_sendmap *rsm, fe;
3797
3798                 tp->t_flags |= TF_GPUTINPROG;
3799                 rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
3800                 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
3801                 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
3802                 rack->app_limited_needs_set = 0;
3803                 tp->gput_seq = th_ack;
3804                 if (rack->in_probe_rtt)
3805                         rack->measure_saw_probe_rtt = 1;
3806                 else if ((rack->measure_saw_probe_rtt) &&
3807                          (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
3808                         rack->measure_saw_probe_rtt = 0;
3809                 if ((rack->r_ctl.rc_first_appl->r_start - th_ack) >= rack_get_measure_window(tp, rack)) {
3810                         /* There is a full window to gain info from */
3811                         tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
3812                 } else {
3813                         /* We can only measure up to the applimited point */
3814                         tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_start - th_ack);
3815                 }
3816                 /*
3817                  * Now we need to find the timestamp of the send at tp->gput_seq
3818                  * for the send based measurement.
3819                  */
3820                 fe.r_start = tp->gput_seq;
3821                 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3822                 if (rsm) {
3823                         /* Ok send-based limit is set */
3824                         if (SEQ_LT(rsm->r_start, tp->gput_seq)) {
3825                                 /*
3826                                  * Move back to include the earlier part
3827                                  * so our ack time lines up right (this may
3828                                  * make an overlapping measurement but thats
3829                                  * ok).
3830                                  */
3831                                 tp->gput_seq = rsm->r_start;
3832                         }
3833                         if (rsm->r_flags & RACK_ACKED)
3834                                 tp->gput_ts = rsm->r_ack_arrival;
3835                         else
3836                                 rack->app_limited_needs_set = 1;
3837                         rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send;
3838                 } else {
3839                         /*
3840                          * If we don't find the rsm due to some
3841                          * send-limit set the current time, which
3842                          * basically disables the send-limit.
3843                          */
3844                         rack->r_ctl.rc_gp_output_ts = tcp_get_usecs(NULL);
3845                 }
3846                 rack_log_pacing_delay_calc(rack,
3847                                            tp->gput_seq,
3848                                            tp->gput_ack,
3849                                            (uint64_t)rsm,
3850                                            tp->gput_ts,
3851                                            rack->r_ctl.rc_app_limited_cnt,
3852                                            9,
3853                                            __LINE__, NULL);
3854         }
3855 }
3856
3857 /*
3858  * CC wrapper hook functions
3859  */
3860 static void
3861 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
3862     uint16_t type, int32_t recovery)
3863 {
3864         INP_WLOCK_ASSERT(tp->t_inpcb);
3865         tp->ccv->nsegs = nsegs;
3866         tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
3867         if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
3868                 uint32_t max;
3869
3870                 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
3871                 if (tp->ccv->bytes_this_ack > max) {
3872                         tp->ccv->bytes_this_ack = max;
3873                 }
3874         }
3875         if (rack->r_ctl.cwnd_to_use <= tp->snd_wnd)
3876                 tp->ccv->flags |= CCF_CWND_LIMITED;
3877         else
3878                 tp->ccv->flags &= ~CCF_CWND_LIMITED;
3879 #ifdef STATS
3880         stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
3881             ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd);
3882 #endif
3883         if ((tp->t_flags & TF_GPUTINPROG) &&
3884             rack_enough_for_measurement(tp, rack, th->th_ack)) {
3885                 /* Measure the Goodput */
3886                 rack_do_goodput_measurement(tp, rack, th->th_ack, __LINE__);
3887 #ifdef NETFLIX_PEAKRATE
3888                 if ((type == CC_ACK) &&
3889                     (tp->t_maxpeakrate)) {
3890                         /*
3891                          * We update t_peakrate_thr. This gives us roughly
3892                          * one update per round trip time. Note
3893                          * it will only be used if pace_always is off i.e
3894                          * we don't do this for paced flows.
3895                          */
3896                         tcp_update_peakrate_thr(tp);
3897                 }
3898 #endif
3899         }
3900         if (rack->r_ctl.cwnd_to_use > tp->snd_ssthresh) {
3901                 tp->t_bytes_acked += tp->ccv->bytes_this_ack;
3902                 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) {
3903                         tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use;
3904                         tp->ccv->flags |= CCF_ABC_SENTAWND;
3905                 }
3906         } else {
3907                 tp->ccv->flags &= ~CCF_ABC_SENTAWND;
3908                 tp->t_bytes_acked = 0;
3909         }
3910         if (CC_ALGO(tp)->ack_received != NULL) {
3911                 /* XXXLAS: Find a way to live without this */
3912                 tp->ccv->curack = th->th_ack;
3913                 CC_ALGO(tp)->ack_received(tp->ccv, type);
3914         }
3915 #ifdef STATS
3916         stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use);
3917 #endif
3918         if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) {
3919                 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use;
3920         }
3921 #ifdef NETFLIX_PEAKRATE
3922         /* we enforce max peak rate if it is set and we are not pacing */
3923         if ((rack->rc_always_pace == 0) &&
3924             tp->t_peakrate_thr &&
3925             (tp->snd_cwnd > tp->t_peakrate_thr)) {
3926                 tp->snd_cwnd = tp->t_peakrate_thr;
3927         }
3928 #endif
3929 }
3930
3931 static void
3932 tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
3933 {
3934         struct tcp_rack *rack;
3935
3936         rack = (struct tcp_rack *)tp->t_fb_ptr;
3937         INP_WLOCK_ASSERT(tp->t_inpcb);
3938         /*
3939          * If we are doing PRR and have enough
3940          * room to send <or> we are pacing and prr
3941          * is disabled we will want to see if we
3942          * can send data (by setting r_wanted_output to
3943          * true).
3944          */
3945         if ((rack->r_ctl.rc_prr_sndcnt > 0) ||
3946             rack->rack_no_prr)
3947                 rack->r_wanted_output = 1;
3948 }
3949
3950 static void
3951 rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
3952 {
3953         struct tcp_rack *rack;
3954         uint32_t orig_cwnd;
3955
3956         orig_cwnd = tp->snd_cwnd;
3957         INP_WLOCK_ASSERT(tp->t_inpcb);
3958         rack = (struct tcp_rack *)tp->t_fb_ptr;
3959         if (rack->rc_not_backing_off == 0) {
3960                 /* only alert CC if we alerted when we entered */
3961                 if (CC_ALGO(tp)->post_recovery != NULL) {
3962                         tp->ccv->curack = th->th_ack;
3963                         CC_ALGO(tp)->post_recovery(tp->ccv);
3964                 }
3965                 if (tp->snd_cwnd > tp->snd_ssthresh) {
3966                         /* Drop us down to the ssthresh (1/2 cwnd at loss) */
3967                         tp->snd_cwnd = tp->snd_ssthresh;
3968                 }
3969         }
3970         if ((rack->rack_no_prr == 0) &&
3971             (rack->r_ctl.rc_prr_sndcnt > 0)) {
3972                 /* Suck the next prr cnt back into cwnd */
3973                 tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
3974                 rack->r_ctl.rc_prr_sndcnt = 0;
3975                 rack_log_to_prr(rack, 1, 0);
3976         }
3977         rack_log_to_prr(rack, 14, orig_cwnd);
3978         tp->snd_recover = tp->snd_una;
3979         EXIT_RECOVERY(tp->t_flags);
3980 }
3981
3982 static void
3983 rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
3984 {
3985         struct tcp_rack *rack;
3986
3987         INP_WLOCK_ASSERT(tp->t_inpcb);
3988
3989         rack = (struct tcp_rack *)tp->t_fb_ptr;
3990         switch (type) {
3991         case CC_NDUPACK:
3992                 tp->t_flags &= ~TF_WASFRECOVERY;
3993                 tp->t_flags &= ~TF_WASCRECOVERY;
3994                 if (!IN_FASTRECOVERY(tp->t_flags)) {
3995                         rack->r_ctl.rc_prr_delivered = 0;
3996                         rack->r_ctl.rc_prr_out = 0;
3997                         if (rack->rack_no_prr == 0) {
3998                                 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
3999                                 rack_log_to_prr(rack, 2, 0);
4000                         }
4001                         rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
4002                         tp->snd_recover = tp->snd_max;
4003                         if (tp->t_flags2 & TF2_ECN_PERMIT)
4004                                 tp->t_flags2 |= TF2_ECN_SND_CWR;
4005                 }
4006                 break;
4007         case CC_ECN:
4008                 if (!IN_CONGRECOVERY(tp->t_flags) ||
4009                     /*
4010                      * Allow ECN reaction on ACK to CWR, if
4011                      * that data segment was also CE marked.
4012                      */
4013                     SEQ_GEQ(th->th_ack, tp->snd_recover)) {
4014                         EXIT_CONGRECOVERY(tp->t_flags);
4015                         KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
4016                         tp->snd_recover = tp->snd_max + 1;
4017                         if (tp->t_flags2 & TF2_ECN_PERMIT)
4018                                 tp->t_flags2 |= TF2_ECN_SND_CWR;
4019                 }
4020                 break;
4021         case CC_RTO:
4022                 tp->t_dupacks = 0;
4023                 tp->t_bytes_acked = 0;
4024                 EXIT_RECOVERY(tp->t_flags);
4025                 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 /
4026                     ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
4027                 tp->snd_cwnd = ctf_fixed_maxseg(tp);
4028                 if (tp->t_flags2 & TF2_ECN_PERMIT)
4029                         tp->t_flags2 |= TF2_ECN_SND_CWR;
4030                 break;
4031         case CC_RTO_ERR:
4032                 KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
4033                 /* RTO was unnecessary, so reset everything. */
4034                 tp->snd_cwnd = tp->snd_cwnd_prev;
4035                 tp->snd_ssthresh = tp->snd_ssthresh_prev;
4036                 tp->snd_recover = tp->snd_recover_prev;
4037                 if (tp->t_flags & TF_WASFRECOVERY) {
4038                         ENTER_FASTRECOVERY(tp->t_flags);
4039                         tp->t_flags &= ~TF_WASFRECOVERY;
4040                 }
4041                 if (tp->t_flags & TF_WASCRECOVERY) {
4042                         ENTER_CONGRECOVERY(tp->t_flags);
4043                         tp->t_flags &= ~TF_WASCRECOVERY;
4044                 }
4045                 tp->snd_nxt = tp->snd_max;
4046                 tp->t_badrxtwin = 0;
4047                 break;
4048         }
4049         /*
4050          * If we are below our max rtt, don't
4051          * signal the CC control to change things.
4052          * instead set it up so that we are in
4053          * recovery but not going to back off.
4054          */
4055
4056         if (rack->rc_highly_buffered) {
4057                 /*
4058                  * Do we use the higher rtt for
4059                  * our threshold to not backoff (like CDG)?
4060                  */
4061                 uint32_t rtt_mul, rtt_div;
4062
4063                 if (rack_use_max_for_nobackoff) {
4064                         rtt_mul = (rack_gp_rtt_maxmul - 1);
4065                         rtt_div = 1;
4066                 } else {
4067                         rtt_mul = rack_gp_rtt_minmul;
4068                         rtt_div = max(rack_gp_rtt_mindiv , 1);
4069                 }
4070                 if (rack->r_ctl.rc_gp_srtt <= (rack->r_ctl.rc_lowest_us_rtt +
4071                                                ((rack->r_ctl.rc_lowest_us_rtt * rtt_mul) /
4072                                                 rtt_div))) {
4073                         /* below our min threshold */
4074                         rack->rc_not_backing_off = 1;
4075                         ENTER_RECOVERY(rack->rc_tp->t_flags);
4076                         rack_log_rtt_shrinks(rack, 0,
4077                                              rtt_mul,
4078                                              rtt_div,
4079                                              RACK_RTTS_NOBACKOFF);
4080                         return;
4081                 }
4082         }
4083         rack->rc_not_backing_off = 0;
4084         if (CC_ALGO(tp)->cong_signal != NULL) {
4085                 if (th != NULL)
4086                         tp->ccv->curack = th->th_ack;
4087                 CC_ALGO(tp)->cong_signal(tp->ccv, type);
4088         }
4089 }
4090
4091 static inline void
4092 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp)
4093 {
4094         uint32_t i_cwnd;
4095
4096         INP_WLOCK_ASSERT(tp->t_inpcb);
4097
4098 #ifdef NETFLIX_STATS
4099         KMOD_TCPSTAT_INC(tcps_idle_restarts);
4100         if (tp->t_state == TCPS_ESTABLISHED)
4101                 KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
4102 #endif
4103         if (CC_ALGO(tp)->after_idle != NULL)
4104                 CC_ALGO(tp)->after_idle(tp->ccv);
4105
4106         if (tp->snd_cwnd == 1)
4107                 i_cwnd = tp->t_maxseg;          /* SYN(-ACK) lost */
4108         else
4109                 i_cwnd = rc_init_window(rack);
4110
4111         /*
4112          * Being idle is no differnt than the initial window. If the cc
4113          * clamps it down below the initial window raise it to the initial
4114          * window.
4115          */
4116         if (tp->snd_cwnd < i_cwnd) {
4117                 tp->snd_cwnd = i_cwnd;
4118         }
4119 }
4120
4121 /*
4122  * Indicate whether this ack should be delayed.  We can delay the ack if
4123  * following conditions are met:
4124  *      - There is no delayed ack timer in progress.
4125  *      - Our last ack wasn't a 0-sized window. We never want to delay
4126  *        the ack that opens up a 0-sized window.
4127  *      - LRO wasn't used for this segment. We make sure by checking that the
4128  *        segment size is not larger than the MSS.
4129  *      - Delayed acks are enabled or this is a half-synchronized T/TCP
4130  *        connection.
4131  */
4132 #define DELAY_ACK(tp, tlen)                      \
4133         (((tp->t_flags & TF_RXWIN0SENT) == 0) && \
4134         ((tp->t_flags & TF_DELACK) == 0) &&      \
4135         (tlen <= tp->t_maxseg) &&                \
4136         (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
4137
4138 static struct rack_sendmap *
4139 rack_find_lowest_rsm(struct tcp_rack *rack)
4140 {
4141         struct rack_sendmap *rsm;
4142
4143         /*
4144          * Walk the time-order transmitted list looking for an rsm that is
4145          * not acked. This will be the one that was sent the longest time
4146          * ago that is still outstanding.
4147          */
4148         TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
4149                 if (rsm->r_flags & RACK_ACKED) {
4150                         continue;
4151                 }
4152                 goto finish;
4153         }
4154 finish:
4155         return (rsm);
4156 }
4157
4158 static struct rack_sendmap *
4159 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
4160 {
4161         struct rack_sendmap *prsm;
4162
4163         /*
4164          * Walk the sequence order list backward until we hit and arrive at
4165          * the highest seq not acked. In theory when this is called it
4166          * should be the last segment (which it was not).
4167          */
4168         counter_u64_add(rack_find_high, 1);
4169         prsm = rsm;
4170         RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
4171                 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
4172                         continue;
4173                 }
4174                 return (prsm);
4175         }
4176         return (NULL);
4177 }
4178
4179 static uint32_t
4180 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
4181 {
4182         int32_t lro;
4183         uint32_t thresh;
4184
4185         /*
4186          * lro is the flag we use to determine if we have seen reordering.
4187          * If it gets set we have seen reordering. The reorder logic either
4188          * works in one of two ways:
4189          *
4190          * If reorder-fade is configured, then we track the last time we saw
4191          * re-ordering occur. If we reach the point where enough time as
4192          * passed we no longer consider reordering has occuring.
4193          *
4194          * Or if reorder-face is 0, then once we see reordering we consider
4195          * the connection to alway be subject to reordering and just set lro
4196          * to 1.
4197          *
4198          * In the end if lro is non-zero we add the extra time for
4199          * reordering in.
4200          */
4201         if (srtt == 0)
4202                 srtt = 1;
4203         if (rack->r_ctl.rc_reorder_ts) {
4204                 if (rack->r_ctl.rc_reorder_fade) {
4205                         if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
4206                                 lro = cts - rack->r_ctl.rc_reorder_ts;
4207                                 if (lro == 0) {
4208                                         /*
4209                                          * No time as passed since the last
4210                                          * reorder, mark it as reordering.
4211                                          */
4212                                         lro = 1;
4213                                 }
4214                         } else {
4215                                 /* Negative time? */
4216                                 lro = 0;
4217                         }
4218                         if (lro > rack->r_ctl.rc_reorder_fade) {
4219                                 /* Turn off reordering seen too */
4220                                 rack->r_ctl.rc_reorder_ts = 0;
4221                                 lro = 0;
4222                         }
4223                 } else {
4224                         /* Reodering does not fade */
4225                         lro = 1;
4226                 }
4227         } else {
4228                 lro = 0;
4229         }
4230         thresh = srtt + rack->r_ctl.rc_pkt_delay;
4231         if (lro) {
4232                 /* It must be set, if not you get 1/4 rtt */
4233                 if (rack->r_ctl.rc_reorder_shift)
4234                         thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
4235                 else
4236                         thresh += (srtt >> 2);
4237         } else {
4238                 thresh += 1;
4239         }
4240         /* We don't let the rack timeout be above a RTO */
4241         if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
4242                 thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
4243         }
4244         /* And we don't want it above the RTO max either */
4245         if (thresh > rack_rto_max) {
4246                 thresh = rack_rto_max;
4247         }
4248         return (thresh);
4249 }
4250
4251 static uint32_t
4252 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
4253                      struct rack_sendmap *rsm, uint32_t srtt)
4254 {
4255         struct rack_sendmap *prsm;
4256         uint32_t thresh, len;
4257         int segsiz;
4258
4259         if (srtt == 0)
4260                 srtt = 1;
4261         if (rack->r_ctl.rc_tlp_threshold)
4262                 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
4263         else
4264                 thresh = (srtt * 2);
4265
4266         /* Get the previous sent packet, if any  */
4267         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
4268         counter_u64_add(rack_enter_tlp_calc, 1);
4269         len = rsm->r_end - rsm->r_start;
4270         if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
4271                 /* Exactly like the ID */
4272                 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) {
4273                         uint32_t alt_thresh;
4274                         /*
4275                          * Compensate for delayed-ack with the d-ack time.
4276                          */
4277                         counter_u64_add(rack_used_tlpmethod, 1);
4278                         alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
4279                         if (alt_thresh > thresh)
4280                                 thresh = alt_thresh;
4281                 }
4282         } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
4283                 /* 2.1 behavior */
4284                 prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
4285                 if (prsm && (len <= segsiz)) {
4286                         /*
4287                          * Two packets outstanding, thresh should be (2*srtt) +
4288                          * possible inter-packet delay (if any).
4289                          */
4290                         uint32_t inter_gap = 0;
4291                         int idx, nidx;
4292
4293                         counter_u64_add(rack_used_tlpmethod, 1);
4294                         idx = rsm->r_rtr_cnt - 1;
4295                         nidx = prsm->r_rtr_cnt - 1;
4296                         if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
4297                                 /* Yes it was sent later (or at the same time) */
4298                                 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
4299                         }
4300                         thresh += inter_gap;
4301                 } else  if (len <= segsiz) {
4302                         /*
4303                          * Possibly compensate for delayed-ack.
4304                          */
4305                         uint32_t alt_thresh;
4306
4307                         counter_u64_add(rack_used_tlpmethod2, 1);
4308                         alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
4309                         if (alt_thresh > thresh)
4310                                 thresh = alt_thresh;
4311                 }
4312         } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
4313                 /* 2.2 behavior */
4314                 if (len <= segsiz) {
4315                         uint32_t alt_thresh;
4316                         /*
4317                          * Compensate for delayed-ack with the d-ack time.
4318                          */
4319                         counter_u64_add(rack_used_tlpmethod, 1);
4320                         alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
4321                         if (alt_thresh > thresh)
4322                                 thresh = alt_thresh;
4323                 }
4324         }
4325         /* Not above an RTO */
4326         if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
4327                 thresh = TICKS_2_MSEC(tp->t_rxtcur);
4328         }
4329         /* Not above a RTO max */
4330         if (thresh > rack_rto_max) {
4331                 thresh = rack_rto_max;
4332         }
4333         /* Apply user supplied min TLP */
4334         if (thresh < rack_tlp_min) {
4335                 thresh = rack_tlp_min;
4336         }
4337         return (thresh);
4338 }
4339
4340 static uint32_t
4341 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
4342 {
4343         /*
4344          * We want the rack_rtt which is the
4345          * last rtt we measured. However if that
4346          * does not exist we fallback to the srtt (which
4347          * we probably will never do) and then as a last
4348          * resort we use RACK_INITIAL_RTO if no srtt is
4349          * yet set.
4350          */
4351         if (rack->rc_rack_rtt)
4352                 return(rack->rc_rack_rtt);
4353         else if (tp->t_srtt == 0)
4354                 return(RACK_INITIAL_RTO);
4355         return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT));
4356 }
4357
4358 static struct rack_sendmap *
4359 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
4360 {
4361         /*
4362          * Check to see that we don't need to fall into recovery. We will
4363          * need to do so if our oldest transmit is past the time we should
4364          * have had an ack.
4365          */
4366         struct tcp_rack *rack;
4367         struct rack_sendmap *rsm;
4368         int32_t idx;
4369         uint32_t srtt, thresh;
4370
4371         rack = (struct tcp_rack *)tp->t_fb_ptr;
4372         if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
4373                 return (NULL);
4374         }
4375         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4376         if (rsm == NULL)
4377                 return (NULL);
4378
4379         if (rsm->r_flags & RACK_ACKED) {
4380                 rsm = rack_find_lowest_rsm(rack);
4381                 if (rsm == NULL)
4382                         return (NULL);
4383         }
4384         idx = rsm->r_rtr_cnt - 1;
4385         srtt = rack_grab_rtt(tp, rack);
4386         thresh = rack_calc_thresh_rack(rack, srtt, tsused);
4387         if (TSTMP_LT(tsused, rsm->r_tim_lastsent[idx])) {
4388                 return (NULL);
4389         }
4390         if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
4391                 return (NULL);
4392         }
4393         /* Ok if we reach here we are over-due and this guy can be sent */
4394         if (IN_RECOVERY(tp->t_flags) == 0) {
4395                 /*
4396                  * For the one that enters us into recovery record undo
4397                  * info.
4398                  */
4399                 rack->r_ctl.rc_rsm_start = rsm->r_start;
4400                 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
4401                 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
4402         }
4403         rack_cong_signal(tp, NULL, CC_NDUPACK);
4404         return (rsm);
4405 }
4406
4407 static uint32_t
4408 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
4409 {
4410         int32_t t;
4411         int32_t tt;
4412         uint32_t ret_val;
4413
4414         t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
4415         TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
4416             rack_persist_min, rack_persist_max);
4417         if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
4418                 tp->t_rxtshift++;
4419         rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
4420         ret_val = (uint32_t)tt;
4421         return (ret_val);
4422 }
4423
4424 static uint32_t
4425 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
4426 {
4427         /*
4428          * Start the FR timer, we do this based on getting the first one in
4429          * the rc_tmap. Note that if its NULL we must stop the timer. in all
4430          * events we need to stop the running timer (if its running) before
4431          * starting the new one.
4432          */
4433         uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
4434         uint32_t srtt_cur;
4435         int32_t idx;
4436         int32_t is_tlp_timer = 0;
4437         struct rack_sendmap *rsm;
4438
4439         if (rack->t_timers_stopped) {
4440                 /* All timers have been stopped none are to run */
4441                 return (0);
4442         }
4443         if (rack->rc_in_persist) {
4444                 /* We can't start any timer in persists */
4445                 return (rack_get_persists_timer_val(tp, rack));
4446         }
4447         rack->rc_on_min_to = 0;
4448         if ((tp->t_state < TCPS_ESTABLISHED) ||
4449             ((tp->t_flags & TF_SACK_PERMIT) == 0))
4450                 goto activate_rxt;
4451         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4452         if ((rsm == NULL) || sup_rack) {
4453                 /* Nothing on the send map */
4454 activate_rxt:
4455                 time_since_sent = 0;
4456                 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
4457                 if (rsm) {
4458                         idx = rsm->r_rtr_cnt - 1;
4459                         if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
4460                                 tstmp_touse = rsm->r_tim_lastsent[idx];
4461                         else
4462                                 tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
4463                         if (TSTMP_GT(cts, tstmp_touse))
4464                             time_since_sent = cts - tstmp_touse;
4465                 }
4466                 if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
4467                         rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
4468                         to = TICKS_2_MSEC(tp->t_rxtcur);
4469                         if (to > time_since_sent)
4470                                 to -= time_since_sent;
4471                         else
4472                                 to = rack->r_ctl.rc_min_to;
4473                         if (to == 0)
4474                                 to = 1;
4475                         return (to);
4476                 }
4477                 return (0);
4478         }
4479         if (rsm->r_flags & RACK_ACKED) {
4480                 rsm = rack_find_lowest_rsm(rack);
4481                 if (rsm == NULL) {
4482                         /* No lowest? */
4483                         goto activate_rxt;
4484                 }
4485         }
4486         if (rack->sack_attack_disable) {
4487                 /*
4488                  * We don't want to do
4489                  * any TLP's if you are an attacker.
4490                  * Though if you are doing what
4491                  * is expected you may still have
4492                  * SACK-PASSED marks.
4493                  */
4494                 goto activate_rxt;
4495         }
4496         /* Convert from ms to usecs */
4497         if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
4498                 if ((tp->t_flags & TF_SENTFIN) &&
4499                     ((tp->snd_max - tp->snd_una) == 1) &&
4500                     (rsm->r_flags & RACK_HAS_FIN)) {
4501                         /*
4502                          * We don't start a rack timer if all we have is a
4503                          * FIN outstanding.
4504                          */
4505                         goto activate_rxt;
4506                 }
4507                 if ((rack->use_rack_rr == 0) &&
4508                     (IN_RECOVERY(tp->t_flags)) &&
4509                     (rack->rack_no_prr == 0) &&
4510                      (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
4511                         /*
4512                          * We are not cheating, in recovery  and
4513                          * not enough ack's to yet get our next
4514                          * retransmission out.
4515                          *
4516                          * Note that classified attackers do not
4517                          * get to use the rack-cheat.
4518                          */
4519                         goto activate_tlp;
4520                 }
4521                 srtt = rack_grab_rtt(tp, rack);
4522                 thresh = rack_calc_thresh_rack(rack, srtt, cts);
4523                 idx = rsm->r_rtr_cnt - 1;
4524                 exp = rsm->r_tim_lastsent[idx] + thresh;
4525                 if (SEQ_GEQ(exp, cts)) {
4526                         to = exp - cts;
4527                         if (to < rack->r_ctl.rc_min_to) {
4528                                 to = rack->r_ctl.rc_min_to;
4529                                 if (rack->r_rr_config == 3)
4530                                         rack->rc_on_min_to = 1;
4531                         }
4532                 } else {
4533                         to = rack->r_ctl.rc_min_to;
4534                         if (rack->r_rr_config == 3)
4535                                 rack->rc_on_min_to = 1;
4536                 }
4537         } else {
4538                 /* Ok we need to do a TLP not RACK */
4539 activate_tlp:
4540                 if ((rack->rc_tlp_in_progress != 0) &&
4541                     (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) {
4542                         /*
4543                          * The previous send was a TLP and we have sent
4544                          * N TLP's without sending new data.
4545                          */
4546                         goto activate_rxt;
4547                 }
4548                 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
4549                 if (rsm == NULL) {
4550                         /* We found no rsm to TLP with. */
4551                         goto activate_rxt;
4552                 }
4553                 if (rsm->r_flags & RACK_HAS_FIN) {
4554                         /* If its a FIN we dont do TLP */
4555                         rsm = NULL;
4556                         goto activate_rxt;
4557                 }
4558                 idx = rsm->r_rtr_cnt - 1;
4559                 time_since_sent = 0;
4560                 if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
4561                         tstmp_touse = rsm->r_tim_lastsent[idx];
4562                 else
4563                         tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
4564                 if (TSTMP_GT(cts, tstmp_touse))
4565                     time_since_sent = cts - tstmp_touse;
4566                 is_tlp_timer = 1;
4567                 if (tp->t_srtt) {
4568                         srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
4569                         srtt = TICKS_2_MSEC(srtt_cur);
4570                 } else
4571                         srtt = RACK_INITIAL_RTO;
4572                 /*
4573                  * If the SRTT is not keeping up and the
4574                  * rack RTT has spiked we want to use
4575                  * the last RTT not the smoothed one.
4576                  */
4577                 if (rack_tlp_use_greater && (srtt < rack_grab_rtt(tp, rack)))
4578                         srtt = rack_grab_rtt(tp, rack);
4579                 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
4580                 if (thresh > time_since_sent)
4581                         to = thresh - time_since_sent;
4582                 else {
4583                         to = rack->r_ctl.rc_min_to;
4584                         rack_log_alt_to_to_cancel(rack,
4585                                                   thresh,               /* flex1 */
4586                                                   time_since_sent,      /* flex2 */
4587                                                   tstmp_touse,          /* flex3 */
4588                                                   rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */
4589                                                   rsm->r_tim_lastsent[idx],
4590                                                   srtt,
4591                                                   idx, 99);
4592                 }
4593                 if (to > TCPTV_REXMTMAX) {
4594                         /*
4595                          * If the TLP time works out to larger than the max
4596                          * RTO lets not do TLP.. just RTO.
4597                          */
4598                         goto activate_rxt;
4599                 }
4600         }
4601         if (is_tlp_timer == 0) {
4602                 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
4603         } else {
4604                 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
4605         }
4606         if (to == 0)
4607                 to = 1;
4608         return (to);
4609 }
4610
4611 static void
4612 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
4613 {
4614         if (rack->rc_in_persist == 0) {
4615                 if (tp->t_flags & TF_GPUTINPROG) {
4616                         /*
4617                          * Stop the goodput now, the calling of the
4618                          * measurement function clears the flag.
4619                          */
4620                         rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__);
4621                 }
4622 #ifdef NETFLIX_SHARED_CWND
4623                 if (rack->r_ctl.rc_scw) {
4624                         tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
4625                         rack->rack_scwnd_is_idle = 1;
4626                 }
4627 #endif
4628                 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
4629                 if (rack->r_ctl.rc_went_idle_time == 0)
4630                         rack->r_ctl.rc_went_idle_time = 1;
4631                 rack_timer_cancel(tp, rack, cts, __LINE__);
4632                 tp->t_rxtshift = 0;
4633                 rack->rc_in_persist = 1;
4634         }
4635 }
4636
4637 static void
4638 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
4639 {
4640         if (rack->rc_inp->inp_in_hpts)  {
4641                 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
4642                 rack->r_ctl.rc_hpts_flags  = 0;
4643         }
4644 #ifdef NETFLIX_SHARED_CWND
4645         if (rack->r_ctl.rc_scw) {
4646                 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
4647                 rack->rack_scwnd_is_idle = 0;
4648         }
4649 #endif
4650         if (rack->rc_gp_dyn_mul &&
4651             (rack->use_fixed_rate == 0) &&
4652             (rack->rc_always_pace)) {
4653                 /*
4654                  * Do we count this as if a probe-rtt just
4655                  * finished?
4656                  */
4657                 uint32_t time_idle, idle_min;
4658
4659                 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time;
4660                 idle_min = rack_min_probertt_hold;
4661                 if (rack_probertt_gpsrtt_cnt_div) {
4662                         uint64_t extra;
4663                         extra = (uint64_t)rack->r_ctl.rc_gp_srtt *
4664                                 (uint64_t)rack_probertt_gpsrtt_cnt_mul;
4665                         extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div;
4666                         idle_min += (uint32_t)extra;
4667                 }
4668                 if (time_idle >= idle_min)  {
4669                         /* Yes, we count it as a probe-rtt. */
4670                         uint32_t us_cts;
4671
4672                         us_cts = tcp_get_usecs(NULL);
4673                         if (rack->in_probe_rtt == 0) {
4674                                 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
4675                                 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
4676                                 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
4677                                 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
4678                         } else {
4679                                 rack_exit_probertt(rack, us_cts);
4680                         }
4681                 }
4682         }
4683         rack->rc_in_persist = 0;
4684         rack->r_ctl.rc_went_idle_time = 0;
4685         tp->t_rxtshift = 0;
4686         rack->r_ctl.rc_agg_delayed = 0;
4687         rack->r_early = 0;
4688         rack->r_late = 0;
4689         rack->r_ctl.rc_agg_early = 0;
4690 }
4691
4692 static void
4693 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts,
4694                    struct hpts_diag *diag, struct timeval *tv)
4695 {
4696         if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
4697                 union tcp_log_stackspecific log;
4698
4699                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4700                 log.u_bbr.flex1 = diag->p_nxt_slot;
4701                 log.u_bbr.flex2 = diag->p_cur_slot;
4702                 log.u_bbr.flex3 = diag->slot_req;
4703                 log.u_bbr.flex4 = diag->inp_hptsslot;
4704                 log.u_bbr.flex5 = diag->slot_remaining;
4705                 log.u_bbr.flex6 = diag->need_new_to;
4706                 log.u_bbr.flex7 = diag->p_hpts_active;
4707                 log.u_bbr.flex8 = diag->p_on_min_sleep;
4708                 /* Hijack other fields as needed  */
4709                 log.u_bbr.epoch = diag->have_slept;
4710                 log.u_bbr.lt_epoch = diag->yet_to_sleep;
4711                 log.u_bbr.pkts_out = diag->co_ret;
4712                 log.u_bbr.applimited = diag->hpts_sleep_time;
4713                 log.u_bbr.delivered = diag->p_prev_slot;
4714                 log.u_bbr.inflight = diag->p_runningtick;
4715                 log.u_bbr.bw_inuse = diag->wheel_tick;
4716                 log.u_bbr.rttProp = diag->wheel_cts;
4717                 log.u_bbr.timeStamp = cts;
4718                 log.u_bbr.delRate = diag->maxticks;
4719                 log.u_bbr.cur_del_rate = diag->p_curtick;
4720                 log.u_bbr.cur_del_rate <<= 32;
4721                 log.u_bbr.cur_del_rate |= diag->p_lasttick;
4722                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
4723                     &rack->rc_inp->inp_socket->so_rcv,
4724                     &rack->rc_inp->inp_socket->so_snd,
4725                     BBR_LOG_HPTSDIAG, 0,
4726                     0, &log, false, tv);
4727         }
4728
4729 }
4730
4731 static void
4732 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
4733       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
4734 {
4735         struct hpts_diag diag;
4736         struct inpcb *inp;
4737         struct timeval tv;
4738         uint32_t delayed_ack = 0;
4739         uint32_t hpts_timeout;
4740         uint8_t stopped;
4741         uint32_t left = 0;
4742         uint32_t us_cts;
4743
4744         inp = tp->t_inpcb;
4745         if ((tp->t_state == TCPS_CLOSED) ||
4746             (tp->t_state == TCPS_LISTEN)) {
4747                 return;
4748         }
4749         if (inp->inp_in_hpts) {
4750                 /* Already on the pacer */
4751                 return;
4752         }
4753         stopped = rack->rc_tmr_stopped;
4754         if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
4755                 left = rack->r_ctl.rc_timer_exp - cts;
4756         }
4757         rack->r_ctl.rc_timer_exp = 0;
4758         rack->r_ctl.rc_hpts_flags = 0;
4759         us_cts = tcp_get_usecs(&tv);
4760         /* Now early/late accounting */
4761         if (rack->r_early) {
4762                 /*
4763                  * We have a early carry over set,
4764                  * we can always add more time so we
4765                  * can always make this compensation.
4766                  */
4767                 slot += rack->r_ctl.rc_agg_early;
4768                 rack->r_early = 0;
4769                 rack->r_ctl.rc_agg_early = 0;
4770         }
4771         if (rack->r_late) {
4772                 /*
4773                  * This is harder, we can
4774                  * compensate some but it
4775                  * really depends on what
4776                  * the current pacing time is.
4777                  */
4778                 if (rack->r_ctl.rc_agg_delayed >= slot) {
4779                         /*
4780                          * We can't compensate for it all.
4781                          * And we have to have some time
4782                          * on the clock. We always have a min
4783                          * 10 slots (10 x 10 i.e. 100 usecs).
4784                          */
4785                         if (slot <= HPTS_TICKS_PER_USEC) {
4786                                 /* We gain delay */
4787                                 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_USEC - slot);
4788                                 slot = HPTS_TICKS_PER_USEC;
4789                         } else {
4790                                 /* We take off some */
4791                                 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_USEC);
4792                                 slot = HPTS_TICKS_PER_USEC;
4793                         }
4794                 } else {
4795                         slot -= rack->r_ctl.rc_agg_delayed;
4796                         rack->r_ctl.rc_agg_delayed = 0;
4797                         /* Make sure we have 100 useconds at minimum */
4798                         if (slot < HPTS_TICKS_PER_USEC) {
4799                                 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_USEC - slot;
4800                                 slot = HPTS_TICKS_PER_USEC;
4801                         }
4802                         if (rack->r_ctl.rc_agg_delayed == 0)
4803                                 rack->r_late = 0;
4804                 }
4805         }
4806         if (slot) {
4807                 /* We are pacing too */
4808                 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
4809         }
4810         hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
4811 #ifdef NETFLIX_EXP_DETECTION
4812         if (rack->sack_attack_disable &&
4813             (slot < tcp_sad_pacing_interval)) {
4814                 /*
4815                  * We have a potential attacker on
4816                  * the line. We have possibly some
4817                  * (or now) pacing time set. We want to
4818                  * slow down the processing of sacks by some
4819                  * amount (if it is an attacker). Set the default
4820                  * slot for attackers in place (unless the orginal
4821                  * interval is longer). Its stored in
4822                  * micro-seconds, so lets convert to msecs.
4823                  */
4824                 slot = tcp_sad_pacing_interval;
4825         }
4826 #endif
4827         if (tp->t_flags & TF_DELACK) {
4828                 delayed_ack = TICKS_2_MSEC(tcp_delacktime);
4829                 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
4830         }
4831         if (delayed_ack && ((hpts_timeout == 0) ||
4832                             (delayed_ack < hpts_timeout)))
4833                 hpts_timeout = delayed_ack;
4834         else
4835                 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
4836         /*
4837          * If no timers are going to run and we will fall off the hptsi
4838          * wheel, we resort to a keep-alive timer if its configured.
4839          */
4840         if ((hpts_timeout == 0) &&
4841             (slot == 0)) {
4842                 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
4843                     (tp->t_state <= TCPS_CLOSING)) {
4844                         /*
4845                          * Ok we have no timer (persists, rack, tlp, rxt  or
4846                          * del-ack), we don't have segments being paced. So
4847                          * all that is left is the keepalive timer.
4848                          */
4849                         if (TCPS_HAVEESTABLISHED(tp->t_state)) {
4850                                 /* Get the established keep-alive time */
4851                                 hpts_timeout = TP_KEEPIDLE(tp);
4852                         } else {
4853                                 /* Get the initial setup keep-alive time */
4854                                 hpts_timeout = TP_KEEPINIT(tp);
4855                         }
4856                         rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
4857                         if (rack->in_probe_rtt) {
4858                                 /*
4859                                  * We want to instead not wake up a long time from
4860                                  * now but to wake up about the time we would
4861                                  * exit probe-rtt and initiate a keep-alive ack.
4862                                  * This will get us out of probe-rtt and update
4863                                  * our min-rtt.
4864                                  */
4865                                 hpts_timeout = (rack_min_probertt_hold / HPTS_USEC_IN_MSEC);
4866                         }
4867                 }
4868         }
4869         if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
4870             (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
4871                 /*
4872                  * RACK, TLP, persists and RXT timers all are restartable
4873                  * based on actions input .. i.e we received a packet (ack
4874                  * or sack) and that changes things (rw, or snd_una etc).
4875                  * Thus we can restart them with a new value. For
4876                  * keep-alive, delayed_ack we keep track of what was left
4877                  * and restart the timer with a smaller value.
4878                  */
4879                 if (left < hpts_timeout)
4880                         hpts_timeout = left;
4881         }
4882         if (hpts_timeout) {
4883                 /*
4884                  * Hack alert for now we can't time-out over 2,147,483
4885                  * seconds (a bit more than 596 hours), which is probably ok
4886                  * :).
4887                  */
4888                 if (hpts_timeout > 0x7ffffffe)
4889                         hpts_timeout = 0x7ffffffe;
4890                 rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
4891         }
4892         if ((rack->rc_gp_filled == 0) &&
4893             (hpts_timeout < slot) &&
4894             (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) {
4895                 /*
4896                  * We have no good estimate yet for the
4897                  * old clunky burst mitigation or the
4898                  * real pacing. And the tlp or rxt is smaller
4899                  * than the pacing calculation. Lets not
4900                  * pace that long since we know the calculation
4901                  * so far is not accurate.
4902                  */
4903                 slot = hpts_timeout;
4904         }
4905         rack->r_ctl.last_pacing_time = slot;
4906         if (slot) {
4907                 rack->r_ctl.rc_last_output_to = us_cts + slot;
4908                 if (rack->rc_always_pace || rack->r_mbuf_queue) {
4909                         if ((rack->rc_gp_filled == 0) ||
4910                             rack->pacing_longer_than_rtt) {
4911                                 inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
4912                         } else {
4913                                 inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
4914                                 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
4915                                     (rack->r_rr_config != 3))
4916                                         inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
4917                                 else
4918                                         inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
4919                         }
4920                 }
4921                 if ((rack->use_rack_rr) &&
4922                     (rack->r_rr_config < 2) &&
4923                     ((hpts_timeout) && ((hpts_timeout * HPTS_USEC_IN_MSEC) < slot))) {
4924                         /*
4925                          * Arrange for the hpts to kick back in after the
4926                          * t-o if the t-o does not cause a send.
4927                          */
4928                         (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout),
4929                                                    __LINE__, &diag);
4930                         rack_log_hpts_diag(rack, us_cts, &diag, &tv);
4931                         rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
4932                 } else {
4933                         (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot),
4934                                                    __LINE__, &diag);
4935                         rack_log_hpts_diag(rack, us_cts, &diag, &tv);
4936                         rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
4937                 }
4938         } else if (hpts_timeout) {
4939                 if (rack->rc_always_pace || rack->r_mbuf_queue) {
4940                         if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)  {
4941                                 /* For a rack timer, don't wake us */
4942                                 inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
4943                                 if  (rack->r_rr_config != 3)
4944                                         inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
4945                                 else
4946                                         inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
4947                         } else {
4948                                 /* All other timers wake us up */
4949                                 inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
4950                                 inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
4951                         }
4952                 }
4953                 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout),
4954                                            __LINE__, &diag);
4955                 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
4956                 rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
4957         } else {
4958                 /* No timer starting */
4959 #ifdef INVARIANTS
4960                 if (SEQ_GT(tp->snd_max, tp->snd_una)) {
4961                         panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
4962                             tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
4963                 }
4964 #endif
4965         }
4966         rack->rc_tmr_stopped = 0;
4967         if (slot)
4968                 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv);
4969 }
4970
4971 /*
4972  * RACK Timer, here we simply do logging and house keeping.
4973  * the normal rack_output() function will call the
4974  * appropriate thing to check if we need to do a RACK retransmit.
4975  * We return 1, saying don't proceed with rack_output only
4976  * when all timers have been stopped (destroyed PCB?).
4977  */
4978 static int
4979 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
4980 {
4981         /*
4982          * This timer simply provides an internal trigger to send out data.
4983          * The check_recovery_mode call will see if there are needed
4984          * retransmissions, if so we will enter fast-recovery. The output
4985          * call may or may not do the same thing depending on sysctl
4986          * settings.
4987          */
4988         struct rack_sendmap *rsm;
4989         int32_t recovery;
4990
4991         if (tp->t_timers->tt_flags & TT_STOPPED) {
4992                 return (1);
4993         }
4994         recovery = IN_RECOVERY(tp->t_flags);
4995         counter_u64_add(rack_to_tot, 1);
4996         if (rack->r_state && (rack->r_state != tp->t_state))
4997                 rack_set_state(tp, rack);
4998         rack->rc_on_min_to = 0;
4999         rsm = rack_check_recovery_mode(tp, cts);
5000         rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm);
5001         if (rsm) {
5002                 uint32_t rtt;
5003
5004                 rack->r_ctl.rc_resend = rsm;
5005                 if (rack->use_rack_rr) {
5006                         /*
5007                          * Don't accumulate extra pacing delay
5008                          * we are allowing the rack timer to
5009                          * over-ride pacing i.e. rrr takes precedence
5010                          * if the pacing interval is longer than the rrr
5011                          * time (in other words we get the min pacing
5012                          * time versus rrr pacing time).
5013                          */
5014                         rack->r_timer_override = 1;
5015                         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
5016                 }
5017                 rtt = rack->rc_rack_rtt;
5018                 if (rtt == 0)
5019                         rtt = 1;
5020                 if (rack->rack_no_prr == 0) {
5021                         if ((recovery == 0) &&
5022                             (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
5023                                 /*
5024                                  * The rack-timeout that enter's us into recovery
5025                                  * will force out one MSS and set us up so that we
5026                                  * can do one more send in 2*rtt (transitioning the
5027                                  * rack timeout into a rack-tlp).
5028                                  */
5029                                 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
5030                                 rack->r_timer_override = 1;
5031                                 rack_log_to_prr(rack, 3, 0);
5032                         } else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) &&
5033                                    rack->use_rack_rr) {
5034                                 /*
5035                                  * When a rack timer goes, if the rack rr is
5036                                  * on, arrange it so we can send a full segment
5037                                  * overriding prr (though we pay a price for this
5038                                  * for future new sends).
5039                                  */
5040                                 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
5041                                 rack_log_to_prr(rack, 4, 0);
5042                         }
5043                 }
5044         }
5045         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
5046         if (rsm == NULL) {
5047                 /* restart a timer and return 1 */
5048                 rack_start_hpts_timer(rack, tp, cts,
5049                                       0, 0, 0);
5050                 return (1);
5051         }
5052         return (0);
5053 }
5054
5055 static __inline void
5056 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
5057                struct rack_sendmap *rsm, uint32_t start)
5058 {
5059         int idx;
5060
5061         nrsm->r_start = start;
5062         nrsm->r_end = rsm->r_end;
5063         nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
5064         nrsm->r_flags = rsm->r_flags;
5065         nrsm->r_dupack = rsm->r_dupack;
5066         nrsm->usec_orig_send = rsm->usec_orig_send;
5067         nrsm->r_rtr_bytes = 0;
5068         rsm->r_end = nrsm->r_start;
5069         nrsm->r_just_ret = rsm->r_just_ret;
5070         for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
5071                 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
5072         }
5073 }
5074
5075 static struct rack_sendmap *
5076 rack_merge_rsm(struct tcp_rack *rack,
5077                struct rack_sendmap *l_rsm,
5078                struct rack_sendmap *r_rsm)
5079 {
5080         /*
5081          * We are merging two ack'd RSM's,
5082          * the l_rsm is on the left (lower seq
5083          * values) and the r_rsm is on the right
5084          * (higher seq value). The simplest way
5085          * to merge these is to move the right
5086          * one into the left. I don't think there
5087          * is any reason we need to try to find
5088          * the oldest (or last oldest retransmitted).
5089          */
5090         struct rack_sendmap *rm;
5091
5092         l_rsm->r_end = r_rsm->r_end;
5093         if (l_rsm->r_dupack < r_rsm->r_dupack)
5094                 l_rsm->r_dupack = r_rsm->r_dupack;
5095         if (r_rsm->r_rtr_bytes)
5096                 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
5097         if (r_rsm->r_in_tmap) {
5098                 /* This really should not happen */
5099                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
5100                 r_rsm->r_in_tmap = 0;
5101         }
5102
5103         /* Now the flags */
5104         if (r_rsm->r_flags & RACK_HAS_FIN)
5105                 l_rsm->r_flags |= RACK_HAS_FIN;
5106         if (r_rsm->r_flags & RACK_TLP)
5107                 l_rsm->r_flags |= RACK_TLP;
5108         if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
5109                 l_rsm->r_flags |= RACK_RWND_COLLAPSED;
5110         if ((r_rsm->r_flags & RACK_APP_LIMITED)  &&
5111             ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) {
5112                 /*
5113                  * If both are app-limited then let the
5114                  * free lower the count. If right is app
5115                  * limited and left is not, transfer.
5116                  */
5117                 l_rsm->r_flags |= RACK_APP_LIMITED;
5118                 r_rsm->r_flags &= ~RACK_APP_LIMITED;
5119                 if (r_rsm == rack->r_ctl.rc_first_appl)
5120                         rack->r_ctl.rc_first_appl = l_rsm;
5121         }
5122         rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
5123 #ifdef INVARIANTS
5124         if (rm != r_rsm) {
5125                 panic("removing head in rack:%p rsm:%p rm:%p",
5126                       rack, r_rsm, rm);
5127         }
5128 #endif
5129         if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
5130                 /* Transfer the split limit to the map we free */
5131                 r_rsm->r_limit_type = l_rsm->r_limit_type;
5132                 l_rsm->r_limit_type = 0;
5133         }
5134         rack_free(rack, r_rsm);
5135         return(l_rsm);
5136 }
5137
5138 /*
5139  * TLP Timer, here we simply setup what segment we want to
5140  * have the TLP expire on, the normal rack_output() will then
5141  * send it out.
5142  *
5143  * We return 1, saying don't proceed with rack_output only
5144  * when all timers have been stopped (destroyed PCB?).
5145  */
5146 static int
5147 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5148 {
5149         /*
5150          * Tail Loss Probe.
5151          */
5152         struct rack_sendmap *rsm = NULL;
5153         struct rack_sendmap *insret;
5154         struct socket *so;
5155         uint32_t amm, old_prr_snd = 0;
5156         uint32_t out, avail;
5157         int collapsed_win = 0;
5158
5159         if (tp->t_timers->tt_flags & TT_STOPPED) {
5160                 return (1);
5161         }
5162         if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
5163                 /* Its not time yet */
5164                 return (0);
5165         }
5166         if (ctf_progress_timeout_check(tp, true)) {
5167                 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
5168                 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
5169                 return (1);
5170         }
5171         /*
5172          * A TLP timer has expired. We have been idle for 2 rtts. So we now
5173          * need to figure out how to force a full MSS segment out.
5174          */
5175         rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL);
5176         counter_u64_add(rack_tlp_tot, 1);
5177         if (rack->r_state && (rack->r_state != tp->t_state))
5178                 rack_set_state(tp, rack);
5179         so = tp->t_inpcb->inp_socket;
5180         avail = sbavail(&so->so_snd);
5181         out = tp->snd_max - tp->snd_una;
5182         if (out > tp->snd_wnd) {
5183                 /* special case, we need a retransmission */
5184                 collapsed_win = 1;
5185                 goto need_retran;
5186         }
5187         /*
5188          * Check our send oldest always settings, and if
5189          * there is an oldest to send jump to the need_retran.
5190          */
5191         if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0))
5192                 goto need_retran;
5193
5194         if (avail > out) {
5195                 /* New data is available */
5196                 amm = avail - out;
5197                 if (amm > ctf_fixed_maxseg(tp)) {
5198                         amm = ctf_fixed_maxseg(tp);
5199                         if ((amm + out) > tp->snd_wnd) {
5200                                 /* We are rwnd limited */
5201                                 goto need_retran;
5202                         }
5203                 } else if (amm < ctf_fixed_maxseg(tp)) {
5204                         /* not enough to fill a MTU */
5205                         goto need_retran;
5206                 }
5207                 if (IN_RECOVERY(tp->t_flags)) {
5208                         /* Unlikely */
5209                         if (rack->rack_no_prr == 0) {
5210                                 old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
5211                                 if (out + amm <= tp->snd_wnd) {
5212                                         rack->r_ctl.rc_prr_sndcnt = amm;
5213                                         rack_log_to_prr(rack, 4, 0);
5214                                 }
5215                         } else
5216                                 goto need_retran;
5217                 } else {
5218                         /* Set the send-new override */
5219                         if (out + amm <= tp->snd_wnd)
5220                                 rack->r_ctl.rc_tlp_new_data = amm;
5221                         else
5222                                 goto need_retran;
5223                 }
5224                 rack->r_ctl.rc_tlpsend = NULL;
5225                 counter_u64_add(rack_tlp_newdata, 1);
5226                 goto send;
5227         }
5228 need_retran:
5229         /*
5230          * Ok we need to arrange the last un-acked segment to be re-sent, or
5231          * optionally the first un-acked segment.
5232          */
5233         if (collapsed_win == 0) {
5234                 if (rack_always_send_oldest)
5235                         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5236                 else {
5237                         rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
5238                         if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
5239                                 rsm = rack_find_high_nonack(rack, rsm);
5240                         }
5241                 }
5242                 if (rsm == NULL) {
5243                         counter_u64_add(rack_tlp_does_nada, 1);
5244 #ifdef TCP_BLACKBOX
5245                         tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
5246 #endif
5247                         goto out;
5248                 }
5249         } else {
5250                 /*
5251                  * We must find the last segment
5252                  * that was acceptable by the client.
5253                  */
5254                 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
5255                         if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
5256                                 /* Found one */
5257                                 break;
5258                         }
5259                 }
5260                 if (rsm == NULL) {
5261                         /* None? if so send the first */
5262                         rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
5263                         if (rsm == NULL) {
5264                                 counter_u64_add(rack_tlp_does_nada, 1);
5265 #ifdef TCP_BLACKBOX
5266                                 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
5267 #endif
5268                                 goto out;
5269                         }
5270                 }
5271         }
5272         if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
5273                 /*
5274                  * We need to split this the last segment in two.
5275                  */
5276                 struct rack_sendmap *nrsm;
5277
5278                 nrsm = rack_alloc_full_limit(rack);
5279                 if (nrsm == NULL) {
5280                         /*
5281                          * No memory to split, we will just exit and punt
5282                          * off to the RXT timer.
5283                          */
5284                         counter_u64_add(rack_tlp_does_nada, 1);
5285                         goto out;
5286                 }
5287                 rack_clone_rsm(rack, nrsm, rsm,
5288                                (rsm->r_end - ctf_fixed_maxseg(tp)));
5289                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
5290 #ifdef INVARIANTS
5291                 if (insret != NULL) {
5292                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
5293                               nrsm, insret, rack, rsm);
5294                 }
5295 #endif
5296                 if (rsm->r_in_tmap) {
5297                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
5298                         nrsm->r_in_tmap = 1;
5299                 }
5300                 rsm->r_flags &= (~RACK_HAS_FIN);
5301                 rsm = nrsm;
5302         }
5303         rack->r_ctl.rc_tlpsend = rsm;
5304 send:
5305         rack->r_timer_override = 1;
5306         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
5307         return (0);
5308 out:
5309         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
5310         return (0);
5311 }
5312
5313 /*
5314  * Delayed ack Timer, here we simply need to setup the
5315  * ACK_NOW flag and remove the DELACK flag. From there
5316  * the output routine will send the ack out.
5317  *
5318  * We only return 1, saying don't proceed, if all timers
5319  * are stopped (destroyed PCB?).
5320  */
5321 static int
5322 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5323 {
5324         if (tp->t_timers->tt_flags & TT_STOPPED) {
5325                 return (1);
5326         }
5327         rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL);
5328         tp->t_flags &= ~TF_DELACK;
5329         tp->t_flags |= TF_ACKNOW;
5330         KMOD_TCPSTAT_INC(tcps_delack);
5331         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
5332         return (0);
5333 }
5334
5335 /*
5336  * Persists timer, here we simply send the
5337  * same thing as a keepalive will.
5338  * the one byte send.
5339  *
5340  * We only return 1, saying don't proceed, if all timers
5341  * are stopped (destroyed PCB?).
5342  */
5343 static int
5344 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5345 {
5346         struct tcptemp *t_template;
5347         struct inpcb *inp;
5348         int32_t retval = 1;
5349
5350         inp = tp->t_inpcb;
5351
5352         if (tp->t_timers->tt_flags & TT_STOPPED) {
5353                 return (1);
5354         }
5355         if (rack->rc_in_persist == 0)
5356                 return (0);
5357         if (ctf_progress_timeout_check(tp, false)) {
5358                 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
5359                 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
5360                 tcp_set_inp_to_drop(inp, ETIMEDOUT);
5361                 return (1);
5362         }
5363         KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
5364         /*
5365          * Persistence timer into zero window. Force a byte to be output, if
5366          * possible.
5367          */
5368         KMOD_TCPSTAT_INC(tcps_persisttimeo);
5369         /*
5370          * Hack: if the peer is dead/unreachable, we do not time out if the
5371          * window is closed.  After a full backoff, drop the connection if
5372          * the idle time (no responses to probes) reaches the maximum
5373          * backoff that we would use if retransmitting.
5374          */
5375         if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
5376             (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
5377             ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
5378                 KMOD_TCPSTAT_INC(tcps_persistdrop);
5379                 retval = 1;
5380                 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
5381                 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
5382                 goto out;
5383         }
5384         if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
5385             tp->snd_una == tp->snd_max)
5386                 rack_exit_persist(tp, rack, cts);
5387         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
5388         /*
5389          * If the user has closed the socket then drop a persisting
5390          * connection after a much reduced timeout.
5391          */
5392         if (tp->t_state > TCPS_CLOSE_WAIT &&
5393             (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
5394                 retval = 1;
5395                 KMOD_TCPSTAT_INC(tcps_persistdrop);
5396                 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
5397                 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
5398                 goto out;
5399         }
5400         t_template = tcpip_maketemplate(rack->rc_inp);
5401         if (t_template) {
5402                 /* only set it if we were answered */
5403                 if (rack->forced_ack == 0) {
5404                         rack->forced_ack = 1;
5405                         rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
5406                 }
5407                 tcp_respond(tp, t_template->tt_ipgen,
5408                             &t_template->tt_t, (struct mbuf *)NULL,
5409                             tp->rcv_nxt, tp->snd_una - 1, 0);
5410                 /* This sends an ack */
5411                 if (tp->t_flags & TF_DELACK)
5412                         tp->t_flags &= ~TF_DELACK;
5413                 free(t_template, M_TEMP);
5414         }
5415         if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
5416                 tp->t_rxtshift++;
5417 out:
5418         rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL);
5419         rack_start_hpts_timer(rack, tp, cts,
5420                               0, 0, 0);
5421         return (retval);
5422 }
5423
5424 /*
5425  * If a keepalive goes off, we had no other timers
5426  * happening. We always return 1 here since this
5427  * routine either drops the connection or sends
5428  * out a segment with respond.
5429  */
5430 static int
5431 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5432 {
5433         struct tcptemp *t_template;
5434         struct inpcb *inp;
5435
5436         if (tp->t_timers->tt_flags & TT_STOPPED) {
5437                 return (1);
5438         }
5439         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
5440         inp = tp->t_inpcb;
5441         rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL);
5442         /*
5443          * Keep-alive timer went off; send something or drop connection if
5444          * idle for too long.
5445          */
5446         KMOD_TCPSTAT_INC(tcps_keeptimeo);
5447         if (tp->t_state < TCPS_ESTABLISHED)
5448                 goto dropit;
5449         if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
5450             tp->t_state <= TCPS_CLOSING) {
5451                 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
5452                         goto dropit;
5453                 /*
5454                  * Send a packet designed to force a response if the peer is
5455                  * up and reachable: either an ACK if the connection is
5456                  * still alive, or an RST if the peer has closed the
5457                  * connection due to timeout or reboot. Using sequence
5458                  * number tp->snd_una-1 causes the transmitted zero-length
5459                  * segment to lie outside the receive window; by the
5460                  * protocol spec, this requires the correspondent TCP to
5461                  * respond.
5462                  */
5463                 KMOD_TCPSTAT_INC(tcps_keepprobe);
5464                 t_template = tcpip_maketemplate(inp);
5465                 if (t_template) {
5466                         if (rack->forced_ack == 0) {
5467                                 rack->forced_ack = 1;
5468                                 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
5469                         }
5470                         tcp_respond(tp, t_template->tt_ipgen,
5471                             &t_template->tt_t, (struct mbuf *)NULL,
5472                             tp->rcv_nxt, tp->snd_una - 1, 0);
5473                         free(t_template, M_TEMP);
5474                 }
5475         }
5476         rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
5477         return (1);
5478 dropit:
5479         KMOD_TCPSTAT_INC(tcps_keepdrops);
5480         tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
5481         tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
5482         return (1);
5483 }
5484
5485 /*
5486  * Retransmit helper function, clear up all the ack
5487  * flags and take care of important book keeping.
5488  */
5489 static void
5490 rack_remxt_tmr(struct tcpcb *tp)
5491 {
5492         /*
5493          * The retransmit timer went off, all sack'd blocks must be
5494          * un-acked.
5495          */
5496         struct rack_sendmap *rsm, *trsm = NULL;
5497         struct tcp_rack *rack;
5498         int32_t cnt = 0;
5499
5500         rack = (struct tcp_rack *)tp->t_fb_ptr;
5501         rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
5502         rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL);
5503         if (rack->r_state && (rack->r_state != tp->t_state))
5504                 rack_set_state(tp, rack);
5505         /*
5506          * Ideally we would like to be able to
5507          * mark SACK-PASS on anything not acked here.
5508          * However, if we do that we would burst out
5509          * all that data 1ms apart. This would be unwise,
5510          * so for now we will just let the normal rxt timer
5511          * and tlp timer take care of it.
5512          */
5513         RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
5514                 if (rsm->r_flags & RACK_ACKED) {
5515                         cnt++;
5516                         rsm->r_dupack = 0;
5517                         rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
5518                         if (rsm->r_in_tmap == 0) {
5519                                 /* We must re-add it back to the tlist */
5520                                 if (trsm == NULL) {
5521                                         TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
5522                                 } else {
5523                                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
5524                                 }
5525                                 rsm->r_in_tmap = 1;
5526                         }
5527                 }
5528                 trsm = rsm;
5529                 if (rsm->r_flags & RACK_ACKED)
5530                         rsm->r_flags |= RACK_WAS_ACKED;
5531                 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
5532         }
5533         /* Clear the count (we just un-acked them) */
5534         rack->r_ctl.rc_sacked = 0;
5535         rack->r_ctl.rc_agg_delayed = 0;
5536         rack->r_early = 0;
5537         rack->r_ctl.rc_agg_early = 0;
5538         rack->r_late = 0;
5539         /* Clear the tlp rtx mark */
5540         rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
5541         rack->r_ctl.rc_prr_sndcnt = 0;
5542         rack_log_to_prr(rack, 6, 0);
5543         rack->r_timer_override = 1;
5544 }
5545
5546 static void
5547 rack_cc_conn_init(struct tcpcb *tp)
5548 {
5549         struct tcp_rack *rack;
5550
5551         rack = (struct tcp_rack *)tp->t_fb_ptr;
5552         cc_conn_init(tp);
5553         /*
5554          * We want a chance to stay in slowstart as
5555          * we create a connection. TCP spec says that
5556          * initially ssthresh is infinite. For our
5557          * purposes that is the snd_wnd.
5558          */
5559         if (tp->snd_ssthresh < tp->snd_wnd) {
5560                 tp->snd_ssthresh = tp->snd_wnd;
5561         }
5562         /*
5563          * We also want to assure a IW worth of
5564          * data can get inflight.
5565          */
5566         if (rc_init_window(rack) < tp->snd_cwnd)
5567                 tp->snd_cwnd = rc_init_window(rack);
5568 }
5569
5570 /*
5571  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
5572  * we will setup to retransmit the lowest seq number outstanding.
5573  */
5574 static int
5575 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5576 {
5577         int32_t rexmt;
5578         struct inpcb *inp;
5579         int32_t retval = 0;
5580         bool isipv6;
5581
5582         inp = tp->t_inpcb;
5583         if (tp->t_timers->tt_flags & TT_STOPPED) {
5584                 return (1);
5585         }
5586         if (ctf_progress_timeout_check(tp, false)) {
5587                 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
5588                 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
5589                 tcp_set_inp_to_drop(inp, ETIMEDOUT);
5590                 return (1);
5591         }
5592         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
5593         if (TCPS_HAVEESTABLISHED(tp->t_state) &&
5594             (tp->snd_una == tp->snd_max)) {
5595                 /* Nothing outstanding .. nothing to do */
5596                 return (0);
5597         }
5598         /*
5599          * Retransmission timer went off.  Message has not been acked within
5600          * retransmit interval.  Back off to a longer retransmit interval
5601          * and retransmit one segment.
5602          */
5603         rack_remxt_tmr(tp);
5604         if ((rack->r_ctl.rc_resend == NULL) ||
5605             ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
5606                 /*
5607                  * If the rwnd collapsed on
5608                  * the one we are retransmitting
5609                  * it does not count against the
5610                  * rxt count.
5611                  */
5612                 tp->t_rxtshift++;
5613         }
5614         if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
5615                 tp->t_rxtshift = TCP_MAXRXTSHIFT;
5616                 KMOD_TCPSTAT_INC(tcps_timeoutdrop);
5617                 retval = 1;
5618                 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
5619                 tcp_set_inp_to_drop(rack->rc_inp,
5620                     (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
5621                 goto out;
5622         }
5623         if (tp->t_state == TCPS_SYN_SENT) {
5624                 /*
5625                  * If the SYN was retransmitted, indicate CWND to be limited
5626                  * to 1 segment in cc_conn_init().
5627                  */
5628                 tp->snd_cwnd = 1;
5629         } else if (tp->t_rxtshift == 1) {
5630                 /*
5631                  * first retransmit; record ssthresh and cwnd so they can be
5632                  * recovered if this turns out to be a "bad" retransmit. A
5633                  * retransmit is considered "bad" if an ACK for this segment
5634                  * is received within RTT/2 interval; the assumption here is
5635                  * that the ACK was already in flight.  See "On Estimating
5636                  * End-to-End Network Path Properties" by Allman and Paxson
5637                  * for more details.
5638                  */
5639                 tp->snd_cwnd_prev = tp->snd_cwnd;
5640                 tp->snd_ssthresh_prev = tp->snd_ssthresh;
5641                 tp->snd_recover_prev = tp->snd_recover;
5642                 if (IN_FASTRECOVERY(tp->t_flags))
5643                         tp->t_flags |= TF_WASFRECOVERY;
5644                 else
5645                         tp->t_flags &= ~TF_WASFRECOVERY;
5646                 if (IN_CONGRECOVERY(tp->t_flags))
5647                         tp->t_flags |= TF_WASCRECOVERY;
5648                 else
5649                         tp->t_flags &= ~TF_WASCRECOVERY;
5650                 tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
5651                 tp->t_flags |= TF_PREVVALID;
5652         } else
5653                 tp->t_flags &= ~TF_PREVVALID;
5654         KMOD_TCPSTAT_INC(tcps_rexmttimeo);
5655         if ((tp->t_state == TCPS_SYN_SENT) ||
5656             (tp->t_state == TCPS_SYN_RECEIVED))
5657                 rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]);
5658         else
5659                 rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
5660         TCPT_RANGESET(tp->t_rxtcur, rexmt,
5661            max(MSEC_2_TICKS(rack_rto_min), rexmt),
5662            MSEC_2_TICKS(rack_rto_max));
5663         /*
5664          * We enter the path for PLMTUD if connection is established or, if
5665          * connection is FIN_WAIT_1 status, reason for the last is that if
5666          * amount of data we send is very small, we could send it in couple
5667          * of packets and process straight to FIN. In that case we won't
5668          * catch ESTABLISHED state.
5669          */
5670 #ifdef INET6
5671         isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false;
5672 #else
5673         isipv6 = false;
5674 #endif
5675         if (((V_tcp_pmtud_blackhole_detect == 1) ||
5676             (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
5677             (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
5678             ((tp->t_state == TCPS_ESTABLISHED) ||
5679             (tp->t_state == TCPS_FIN_WAIT_1))) {
5680                 /*
5681                  * Idea here is that at each stage of mtu probe (usually,
5682                  * 1448 -> 1188 -> 524) should be given 2 chances to recover
5683                  * before further clamping down. 'tp->t_rxtshift % 2 == 0'
5684                  * should take care of that.
5685                  */
5686                 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
5687                     (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
5688                     (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
5689                     tp->t_rxtshift % 2 == 0)) {
5690                         /*
5691                          * Enter Path MTU Black-hole Detection mechanism: -
5692                          * Disable Path MTU Discovery (IP "DF" bit). -
5693                          * Reduce MTU to lower value than what we negotiated
5694                          * with peer.
5695                          */
5696                         if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
5697                                 /* Record that we may have found a black hole. */
5698                                 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
5699                                 /* Keep track of previous MSS. */
5700                                 tp->t_pmtud_saved_maxseg = tp->t_maxseg;
5701                         }
5702
5703                         /*
5704                          * Reduce the MSS to blackhole value or to the
5705                          * default in an attempt to retransmit.
5706                          */
5707 #ifdef INET6
5708                         if (isipv6 &&
5709                             tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
5710                                 /* Use the sysctl tuneable blackhole MSS. */
5711                                 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
5712                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
5713                         } else if (isipv6) {
5714                                 /* Use the default MSS. */
5715                                 tp->t_maxseg = V_tcp_v6mssdflt;
5716                                 /*
5717                                  * Disable Path MTU Discovery when we switch
5718                                  * to minmss.
5719                                  */
5720                                 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
5721                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
5722                         }
5723 #endif
5724 #if defined(INET6) && defined(INET)
5725                         else
5726 #endif
5727 #ifdef INET
5728                         if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
5729                                 /* Use the sysctl tuneable blackhole MSS. */
5730                                 tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
5731                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
5732                         } else {
5733                                 /* Use the default MSS. */
5734                                 tp->t_maxseg = V_tcp_mssdflt;
5735                                 /*
5736                                  * Disable Path MTU Discovery when we switch
5737                                  * to minmss.
5738                                  */
5739                                 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
5740                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
5741                         }
5742 #endif
5743                 } else {
5744                         /*
5745                          * If further retransmissions are still unsuccessful
5746                          * with a lowered MTU, maybe this isn't a blackhole
5747                          * and we restore the previous MSS and blackhole
5748                          * detection flags. The limit '6' is determined by
5749                          * giving each probe stage (1448, 1188, 524) 2
5750                          * chances to recover.
5751                          */
5752                         if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
5753                             (tp->t_rxtshift >= 6)) {
5754                                 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
5755                                 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
5756                                 tp->t_maxseg = tp->t_pmtud_saved_maxseg;
5757                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
5758                         }
5759                 }
5760         }
5761         /*
5762          * If we backed off this far, our srtt estimate is probably bogus.
5763          * Clobber it so we'll take the next rtt measurement as our srtt;
5764          * move the current srtt into rttvar to keep the current retransmit
5765          * times until then.
5766          */
5767         if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
5768 #ifdef INET6
5769                 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
5770                         in6_losing(tp->t_inpcb);
5771                 else
5772 #endif
5773                         in_losing(tp->t_inpcb);
5774                 tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
5775                 tp->t_srtt = 0;
5776         }
5777         sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
5778         tp->snd_recover = tp->snd_max;
5779         tp->t_flags |= TF_ACKNOW;
5780         tp->t_rtttime = 0;
5781         rack_cong_signal(tp, NULL, CC_RTO);
5782 out:
5783         return (retval);
5784 }
5785
5786 static int
5787 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
5788 {
5789         int32_t ret = 0;
5790         int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
5791
5792         if (timers == 0) {
5793                 return (0);
5794         }
5795         if (tp->t_state == TCPS_LISTEN) {
5796                 /* no timers on listen sockets */
5797                 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
5798                         return (0);
5799                 return (1);
5800         }
5801         if ((timers & PACE_TMR_RACK) &&
5802             rack->rc_on_min_to) {
5803                 /*
5804                  * For the rack timer when we
5805                  * are on a min-timeout (which means rrr_conf = 3)
5806                  * we don't want to check the timer. It may
5807                  * be going off for a pace and thats ok we
5808                  * want to send the retransmit (if its ready).
5809                  *
5810                  * If its on a normal rack timer (non-min) then
5811                  * we will check if its expired.
5812                  */
5813                 goto skip_time_check;
5814         }
5815         if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
5816                 uint32_t left;
5817
5818                 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
5819                         ret = -1;
5820                         rack_log_to_processing(rack, cts, ret, 0);
5821                         return (0);
5822                 }
5823                 if (hpts_calling == 0) {
5824                         /*
5825                          * A user send or queued mbuf (sack) has called us? We
5826                          * return 0 and let the pacing guards
5827                          * deal with it if they should or
5828                          * should not cause a send.
5829                          */
5830                         ret = -2;
5831                         rack_log_to_processing(rack, cts, ret, 0);
5832                         return (0);
5833                 }
5834                 /*
5835                  * Ok our timer went off early and we are not paced false
5836                  * alarm, go back to sleep.
5837                  */
5838                 ret = -3;
5839                 left = rack->r_ctl.rc_timer_exp - cts;
5840                 tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
5841                 rack_log_to_processing(rack, cts, ret, left);
5842                 return (1);
5843         }
5844 skip_time_check:
5845         rack->rc_tmr_stopped = 0;
5846         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
5847         if (timers & PACE_TMR_DELACK) {
5848                 ret = rack_timeout_delack(tp, rack, cts);
5849         } else if (timers & PACE_TMR_RACK) {
5850                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
5851                 ret = rack_timeout_rack(tp, rack, cts);
5852         } else if (timers & PACE_TMR_TLP) {
5853                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
5854                 ret = rack_timeout_tlp(tp, rack, cts);
5855         } else if (timers & PACE_TMR_RXT) {
5856                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
5857                 ret = rack_timeout_rxt(tp, rack, cts);
5858         } else if (timers & PACE_TMR_PERSIT) {
5859                 ret = rack_timeout_persist(tp, rack, cts);
5860         } else if (timers & PACE_TMR_KEEP) {
5861                 ret = rack_timeout_keepalive(tp, rack, cts);
5862         }
5863         rack_log_to_processing(rack, cts, ret, timers);
5864         return (ret);
5865 }
5866
5867 static void
5868 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
5869 {
5870         struct timeval tv;
5871         uint32_t us_cts, flags_on_entry;
5872         uint8_t hpts_removed = 0;
5873
5874         flags_on_entry = rack->r_ctl.rc_hpts_flags;
5875         us_cts = tcp_get_usecs(&tv);
5876         if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
5877             ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) ||
5878              ((tp->snd_max - tp->snd_una) == 0))) {
5879                 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
5880                 hpts_removed = 1;
5881                 /* If we were not delayed cancel out the flag. */
5882                 if ((tp->snd_max - tp->snd_una) == 0)
5883                         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
5884                 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
5885         }
5886         if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
5887                 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
5888                 if (rack->rc_inp->inp_in_hpts &&
5889                     ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
5890                         /*
5891                          * Canceling timer's when we have no output being
5892                          * paced. We also must remove ourselves from the
5893                          * hpts.
5894                          */
5895                         tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
5896                         hpts_removed = 1;
5897                 }
5898                 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
5899         }
5900         if (hpts_removed == 0)
5901                 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
5902 }
5903
5904 static void
5905 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
5906 {
5907         return;
5908 }
5909
5910 static int
5911 rack_stopall(struct tcpcb *tp)
5912 {
5913         struct tcp_rack *rack;
5914         rack = (struct tcp_rack *)tp->t_fb_ptr;
5915         rack->t_timers_stopped = 1;
5916         return (0);
5917 }
5918
5919 static void
5920 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
5921 {
5922         return;
5923 }
5924
5925 static int
5926 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
5927 {
5928         return (0);
5929 }
5930
5931 static void
5932 rack_stop_all_timers(struct tcpcb *tp)
5933 {
5934         struct tcp_rack *rack;
5935
5936         /*
5937          * Assure no timers are running.
5938          */
5939         if (tcp_timer_active(tp, TT_PERSIST)) {
5940                 /* We enter in persists, set the flag appropriately */
5941                 rack = (struct tcp_rack *)tp->t_fb_ptr;
5942                 rack->rc_in_persist = 1;
5943         }
5944         tcp_timer_suspend(tp, TT_PERSIST);
5945         tcp_timer_suspend(tp, TT_REXMT);
5946         tcp_timer_suspend(tp, TT_KEEP);
5947         tcp_timer_suspend(tp, TT_DELACK);
5948 }
5949
5950 static void
5951 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
5952     struct rack_sendmap *rsm, uint32_t ts)
5953 {
5954         int32_t idx;
5955
5956         rsm->r_rtr_cnt++;
5957         rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
5958         rsm->r_dupack = 0;
5959         if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
5960                 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
5961                 rsm->r_flags |= RACK_OVERMAX;
5962         }
5963         if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) {
5964                 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
5965                 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
5966         }
5967         idx = rsm->r_rtr_cnt - 1;
5968         rsm->r_tim_lastsent[idx] = ts;
5969         if (rsm->r_flags & RACK_ACKED) {
5970                 /* Problably MTU discovery messing with us */
5971                 rsm->r_flags &= ~RACK_ACKED;
5972                 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
5973         }
5974         if (rsm->r_in_tmap) {
5975                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
5976                 rsm->r_in_tmap = 0;
5977         }
5978         TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
5979         rsm->r_in_tmap = 1;
5980         if (rsm->r_flags & RACK_SACK_PASSED) {
5981                 /* We have retransmitted due to the SACK pass */
5982                 rsm->r_flags &= ~RACK_SACK_PASSED;
5983                 rsm->r_flags |= RACK_WAS_SACKPASS;
5984         }
5985 }
5986
5987 static uint32_t
5988 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
5989     struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp)
5990 {
5991         /*
5992          * We (re-)transmitted starting at rsm->r_start for some length
5993          * (possibly less than r_end.
5994          */
5995         struct rack_sendmap *nrsm, *insret;
5996         uint32_t c_end;
5997         int32_t len;
5998
5999         len = *lenp;
6000         c_end = rsm->r_start + len;
6001         if (SEQ_GEQ(c_end, rsm->r_end)) {
6002                 /*
6003                  * We retransmitted the whole piece or more than the whole
6004                  * slopping into the next rsm.
6005                  */
6006                 rack_update_rsm(tp, rack, rsm, ts);
6007                 if (c_end == rsm->r_end) {
6008                         *lenp = 0;
6009                         return (0);
6010                 } else {
6011                         int32_t act_len;
6012
6013                         /* Hangs over the end return whats left */
6014                         act_len = rsm->r_end - rsm->r_start;
6015                         *lenp = (len - act_len);
6016                         return (rsm->r_end);
6017                 }
6018                 /* We don't get out of this block. */
6019         }
6020         /*
6021          * Here we retransmitted less than the whole thing which means we
6022          * have to split this into what was transmitted and what was not.
6023          */
6024         nrsm = rack_alloc_full_limit(rack);
6025         if (nrsm == NULL) {
6026                 /*
6027                  * We can't get memory, so lets not proceed.
6028                  */
6029                 *lenp = 0;
6030                 return (0);
6031         }
6032         /*
6033          * So here we are going to take the original rsm and make it what we
6034          * retransmitted. nrsm will be the tail portion we did not
6035          * retransmit. For example say the chunk was 1, 11 (10 bytes). And
6036          * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
6037          * 1, 6 and the new piece will be 6, 11.
6038          */
6039         rack_clone_rsm(rack, nrsm, rsm, c_end);
6040         nrsm->r_dupack = 0;
6041         rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
6042         insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6043 #ifdef INVARIANTS
6044         if (insret != NULL) {
6045                 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6046                       nrsm, insret, rack, rsm);
6047         }
6048 #endif
6049         if (rsm->r_in_tmap) {
6050                 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
6051                 nrsm->r_in_tmap = 1;
6052         }
6053         rsm->r_flags &= (~RACK_HAS_FIN);
6054         rack_update_rsm(tp, rack, rsm, ts);
6055         *lenp = 0;
6056         return (0);
6057 }
6058
6059 static void
6060 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
6061     uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
6062     uint8_t pass, struct rack_sendmap *hintrsm, uint32_t us_cts)
6063 {
6064         struct tcp_rack *rack;
6065         struct rack_sendmap *rsm, *nrsm, *insret, fe;
6066         register uint32_t snd_max, snd_una;
6067
6068         /*
6069          * Add to the RACK log of packets in flight or retransmitted. If
6070          * there is a TS option we will use the TS echoed, if not we will
6071          * grab a TS.
6072          *
6073          * Retransmissions will increment the count and move the ts to its
6074          * proper place. Note that if options do not include TS's then we
6075          * won't be able to effectively use the ACK for an RTT on a retran.
6076          *
6077          * Notes about r_start and r_end. Lets consider a send starting at
6078          * sequence 1 for 10 bytes. In such an example the r_start would be
6079          * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
6080          * This means that r_end is actually the first sequence for the next
6081          * slot (11).
6082          *
6083          */
6084         /*
6085          * If err is set what do we do XXXrrs? should we not add the thing?
6086          * -- i.e. return if err != 0 or should we pretend we sent it? --
6087          * i.e. proceed with add ** do this for now.
6088          */
6089         INP_WLOCK_ASSERT(tp->t_inpcb);
6090         if (err)
6091                 /*
6092                  * We don't log errors -- we could but snd_max does not
6093                  * advance in this case either.
6094                  */
6095                 return;
6096
6097         if (th_flags & TH_RST) {
6098                 /*
6099                  * We don't log resets and we return immediately from
6100                  * sending
6101                  */
6102                 return;
6103         }
6104         rack = (struct tcp_rack *)tp->t_fb_ptr;
6105         snd_una = tp->snd_una;
6106         if (SEQ_LEQ((seq_out + len), snd_una)) {
6107                 /* Are sending an old segment to induce an ack (keep-alive)? */
6108                 return;
6109         }
6110         if (SEQ_LT(seq_out, snd_una)) {
6111                 /* huh? should we panic? */
6112                 uint32_t end;
6113
6114                 end = seq_out + len;
6115                 seq_out = snd_una;
6116                 if (SEQ_GEQ(end, seq_out))
6117                         len = end - seq_out;
6118                 else
6119                         len = 0;
6120         }
6121         snd_max = tp->snd_max;
6122         if (th_flags & (TH_SYN | TH_FIN)) {
6123                 /*
6124                  * The call to rack_log_output is made before bumping
6125                  * snd_max. This means we can record one extra byte on a SYN
6126                  * or FIN if seq_out is adding more on and a FIN is present
6127                  * (and we are not resending).
6128                  */
6129                 if ((th_flags & TH_SYN) && (seq_out == tp->iss))
6130                         len++;
6131                 if (th_flags & TH_FIN)
6132                         len++;
6133                 if (SEQ_LT(snd_max, tp->snd_nxt)) {
6134                         /*
6135                          * The add/update as not been done for the FIN/SYN
6136                          * yet.
6137                          */
6138                         snd_max = tp->snd_nxt;
6139                 }
6140         }
6141         if (len == 0) {
6142                 /* We don't log zero window probes */
6143                 return;
6144         }
6145         rack->r_ctl.rc_time_last_sent = ts;
6146         if (IN_RECOVERY(tp->t_flags)) {
6147                 rack->r_ctl.rc_prr_out += len;
6148         }
6149         /* First question is it a retransmission or new? */
6150         if (seq_out == snd_max) {
6151                 /* Its new */
6152 again:
6153                 rsm = rack_alloc(rack);
6154                 if (rsm == NULL) {
6155                         /*
6156                          * Hmm out of memory and the tcb got destroyed while
6157                          * we tried to wait.
6158                          */
6159                         return;
6160                 }
6161                 if (th_flags & TH_FIN) {
6162                         rsm->r_flags = RACK_HAS_FIN;
6163                 } else {
6164                         rsm->r_flags = 0;
6165                 }
6166                 rsm->r_tim_lastsent[0] = ts;
6167                 rsm->r_rtr_cnt = 1;
6168                 rsm->r_rtr_bytes = 0;
6169                 rsm->usec_orig_send = us_cts;
6170                 if (th_flags & TH_SYN) {
6171                         /* The data space is one beyond snd_una */
6172                         rsm->r_flags |= RACK_HAS_SIN;
6173                         rsm->r_start = seq_out + 1;
6174                         rsm->r_end = rsm->r_start + (len - 1);
6175                 } else {
6176                         /* Normal case */
6177                         rsm->r_start = seq_out;
6178                         rsm->r_end = rsm->r_start + len;
6179                 }
6180                 rsm->r_dupack = 0;
6181                 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
6182                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
6183 #ifdef INVARIANTS
6184                 if (insret != NULL) {
6185                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6186                               nrsm, insret, rack, rsm);
6187                 }
6188 #endif
6189                 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6190                 rsm->r_in_tmap = 1;
6191                 /*
6192                  * Special case detection, is there just a single
6193                  * packet outstanding when we are not in recovery?
6194                  *
6195                  * If this is true mark it so.
6196                  */
6197                 if ((IN_RECOVERY(tp->t_flags) == 0) &&
6198                     (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) {
6199                         struct rack_sendmap *prsm;
6200
6201                         prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
6202                         if (prsm)
6203                                 prsm->r_one_out_nr = 1;
6204                 }
6205                 return;
6206         }
6207         /*
6208          * If we reach here its a retransmission and we need to find it.
6209          */
6210         memset(&fe, 0, sizeof(fe));
6211 more:
6212         if (hintrsm && (hintrsm->r_start == seq_out)) {
6213                 rsm = hintrsm;
6214                 hintrsm = NULL;
6215         } else {
6216                 /* No hints sorry */
6217                 rsm = NULL;
6218         }
6219         if ((rsm) && (rsm->r_start == seq_out)) {
6220                 seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
6221                 if (len == 0) {
6222                         return;
6223                 } else {
6224                         goto more;
6225                 }
6226         }
6227         /* Ok it was not the last pointer go through it the hard way. */
6228 refind:
6229         fe.r_start = seq_out;
6230         rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
6231         if (rsm) {
6232                 if (rsm->r_start == seq_out) {
6233                         seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
6234                         if (len == 0) {
6235                                 return;
6236                         } else {
6237                                 goto refind;
6238                         }
6239                 }
6240                 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
6241                         /* Transmitted within this piece */
6242                         /*
6243                          * Ok we must split off the front and then let the
6244                          * update do the rest
6245                          */
6246                         nrsm = rack_alloc_full_limit(rack);
6247                         if (nrsm == NULL) {
6248                                 rack_update_rsm(tp, rack, rsm, ts);
6249                                 return;
6250                         }
6251                         /*
6252                          * copy rsm to nrsm and then trim the front of rsm
6253                          * to not include this part.
6254                          */
6255                         rack_clone_rsm(rack, nrsm, rsm, seq_out);
6256                         insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6257 #ifdef INVARIANTS
6258                         if (insret != NULL) {
6259                                 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6260                                       nrsm, insret, rack, rsm);
6261                         }
6262 #endif
6263                         if (rsm->r_in_tmap) {
6264                                 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
6265                                 nrsm->r_in_tmap = 1;
6266                         }
6267                         rsm->r_flags &= (~RACK_HAS_FIN);
6268                         seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
6269                         if (len == 0) {
6270                                 return;
6271                         } else if (len > 0)
6272                                 goto refind;
6273                 }
6274         }
6275         /*
6276          * Hmm not found in map did they retransmit both old and on into the
6277          * new?
6278          */
6279         if (seq_out == tp->snd_max) {
6280                 goto again;
6281         } else if (SEQ_LT(seq_out, tp->snd_max)) {
6282 #ifdef INVARIANTS
6283                 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
6284                     seq_out, len, tp->snd_una, tp->snd_max);
6285                 printf("Starting Dump of all rack entries\n");
6286                 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6287                         printf("rsm:%p start:%u end:%u\n",
6288                             rsm, rsm->r_start, rsm->r_end);
6289                 }
6290                 printf("Dump complete\n");
6291                 panic("seq_out not found rack:%p tp:%p",
6292                     rack, tp);
6293 #endif
6294         } else {
6295 #ifdef INVARIANTS
6296                 /*
6297                  * Hmm beyond sndmax? (only if we are using the new rtt-pack
6298                  * flag)
6299                  */
6300                 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
6301                     seq_out, len, tp->snd_max, tp);
6302 #endif
6303         }
6304 }
6305
6306 /*
6307  * Record one of the RTT updates from an ack into
6308  * our sample structure.
6309  */
6310
6311 static void
6312 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt,
6313                     int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt)
6314 {
6315         if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
6316             (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
6317                 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
6318         }
6319         if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
6320             (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
6321                 rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
6322         }
6323         if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
6324             if (us_rtt < rack->r_ctl.rc_gp_lowrtt)
6325                 rack->r_ctl.rc_gp_lowrtt = us_rtt;
6326             if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd)
6327                     rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
6328         }
6329         if ((confidence == 1) &&
6330             ((rsm == NULL) ||
6331              (rsm->r_just_ret) ||
6332              (rsm->r_one_out_nr &&
6333               len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) {
6334                 /*
6335                  * If the rsm had a just return
6336                  * hit it then we can't trust the
6337                  * rtt measurement for buffer deterimination
6338                  * Note that a confidence of 2, indicates
6339                  * SACK'd which overrides the r_just_ret or
6340                  * the r_one_out_nr. If it was a CUM-ACK and
6341                  * we had only two outstanding, but get an
6342                  * ack for only 1. Then that also lowers our
6343                  * confidence.
6344                  */
6345                 confidence = 0;
6346         }
6347         if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
6348             (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) {
6349                 if (rack->r_ctl.rack_rs.confidence == 0) {
6350                         /*
6351                          * We take anything with no current confidence
6352                          * saved.
6353                          */
6354                         rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
6355                         rack->r_ctl.rack_rs.confidence = confidence;
6356                         rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
6357                 } else if (confidence || rack->r_ctl.rack_rs.confidence) {
6358                         /*
6359                          * Once we have a confident number,
6360                          * we can update it with a smaller
6361                          * value since this confident number
6362                          * may include the DSACK time until
6363                          * the next segment (the second one) arrived.
6364                          */
6365                         rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
6366                         rack->r_ctl.rack_rs.confidence = confidence;
6367                         rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
6368                 }
6369         }
6370         rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence);
6371         rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
6372         rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
6373         rack->r_ctl.rack_rs.rs_rtt_cnt++;
6374 }
6375
6376 /*
6377  * Collect new round-trip time estimate
6378  * and update averages and current timeout.
6379  */
6380 static void
6381 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
6382 {
6383         int32_t delta;
6384         uint32_t o_srtt, o_var;
6385         int32_t hrtt_up = 0;
6386         int32_t rtt;
6387
6388         if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
6389                 /* No valid sample */
6390                 return;
6391         if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
6392                 /* We are to use the lowest RTT seen in a single ack */
6393                 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
6394         } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
6395                 /* We are to use the highest RTT seen in a single ack */
6396                 rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
6397         } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
6398                 /* We are to use the average RTT seen in a single ack */
6399                 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
6400                                 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
6401         } else {
6402 #ifdef INVARIANTS
6403                 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
6404 #endif
6405                 return;
6406         }
6407         if (rtt == 0)
6408                 rtt = 1;
6409         if (rack->rc_gp_rtt_set == 0) {
6410                 /*
6411                  * With no RTT we have to accept
6412                  * even one we are not confident of.
6413                  */
6414                 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt;
6415                 rack->rc_gp_rtt_set = 1;
6416         } else if (rack->r_ctl.rack_rs.confidence) {
6417                 /* update the running gp srtt */
6418                 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8);
6419                 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8;
6420         }
6421         if (rack->r_ctl.rack_rs.confidence) {
6422                 /*
6423                  * record the low and high for highly buffered path computation,
6424                  * we only do this if we are confident (not a retransmission).
6425                  */
6426                 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) {
6427                         rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
6428                         hrtt_up = 1;
6429                 }
6430                 if (rack->rc_highly_buffered == 0) {
6431                         /*
6432                          * Currently once we declare a path has
6433                          * highly buffered there is no going
6434                          * back, which may be a problem...
6435                          */
6436                         if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) {
6437                                 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt,
6438                                                      rack->r_ctl.rc_highest_us_rtt,
6439                                                      rack->r_ctl.rc_lowest_us_rtt,
6440                                                      RACK_RTTS_SEEHBP);
6441                                 rack->rc_highly_buffered = 1;
6442                         }
6443                 }
6444         }
6445         if ((rack->r_ctl.rack_rs.confidence) ||
6446             (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) {
6447                 /*
6448                  * If we are highly confident of it <or> it was
6449                  * never retransmitted we accept it as the last us_rtt.
6450                  */
6451                 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
6452                 /* The lowest rtt can be set if its was not retransmited */
6453                 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) {
6454                         rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
6455                         if (rack->r_ctl.rc_lowest_us_rtt == 0)
6456                                 rack->r_ctl.rc_lowest_us_rtt = 1;
6457                 }
6458         }
6459         rack_log_rtt_sample(rack, rtt);
6460         o_srtt = tp->t_srtt;
6461         o_var = tp->t_rttvar;
6462         rack = (struct tcp_rack *)tp->t_fb_ptr;
6463         if (tp->t_srtt != 0) {
6464                 /*
6465                  * srtt is stored as fixed point with 5 bits after the
6466                  * binary point (i.e., scaled by 8).  The following magic is
6467                  * equivalent to the smoothing algorithm in rfc793 with an
6468                  * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
6469                  * Adjust rtt to origin 0.
6470                  */
6471                 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
6472                     - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
6473
6474                 tp->t_srtt += delta;
6475                 if (tp->t_srtt <= 0)
6476                         tp->t_srtt = 1;
6477
6478                 /*
6479                  * We accumulate a smoothed rtt variance (actually, a
6480                  * smoothed mean difference), then set the retransmit timer
6481                  * to smoothed rtt + 4 times the smoothed variance. rttvar
6482                  * is stored as fixed point with 4 bits after the binary
6483                  * point (scaled by 16).  The following is equivalent to
6484                  * rfc793 smoothing with an alpha of .75 (rttvar =
6485                  * rttvar*3/4 + |delta| / 4).  This replaces rfc793's
6486                  * wired-in beta.
6487                  */
6488                 if (delta < 0)
6489                         delta = -delta;
6490                 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
6491                 tp->t_rttvar += delta;
6492                 if (tp->t_rttvar <= 0)
6493                         tp->t_rttvar = 1;
6494                 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
6495                         tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
6496         } else {
6497                 /*
6498                  * No rtt measurement yet - use the unsmoothed rtt. Set the
6499                  * variance to half the rtt (so our first retransmit happens
6500                  * at 3*rtt).
6501                  */
6502                 tp->t_srtt = rtt << TCP_RTT_SHIFT;
6503                 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
6504                 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
6505         }
6506         KMOD_TCPSTAT_INC(tcps_rttupdated);
6507         tp->t_rttupdated++;
6508 #ifdef STATS
6509         stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
6510 #endif
6511         tp->t_rxtshift = 0;
6512
6513         /*
6514          * the retransmit should happen at rtt + 4 * rttvar. Because of the
6515          * way we do the smoothing, srtt and rttvar will each average +1/2
6516          * tick of bias.  When we compute the retransmit timer, we want 1/2
6517          * tick of rounding and 1 extra tick because of +-1/2 tick
6518          * uncertainty in the firing of the timer.  The bias will give us
6519          * exactly the 1.5 tick we need.  But, because the bias is
6520          * statistical, we have to test that we don't drop below the minimum
6521          * feasible timer (which is 2 ticks).
6522          */
6523         TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
6524            max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
6525         tp->t_softerror = 0;
6526 }
6527
6528 static void
6529 rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
6530     uint32_t t, uint32_t cts)
6531 {
6532         /*
6533          * For this RSM, we acknowledged the data from a previous
6534          * transmission, not the last one we made. This means we did a false
6535          * retransmit.
6536          */
6537         struct tcp_rack *rack;
6538
6539         if (rsm->r_flags & RACK_HAS_FIN) {
6540                 /*
6541                  * The sending of the FIN often is multiple sent when we
6542                  * have everything outstanding ack'd. We ignore this case
6543                  * since its over now.
6544                  */
6545                 return;
6546         }
6547         if (rsm->r_flags & RACK_TLP) {
6548                 /*
6549                  * We expect TLP's to have this occur.
6550                  */
6551                 return;
6552         }
6553         rack = (struct tcp_rack *)tp->t_fb_ptr;
6554         /* should we undo cc changes and exit recovery? */
6555         if (IN_RECOVERY(tp->t_flags)) {
6556                 if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
6557                         /*
6558                          * Undo what we ratched down and exit recovery if
6559                          * possible
6560                          */
6561                         EXIT_RECOVERY(tp->t_flags);
6562                         tp->snd_recover = tp->snd_una;
6563                         if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
6564                                 tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
6565                         if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
6566                                 tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
6567                 }
6568         }
6569         if (rsm->r_flags & RACK_WAS_SACKPASS) {
6570                 /*
6571                  * We retransmitted based on a sack and the earlier
6572                  * retransmission ack'd it - re-ordering is occuring.
6573                  */
6574                 counter_u64_add(rack_reorder_seen, 1);
6575                 rack->r_ctl.rc_reorder_ts = cts;
6576         }
6577         counter_u64_add(rack_badfr, 1);
6578         counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
6579 }
6580
6581 static void
6582 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts)
6583 {
6584         /*
6585          * Apply to filter the inbound us-rtt at us_cts.
6586          */
6587         uint32_t old_rtt;
6588
6589         old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
6590         apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt,
6591                                us_rtt, us_cts);
6592         if (rack->r_ctl.last_pacing_time &&
6593             rack->rc_gp_dyn_mul &&
6594             (rack->r_ctl.last_pacing_time > us_rtt))
6595                 rack->pacing_longer_than_rtt = 1;
6596         else
6597                 rack->pacing_longer_than_rtt = 0;
6598         if (old_rtt > us_rtt) {
6599                 /* We just hit a new lower rtt time */
6600                 rack_log_rtt_shrinks(rack,  us_cts,  old_rtt,
6601                                      __LINE__, RACK_RTTS_NEWRTT);
6602                 /*
6603                  * Only count it if its lower than what we saw within our
6604                  * calculated range.
6605                  */
6606                 if ((old_rtt - us_rtt) > rack_min_rtt_movement) {
6607                         if (rack_probertt_lower_within &&
6608                             rack->rc_gp_dyn_mul &&
6609                             (rack->use_fixed_rate == 0) &&
6610                             (rack->rc_always_pace)) {
6611                                 /*
6612                                  * We are seeing a new lower rtt very close
6613                                  * to the time that we would have entered probe-rtt.
6614                                  * This is probably due to the fact that a peer flow
6615                                  * has entered probe-rtt. Lets go in now too.
6616                                  */
6617                                 uint32_t val;
6618
6619                                 val = rack_probertt_lower_within * rack_time_between_probertt;
6620                                 val /= 100;
6621                                 if ((rack->in_probe_rtt == 0)  &&
6622                                     ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) {
6623                                         rack_enter_probertt(rack, us_cts);
6624                                 }
6625                         }
6626                         rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
6627                 }
6628         }
6629 }
6630
6631 static int
6632 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
6633     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack)
6634 {
6635         int32_t i;
6636         uint32_t t, len_acked;
6637
6638         if ((rsm->r_flags & RACK_ACKED) ||
6639             (rsm->r_flags & RACK_WAS_ACKED))
6640                 /* Already done */
6641                 return (0);
6642
6643         if (ack_type == CUM_ACKED) {
6644                 if (SEQ_GT(th_ack, rsm->r_end))
6645                         len_acked = rsm->r_end - rsm->r_start;
6646                 else
6647                         len_acked = th_ack - rsm->r_start;
6648         } else
6649                 len_acked = rsm->r_end - rsm->r_start;
6650         if (rsm->r_rtr_cnt == 1) {
6651                 uint32_t us_rtt;
6652
6653                 t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
6654                 if ((int)t <= 0)
6655                         t = 1;
6656                 if (!tp->t_rttlow || tp->t_rttlow > t)
6657                         tp->t_rttlow = t;
6658                 if (!rack->r_ctl.rc_rack_min_rtt ||
6659                     SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
6660                         rack->r_ctl.rc_rack_min_rtt = t;
6661                         if (rack->r_ctl.rc_rack_min_rtt == 0) {
6662                                 rack->r_ctl.rc_rack_min_rtt = 1;
6663                         }
6664                 }
6665                 us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - rsm->usec_orig_send;
6666                 if (us_rtt == 0)
6667                         us_rtt = 1;
6668                 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time));
6669                 if (ack_type == SACKED)
6670                         tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt);
6671                 else {
6672                         /*
6673                          * For cum-ack we are only confident if what
6674                          * is being acked is included in a measurement.
6675                          * Otherwise it could be an idle period that
6676                          * includes Delayed-ack time.
6677                          */
6678                         tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt,
6679                                             (rack->app_limited_needs_set ? 0 : 1), rsm, rsm->r_rtr_cnt);
6680                 }
6681                 if ((rsm->r_flags & RACK_TLP) &&
6682                     (!IN_RECOVERY(tp->t_flags))) {
6683                         /* Segment was a TLP and our retrans matched */
6684                         if (rack->r_ctl.rc_tlp_cwnd_reduce) {
6685                                 rack->r_ctl.rc_rsm_start = tp->snd_max;
6686                                 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
6687                                 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
6688                                 rack_cong_signal(tp, NULL, CC_NDUPACK);
6689                                 /*
6690                                  * When we enter recovery we need to assure
6691                                  * we send one packet.
6692                                  */
6693                                 if (rack->rack_no_prr == 0) {
6694                                         rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
6695                                         rack_log_to_prr(rack, 7, 0);
6696                                 }
6697                         }
6698                 }
6699                 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
6700                         /* New more recent rack_tmit_time */
6701                         rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
6702                         rack->rc_rack_rtt = t;
6703                 }
6704                 return (1);
6705         }
6706         /*
6707          * We clear the soft/rxtshift since we got an ack.
6708          * There is no assurance we will call the commit() function
6709          * so we need to clear these to avoid incorrect handling.
6710          */
6711         tp->t_rxtshift = 0;
6712         tp->t_softerror = 0;
6713         if ((to->to_flags & TOF_TS) &&
6714             (ack_type == CUM_ACKED) &&
6715             (to->to_tsecr) &&
6716             ((rsm->r_flags & RACK_OVERMAX) == 0)) {
6717                 /*
6718                  * Now which timestamp does it match? In this block the ACK
6719                  * must be coming from a previous transmission.
6720                  */
6721                 for (i = 0; i < rsm->r_rtr_cnt; i++) {
6722                         if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
6723                                 t = cts - rsm->r_tim_lastsent[i];
6724                                 if ((int)t <= 0)
6725                                         t = 1;
6726                                 if ((i + 1) < rsm->r_rtr_cnt) {
6727                                         /* Likely */
6728                                         rack_earlier_retran(tp, rsm, t, cts);
6729                                 }
6730                                 if (!tp->t_rttlow || tp->t_rttlow > t)
6731                                         tp->t_rttlow = t;
6732                                 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
6733                                         rack->r_ctl.rc_rack_min_rtt = t;
6734                                         if (rack->r_ctl.rc_rack_min_rtt == 0) {
6735                                                 rack->r_ctl.rc_rack_min_rtt = 1;
6736                                         }
6737                                 }
6738                                 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
6739                                     rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
6740                                         /* New more recent rack_tmit_time */
6741                                         rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
6742                                         rack->rc_rack_rtt = t;
6743                                 }
6744                                 tcp_rack_xmit_timer(rack, t + 1, len_acked, (t * HPTS_USEC_IN_MSEC), 0, rsm,
6745                                                     rsm->r_rtr_cnt);
6746                                 return (1);
6747                         }
6748                 }
6749                 goto ts_not_found;
6750         } else {
6751                 /*
6752                  * Ok its a SACK block that we retransmitted. or a windows
6753                  * machine without timestamps. We can tell nothing from the
6754                  * time-stamp since its not there or the time the peer last
6755                  * recieved a segment that moved forward its cum-ack point.
6756                  */
6757 ts_not_found:
6758                 i = rsm->r_rtr_cnt - 1;
6759                 t = cts - rsm->r_tim_lastsent[i];
6760                 if ((int)t <= 0)
6761                         t = 1;
6762                 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
6763                         /*
6764                          * We retransmitted and the ack came back in less
6765                          * than the smallest rtt we have observed. We most
6766                          * likey did an improper retransmit as outlined in
6767                          * 4.2 Step 3 point 2 in the rack-draft.
6768                          */
6769                         i = rsm->r_rtr_cnt - 2;
6770                         t = cts - rsm->r_tim_lastsent[i];
6771                         rack_earlier_retran(tp, rsm, t, cts);
6772                 } else if (rack->r_ctl.rc_rack_min_rtt) {
6773                         /*
6774                          * We retransmitted it and the retransmit did the
6775                          * job.
6776                          */
6777                         if (!rack->r_ctl.rc_rack_min_rtt ||
6778                             SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
6779                                 rack->r_ctl.rc_rack_min_rtt = t;
6780                                 if (rack->r_ctl.rc_rack_min_rtt == 0) {
6781                                         rack->r_ctl.rc_rack_min_rtt = 1;
6782                                 }
6783                         }
6784                         if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
6785                                 /* New more recent rack_tmit_time */
6786                                 rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
6787                                 rack->rc_rack_rtt = t;
6788                         }
6789                         return (1);
6790                 }
6791         }
6792         return (0);
6793 }
6794
6795 /*
6796  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
6797  */
6798 static void
6799 rack_log_sack_passed(struct tcpcb *tp,
6800     struct tcp_rack *rack, struct rack_sendmap *rsm)
6801 {
6802         struct rack_sendmap *nrsm;
6803
6804         nrsm = rsm;
6805         TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
6806             rack_head, r_tnext) {
6807                 if (nrsm == rsm) {
6808                         /* Skip orginal segment he is acked */
6809                         continue;
6810                 }
6811                 if (nrsm->r_flags & RACK_ACKED) {
6812                         /*
6813                          * Skip ack'd segments, though we
6814                          * should not see these, since tmap
6815                          * should not have ack'd segments.
6816                          */
6817                         continue;
6818                 }
6819                 if (nrsm->r_flags & RACK_SACK_PASSED) {
6820                         /*
6821                          * We found one that is already marked
6822                          * passed, we have been here before and
6823                          * so all others below this are marked.
6824                          */
6825                         break;
6826                 }
6827                 nrsm->r_flags |= RACK_SACK_PASSED;
6828                 nrsm->r_flags &= ~RACK_WAS_SACKPASS;
6829         }
6830 }
6831
6832 static void
6833 rack_need_set_test(struct tcpcb *tp,
6834                    struct tcp_rack *rack,
6835                    struct rack_sendmap *rsm,
6836                    tcp_seq th_ack,
6837                    int line,
6838                    int use_which)
6839 {
6840
6841         if ((tp->t_flags & TF_GPUTINPROG) &&
6842             SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
6843                 /*
6844                  * We were app limited, and this ack
6845                  * butts up or goes beyond the point where we want
6846                  * to start our next measurement. We need
6847                  * to record the new gput_ts as here and
6848                  * possibly update the start sequence.
6849                  */
6850                 uint32_t seq, ts;
6851
6852                 if (rsm->r_rtr_cnt > 1) {
6853                         /*
6854                          * This is a retransmit, can we
6855                          * really make any assessment at this
6856                          * point?  We are not really sure of
6857                          * the timestamp, is it this or the
6858                          * previous transmission?
6859                          *
6860                          * Lets wait for something better that
6861                          * is not retransmitted.
6862                          */
6863                         return;
6864                 }
6865                 seq = tp->gput_seq;
6866                 ts = tp->gput_ts;
6867                 rack->app_limited_needs_set = 0;
6868                 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
6869                 /* Do we start at a new end? */
6870                 if ((use_which == RACK_USE_BEG) &&
6871                     SEQ_GEQ(rsm->r_start, tp->gput_seq)) {
6872                         /*
6873                          * When we get an ACK that just eats
6874                          * up some of the rsm, we set RACK_USE_BEG
6875                          * since whats at r_start (i.e. th_ack)
6876                          * is left unacked and thats where the
6877                          * measurement not starts.
6878                          */
6879                         tp->gput_seq = rsm->r_start;
6880                         rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send;
6881                 }
6882                 if ((use_which == RACK_USE_END) &&
6883                     SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
6884                             /*
6885                              * We use the end when the cumack
6886                              * is moving forward and completely
6887                              * deleting the rsm passed so basically
6888                              * r_end holds th_ack.
6889                              *
6890                              * For SACK's we also want to use the end
6891                              * since this piece just got sacked and
6892                              * we want to target anything after that
6893                              * in our measurement.
6894                              */
6895                             tp->gput_seq = rsm->r_end;
6896                             rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send;
6897                 }
6898                 if (use_which == RACK_USE_END_OR_THACK) {
6899                         /*
6900                          * special case for ack moving forward,
6901                          * not a sack, we need to move all the
6902                          * way up to where this ack cum-ack moves
6903                          * to.
6904                          */
6905                         if (SEQ_GT(th_ack, rsm->r_end))
6906                                 tp->gput_seq = th_ack;
6907                         else
6908                                 tp->gput_seq = rsm->r_end;
6909                         rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send;
6910                 }
6911                 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) {
6912                         /*
6913                          * We moved beyond this guy's range, re-calculate
6914                          * the new end point.
6915                          */
6916                         if (rack->rc_gp_filled == 0) {
6917                                 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
6918                         } else {
6919                                 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
6920                         }
6921                 }
6922                 /*
6923                  * We are moving the goal post, we may be able to clear the
6924                  * measure_saw_probe_rtt flag.
6925                  */
6926                 if ((rack->in_probe_rtt == 0) &&
6927                     (rack->measure_saw_probe_rtt) &&
6928                     (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
6929                         rack->measure_saw_probe_rtt = 0;
6930                 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts,
6931                                            seq, tp->gput_seq, 0, 5, line, NULL);
6932                 if (rack->rc_gp_filled &&
6933                     ((tp->gput_ack - tp->gput_seq) <
6934                      max(rc_init_window(rack), (MIN_GP_WIN *
6935                                                 ctf_fixed_maxseg(tp))))) {
6936                         /*
6937                          * There is no sense of continuing this measurement
6938                          * because its too small to gain us anything we
6939                          * trust. Skip it and that way we can start a new
6940                          * measurement quicker.
6941                          */
6942                         rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
6943                                                    0, 0, 0, 6, __LINE__, NULL);
6944                         tp->t_flags &= ~TF_GPUTINPROG;
6945                 }
6946         }
6947 }
6948
6949 static uint32_t
6950 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
6951                    struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
6952 {
6953         uint32_t start, end, changed = 0;
6954         struct rack_sendmap stack_map;
6955         struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
6956         int32_t used_ref = 1;
6957         int moved = 0;
6958
6959         start = sack->start;
6960         end = sack->end;
6961         rsm = *prsm;
6962         memset(&fe, 0, sizeof(fe));
6963 do_rest_ofb:
6964         if ((rsm == NULL) ||
6965             (SEQ_LT(end, rsm->r_start)) ||
6966             (SEQ_GEQ(start, rsm->r_end)) ||
6967             (SEQ_LT(start, rsm->r_start))) {
6968                 /*
6969                  * We are not in the right spot,
6970                  * find the correct spot in the tree.
6971                  */
6972                 used_ref = 0;
6973                 fe.r_start = start;
6974                 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
6975                 moved++;
6976         }
6977         if (rsm == NULL) {
6978                 /* TSNH */
6979                 goto out;
6980         }
6981         /* Ok we have an ACK for some piece of this rsm */
6982         if (rsm->r_start != start) {
6983                 if ((rsm->r_flags & RACK_ACKED) == 0) {
6984                         /**
6985                          * Need to split this in two pieces the before and after,
6986                          * the before remains in the map, the after must be
6987                          * added. In other words we have:
6988                          * rsm        |--------------|
6989                          * sackblk        |------->
6990                          * rsm will become
6991                          *     rsm    |---|
6992                          * and nrsm will be  the sacked piece
6993                          *     nrsm       |----------|
6994                          *
6995                          * But before we start down that path lets
6996                          * see if the sack spans over on top of
6997                          * the next guy and it is already sacked.
6998                          */
6999                         next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7000                         if (next && (next->r_flags & RACK_ACKED) &&
7001                             SEQ_GEQ(end, next->r_start)) {
7002                                 /**
7003                                  * So the next one is already acked, and
7004                                  * we can thus by hookery use our stack_map
7005                                  * to reflect the piece being sacked and
7006                                  * then adjust the two tree entries moving
7007                                  * the start and ends around. So we start like:
7008                                  *  rsm     |------------|             (not-acked)
7009                                  *  next                 |-----------| (acked)
7010                                  *  sackblk        |-------->
7011                                  *  We want to end like so:
7012                                  *  rsm     |------|                   (not-acked)
7013                                  *  next           |-----------------| (acked)
7014                                  *  nrsm           |-----|
7015                                  * Where nrsm is a temporary stack piece we
7016                                  * use to update all the gizmos.
7017                                  */
7018                                 /* Copy up our fudge block */
7019                                 nrsm = &stack_map;
7020                                 memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
7021                                 /* Now adjust our tree blocks */
7022                                 rsm->r_end = start;
7023                                 next->r_start = start;
7024                                 /* Clear out the dup ack count of the remainder */
7025                                 rsm->r_dupack = 0;
7026                                 rsm->r_just_ret = 0;
7027                                 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7028                                 /* Now lets make sure our fudge block is right */
7029                                 nrsm->r_start = start;
7030                                 /* Now lets update all the stats and such */
7031                                 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
7032                                 if (rack->app_limited_needs_set)
7033                                         rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
7034                                 changed += (nrsm->r_end - nrsm->r_start);
7035                                 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
7036                                 if (nrsm->r_flags & RACK_SACK_PASSED) {
7037                                         counter_u64_add(rack_reorder_seen, 1);
7038                                         rack->r_ctl.rc_reorder_ts = cts;
7039                                 }
7040                                 /*
7041                                  * Now we want to go up from rsm (the
7042                                  * one left un-acked) to the next one
7043                                  * in the tmap. We do this so when
7044                                  * we walk backwards we include marking
7045                                  * sack-passed on rsm (The one passed in
7046                                  * is skipped since it is generally called
7047                                  * on something sacked before removing it
7048                                  * from the tmap).
7049                                  */
7050                                 if (rsm->r_in_tmap) {
7051                                         nrsm = TAILQ_NEXT(rsm, r_tnext);
7052                                         /*
7053                                          * Now that we have the next
7054                                          * one walk backwards from there.
7055                                          */
7056                                         if (nrsm && nrsm->r_in_tmap)
7057                                                 rack_log_sack_passed(tp, rack, nrsm);
7058                                 }
7059                                 /* Now are we done? */
7060                                 if (SEQ_LT(end, next->r_end) ||
7061                                     (end == next->r_end)) {
7062                                         /* Done with block */
7063                                         goto out;
7064                                 }
7065                                 counter_u64_add(rack_sack_used_next_merge, 1);
7066                                 /* Postion for the next block */
7067                                 start = next->r_end;
7068                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
7069                                 if (rsm == NULL)
7070                                         goto out;
7071                         } else {
7072                                 /**
7073                                  * We can't use any hookery here, so we
7074                                  * need to split the map. We enter like
7075                                  * so:
7076                                  *  rsm      |--------|
7077                                  *  sackblk       |----->
7078                                  * We will add the new block nrsm and
7079                                  * that will be the new portion, and then
7080                                  * fall through after reseting rsm. So we
7081                                  * split and look like this:
7082                                  *  rsm      |----|
7083                                  *  sackblk       |----->
7084                                  *  nrsm          |---|
7085                                  * We then fall through reseting
7086                                  * rsm to nrsm, so the next block
7087                                  * picks it up.
7088                                  */
7089                                 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
7090                                 if (nrsm == NULL) {
7091                                         /*
7092                                          * failed XXXrrs what can we do but loose the sack
7093                                          * info?
7094                                          */
7095                                         goto out;
7096                                 }
7097                                 counter_u64_add(rack_sack_splits, 1);
7098                                 rack_clone_rsm(rack, nrsm, rsm, start);
7099                                 rsm->r_just_ret = 0;
7100                                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7101 #ifdef INVARIANTS
7102                                 if (insret != NULL) {
7103                                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7104                                               nrsm, insret, rack, rsm);
7105                                 }
7106 #endif
7107                                 if (rsm->r_in_tmap) {
7108                                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7109                                         nrsm->r_in_tmap = 1;
7110                                 }
7111                                 rsm->r_flags &= (~RACK_HAS_FIN);
7112                                 /* Position us to point to the new nrsm that starts the sack blk */
7113                                 rsm = nrsm;
7114                         }
7115                 } else {
7116                         /* Already sacked this piece */
7117                         counter_u64_add(rack_sack_skipped_acked, 1);
7118                         moved++;
7119                         if (end == rsm->r_end) {
7120                                 /* Done with block */
7121                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7122                                 goto out;
7123                         } else if (SEQ_LT(end, rsm->r_end)) {
7124                                 /* A partial sack to a already sacked block */
7125                                 moved++;
7126                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7127                                 goto out;
7128                         } else {
7129                                 /*
7130                                  * The end goes beyond this guy
7131                                  * repostion the start to the
7132                                  * next block.
7133                                  */
7134                                 start = rsm->r_end;
7135                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7136                                 if (rsm == NULL)
7137                                         goto out;
7138                         }
7139                 }
7140         }
7141         if (SEQ_GEQ(end, rsm->r_end)) {
7142                 /**
7143                  * The end of this block is either beyond this guy or right
7144                  * at this guy. I.e.:
7145                  *  rsm ---                 |-----|
7146                  *  end                     |-----|
7147                  *  <or>
7148                  *  end                     |---------|
7149                  */
7150                 if ((rsm->r_flags & RACK_ACKED) == 0) {
7151                         rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
7152                         changed += (rsm->r_end - rsm->r_start);
7153                         rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
7154                         if (rsm->r_in_tmap) /* should be true */
7155                                 rack_log_sack_passed(tp, rack, rsm);
7156                         /* Is Reordering occuring? */
7157                         if (rsm->r_flags & RACK_SACK_PASSED) {
7158                                 rsm->r_flags &= ~RACK_SACK_PASSED;
7159                                 counter_u64_add(rack_reorder_seen, 1);
7160                                 rack->r_ctl.rc_reorder_ts = cts;
7161                         }
7162                         if (rack->app_limited_needs_set)
7163                                 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
7164                         rsm->r_ack_arrival = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
7165                         rsm->r_flags |= RACK_ACKED;
7166                         rsm->r_flags &= ~RACK_TLP;
7167                         if (rsm->r_in_tmap) {
7168                                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7169                                 rsm->r_in_tmap = 0;
7170                         }
7171                 } else {
7172                         counter_u64_add(rack_sack_skipped_acked, 1);
7173                         moved++;
7174                 }
7175                 if (end == rsm->r_end) {
7176                         /* This block only - done, setup for next  */
7177                         goto out;
7178                 }
7179                 /*
7180                  * There is more not coverend by this rsm move on
7181                  * to the next block in the RB tree.
7182                  */
7183                 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7184                 start = rsm->r_end;
7185                 rsm = nrsm;
7186                 if (rsm == NULL)
7187                         goto out;
7188                 goto do_rest_ofb;
7189         }
7190         /**
7191          * The end of this sack block is smaller than
7192          * our rsm i.e.:
7193          *  rsm ---                 |-----|
7194          *  end                     |--|
7195          */
7196         if ((rsm->r_flags & RACK_ACKED) == 0) {
7197                 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7198                 if (prev && (prev->r_flags & RACK_ACKED)) {
7199                         /**
7200                          * Goal, we want the right remainder of rsm to shrink
7201                          * in place and span from (rsm->r_start = end) to rsm->r_end.
7202                          * We want to expand prev to go all the way
7203                          * to prev->r_end <- end.
7204                          * so in the tree we have before:
7205                          *   prev     |--------|         (acked)
7206                          *   rsm               |-------| (non-acked)
7207                          *   sackblk           |-|
7208                          * We churn it so we end up with
7209                          *   prev     |----------|       (acked)
7210                          *   rsm                 |-----| (non-acked)
7211                          *   nrsm              |-| (temporary)
7212                          */
7213                         nrsm = &stack_map;
7214                         memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
7215                         prev->r_end = end;
7216                         rsm->r_start = end;
7217                         /* Now adjust nrsm (stack copy) to be
7218                          * the one that is the small
7219                          * piece that was "sacked".
7220                          */
7221                         nrsm->r_end = end;
7222                         rsm->r_dupack = 0;
7223                         rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7224                         /*
7225                          * Now nrsm is our new little piece
7226                          * that is acked (which was merged
7227                          * to prev). Update the rtt and changed
7228                          * based on that. Also check for reordering.
7229                          */
7230                         rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
7231                         if (rack->app_limited_needs_set)
7232                                 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
7233                         changed += (nrsm->r_end - nrsm->r_start);
7234                         rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
7235                         if (nrsm->r_flags & RACK_SACK_PASSED) {
7236                                 counter_u64_add(rack_reorder_seen, 1);
7237                                 rack->r_ctl.rc_reorder_ts = cts;
7238                         }
7239                         rsm = prev;
7240                         counter_u64_add(rack_sack_used_prev_merge, 1);
7241                 } else {
7242                         /**
7243                          * This is the case where our previous
7244                          * block is not acked either, so we must
7245                          * split the block in two.
7246                          */
7247                         nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
7248                         if (nrsm == NULL) {
7249                                 /* failed rrs what can we do but loose the sack info? */
7250                                 goto out;
7251                         }
7252                         /**
7253                          * In this case nrsm becomes
7254                          * nrsm->r_start = end;
7255                          * nrsm->r_end = rsm->r_end;
7256                          * which is un-acked.
7257                          * <and>
7258                          * rsm->r_end = nrsm->r_start;
7259                          * i.e. the remaining un-acked
7260                          * piece is left on the left
7261                          * hand side.
7262                          *
7263                          * So we start like this
7264                          * rsm      |----------| (not acked)
7265                          * sackblk  |---|
7266                          * build it so we have
7267                          * rsm      |---|         (acked)
7268                          * nrsm         |------|  (not acked)
7269                          */
7270                         counter_u64_add(rack_sack_splits, 1);
7271                         rack_clone_rsm(rack, nrsm, rsm, end);
7272                         rsm->r_flags &= (~RACK_HAS_FIN);
7273                         rsm->r_just_ret = 0;
7274                         insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7275 #ifdef INVARIANTS
7276                         if (insret != NULL) {
7277                                 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7278                                       nrsm, insret, rack, rsm);
7279                         }
7280 #endif
7281                         if (rsm->r_in_tmap) {
7282                                 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7283                                 nrsm->r_in_tmap = 1;
7284                         }
7285                         nrsm->r_dupack = 0;
7286                         rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
7287                         rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
7288                         changed += (rsm->r_end - rsm->r_start);
7289                         rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
7290                         if (rsm->r_in_tmap) /* should be true */
7291                                 rack_log_sack_passed(tp, rack, rsm);
7292                         /* Is Reordering occuring? */
7293                         if (rsm->r_flags & RACK_SACK_PASSED) {
7294                                 rsm->r_flags &= ~RACK_SACK_PASSED;
7295                                 counter_u64_add(rack_reorder_seen, 1);
7296                                 rack->r_ctl.rc_reorder_ts = cts;
7297                         }
7298                         if (rack->app_limited_needs_set)
7299                                 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
7300                         rsm->r_ack_arrival = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
7301                         rsm->r_flags |= RACK_ACKED;
7302                         rsm->r_flags &= ~RACK_TLP;
7303                         if (rsm->r_in_tmap) {
7304                                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7305                                 rsm->r_in_tmap = 0;
7306                         }
7307                 }
7308         } else if (start != end){
7309                 /*
7310                  * The block was already acked.
7311                  */
7312                 counter_u64_add(rack_sack_skipped_acked, 1);
7313                 moved++;
7314         }
7315 out:
7316         if (rsm && (rsm->r_flags & RACK_ACKED)) {
7317                 /*
7318                  * Now can we merge where we worked
7319                  * with either the previous or
7320                  * next block?
7321                  */
7322                 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7323                 while (next) {
7324                     if (next->r_flags & RACK_ACKED) {
7325                         /* yep this and next can be merged */
7326                         rsm = rack_merge_rsm(rack, rsm, next);
7327                         next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7328                     } else
7329                             break;
7330                 }
7331                 /* Now what about the previous? */
7332                 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7333                 while (prev) {
7334                     if (prev->r_flags & RACK_ACKED) {
7335                         /* yep the previous and this can be merged */
7336                         rsm = rack_merge_rsm(rack, prev, rsm);
7337                         prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7338                     } else
7339                             break;
7340                 }
7341         }
7342         if (used_ref == 0) {
7343                 counter_u64_add(rack_sack_proc_all, 1);
7344         } else {
7345                 counter_u64_add(rack_sack_proc_short, 1);
7346         }
7347         /* Save off the next one for quick reference. */
7348         if (rsm)
7349                 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7350         else
7351                 nrsm = NULL;
7352         *prsm = rack->r_ctl.rc_sacklast = nrsm;
7353         /* Pass back the moved. */
7354         *moved_two = moved;
7355         return (changed);
7356 }
7357
7358 static void inline
7359 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
7360 {
7361         struct rack_sendmap *tmap;
7362
7363         tmap = NULL;
7364         while (rsm && (rsm->r_flags & RACK_ACKED)) {
7365                 /* Its no longer sacked, mark it so */
7366                 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
7367 #ifdef INVARIANTS
7368                 if (rsm->r_in_tmap) {
7369                         panic("rack:%p rsm:%p flags:0x%x in tmap?",
7370                               rack, rsm, rsm->r_flags);
7371                 }
7372 #endif
7373                 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
7374                 /* Rebuild it into our tmap */
7375                 if (tmap == NULL) {
7376                         TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7377                         tmap = rsm;
7378                 } else {
7379                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
7380                         tmap = rsm;
7381                 }
7382                 tmap->r_in_tmap = 1;
7383                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7384         }
7385         /*
7386          * Now lets possibly clear the sack filter so we start
7387          * recognizing sacks that cover this area.
7388          */
7389         sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
7390
7391 }
7392
7393 static void
7394 rack_do_decay(struct tcp_rack *rack)
7395 {
7396         struct timeval res;
7397
7398 #define timersub(tvp, uvp, vvp)                                         \
7399         do {                                                            \
7400                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
7401                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
7402                 if ((vvp)->tv_usec < 0) {                               \
7403                         (vvp)->tv_sec--;                                \
7404                         (vvp)->tv_usec += 1000000;                      \
7405                 }                                                       \
7406         } while (0)
7407
7408         timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res);
7409 #undef timersub
7410
7411         rack->r_ctl.input_pkt++;
7412         if ((rack->rc_in_persist) ||
7413             (res.tv_sec >= 1) ||
7414             (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
7415                 /*
7416                  * Check for decay of non-SAD,
7417                  * we want all SAD detection metrics to
7418                  * decay 1/4 per second (or more) passed.
7419                  */
7420                 uint32_t pkt_delta;
7421
7422                 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
7423                 /* Update our saved tracking values */
7424                 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
7425                 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
7426                 /* Now do we escape without decay? */
7427 #ifdef NETFLIX_EXP_DETECTION
7428                 if (rack->rc_in_persist ||
7429                     (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
7430                     (pkt_delta < tcp_sad_low_pps)){
7431                         /*
7432                          * We don't decay idle connections
7433                          * or ones that have a low input pps.
7434                          */
7435                         return;
7436                 }
7437                 /* Decay the counters */
7438                 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
7439                                                         tcp_sad_decay_val);
7440                 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
7441                                                          tcp_sad_decay_val);
7442                 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
7443                                                                tcp_sad_decay_val);
7444                 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
7445                                                                 tcp_sad_decay_val);
7446 #endif
7447         }
7448 }
7449
7450 static void
7451 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
7452 {
7453         uint32_t changed, entered_recovery = 0;
7454         struct tcp_rack *rack;
7455         struct rack_sendmap *rsm, *rm;
7456         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
7457         register uint32_t th_ack;
7458         int32_t i, j, k, num_sack_blks = 0;
7459         uint32_t cts, acked, ack_point, sack_changed = 0;
7460         int loop_start = 0, moved_two = 0;
7461         uint32_t tsused;
7462
7463         INP_WLOCK_ASSERT(tp->t_inpcb);
7464         if (th->th_flags & TH_RST) {
7465                 /* We don't log resets */
7466                 return;
7467         }
7468         rack = (struct tcp_rack *)tp->t_fb_ptr;
7469         cts = tcp_ts_getticks();
7470         rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
7471         changed = 0;
7472         th_ack = th->th_ack;
7473         if (rack->sack_attack_disable == 0)
7474                 rack_do_decay(rack);
7475         if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
7476                 /*
7477                  * You only get credit for
7478                  * MSS and greater (and you get extra
7479                  * credit for larger cum-ack moves).
7480                  */
7481                 int ac;
7482
7483                 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
7484                 rack->r_ctl.ack_count += ac;
7485                 counter_u64_add(rack_ack_total, ac);
7486         }
7487         if (rack->r_ctl.ack_count > 0xfff00000) {
7488                 /*
7489                  * reduce the number to keep us under
7490                  * a uint32_t.
7491                  */
7492                 rack->r_ctl.ack_count /= 2;
7493                 rack->r_ctl.sack_count /= 2;
7494         }
7495         if (SEQ_GT(th_ack, tp->snd_una)) {
7496                 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
7497                 tp->t_acktime = ticks;
7498         }
7499         if (rsm && SEQ_GT(th_ack, rsm->r_start))
7500                 changed = th_ack - rsm->r_start;
7501         if (changed) {
7502                 /*
7503                  * The ACK point is advancing to th_ack, we must drop off
7504                  * the packets in the rack log and calculate any eligble
7505                  * RTT's.
7506                  */
7507                 rack->r_wanted_output = 1;
7508 more:
7509                 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
7510                 if (rsm == NULL) {
7511                         if ((th_ack - 1) == tp->iss) {
7512                                 /*
7513                                  * For the SYN incoming case we will not
7514                                  * have called tcp_output for the sending of
7515                                  * the SYN, so there will be no map. All
7516                                  * other cases should probably be a panic.
7517                                  */
7518                                 goto proc_sack;
7519                         }
7520                         if (tp->t_flags & TF_SENTFIN) {
7521                                 /* if we send a FIN we will not hav a map */
7522                                 goto proc_sack;
7523                         }
7524 #ifdef INVARIANTS
7525                         panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
7526                               tp,
7527                               th, tp->t_state, rack,
7528                               tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
7529 #endif
7530                         goto proc_sack;
7531                 }
7532                 if (SEQ_LT(th_ack, rsm->r_start)) {
7533                         /* Huh map is missing this */
7534 #ifdef INVARIANTS
7535                         printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
7536                                rsm->r_start,
7537                                th_ack, tp->t_state, rack->r_state);
7538 #endif
7539                         goto proc_sack;
7540                 }
7541                 rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack);
7542                 /* Now do we consume the whole thing? */
7543                 if (SEQ_GEQ(th_ack, rsm->r_end)) {
7544                         /* Its all consumed. */
7545                         uint32_t left;
7546                         uint8_t newly_acked;
7547
7548                         rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
7549                         rsm->r_rtr_bytes = 0;
7550                         /* Record the time of highest cumack sent */
7551                         rack->r_ctl.rc_gp_cumack_ts = rsm->usec_orig_send;
7552                         rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7553 #ifdef INVARIANTS
7554                         if (rm != rsm) {
7555                                 panic("removing head in rack:%p rsm:%p rm:%p",
7556                                       rack, rsm, rm);
7557                         }
7558 #endif
7559                         if (rsm->r_in_tmap) {
7560                                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7561                                 rsm->r_in_tmap = 0;
7562                         }
7563                         newly_acked = 1;
7564                         if (rsm->r_flags & RACK_ACKED) {
7565                                 /*
7566                                  * It was acked on the scoreboard -- remove
7567                                  * it from total
7568                                  */
7569                                 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
7570                                 newly_acked = 0;
7571                         } else if (rsm->r_flags & RACK_SACK_PASSED) {
7572                                 /*
7573                                  * There are segments ACKED on the
7574                                  * scoreboard further up. We are seeing
7575                                  * reordering.
7576                                  */
7577                                 rsm->r_flags &= ~RACK_SACK_PASSED;
7578                                 counter_u64_add(rack_reorder_seen, 1);
7579                                 rsm->r_ack_arrival = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
7580                                 rsm->r_flags |= RACK_ACKED;
7581                                 rack->r_ctl.rc_reorder_ts = cts;
7582                         }
7583                         left = th_ack - rsm->r_end;
7584                         if (rack->app_limited_needs_set && newly_acked)
7585                                 rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK);
7586                         /* Free back to zone */
7587                         rack_free(rack, rsm);
7588                         if (left) {
7589                                 goto more;
7590                         }
7591                         goto proc_sack;
7592                 }
7593                 if (rsm->r_flags & RACK_ACKED) {
7594                         /*
7595                          * It was acked on the scoreboard -- remove it from
7596                          * total for the part being cum-acked.
7597                          */
7598                         rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
7599                 }
7600                 /*
7601                  * Clear the dup ack count for
7602                  * the piece that remains.
7603                  */
7604                 rsm->r_dupack = 0;
7605                 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7606                 if (rsm->r_rtr_bytes) {
7607                         /*
7608                          * It was retransmitted adjust the
7609                          * sack holes for what was acked.
7610                          */
7611                         int ack_am;
7612
7613                         ack_am = (th_ack - rsm->r_start);
7614                         if (ack_am >= rsm->r_rtr_bytes) {
7615                                 rack->r_ctl.rc_holes_rxt -= ack_am;
7616                                 rsm->r_rtr_bytes -= ack_am;
7617                         }
7618                 }
7619                 /*
7620                  * Update where the piece starts and record
7621                  * the time of send of highest cumack sent.
7622                  */
7623                 rack->r_ctl.rc_gp_cumack_ts = rsm->usec_orig_send;
7624                 rsm->r_start = th_ack;
7625                 if (rack->app_limited_needs_set)
7626                         rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG);
7627         }
7628 proc_sack:
7629         /* Check for reneging */
7630         rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
7631         if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
7632                 /*
7633                  * The peer has moved snd_una up to
7634                  * the edge of this send, i.e. one
7635                  * that it had previously acked. The only
7636                  * way that can be true if the peer threw
7637                  * away data (space issues) that it had
7638                  * previously sacked (else it would have
7639                  * given us snd_una up to (rsm->r_end).
7640                  * We need to undo the acked markings here.
7641                  *
7642                  * Note we have to look to make sure th_ack is
7643                  * our rsm->r_start in case we get an old ack
7644                  * where th_ack is behind snd_una.
7645                  */
7646                 rack_peer_reneges(rack, rsm, th->th_ack);
7647         }
7648         if ((to->to_flags & TOF_SACK) == 0) {
7649                 /* We are done nothing left */
7650                 goto out;
7651         }
7652         /* Sack block processing */
7653         if (SEQ_GT(th_ack, tp->snd_una))
7654                 ack_point = th_ack;
7655         else
7656                 ack_point = tp->snd_una;
7657         for (i = 0; i < to->to_nsacks; i++) {
7658                 bcopy((to->to_sacks + i * TCPOLEN_SACK),
7659                       &sack, sizeof(sack));
7660                 sack.start = ntohl(sack.start);
7661                 sack.end = ntohl(sack.end);
7662                 if (SEQ_GT(sack.end, sack.start) &&
7663                     SEQ_GT(sack.start, ack_point) &&
7664                     SEQ_LT(sack.start, tp->snd_max) &&
7665                     SEQ_GT(sack.end, ack_point) &&
7666                     SEQ_LEQ(sack.end, tp->snd_max)) {
7667                         sack_blocks[num_sack_blks] = sack;
7668                         num_sack_blks++;
7669 #ifdef NETFLIX_STATS
7670                 } else if (SEQ_LEQ(sack.start, th_ack) &&
7671                            SEQ_LEQ(sack.end, th_ack)) {
7672                         /*
7673                          * Its a D-SACK block.
7674                          */
7675                         tcp_record_dsack(sack.start, sack.end);
7676 #endif
7677                 }
7678         }
7679         /*
7680          * Sort the SACK blocks so we can update the rack scoreboard with
7681          * just one pass.
7682          */
7683         num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
7684                                          num_sack_blks, th->th_ack);
7685         ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
7686         if (num_sack_blks == 0)  {
7687                 /* Nothing to sack (DSACKs?) */
7688                 goto out_with_totals;
7689         }
7690         if (num_sack_blks < 2) {
7691                 /* Only one, we don't need to sort */
7692                 goto do_sack_work;
7693         }
7694         /* Sort the sacks */
7695         for (i = 0; i < num_sack_blks; i++) {
7696                 for (j = i + 1; j < num_sack_blks; j++) {
7697                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
7698                                 sack = sack_blocks[i];
7699                                 sack_blocks[i] = sack_blocks[j];
7700                                 sack_blocks[j] = sack;
7701                         }
7702                 }
7703         }
7704         /*
7705          * Now are any of the sack block ends the same (yes some
7706          * implementations send these)?
7707          */
7708 again:
7709         if (num_sack_blks == 0)
7710                 goto out_with_totals;
7711         if (num_sack_blks > 1) {
7712                 for (i = 0; i < num_sack_blks; i++) {
7713                         for (j = i + 1; j < num_sack_blks; j++) {
7714                                 if (sack_blocks[i].end == sack_blocks[j].end) {
7715                                         /*
7716                                          * Ok these two have the same end we
7717                                          * want the smallest end and then
7718                                          * throw away the larger and start
7719                                          * again.
7720                                          */
7721                                         if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
7722                                                 /*
7723                                                  * The second block covers
7724                                                  * more area use that
7725                                                  */
7726                                                 sack_blocks[i].start = sack_blocks[j].start;
7727                                         }
7728                                         /*
7729                                          * Now collapse out the dup-sack and
7730                                          * lower the count
7731                                          */
7732                                         for (k = (j + 1); k < num_sack_blks; k++) {
7733                                                 sack_blocks[j].start = sack_blocks[k].start;
7734                                                 sack_blocks[j].end = sack_blocks[k].end;
7735                                                 j++;
7736                                         }
7737                                         num_sack_blks--;
7738                                         goto again;
7739                                 }
7740                         }
7741                 }
7742         }
7743 do_sack_work:
7744         /*
7745          * First lets look to see if
7746          * we have retransmitted and
7747          * can use the transmit next?
7748          */
7749         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
7750         if (rsm &&
7751             SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
7752             SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
7753                 /*
7754                  * We probably did the FR and the next
7755                  * SACK in continues as we would expect.
7756                  */
7757                 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
7758                 if (acked) {
7759                         rack->r_wanted_output = 1;
7760                         changed += acked;
7761                         sack_changed += acked;
7762                 }
7763                 if (num_sack_blks == 1) {
7764                         /*
7765                          * This is what we would expect from
7766                          * a normal implementation to happen
7767                          * after we have retransmitted the FR,
7768                          * i.e the sack-filter pushes down
7769                          * to 1 block and the next to be retransmitted
7770                          * is the sequence in the sack block (has more
7771                          * are acked). Count this as ACK'd data to boost
7772                          * up the chances of recovering any false positives.
7773                          */
7774                         rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
7775                         counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
7776                         counter_u64_add(rack_express_sack, 1);
7777                         if (rack->r_ctl.ack_count > 0xfff00000) {
7778                                 /*
7779                                  * reduce the number to keep us under
7780                                  * a uint32_t.
7781                                  */
7782                                 rack->r_ctl.ack_count /= 2;
7783                                 rack->r_ctl.sack_count /= 2;
7784                         }
7785                         goto out_with_totals;
7786                 } else {
7787                         /*
7788                          * Start the loop through the
7789                          * rest of blocks, past the first block.
7790                          */
7791                         moved_two = 0;
7792                         loop_start = 1;
7793                 }
7794         }
7795         /* Its a sack of some sort */
7796         rack->r_ctl.sack_count++;
7797         if (rack->r_ctl.sack_count > 0xfff00000) {
7798                 /*
7799                  * reduce the number to keep us under
7800                  * a uint32_t.
7801                  */
7802                 rack->r_ctl.ack_count /= 2;
7803                 rack->r_ctl.sack_count /= 2;
7804         }
7805         counter_u64_add(rack_sack_total, 1);
7806         if (rack->sack_attack_disable) {
7807                 /* An attacker disablement is in place */
7808                 if (num_sack_blks > 1) {
7809                         rack->r_ctl.sack_count += (num_sack_blks - 1);
7810                         rack->r_ctl.sack_moved_extra++;
7811                         counter_u64_add(rack_move_some, 1);
7812                         if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
7813                                 rack->r_ctl.sack_moved_extra /= 2;
7814                                 rack->r_ctl.sack_noextra_move /= 2;
7815                         }
7816                 }
7817                 goto out;
7818         }
7819         rsm = rack->r_ctl.rc_sacklast;
7820         for (i = loop_start; i < num_sack_blks; i++) {
7821                 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
7822                 if (acked) {
7823                         rack->r_wanted_output = 1;
7824                         changed += acked;
7825                         sack_changed += acked;
7826                 }
7827                 if (moved_two) {
7828                         /*
7829                          * If we did not get a SACK for at least a MSS and
7830                          * had to move at all, or if we moved more than our
7831                          * threshold, it counts against the "extra" move.
7832                          */
7833                         rack->r_ctl.sack_moved_extra += moved_two;
7834                         counter_u64_add(rack_move_some, 1);
7835                 } else {
7836                         /*
7837                          * else we did not have to move
7838                          * any more than we would expect.
7839                          */
7840                         rack->r_ctl.sack_noextra_move++;
7841                         counter_u64_add(rack_move_none, 1);
7842                 }
7843                 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
7844                         /*
7845                          * If the SACK was not a full MSS then
7846                          * we add to sack_count the number of
7847                          * MSS's (or possibly more than
7848                          * a MSS if its a TSO send) we had to skip by.
7849                          */
7850                         rack->r_ctl.sack_count += moved_two;
7851                         counter_u64_add(rack_sack_total, moved_two);
7852                 }
7853                 /*
7854                  * Now we need to setup for the next
7855                  * round. First we make sure we won't
7856                  * exceed the size of our uint32_t on
7857                  * the various counts, and then clear out
7858                  * moved_two.
7859                  */
7860                 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
7861                     (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
7862                         rack->r_ctl.sack_moved_extra /= 2;
7863                         rack->r_ctl.sack_noextra_move /= 2;
7864                 }
7865                 if (rack->r_ctl.sack_count > 0xfff00000) {
7866                         rack->r_ctl.ack_count /= 2;
7867                         rack->r_ctl.sack_count /= 2;
7868                 }
7869                 moved_two = 0;
7870         }
7871 out_with_totals:
7872         if (num_sack_blks > 1) {
7873                 /*
7874                  * You get an extra stroke if
7875                  * you have more than one sack-blk, this
7876                  * could be where we are skipping forward
7877                  * and the sack-filter is still working, or
7878                  * it could be an attacker constantly
7879                  * moving us.
7880                  */
7881                 rack->r_ctl.sack_moved_extra++;
7882                 counter_u64_add(rack_move_some, 1);
7883         }
7884 out:
7885 #ifdef NETFLIX_EXP_DETECTION
7886         if ((rack->do_detection || tcp_force_detection) &&
7887             tcp_sack_to_ack_thresh &&
7888             tcp_sack_to_move_thresh &&
7889             ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
7890                 /*
7891                  * We have thresholds set to find
7892                  * possible attackers and disable sack.
7893                  * Check them.
7894                  */
7895                 uint64_t ackratio, moveratio, movetotal;
7896
7897                 /* Log detecting */
7898                 rack_log_sad(rack, 1);
7899                 ackratio = (uint64_t)(rack->r_ctl.sack_count);
7900                 ackratio *= (uint64_t)(1000);
7901                 if (rack->r_ctl.ack_count)
7902                         ackratio /= (uint64_t)(rack->r_ctl.ack_count);
7903                 else {
7904                         /* We really should not hit here */
7905                         ackratio = 1000;
7906                 }
7907                 if ((rack->sack_attack_disable  == 0) &&
7908                     (ackratio > rack_highest_sack_thresh_seen))
7909                         rack_highest_sack_thresh_seen = (uint32_t)ackratio;
7910                 movetotal = rack->r_ctl.sack_moved_extra;
7911                 movetotal += rack->r_ctl.sack_noextra_move;
7912                 moveratio = rack->r_ctl.sack_moved_extra;
7913                 moveratio *= (uint64_t)1000;
7914                 if (movetotal)
7915                         moveratio /= movetotal;
7916                 else {
7917                         /* No moves, thats pretty good */
7918                         moveratio = 0;
7919                 }
7920                 if ((rack->sack_attack_disable == 0) &&
7921                     (moveratio > rack_highest_move_thresh_seen))
7922                         rack_highest_move_thresh_seen = (uint32_t)moveratio;
7923                 if (rack->sack_attack_disable == 0) {
7924                         if ((ackratio > tcp_sack_to_ack_thresh) &&
7925                             (moveratio > tcp_sack_to_move_thresh)) {
7926                                 /* Disable sack processing */
7927                                 rack->sack_attack_disable = 1;
7928                                 if (rack->r_rep_attack == 0) {
7929                                         rack->r_rep_attack = 1;
7930                                         counter_u64_add(rack_sack_attacks_detected, 1);
7931                                 }
7932                                 if (tcp_attack_on_turns_on_logging) {
7933                                         /*
7934                                          * Turn on logging, used for debugging
7935                                          * false positives.
7936                                          */
7937                                         rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
7938                                 }
7939                                 /* Clamp the cwnd at flight size */
7940                                 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
7941                                 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
7942                                 rack_log_sad(rack, 2);
7943                         }
7944                 } else {
7945                         /* We are sack-disabled check for false positives */
7946                         if ((ackratio <= tcp_restoral_thresh) ||
7947                             (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
7948                                 rack->sack_attack_disable  = 0;
7949                                 rack_log_sad(rack, 3);
7950                                 /* Restart counting */
7951                                 rack->r_ctl.sack_count = 0;
7952                                 rack->r_ctl.sack_moved_extra = 0;
7953                                 rack->r_ctl.sack_noextra_move = 1;
7954                                 rack->r_ctl.ack_count = max(1,
7955                                       (BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp)));
7956
7957                                 if (rack->r_rep_reverse == 0) {
7958                                         rack->r_rep_reverse = 1;
7959                                         counter_u64_add(rack_sack_attacks_reversed, 1);
7960                                 }
7961                                 /* Restore the cwnd */
7962                                 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
7963                                         rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
7964                         }
7965                 }
7966         }
7967 #endif
7968         if (changed) {
7969                 /* Something changed cancel the rack timer */
7970                 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
7971         }
7972         tsused = tcp_ts_getticks();
7973         rsm = tcp_rack_output(tp, rack, tsused);
7974         if ((!IN_RECOVERY(tp->t_flags)) &&
7975             rsm) {
7976                 /* Enter recovery */
7977                 rack->r_ctl.rc_rsm_start = rsm->r_start;
7978                 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
7979                 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
7980                 entered_recovery = 1;
7981                 rack_cong_signal(tp, NULL, CC_NDUPACK);
7982                 /*
7983                  * When we enter recovery we need to assure we send
7984                  * one packet.
7985                  */
7986                 if (rack->rack_no_prr == 0) {
7987                         rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
7988                         rack_log_to_prr(rack, 8, 0);
7989                 }
7990                 rack->r_timer_override = 1;
7991                 rack->r_early = 0;
7992                 rack->r_ctl.rc_agg_early = 0;
7993         } else if (IN_RECOVERY(tp->t_flags) &&
7994                    rsm &&
7995                    (rack->r_rr_config == 3)) {
7996                 /*
7997                  * Assure we can output and we get no
7998                  * remembered pace time except the retransmit.
7999                  */
8000                 rack->r_timer_override = 1;
8001                 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
8002                 rack->r_ctl.rc_resend = rsm;
8003         }
8004         if (IN_RECOVERY(tp->t_flags) &&
8005             (rack->rack_no_prr == 0) &&
8006             (entered_recovery == 0)) {
8007                 /* Deal with PRR here (in recovery only) */
8008                 uint32_t pipe, snd_una;
8009
8010                 rack->r_ctl.rc_prr_delivered += changed;
8011                 /* Compute prr_sndcnt */
8012                 if (SEQ_GT(tp->snd_una, th_ack)) {
8013                         snd_una = tp->snd_una;
8014                 } else {
8015                         snd_una = th_ack;
8016                 }
8017                 pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
8018                 if (pipe > tp->snd_ssthresh) {
8019                         long sndcnt;
8020
8021                         sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
8022                         if (rack->r_ctl.rc_prr_recovery_fs > 0)
8023                                 sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
8024                         else {
8025                                 rack->r_ctl.rc_prr_sndcnt = 0;
8026                                 rack_log_to_prr(rack, 9, 0);
8027                                 sndcnt = 0;
8028                         }
8029                         sndcnt++;
8030                         if (sndcnt > (long)rack->r_ctl.rc_prr_out)
8031                                 sndcnt -= rack->r_ctl.rc_prr_out;
8032                         else
8033                                 sndcnt = 0;
8034                         rack->r_ctl.rc_prr_sndcnt = sndcnt;
8035                         rack_log_to_prr(rack, 10, 0);
8036                 } else {
8037                         uint32_t limit;
8038
8039                         if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
8040                                 limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
8041                         else
8042                                 limit = 0;
8043                         if (changed > limit)
8044                                 limit = changed;
8045                         limit += ctf_fixed_maxseg(tp);
8046                         if (tp->snd_ssthresh > pipe) {
8047                                 rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
8048                                 rack_log_to_prr(rack, 11, 0);
8049                         } else {
8050                                 rack->r_ctl.rc_prr_sndcnt = min(0, limit);
8051                                 rack_log_to_prr(rack, 12, 0);
8052                         }
8053                 }
8054                 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) &&
8055                      ((rack->rc_inp->inp_in_hpts == 0) &&
8056                       ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) {
8057                         /*
8058                          * If you are pacing output you don't want
8059                          * to override.
8060                          */
8061                         rack->r_early = 0;
8062                         rack->r_ctl.rc_agg_early = 0;
8063                         rack->r_timer_override = 1;
8064                 }
8065         }
8066 }
8067
8068 static void
8069 rack_strike_dupack(struct tcp_rack *rack)
8070 {
8071         struct rack_sendmap *rsm;
8072
8073         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
8074         if (rsm && (rsm->r_dupack < 0xff)) {
8075                 rsm->r_dupack++;
8076                 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
8077                         rack->r_wanted_output = 1;
8078                         rack->r_timer_override = 1;
8079                         rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
8080                 } else {
8081                         rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
8082                 }
8083         }
8084 }
8085
8086 static void
8087 rack_check_bottom_drag(struct tcpcb *tp,
8088                        struct tcp_rack *rack,
8089                        struct socket *so, int32_t acked)
8090 {
8091         uint32_t segsiz, minseg;
8092
8093         segsiz = ctf_fixed_maxseg(tp);
8094         minseg = segsiz;
8095
8096         if (tp->snd_max == tp->snd_una) {
8097                 /*
8098                  * We are doing dynamic pacing and we are way
8099                  * under. Basically everything got acked while
8100                  * we were still waiting on the pacer to expire.
8101                  *
8102                  * This means we need to boost the b/w in
8103                  * addition to any earlier boosting of
8104                  * the multipler.
8105                  */
8106                 rack->rc_dragged_bottom = 1;
8107                 rack_validate_multipliers_at_or_above100(rack);
8108                 /*
8109                  * Lets use the segment bytes acked plus
8110                  * the lowest RTT seen as the basis to
8111                  * form a b/w estimate. This will be off
8112                  * due to the fact that the true estimate
8113                  * should be around 1/2 the time of the RTT
8114                  * but we can settle for that.
8115                  */
8116                 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) &&
8117                     acked) {
8118                         uint64_t bw, calc_bw, rtt;
8119
8120                         rtt = rack->r_ctl.rack_rs.rs_us_rtt;
8121                         bw = acked;
8122                         calc_bw = bw * 1000000;
8123                         calc_bw /= rtt;
8124                         if (rack->r_ctl.last_max_bw &&
8125                             (rack->r_ctl.last_max_bw < calc_bw)) {
8126                                 /*
8127                                  * If we have a last calculated max bw
8128                                  * enforce it.
8129                                  */
8130                                 calc_bw = rack->r_ctl.last_max_bw;
8131                         }
8132                         /* now plop it in */
8133                         if (rack->rc_gp_filled == 0) {
8134                                 if (calc_bw > ONE_POINT_TWO_MEG) {
8135                                         /*
8136                                          * If we have no measurement
8137                                          * don't let us set in more than
8138                                          * 1.2Mbps. If we are still too
8139                                          * low after pacing with this we
8140                                          * will hopefully have a max b/w
8141                                          * available to sanity check things.
8142                                          */
8143                                         calc_bw = ONE_POINT_TWO_MEG;
8144                                 }
8145                                 rack->r_ctl.rc_rtt_diff = 0;
8146                                 rack->r_ctl.gp_bw = calc_bw;
8147                                 rack->rc_gp_filled = 1;
8148                                 rack->r_ctl.num_avg = RACK_REQ_AVG;
8149                                 rack_set_pace_segments(rack->rc_tp, rack, __LINE__);
8150                         } else if (calc_bw > rack->r_ctl.gp_bw) {
8151                                 rack->r_ctl.rc_rtt_diff = 0;
8152                                 rack->r_ctl.num_avg = RACK_REQ_AVG;
8153                                 rack->r_ctl.gp_bw = calc_bw;
8154                                 rack_set_pace_segments(rack->rc_tp, rack, __LINE__);
8155                         } else
8156                                 rack_increase_bw_mul(rack, -1, 0, 0, 1);
8157                         /*
8158                          * For acks over 1mss we do a extra boost to simulate
8159                          * where we would get 2 acks (we want 110 for the mul).
8160                          */
8161                         if (acked > segsiz)
8162                                 rack_increase_bw_mul(rack, -1, 0, 0, 1);
8163                 } else {
8164                         /*
8165                          * Huh, this should not be, settle
8166                          * for just an old increase.
8167                          */
8168                         rack_increase_bw_mul(rack, -1, 0, 0, 1);
8169                 }
8170         } else if ((IN_RECOVERY(tp->t_flags) == 0) &&
8171                    (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)),
8172                                                minseg)) &&
8173                    (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) &&
8174                    (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) &&
8175                    (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <=
8176                     (segsiz * rack_req_segs))) {
8177                 /*
8178                  * We are doing dynamic GP pacing and
8179                  * we have everything except 1MSS or less
8180                  * bytes left out. We are still pacing away.
8181                  * And there is data that could be sent, This
8182                  * means we are inserting delayed ack time in
8183                  * our measurements because we are pacing too slow.
8184                  */
8185                 rack_validate_multipliers_at_or_above100(rack);
8186                 rack->rc_dragged_bottom = 1;
8187                 rack_increase_bw_mul(rack, -1, 0, 0, 1);
8188         }
8189 }
8190
8191 /*
8192  * Return value of 1, we do not need to call rack_process_data().
8193  * return value of 0, rack_process_data can be called.
8194  * For ret_val if its 0 the TCP is locked, if its non-zero
8195  * its unlocked and probably unsafe to touch the TCB.
8196  */
8197 static int
8198 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
8199     struct tcpcb *tp, struct tcpopt *to,
8200     uint32_t tiwin, int32_t tlen,
8201     int32_t * ofia, int32_t thflags, int32_t * ret_val)
8202 {
8203         int32_t ourfinisacked = 0;
8204         int32_t nsegs, acked_amount;
8205         int32_t acked;
8206         struct mbuf *mfree;
8207         struct tcp_rack *rack;
8208         int32_t under_pacing = 0;
8209         int32_t recovery = 0;
8210
8211         rack = (struct tcp_rack *)tp->t_fb_ptr;
8212         if (SEQ_GT(th->th_ack, tp->snd_max)) {
8213                 ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
8214                 rack->r_wanted_output = 1;
8215                 return (1);
8216         }
8217         if (rack->rc_gp_filled &&
8218             (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
8219                 under_pacing = 1;
8220         }
8221         if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
8222                 if (rack->rc_in_persist)
8223                         tp->t_rxtshift = 0;
8224                 if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
8225                         rack_strike_dupack(rack);
8226                 rack_log_ack(tp, to, th);
8227         }
8228         if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
8229                 /*
8230                  * Old ack, behind (or duplicate to) the last one rcv'd
8231                  * Note: Should mark reordering is occuring! We should also
8232                  * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
8233                  * 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
8234                  * retran and> ack 3
8235                  */
8236                 return (0);
8237         }
8238         /*
8239          * If we reach this point, ACK is not a duplicate, i.e., it ACKs
8240          * something we sent.
8241          */
8242         if (tp->t_flags & TF_NEEDSYN) {
8243                 /*
8244                  * T/TCP: Connection was half-synchronized, and our SYN has
8245                  * been ACK'd (so connection is now fully synchronized).  Go
8246                  * to non-starred state, increment snd_una for ACK of SYN,
8247                  * and check if we can do window scaling.
8248                  */
8249                 tp->t_flags &= ~TF_NEEDSYN;
8250                 tp->snd_una++;
8251                 /* Do window scaling? */
8252                 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
8253                     (TF_RCVD_SCALE | TF_REQ_SCALE)) {
8254                         tp->rcv_scale = tp->request_r_scale;
8255                         /* Send window already scaled. */
8256                 }
8257         }
8258         nsegs = max(1, m->m_pkthdr.lro_nsegs);
8259         INP_WLOCK_ASSERT(tp->t_inpcb);
8260
8261         acked = BYTES_THIS_ACK(tp, th);
8262         KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
8263         KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
8264         /*
8265          * If we just performed our first retransmit, and the ACK arrives
8266          * within our recovery window, then it was a mistake to do the
8267          * retransmit in the first place.  Recover our original cwnd and
8268          * ssthresh, and proceed to transmit where we left off.
8269          */
8270         if (tp->t_flags & TF_PREVVALID) {
8271                 tp->t_flags &= ~TF_PREVVALID;
8272                 if (tp->t_rxtshift == 1 &&
8273                     (int)(ticks - tp->t_badrxtwin) < 0)
8274                         rack_cong_signal(tp, th, CC_RTO_ERR);
8275         }
8276         if (acked) {
8277                 /* assure we are not backed off */
8278                 tp->t_rxtshift = 0;
8279                 rack->rc_tlp_in_progress = 0;
8280                 rack->r_ctl.rc_tlp_cnt_out = 0;
8281                 /*
8282                  * If it is the RXT timer we want to
8283                  * stop it, so we can restart a TLP.
8284                  */
8285                 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
8286                         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
8287 #ifdef NETFLIX_HTTP_LOGGING
8288                 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
8289 #endif
8290         }
8291         /*
8292          * If we have a timestamp reply, update smoothed round trip time. If
8293          * no timestamp is present but transmit timer is running and timed
8294          * sequence number was acked, update smoothed round trip time. Since
8295          * we now have an rtt measurement, cancel the timer backoff (cf.,
8296          * Phil Karn's retransmit alg.). Recompute the initial retransmit
8297          * timer.
8298          *
8299          * Some boxes send broken timestamp replies during the SYN+ACK
8300          * phase, ignore timestamps of 0 or we could calculate a huge RTT
8301          * and blow up the retransmit timer.
8302          */
8303         /*
8304          * If all outstanding data is acked, stop retransmit timer and
8305          * remember to restart (more output or persist). If there is more
8306          * data to be acked, restart retransmit timer, using current
8307          * (possibly backed-off) value.
8308          */
8309         if (acked == 0) {
8310                 if (ofia)
8311                         *ofia = ourfinisacked;
8312                 return (0);
8313         }
8314         if (rack->r_ctl.rc_early_recovery) {
8315                 if (IN_RECOVERY(tp->t_flags)) {
8316                         if (SEQ_LT(th->th_ack, tp->snd_recover) &&
8317                             (SEQ_LT(th->th_ack, tp->snd_max))) {
8318                                 tcp_rack_partialack(tp, th);
8319                         } else {
8320                                 rack_post_recovery(tp, th);
8321                                 recovery = 1;
8322                         }
8323                 }
8324         }
8325         /*
8326          * Let the congestion control algorithm update congestion control
8327          * related information. This typically means increasing the
8328          * congestion window.
8329          */
8330         rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
8331         SOCKBUF_LOCK(&so->so_snd);
8332         acked_amount = min(acked, (int)sbavail(&so->so_snd));
8333         tp->snd_wnd -= acked_amount;
8334         mfree = sbcut_locked(&so->so_snd, acked_amount);
8335         if ((sbused(&so->so_snd) == 0) &&
8336             (acked > acked_amount) &&
8337             (tp->t_state >= TCPS_FIN_WAIT_1) &&
8338             (tp->t_flags & TF_SENTFIN)) {
8339                 /*
8340                  * We must be sure our fin
8341                  * was sent and acked (we can be
8342                  * in FIN_WAIT_1 without having
8343                  * sent the fin).
8344                  */
8345                 ourfinisacked = 1;
8346         }
8347         SOCKBUF_UNLOCK(&so->so_snd);
8348         tp->t_flags |= TF_WAKESOW;
8349         m_freem(mfree);
8350         if (rack->r_ctl.rc_early_recovery == 0) {
8351                 if (IN_RECOVERY(tp->t_flags)) {
8352                         if (SEQ_LT(th->th_ack, tp->snd_recover) &&
8353                             (SEQ_LT(th->th_ack, tp->snd_max))) {
8354                                 tcp_rack_partialack(tp, th);
8355                         } else {
8356                                 rack_post_recovery(tp, th);
8357                         }
8358                 }
8359         }
8360         tp->snd_una = th->th_ack;
8361         if (SEQ_GT(tp->snd_una, tp->snd_recover))
8362                 tp->snd_recover = tp->snd_una;
8363
8364         if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
8365                 tp->snd_nxt = tp->snd_una;
8366         }
8367         if (under_pacing &&
8368             (rack->use_fixed_rate == 0) &&
8369             (rack->in_probe_rtt == 0) &&
8370             rack->rc_gp_dyn_mul &&
8371             rack->rc_always_pace) {
8372                 /* Check if we are dragging bottom */
8373                 rack_check_bottom_drag(tp, rack, so, acked);
8374         }
8375         if (tp->snd_una == tp->snd_max) {
8376                 /* Nothing left outstanding */
8377                 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
8378                 if (rack->r_ctl.rc_went_idle_time == 0)
8379                         rack->r_ctl.rc_went_idle_time = 1;
8380                 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
8381                 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
8382                         tp->t_acktime = 0;
8383                 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
8384                 /* Set need output so persist might get set */
8385                 rack->r_wanted_output = 1;
8386                 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
8387                 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
8388                     (sbavail(&so->so_snd) == 0) &&
8389                     (tp->t_flags2 & TF2_DROP_AF_DATA)) {
8390                         /*
8391                          * The socket was gone and the
8392                          * peer sent data, time to
8393                          * reset him.
8394                          */
8395                         *ret_val = 1;
8396                         /* tcp_close will kill the inp pre-log the Reset */
8397                         tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
8398                         tp = tcp_close(tp);
8399                         ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
8400                         return (1);
8401                 }
8402         }
8403         if (ofia)
8404                 *ofia = ourfinisacked;
8405         return (0);
8406 }
8407
8408 static void
8409 rack_collapsed_window(struct tcp_rack *rack)
8410 {
8411         /*
8412          * Now we must walk the
8413          * send map and divide the
8414          * ones left stranded. These
8415          * guys can't cause us to abort
8416          * the connection and are really
8417          * "unsent". However if a buggy
8418          * client actually did keep some
8419          * of the data i.e. collapsed the win
8420          * and refused to ack and then opened
8421          * the win and acked that data. We would
8422          * get into an ack war, the simplier
8423          * method then of just pretending we
8424          * did not send those segments something
8425          * won't work.
8426          */
8427         struct rack_sendmap *rsm, *nrsm, fe, *insret;
8428         tcp_seq max_seq;
8429
8430         max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
8431         memset(&fe, 0, sizeof(fe));
8432         fe.r_start = max_seq;
8433         /* Find the first seq past or at maxseq */
8434         rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
8435         if (rsm == NULL) {
8436                 /* Nothing to do strange */
8437                 rack->rc_has_collapsed = 0;
8438                 return;
8439         }
8440         /*
8441          * Now do we need to split at
8442          * the collapse point?
8443          */
8444         if (SEQ_GT(max_seq, rsm->r_start)) {
8445                 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8446                 if (nrsm == NULL) {
8447                         /* We can't get a rsm, mark all? */
8448                         nrsm = rsm;
8449                         goto no_split;
8450                 }
8451                 /* Clone it */
8452                 rack_clone_rsm(rack, nrsm, rsm, max_seq);
8453                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8454 #ifdef INVARIANTS
8455                 if (insret != NULL) {
8456                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8457                               nrsm, insret, rack, rsm);
8458                 }
8459 #endif
8460                 if (rsm->r_in_tmap) {
8461                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8462                         nrsm->r_in_tmap = 1;
8463                 }
8464                 /*
8465                  * Set in the new RSM as the
8466                  * collapsed starting point
8467                  */
8468                 rsm = nrsm;
8469         }
8470 no_split:
8471         counter_u64_add(rack_collapsed_win, 1);
8472         RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
8473                 nrsm->r_flags |= RACK_RWND_COLLAPSED;
8474                 rack->rc_has_collapsed = 1;
8475         }
8476 }
8477
8478 static void
8479 rack_un_collapse_window(struct tcp_rack *rack)
8480 {
8481         struct rack_sendmap *rsm;
8482
8483         RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
8484                 if (rsm->r_flags & RACK_RWND_COLLAPSED)
8485                         rsm->r_flags &= ~RACK_RWND_COLLAPSED;
8486                 else
8487                         break;
8488         }
8489         rack->rc_has_collapsed = 0;
8490 }
8491
8492 static void
8493 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack,
8494                         int32_t tlen, int32_t tfo_syn)
8495 {
8496         if (DELAY_ACK(tp, tlen) || tfo_syn) {
8497                 if (rack->rc_dack_mode &&
8498                     (tlen > 500) &&
8499                     (rack->rc_dack_toggle == 1)) {
8500                         goto no_delayed_ack;
8501                 }
8502                 rack_timer_cancel(tp, rack,
8503                                   rack->r_ctl.rc_rcvtime, __LINE__);
8504                 tp->t_flags |= TF_DELACK;
8505         } else {
8506 no_delayed_ack:
8507                 rack->r_wanted_output = 1;
8508                 tp->t_flags |= TF_ACKNOW;
8509                 if (rack->rc_dack_mode) {
8510                         if (tp->t_flags & TF_DELACK)
8511                                 rack->rc_dack_toggle = 1;
8512                         else
8513                                 rack->rc_dack_toggle = 0;
8514                 }
8515         }
8516 }
8517 /*
8518  * Return value of 1, the TCB is unlocked and most
8519  * likely gone, return value of 0, the TCP is still
8520  * locked.
8521  */
8522 static int
8523 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
8524     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
8525     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
8526 {
8527         /*
8528          * Update window information. Don't look at window if no ACK: TAC's
8529          * send garbage on first SYN.
8530          */
8531         int32_t nsegs;
8532         int32_t tfo_syn;
8533         struct tcp_rack *rack;
8534
8535         rack = (struct tcp_rack *)tp->t_fb_ptr;
8536         INP_WLOCK_ASSERT(tp->t_inpcb);
8537         nsegs = max(1, m->m_pkthdr.lro_nsegs);
8538         if ((thflags & TH_ACK) &&
8539             (SEQ_LT(tp->snd_wl1, th->th_seq) ||
8540             (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
8541             (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
8542                 /* keep track of pure window updates */
8543                 if (tlen == 0 &&
8544                     tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
8545                         KMOD_TCPSTAT_INC(tcps_rcvwinupd);
8546                 tp->snd_wnd = tiwin;
8547                 tp->snd_wl1 = th->th_seq;
8548                 tp->snd_wl2 = th->th_ack;
8549                 if (tp->snd_wnd > tp->max_sndwnd)
8550                         tp->max_sndwnd = tp->snd_wnd;
8551                 rack->r_wanted_output = 1;
8552         } else if (thflags & TH_ACK) {
8553                 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
8554                         tp->snd_wnd = tiwin;
8555                         tp->snd_wl1 = th->th_seq;
8556                         tp->snd_wl2 = th->th_ack;
8557                 }
8558         }
8559         if (tp->snd_wnd < ctf_outstanding(tp))
8560                 /* The peer collapsed the window */
8561                 rack_collapsed_window(rack);
8562         else if (rack->rc_has_collapsed)
8563                 rack_un_collapse_window(rack);
8564         /* Was persist timer active and now we have window space? */
8565         if ((rack->rc_in_persist != 0) &&
8566             (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
8567                                 rack->r_ctl.rc_pace_min_segs))) {
8568                 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime);
8569                 tp->snd_nxt = tp->snd_max;
8570                 /* Make sure we output to start the timer */
8571                 rack->r_wanted_output = 1;
8572         }
8573         /* Do we enter persists? */
8574         if ((rack->rc_in_persist == 0) &&
8575             (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
8576             TCPS_HAVEESTABLISHED(tp->t_state) &&
8577             (tp->snd_max == tp->snd_una) &&
8578             sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
8579             (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
8580                 /*
8581                  * Here the rwnd is less than
8582                  * the pacing size, we are established,
8583                  * nothing is outstanding, and there is
8584                  * data to send. Enter persists.
8585                  */
8586                 tp->snd_nxt = tp->snd_una;
8587                 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
8588         }
8589         if (tp->t_flags2 & TF2_DROP_AF_DATA) {
8590                 m_freem(m);
8591                 return (0);
8592         }
8593         /*
8594          * don't process the URG bit, ignore them drag
8595          * along the up.
8596          */
8597         tp->rcv_up = tp->rcv_nxt;
8598         INP_WLOCK_ASSERT(tp->t_inpcb);
8599
8600         /*
8601          * Process the segment text, merging it into the TCP sequencing
8602          * queue, and arranging for acknowledgment of receipt if necessary.
8603          * This process logically involves adjusting tp->rcv_wnd as data is
8604          * presented to the user (this happens in tcp_usrreq.c, case
8605          * PRU_RCVD).  If a FIN has already been received on this connection
8606          * then we just ignore the text.
8607          */
8608         tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
8609                    IS_FASTOPEN(tp->t_flags));
8610         if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
8611             TCPS_HAVERCVDFIN(tp->t_state) == 0) {
8612                 tcp_seq save_start = th->th_seq;
8613                 tcp_seq save_rnxt  = tp->rcv_nxt;
8614                 int     save_tlen  = tlen;
8615
8616                 m_adj(m, drop_hdrlen);  /* delayed header drop */
8617                 /*
8618                  * Insert segment which includes th into TCP reassembly
8619                  * queue with control block tp.  Set thflags to whether
8620                  * reassembly now includes a segment with FIN.  This handles
8621                  * the common case inline (segment is the next to be
8622                  * received on an established connection, and the queue is
8623                  * empty), avoiding linkage into and removal from the queue
8624                  * and repetition of various conversions. Set DELACK for
8625                  * segments received in order, but ack immediately when
8626                  * segments are out of order (so fast retransmit can work).
8627                  */
8628                 if (th->th_seq == tp->rcv_nxt &&
8629                     SEGQ_EMPTY(tp) &&
8630                     (TCPS_HAVEESTABLISHED(tp->t_state) ||
8631                     tfo_syn)) {
8632 #ifdef NETFLIX_SB_LIMITS
8633                         u_int mcnt, appended;
8634
8635                         if (so->so_rcv.sb_shlim) {
8636                                 mcnt = m_memcnt(m);
8637                                 appended = 0;
8638                                 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
8639                                     CFO_NOSLEEP, NULL) == false) {
8640                                         counter_u64_add(tcp_sb_shlim_fails, 1);
8641                                         m_freem(m);
8642                                         return (0);
8643                                 }
8644                         }
8645 #endif
8646                         rack_handle_delayed_ack(tp, rack, tlen, tfo_syn);
8647                         tp->rcv_nxt += tlen;
8648                         if (tlen &&
8649                             ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
8650                             (tp->t_fbyte_in == 0)) {
8651                                 tp->t_fbyte_in = ticks;
8652                                 if (tp->t_fbyte_in == 0)
8653                                         tp->t_fbyte_in = 1;
8654                                 if (tp->t_fbyte_out && tp->t_fbyte_in)
8655                                         tp->t_flags2 |= TF2_FBYTES_COMPLETE;
8656                         }
8657                         thflags = th->th_flags & TH_FIN;
8658                         KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
8659                         KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
8660                         SOCKBUF_LOCK(&so->so_rcv);
8661                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
8662                                 m_freem(m);
8663                         } else
8664 #ifdef NETFLIX_SB_LIMITS
8665                                 appended =
8666 #endif
8667                                         sbappendstream_locked(&so->so_rcv, m, 0);
8668                         SOCKBUF_UNLOCK(&so->so_rcv);
8669                         tp->t_flags |= TF_WAKESOR;
8670 #ifdef NETFLIX_SB_LIMITS
8671                         if (so->so_rcv.sb_shlim && appended != mcnt)
8672                                 counter_fo_release(so->so_rcv.sb_shlim,
8673                                     mcnt - appended);
8674 #endif
8675                 } else {
8676                         /*
8677                          * XXX: Due to the header drop above "th" is
8678                          * theoretically invalid by now.  Fortunately
8679                          * m_adj() doesn't actually frees any mbufs when
8680                          * trimming from the head.
8681                          */
8682                         tcp_seq temp = save_start;
8683                         thflags = tcp_reass(tp, th, &temp, &tlen, m);
8684                         tp->t_flags |= TF_ACKNOW;
8685                 }
8686                 if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
8687                         if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
8688                                 /*
8689                                  * DSACK actually handled in the fastpath
8690                                  * above.
8691                                  */
8692                                 RACK_OPTS_INC(tcp_sack_path_1);
8693                                 tcp_update_sack_list(tp, save_start,
8694                                     save_start + save_tlen);
8695                         } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
8696                                 if ((tp->rcv_numsacks >= 1) &&
8697                                     (tp->sackblks[0].end == save_start)) {
8698                                         /*
8699                                          * Partial overlap, recorded at todrop
8700                                          * above.
8701                                          */
8702                                         RACK_OPTS_INC(tcp_sack_path_2a);
8703                                         tcp_update_sack_list(tp,
8704                                             tp->sackblks[0].start,
8705                                             tp->sackblks[0].end);
8706                                 } else {
8707                                         RACK_OPTS_INC(tcp_sack_path_2b);
8708                                         tcp_update_dsack_list(tp, save_start,
8709                                             save_start + save_tlen);
8710                                 }
8711                         } else if (tlen >= save_tlen) {
8712                                 /* Update of sackblks. */
8713                                 RACK_OPTS_INC(tcp_sack_path_3);
8714                                 tcp_update_dsack_list(tp, save_start,
8715                                     save_start + save_tlen);
8716                         } else if (tlen > 0) {
8717                                 RACK_OPTS_INC(tcp_sack_path_4);
8718                                 tcp_update_dsack_list(tp, save_start,
8719                                     save_start + tlen);
8720                         }
8721                 }
8722         } else {
8723                 m_freem(m);
8724                 thflags &= ~TH_FIN;
8725         }
8726
8727         /*
8728          * If FIN is received ACK the FIN and let the user know that the
8729          * connection is closing.
8730          */
8731         if (thflags & TH_FIN) {
8732                 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
8733                         socantrcvmore(so);
8734                         /* The socket upcall is handled by socantrcvmore. */
8735                         tp->t_flags &= ~TF_WAKESOR;
8736                         /*
8737                          * If connection is half-synchronized (ie NEEDSYN
8738                          * flag on) then delay ACK, so it may be piggybacked
8739                          * when SYN is sent. Otherwise, since we received a
8740                          * FIN then no more input can be expected, send ACK
8741                          * now.
8742                          */
8743                         if (tp->t_flags & TF_NEEDSYN) {
8744                                 rack_timer_cancel(tp, rack,
8745                                     rack->r_ctl.rc_rcvtime, __LINE__);
8746                                 tp->t_flags |= TF_DELACK;
8747                         } else {
8748                                 tp->t_flags |= TF_ACKNOW;
8749                         }
8750                         tp->rcv_nxt++;
8751                 }
8752                 switch (tp->t_state) {
8753                         /*
8754                          * In SYN_RECEIVED and ESTABLISHED STATES enter the
8755                          * CLOSE_WAIT state.
8756                          */
8757                 case TCPS_SYN_RECEIVED:
8758                         tp->t_starttime = ticks;
8759                         /* FALLTHROUGH */
8760                 case TCPS_ESTABLISHED:
8761                         rack_timer_cancel(tp, rack,
8762                             rack->r_ctl.rc_rcvtime, __LINE__);
8763                         tcp_state_change(tp, TCPS_CLOSE_WAIT);
8764                         break;
8765
8766                         /*
8767                          * If still in FIN_WAIT_1 STATE FIN has not been
8768                          * acked so enter the CLOSING state.
8769                          */
8770                 case TCPS_FIN_WAIT_1:
8771                         rack_timer_cancel(tp, rack,
8772                             rack->r_ctl.rc_rcvtime, __LINE__);
8773                         tcp_state_change(tp, TCPS_CLOSING);
8774                         break;
8775
8776                         /*
8777                          * In FIN_WAIT_2 state enter the TIME_WAIT state,
8778                          * starting the time-wait timer, turning off the
8779                          * other standard timers.
8780                          */
8781                 case TCPS_FIN_WAIT_2:
8782                         rack_timer_cancel(tp, rack,
8783                             rack->r_ctl.rc_rcvtime, __LINE__);
8784                         tcp_twstart(tp);
8785                         return (1);
8786                 }
8787         }
8788         /*
8789          * Return any desired output.
8790          */
8791         if ((tp->t_flags & TF_ACKNOW) ||
8792             (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
8793                 rack->r_wanted_output = 1;
8794         }
8795         INP_WLOCK_ASSERT(tp->t_inpcb);
8796         return (0);
8797 }
8798
8799 /*
8800  * Here nothing is really faster, its just that we
8801  * have broken out the fast-data path also just like
8802  * the fast-ack.
8803  */
8804 static int
8805 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
8806     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
8807     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
8808 {
8809         int32_t nsegs;
8810         int32_t newsize = 0;    /* automatic sockbuf scaling */
8811         struct tcp_rack *rack;
8812 #ifdef NETFLIX_SB_LIMITS
8813         u_int mcnt, appended;
8814 #endif
8815 #ifdef TCPDEBUG
8816         /*
8817          * The size of tcp_saveipgen must be the size of the max ip header,
8818          * now IPv6.
8819          */
8820         u_char tcp_saveipgen[IP6_HDR_LEN];
8821         struct tcphdr tcp_savetcp;
8822         short ostate = 0;
8823
8824 #endif
8825         /*
8826          * If last ACK falls within this segment's sequence numbers, record
8827          * the timestamp. NOTE that the test is modified according to the
8828          * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
8829          */
8830         if (__predict_false(th->th_seq != tp->rcv_nxt)) {
8831                 return (0);
8832         }
8833         if (__predict_false(tp->snd_nxt != tp->snd_max)) {
8834                 return (0);
8835         }
8836         if (tiwin && tiwin != tp->snd_wnd) {
8837                 return (0);
8838         }
8839         if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
8840                 return (0);
8841         }
8842         if (__predict_false((to->to_flags & TOF_TS) &&
8843             (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
8844                 return (0);
8845         }
8846         if (__predict_false((th->th_ack != tp->snd_una))) {
8847                 return (0);
8848         }
8849         if (__predict_false(tlen > sbspace(&so->so_rcv))) {
8850                 return (0);
8851         }
8852         if ((to->to_flags & TOF_TS) != 0 &&
8853             SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
8854                 tp->ts_recent_age = tcp_ts_getticks();
8855                 tp->ts_recent = to->to_tsval;
8856         }
8857         rack = (struct tcp_rack *)tp->t_fb_ptr;
8858         /*
8859          * This is a pure, in-sequence data packet with nothing on the
8860          * reassembly queue and we have enough buffer space to take it.
8861          */
8862         nsegs = max(1, m->m_pkthdr.lro_nsegs);
8863
8864 #ifdef NETFLIX_SB_LIMITS
8865         if (so->so_rcv.sb_shlim) {
8866                 mcnt = m_memcnt(m);
8867                 appended = 0;
8868                 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
8869                     CFO_NOSLEEP, NULL) == false) {
8870                         counter_u64_add(tcp_sb_shlim_fails, 1);
8871                         m_freem(m);
8872                         return (1);
8873                 }
8874         }
8875 #endif
8876         /* Clean receiver SACK report if present */
8877         if (tp->rcv_numsacks)
8878                 tcp_clean_sackreport(tp);
8879         KMOD_TCPSTAT_INC(tcps_preddat);
8880         tp->rcv_nxt += tlen;
8881         if (tlen &&
8882             ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
8883             (tp->t_fbyte_in == 0)) {
8884                 tp->t_fbyte_in = ticks;
8885                 if (tp->t_fbyte_in == 0)
8886                         tp->t_fbyte_in = 1;
8887                 if (tp->t_fbyte_out && tp->t_fbyte_in)
8888                         tp->t_flags2 |= TF2_FBYTES_COMPLETE;
8889         }
8890         /*
8891          * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
8892          */
8893         tp->snd_wl1 = th->th_seq;
8894         /*
8895          * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
8896          */
8897         tp->rcv_up = tp->rcv_nxt;
8898         KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
8899         KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
8900 #ifdef TCPDEBUG
8901         if (so->so_options & SO_DEBUG)
8902                 tcp_trace(TA_INPUT, ostate, tp,
8903                     (void *)tcp_saveipgen, &tcp_savetcp, 0);
8904 #endif
8905         newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
8906
8907         /* Add data to socket buffer. */
8908         SOCKBUF_LOCK(&so->so_rcv);
8909         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
8910                 m_freem(m);
8911         } else {
8912                 /*
8913                  * Set new socket buffer size. Give up when limit is
8914                  * reached.
8915                  */
8916                 if (newsize)
8917                         if (!sbreserve_locked(&so->so_rcv,
8918                             newsize, so, NULL))
8919                                 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
8920                 m_adj(m, drop_hdrlen);  /* delayed header drop */
8921 #ifdef NETFLIX_SB_LIMITS
8922                 appended =
8923 #endif
8924                         sbappendstream_locked(&so->so_rcv, m, 0);
8925                 ctf_calc_rwin(so, tp);
8926         }
8927         SOCKBUF_UNLOCK(&so->so_rcv);
8928         tp->t_flags |= TF_WAKESOR;
8929 #ifdef NETFLIX_SB_LIMITS
8930         if (so->so_rcv.sb_shlim && mcnt != appended)
8931                 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
8932 #endif
8933         rack_handle_delayed_ack(tp, rack, tlen, 0);
8934         if (tp->snd_una == tp->snd_max)
8935                 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
8936         return (1);
8937 }
8938
8939 /*
8940  * This subfunction is used to try to highly optimize the
8941  * fast path. We again allow window updates that are
8942  * in sequence to remain in the fast-path. We also add
8943  * in the __predict's to attempt to help the compiler.
8944  * Note that if we return a 0, then we can *not* process
8945  * it and the caller should push the packet into the
8946  * slow-path.
8947  */
8948 static int
8949 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
8950     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
8951     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
8952 {
8953         int32_t acked;
8954         int32_t nsegs;
8955 #ifdef TCPDEBUG
8956         /*
8957          * The size of tcp_saveipgen must be the size of the max ip header,
8958          * now IPv6.
8959          */
8960         u_char tcp_saveipgen[IP6_HDR_LEN];
8961         struct tcphdr tcp_savetcp;
8962         short ostate = 0;
8963 #endif
8964         int32_t under_pacing = 0;
8965         struct tcp_rack *rack;
8966
8967         if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
8968                 /* Old ack, behind (or duplicate to) the last one rcv'd */
8969                 return (0);
8970         }
8971         if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
8972                 /* Above what we have sent? */
8973                 return (0);
8974         }
8975         if (__predict_false(tp->snd_nxt != tp->snd_max)) {
8976                 /* We are retransmitting */
8977                 return (0);
8978         }
8979         if (__predict_false(tiwin == 0)) {
8980                 /* zero window */
8981                 return (0);
8982         }
8983         if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
8984                 /* We need a SYN or a FIN, unlikely.. */
8985                 return (0);
8986         }
8987         if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
8988                 /* Timestamp is behind .. old ack with seq wrap? */
8989                 return (0);
8990         }
8991         if (__predict_false(IN_RECOVERY(tp->t_flags))) {
8992                 /* Still recovering */
8993                 return (0);
8994         }
8995         rack = (struct tcp_rack *)tp->t_fb_ptr;
8996         if (rack->r_ctl.rc_sacked) {
8997                 /* We have sack holes on our scoreboard */
8998                 return (0);
8999         }
9000         /* Ok if we reach here, we can process a fast-ack */
9001         if (rack->rc_gp_filled &&
9002             (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
9003                 under_pacing = 1;
9004         }
9005         nsegs = max(1, m->m_pkthdr.lro_nsegs);
9006         rack_log_ack(tp, to, th);
9007         /* Did the window get updated? */
9008         if (tiwin != tp->snd_wnd) {
9009                 tp->snd_wnd = tiwin;
9010                 tp->snd_wl1 = th->th_seq;
9011                 if (tp->snd_wnd > tp->max_sndwnd)
9012                         tp->max_sndwnd = tp->snd_wnd;
9013         }
9014         /* Do we exit persists? */
9015         if ((rack->rc_in_persist != 0) &&
9016             (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
9017                                rack->r_ctl.rc_pace_min_segs))) {
9018                 rack_exit_persist(tp, rack, cts);
9019         }
9020         /* Do we enter persists? */
9021         if ((rack->rc_in_persist == 0) &&
9022             (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
9023             TCPS_HAVEESTABLISHED(tp->t_state) &&
9024             (tp->snd_max == tp->snd_una) &&
9025             sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
9026             (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
9027                 /*
9028                  * Here the rwnd is less than
9029                  * the pacing size, we are established,
9030                  * nothing is outstanding, and there is
9031                  * data to send. Enter persists.
9032                  */
9033                 tp->snd_nxt = tp->snd_una;
9034                 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
9035         }
9036         /*
9037          * If last ACK falls within this segment's sequence numbers, record
9038          * the timestamp. NOTE that the test is modified according to the
9039          * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
9040          */
9041         if ((to->to_flags & TOF_TS) != 0 &&
9042             SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
9043                 tp->ts_recent_age = tcp_ts_getticks();
9044                 tp->ts_recent = to->to_tsval;
9045         }
9046         /*
9047          * This is a pure ack for outstanding data.
9048          */
9049         KMOD_TCPSTAT_INC(tcps_predack);
9050
9051         /*
9052          * "bad retransmit" recovery.
9053          */
9054         if (tp->t_flags & TF_PREVVALID) {
9055                 tp->t_flags &= ~TF_PREVVALID;
9056                 if (tp->t_rxtshift == 1 &&
9057                     (int)(ticks - tp->t_badrxtwin) < 0)
9058                         rack_cong_signal(tp, th, CC_RTO_ERR);
9059         }
9060         /*
9061          * Recalculate the transmit timer / rtt.
9062          *
9063          * Some boxes send broken timestamp replies during the SYN+ACK
9064          * phase, ignore timestamps of 0 or we could calculate a huge RTT
9065          * and blow up the retransmit timer.
9066          */
9067         acked = BYTES_THIS_ACK(tp, th);
9068
9069 #ifdef TCP_HHOOK
9070         /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
9071         hhook_run_tcp_est_in(tp, th, to);
9072 #endif
9073
9074         KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
9075         KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
9076         sbdrop(&so->so_snd, acked);
9077         if (acked) {
9078                 /* assure we are not backed off */
9079                 tp->t_rxtshift = 0;
9080                 rack->rc_tlp_in_progress = 0;
9081                 rack->r_ctl.rc_tlp_cnt_out = 0;
9082                 /*
9083                  * If it is the RXT timer we want to
9084                  * stop it, so we can restart a TLP.
9085                  */
9086                 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
9087                         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9088 #ifdef NETFLIX_HTTP_LOGGING
9089                 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
9090 #endif
9091         }
9092         /*
9093          * Let the congestion control algorithm update congestion control
9094          * related information. This typically means increasing the
9095          * congestion window.
9096          */
9097         rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
9098
9099         tp->snd_una = th->th_ack;
9100         if (tp->snd_wnd < ctf_outstanding(tp)) {
9101                 /* The peer collapsed the window */
9102                 rack_collapsed_window(rack);
9103         } else if (rack->rc_has_collapsed)
9104                 rack_un_collapse_window(rack);
9105
9106         /*
9107          * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
9108          */
9109         tp->snd_wl2 = th->th_ack;
9110         tp->t_dupacks = 0;
9111         m_freem(m);
9112         /* ND6_HINT(tp);         *//* Some progress has been made. */
9113
9114         /*
9115          * If all outstanding data are acked, stop retransmit timer,
9116          * otherwise restart timer using current (possibly backed-off)
9117          * value. If process is waiting for space, wakeup/selwakeup/signal.
9118          * If data are ready to send, let tcp_output decide between more
9119          * output or persist.
9120          */
9121 #ifdef TCPDEBUG
9122         if (so->so_options & SO_DEBUG)
9123                 tcp_trace(TA_INPUT, ostate, tp,
9124                     (void *)tcp_saveipgen,
9125                     &tcp_savetcp, 0);
9126 #endif
9127         if (under_pacing &&
9128             (rack->use_fixed_rate == 0) &&
9129             (rack->in_probe_rtt == 0) &&
9130             rack->rc_gp_dyn_mul &&
9131             rack->rc_always_pace) {
9132                 /* Check if we are dragging bottom */
9133                 rack_check_bottom_drag(tp, rack, so, acked);
9134         }
9135         if (tp->snd_una == tp->snd_max) {
9136                 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
9137                 if (rack->r_ctl.rc_went_idle_time == 0)
9138                         rack->r_ctl.rc_went_idle_time = 1;
9139                 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
9140                 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
9141                         tp->t_acktime = 0;
9142                 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9143         }
9144         /* Wake up the socket if we have room to write more */
9145         tp->t_flags |= TF_WAKESOW;
9146         if (sbavail(&so->so_snd)) {
9147                 rack->r_wanted_output = 1;
9148         }
9149         return (1);
9150 }
9151
9152 /*
9153  * Return value of 1, the TCB is unlocked and most
9154  * likely gone, return value of 0, the TCP is still
9155  * locked.
9156  */
9157 static int
9158 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
9159     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
9160     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
9161 {
9162         int32_t ret_val = 0;
9163         int32_t todrop;
9164         int32_t ourfinisacked = 0;
9165         struct tcp_rack *rack;
9166
9167         ctf_calc_rwin(so, tp);
9168         /*
9169          * If the state is SYN_SENT: if seg contains an ACK, but not for our
9170          * SYN, drop the input. if seg contains a RST, then drop the
9171          * connection. if seg does not contain SYN, then drop it. Otherwise
9172          * this is an acceptable SYN segment initialize tp->rcv_nxt and
9173          * tp->irs if seg contains ack then advance tp->snd_una if seg
9174          * contains an ECE and ECN support is enabled, the stream is ECN
9175          * capable. if SYN has been acked change to ESTABLISHED else
9176          * SYN_RCVD state arrange for segment to be acked (eventually)
9177          * continue processing rest of data/controls.
9178          */
9179         if ((thflags & TH_ACK) &&
9180             (SEQ_LEQ(th->th_ack, tp->iss) ||
9181             SEQ_GT(th->th_ack, tp->snd_max))) {
9182                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
9183                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
9184                 return (1);
9185         }
9186         if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
9187                 TCP_PROBE5(connect__refused, NULL, tp,
9188                     mtod(m, const char *), tp, th);
9189                 tp = tcp_drop(tp, ECONNREFUSED);
9190                 ctf_do_drop(m, tp);
9191                 return (1);
9192         }
9193         if (thflags & TH_RST) {
9194                 ctf_do_drop(m, tp);
9195                 return (1);
9196         }
9197         if (!(thflags & TH_SYN)) {
9198                 ctf_do_drop(m, tp);
9199                 return (1);
9200         }
9201         tp->irs = th->th_seq;
9202         tcp_rcvseqinit(tp);
9203         rack = (struct tcp_rack *)tp->t_fb_ptr;
9204         if (thflags & TH_ACK) {
9205                 int tfo_partial = 0;
9206
9207                 KMOD_TCPSTAT_INC(tcps_connects);
9208                 soisconnected(so);
9209 #ifdef MAC
9210                 mac_socketpeer_set_from_mbuf(m, so);
9211 #endif
9212                 /* Do window scaling on this connection? */
9213                 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
9214                     (TF_RCVD_SCALE | TF_REQ_SCALE)) {
9215                         tp->rcv_scale = tp->request_r_scale;
9216                 }
9217                 tp->rcv_adv += min(tp->rcv_wnd,
9218                     TCP_MAXWIN << tp->rcv_scale);
9219                 /*
9220                  * If not all the data that was sent in the TFO SYN
9221                  * has been acked, resend the remainder right away.
9222                  */
9223                 if (IS_FASTOPEN(tp->t_flags) &&
9224                     (tp->snd_una != tp->snd_max)) {
9225                         tp->snd_nxt = th->th_ack;
9226                         tfo_partial = 1;
9227                 }
9228                 /*
9229                  * If there's data, delay ACK; if there's also a FIN ACKNOW
9230                  * will be turned on later.
9231                  */
9232                 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) {
9233                         rack_timer_cancel(tp, rack,
9234                                           rack->r_ctl.rc_rcvtime, __LINE__);
9235                         tp->t_flags |= TF_DELACK;
9236                 } else {
9237                         rack->r_wanted_output = 1;
9238                         tp->t_flags |= TF_ACKNOW;
9239                         rack->rc_dack_toggle = 0;
9240                 }
9241                 if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
9242                     (V_tcp_do_ecn == 1)) {
9243                         tp->t_flags2 |= TF2_ECN_PERMIT;
9244                         KMOD_TCPSTAT_INC(tcps_ecn_shs);
9245                 }
9246                 if (SEQ_GT(th->th_ack, tp->snd_una)) {
9247                         /*
9248                          * We advance snd_una for the
9249                          * fast open case. If th_ack is
9250                          * acknowledging data beyond
9251                          * snd_una we can't just call
9252                          * ack-processing since the
9253                          * data stream in our send-map
9254                          * will start at snd_una + 1 (one
9255                          * beyond the SYN). If its just
9256                          * equal we don't need to do that
9257                          * and there is no send_map.
9258                          */
9259                         tp->snd_una++;
9260                 }
9261                 /*
9262                  * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
9263                  * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
9264                  */
9265                 tp->t_starttime = ticks;
9266                 if (tp->t_flags & TF_NEEDFIN) {
9267                         tcp_state_change(tp, TCPS_FIN_WAIT_1);
9268                         tp->t_flags &= ~TF_NEEDFIN;
9269                         thflags &= ~TH_SYN;
9270                 } else {
9271                         tcp_state_change(tp, TCPS_ESTABLISHED);
9272                         TCP_PROBE5(connect__established, NULL, tp,
9273                             mtod(m, const char *), tp, th);
9274                         rack_cc_conn_init(tp);
9275                 }
9276         } else {
9277                 /*
9278                  * Received initial SYN in SYN-SENT[*] state => simultaneous
9279                  * open.  If segment contains CC option and there is a
9280                  * cached CC, apply TAO test. If it succeeds, connection is *
9281                  * half-synchronized. Otherwise, do 3-way handshake:
9282                  * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
9283                  * there was no CC option, clear cached CC value.
9284                  */
9285                 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
9286                 tcp_state_change(tp, TCPS_SYN_RECEIVED);
9287         }
9288         INP_WLOCK_ASSERT(tp->t_inpcb);
9289         /*
9290          * Advance th->th_seq to correspond to first data byte. If data,
9291          * trim to stay within window, dropping FIN if necessary.
9292          */
9293         th->th_seq++;
9294         if (tlen > tp->rcv_wnd) {
9295                 todrop = tlen - tp->rcv_wnd;
9296                 m_adj(m, -todrop);
9297                 tlen = tp->rcv_wnd;
9298                 thflags &= ~TH_FIN;
9299                 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
9300                 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
9301         }
9302         tp->snd_wl1 = th->th_seq - 1;
9303         tp->rcv_up = th->th_seq;
9304         /*
9305          * Client side of transaction: already sent SYN and data. If the
9306          * remote host used T/TCP to validate the SYN, our data will be
9307          * ACK'd; if so, enter normal data segment processing in the middle
9308          * of step 5, ack processing. Otherwise, goto step 6.
9309          */
9310         if (thflags & TH_ACK) {
9311                 /* For syn-sent we need to possibly update the rtt */
9312                 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
9313                         uint32_t t;
9314
9315                         t = tcp_ts_getticks() - to->to_tsecr;
9316                         if (!tp->t_rttlow || tp->t_rttlow > t)
9317                                 tp->t_rttlow = t;
9318                         tcp_rack_xmit_timer(rack, t + 1, 1, (t * HPTS_USEC_IN_MSEC), 0, NULL, 2);
9319                         tcp_rack_xmit_timer_commit(rack, tp);
9320                 }
9321                 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
9322                         return (ret_val);
9323                 /* We may have changed to FIN_WAIT_1 above */
9324                 if (tp->t_state == TCPS_FIN_WAIT_1) {
9325                         /*
9326                          * In FIN_WAIT_1 STATE in addition to the processing
9327                          * for the ESTABLISHED state if our FIN is now
9328                          * acknowledged then enter FIN_WAIT_2.
9329                          */
9330                         if (ourfinisacked) {
9331                                 /*
9332                                  * If we can't receive any more data, then
9333                                  * closing user can proceed. Starting the
9334                                  * timer is contrary to the specification,
9335                                  * but if we don't get a FIN we'll hang
9336                                  * forever.
9337                                  *
9338                                  * XXXjl: we should release the tp also, and
9339                                  * use a compressed state.
9340                                  */
9341                                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
9342                                         soisdisconnected(so);
9343                                         tcp_timer_activate(tp, TT_2MSL,
9344                                             (tcp_fast_finwait2_recycle ?
9345                                             tcp_finwait2_timeout :
9346                                             TP_MAXIDLE(tp)));
9347                                 }
9348                                 tcp_state_change(tp, TCPS_FIN_WAIT_2);
9349                         }
9350                 }
9351         }
9352         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9353            tiwin, thflags, nxt_pkt));
9354 }
9355
9356 /*
9357  * Return value of 1, the TCB is unlocked and most
9358  * likely gone, return value of 0, the TCP is still
9359  * locked.
9360  */
9361 static int
9362 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
9363     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
9364     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
9365 {
9366         struct tcp_rack *rack;
9367         int32_t ret_val = 0;
9368         int32_t ourfinisacked = 0;
9369
9370         ctf_calc_rwin(so, tp);
9371         if ((thflags & TH_ACK) &&
9372             (SEQ_LEQ(th->th_ack, tp->snd_una) ||
9373             SEQ_GT(th->th_ack, tp->snd_max))) {
9374                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
9375                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
9376                 return (1);
9377         }
9378         rack = (struct tcp_rack *)tp->t_fb_ptr;
9379         if (IS_FASTOPEN(tp->t_flags)) {
9380                 /*
9381                  * When a TFO connection is in SYN_RECEIVED, the
9382                  * only valid packets are the initial SYN, a
9383                  * retransmit/copy of the initial SYN (possibly with
9384                  * a subset of the original data), a valid ACK, a
9385                  * FIN, or a RST.
9386                  */
9387                 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
9388                         tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
9389                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
9390                         return (1);
9391                 } else if (thflags & TH_SYN) {
9392                         /* non-initial SYN is ignored */
9393                         if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
9394                             (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
9395                             (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
9396                                 ctf_do_drop(m, NULL);
9397                                 return (0);
9398                         }
9399                 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
9400                         ctf_do_drop(m, NULL);
9401                         return (0);
9402                 }
9403         }
9404         if ((thflags & TH_RST) ||
9405             (tp->t_fin_is_rst && (thflags & TH_FIN)))
9406                 return (ctf_process_rst(m, th, so, tp));
9407         /*
9408          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
9409          * it's less than ts_recent, drop it.
9410          */
9411         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
9412             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
9413                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
9414                         return (ret_val);
9415         }
9416         /*
9417          * In the SYN-RECEIVED state, validate that the packet belongs to
9418          * this connection before trimming the data to fit the receive
9419          * window.  Check the sequence number versus IRS since we know the
9420          * sequence numbers haven't wrapped.  This is a partial fix for the
9421          * "LAND" DoS attack.
9422          */
9423         if (SEQ_LT(th->th_seq, tp->irs)) {
9424                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
9425                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
9426                 return (1);
9427         }
9428         if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
9429                 return (ret_val);
9430         }
9431         /*
9432          * If last ACK falls within this segment's sequence numbers, record
9433          * its timestamp. NOTE: 1) That the test incorporates suggestions
9434          * from the latest proposal of the tcplw@cray.com list (Braden
9435          * 1993/04/26). 2) That updating only on newer timestamps interferes
9436          * with our earlier PAWS tests, so this check should be solely
9437          * predicated on the sequence space of this segment. 3) That we
9438          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
9439          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
9440          * SEG.Len, This modified check allows us to overcome RFC1323's
9441          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
9442          * p.869. In such cases, we can still calculate the RTT correctly
9443          * when RCV.NXT == Last.ACK.Sent.
9444          */
9445         if ((to->to_flags & TOF_TS) != 0 &&
9446             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
9447             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
9448             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
9449                 tp->ts_recent_age = tcp_ts_getticks();
9450                 tp->ts_recent = to->to_tsval;
9451         }
9452         tp->snd_wnd = tiwin;
9453         /*
9454          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
9455          * is on (half-synchronized state), then queue data for later
9456          * processing; else drop segment and return.
9457          */
9458         if ((thflags & TH_ACK) == 0) {
9459                 if (IS_FASTOPEN(tp->t_flags)) {
9460                         rack_cc_conn_init(tp);
9461                 }
9462                 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9463                     tiwin, thflags, nxt_pkt));
9464         }
9465         KMOD_TCPSTAT_INC(tcps_connects);
9466         soisconnected(so);
9467         /* Do window scaling? */
9468         if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
9469             (TF_RCVD_SCALE | TF_REQ_SCALE)) {
9470                 tp->rcv_scale = tp->request_r_scale;
9471         }
9472         /*
9473          * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
9474          * FIN-WAIT-1
9475          */
9476         tp->t_starttime = ticks;
9477         if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
9478                 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
9479                 tp->t_tfo_pending = NULL;
9480         }
9481         if (tp->t_flags & TF_NEEDFIN) {
9482                 tcp_state_change(tp, TCPS_FIN_WAIT_1);
9483                 tp->t_flags &= ~TF_NEEDFIN;
9484         } else {
9485                 tcp_state_change(tp, TCPS_ESTABLISHED);
9486                 TCP_PROBE5(accept__established, NULL, tp,
9487                     mtod(m, const char *), tp, th);
9488                 /*
9489                  * TFO connections call cc_conn_init() during SYN
9490                  * processing.  Calling it again here for such connections
9491                  * is not harmless as it would undo the snd_cwnd reduction
9492                  * that occurs when a TFO SYN|ACK is retransmitted.
9493                  */
9494                 if (!IS_FASTOPEN(tp->t_flags))
9495                         rack_cc_conn_init(tp);
9496         }
9497         /*
9498          * Account for the ACK of our SYN prior to
9499          * regular ACK processing below, except for
9500          * simultaneous SYN, which is handled later.
9501          */
9502         if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
9503                 tp->snd_una++;
9504         /*
9505          * If segment contains data or ACK, will call tcp_reass() later; if
9506          * not, do so now to pass queued data to user.
9507          */
9508         if (tlen == 0 && (thflags & TH_FIN) == 0)
9509                 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
9510                     (struct mbuf *)0);
9511         tp->snd_wl1 = th->th_seq - 1;
9512         /* For syn-recv we need to possibly update the rtt */
9513         if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
9514                 uint32_t t;
9515
9516                 t = tcp_ts_getticks() - to->to_tsecr;
9517                 if (!tp->t_rttlow || tp->t_rttlow > t)
9518                         tp->t_rttlow = t;
9519                 tcp_rack_xmit_timer(rack, t + 1, 1, (t * HPTS_USEC_IN_MSEC), 0, NULL, 2);
9520                 tcp_rack_xmit_timer_commit(rack, tp);
9521         }
9522         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
9523                 return (ret_val);
9524         }
9525         if (tp->t_state == TCPS_FIN_WAIT_1) {
9526                 /* We could have went to FIN_WAIT_1 (or EST) above */
9527                 /*
9528                  * In FIN_WAIT_1 STATE in addition to the processing for the
9529                  * ESTABLISHED state if our FIN is now acknowledged then
9530                  * enter FIN_WAIT_2.
9531                  */
9532                 if (ourfinisacked) {
9533                         /*
9534                          * If we can't receive any more data, then closing
9535                          * user can proceed. Starting the timer is contrary
9536                          * to the specification, but if we don't get a FIN
9537                          * we'll hang forever.
9538                          *
9539                          * XXXjl: we should release the tp also, and use a
9540                          * compressed state.
9541                          */
9542                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
9543                                 soisdisconnected(so);
9544                                 tcp_timer_activate(tp, TT_2MSL,
9545                                     (tcp_fast_finwait2_recycle ?
9546                                     tcp_finwait2_timeout :
9547                                     TP_MAXIDLE(tp)));
9548                         }
9549                         tcp_state_change(tp, TCPS_FIN_WAIT_2);
9550                 }
9551         }
9552         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9553             tiwin, thflags, nxt_pkt));
9554 }
9555
9556 /*
9557  * Return value of 1, the TCB is unlocked and most
9558  * likely gone, return value of 0, the TCP is still
9559  * locked.
9560  */
9561 static int
9562 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
9563     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
9564     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
9565 {
9566         int32_t ret_val = 0;
9567         struct tcp_rack *rack;
9568
9569         /*
9570          * Header prediction: check for the two common cases of a
9571          * uni-directional data xfer.  If the packet has no control flags,
9572          * is in-sequence, the window didn't change and we're not
9573          * retransmitting, it's a candidate.  If the length is zero and the
9574          * ack moved forward, we're the sender side of the xfer.  Just free
9575          * the data acked & wake any higher level process that was blocked
9576          * waiting for space.  If the length is non-zero and the ack didn't
9577          * move, we're the receiver side.  If we're getting packets in-order
9578          * (the reassembly queue is empty), add the data toc The socket
9579          * buffer and note that we need a delayed ack. Make sure that the
9580          * hidden state-flags are also off. Since we check for
9581          * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
9582          */
9583         rack = (struct tcp_rack *)tp->t_fb_ptr;
9584         if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
9585             __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) &&
9586             __predict_true(SEGQ_EMPTY(tp)) &&
9587             __predict_true(th->th_seq == tp->rcv_nxt)) {
9588                 if (tlen == 0) {
9589                         if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
9590                             tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
9591                                 return (0);
9592                         }
9593                 } else {
9594                         if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
9595                             tiwin, nxt_pkt, iptos)) {
9596                                 return (0);
9597                         }
9598                 }
9599         }
9600         ctf_calc_rwin(so, tp);
9601
9602         if ((thflags & TH_RST) ||
9603             (tp->t_fin_is_rst && (thflags & TH_FIN)))
9604                 return (ctf_process_rst(m, th, so, tp));
9605
9606         /*
9607          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
9608          * synchronized state.
9609          */
9610         if (thflags & TH_SYN) {
9611                 ctf_challenge_ack(m, th, tp, &ret_val);
9612                 return (ret_val);
9613         }
9614         /*
9615          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
9616          * it's less than ts_recent, drop it.
9617          */
9618         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
9619             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
9620                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
9621                         return (ret_val);
9622         }
9623         if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
9624                 return (ret_val);
9625         }
9626         /*
9627          * If last ACK falls within this segment's sequence numbers, record
9628          * its timestamp. NOTE: 1) That the test incorporates suggestions
9629          * from the latest proposal of the tcplw@cray.com list (Braden
9630          * 1993/04/26). 2) That updating only on newer timestamps interferes
9631          * with our earlier PAWS tests, so this check should be solely
9632          * predicated on the sequence space of this segment. 3) That we
9633          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
9634          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
9635          * SEG.Len, This modified check allows us to overcome RFC1323's
9636          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
9637          * p.869. In such cases, we can still calculate the RTT correctly
9638          * when RCV.NXT == Last.ACK.Sent.
9639          */
9640         if ((to->to_flags & TOF_TS) != 0 &&
9641             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
9642             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
9643             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
9644                 tp->ts_recent_age = tcp_ts_getticks();
9645                 tp->ts_recent = to->to_tsval;
9646         }
9647         /*
9648          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
9649          * is on (half-synchronized state), then queue data for later
9650          * processing; else drop segment and return.
9651          */
9652         if ((thflags & TH_ACK) == 0) {
9653                 if (tp->t_flags & TF_NEEDSYN) {
9654                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9655                             tiwin, thflags, nxt_pkt));
9656
9657                 } else if (tp->t_flags & TF_ACKNOW) {
9658                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
9659                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output= 1;
9660                         return (ret_val);
9661                 } else {
9662                         ctf_do_drop(m, NULL);
9663                         return (0);
9664                 }
9665         }
9666         /*
9667          * Ack processing.
9668          */
9669         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
9670                 return (ret_val);
9671         }
9672         if (sbavail(&so->so_snd)) {
9673                 if (ctf_progress_timeout_check(tp, true)) {
9674                         rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
9675                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
9676                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
9677                         return (1);
9678                 }
9679         }
9680         /* State changes only happen in rack_process_data() */
9681         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9682             tiwin, thflags, nxt_pkt));
9683 }
9684
9685 /*
9686  * Return value of 1, the TCB is unlocked and most
9687  * likely gone, return value of 0, the TCP is still
9688  * locked.
9689  */
9690 static int
9691 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
9692     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
9693     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
9694 {
9695         int32_t ret_val = 0;
9696
9697         ctf_calc_rwin(so, tp);
9698         if ((thflags & TH_RST) ||
9699             (tp->t_fin_is_rst && (thflags & TH_FIN)))
9700                 return (ctf_process_rst(m, th, so, tp));
9701         /*
9702          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
9703          * synchronized state.
9704          */
9705         if (thflags & TH_SYN) {
9706                 ctf_challenge_ack(m, th, tp, &ret_val);
9707                 return (ret_val);
9708         }
9709         /*
9710          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
9711          * it's less than ts_recent, drop it.
9712          */
9713         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
9714             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
9715                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
9716                         return (ret_val);
9717         }
9718         if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
9719                 return (ret_val);
9720         }
9721         /*
9722          * If last ACK falls within this segment's sequence numbers, record
9723          * its timestamp. NOTE: 1) That the test incorporates suggestions
9724          * from the latest proposal of the tcplw@cray.com list (Braden
9725          * 1993/04/26). 2) That updating only on newer timestamps interferes
9726          * with our earlier PAWS tests, so this check should be solely
9727          * predicated on the sequence space of this segment. 3) That we
9728          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
9729          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
9730          * SEG.Len, This modified check allows us to overcome RFC1323's
9731          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
9732          * p.869. In such cases, we can still calculate the RTT correctly
9733          * when RCV.NXT == Last.ACK.Sent.
9734          */
9735         if ((to->to_flags & TOF_TS) != 0 &&
9736             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
9737             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
9738             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
9739                 tp->ts_recent_age = tcp_ts_getticks();
9740                 tp->ts_recent = to->to_tsval;
9741         }
9742         /*
9743          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
9744          * is on (half-synchronized state), then queue data for later
9745          * processing; else drop segment and return.
9746          */
9747         if ((thflags & TH_ACK) == 0) {
9748                 if (tp->t_flags & TF_NEEDSYN) {
9749                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9750                             tiwin, thflags, nxt_pkt));
9751
9752                 } else if (tp->t_flags & TF_ACKNOW) {
9753                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
9754                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
9755                         return (ret_val);
9756                 } else {
9757                         ctf_do_drop(m, NULL);
9758                         return (0);
9759                 }
9760         }
9761         /*
9762          * Ack processing.
9763          */
9764         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
9765                 return (ret_val);
9766         }
9767         if (sbavail(&so->so_snd)) {
9768                 if (ctf_progress_timeout_check(tp, true)) {
9769                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
9770                                                 tp, tick, PROGRESS_DROP, __LINE__);
9771                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
9772                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
9773                         return (1);
9774                 }
9775         }
9776         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9777             tiwin, thflags, nxt_pkt));
9778 }
9779
9780 static int
9781 rack_check_data_after_close(struct mbuf *m,
9782     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
9783 {
9784         struct tcp_rack *rack;
9785
9786         rack = (struct tcp_rack *)tp->t_fb_ptr;
9787         if (rack->rc_allow_data_af_clo == 0) {
9788         close_now:
9789                 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
9790                 /* tcp_close will kill the inp pre-log the Reset */
9791                 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
9792                 tp = tcp_close(tp);
9793                 KMOD_TCPSTAT_INC(tcps_rcvafterclose);
9794                 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
9795                 return (1);
9796         }
9797         if (sbavail(&so->so_snd) == 0)
9798                 goto close_now;
9799         /* Ok we allow data that is ignored and a followup reset */
9800         tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
9801         tp->rcv_nxt = th->th_seq + *tlen;
9802         tp->t_flags2 |= TF2_DROP_AF_DATA;
9803         rack->r_wanted_output = 1;
9804         *tlen = 0;
9805         return (0);
9806 }
9807
9808 /*
9809  * Return value of 1, the TCB is unlocked and most
9810  * likely gone, return value of 0, the TCP is still
9811  * locked.
9812  */
9813 static int
9814 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
9815     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
9816     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
9817 {
9818         int32_t ret_val = 0;
9819         int32_t ourfinisacked = 0;
9820
9821         ctf_calc_rwin(so, tp);
9822
9823         if ((thflags & TH_RST) ||
9824             (tp->t_fin_is_rst && (thflags & TH_FIN)))
9825                 return (ctf_process_rst(m, th, so, tp));
9826         /*
9827          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
9828          * synchronized state.
9829          */
9830         if (thflags & TH_SYN) {
9831                 ctf_challenge_ack(m, th, tp, &ret_val);
9832                 return (ret_val);
9833         }
9834         /*
9835          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
9836          * it's less than ts_recent, drop it.
9837          */
9838         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
9839             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
9840                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
9841                         return (ret_val);
9842         }
9843         if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
9844                 return (ret_val);
9845         }
9846         /*
9847          * If new data are received on a connection after the user processes
9848          * are gone, then RST the other end.
9849          */
9850         if ((so->so_state & SS_NOFDREF) && tlen) {
9851                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
9852                         return (1);
9853         }
9854         /*
9855          * If last ACK falls within this segment's sequence numbers, record
9856          * its timestamp. NOTE: 1) That the test incorporates suggestions
9857          * from the latest proposal of the tcplw@cray.com list (Braden
9858          * 1993/04/26). 2) That updating only on newer timestamps interferes
9859          * with our earlier PAWS tests, so this check should be solely
9860          * predicated on the sequence space of this segment. 3) That we
9861          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
9862          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
9863          * SEG.Len, This modified check allows us to overcome RFC1323's
9864          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
9865          * p.869. In such cases, we can still calculate the RTT correctly
9866          * when RCV.NXT == Last.ACK.Sent.
9867          */
9868         if ((to->to_flags & TOF_TS) != 0 &&
9869             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
9870             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
9871             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
9872                 tp->ts_recent_age = tcp_ts_getticks();
9873                 tp->ts_recent = to->to_tsval;
9874         }
9875         /*
9876          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
9877          * is on (half-synchronized state), then queue data for later
9878          * processing; else drop segment and return.
9879          */
9880         if ((thflags & TH_ACK) == 0) {
9881                 if (tp->t_flags & TF_NEEDSYN) {
9882                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9883                             tiwin, thflags, nxt_pkt));
9884                 } else if (tp->t_flags & TF_ACKNOW) {
9885                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
9886                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
9887                         return (ret_val);
9888                 } else {
9889                         ctf_do_drop(m, NULL);
9890                         return (0);
9891                 }
9892         }
9893         /*
9894          * Ack processing.
9895          */
9896         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
9897                 return (ret_val);
9898         }
9899         if (ourfinisacked) {
9900                 /*
9901                  * If we can't receive any more data, then closing user can
9902                  * proceed. Starting the timer is contrary to the
9903                  * specification, but if we don't get a FIN we'll hang
9904                  * forever.
9905                  *
9906                  * XXXjl: we should release the tp also, and use a
9907                  * compressed state.
9908                  */
9909                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
9910                         soisdisconnected(so);
9911                         tcp_timer_activate(tp, TT_2MSL,
9912                             (tcp_fast_finwait2_recycle ?
9913                             tcp_finwait2_timeout :
9914                             TP_MAXIDLE(tp)));
9915                 }
9916                 tcp_state_change(tp, TCPS_FIN_WAIT_2);
9917         }
9918         if (sbavail(&so->so_snd)) {
9919                 if (ctf_progress_timeout_check(tp, true)) {
9920                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
9921                                                 tp, tick, PROGRESS_DROP, __LINE__);
9922                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
9923                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
9924                         return (1);
9925                 }
9926         }
9927         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
9928             tiwin, thflags, nxt_pkt));
9929 }
9930
9931 /*
9932  * Return value of 1, the TCB is unlocked and most
9933  * likely gone, return value of 0, the TCP is still
9934  * locked.
9935  */
9936 static int
9937 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
9938     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
9939     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
9940 {
9941         int32_t ret_val = 0;
9942         int32_t ourfinisacked = 0;
9943
9944         ctf_calc_rwin(so, tp);
9945
9946         if ((thflags & TH_RST) ||
9947             (tp->t_fin_is_rst && (thflags & TH_FIN)))
9948                 return (ctf_process_rst(m, th, so, tp));
9949         /*
9950          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
9951          * synchronized state.
9952          */
9953         if (thflags & TH_SYN) {
9954                 ctf_challenge_ack(m, th, tp, &ret_val);
9955                 return (ret_val);
9956         }
9957         /*
9958          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
9959          * it's less than ts_recent, drop it.
9960          */
9961         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
9962             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
9963                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
9964                         return (ret_val);
9965         }
9966         if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
9967                 return (ret_val);
9968         }
9969         /*
9970          * If new data are received on a connection after the user processes
9971          * are gone, then RST the other end.
9972          */
9973         if ((so->so_state & SS_NOFDREF) && tlen) {
9974                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
9975                         return (1);
9976         }
9977         /*
9978          * If last ACK falls within this segment's sequence numbers, record
9979          * its timestamp. NOTE: 1) That the test incorporates suggestions
9980          * from the latest proposal of the tcplw@cray.com list (Braden
9981          * 1993/04/26). 2) That updating only on newer timestamps interferes
9982          * with our earlier PAWS tests, so this check should be solely
9983          * predicated on the sequence space of this segment. 3) That we
9984          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
9985          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
9986          * SEG.Len, This modified check allows us to overcome RFC1323's
9987          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
9988          * p.869. In such cases, we can still calculate the RTT correctly
9989          * when RCV.NXT == Last.ACK.Sent.
9990          */
9991         if ((to->to_flags & TOF_TS) != 0 &&
9992             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
9993             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
9994             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
9995                 tp->ts_recent_age = tcp_ts_getticks();
9996                 tp->ts_recent = to->to_tsval;
9997         }
9998         /*
9999          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
10000          * is on (half-synchronized state), then queue data for later
10001          * processing; else drop segment and return.
10002          */
10003         if ((thflags & TH_ACK) == 0) {
10004                 if (tp->t_flags & TF_NEEDSYN) {
10005                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
10006                             tiwin, thflags, nxt_pkt));
10007                 } else if (tp->t_flags & TF_ACKNOW) {
10008                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
10009                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output= 1;
10010                         return (ret_val);
10011                 } else {
10012                         ctf_do_drop(m, NULL);
10013                         return (0);
10014                 }
10015         }
10016         /*
10017          * Ack processing.
10018          */
10019         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
10020                 return (ret_val);
10021         }
10022         if (ourfinisacked) {
10023                 tcp_twstart(tp);
10024                 m_freem(m);
10025                 return (1);
10026         }
10027         if (sbavail(&so->so_snd)) {
10028                 if (ctf_progress_timeout_check(tp, true)) {
10029                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
10030                                                 tp, tick, PROGRESS_DROP, __LINE__);
10031                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
10032                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10033                         return (1);
10034                 }
10035         }
10036         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
10037             tiwin, thflags, nxt_pkt));
10038 }
10039
10040 /*
10041  * Return value of 1, the TCB is unlocked and most
10042  * likely gone, return value of 0, the TCP is still
10043  * locked.
10044  */
10045 static int
10046 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10047     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10048     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
10049 {
10050         int32_t ret_val = 0;
10051         int32_t ourfinisacked = 0;
10052
10053         ctf_calc_rwin(so, tp);
10054
10055         if ((thflags & TH_RST) ||
10056             (tp->t_fin_is_rst && (thflags & TH_FIN)))
10057                 return (ctf_process_rst(m, th, so, tp));
10058         /*
10059          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
10060          * synchronized state.
10061          */
10062         if (thflags & TH_SYN) {
10063                 ctf_challenge_ack(m, th, tp, &ret_val);
10064                 return (ret_val);
10065         }
10066         /*
10067          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
10068          * it's less than ts_recent, drop it.
10069          */
10070         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
10071             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
10072                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
10073                         return (ret_val);
10074         }
10075         if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
10076                 return (ret_val);
10077         }
10078         /*
10079          * If new data are received on a connection after the user processes
10080          * are gone, then RST the other end.
10081          */
10082         if ((so->so_state & SS_NOFDREF) && tlen) {
10083                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
10084                         return (1);
10085         }
10086         /*
10087          * If last ACK falls within this segment's sequence numbers, record
10088          * its timestamp. NOTE: 1) That the test incorporates suggestions
10089          * from the latest proposal of the tcplw@cray.com list (Braden
10090          * 1993/04/26). 2) That updating only on newer timestamps interferes
10091          * with our earlier PAWS tests, so this check should be solely
10092          * predicated on the sequence space of this segment. 3) That we
10093          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
10094          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
10095          * SEG.Len, This modified check allows us to overcome RFC1323's
10096          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
10097          * p.869. In such cases, we can still calculate the RTT correctly
10098          * when RCV.NXT == Last.ACK.Sent.
10099          */
10100         if ((to->to_flags & TOF_TS) != 0 &&
10101             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
10102             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
10103             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
10104                 tp->ts_recent_age = tcp_ts_getticks();
10105                 tp->ts_recent = to->to_tsval;
10106         }
10107         /*
10108          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
10109          * is on (half-synchronized state), then queue data for later
10110          * processing; else drop segment and return.
10111          */
10112         if ((thflags & TH_ACK) == 0) {
10113                 if (tp->t_flags & TF_NEEDSYN) {
10114                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
10115                             tiwin, thflags, nxt_pkt));
10116                 } else if (tp->t_flags & TF_ACKNOW) {
10117                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
10118                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
10119                         return (ret_val);
10120                 } else {
10121                         ctf_do_drop(m, NULL);
10122                         return (0);
10123                 }
10124         }
10125         /*
10126          * case TCPS_LAST_ACK: Ack processing.
10127          */
10128         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
10129                 return (ret_val);
10130         }
10131         if (ourfinisacked) {
10132                 tp = tcp_close(tp);
10133                 ctf_do_drop(m, tp);
10134                 return (1);
10135         }
10136         if (sbavail(&so->so_snd)) {
10137                 if (ctf_progress_timeout_check(tp, true)) {
10138                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
10139                                                 tp, tick, PROGRESS_DROP, __LINE__);
10140                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
10141                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10142                         return (1);
10143                 }
10144         }
10145         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
10146             tiwin, thflags, nxt_pkt));
10147 }
10148
10149 /*
10150  * Return value of 1, the TCB is unlocked and most
10151  * likely gone, return value of 0, the TCP is still
10152  * locked.
10153  */
10154 static int
10155 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
10156     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10157     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
10158 {
10159         int32_t ret_val = 0;
10160         int32_t ourfinisacked = 0;
10161
10162         ctf_calc_rwin(so, tp);
10163
10164         /* Reset receive buffer auto scaling when not in bulk receive mode. */
10165         if ((thflags & TH_RST) ||
10166             (tp->t_fin_is_rst && (thflags & TH_FIN)))
10167                 return (ctf_process_rst(m, th, so, tp));
10168         /*
10169          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
10170          * synchronized state.
10171          */
10172         if (thflags & TH_SYN) {
10173                 ctf_challenge_ack(m, th, tp, &ret_val);
10174                 return (ret_val);
10175         }
10176         /*
10177          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
10178          * it's less than ts_recent, drop it.
10179          */
10180         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
10181             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
10182                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
10183                         return (ret_val);
10184         }
10185         if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
10186                 return (ret_val);
10187         }
10188         /*
10189          * If new data are received on a connection after the user processes
10190          * are gone, then RST the other end.
10191          */
10192         if ((so->so_state & SS_NOFDREF) &&
10193             tlen) {
10194                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
10195                         return (1);
10196         }
10197         /*
10198          * If last ACK falls within this segment's sequence numbers, record
10199          * its timestamp. NOTE: 1) That the test incorporates suggestions
10200          * from the latest proposal of the tcplw@cray.com list (Braden
10201          * 1993/04/26). 2) That updating only on newer timestamps interferes
10202          * with our earlier PAWS tests, so this check should be solely
10203          * predicated on the sequence space of this segment. 3) That we
10204          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
10205          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
10206          * SEG.Len, This modified check allows us to overcome RFC1323's
10207          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
10208          * p.869. In such cases, we can still calculate the RTT correctly
10209          * when RCV.NXT == Last.ACK.Sent.
10210          */
10211         if ((to->to_flags & TOF_TS) != 0 &&
10212             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
10213             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
10214             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
10215                 tp->ts_recent_age = tcp_ts_getticks();
10216                 tp->ts_recent = to->to_tsval;
10217         }
10218         /*
10219          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
10220          * is on (half-synchronized state), then queue data for later
10221          * processing; else drop segment and return.
10222          */
10223         if ((thflags & TH_ACK) == 0) {
10224                 if (tp->t_flags & TF_NEEDSYN) {
10225                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
10226                             tiwin, thflags, nxt_pkt));
10227                 } else if (tp->t_flags & TF_ACKNOW) {
10228                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
10229                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
10230                         return (ret_val);
10231                 } else {
10232                         ctf_do_drop(m, NULL);
10233                         return (0);
10234                 }
10235         }
10236         /*
10237          * Ack processing.
10238          */
10239         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
10240                 return (ret_val);
10241         }
10242         if (sbavail(&so->so_snd)) {
10243                 if (ctf_progress_timeout_check(tp, true)) {
10244                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
10245                                                 tp, tick, PROGRESS_DROP, __LINE__);
10246                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
10247                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10248                         return (1);
10249                 }
10250         }
10251         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
10252             tiwin, thflags, nxt_pkt));
10253 }
10254
10255 static void inline
10256 rack_clear_rate_sample(struct tcp_rack *rack)
10257 {
10258         rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
10259         rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
10260         rack->r_ctl.rack_rs.rs_rtt_tot = 0;
10261 }
10262
10263 static void
10264 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line)
10265 {
10266         uint64_t bw_est, rate_wanted;
10267         int chged = 0;
10268         uint32_t user_max;
10269
10270         user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs;
10271         if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs)
10272                 chged = 1;
10273         rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
10274         if (rack->use_fixed_rate || rack->rc_force_max_seg) {
10275                 if (user_max != rack->r_ctl.rc_pace_max_segs)
10276                         chged = 1;
10277         }
10278         if (rack->rc_force_max_seg) {
10279                 rack->r_ctl.rc_pace_max_segs = user_max;
10280         } else if (rack->use_fixed_rate) {
10281                 bw_est = rack_get_bw(rack);
10282                 if ((rack->r_ctl.crte == NULL) ||
10283                     (bw_est != rack->r_ctl.crte->rate))  {
10284                         rack->r_ctl.rc_pace_max_segs = user_max;
10285                 } else {
10286                         /* We are pacing right at the hardware rate */
10287                         uint32_t segsiz;
10288
10289                         segsiz = min(ctf_fixed_maxseg(tp),
10290                                      rack->r_ctl.rc_pace_min_segs);
10291                         rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(
10292                                                            bw_est, segsiz, 0,
10293                                                            rack->r_ctl.crte, NULL);
10294                 }
10295         } else if (rack->rc_always_pace) {
10296                 if (rack->r_ctl.gp_bw ||
10297 #ifdef NETFLIX_PEAKRATE
10298                     rack->rc_tp->t_maxpeakrate ||
10299 #endif
10300                     rack->r_ctl.init_rate) {
10301                         /* We have a rate of some sort set */
10302                         uint32_t  orig;
10303
10304                         bw_est = rack_get_bw(rack);
10305                         orig = rack->r_ctl.rc_pace_max_segs;
10306                         rate_wanted = rack_get_output_bw(rack, bw_est, NULL);
10307                         if (rate_wanted) {
10308                                 /* We have something */
10309                                 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack,
10310                                                                                    rate_wanted,
10311                                                                                    ctf_fixed_maxseg(rack->rc_tp));
10312                         } else
10313                                 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs;
10314                         if (orig != rack->r_ctl.rc_pace_max_segs)
10315                                 chged = 1;
10316                 } else if ((rack->r_ctl.gp_bw == 0) &&
10317                            (rack->r_ctl.rc_pace_max_segs == 0)) {
10318                         /*
10319                          * If we have nothing limit us to bursting
10320                          * out IW sized pieces.
10321                          */
10322                         chged = 1;
10323                         rack->r_ctl.rc_pace_max_segs = rc_init_window(rack);
10324                 }
10325         }
10326         if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) {
10327                 chged = 1;
10328                 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
10329         }
10330         if (chged)
10331                 rack_log_type_hrdwtso(tp, rack, 0, rack->rc_inp->inp_socket->so_snd.sb_flags, line, 2);
10332 }
10333
10334 static int
10335 rack_init(struct tcpcb *tp)
10336 {
10337         struct tcp_rack *rack = NULL;
10338         struct rack_sendmap *insret;
10339         uint32_t iwin, snt, us_cts;
10340
10341         tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
10342         if (tp->t_fb_ptr == NULL) {
10343                 /*
10344                  * We need to allocate memory but cant. The INP and INP_INFO
10345                  * locks and they are recusive (happens during setup. So a
10346                  * scheme to drop the locks fails :(
10347                  *
10348                  */
10349                 return (ENOMEM);
10350         }
10351         memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
10352
10353         rack = (struct tcp_rack *)tp->t_fb_ptr;
10354         RB_INIT(&rack->r_ctl.rc_mtree);
10355         TAILQ_INIT(&rack->r_ctl.rc_free);
10356         TAILQ_INIT(&rack->r_ctl.rc_tmap);
10357         rack->rc_tp = tp;
10358         if (tp->t_inpcb) {
10359                 rack->rc_inp = tp->t_inpcb;
10360         }
10361         /* Probably not needed but lets be sure */
10362         rack_clear_rate_sample(rack);
10363         rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
10364         rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
10365         rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
10366         if (use_rack_rr)
10367                 rack->use_rack_rr = 1;
10368         if (V_tcp_delack_enabled)
10369                 tp->t_delayed_ack = 1;
10370         else
10371                 tp->t_delayed_ack = 0;
10372         if (rack_enable_shared_cwnd)
10373                 rack->rack_enable_scwnd = 1;
10374         rack->rc_user_set_max_segs = rack_hptsi_segments;
10375         rack->rc_force_max_seg = 0;
10376         if (rack_use_imac_dack)
10377                 rack->rc_dack_mode = 1;
10378         rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
10379         rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
10380         rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
10381         rack->r_ctl.rc_prop_rate = rack_proportional_rate;
10382         rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
10383         rack->r_ctl.rc_early_recovery = rack_early_recovery;
10384         rack->r_ctl.rc_lowest_us_rtt = 0xffffffff;
10385         rack->r_ctl.rc_highest_us_rtt = 0;
10386         if (rack_disable_prr)
10387                 rack->rack_no_prr = 1;
10388         if (rack_gp_no_rec_chg)
10389                 rack->rc_gp_no_rec_chg = 1;
10390         rack->rc_always_pace = rack_pace_every_seg;
10391         if (rack_enable_mqueue_for_nonpaced)
10392                 rack->r_mbuf_queue = 1;
10393         else
10394                 rack->r_mbuf_queue = 0;
10395         if  (rack->r_mbuf_queue || rack->rc_always_pace)
10396                 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
10397         else
10398                 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
10399         rack_set_pace_segments(tp, rack, __LINE__);
10400         if (rack_limits_scwnd)
10401                 rack->r_limit_scw  = 1;
10402         else
10403                 rack->r_limit_scw  = 0;
10404         rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
10405         rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
10406         rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
10407         rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
10408         rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
10409         rack->r_ctl.rc_min_to = rack_min_to;
10410         microuptime(&rack->r_ctl.act_rcv_time);
10411         rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
10412         rack->r_running_late = 0;
10413         rack->r_running_early = 0;
10414         rack->rc_init_win = rack_default_init_window;
10415         rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss;
10416         if (rack_do_dyn_mul) {
10417                 /* When dynamic adjustment is on CA needs to start at 100% */
10418                 rack->rc_gp_dyn_mul = 1;
10419                 if (rack_do_dyn_mul >= 100)
10420                         rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
10421         } else
10422                 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
10423         rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec;
10424         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
10425         rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time);
10426         setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN,
10427                                 rack_probertt_filter_life);
10428         us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
10429         rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
10430         rack->r_ctl.rc_time_of_last_probertt = us_cts;
10431         rack->r_ctl.rc_time_probertt_starts = 0;
10432         /* Do we force on detection? */
10433 #ifdef NETFLIX_EXP_DETECTION
10434         if (tcp_force_detection)
10435                 rack->do_detection = 1;
10436         else
10437 #endif
10438                 rack->do_detection = 0;
10439         if (rack_non_rxt_use_cr)
10440                 rack->rack_rec_nonrxt_use_cr = 1;
10441         if (tp->snd_una != tp->snd_max) {
10442                 /* Create a send map for the current outstanding data */
10443                 struct rack_sendmap *rsm;
10444
10445                 rsm = rack_alloc(rack);
10446                 if (rsm == NULL) {
10447                         uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
10448                         tp->t_fb_ptr = NULL;
10449                         return (ENOMEM);
10450                 }
10451                 rsm->r_flags = RACK_OVERMAX;
10452                 rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time;
10453                 rsm->r_rtr_cnt = 1;
10454                 rsm->r_rtr_bytes = 0;
10455                 rsm->r_start = tp->snd_una;
10456                 if (tp->t_flags & TF_SENTFIN) {
10457                         rsm->r_end = tp->snd_max - 1;
10458                         rsm->r_flags |= RACK_HAS_FIN;
10459                 } else {
10460                         rsm->r_end = tp->snd_max;
10461                 }
10462                 rsm->usec_orig_send = us_cts;
10463                 rsm->r_dupack = 0;
10464                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
10465 #ifdef INVARIANTS
10466                 if (insret != NULL) {
10467                         panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
10468                               insret, rack, rsm);
10469                 }
10470 #endif
10471                 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
10472                 rsm->r_in_tmap = 1;
10473         }
10474         /* Cancel the GP measurement in progress */
10475         tp->t_flags &= ~TF_GPUTINPROG;
10476         if (SEQ_GT(tp->snd_max, tp->iss))
10477                 snt = tp->snd_max - tp->iss;
10478         else
10479                 snt = 0;
10480         iwin = rc_init_window(rack);
10481         if (snt < iwin) {
10482                 /* We are not past the initial window
10483                  * so we need to make sure cwnd is
10484                  * correct.
10485                  */
10486                 if (tp->snd_cwnd < iwin)
10487                         tp->snd_cwnd = iwin;
10488                 /*
10489                  * If we are within the initial window
10490                  * we want ssthresh to be unlimited. Setting
10491                  * it to the rwnd (which the default stack does
10492                  * and older racks) is not really a good idea
10493                  * since we want to be in SS and grow both the
10494                  * cwnd and the rwnd (via dynamic rwnd growth). If
10495                  * we set it to the rwnd then as the peer grows its
10496                  * rwnd we will be stuck in CA and never hit SS.
10497                  *
10498                  * Its far better to raise it up high (this takes the
10499                  * risk that there as been a loss already, probably
10500                  * we should have an indicator in all stacks of loss
10501                  * but we don't), but considering the normal use this
10502                  * is a risk worth taking. The consequences of not
10503                  * hitting SS are far worse than going one more time
10504                  * into it early on (before we have sent even a IW).
10505                  * It is highly unlikely that we will have had a loss
10506                  * before getting the IW out.
10507                  */
10508                 tp->snd_ssthresh = 0xffffffff;
10509         }
10510         rack_stop_all_timers(tp);
10511         rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
10512         rack_log_rtt_shrinks(rack,  us_cts,  0,
10513                              __LINE__, RACK_RTTS_INIT);
10514         return (0);
10515 }
10516
10517 static int
10518 rack_handoff_ok(struct tcpcb *tp)
10519 {
10520         if ((tp->t_state == TCPS_CLOSED) ||
10521             (tp->t_state == TCPS_LISTEN)) {
10522                 /* Sure no problem though it may not stick */
10523                 return (0);
10524         }
10525         if ((tp->t_state == TCPS_SYN_SENT) ||
10526             (tp->t_state == TCPS_SYN_RECEIVED)) {
10527                 /*
10528                  * We really don't know if you support sack,
10529                  * you have to get to ESTAB or beyond to tell.
10530                  */
10531                 return (EAGAIN);
10532         }
10533         if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) {
10534                 /*
10535                  * Rack will only send a FIN after all data is acknowledged.
10536                  * So in this case we have more data outstanding. We can't
10537                  * switch stacks until either all data and only the FIN
10538                  * is left (in which case rack_init() now knows how
10539                  * to deal with that) <or> all is acknowledged and we
10540                  * are only left with incoming data, though why you
10541                  * would want to switch to rack after all data is acknowledged
10542                  * I have no idea (rrs)!
10543                  */
10544                 return (EAGAIN);
10545         }
10546         if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
10547                 return (0);
10548         }
10549         /*
10550          * If we reach here we don't do SACK on this connection so we can
10551          * never do rack.
10552          */
10553         return (EINVAL);
10554 }
10555
10556 static void
10557 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
10558 {
10559         if (tp->t_fb_ptr) {
10560                 struct tcp_rack *rack;
10561                 struct rack_sendmap *rsm, *nrsm, *rm;
10562
10563                 rack = (struct tcp_rack *)tp->t_fb_ptr;
10564 #ifdef NETFLIX_SHARED_CWND
10565                 if (rack->r_ctl.rc_scw) {
10566                         uint32_t limit;
10567
10568                         if (rack->r_limit_scw)
10569                                 limit = max(1, rack->r_ctl.rc_lowest_us_rtt);
10570                         else
10571                                 limit = 0;
10572                         tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw,
10573                                                   rack->r_ctl.rc_scw_index,
10574                                                   limit);
10575                         rack->r_ctl.rc_scw = NULL;
10576                 }
10577 #endif
10578                 /* rack does not use force data but other stacks may clear it */
10579                 tp->t_flags &= ~TF_FORCEDATA;
10580                 if (tp->t_inpcb) {
10581                         tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
10582                         tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
10583                         tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
10584                 }
10585 #ifdef TCP_BLACKBOX
10586                 tcp_log_flowend(tp);
10587 #endif
10588                 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
10589                         rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
10590 #ifdef INVARIANTS
10591                         if (rm != rsm) {
10592                                 panic("At fini, rack:%p rsm:%p rm:%p",
10593                                       rack, rsm, rm);
10594                         }
10595 #endif
10596                         uma_zfree(rack_zone, rsm);
10597                 }
10598                 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
10599                 while (rsm) {
10600                         TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
10601                         uma_zfree(rack_zone, rsm);
10602                         rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
10603                 }
10604                 rack->rc_free_cnt = 0;
10605                 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
10606                 tp->t_fb_ptr = NULL;
10607         }
10608         /* Cancel the GP measurement in progress */
10609         tp->t_flags &= ~TF_GPUTINPROG;
10610         /* Make sure snd_nxt is correctly set */
10611         tp->snd_nxt = tp->snd_max;
10612 }
10613
10614 static void
10615 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
10616 {
10617         switch (tp->t_state) {
10618         case TCPS_SYN_SENT:
10619                 rack->r_state = TCPS_SYN_SENT;
10620                 rack->r_substate = rack_do_syn_sent;
10621                 break;
10622         case TCPS_SYN_RECEIVED:
10623                 rack->r_state = TCPS_SYN_RECEIVED;
10624                 rack->r_substate = rack_do_syn_recv;
10625                 break;
10626         case TCPS_ESTABLISHED:
10627                 rack_set_pace_segments(tp, rack, __LINE__);
10628                 rack->r_state = TCPS_ESTABLISHED;
10629                 rack->r_substate = rack_do_established;
10630                 break;
10631         case TCPS_CLOSE_WAIT:
10632                 rack->r_state = TCPS_CLOSE_WAIT;
10633                 rack->r_substate = rack_do_close_wait;
10634                 break;
10635         case TCPS_FIN_WAIT_1:
10636                 rack->r_state = TCPS_FIN_WAIT_1;
10637                 rack->r_substate = rack_do_fin_wait_1;
10638                 break;
10639         case TCPS_CLOSING:
10640                 rack->r_state = TCPS_CLOSING;
10641                 rack->r_substate = rack_do_closing;
10642                 break;
10643         case TCPS_LAST_ACK:
10644                 rack->r_state = TCPS_LAST_ACK;
10645                 rack->r_substate = rack_do_lastack;
10646                 break;
10647         case TCPS_FIN_WAIT_2:
10648                 rack->r_state = TCPS_FIN_WAIT_2;
10649                 rack->r_substate = rack_do_fin_wait_2;
10650                 break;
10651         case TCPS_LISTEN:
10652         case TCPS_CLOSED:
10653         case TCPS_TIME_WAIT:
10654         default:
10655                 break;
10656         };
10657 }
10658
10659 static void
10660 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
10661 {
10662         /*
10663          * We received an ack, and then did not
10664          * call send or were bounced out due to the
10665          * hpts was running. Now a timer is up as well, is
10666          * it the right timer?
10667          */
10668         struct rack_sendmap *rsm;
10669         int tmr_up;
10670
10671         tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
10672         if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
10673                 return;
10674         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
10675         if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
10676             (tmr_up == PACE_TMR_RXT)) {
10677                 /* Should be an RXT */
10678                 return;
10679         }
10680         if (rsm == NULL) {
10681                 /* Nothing outstanding? */
10682                 if (tp->t_flags & TF_DELACK) {
10683                         if (tmr_up == PACE_TMR_DELACK)
10684                                 /* We are supposed to have delayed ack up and we do */
10685                                 return;
10686                 } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
10687                         /*
10688                          * if we hit enobufs then we would expect the possiblity
10689                          * of nothing outstanding and the RXT up (and the hptsi timer).
10690                          */
10691                         return;
10692                 } else if (((V_tcp_always_keepalive ||
10693                              rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
10694                             (tp->t_state <= TCPS_CLOSING)) &&
10695                            (tmr_up == PACE_TMR_KEEP) &&
10696                            (tp->snd_max == tp->snd_una)) {
10697                         /* We should have keep alive up and we do */
10698                         return;
10699                 }
10700         }
10701         if (SEQ_GT(tp->snd_max, tp->snd_una) &&
10702                    ((tmr_up == PACE_TMR_TLP) ||
10703                     (tmr_up == PACE_TMR_RACK) ||
10704                     (tmr_up == PACE_TMR_RXT))) {
10705                 /*
10706                  * Either a Rack, TLP or RXT is fine if  we
10707                  * have outstanding data.
10708                  */
10709                 return;
10710         } else if (tmr_up == PACE_TMR_DELACK) {
10711                 /*
10712                  * If the delayed ack was going to go off
10713                  * before the rtx/tlp/rack timer were going to
10714                  * expire, then that would be the timer in control.
10715                  * Note we don't check the time here trusting the
10716                  * code is correct.
10717                  */
10718                 return;
10719         }
10720         /*
10721          * Ok the timer originally started is not what we want now.
10722          * We will force the hpts to be stopped if any, and restart
10723          * with the slot set to what was in the saved slot.
10724          */
10725         if (rack->rc_inp->inp_in_hpts) {
10726                 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
10727                         uint32_t us_cts;
10728
10729                         us_cts = tcp_get_usecs(NULL);
10730                         if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
10731                                 rack->r_early = 1;
10732                                 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
10733                         }
10734                         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
10735                 }
10736                 tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
10737         }
10738         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10739         rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
10740 }
10741
10742 static int
10743 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
10744     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
10745     int32_t nxt_pkt, struct timeval *tv)
10746 {
10747         int32_t thflags, retval, did_out = 0;
10748         int32_t way_out = 0;
10749         uint32_t cts;
10750         uint32_t tiwin;
10751         struct timespec ts;
10752         struct tcpopt to;
10753         struct tcp_rack *rack;
10754         struct rack_sendmap *rsm;
10755         int32_t prev_state = 0;
10756         uint32_t us_cts;
10757         /*
10758          * tv passed from common code is from either M_TSTMP_LRO or
10759          * tcp_get_usecs() if no LRO m_pkthdr timestamp is present. The
10760          * rack_pacing stack assumes tv always refers to 'now', so we overwrite
10761          * tv here to guarantee that.
10762          */
10763         if (m->m_flags & M_TSTMP_LRO)
10764                 tcp_get_usecs(tv);
10765
10766         cts = tcp_tv_to_mssectick(tv);
10767         rack = (struct tcp_rack *)tp->t_fb_ptr;
10768
10769         if ((m->m_flags & M_TSTMP) ||
10770             (m->m_flags & M_TSTMP_LRO)) {
10771                 mbuf_tstmp2timespec(m, &ts);
10772                 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
10773                 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
10774         } else
10775                 rack->r_ctl.act_rcv_time = *tv;
10776         kern_prefetch(rack, &prev_state);
10777         prev_state = 0;
10778         thflags = th->th_flags;
10779
10780         NET_EPOCH_ASSERT();
10781         INP_WLOCK_ASSERT(tp->t_inpcb);
10782         KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
10783             __func__));
10784         KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
10785             __func__));
10786         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
10787                 union tcp_log_stackspecific log;
10788                 struct timeval ltv;
10789 #ifdef NETFLIX_HTTP_LOGGING
10790                 struct http_sendfile_track *http_req;
10791
10792                 if (SEQ_GT(th->th_ack, tp->snd_una)) {
10793                         http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1));
10794                 } else {
10795                         http_req = tcp_http_find_req_for_seq(tp, th->th_ack);
10796                 }
10797 #endif
10798                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
10799                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
10800                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
10801                 if (rack->rack_no_prr == 0)
10802                         log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
10803                 else
10804                         log.u_bbr.flex1 = 0;
10805                 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
10806                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
10807                 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
10808                 log.u_bbr.flex3 = m->m_flags;
10809                 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
10810                 if (m->m_flags & M_TSTMP) {
10811                         /* Record the hardware timestamp if present */
10812                         mbuf_tstmp2timespec(m, &ts);
10813                         ltv.tv_sec = ts.tv_sec;
10814                         ltv.tv_usec = ts.tv_nsec / 1000;
10815                         log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
10816                 } else if (m->m_flags & M_TSTMP_LRO) {
10817                         /* Record the LRO the arrival timestamp */
10818                         mbuf_tstmp2timespec(m, &ts);
10819                         ltv.tv_sec = ts.tv_sec;
10820                         ltv.tv_usec = ts.tv_nsec / 1000;
10821                         log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
10822                 }
10823                 log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
10824                 /* Log the rcv time */
10825                 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp;
10826 #ifdef NETFLIX_HTTP_LOGGING
10827                 log.u_bbr.applimited = tp->t_http_closed;
10828                 log.u_bbr.applimited <<= 8;
10829                 log.u_bbr.applimited |= tp->t_http_open;
10830                 log.u_bbr.applimited <<= 8;
10831                 log.u_bbr.applimited |= tp->t_http_req;
10832                 if (http_req) {
10833                         /* Copy out any client req info */
10834                         /* seconds */
10835                         log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
10836                         /* useconds */
10837                         log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
10838                         log.u_bbr.rttProp = http_req->timestamp;
10839                         log.u_bbr.cur_del_rate = http_req->start;
10840                         if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
10841                                 log.u_bbr.flex8 |= 1;
10842                         } else {
10843                                 log.u_bbr.flex8 |= 2;
10844                                 log.u_bbr.bw_inuse = http_req->end;
10845                         }
10846                         log.u_bbr.flex6 = http_req->start_seq;
10847                         if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
10848                                 log.u_bbr.flex8 |= 4;
10849                                 log.u_bbr.epoch = http_req->end_seq;
10850                         }
10851                 }
10852 #endif
10853                 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
10854                     tlen, &log, true, &ltv);
10855         }
10856         if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
10857                 way_out = 4;
10858                 retval = 0;
10859                 goto done_with_input;
10860         }
10861         /*
10862          * If a segment with the ACK-bit set arrives in the SYN-SENT state
10863          * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
10864          */
10865         if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
10866             (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
10867                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
10868                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10869                 return(1);
10870         }
10871
10872         /*
10873          * Parse options on any incoming segment.
10874          */
10875         tcp_dooptions(&to, (u_char *)(th + 1),
10876             (th->th_off << 2) - sizeof(struct tcphdr),
10877             (thflags & TH_SYN) ? TO_SYN : 0);
10878
10879         /*
10880          * If timestamps were negotiated during SYN/ACK and a
10881          * segment without a timestamp is received, silently drop
10882          * the segment, unless it is a RST segment or missing timestamps are
10883          * tolerated.
10884          * See section 3.2 of RFC 7323.
10885          */
10886         if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) &&
10887             ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) {
10888                 way_out = 5;
10889                 retval = 0;
10890                 goto done_with_input;
10891         }
10892
10893         /*
10894          * Segment received on connection. Reset idle time and keep-alive
10895          * timer. XXX: This should be done after segment validation to
10896          * ignore broken/spoofed segs.
10897          */
10898         if  (tp->t_idle_reduce &&
10899              (tp->snd_max == tp->snd_una) &&
10900              ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
10901                 counter_u64_add(rack_input_idle_reduces, 1);
10902                 rack_cc_after_idle(rack, tp);
10903         }
10904         tp->t_rcvtime = ticks;
10905         /*
10906          * Unscale the window into a 32-bit value. For the SYN_SENT state
10907          * the scale is zero.
10908          */
10909         tiwin = th->th_win << tp->snd_scale;
10910 #ifdef STATS
10911         stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
10912 #endif
10913         if (tiwin > rack->r_ctl.rc_high_rwnd)
10914                 rack->r_ctl.rc_high_rwnd = tiwin;
10915         /*
10916          * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
10917          * this to occur after we've validated the segment.
10918          */
10919         if (tp->t_flags2 & TF2_ECN_PERMIT) {
10920                 if (thflags & TH_CWR) {
10921                         tp->t_flags2 &= ~TF2_ECN_SND_ECE;
10922                         tp->t_flags |= TF_ACKNOW;
10923                 }
10924                 switch (iptos & IPTOS_ECN_MASK) {
10925                 case IPTOS_ECN_CE:
10926                         tp->t_flags2 |= TF2_ECN_SND_ECE;
10927                         KMOD_TCPSTAT_INC(tcps_ecn_ce);
10928                         break;
10929                 case IPTOS_ECN_ECT0:
10930                         KMOD_TCPSTAT_INC(tcps_ecn_ect0);
10931                         break;
10932                 case IPTOS_ECN_ECT1:
10933                         KMOD_TCPSTAT_INC(tcps_ecn_ect1);
10934                         break;
10935                 }
10936
10937                 /* Process a packet differently from RFC3168. */
10938                 cc_ecnpkt_handler(tp, th, iptos);
10939
10940                 /* Congestion experienced. */
10941                 if (thflags & TH_ECE) {
10942                         rack_cong_signal(tp, th, CC_ECN);
10943                 }
10944         }
10945
10946         /*
10947          * If echoed timestamp is later than the current time, fall back to
10948          * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
10949          * were used when this connection was established.
10950          */
10951         if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
10952                 to.to_tsecr -= tp->ts_offset;
10953                 if (TSTMP_GT(to.to_tsecr, cts))
10954                         to.to_tsecr = 0;
10955         }
10956
10957         /*
10958          * If its the first time in we need to take care of options and
10959          * verify we can do SACK for rack!
10960          */
10961         if (rack->r_state == 0) {
10962                 /* Should be init'd by rack_init() */
10963                 KASSERT(rack->rc_inp != NULL,
10964                     ("%s: rack->rc_inp unexpectedly NULL", __func__));
10965                 if (rack->rc_inp == NULL) {
10966                         rack->rc_inp = tp->t_inpcb;
10967                 }
10968
10969                 /*
10970                  * Process options only when we get SYN/ACK back. The SYN
10971                  * case for incoming connections is handled in tcp_syncache.
10972                  * According to RFC1323 the window field in a SYN (i.e., a
10973                  * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
10974                  * this is traditional behavior, may need to be cleaned up.
10975                  */
10976                 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
10977                         /* Handle parallel SYN for ECN */
10978                         if (!(thflags & TH_ACK) &&
10979                             ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) &&
10980                             ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) {
10981                                 tp->t_flags2 |= TF2_ECN_PERMIT;
10982                                 tp->t_flags2 |= TF2_ECN_SND_ECE;
10983                                 TCPSTAT_INC(tcps_ecn_shs);
10984                         }
10985                         if ((to.to_flags & TOF_SCALE) &&
10986                             (tp->t_flags & TF_REQ_SCALE)) {
10987                                 tp->t_flags |= TF_RCVD_SCALE;
10988                                 tp->snd_scale = to.to_wscale;
10989                         } else
10990                                 tp->t_flags &= ~TF_REQ_SCALE;
10991                         /*
10992                          * Initial send window.  It will be updated with the
10993                          * next incoming segment to the scaled value.
10994                          */
10995                         tp->snd_wnd = th->th_win;
10996                         if ((to.to_flags & TOF_TS) &&
10997                             (tp->t_flags & TF_REQ_TSTMP)) {
10998                                 tp->t_flags |= TF_RCVD_TSTMP;
10999                                 tp->ts_recent = to.to_tsval;
11000                                 tp->ts_recent_age = cts;
11001                         } else
11002                                 tp->t_flags &= ~TF_REQ_TSTMP;
11003                         if (to.to_flags & TOF_MSS)
11004                                 tcp_mss(tp, to.to_mss);
11005                         if ((tp->t_flags & TF_SACK_PERMIT) &&
11006                             (to.to_flags & TOF_SACKPERM) == 0)
11007                                 tp->t_flags &= ~TF_SACK_PERMIT;
11008                         if (IS_FASTOPEN(tp->t_flags)) {
11009                                 if (to.to_flags & TOF_FASTOPEN) {
11010                                         uint16_t mss;
11011
11012                                         if (to.to_flags & TOF_MSS)
11013                                                 mss = to.to_mss;
11014                                         else
11015                                                 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
11016                                                         mss = TCP6_MSS;
11017                                                 else
11018                                                         mss = TCP_MSS;
11019                                         tcp_fastopen_update_cache(tp, mss,
11020                                             to.to_tfo_len, to.to_tfo_cookie);
11021                                 } else
11022                                         tcp_fastopen_disable_path(tp);
11023                         }
11024                 }
11025                 /*
11026                  * At this point we are at the initial call. Here we decide
11027                  * if we are doing RACK or not. We do this by seeing if
11028                  * TF_SACK_PERMIT is set and the sack-not-required is clear.
11029                  * The code now does do dup-ack counting so if you don't
11030                  * switch back you won't get rack & TLP, but you will still
11031                  * get this stack.
11032                  */
11033
11034                 if ((rack_sack_not_required == 0) &&
11035                     ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
11036                         tcp_switch_back_to_default(tp);
11037                         (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
11038                             tlen, iptos);
11039                         return (1);
11040                 }
11041                 /* Set the flag */
11042                 rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
11043                 tcp_set_hpts(tp->t_inpcb);
11044                 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
11045         }
11046         if (thflags & TH_FIN)
11047                 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
11048         us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
11049         if ((rack->rc_gp_dyn_mul) &&
11050             (rack->use_fixed_rate == 0) &&
11051             (rack->rc_always_pace)) {
11052                 /* Check in on probertt */
11053                 rack_check_probe_rtt(rack, us_cts);
11054         }
11055         if (rack->forced_ack) {
11056                 uint32_t us_rtt;
11057
11058                 /*
11059                  * A persist or keep-alive was forced out, update our
11060                  * min rtt time. Note we do not worry about lost
11061                  * retransmissions since KEEP-ALIVES and persists
11062                  * are usually way long on times of sending (though
11063                  * if we were really paranoid or worried we could
11064                  * at least use timestamps if available to validate).
11065                  */
11066                 rack->forced_ack = 0;
11067                 us_rtt = us_cts - rack->r_ctl.forced_ack_ts;
11068                 if (us_rtt == 0)
11069                         us_rtt = 1;
11070                 rack_log_rtt_upd(tp, rack, us_rtt, 0, NULL, 3);
11071                 rack_apply_updated_usrtt(rack, us_rtt, us_cts);
11072         }
11073         /*
11074          * This is the one exception case where we set the rack state
11075          * always. All other times (timers etc) we must have a rack-state
11076          * set (so we assure we have done the checks above for SACK).
11077          */
11078         rack->r_ctl.rc_rcvtime = cts;
11079         if (rack->r_state != tp->t_state)
11080                 rack_set_state(tp, rack);
11081         if (SEQ_GT(th->th_ack, tp->snd_una) &&
11082             (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
11083                 kern_prefetch(rsm, &prev_state);
11084         prev_state = rack->r_state;
11085         rack_clear_rate_sample(rack);
11086         retval = (*rack->r_substate) (m, th, so,
11087             tp, &to, drop_hdrlen,
11088             tlen, tiwin, thflags, nxt_pkt, iptos);
11089 #ifdef INVARIANTS
11090         if ((retval == 0) &&
11091             (tp->t_inpcb == NULL)) {
11092                 panic("retval:%d tp:%p t_inpcb:NULL state:%d",
11093                     retval, tp, prev_state);
11094         }
11095 #endif
11096         if (retval == 0) {
11097                 /*
11098                  * If retval is 1 the tcb is unlocked and most likely the tp
11099                  * is gone.
11100                  */
11101                 INP_WLOCK_ASSERT(tp->t_inpcb);
11102                 if ((rack->rc_gp_dyn_mul) &&
11103                     (rack->rc_always_pace) &&
11104                     (rack->use_fixed_rate == 0) &&
11105                     rack->in_probe_rtt &&
11106                     (rack->r_ctl.rc_time_probertt_starts == 0)) {
11107                         /*
11108                          * If we are going for target, lets recheck before
11109                          * we output.
11110                          */
11111                         rack_check_probe_rtt(rack, us_cts);
11112                 }
11113                 if (rack->set_pacing_done_a_iw == 0) {
11114                         /* How much has been acked? */
11115                         if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
11116                                 /* We have enough to set in the pacing segment size */
11117                                 rack->set_pacing_done_a_iw = 1;
11118                                 rack_set_pace_segments(tp, rack, __LINE__);
11119                         }
11120                 }
11121                 tcp_rack_xmit_timer_commit(rack, tp);
11122                 if (nxt_pkt == 0) {
11123                         if (rack->r_wanted_output != 0) {
11124 do_output_now:
11125                                 did_out = 1;
11126                                 (void)tp->t_fb->tfb_tcp_output(tp);
11127                         }
11128                         rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
11129                 }
11130                 if ((nxt_pkt == 0) &&
11131                     ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
11132                     (SEQ_GT(tp->snd_max, tp->snd_una) ||
11133                      (tp->t_flags & TF_DELACK) ||
11134                      ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
11135                       (tp->t_state <= TCPS_CLOSING)))) {
11136                         /* We could not send (probably in the hpts but stopped the timer earlier)? */
11137                         if ((tp->snd_max == tp->snd_una) &&
11138                             ((tp->t_flags & TF_DELACK) == 0) &&
11139                             (rack->rc_inp->inp_in_hpts) &&
11140                             (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
11141                                 /* keep alive not needed if we are hptsi output yet */
11142                                 ;
11143                         } else {
11144                                 int late = 0;
11145                                 if (rack->rc_inp->inp_in_hpts) {
11146                                         if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
11147                                                 us_cts = tcp_get_usecs(NULL);
11148                                                 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
11149                                                         rack->r_early = 1;
11150                                                         rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
11151                                                 } else
11152                                                         late = 1;
11153                                                 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
11154                                         }
11155                                         tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
11156                                 }
11157                                 if (late && (did_out == 0)) {
11158                                         /*
11159                                          * We are late in the sending
11160                                          * and we did not call the output
11161                                          * (this probably should not happen).
11162                                          */
11163                                         goto do_output_now;
11164                                 }
11165                                 rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
11166                         }
11167                         way_out = 1;
11168                 } else if (nxt_pkt == 0) {
11169                         /* Do we have the correct timer running? */
11170                         rack_timer_audit(tp, rack, &so->so_snd);
11171                         way_out = 2;
11172                 }
11173         done_with_input:
11174                 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
11175                 if (did_out)
11176                         rack->r_wanted_output = 0;
11177 #ifdef INVARIANTS
11178                 if (tp->t_inpcb == NULL) {
11179                         panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
11180                               did_out,
11181                               retval, tp, prev_state);
11182                 }
11183 #endif
11184         }
11185         return (retval);
11186 }
11187
11188 void
11189 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
11190     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
11191 {
11192         struct timeval tv;
11193
11194         /* First lets see if we have old packets */
11195         if (tp->t_in_pkt) {
11196                 if (ctf_do_queued_segments(so, tp, 1)) {
11197                         m_freem(m);
11198                         return;
11199                 }
11200         }
11201         if (m->m_flags & M_TSTMP_LRO) {
11202                 tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
11203                 tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
11204         } else {
11205                 /* Should not be should we kassert instead? */
11206                 tcp_get_usecs(&tv);
11207         }
11208         if(rack_do_segment_nounlock(m, th, so, tp,
11209                                     drop_hdrlen, tlen, iptos, 0, &tv) == 0) {
11210                 tcp_handle_wakeup(tp, so);
11211                 INP_WUNLOCK(tp->t_inpcb);
11212         }
11213 }
11214
11215 struct rack_sendmap *
11216 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
11217 {
11218         struct rack_sendmap *rsm = NULL;
11219         int32_t idx;
11220         uint32_t srtt = 0, thresh = 0, ts_low = 0;
11221
11222         /* Return the next guy to be re-transmitted */
11223         if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
11224                 return (NULL);
11225         }
11226         if (tp->t_flags & TF_SENTFIN) {
11227                 /* retran the end FIN? */
11228                 return (NULL);
11229         }
11230         /* ok lets look at this one */
11231         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
11232         if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
11233                 goto check_it;
11234         }
11235         rsm = rack_find_lowest_rsm(rack);
11236         if (rsm == NULL) {
11237                 return (NULL);
11238         }
11239 check_it:
11240         if (rsm->r_flags & RACK_ACKED) {
11241                 return (NULL);
11242         }
11243         if (((rsm->r_flags & RACK_SACK_PASSED) == 0) &&
11244             (rsm->r_dupack < DUP_ACK_THRESHOLD)) {
11245                 /* Its not yet ready */
11246                 return (NULL);
11247         }
11248         srtt = rack_grab_rtt(tp, rack);
11249         idx = rsm->r_rtr_cnt - 1;
11250         ts_low = rsm->r_tim_lastsent[idx];
11251         thresh = rack_calc_thresh_rack(rack, srtt, tsused);
11252         if ((tsused == ts_low) ||
11253             (TSTMP_LT(tsused, ts_low))) {
11254                 /* No time since sending */
11255                 return (NULL);
11256         }
11257         if ((tsused - ts_low) < thresh) {
11258                 /* It has not been long enough yet */
11259                 return (NULL);
11260         }
11261         if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
11262             ((rsm->r_flags & RACK_SACK_PASSED) &&
11263              (rack->sack_attack_disable == 0))) {
11264                 /*
11265                  * We have passed the dup-ack threshold <or>
11266                  * a SACK has indicated this is missing.
11267                  * Note that if you are a declared attacker
11268                  * it is only the dup-ack threshold that
11269                  * will cause retransmits.
11270                  */
11271                 /* log retransmit reason */
11272                 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
11273                 return (rsm);
11274         }
11275         return (NULL);
11276 }
11277
11278 static void
11279 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
11280                            uint64_t bw_est, uint64_t bw, uint64_t len_time, int method,
11281                            int line, struct rack_sendmap *rsm)
11282 {
11283         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
11284                 union tcp_log_stackspecific log;
11285                 struct timeval tv;
11286
11287                 memset(&log, 0, sizeof(log));
11288                 log.u_bbr.flex1 = slot;
11289                 log.u_bbr.flex2 = len;
11290                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs;
11291                 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs;
11292                 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss;
11293                 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca;
11294                 log.u_bbr.use_lt_bw = rack->app_limited_needs_set;
11295                 log.u_bbr.use_lt_bw <<= 1;
11296                 log.u_bbr.use_lt_bw = rack->rc_gp_filled;
11297                 log.u_bbr.use_lt_bw <<= 1;
11298                 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
11299                 log.u_bbr.use_lt_bw <<= 1;
11300                 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
11301                 log.u_bbr.pkt_epoch = line;
11302                 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec;
11303                 log.u_bbr.bw_inuse = bw_est;
11304                 log.u_bbr.delRate = bw;
11305                 if (rack->r_ctl.gp_bw == 0)
11306                         log.u_bbr.cur_del_rate = 0;
11307                 else
11308                         log.u_bbr.cur_del_rate = rack_get_bw(rack);
11309                 log.u_bbr.rttProp = len_time;
11310                 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt;
11311                 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit;
11312                 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
11313                 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) {
11314                         /* We are in slow start */
11315                         log.u_bbr.flex7 = 1;
11316                 } else {
11317                         /* we are on congestion avoidance */
11318                         log.u_bbr.flex7 = 0;
11319                 }
11320                 log.u_bbr.flex8 = method;
11321                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
11322                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
11323                 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec;
11324                 log.u_bbr.cwnd_gain <<= 1;
11325                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
11326                 log.u_bbr.cwnd_gain <<= 1;
11327                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
11328                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
11329                     &rack->rc_inp->inp_socket->so_rcv,
11330                     &rack->rc_inp->inp_socket->so_snd,
11331                     BBR_LOG_HPTSI_CALC, 0,
11332                     0, &log, false, &tv);
11333         }
11334 }
11335
11336 static uint32_t
11337 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss)
11338 {
11339         uint32_t new_tso, user_max;
11340
11341         user_max = rack->rc_user_set_max_segs * mss;
11342         if (rack->rc_force_max_seg) {
11343                 return (user_max);
11344         }
11345         if (rack->use_fixed_rate &&
11346             ((rack->r_ctl.crte == NULL) ||
11347              (bw != rack->r_ctl.crte->rate))) {
11348                 /* Use the user mss since we are not exactly matched */
11349                 return (user_max);
11350         }
11351         new_tso = tcp_get_pacing_burst_size(bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL);
11352         if (new_tso > user_max)
11353                 new_tso = user_max;
11354         return(new_tso);
11355 }
11356
11357 static void
11358 rack_log_hdwr_pacing(struct tcp_rack *rack, const struct ifnet *ifp,
11359                      uint64_t rate, uint64_t hw_rate, int line,
11360                      int error)
11361 {
11362         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
11363                 union tcp_log_stackspecific log;
11364                 struct timeval tv;
11365
11366                 memset(&log, 0, sizeof(log));
11367                 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff);
11368                 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff);
11369                 log.u_bbr.flex3 = (((uint64_t)ifp  >> 32) & 0x00000000ffffffff);
11370                 log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff);
11371                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
11372                 log.u_bbr.bw_inuse = rate;
11373                 log.u_bbr.flex5 = line;
11374                 log.u_bbr.flex6 = error;
11375                 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs;
11376                 log.u_bbr.flex8 = rack->use_fixed_rate;
11377                 log.u_bbr.flex8 <<= 1;
11378                 log.u_bbr.flex8 |= rack->rack_hdrw_pacing;
11379                 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
11380                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
11381                     &rack->rc_inp->inp_socket->so_rcv,
11382                     &rack->rc_inp->inp_socket->so_snd,
11383                     BBR_LOG_HDWR_PACE, 0,
11384                     0, &log, false, &tv);
11385         }
11386 }
11387
11388 static int32_t
11389 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz)
11390 {
11391         uint64_t lentim, fill_bw;
11392
11393         /* Lets first see if we are full, if so continue with normal rate */
11394         if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use)
11395                 return (slot);
11396         if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd)
11397                 return (slot);
11398         if (rack->r_ctl.rc_last_us_rtt == 0)
11399                 return (slot);
11400         if (rack->rc_pace_fill_if_rttin_range &&
11401             (rack->r_ctl.rc_last_us_rtt >=
11402              (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) {
11403                 /* The rtt is huge, N * smallest, lets not fill */
11404                 return (slot);
11405         }
11406         /*
11407          * first lets calculate the b/w based on the last us-rtt
11408          * and the sndwnd.
11409          */
11410         fill_bw = rack->r_ctl.cwnd_to_use;
11411         /* Take the rwnd if its smaller */
11412         if (fill_bw > rack->rc_tp->snd_wnd)
11413                 fill_bw = rack->rc_tp->snd_wnd;
11414         fill_bw *= (uint64_t)HPTS_USEC_IN_SEC;
11415         fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt;
11416         /* We are below the min b/w */
11417         if (fill_bw < RACK_MIN_BW)
11418                 return (slot);
11419         /*
11420          * Ok fill_bw holds our mythical b/w to fill the cwnd
11421          * in a rtt, what does that time wise equate too?
11422          */
11423         lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC;
11424         lentim /= fill_bw;
11425         if (lentim < slot) {
11426                 rack_log_pacing_delay_calc(rack, len, slot, fill_bw,
11427                                            0, lentim, 12, __LINE__, NULL);
11428                 return ((int32_t)lentim);
11429         } else
11430                 return (slot);
11431 }
11432
11433 static int32_t
11434 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz)
11435 {
11436         struct rack_sendmap *lrsm;
11437         int32_t slot = 0;
11438         int err;
11439
11440         if (rack->rc_always_pace == 0) {
11441                 /*
11442                  * We use the most optimistic possible cwnd/srtt for
11443                  * sending calculations. This will make our
11444                  * calculation anticipate getting more through
11445                  * quicker then possible. But thats ok we don't want
11446                  * the peer to have a gap in data sending.
11447                  */
11448                 uint32_t srtt, cwnd, tr_perms = 0;
11449                 int32_t reduce = 0;
11450
11451         old_method:
11452                 /*
11453                  * We keep no precise pacing with the old method
11454                  * instead we use the pacer to mitigate bursts.
11455                  */
11456                 rack->r_ctl.rc_agg_delayed = 0;
11457                 rack->r_early = 0;
11458                 rack->r_late = 0;
11459                 rack->r_ctl.rc_agg_early = 0;
11460                 if (rack->r_ctl.rc_rack_min_rtt)
11461                         srtt = rack->r_ctl.rc_rack_min_rtt;
11462                 else
11463                         srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
11464                 if (rack->r_ctl.rc_rack_largest_cwnd)
11465                         cwnd = rack->r_ctl.rc_rack_largest_cwnd;
11466                 else
11467                         cwnd = rack->r_ctl.cwnd_to_use;
11468                 tr_perms = cwnd / srtt;
11469                 if (tr_perms == 0) {
11470                         tr_perms = ctf_fixed_maxseg(tp);
11471                 }
11472                 /*
11473                  * Calculate how long this will take to drain, if
11474                  * the calculation comes out to zero, thats ok we
11475                  * will use send_a_lot to possibly spin around for
11476                  * more increasing tot_len_this_send to the point
11477                  * that its going to require a pace, or we hit the
11478                  * cwnd. Which in that case we are just waiting for
11479                  * a ACK.
11480                  */
11481                 slot = len / tr_perms;
11482                 /* Now do we reduce the time so we don't run dry? */
11483                 if (slot && rack_slot_reduction) {
11484                         reduce = (slot / rack_slot_reduction);
11485                         if (reduce < slot) {
11486                                 slot -= reduce;
11487                         } else
11488                                 slot = 0;
11489                 }
11490                 slot *=  HPTS_USEC_IN_MSEC;
11491                 if (rsm == NULL) {
11492                         /*
11493                          * We always consider ourselves app limited with old style
11494                          * that are not retransmits. This could be the initial
11495                          * measurement, but thats ok its all setup and specially
11496                          * handled. If another send leaks out, then that too will
11497                          * be mark app-limited.
11498                          */
11499                         lrsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
11500                         if (lrsm && ((lrsm->r_flags & RACK_APP_LIMITED) == 0)) {
11501                                 rack->r_ctl.rc_first_appl = lrsm;
11502                                 lrsm->r_flags |= RACK_APP_LIMITED;
11503                                 rack->r_ctl.rc_app_limited_cnt++;
11504                         }
11505                 }
11506                 rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL);
11507         } else {
11508                 uint64_t bw_est, res, lentim, rate_wanted;
11509                 uint32_t orig_val, srtt, segs, oh;
11510
11511                 if ((rack->r_rr_config == 1) && rsm) {
11512                         return (rack->r_ctl.rc_min_to * HPTS_USEC_IN_MSEC);
11513                 }
11514                 if (rack->use_fixed_rate) {
11515                         rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack);
11516                 } else if ((rack->r_ctl.init_rate == 0) &&
11517 #ifdef NETFLIX_PEAKRATE
11518                            (rack->rc_tp->t_maxpeakrate == 0) &&
11519 #endif
11520                            (rack->r_ctl.gp_bw == 0)) {
11521                         /* no way to yet do an estimate */
11522                         bw_est = rate_wanted = 0;
11523                 } else {
11524                         bw_est = rack_get_bw(rack);
11525                         rate_wanted = rack_get_output_bw(rack, bw_est, rsm);
11526                 }
11527                 if ((bw_est == 0) || (rate_wanted == 0)) {
11528                         /*
11529                          * No way yet to make a b/w estimate or
11530                          * our raise is set incorrectly.
11531                          */
11532                         goto old_method;
11533                 }
11534                 /* We need to account for all the overheads */
11535                 segs = (len + segsiz - 1) / segsiz;
11536                 /*
11537                  * We need the diff between 1514 bytes (e-mtu with e-hdr)
11538                  * and how much data we put in each packet. Yes this
11539                  * means we may be off if we are larger than 1500 bytes
11540                  * or smaller. But this just makes us more conservative.
11541                  */
11542                 if (ETHERNET_SEGMENT_SIZE > segsiz)
11543                         oh = ETHERNET_SEGMENT_SIZE - segsiz;
11544                 else
11545                         oh = 0;
11546                 segs *= oh;
11547                 lentim = (uint64_t)(len + segs)  * (uint64_t)HPTS_USEC_IN_SEC;
11548                 res = lentim / rate_wanted;
11549                 slot = (uint32_t)res;
11550                 orig_val = rack->r_ctl.rc_pace_max_segs;
11551                 rack_set_pace_segments(rack->rc_tp, rack, __LINE__);
11552                 /* Did we change the TSO size, if so log it */
11553                 if (rack->r_ctl.rc_pace_max_segs != orig_val)
11554                         rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL);
11555                 if ((rack->rc_pace_to_cwnd) &&
11556                     (rack->in_probe_rtt == 0) &&
11557                     (IN_RECOVERY(rack->rc_tp->t_flags) == 0)) {
11558                         /*
11559                          * We want to pace at our rate *or* faster to
11560                          * fill the cwnd to the max if its not full.
11561                          */
11562                         slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz);
11563                 }
11564                 if ((rack->rc_inp->inp_route.ro_nh != NULL) &&
11565                     (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
11566                         if ((rack->rack_hdw_pace_ena) &&
11567                             (rack->rack_hdrw_pacing == 0) &&
11568                             (rack->rack_attempt_hdwr_pace == 0)) {
11569                                 /*
11570                                  * Lets attempt to turn on hardware pacing
11571                                  * if we can.
11572                                  */
11573                                 rack->rack_attempt_hdwr_pace = 1;
11574                                 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp,
11575                                                                        rack->rc_inp->inp_route.ro_nh->nh_ifp,
11576                                                                        rate_wanted,
11577                                                                        RS_PACING_GEQ,
11578                                                                        &err);
11579                                 if (rack->r_ctl.crte) {
11580                                         rack->rack_hdrw_pacing = 1;
11581                                         rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(rate_wanted, segsiz,
11582                                                                                                  0, rack->r_ctl.crte,
11583                                                                                                  NULL);
11584                                         rack_log_hdwr_pacing(rack, rack->rc_inp->inp_route.ro_nh->nh_ifp,
11585                                                              rate_wanted, rack->r_ctl.crte->rate, __LINE__,
11586                                                              err);
11587                                 }
11588                         } else if (rack->rack_hdrw_pacing &&
11589                                    (rack->r_ctl.crte->rate != rate_wanted)) {
11590                                 /* Do we need to adjust our rate? */
11591                                 const struct tcp_hwrate_limit_table *nrte;
11592
11593                                 nrte = tcp_chg_pacing_rate(rack->r_ctl.crte,
11594                                                            rack->rc_tp,
11595                                                            rack->rc_inp->inp_route.ro_nh->nh_ifp,
11596                                                            rate_wanted,
11597                                                            RS_PACING_GEQ,
11598                                                            &err);
11599                                 if (nrte == NULL) {
11600                                         /* Lost the rate */
11601                                         rack->rack_hdrw_pacing = 0;
11602                                         rack_set_pace_segments(rack->rc_tp, rack, __LINE__);
11603                                 } else if (nrte != rack->r_ctl.crte) {
11604                                         rack->r_ctl.crte = nrte;
11605                                         rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(rate_wanted,
11606                                                                                                  segsiz, 0,
11607                                                                                                  rack->r_ctl.crte,
11608                                                                                                  NULL);
11609                                         rack_log_hdwr_pacing(rack, rack->rc_inp->inp_route.ro_nh->nh_ifp,
11610                                                              rate_wanted, rack->r_ctl.crte->rate, __LINE__,
11611                                                              err);
11612                                 }
11613                         }
11614                 }
11615                 if (rack_limit_time_with_srtt &&
11616                     (rack->use_fixed_rate == 0) &&
11617 #ifdef NETFLIX_PEAKRATE
11618                     (rack->rc_tp->t_maxpeakrate == 0) &&
11619 #endif
11620                     (rack->rack_hdrw_pacing == 0)) {
11621                         /*
11622                          * Sanity check, we do not allow the pacing delay
11623                          * to be longer than the SRTT of the path. If it is
11624                          * a slow path, then adding a packet should increase
11625                          * the RTT and compensate for this i.e. the srtt will
11626                          * be greater so the allowed pacing time will be greater.
11627                          *
11628                          * Note this restriction is not for where a peak rate
11629                          * is set, we are doing fixed pacing or hardware pacing.
11630                          */
11631                         if (rack->rc_tp->t_srtt)
11632                                 srtt = (TICKS_2_USEC(rack->rc_tp->t_srtt) >> TCP_RTT_SHIFT);
11633                         else
11634                                 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC;    /* its in ms convert */
11635                         if (srtt < slot) {
11636                                 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL);
11637                                 slot = srtt;
11638                         }
11639                 }
11640                 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm);
11641         }
11642         if (slot)
11643                 counter_u64_add(rack_calc_nonzero, 1);
11644         else
11645                 counter_u64_add(rack_calc_zero, 1);
11646         return (slot);
11647 }
11648
11649 static void
11650 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack,
11651     tcp_seq startseq, uint32_t sb_offset)
11652 {
11653         struct rack_sendmap *my_rsm = NULL;
11654         struct rack_sendmap fe;
11655
11656         if (tp->t_state < TCPS_ESTABLISHED) {
11657                 /*
11658                  * We don't start any measurements if we are
11659                  * not at least established.
11660                  */
11661                 return;
11662         }
11663         tp->t_flags |= TF_GPUTINPROG;
11664         rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
11665         rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
11666         tp->gput_seq = startseq;
11667         rack->app_limited_needs_set = 0;
11668         if (rack->in_probe_rtt)
11669                 rack->measure_saw_probe_rtt = 1;
11670         else if ((rack->measure_saw_probe_rtt) &&
11671                  (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
11672                 rack->measure_saw_probe_rtt = 0;
11673         if (rack->rc_gp_filled)
11674                 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
11675         else {
11676                 /* Special case initial measurement */
11677                 rack->r_ctl.rc_gp_output_ts = tp->gput_ts = tcp_get_usecs(NULL);
11678         }
11679         /*
11680          * We take a guess out into the future,
11681          * if we have no measurement and no
11682          * initial rate, we measure the first
11683          * initial-windows worth of data to
11684          * speed up getting some GP measurement and
11685          * thus start pacing.
11686          */
11687         if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) {
11688                 rack->app_limited_needs_set = 1;
11689                 tp->gput_ack = startseq + max(rc_init_window(rack),
11690                                               (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
11691                 rack_log_pacing_delay_calc(rack,
11692                                            tp->gput_seq,
11693                                            tp->gput_ack,
11694                                            0,
11695                                            tp->gput_ts,
11696                                            rack->r_ctl.rc_app_limited_cnt,
11697                                            9,
11698                                            __LINE__, NULL);
11699                 return;
11700         }
11701         if (sb_offset) {
11702                 /*
11703                  * We are out somewhere in the sb
11704                  * can we use the already outstanding data?
11705                  */
11706
11707                 if (rack->r_ctl.rc_app_limited_cnt == 0) {
11708                         /*
11709                          * Yes first one is good and in this case
11710                          * the tp->gput_ts is correctly set based on
11711                          * the last ack that arrived (no need to
11712                          * set things up when an ack comes in).
11713                          */
11714                         my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
11715                         if ((my_rsm == NULL) ||
11716                             (my_rsm->r_rtr_cnt != 1)) {
11717                                 /* retransmission? */
11718                                 goto use_latest;
11719                         }
11720                 } else {
11721                         if (rack->r_ctl.rc_first_appl == NULL) {
11722                                 /*
11723                                  * If rc_first_appl is NULL
11724                                  * then the cnt should be 0.
11725                                  * This is probably an error, maybe
11726                                  * a KASSERT would be approprate.
11727                                  */
11728                                 goto use_latest;
11729                         }
11730                         /*
11731                          * If we have a marker pointer to the last one that is
11732                          * app limited we can use that, but we need to set
11733                          * things up so that when it gets ack'ed we record
11734                          * the ack time (if its not already acked).
11735                          */
11736                         rack->app_limited_needs_set = 1;
11737                         /*
11738                          * We want to get to the rsm that is either
11739                          * next with space i.e. over 1 MSS or the one
11740                          * after that (after the app-limited).
11741                          */
11742                         my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
11743                                          rack->r_ctl.rc_first_appl);
11744                         if (my_rsm) {
11745                                 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp))
11746                                         /* Have to use the next one */
11747                                         my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
11748                                                          my_rsm);
11749                                 else {
11750                                         /* Use after the first MSS of it is acked */
11751                                         tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp);
11752                                         goto start_set;
11753                                 }
11754                         }
11755                         if ((my_rsm == NULL) ||
11756                             (my_rsm->r_rtr_cnt != 1)) {
11757                                 /*
11758                                  * Either its a retransmit or
11759                                  * the last is the app-limited one.
11760                                  */
11761                                 goto use_latest;
11762                         }
11763                 }
11764                 tp->gput_seq = my_rsm->r_start;
11765 start_set:
11766                 if (my_rsm->r_flags & RACK_ACKED) {
11767                         /*
11768                          * This one has been acked use the arrival ack time
11769                          */
11770                         tp->gput_ts = my_rsm->r_ack_arrival;
11771                         rack->app_limited_needs_set = 0;
11772                 }
11773                 rack->r_ctl.rc_gp_output_ts = my_rsm->usec_orig_send;
11774                 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
11775                 rack_log_pacing_delay_calc(rack,
11776                                            tp->gput_seq,
11777                                            tp->gput_ack,
11778                                            (uint64_t)my_rsm,
11779                                            tp->gput_ts,
11780                                            rack->r_ctl.rc_app_limited_cnt,
11781                                            9,
11782                                            __LINE__, NULL);
11783                 return;
11784         }
11785
11786 use_latest:
11787         /*
11788          * We don't know how long we may have been
11789          * idle or if this is the first-send. Lets
11790          * setup the flag so we will trim off
11791          * the first ack'd data so we get a true
11792          * measurement.
11793          */
11794         rack->app_limited_needs_set = 1;
11795         tp->gput_ack = startseq + rack_get_measure_window(tp, rack);
11796         /* Find this guy so we can pull the send time */
11797         fe.r_start = startseq;
11798         my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
11799         if (my_rsm) {
11800                 rack->r_ctl.rc_gp_output_ts = my_rsm->usec_orig_send;
11801                 if (my_rsm->r_flags & RACK_ACKED) {
11802                         /*
11803                          * Unlikely since its probably what was
11804                          * just transmitted (but I am paranoid).
11805                          */
11806                         tp->gput_ts = my_rsm->r_ack_arrival;
11807                         rack->app_limited_needs_set = 0;
11808                 }
11809                 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) {
11810                         /* This also is unlikely */
11811                         tp->gput_seq = my_rsm->r_start;
11812                 }
11813         } else {
11814                 /*
11815                  * TSNH unless we have some send-map limit,
11816                  * and even at that it should not be hitting
11817                  * that limit (we should have stopped sending).
11818                  */
11819                 rack->r_ctl.rc_gp_output_ts = tcp_get_usecs(NULL);
11820         }
11821         rack_log_pacing_delay_calc(rack,
11822                                    tp->gput_seq,
11823                                    tp->gput_ack,
11824                                    (uint64_t)my_rsm,
11825                                    tp->gput_ts,
11826                                    rack->r_ctl.rc_app_limited_cnt,
11827                                    9, __LINE__, NULL);
11828 }
11829
11830 static inline uint32_t
11831 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack,  uint32_t cwnd_to_use,
11832     uint32_t avail, int32_t sb_offset)
11833 {
11834         uint32_t len;
11835         uint32_t sendwin;
11836
11837         if (tp->snd_wnd > cwnd_to_use)
11838                 sendwin = cwnd_to_use;
11839         else
11840                 sendwin = tp->snd_wnd;
11841         if (ctf_outstanding(tp) >= tp->snd_wnd) {
11842                 /* We never want to go over our peers rcv-window */
11843                 len = 0;
11844         } else {
11845                 uint32_t flight;
11846
11847                 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
11848                 if (flight >= sendwin) {
11849                         /*
11850                          * We have in flight what we are allowed by cwnd (if
11851                          * it was rwnd blocking it would have hit above out
11852                          * >= tp->snd_wnd).
11853                          */
11854                         return (0);
11855                 }
11856                 len = sendwin - flight;
11857                 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) {
11858                         /* We would send too much (beyond the rwnd) */
11859                         len = tp->snd_wnd - ctf_outstanding(tp);
11860                 }
11861                 if ((len + sb_offset) > avail) {
11862                         /*
11863                          * We don't have that much in the SB, how much is
11864                          * there?
11865                          */
11866                         len = avail - sb_offset;
11867                 }
11868         }
11869         return (len);
11870 }
11871
11872 static int
11873 rack_output(struct tcpcb *tp)
11874 {
11875         struct socket *so;
11876         uint32_t recwin;
11877         uint32_t sb_offset;
11878         int32_t len, flags, error = 0;
11879         struct mbuf *m;
11880         struct mbuf *mb;
11881         uint32_t if_hw_tsomaxsegcount = 0;
11882         uint32_t if_hw_tsomaxsegsize;
11883         int32_t segsiz, minseg;
11884         long tot_len_this_send = 0;
11885         struct ip *ip = NULL;
11886 #ifdef TCPDEBUG
11887         struct ipovly *ipov = NULL;
11888 #endif
11889         struct udphdr *udp = NULL;
11890         struct tcp_rack *rack;
11891         struct tcphdr *th;
11892         uint8_t pass = 0;
11893         uint8_t mark = 0;
11894         uint8_t wanted_cookie = 0;
11895         u_char opt[TCP_MAXOLEN];
11896         unsigned ipoptlen, optlen, hdrlen, ulen=0;
11897         uint32_t rack_seq;
11898
11899 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
11900         unsigned ipsec_optlen = 0;
11901
11902 #endif
11903         int32_t idle, sendalot;
11904         int32_t sub_from_prr = 0;
11905         volatile int32_t sack_rxmit;
11906         struct rack_sendmap *rsm = NULL;
11907         int32_t tso, mtu;
11908         struct tcpopt to;
11909         int32_t slot = 0;
11910         int32_t sup_rack = 0;
11911         uint32_t cts, us_cts, delayed, early;
11912         uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0;
11913         uint32_t cwnd_to_use;
11914         int32_t do_a_prefetch;
11915         int32_t prefetch_rsm = 0;
11916         int32_t orig_len;
11917         struct timeval tv;
11918         int32_t prefetch_so_done = 0;
11919         struct tcp_log_buffer *lgb = NULL;
11920         struct inpcb *inp;
11921         struct sockbuf *sb;
11922 #ifdef INET6
11923         struct ip6_hdr *ip6 = NULL;
11924         int32_t isipv6;
11925 #endif
11926         uint8_t filled_all = 0;
11927         bool hw_tls = false;
11928
11929         /* setup and take the cache hits here */
11930         rack = (struct tcp_rack *)tp->t_fb_ptr;
11931         inp = rack->rc_inp;
11932         so = inp->inp_socket;
11933         sb = &so->so_snd;
11934         kern_prefetch(sb, &do_a_prefetch);
11935         do_a_prefetch = 1;
11936         hpts_calling = inp->inp_hpts_calls;
11937         hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0;
11938
11939         NET_EPOCH_ASSERT();
11940         INP_WLOCK_ASSERT(inp);
11941 #ifdef TCP_OFFLOAD
11942         if (tp->t_flags & TF_TOE)
11943                 return (tcp_offload_output(tp));
11944 #endif
11945         /*
11946          * For TFO connections in SYN_RECEIVED, only allow the initial
11947          * SYN|ACK and those sent by the retransmit timer.
11948          */
11949         if (IS_FASTOPEN(tp->t_flags) &&
11950             (tp->t_state == TCPS_SYN_RECEIVED) &&
11951             SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
11952             (rack->r_ctl.rc_resend == NULL))         /* not a retransmit */
11953                 return (0);
11954 #ifdef INET6
11955         if (rack->r_state) {
11956                 /* Use the cache line loaded if possible */
11957                 isipv6 = rack->r_is_v6;
11958         } else {
11959                 isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
11960         }
11961 #endif
11962         early = 0;
11963         us_cts = tcp_get_usecs(&tv);
11964         cts = tcp_tv_to_mssectick(&tv);
11965         if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
11966             inp->inp_in_hpts) {
11967                 /*
11968                  * We are on the hpts for some timer but not hptsi output.
11969                  * Remove from the hpts unconditionally.
11970                  */
11971                 rack_timer_cancel(tp, rack, cts, __LINE__);
11972         }
11973         /* Are we pacing and late? */
11974         if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
11975             TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) {
11976                 /* We are delayed */
11977                 delayed = us_cts - rack->r_ctl.rc_last_output_to;
11978         } else {
11979                 delayed = 0;
11980         }
11981         /* Do the timers, which may override the pacer  */
11982         if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
11983                 if (rack_process_timers(tp, rack, cts, hpts_calling)) {
11984                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
11985                         return (0);
11986                 }
11987         }
11988         if ((rack->r_timer_override) ||
11989             (delayed) ||
11990             (tp->t_state < TCPS_ESTABLISHED)) {
11991                 if (tp->t_inpcb->inp_in_hpts)
11992                         tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
11993         } else if (tp->t_inpcb->inp_in_hpts) {
11994                 /*
11995                  * On the hpts you can't pass even if ACKNOW is on, we will
11996                  * when the hpts fires.
11997                  */
11998                 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
11999                 return (0);
12000         }
12001         inp->inp_hpts_calls = 0;
12002         /* Finish out both pacing early and late accounting */
12003         if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
12004             TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
12005                 early = rack->r_ctl.rc_last_output_to - us_cts;
12006         } else
12007                 early = 0;
12008         if (delayed) {
12009                 rack->r_ctl.rc_agg_delayed += delayed;
12010                 rack->r_late = 1;
12011         } else if (early) {
12012                 rack->r_ctl.rc_agg_early += early;
12013                 rack->r_early = 1;
12014         }
12015         /* Now that early/late accounting is done turn off the flag */
12016         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
12017         rack->r_wanted_output = 0;
12018         rack->r_timer_override = 0;
12019         /*
12020          * For TFO connections in SYN_SENT or SYN_RECEIVED,
12021          * only allow the initial SYN or SYN|ACK and those sent
12022          * by the retransmit timer.
12023          */
12024         if (IS_FASTOPEN(tp->t_flags) &&
12025             ((tp->t_state == TCPS_SYN_RECEIVED) ||
12026              (tp->t_state == TCPS_SYN_SENT)) &&
12027             SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
12028             (tp->t_rxtshift == 0)) {              /* not a retransmit */
12029                 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
12030                 goto just_return_nolock;
12031         }
12032         /*
12033          * Determine length of data that should be transmitted, and flags
12034          * that will be used. If there is some data or critical controls
12035          * (SYN, RST) to send, then transmit; otherwise, investigate
12036          * further.
12037          */
12038         idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
12039         if (tp->t_idle_reduce) {
12040                 if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
12041                         rack_cc_after_idle(rack, tp);
12042         }
12043         tp->t_flags &= ~TF_LASTIDLE;
12044         if (idle) {
12045                 if (tp->t_flags & TF_MORETOCOME) {
12046                         tp->t_flags |= TF_LASTIDLE;
12047                         idle = 0;
12048                 }
12049         }
12050         if ((tp->snd_una == tp->snd_max) &&
12051             rack->r_ctl.rc_went_idle_time &&
12052             TSTMP_GT(us_cts, rack->r_ctl.rc_went_idle_time)) {
12053                 idle = us_cts - rack->r_ctl.rc_went_idle_time;
12054                 if (idle > rack_min_probertt_hold) {
12055                         /* Count as a probe rtt */
12056                         if (rack->in_probe_rtt == 0) {
12057                                 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
12058                                 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
12059                                 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
12060                                 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
12061                         } else {
12062                                 rack_exit_probertt(rack, us_cts);
12063                         }
12064                 }
12065                 idle = 0;
12066         }
12067 again:
12068         /*
12069          * If we've recently taken a timeout, snd_max will be greater than
12070          * snd_nxt.  There may be SACK information that allows us to avoid
12071          * resending already delivered data.  Adjust snd_nxt accordingly.
12072          */
12073         sendalot = 0;
12074         us_cts = tcp_get_usecs(&tv);
12075         cts = tcp_tv_to_mssectick(&tv);
12076         tso = 0;
12077         mtu = 0;
12078         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
12079         minseg = segsiz;
12080         sb_offset = tp->snd_max - tp->snd_una;
12081         cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
12082 #ifdef NETFLIX_SHARED_CWND
12083         if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) &&
12084             rack->rack_enable_scwnd) {
12085                 /* We are doing cwnd sharing */
12086                 if (rack->rc_gp_filled &&
12087                     (rack->rack_attempted_scwnd == 0) &&
12088                     (rack->r_ctl.rc_scw == NULL) &&
12089                     tp->t_lib) {
12090                         /* The pcbid is in, lets make an attempt */
12091                         counter_u64_add(rack_try_scwnd, 1);
12092                         rack->rack_attempted_scwnd = 1;
12093                         rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp,
12094                                                                    &rack->r_ctl.rc_scw_index,
12095                                                                    segsiz);
12096                 }
12097                 if (rack->r_ctl.rc_scw &&
12098                     (rack->rack_scwnd_is_idle == 1) &&
12099                     (rack->rc_in_persist == 0) &&
12100                     sbavail(sb)) {
12101                         /* we are no longer out of data */
12102                         tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
12103                         rack->rack_scwnd_is_idle = 0;
12104                 }
12105                 if (rack->r_ctl.rc_scw) {
12106                         /* First lets update and get the cwnd */
12107                         rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw,
12108                                                                     rack->r_ctl.rc_scw_index,
12109                                                                     tp->snd_cwnd, tp->snd_wnd, segsiz);
12110                 }
12111         }
12112 #endif
12113         flags = tcp_outflags[tp->t_state];
12114         while (rack->rc_free_cnt < rack_free_cache) {
12115                 rsm = rack_alloc(rack);
12116                 if (rsm == NULL) {
12117                         if (inp->inp_hpts_calls)
12118                                 /* Retry in a ms */
12119                                 slot = (1 * HPTS_USEC_IN_MSEC);
12120                         goto just_return_nolock;
12121                 }
12122                 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
12123                 rack->rc_free_cnt++;
12124                 rsm = NULL;
12125         }
12126         if (inp->inp_hpts_calls)
12127                 inp->inp_hpts_calls = 0;
12128         sack_rxmit = 0;
12129         len = 0;
12130         rsm = NULL;
12131         if (flags & TH_RST) {
12132                 SOCKBUF_LOCK(sb);
12133                 goto send;
12134         }
12135         if (rack->r_ctl.rc_resend) {
12136                 /* Retransmit timer */
12137                 rsm = rack->r_ctl.rc_resend;
12138                 rack->r_ctl.rc_resend = NULL;
12139                 rsm->r_flags &= ~RACK_TLP;
12140                 len = rsm->r_end - rsm->r_start;
12141                 sack_rxmit = 1;
12142                 sendalot = 0;
12143                 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
12144                         ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
12145                          __func__, __LINE__,
12146                          rsm->r_start, tp->snd_una, tp, rack, rsm));
12147                 sb_offset = rsm->r_start - tp->snd_una;
12148                 if (len >= segsiz)
12149                         len = segsiz;
12150         } else if ((rack->rc_in_persist == 0) &&
12151                    ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
12152                 /* We have a retransmit that takes precedence */
12153                 rsm->r_flags &= ~RACK_TLP;
12154                 if ((!IN_RECOVERY(tp->t_flags)) &&
12155                     ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
12156                         /* Enter recovery if not induced by a time-out */
12157                         rack->r_ctl.rc_rsm_start = rsm->r_start;
12158                         rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
12159                         rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
12160                         rack_cong_signal(tp, NULL, CC_NDUPACK);
12161                         /*
12162                          * When we enter recovery we need to assure we send
12163                          * one packet.
12164                          */
12165                         if (rack->rack_no_prr == 0) {
12166                                 rack->r_ctl.rc_prr_sndcnt = segsiz;
12167                                 rack_log_to_prr(rack, 13, 0);
12168                         }
12169                 }
12170 #ifdef INVARIANTS
12171                 if (SEQ_LT(rsm->r_start, tp->snd_una)) {
12172                         panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
12173                               tp, rack, rsm, rsm->r_start, tp->snd_una);
12174                 }
12175 #endif
12176                 len = rsm->r_end - rsm->r_start;
12177                 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
12178                         ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
12179                          __func__, __LINE__,
12180                          rsm->r_start, tp->snd_una, tp, rack, rsm));
12181                 sb_offset = rsm->r_start - tp->snd_una;
12182                 /* Can we send it within the PRR boundary? */
12183                 if (rack->rack_no_prr == 0) {
12184                         if ((rack->use_rack_rr == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) {
12185                                 /* It does not fit */
12186                                 if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) &&
12187                                     (rack->r_ctl.rc_prr_sndcnt < segsiz)) {
12188                                         /*
12189                                          * prr is less than a segment, we
12190                                          * have more acks due in besides
12191                                          * what we need to resend. Lets not send
12192                                          * to avoid sending small pieces of
12193                                          * what we need to retransmit.
12194                                          */
12195                                         len = 0;
12196                                         goto just_return_nolock;
12197                                 }
12198                                 len = rack->r_ctl.rc_prr_sndcnt;
12199                         }
12200                 }
12201                 sendalot = 0;
12202                 if (len >= segsiz)
12203                         len = segsiz;
12204                 if (len > 0) {
12205                         sub_from_prr = 1;
12206                         sack_rxmit = 1;
12207                         KMOD_TCPSTAT_INC(tcps_sack_rexmits);
12208                         KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
12209                             min(len, segsiz));
12210                         counter_u64_add(rack_rtm_prr_retran, 1);
12211                 }
12212         } else  if (rack->r_ctl.rc_tlpsend) {
12213                 /* Tail loss probe */
12214                 long cwin;
12215                 long tlen;
12216
12217                 doing_tlp = 1;
12218                 /*
12219                  * Check if we can do a TLP with a RACK'd packet
12220                  * this can happen if we are not doing the rack
12221                  * cheat and we skipped to a TLP and it
12222                  * went off.
12223                  */
12224                 rsm = rack->r_ctl.rc_tlpsend;
12225                 rsm->r_flags |= RACK_TLP;
12226                 rack->r_ctl.rc_tlpsend = NULL;
12227                 sack_rxmit = 1;
12228                 tlen = rsm->r_end - rsm->r_start;
12229                 if (tlen > segsiz)
12230                         tlen = segsiz;
12231                 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
12232                         ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
12233                          __func__, __LINE__,
12234                          rsm->r_start, tp->snd_una, tp, rack, rsm));
12235                 sb_offset = rsm->r_start - tp->snd_una;
12236                 cwin = min(tp->snd_wnd, tlen);
12237                 len = cwin;
12238         }
12239         /*
12240          * Enforce a connection sendmap count limit if set
12241          * as long as we are not retransmiting.
12242          */
12243         if ((rsm == NULL) &&
12244             (rack->do_detection == 0) &&
12245             (V_tcp_map_entries_limit > 0) &&
12246             (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
12247                 counter_u64_add(rack_to_alloc_limited, 1);
12248                 if (!rack->alloc_limit_reported) {
12249                         rack->alloc_limit_reported = 1;
12250                         counter_u64_add(rack_alloc_limited_conns, 1);
12251                 }
12252                 goto just_return_nolock;
12253         }
12254         if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
12255                 /* we are retransmitting the fin */
12256                 len--;
12257                 if (len) {
12258                         /*
12259                          * When retransmitting data do *not* include the
12260                          * FIN. This could happen from a TLP probe.
12261                          */
12262                         flags &= ~TH_FIN;
12263                 }
12264         }
12265 #ifdef INVARIANTS
12266         /* For debugging */
12267         rack->r_ctl.rc_rsm_at_retran = rsm;
12268 #endif
12269         /*
12270          * Get standard flags, and add SYN or FIN if requested by 'hidden'
12271          * state flags.
12272          */
12273         if (tp->t_flags & TF_NEEDFIN)
12274                 flags |= TH_FIN;
12275         if (tp->t_flags & TF_NEEDSYN)
12276                 flags |= TH_SYN;
12277         if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
12278                 void *end_rsm;
12279                 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
12280                 if (end_rsm)
12281                         kern_prefetch(end_rsm, &prefetch_rsm);
12282                 prefetch_rsm = 1;
12283         }
12284         SOCKBUF_LOCK(sb);
12285         /*
12286          * If snd_nxt == snd_max and we have transmitted a FIN, the
12287          * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
12288          * negative length.  This can also occur when TCP opens up its
12289          * congestion window while receiving additional duplicate acks after
12290          * fast-retransmit because TCP will reset snd_nxt to snd_max after
12291          * the fast-retransmit.
12292          *
12293          * In the normal retransmit-FIN-only case, however, snd_nxt will be
12294          * set to snd_una, the sb_offset will be 0, and the length may wind
12295          * up 0.
12296          *
12297          * If sack_rxmit is true we are retransmitting from the scoreboard
12298          * in which case len is already set.
12299          */
12300         if ((sack_rxmit == 0) && TCPS_HAVEESTABLISHED(tp->t_state)) {
12301                 uint32_t avail;
12302
12303                 avail = sbavail(sb);
12304                 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
12305                         sb_offset = tp->snd_nxt - tp->snd_una;
12306                 else
12307                         sb_offset = 0;
12308                 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) {
12309                         if (rack->r_ctl.rc_tlp_new_data) {
12310                                 /* TLP is forcing out new data */
12311                                 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
12312                                         rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
12313                                 }
12314                                 if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
12315                                         len = tp->snd_wnd;
12316                                 else
12317                                         len = rack->r_ctl.rc_tlp_new_data;
12318                                 rack->r_ctl.rc_tlp_new_data = 0;
12319                                 new_data_tlp = doing_tlp = 1;
12320                         }  else
12321                                 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset);
12322                         if (IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) {
12323                                 /*
12324                                  * For prr=off, we need to send only 1 MSS
12325                                  * at a time. We do this because another sack could
12326                                  * be arriving that causes us to send retransmits and
12327                                  * we don't want to be on a long pace due to a larger send
12328                                  * that keeps us from sending out the retransmit.
12329                                  */
12330                                 len = segsiz;
12331                         }
12332                 } else {
12333                         uint32_t outstanding;
12334
12335                         /*
12336                          * We are inside of a SACK recovery episode and are
12337                          * sending new data, having retransmitted all the
12338                          * data possible so far in the scoreboard.
12339                          */
12340                         outstanding = tp->snd_max - tp->snd_una;
12341                         if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
12342                                 if (tp->snd_wnd > outstanding) {
12343                                         len = tp->snd_wnd - outstanding;
12344                                         /* Check to see if we have the data */
12345                                         if ((sb_offset + len) > avail) {
12346                                                 /* It does not all fit */
12347                                                 if (avail > sb_offset)
12348                                                         len = avail - sb_offset;
12349                                                 else
12350                                                         len = 0;
12351                                         }
12352                                 } else
12353                                         len = 0;
12354                         } else if (avail > sb_offset)
12355                                 len = avail - sb_offset;
12356                         else
12357                                 len = 0;
12358                         if (len > 0) {
12359                                 if (len > rack->r_ctl.rc_prr_sndcnt)
12360                                         len = rack->r_ctl.rc_prr_sndcnt;
12361                                 if (len > 0) {
12362                                         sub_from_prr = 1;
12363                                         counter_u64_add(rack_rtm_prr_newdata, 1);
12364                                 }
12365                         }
12366                         if (len > segsiz) {
12367                                 /*
12368                                  * We should never send more than a MSS when
12369                                  * retransmitting or sending new data in prr
12370                                  * mode unless the override flag is on. Most
12371                                  * likely the PRR algorithm is not going to
12372                                  * let us send a lot as well :-)
12373                                  */
12374                                 if (rack->r_ctl.rc_prr_sendalot == 0)
12375                                         len = segsiz;
12376                         } else if (len < segsiz) {
12377                                 /*
12378                                  * Do we send any? The idea here is if the
12379                                  * send empty's the socket buffer we want to
12380                                  * do it. However if not then lets just wait
12381                                  * for our prr_sndcnt to get bigger.
12382                                  */
12383                                 long leftinsb;
12384
12385                                 leftinsb = sbavail(sb) - sb_offset;
12386                                 if (leftinsb > len) {
12387                                         /* This send does not empty the sb */
12388                                         len = 0;
12389                                 }
12390                         }
12391                 }
12392         } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
12393                 /*
12394                  * If you have not established
12395                  * and are not doing FAST OPEN
12396                  * no data please.
12397                  */
12398                 if ((sack_rxmit == 0) &&
12399                     (!IS_FASTOPEN(tp->t_flags))){
12400                         len = 0;
12401                         sb_offset = 0;
12402                 }
12403         }
12404         if (prefetch_so_done == 0) {
12405                 kern_prefetch(so, &prefetch_so_done);
12406                 prefetch_so_done = 1;
12407         }
12408         /*
12409          * Lop off SYN bit if it has already been sent.  However, if this is
12410          * SYN-SENT state and if segment contains data and if we don't know
12411          * that foreign host supports TAO, suppress sending segment.
12412          */
12413         if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
12414             ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
12415                 /*
12416                  * When sending additional segments following a TFO SYN|ACK,
12417                  * do not include the SYN bit.
12418                  */
12419                 if (IS_FASTOPEN(tp->t_flags) &&
12420                     (tp->t_state == TCPS_SYN_RECEIVED))
12421                         flags &= ~TH_SYN;
12422         }
12423         /*
12424          * Be careful not to send data and/or FIN on SYN segments. This
12425          * measure is needed to prevent interoperability problems with not
12426          * fully conformant TCP implementations.
12427          */
12428         if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
12429                 len = 0;
12430                 flags &= ~TH_FIN;
12431         }
12432         /*
12433          * On TFO sockets, ensure no data is sent in the following cases:
12434          *
12435          *  - When retransmitting SYN|ACK on a passively-created socket
12436          *
12437          *  - When retransmitting SYN on an actively created socket
12438          *
12439          *  - When sending a zero-length cookie (cookie request) on an
12440          *    actively created socket
12441          *
12442          *  - When the socket is in the CLOSED state (RST is being sent)
12443          */
12444         if (IS_FASTOPEN(tp->t_flags) &&
12445             (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
12446              ((tp->t_state == TCPS_SYN_SENT) &&
12447               (tp->t_tfo_client_cookie_len == 0)) ||
12448              (flags & TH_RST))) {
12449                 sack_rxmit = 0;
12450                 len = 0;
12451         }
12452         /* Without fast-open there should never be data sent on a SYN */
12453         if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) {
12454                 tp->snd_nxt = tp->iss;
12455                 len = 0;
12456         }
12457         orig_len = len;
12458         if (len <= 0) {
12459                 /*
12460                  * If FIN has been sent but not acked, but we haven't been
12461                  * called to retransmit, len will be < 0.  Otherwise, window
12462                  * shrank after we sent into it.  If window shrank to 0,
12463                  * cancel pending retransmit, pull snd_nxt back to (closed)
12464                  * window, and set the persist timer if it isn't already
12465                  * going.  If the window didn't close completely, just wait
12466                  * for an ACK.
12467                  *
12468                  * We also do a general check here to ensure that we will
12469                  * set the persist timer when we have data to send, but a
12470                  * 0-byte window. This makes sure the persist timer is set
12471                  * even if the packet hits one of the "goto send" lines
12472                  * below.
12473                  */
12474                 len = 0;
12475                 if ((tp->snd_wnd == 0) &&
12476                     (TCPS_HAVEESTABLISHED(tp->t_state)) &&
12477                     (tp->snd_una == tp->snd_max) &&
12478                     (sb_offset < (int)sbavail(sb))) {
12479                         tp->snd_nxt = tp->snd_una;
12480                         rack_enter_persist(tp, rack, cts);
12481                 }
12482         } else if ((rsm == NULL) &&
12483                    ((doing_tlp == 0) || (new_data_tlp == 1)) &&
12484                    (len < rack->r_ctl.rc_pace_max_segs)) {
12485                 /*
12486                  * We are not sending a maximum sized segment for
12487                  * some reason. Should we not send anything (think
12488                  * sws or persists)?
12489                  */
12490                 if ((tp->snd_wnd < min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), minseg)) &&
12491                     (TCPS_HAVEESTABLISHED(tp->t_state)) &&
12492                     (len < minseg) &&
12493                     (len < (int)(sbavail(sb) - sb_offset))) {
12494                         /*
12495                          * Here the rwnd is less than
12496                          * the minimum pacing size, this is not a retransmit,
12497                          * we are established and
12498                          * the send is not the last in the socket buffer
12499                          * we send nothing, and we may enter persists
12500                          * if nothing is outstanding.
12501                          */
12502                         len = 0;
12503                         if (tp->snd_max == tp->snd_una) {
12504                                 /*
12505                                  * Nothing out we can
12506                                  * go into persists.
12507                                  */
12508                                 rack_enter_persist(tp, rack, cts);
12509                                 tp->snd_nxt = tp->snd_una;
12510                         }
12511                 } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) &&
12512                            (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
12513                            (len < (int)(sbavail(sb) - sb_offset)) &&
12514                            (len < minseg)) {
12515                         /*
12516                          * Here we are not retransmitting, and
12517                          * the cwnd is not so small that we could
12518                          * not send at least a min size (rxt timer
12519                          * not having gone off), We have 2 segments or
12520                          * more already in flight, its not the tail end
12521                          * of the socket buffer  and the cwnd is blocking
12522                          * us from sending out a minimum pacing segment size.
12523                          * Lets not send anything.
12524                          */
12525                         len = 0;
12526                 } else if (((tp->snd_wnd - ctf_outstanding(tp)) <
12527                             min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
12528                            (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
12529                            (len < (int)(sbavail(sb) - sb_offset)) &&
12530                            (TCPS_HAVEESTABLISHED(tp->t_state))) {
12531                         /*
12532                          * Here we have a send window but we have
12533                          * filled it up and we can't send another pacing segment.
12534                          * We also have in flight more than 2 segments
12535                          * and we are not completing the sb i.e. we allow
12536                          * the last bytes of the sb to go out even if
12537                          * its not a full pacing segment.
12538                          */
12539                         len = 0;
12540                 }
12541         }
12542         /* len will be >= 0 after this point. */
12543         KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
12544         tcp_sndbuf_autoscale(tp, so, min(tp->snd_wnd, cwnd_to_use));
12545         /*
12546          * Decide if we can use TCP Segmentation Offloading (if supported by
12547          * hardware).
12548          *
12549          * TSO may only be used if we are in a pure bulk sending state.  The
12550          * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
12551          * options prevent using TSO.  With TSO the TCP header is the same
12552          * (except for the sequence number) for all generated packets.  This
12553          * makes it impossible to transmit any options which vary per
12554          * generated segment or packet.
12555          *
12556          * IPv4 handling has a clear separation of ip options and ip header
12557          * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
12558          * the right thing below to provide length of just ip options and thus
12559          * checking for ipoptlen is enough to decide if ip options are present.
12560          */
12561
12562 #ifdef INET6
12563         if (isipv6)
12564                 ipoptlen = ip6_optlen(tp->t_inpcb);
12565         else
12566 #endif
12567                 if (tp->t_inpcb->inp_options)
12568                         ipoptlen = tp->t_inpcb->inp_options->m_len -
12569                                 offsetof(struct ipoption, ipopt_list);
12570                 else
12571                         ipoptlen = 0;
12572 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
12573         /*
12574          * Pre-calculate here as we save another lookup into the darknesses
12575          * of IPsec that way and can actually decide if TSO is ok.
12576          */
12577 #ifdef INET6
12578         if (isipv6 && IPSEC_ENABLED(ipv6))
12579                 ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
12580 #ifdef INET
12581         else
12582 #endif
12583 #endif                          /* INET6 */
12584 #ifdef INET
12585                 if (IPSEC_ENABLED(ipv4))
12586                         ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
12587 #endif                          /* INET */
12588 #endif
12589
12590 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
12591         ipoptlen += ipsec_optlen;
12592 #endif
12593         if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz &&
12594             (tp->t_port == 0) &&
12595             ((tp->t_flags & TF_SIGNATURE) == 0) &&
12596             tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
12597             ipoptlen == 0)
12598                 tso = 1;
12599         {
12600                 uint32_t outstanding;
12601
12602                 outstanding = tp->snd_max - tp->snd_una;
12603                 if (tp->t_flags & TF_SENTFIN) {
12604                         /*
12605                          * If we sent a fin, snd_max is 1 higher than
12606                          * snd_una
12607                          */
12608                         outstanding--;
12609                 }
12610                 if (sack_rxmit) {
12611                         if ((rsm->r_flags & RACK_HAS_FIN) == 0)
12612                                 flags &= ~TH_FIN;
12613                 } else {
12614                         if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
12615                                    sbused(sb)))
12616                                 flags &= ~TH_FIN;
12617                 }
12618         }
12619         recwin = lmin(lmax(sbspace(&so->so_rcv), 0),
12620             (long)TCP_MAXWIN << tp->rcv_scale);
12621
12622         /*
12623          * Sender silly window avoidance.   We transmit under the following
12624          * conditions when len is non-zero:
12625          *
12626          * - We have a full segment (or more with TSO) - This is the last
12627          * buffer in a write()/send() and we are either idle or running
12628          * NODELAY - we've timed out (e.g. persist timer) - we have more
12629          * then 1/2 the maximum send window's worth of data (receiver may be
12630          * limited the window size) - we need to retransmit
12631          */
12632         if (len) {
12633                 if (len >= segsiz) {
12634                         goto send;
12635                 }
12636                 /*
12637                  * NOTE! on localhost connections an 'ack' from the remote
12638                  * end may occur synchronously with the output and cause us
12639                  * to flush a buffer queued with moretocome.  XXX
12640                  *
12641                  */
12642                 if (!(tp->t_flags & TF_MORETOCOME) &&   /* normal case */
12643                     (idle || (tp->t_flags & TF_NODELAY)) &&
12644                     ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
12645                     (tp->t_flags & TF_NOPUSH) == 0) {
12646                         pass = 2;
12647                         goto send;
12648                 }
12649                 if ((tp->snd_una == tp->snd_max) && len) {      /* Nothing outstanding */
12650                         pass = 22;
12651                         goto send;
12652                 }
12653                 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
12654                         pass = 4;
12655                         goto send;
12656                 }
12657                 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */
12658                         pass = 5;
12659                         goto send;
12660                 }
12661                 if (sack_rxmit) {
12662                         pass = 6;
12663                         goto send;
12664                 }
12665                 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) &&
12666                     (ctf_outstanding(tp) < (segsiz * 2))) {
12667                         /*
12668                          * We have less than two MSS outstanding (delayed ack)
12669                          * and our rwnd will not let us send a full sized
12670                          * MSS. Lets go ahead and let this small segment
12671                          * out because we want to try to have at least two
12672                          * packets inflight to not be caught by delayed ack.
12673                          */
12674                         pass = 12;
12675                         goto send;
12676                 }
12677         }
12678         /*
12679          * Sending of standalone window updates.
12680          *
12681          * Window updates are important when we close our window due to a
12682          * full socket buffer and are opening it again after the application
12683          * reads data from it.  Once the window has opened again and the
12684          * remote end starts to send again the ACK clock takes over and
12685          * provides the most current window information.
12686          *
12687          * We must avoid the silly window syndrome whereas every read from
12688          * the receive buffer, no matter how small, causes a window update
12689          * to be sent.  We also should avoid sending a flurry of window
12690          * updates when the socket buffer had queued a lot of data and the
12691          * application is doing small reads.
12692          *
12693          * Prevent a flurry of pointless window updates by only sending an
12694          * update when we can increase the advertized window by more than
12695          * 1/4th of the socket buffer capacity.  When the buffer is getting
12696          * full or is very small be more aggressive and send an update
12697          * whenever we can increase by two mss sized segments. In all other
12698          * situations the ACK's to new incoming data will carry further
12699          * window increases.
12700          *
12701          * Don't send an independent window update if a delayed ACK is
12702          * pending (it will get piggy-backed on it) or the remote side
12703          * already has done a half-close and won't send more data.  Skip
12704          * this if the connection is in T/TCP half-open state.
12705          */
12706         if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
12707             !(tp->t_flags & TF_DELACK) &&
12708             !TCPS_HAVERCVDFIN(tp->t_state)) {
12709                 /*
12710                  * "adv" is the amount we could increase the window, taking
12711                  * into account that we are limited by TCP_MAXWIN <<
12712                  * tp->rcv_scale.
12713                  */
12714                 int32_t adv;
12715                 int oldwin;
12716
12717                 adv = recwin;
12718                 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
12719                         oldwin = (tp->rcv_adv - tp->rcv_nxt);
12720                         if (adv > oldwin)
12721                             adv -= oldwin;
12722                         else {
12723                                 /* We can't increase the window */
12724                                 adv = 0;
12725                         }
12726                 } else
12727                         oldwin = 0;
12728
12729                 /*
12730                  * If the new window size ends up being the same as or less
12731                  * than the old size when it is scaled, then don't force
12732                  * a window update.
12733                  */
12734                 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale)
12735                         goto dontupdate;
12736
12737                 if (adv >= (int32_t)(2 * segsiz) &&
12738                     (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
12739                      recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
12740                      so->so_rcv.sb_hiwat <= 8 * segsiz)) {
12741                         pass = 7;
12742                         goto send;
12743                 }
12744                 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) {
12745                         pass = 23;
12746                         goto send;
12747                 }
12748         }
12749 dontupdate:
12750
12751         /*
12752          * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
12753          * is also a catch-all for the retransmit timer timeout case.
12754          */
12755         if (tp->t_flags & TF_ACKNOW) {
12756                 pass = 8;
12757                 goto send;
12758         }
12759         if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
12760                 pass = 9;
12761                 goto send;
12762         }
12763         /*
12764          * If our state indicates that FIN should be sent and we have not
12765          * yet done so, then we need to send.
12766          */
12767         if ((flags & TH_FIN) &&
12768             (tp->snd_nxt == tp->snd_una)) {
12769                 pass = 11;
12770                 goto send;
12771         }
12772         /*
12773          * No reason to send a segment, just return.
12774          */
12775 just_return:
12776         SOCKBUF_UNLOCK(sb);
12777 just_return_nolock:
12778         {
12779                 int app_limited = CTF_JR_SENT_DATA;
12780
12781                 if (tot_len_this_send > 0) {
12782                         /* Make sure snd_nxt is up to max */
12783                         if (SEQ_GT(tp->snd_max, tp->snd_nxt))
12784                                 tp->snd_nxt = tp->snd_max;
12785                         slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz);
12786                 } else {
12787                         int end_window = 0;
12788                         uint32_t seq = tp->gput_ack;
12789
12790                         rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
12791                         if (rsm) {
12792                                 /*
12793                                  * Mark the last sent that we just-returned (hinting
12794                                  * that delayed ack may play a role in any rtt measurement).
12795                                  */
12796                                 rsm->r_just_ret = 1;
12797                         }
12798                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
12799                         rack->r_ctl.rc_agg_delayed = 0;
12800                         rack->r_early = 0;
12801                         rack->r_late = 0;
12802                         rack->r_ctl.rc_agg_early = 0;
12803                         if ((ctf_outstanding(tp) +
12804                              min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)),
12805                                  minseg)) >= tp->snd_wnd) {
12806                                 /* We are limited by the rwnd */
12807                                 app_limited = CTF_JR_RWND_LIMITED;
12808                         } else if (ctf_outstanding(tp) >= sbavail(sb)) {
12809                                 /* We are limited by whats available -- app limited */
12810                                 app_limited = CTF_JR_APP_LIMITED;
12811                         } else if ((idle == 0) &&
12812                                    ((tp->t_flags & TF_NODELAY) == 0) &&
12813                                    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
12814                                    (len < segsiz)) {
12815                                 /*
12816                                  * No delay is not on and the
12817                                  * user is sending less than 1MSS. This
12818                                  * brings out SWS avoidance so we
12819                                  * don't send. Another app-limited case.
12820                                  */
12821                                 app_limited = CTF_JR_APP_LIMITED;
12822                         } else if (tp->t_flags & TF_NOPUSH) {
12823                                 /*
12824                                  * The user has requested no push of
12825                                  * the last segment and we are
12826                                  * at the last segment. Another app
12827                                  * limited case.
12828                                  */
12829                                 app_limited = CTF_JR_APP_LIMITED;
12830                         } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) {
12831                                 /* Its the cwnd */
12832                                 app_limited = CTF_JR_CWND_LIMITED;
12833                         } else if (rack->rc_in_persist == 1) {
12834                                 /* We are in persists */
12835                                 app_limited = CTF_JR_PERSISTS;
12836                         } else if (IN_RECOVERY(tp->t_flags) &&
12837                                    (rack->rack_no_prr == 0) &&
12838                                    (rack->r_ctl.rc_prr_sndcnt < segsiz)) {
12839                                 app_limited = CTF_JR_PRR;
12840                         } else {
12841                                 /* Now why here are we not sending? */
12842 #ifdef NOW
12843 #ifdef INVARIANTS
12844                                 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use);
12845 #endif
12846 #endif
12847                                 app_limited = CTF_JR_ASSESSING;
12848                         }
12849                         /*
12850                          * App limited in some fashion, for our pacing GP
12851                          * measurements we don't want any gap (even cwnd).
12852                          * Close  down the measurement window.
12853                          */
12854                         if (rack_cwnd_block_ends_measure &&
12855                             ((app_limited == CTF_JR_CWND_LIMITED) ||
12856                              (app_limited == CTF_JR_PRR))) {
12857                                 /*
12858                                  * The reason we are not sending is
12859                                  * the cwnd (or prr). We have been configured
12860                                  * to end the measurement window in
12861                                  * this case.
12862                                  */
12863                                 end_window = 1;
12864                         } else if (app_limited == CTF_JR_PERSISTS) {
12865                                 /*
12866                                  * We never end the measurement window
12867                                  * in persists, though in theory we
12868                                  * should be only entering after everything
12869                                  * is acknowledged (so we will probably
12870                                  * never come here).
12871                                  */
12872                                 end_window = 0;
12873                         } else if (rack_rwnd_block_ends_measure &&
12874                                    (app_limited == CTF_JR_RWND_LIMITED)) {
12875                                 /*
12876                                  * We are rwnd limited and have been
12877                                  * configured to end the measurement
12878                                  * window in this case.
12879                                  */
12880                                 end_window = 1;
12881                         } else if (app_limited == CTF_JR_APP_LIMITED) {
12882                                 /*
12883                                  * A true application limited period, we have
12884                                  * ran out of data.
12885                                  */
12886                                 end_window = 1;
12887                         } else if (app_limited == CTF_JR_ASSESSING) {
12888                                 /*
12889                                  * In the assessing case we hit the end of
12890                                  * the if/else and had no known reason
12891                                  * This will panic us under invariants..
12892                                  *
12893                                  * If we get this out in logs we need to
12894                                  * investagate which reason we missed.
12895                                  */
12896                                 end_window = 1;
12897                         }
12898                         if (end_window) {
12899                                 uint8_t log = 0;
12900
12901                                 if ((tp->t_flags & TF_GPUTINPROG) &&
12902                                     SEQ_GT(tp->gput_ack, tp->snd_max)) {
12903                                         /* Mark the last packet has app limited */
12904                                         tp->gput_ack = tp->snd_max;
12905                                         log = 1;
12906                                 }
12907                                 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
12908                                 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
12909                                         if (rack->r_ctl.rc_app_limited_cnt == 0)
12910                                                 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
12911                                         else {
12912                                                 /*
12913                                                  * Go out to the end app limited and mark
12914                                                  * this new one as next and move the end_appl up
12915                                                  * to this guy.
12916                                                  */
12917                                                 if (rack->r_ctl.rc_end_appl)
12918                                                         rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
12919                                                 rack->r_ctl.rc_end_appl = rsm;
12920                                         }
12921                                         rsm->r_flags |= RACK_APP_LIMITED;
12922                                         rack->r_ctl.rc_app_limited_cnt++;
12923                                 }
12924                                 if (log)
12925                                         rack_log_pacing_delay_calc(rack,
12926                                                                    rack->r_ctl.rc_app_limited_cnt, seq,
12927                                                                    tp->gput_ack, 0, 0, 4, __LINE__, NULL);
12928                         }
12929                 }
12930                 if (slot) {
12931                         /* set the rack tcb into the slot N */
12932                         counter_u64_add(rack_paced_segments, 1);
12933                 } else if (tot_len_this_send) {
12934                         counter_u64_add(rack_unpaced_segments, 1);
12935                 }
12936                 /* Check if we need to go into persists or not */
12937                 if ((rack->rc_in_persist == 0) &&
12938                     (tp->snd_max == tp->snd_una) &&
12939                     TCPS_HAVEESTABLISHED(tp->t_state) &&
12940                     sbavail(sb) &&
12941                     (sbavail(sb) > tp->snd_wnd) &&
12942                     (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) {
12943                         /* Yes lets make sure to move to persist before timer-start */
12944                         rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
12945                 }
12946                 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
12947                 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use);
12948         }
12949 #ifdef NETFLIX_SHARED_CWND
12950         if ((sbavail(sb) == 0) &&
12951             rack->r_ctl.rc_scw) {
12952                 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
12953                 rack->rack_scwnd_is_idle = 1;
12954         }
12955 #endif
12956         return (0);
12957
12958 send:
12959         if ((flags & TH_FIN) &&
12960             sbavail(sb)) {
12961                 /*
12962                  * We do not transmit a FIN
12963                  * with data outstanding. We
12964                  * need to make it so all data
12965                  * is acked first.
12966                  */
12967                 flags &= ~TH_FIN;
12968         }
12969         /* Enforce stack imposed max seg size if we have one */
12970         if (rack->r_ctl.rc_pace_max_segs &&
12971             (len > rack->r_ctl.rc_pace_max_segs)) {
12972                 mark = 1;
12973                 len = rack->r_ctl.rc_pace_max_segs;
12974         }
12975         SOCKBUF_LOCK_ASSERT(sb);
12976         if (len > 0) {
12977                 if (len >= segsiz)
12978                         tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
12979                 else
12980                         tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
12981         }
12982         /*
12983          * Before ESTABLISHED, force sending of initial options unless TCP
12984          * set not to do any options. NOTE: we assume that the IP/TCP header
12985          * plus TCP options always fit in a single mbuf, leaving room for a
12986          * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
12987          * + optlen <= MCLBYTES
12988          */
12989         optlen = 0;
12990 #ifdef INET6
12991         if (isipv6)
12992                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
12993         else
12994 #endif
12995                 hdrlen = sizeof(struct tcpiphdr);
12996
12997         /*
12998          * Compute options for segment. We only have to care about SYN and
12999          * established connection segments.  Options for SYN-ACK segments
13000          * are handled in TCP syncache.
13001          */
13002         to.to_flags = 0;
13003         if ((tp->t_flags & TF_NOOPT) == 0) {
13004                 /* Maximum segment size. */
13005                 if (flags & TH_SYN) {
13006                         tp->snd_nxt = tp->iss;
13007                         to.to_mss = tcp_mssopt(&inp->inp_inc);
13008 #ifdef NETFLIX_TCPOUDP
13009                         if (tp->t_port)
13010                                 to.to_mss -= V_tcp_udp_tunneling_overhead;
13011 #endif
13012                         to.to_flags |= TOF_MSS;
13013
13014                         /*
13015                          * On SYN or SYN|ACK transmits on TFO connections,
13016                          * only include the TFO option if it is not a
13017                          * retransmit, as the presence of the TFO option may
13018                          * have caused the original SYN or SYN|ACK to have
13019                          * been dropped by a middlebox.
13020                          */
13021                         if (IS_FASTOPEN(tp->t_flags) &&
13022                             (tp->t_rxtshift == 0)) {
13023                                 if (tp->t_state == TCPS_SYN_RECEIVED) {
13024                                         to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
13025                                         to.to_tfo_cookie =
13026                                                 (u_int8_t *)&tp->t_tfo_cookie.server;
13027                                         to.to_flags |= TOF_FASTOPEN;
13028                                         wanted_cookie = 1;
13029                                 } else if (tp->t_state == TCPS_SYN_SENT) {
13030                                         to.to_tfo_len =
13031                                                 tp->t_tfo_client_cookie_len;
13032                                         to.to_tfo_cookie =
13033                                                 tp->t_tfo_cookie.client;
13034                                         to.to_flags |= TOF_FASTOPEN;
13035                                         wanted_cookie = 1;
13036                                         /*
13037                                          * If we wind up having more data to
13038                                          * send with the SYN than can fit in
13039                                          * one segment, don't send any more
13040                                          * until the SYN|ACK comes back from
13041                                          * the other end.
13042                                          */
13043                                         sendalot = 0;
13044                                 }
13045                         }
13046                 }
13047                 /* Window scaling. */
13048                 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
13049                         to.to_wscale = tp->request_r_scale;
13050                         to.to_flags |= TOF_SCALE;
13051                 }
13052                 /* Timestamps. */
13053                 if ((tp->t_flags & TF_RCVD_TSTMP) ||
13054                     ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
13055                         to.to_tsval = cts + tp->ts_offset;
13056                         to.to_tsecr = tp->ts_recent;
13057                         to.to_flags |= TOF_TS;
13058                 }
13059                 /* Set receive buffer autosizing timestamp. */
13060                 if (tp->rfbuf_ts == 0 &&
13061                     (so->so_rcv.sb_flags & SB_AUTOSIZE))
13062                         tp->rfbuf_ts = tcp_ts_getticks();
13063                 /* Selective ACK's. */
13064                 if (flags & TH_SYN)
13065                         to.to_flags |= TOF_SACKPERM;
13066                 else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
13067                          tp->rcv_numsacks > 0) {
13068                         to.to_flags |= TOF_SACK;
13069                         to.to_nsacks = tp->rcv_numsacks;
13070                         to.to_sacks = (u_char *)tp->sackblks;
13071                 }
13072 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
13073                 /* TCP-MD5 (RFC2385). */
13074                 if (tp->t_flags & TF_SIGNATURE)
13075                         to.to_flags |= TOF_SIGNATURE;
13076 #endif                          /* TCP_SIGNATURE */
13077
13078                 /* Processing the options. */
13079                 hdrlen += optlen = tcp_addoptions(&to, opt);
13080                 /*
13081                  * If we wanted a TFO option to be added, but it was unable
13082                  * to fit, ensure no data is sent.
13083                  */
13084                 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
13085                     !(to.to_flags & TOF_FASTOPEN))
13086                         len = 0;
13087         }
13088 #ifdef NETFLIX_TCPOUDP
13089         if (tp->t_port) {
13090                 if (V_tcp_udp_tunneling_port == 0) {
13091                         /* The port was removed?? */
13092                         SOCKBUF_UNLOCK(&so->so_snd);
13093                         return (EHOSTUNREACH);
13094                 }
13095                 hdrlen += sizeof(struct udphdr);
13096         }
13097 #endif
13098 #ifdef INET6
13099         if (isipv6)
13100                 ipoptlen = ip6_optlen(tp->t_inpcb);
13101         else
13102 #endif
13103                 if (tp->t_inpcb->inp_options)
13104                         ipoptlen = tp->t_inpcb->inp_options->m_len -
13105                                 offsetof(struct ipoption, ipopt_list);
13106                 else
13107                         ipoptlen = 0;
13108 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
13109         ipoptlen += ipsec_optlen;
13110 #endif
13111
13112         /*
13113          * Adjust data length if insertion of options will bump the packet
13114          * length beyond the t_maxseg length. Clear the FIN bit because we
13115          * cut off the tail of the segment.
13116          */
13117         if (len + optlen + ipoptlen > tp->t_maxseg) {
13118                 if (tso) {
13119                         uint32_t if_hw_tsomax;
13120                         uint32_t moff;
13121                         int32_t max_len;
13122
13123                         /* extract TSO information */
13124                         if_hw_tsomax = tp->t_tsomax;
13125                         if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
13126                         if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
13127                         KASSERT(ipoptlen == 0,
13128                                 ("%s: TSO can't do IP options", __func__));
13129
13130                         /*
13131                          * Check if we should limit by maximum payload
13132                          * length:
13133                          */
13134                         if (if_hw_tsomax != 0) {
13135                                 /* compute maximum TSO length */
13136                                 max_len = (if_hw_tsomax - hdrlen -
13137                                            max_linkhdr);
13138                                 if (max_len <= 0) {
13139                                         len = 0;
13140                                 } else if (len > max_len) {
13141                                         sendalot = 1;
13142                                         len = max_len;
13143                                         mark = 2;
13144                                 }
13145                         }
13146                         /*
13147                          * Prevent the last segment from being fractional
13148                          * unless the send sockbuf can be emptied:
13149                          */
13150                         max_len = (tp->t_maxseg - optlen);
13151                         if ((sb_offset + len) < sbavail(sb)) {
13152                                 moff = len % (u_int)max_len;
13153                                 if (moff != 0) {
13154                                         mark = 3;
13155                                         len -= moff;
13156                                 }
13157                         }
13158                         /*
13159                          * In case there are too many small fragments don't
13160                          * use TSO:
13161                          */
13162                         if (len <= segsiz) {
13163                                 mark = 4;
13164                                 tso = 0;
13165                         }
13166                         /*
13167                          * Send the FIN in a separate segment after the bulk
13168                          * sending is done. We don't trust the TSO
13169                          * implementations to clear the FIN flag on all but
13170                          * the last segment.
13171                          */
13172                         if (tp->t_flags & TF_NEEDFIN) {
13173                                 sendalot = 4;
13174                         }
13175                 } else {
13176                         mark = 5;
13177                         if (optlen + ipoptlen >= tp->t_maxseg) {
13178                                 /*
13179                                  * Since we don't have enough space to put
13180                                  * the IP header chain and the TCP header in
13181                                  * one packet as required by RFC 7112, don't
13182                                  * send it. Also ensure that at least one
13183                                  * byte of the payload can be put into the
13184                                  * TCP segment.
13185                                  */
13186                                 SOCKBUF_UNLOCK(&so->so_snd);
13187                                 error = EMSGSIZE;
13188                                 sack_rxmit = 0;
13189                                 goto out;
13190                         }
13191                         len = tp->t_maxseg - optlen - ipoptlen;
13192                         sendalot = 5;
13193                 }
13194         } else {
13195                 tso = 0;
13196                 mark = 6;
13197         }
13198         KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
13199                 ("%s: len > IP_MAXPACKET", __func__));
13200 #ifdef DIAGNOSTIC
13201 #ifdef INET6
13202         if (max_linkhdr + hdrlen > MCLBYTES)
13203 #else
13204                 if (max_linkhdr + hdrlen > MHLEN)
13205 #endif
13206                         panic("tcphdr too big");
13207 #endif
13208
13209         /*
13210          * This KASSERT is here to catch edge cases at a well defined place.
13211          * Before, those had triggered (random) panic conditions further
13212          * down.
13213          */
13214         KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
13215         if ((len == 0) &&
13216             (flags & TH_FIN) &&
13217             (sbused(sb))) {
13218                 /*
13219                  * We have outstanding data, don't send a fin by itself!.
13220                  */
13221                 goto just_return;
13222         }
13223         /*
13224          * Grab a header mbuf, attaching a copy of data to be transmitted,
13225          * and initialize the header from the template for sends on this
13226          * connection.
13227          */
13228         if (len) {
13229                 uint32_t max_val;
13230                 uint32_t moff;
13231
13232                 if (rack->r_ctl.rc_pace_max_segs)
13233                         max_val = rack->r_ctl.rc_pace_max_segs;
13234                 else if (rack->rc_user_set_max_segs)
13235                         max_val = rack->rc_user_set_max_segs * segsiz;
13236                 else
13237                         max_val = len;
13238                 /*
13239                  * We allow a limit on sending with hptsi.
13240                  */
13241                 if (len > max_val) {
13242                         mark = 7;
13243                         len = max_val;
13244                 }
13245 #ifdef INET6
13246                 if (MHLEN < hdrlen + max_linkhdr)
13247                         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
13248                 else
13249 #endif
13250                         m = m_gethdr(M_NOWAIT, MT_DATA);
13251
13252                 if (m == NULL) {
13253                         SOCKBUF_UNLOCK(sb);
13254                         error = ENOBUFS;
13255                         sack_rxmit = 0;
13256                         goto out;
13257                 }
13258                 m->m_data += max_linkhdr;
13259                 m->m_len = hdrlen;
13260
13261                 /*
13262                  * Start the m_copy functions from the closest mbuf to the
13263                  * sb_offset in the socket buffer chain.
13264                  */
13265                 mb = sbsndptr_noadv(sb, sb_offset, &moff);
13266                 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
13267                         m_copydata(mb, moff, (int)len,
13268                                    mtod(m, caddr_t)+hdrlen);
13269                         if (SEQ_LT(tp->snd_nxt, tp->snd_max))
13270                                 sbsndptr_adv(sb, mb, len);
13271                         m->m_len += len;
13272                 } else {
13273                         struct sockbuf *msb;
13274
13275                         if (SEQ_LT(tp->snd_nxt, tp->snd_max))
13276                                 msb = NULL;
13277                         else
13278                                 msb = sb;
13279                         m->m_next = tcp_m_copym(
13280                                 mb, moff, &len,
13281                                 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
13282                                 ((rsm == NULL) ? hw_tls : 0)
13283 #ifdef NETFLIX_COPY_ARGS
13284                                 , &filled_all
13285 #endif
13286                                 );
13287                         if (len <= (tp->t_maxseg - optlen)) {
13288                                 /*
13289                                  * Must have ran out of mbufs for the copy
13290                                  * shorten it to no longer need tso. Lets
13291                                  * not put on sendalot since we are low on
13292                                  * mbufs.
13293                                  */
13294                                 tso = 0;
13295                         }
13296                         if (m->m_next == NULL) {
13297                                 SOCKBUF_UNLOCK(sb);
13298                                 (void)m_free(m);
13299                                 error = ENOBUFS;
13300                                 sack_rxmit = 0;
13301                                 goto out;
13302                         }
13303                 }
13304                 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
13305                         if (rsm && (rsm->r_flags & RACK_TLP)) {
13306                                 /*
13307                                  * TLP should not count in retran count, but
13308                                  * in its own bin
13309                                  */
13310                                 counter_u64_add(rack_tlp_retran, 1);
13311                                 counter_u64_add(rack_tlp_retran_bytes, len);
13312                         } else {
13313                                 tp->t_sndrexmitpack++;
13314                                 KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
13315                                 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
13316                         }
13317 #ifdef STATS
13318                         stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
13319                                                  len);
13320 #endif
13321                 } else {
13322                         KMOD_TCPSTAT_INC(tcps_sndpack);
13323                         KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
13324 #ifdef STATS
13325                         stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
13326                                                  len);
13327 #endif
13328                 }
13329                 /*
13330                  * If we're sending everything we've got, set PUSH. (This
13331                  * will keep happy those implementations which only give
13332                  * data to the user when a buffer fills or a PUSH comes in.)
13333                  */
13334                 if (sb_offset + len == sbused(sb) &&
13335                     sbused(sb) &&
13336                     !(flags & TH_SYN))
13337                         flags |= TH_PUSH;
13338
13339                 SOCKBUF_UNLOCK(sb);
13340         } else {
13341                 SOCKBUF_UNLOCK(sb);
13342                 if (tp->t_flags & TF_ACKNOW)
13343                         KMOD_TCPSTAT_INC(tcps_sndacks);
13344                 else if (flags & (TH_SYN | TH_FIN | TH_RST))
13345                         KMOD_TCPSTAT_INC(tcps_sndctrl);
13346                 else
13347                         KMOD_TCPSTAT_INC(tcps_sndwinup);
13348
13349                 m = m_gethdr(M_NOWAIT, MT_DATA);
13350                 if (m == NULL) {
13351                         error = ENOBUFS;
13352                         sack_rxmit = 0;
13353                         goto out;
13354                 }
13355 #ifdef INET6
13356                 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
13357                     MHLEN >= hdrlen) {
13358                         M_ALIGN(m, hdrlen);
13359                 } else
13360 #endif
13361                         m->m_data += max_linkhdr;
13362                 m->m_len = hdrlen;
13363         }
13364         SOCKBUF_UNLOCK_ASSERT(sb);
13365         m->m_pkthdr.rcvif = (struct ifnet *)0;
13366 #ifdef MAC
13367         mac_inpcb_create_mbuf(inp, m);
13368 #endif
13369 #ifdef INET6
13370         if (isipv6) {
13371                 ip6 = mtod(m, struct ip6_hdr *);
13372 #ifdef NETFLIX_TCPOUDP
13373                 if (tp->t_port) {
13374                         udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
13375                         udp->uh_sport = htons(V_tcp_udp_tunneling_port);
13376                         udp->uh_dport = tp->t_port;
13377                         ulen = hdrlen + len - sizeof(struct ip6_hdr);
13378                         udp->uh_ulen = htons(ulen);
13379                         th = (struct tcphdr *)(udp + 1);
13380                 } else
13381 #endif
13382                         th = (struct tcphdr *)(ip6 + 1);
13383                 tcpip_fillheaders(inp,
13384 #ifdef NETFLIX_TCPOUDP
13385                                   tp->t_port,
13386 #endif
13387                                   ip6, th);
13388         } else
13389 #endif                          /* INET6 */
13390         {
13391                 ip = mtod(m, struct ip *);
13392 #ifdef TCPDEBUG
13393                 ipov = (struct ipovly *)ip;
13394 #endif
13395 #ifdef NETFLIX_TCPOUDP
13396                 if (tp->t_port) {
13397                         udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
13398                         udp->uh_sport = htons(V_tcp_udp_tunneling_port);
13399                         udp->uh_dport = tp->t_port;
13400                         ulen = hdrlen + len - sizeof(struct ip);
13401                         udp->uh_ulen = htons(ulen);
13402                         th = (struct tcphdr *)(udp + 1);
13403                 } else
13404 #endif
13405                         th = (struct tcphdr *)(ip + 1);
13406                 tcpip_fillheaders(inp,
13407 #ifdef NETFLIX_TCPOUDP
13408                                   tp->t_port,
13409 #endif
13410                                   ip, th);
13411         }
13412         /*
13413          * Fill in fields, remembering maximum advertised window for use in
13414          * delaying messages about window sizes. If resending a FIN, be sure
13415          * not to use a new sequence number.
13416          */
13417         if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
13418             tp->snd_nxt == tp->snd_max)
13419                 tp->snd_nxt--;
13420         /*
13421          * If we are starting a connection, send ECN setup SYN packet. If we
13422          * are on a retransmit, we may resend those bits a number of times
13423          * as per RFC 3168.
13424          */
13425         if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
13426                 if (tp->t_rxtshift >= 1) {
13427                         if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
13428                                 flags |= TH_ECE | TH_CWR;
13429                 } else
13430                         flags |= TH_ECE | TH_CWR;
13431         }
13432         /* Handle parallel SYN for ECN */
13433         if ((tp->t_state == TCPS_SYN_RECEIVED) &&
13434             (tp->t_flags2 & TF2_ECN_SND_ECE)) {
13435                 flags |= TH_ECE;
13436                 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
13437         }
13438         if (tp->t_state == TCPS_ESTABLISHED &&
13439             (tp->t_flags2 & TF2_ECN_PERMIT)) {
13440                 /*
13441                  * If the peer has ECN, mark data packets with ECN capable
13442                  * transmission (ECT). Ignore pure ack packets,
13443                  * retransmissions.
13444                  */
13445                 if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
13446                     (sack_rxmit == 0)) {
13447 #ifdef INET6
13448                         if (isipv6)
13449                                 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
13450                         else
13451 #endif
13452                                 ip->ip_tos |= IPTOS_ECN_ECT0;
13453                         KMOD_TCPSTAT_INC(tcps_ecn_ect0);
13454                         /*
13455                          * Reply with proper ECN notifications.
13456                          * Only set CWR on new data segments.
13457                          */
13458                         if (tp->t_flags2 & TF2_ECN_SND_CWR) {
13459                                 flags |= TH_CWR;
13460                                 tp->t_flags2 &= ~TF2_ECN_SND_CWR;
13461                         }
13462                 }
13463                 if (tp->t_flags2 & TF2_ECN_SND_ECE)
13464                         flags |= TH_ECE;
13465         }
13466         /*
13467          * If we are doing retransmissions, then snd_nxt will not reflect
13468          * the first unsent octet.  For ACK only packets, we do not want the
13469          * sequence number of the retransmitted packet, we want the sequence
13470          * number of the next unsent octet.  So, if there is no data (and no
13471          * SYN or FIN), use snd_max instead of snd_nxt when filling in
13472          * ti_seq.  But if we are in persist state, snd_max might reflect
13473          * one byte beyond the right edge of the window, so use snd_nxt in
13474          * that case, since we know we aren't doing a retransmission.
13475          * (retransmit and persist are mutually exclusive...)
13476          */
13477         if (sack_rxmit == 0) {
13478                 if (len || (flags & (TH_SYN | TH_FIN)) ||
13479                     rack->rc_in_persist) {
13480                         th->th_seq = htonl(tp->snd_nxt);
13481                         rack_seq = tp->snd_nxt;
13482                 } else if (flags & TH_RST) {
13483                         /*
13484                          * For a Reset send the last cum ack in sequence
13485                          * (this like any other choice may still generate a
13486                          * challenge ack, if a ack-update packet is in
13487                          * flight).
13488                          */
13489                         th->th_seq = htonl(tp->snd_una);
13490                         rack_seq = tp->snd_una;
13491                 } else {
13492                         th->th_seq = htonl(tp->snd_max);
13493                         rack_seq = tp->snd_max;
13494                 }
13495         } else {
13496                 th->th_seq = htonl(rsm->r_start);
13497                 rack_seq = rsm->r_start;
13498         }
13499         th->th_ack = htonl(tp->rcv_nxt);
13500         if (optlen) {
13501                 bcopy(opt, th + 1, optlen);
13502                 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
13503         }
13504         th->th_flags = flags;
13505         /*
13506          * Calculate receive window.  Don't shrink window, but avoid silly
13507          * window syndrome.
13508          * If a RST segment is sent, advertise a window of zero.
13509          */
13510         if (flags & TH_RST) {
13511                 recwin = 0;
13512         } else {
13513                 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
13514                     recwin < (long)segsiz)
13515                         recwin = 0;
13516                 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
13517                     recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
13518                         recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
13519         }
13520
13521         /*
13522          * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
13523          * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
13524          * handled in syncache.
13525          */
13526         if (flags & TH_SYN)
13527                 th->th_win = htons((u_short)
13528                                    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
13529         else {
13530                 /* Avoid shrinking window with window scaling. */
13531                 recwin = roundup2(recwin, 1 << tp->rcv_scale);
13532                 th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
13533         }
13534         /*
13535          * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
13536          * window.  This may cause the remote transmitter to stall.  This
13537          * flag tells soreceive() to disable delayed acknowledgements when
13538          * draining the buffer.  This can occur if the receiver is
13539          * attempting to read more data than can be buffered prior to
13540          * transmitting on the connection.
13541          */
13542         if (th->th_win == 0) {
13543                 tp->t_sndzerowin++;
13544                 tp->t_flags |= TF_RXWIN0SENT;
13545         } else
13546                 tp->t_flags &= ~TF_RXWIN0SENT;
13547         tp->snd_up = tp->snd_una;       /* drag it along, its deprecated  */
13548
13549 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
13550         if (to.to_flags & TOF_SIGNATURE) {
13551                 /*
13552                  * Calculate MD5 signature and put it into the place
13553                  * determined before.
13554                  * NOTE: since TCP options buffer doesn't point into
13555                  * mbuf's data, calculate offset and use it.
13556                  */
13557                 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
13558                                                        (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
13559                         /*
13560                          * Do not send segment if the calculation of MD5
13561                          * digest has failed.
13562                          */
13563                         goto out;
13564                 }
13565         }
13566 #endif
13567
13568         /*
13569          * Put TCP length in extended header, and then checksum extended
13570          * header and data.
13571          */
13572         m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
13573 #ifdef INET6
13574         if (isipv6) {
13575                 /*
13576                  * ip6_plen is not need to be filled now, and will be filled
13577                  * in ip6_output.
13578                  */
13579                 if (tp->t_port) {
13580                         m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
13581                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
13582                         udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
13583                         th->th_sum = htons(0);
13584                         UDPSTAT_INC(udps_opackets);
13585                 } else {
13586                         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
13587                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
13588                         th->th_sum = in6_cksum_pseudo(ip6,
13589                                                       sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
13590                                                       0);
13591                 }
13592         }
13593 #endif
13594 #if defined(INET6) && defined(INET)
13595         else
13596 #endif
13597 #ifdef INET
13598         {
13599                 if (tp->t_port) {
13600                         m->m_pkthdr.csum_flags = CSUM_UDP;
13601                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
13602                         udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
13603                                                 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
13604                         th->th_sum = htons(0);
13605                         UDPSTAT_INC(udps_opackets);
13606                 } else {
13607                         m->m_pkthdr.csum_flags = CSUM_TCP;
13608                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
13609                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
13610                                                ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
13611                                                                         IPPROTO_TCP + len + optlen));
13612                 }
13613                 /* IP version must be set here for ipv4/ipv6 checking later */
13614                 KASSERT(ip->ip_v == IPVERSION,
13615                         ("%s: IP version incorrect: %d", __func__, ip->ip_v));
13616         }
13617 #endif
13618         /*
13619          * Enable TSO and specify the size of the segments. The TCP pseudo
13620          * header checksum is always provided. XXX: Fixme: This is currently
13621          * not the case for IPv6.
13622          */
13623         if (tso) {
13624                 KASSERT(len > tp->t_maxseg - optlen,
13625                         ("%s: len <= tso_segsz", __func__));
13626                 m->m_pkthdr.csum_flags |= CSUM_TSO;
13627                 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
13628         }
13629         KASSERT(len + hdrlen == m_length(m, NULL),
13630                 ("%s: mbuf chain different than expected: %d + %u != %u",
13631                  __func__, len, hdrlen, m_length(m, NULL)));
13632
13633 #ifdef TCP_HHOOK
13634         /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
13635         hhook_run_tcp_est_out(tp, th, &to, len, tso);
13636 #endif
13637 #ifdef TCPDEBUG
13638         /*
13639          * Trace.
13640          */
13641         if (so->so_options & SO_DEBUG) {
13642                 u_short save = 0;
13643
13644 #ifdef INET6
13645                 if (!isipv6)
13646 #endif
13647                 {
13648                         save = ipov->ih_len;
13649                         ipov->ih_len = htons(m->m_pkthdr.len    /* - hdrlen +
13650                                                                  * (th->th_off << 2) */ );
13651                 }
13652                 tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
13653 #ifdef INET6
13654                 if (!isipv6)
13655 #endif
13656                         ipov->ih_len = save;
13657         }
13658 #endif                          /* TCPDEBUG */
13659
13660         /* We're getting ready to send; log now. */
13661         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
13662                 union tcp_log_stackspecific log;
13663                 struct timeval tv;
13664
13665                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13666                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
13667                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
13668                 if (rack->rack_no_prr)
13669                         log.u_bbr.flex1 = 0;
13670                 else
13671                         log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
13672                 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
13673                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
13674                 log.u_bbr.flex4 = orig_len;
13675                 if (filled_all)
13676                         log.u_bbr.flex5 = 0x80000000;
13677                 else
13678                         log.u_bbr.flex5 = 0;
13679                 /* Save off the early/late values */
13680                 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
13681                 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
13682                 log.u_bbr.bw_inuse = rack_get_bw(rack);
13683                 if (rsm || sack_rxmit) {
13684                         if (doing_tlp)
13685                                 log.u_bbr.flex8 = 2;
13686                         else
13687                                 log.u_bbr.flex8 = 1;
13688                 } else {
13689                         log.u_bbr.flex8 = 0;
13690                 }
13691                 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
13692                 log.u_bbr.flex7 = mark;
13693                 log.u_bbr.pkts_out = tp->t_maxseg;
13694                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
13695                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
13696                 log.u_bbr.lt_epoch = cwnd_to_use;
13697                 log.u_bbr.delivered = sendalot;
13698                 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
13699                                      len, &log, false, NULL, NULL, 0, &tv);
13700         } else
13701                 lgb = NULL;
13702
13703         /*
13704          * Fill in IP length and desired time to live and send to IP level.
13705          * There should be a better way to handle ttl and tos; we could keep
13706          * them in the template, but need a way to checksum without them.
13707          */
13708         /*
13709          * m->m_pkthdr.len should have been set before cksum calcuration,
13710          * because in6_cksum() need it.
13711          */
13712 #ifdef INET6
13713         if (isipv6) {
13714                 /*
13715                  * we separately set hoplimit for every segment, since the
13716                  * user might want to change the value via setsockopt. Also,
13717                  * desired default hop limit might be changed via Neighbor
13718                  * Discovery.
13719                  */
13720                 ip6->ip6_hlim = in6_selecthlim(inp, NULL);
13721
13722                 /*
13723                  * Set the packet size here for the benefit of DTrace
13724                  * probes. ip6_output() will set it properly; it's supposed
13725                  * to include the option header lengths as well.
13726                  */
13727                 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
13728
13729                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
13730                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
13731                 else
13732                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
13733
13734                 if (tp->t_state == TCPS_SYN_SENT)
13735                         TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
13736
13737                 TCP_PROBE5(send, NULL, tp, ip6, tp, th);
13738                 /* TODO: IPv6 IP6TOS_ECT bit on */
13739                 error = ip6_output(m, inp->in6p_outputopts,
13740                                    &inp->inp_route6,
13741                                    ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0),
13742                                    NULL, NULL, inp);
13743
13744                 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL)
13745                         mtu = inp->inp_route6.ro_nh->nh_mtu;
13746         }
13747 #endif                          /* INET6 */
13748 #if defined(INET) && defined(INET6)
13749         else
13750 #endif
13751 #ifdef INET
13752         {
13753                 ip->ip_len = htons(m->m_pkthdr.len);
13754 #ifdef INET6
13755                 if (inp->inp_vflag & INP_IPV6PROTO)
13756                         ip->ip_ttl = in6_selecthlim(inp, NULL);
13757 #endif                          /* INET6 */
13758                 /*
13759                  * If we do path MTU discovery, then we set DF on every
13760                  * packet. This might not be the best thing to do according
13761                  * to RFC3390 Section 2. However the tcp hostcache migitates
13762                  * the problem so it affects only the first tcp connection
13763                  * with a host.
13764                  *
13765                  * NB: Don't set DF on small MTU/MSS to have a safe
13766                  * fallback.
13767                  */
13768                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
13769                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
13770                         if (tp->t_port == 0 || len < V_tcp_minmss) {
13771                                 ip->ip_off |= htons(IP_DF);
13772                         }
13773                 } else {
13774                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
13775                 }
13776
13777                 if (tp->t_state == TCPS_SYN_SENT)
13778                         TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
13779
13780                 TCP_PROBE5(send, NULL, tp, ip, tp, th);
13781
13782                 error = ip_output(m, inp->inp_options, &inp->inp_route,
13783                                   ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0,
13784                                   inp);
13785                 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL)
13786                         mtu = inp->inp_route.ro_nh->nh_mtu;
13787         }
13788 #endif                          /* INET */
13789
13790 out:
13791         if (lgb) {
13792                 lgb->tlb_errno = error;
13793                 lgb = NULL;
13794         }
13795         /*
13796          * In transmit state, time the transmission and arrange for the
13797          * retransmit.  In persist state, just set snd_max.
13798          */
13799         if (error == 0) {
13800                 rack->forced_ack = 0;   /* If we send something zap the FA flag */
13801                 if (rsm && (doing_tlp == 0)) {
13802                         /* Set we retransmitted */
13803                         rack->rc_gp_saw_rec = 1;
13804                 } else {
13805                         if (cwnd_to_use > tp->snd_ssthresh) {
13806                                 /* Set we sent in CA */
13807                                 rack->rc_gp_saw_ca = 1;
13808                         } else {
13809                                 /* Set we sent in SS */
13810                                 rack->rc_gp_saw_ss = 1;
13811                         }
13812                 }
13813                 if (TCPS_HAVEESTABLISHED(tp->t_state) &&
13814                     (tp->t_flags & TF_SACK_PERMIT) &&
13815                     tp->rcv_numsacks > 0)
13816                         tcp_clean_dsack_blocks(tp);
13817                 tot_len_this_send += len;
13818                 if (len == 0)
13819                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
13820                 else if (len == 1) {
13821                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
13822                 } else if (len > 1) {
13823                         int idx;
13824
13825                         idx = (len / segsiz) + 3;
13826                         if (idx >= TCP_MSS_ACCT_ATIMER)
13827                                 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
13828                         else
13829                                 counter_u64_add(rack_out_size[idx], 1);
13830                 }
13831         }
13832         if (rack->rack_no_prr == 0) {
13833                 if (sub_from_prr && (error == 0)) {
13834                         if (rack->r_ctl.rc_prr_sndcnt >= len)
13835                                 rack->r_ctl.rc_prr_sndcnt -= len;
13836                         else
13837                                 rack->r_ctl.rc_prr_sndcnt = 0;
13838                 }
13839         }
13840         sub_from_prr = 0;
13841         rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
13842                         pass, rsm, us_cts);
13843         if ((error == 0) &&
13844             (len > 0) &&
13845             (tp->snd_una == tp->snd_max))
13846                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
13847         /* Now are we in persists? */
13848         if (rack->rc_in_persist == 0) {
13849                 tcp_seq startseq = tp->snd_nxt;
13850
13851                 /* Track our lost count */
13852                 if (rsm && (doing_tlp == 0))
13853                         rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start;
13854                 /*
13855                  * Advance snd_nxt over sequence space of this segment.
13856                  */
13857                 if (error)
13858                         /* We don't log or do anything with errors */
13859                         goto nomore;
13860                 if (doing_tlp == 0) {
13861                         if (rsm == NULL) {
13862                                 /*
13863                                  * Not a retransmission of some
13864                                  * sort, new data is going out so
13865                                  * clear our TLP count and flag.
13866                                  */
13867                                 rack->rc_tlp_in_progress = 0;
13868                                 rack->r_ctl.rc_tlp_cnt_out = 0;
13869                         }
13870                 } else {
13871                         /*
13872                          * We have just sent a TLP, mark that it is true
13873                          * and make sure our in progress is set so we
13874                          * continue to check the count.
13875                          */
13876                         rack->rc_tlp_in_progress = 1;
13877                         rack->r_ctl.rc_tlp_cnt_out++;
13878                 }
13879                 if (flags & (TH_SYN | TH_FIN)) {
13880                         if (flags & TH_SYN)
13881                                 tp->snd_nxt++;
13882                         if (flags & TH_FIN) {
13883                                 tp->snd_nxt++;
13884                                 tp->t_flags |= TF_SENTFIN;
13885                         }
13886                 }
13887                 /* In the ENOBUFS case we do *not* update snd_max */
13888                 if (sack_rxmit)
13889                         goto nomore;
13890
13891                 tp->snd_nxt += len;
13892                 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
13893                         if (tp->snd_una == tp->snd_max) {
13894                                 /*
13895                                  * Update the time we just added data since
13896                                  * none was outstanding.
13897                                  */
13898                                 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
13899                                 tp->t_acktime = ticks;
13900                         }
13901                         tp->snd_max = tp->snd_nxt;
13902                         /*
13903                          * Time this transmission if not a retransmission and
13904                          * not currently timing anything.
13905                          * This is only relevant in case of switching back to
13906                          * the base stack.
13907                          */
13908                         if (tp->t_rtttime == 0) {
13909                                 tp->t_rtttime = ticks;
13910                                 tp->t_rtseq = startseq;
13911                                 KMOD_TCPSTAT_INC(tcps_segstimed);
13912                         }
13913                         if (len &&
13914                             ((tp->t_flags & TF_GPUTINPROG) == 0))
13915                                 rack_start_gp_measurement(tp, rack, startseq, sb_offset);
13916                 }
13917         } else {
13918                 /*
13919                  * Persist case, update snd_max but since we are in persist
13920                  * mode (no window) we do not update snd_nxt.
13921                  */
13922                 int32_t xlen = len;
13923
13924                 if (error)
13925                         goto nomore;
13926
13927                 if (flags & TH_SYN)
13928                         ++xlen;
13929                 if (flags & TH_FIN) {
13930                         ++xlen;
13931                         tp->t_flags |= TF_SENTFIN;
13932                 }
13933                 /* In the ENOBUFS case we do *not* update snd_max */
13934                 if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
13935                         if (tp->snd_una == tp->snd_max) {
13936                                 /*
13937                                  * Update the time we just added data since
13938                                  * none was outstanding.
13939                                  */
13940                                 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
13941                                 tp->t_acktime = ticks;
13942                         }
13943                         tp->snd_max = tp->snd_nxt + len;
13944                 }
13945         }
13946 nomore:
13947         if (error) {
13948                 rack->r_ctl.rc_agg_delayed = 0;
13949                 rack->r_early = 0;
13950                 rack->r_late = 0;
13951                 rack->r_ctl.rc_agg_early = 0;
13952                 SOCKBUF_UNLOCK_ASSERT(sb);      /* Check gotos. */
13953                 /*
13954                  * Failures do not advance the seq counter above. For the
13955                  * case of ENOBUFS we will fall out and retry in 1ms with
13956                  * the hpts. Everything else will just have to retransmit
13957                  * with the timer.
13958                  *
13959                  * In any case, we do not want to loop around for another
13960                  * send without a good reason.
13961                  */
13962                 sendalot = 0;
13963                 switch (error) {
13964                 case EPERM:
13965                         tp->t_softerror = error;
13966                         return (error);
13967                 case ENOBUFS:
13968                         if (slot == 0) {
13969                                 /*
13970                                  * Pace us right away to retry in a some
13971                                  * time
13972                                  */
13973                                 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
13974                                 if (rack->rc_enobuf < 126)
13975                                         rack->rc_enobuf++;
13976                                 if (slot > ((rack->rc_rack_rtt / 2) * HPTS_USEC_IN_MSEC)) {
13977                                         slot = (rack->rc_rack_rtt / 2) * HPTS_USEC_IN_MSEC;
13978                                 }
13979                                 if (slot < (10 * HPTS_USEC_IN_MSEC))
13980                                         slot = 10 * HPTS_USEC_IN_MSEC;
13981                         }
13982                         counter_u64_add(rack_saw_enobuf, 1);
13983                         error = 0;
13984                         goto enobufs;
13985                 case EMSGSIZE:
13986                         /*
13987                          * For some reason the interface we used initially
13988                          * to send segments changed to another or lowered
13989                          * its MTU. If TSO was active we either got an
13990                          * interface without TSO capabilits or TSO was
13991                          * turned off. If we obtained mtu from ip_output()
13992                          * then update it and try again.
13993                          */
13994                         if (tso)
13995                                 tp->t_flags &= ~TF_TSO;
13996                         if (mtu != 0) {
13997                                 tcp_mss_update(tp, -1, mtu, NULL, NULL);
13998                                 goto again;
13999                         }
14000                         slot = 10 * HPTS_USEC_IN_MSEC;
14001                         rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
14002                         return (error);
14003                 case ENETUNREACH:
14004                         counter_u64_add(rack_saw_enetunreach, 1);
14005                 case EHOSTDOWN:
14006                 case EHOSTUNREACH:
14007                 case ENETDOWN:
14008                         if (TCPS_HAVERCVDSYN(tp->t_state)) {
14009                                 tp->t_softerror = error;
14010                         }
14011                         /* FALLTHROUGH */
14012                 default:
14013                         slot = 10 * HPTS_USEC_IN_MSEC;
14014                         rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
14015                         return (error);
14016                 }
14017         } else {
14018                 rack->rc_enobuf = 0;
14019         }
14020         KMOD_TCPSTAT_INC(tcps_sndtotal);
14021
14022         /*
14023          * Data sent (as far as we can tell). If this advertises a larger
14024          * window than any other segment, then remember the size of the
14025          * advertised window. Any pending ACK has now been sent.
14026          */
14027         if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
14028                 tp->rcv_adv = tp->rcv_nxt + recwin;
14029         tp->last_ack_sent = tp->rcv_nxt;
14030         tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
14031 enobufs:
14032         /* Assure when we leave that snd_nxt will point to top */
14033         if (SEQ_GT(tp->snd_max, tp->snd_nxt))
14034                 tp->snd_nxt = tp->snd_max;
14035         if (sendalot) {
14036                 /* Do we need to turn off sendalot? */
14037                 if (rack->r_ctl.rc_pace_max_segs &&
14038                     (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) {
14039                         /* We hit our max. */
14040                         sendalot = 0;
14041                 } else if ((rack->rc_user_set_max_segs) &&
14042                            (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) {
14043                         /* We hit the user defined max */
14044                         sendalot = 0;
14045                 }
14046         }
14047         if ((error == 0) && (flags & TH_FIN))
14048                 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN);
14049         if (flags & TH_RST) {
14050                 /*
14051                  * We don't send again after sending a RST.
14052                  */
14053                 slot = 0;
14054                 sendalot = 0;
14055                 if (error == 0)
14056                         tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
14057         } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) {
14058                 /*
14059                  * Get our pacing rate, if an error
14060                  * occured in sending (ENOBUF) we would
14061                  * hit the else if with slot preset. Other
14062                  * errors return.
14063                  */
14064                 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz);
14065         }
14066         if (rsm &&
14067             rack->use_rack_rr) {
14068                 /* Its a retransmit and we use the rack cheat? */
14069                 if ((slot == 0) ||
14070                     (rack->rc_always_pace == 0) ||
14071                     (rack->r_rr_config == 1)) {
14072                         /*
14073                          * We have no pacing set or we
14074                          * are using old-style rack or
14075                          * we are overriden to use the old 1ms pacing.
14076                          */
14077                         slot = rack->r_ctl.rc_min_to * HPTS_USEC_IN_MSEC;
14078                 }
14079         }
14080         if (slot) {
14081                 /* set the rack tcb into the slot N */
14082                 counter_u64_add(rack_paced_segments, 1);
14083         } else if (sendalot) {
14084                 if (len)
14085                         counter_u64_add(rack_unpaced_segments, 1);
14086                 sack_rxmit = 0;
14087                 goto again;
14088         } else if (len) {
14089                 counter_u64_add(rack_unpaced_segments, 1);
14090         }
14091         rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
14092         return (error);
14093 }
14094
14095 static void
14096 rack_update_seg(struct tcp_rack *rack)
14097 {
14098         uint32_t orig_val;
14099
14100         orig_val = rack->r_ctl.rc_pace_max_segs;
14101         rack_set_pace_segments(rack->rc_tp, rack, __LINE__);
14102         if (orig_val != rack->r_ctl.rc_pace_max_segs)
14103                 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL);
14104 }
14105
14106 /*
14107  * rack_ctloutput() must drop the inpcb lock before performing copyin on
14108  * socket option arguments.  When it re-acquires the lock after the copy, it
14109  * has to revalidate that the connection is still valid for the socket
14110  * option.
14111  */
14112 static int
14113 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
14114     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
14115 {
14116         struct epoch_tracker et;
14117         uint64_t val;
14118         int32_t error = 0, optval;
14119         uint16_t ca, ss;
14120
14121         switch (sopt->sopt_name) {
14122         case TCP_RACK_PROP_RATE:                /*  URL:prop_rate */
14123         case TCP_RACK_PROP      :               /*  URL:prop */
14124         case TCP_RACK_TLP_REDUCE:               /*  URL:tlp_reduce */
14125         case TCP_RACK_EARLY_RECOV:              /*  URL:early_recov */
14126         case TCP_RACK_PACE_REDUCE:              /*  Not used */
14127         /*  Pacing related ones */
14128         case TCP_RACK_PACE_ALWAYS:              /*  URL:pace_always */
14129         case TCP_BBR_RACK_INIT_RATE:            /*  URL:irate */
14130         case TCP_BBR_IWINTSO:                   /*  URL:tso_iwin */
14131         case TCP_RACK_PACE_MAX_SEG:             /*  URL:pace_max_seg */
14132         case TCP_RACK_FORCE_MSEG:               /*  URL:force_max_seg */
14133         case TCP_RACK_PACE_RATE_CA:             /*  URL:pr_ca */
14134         case TCP_RACK_PACE_RATE_SS:             /*  URL:pr_ss*/
14135         case TCP_RACK_PACE_RATE_REC:            /*  URL:pr_rec */
14136         case TCP_RACK_GP_INCREASE_CA:           /*  URL:gp_inc_ca */
14137         case TCP_RACK_GP_INCREASE_SS:           /*  URL:gp_inc_ss */
14138         case TCP_RACK_GP_INCREASE_REC:          /*  URL:gp_inc_rec */
14139         case TCP_RACK_RR_CONF:                  /*  URL:rrr_conf */
14140         case TCP_BBR_HDWR_PACE:                 /*  URL:hdwrpace */
14141        /* End pacing related */
14142         case TCP_DELACK:
14143         case TCP_RACK_PRR_SENDALOT:             /*  URL:prr_sendalot */
14144         case TCP_RACK_MIN_TO:                   /*  URL:min_to */
14145         case TCP_RACK_EARLY_SEG:                /*  URL:early_seg */
14146         case TCP_RACK_REORD_THRESH:             /*  URL:reord_thresh */
14147         case TCP_RACK_REORD_FADE:               /*  URL:reord_fade */
14148         case TCP_RACK_TLP_THRESH:               /*  URL:tlp_thresh */
14149         case TCP_RACK_PKT_DELAY:                /*  URL:pkt_delay */
14150         case TCP_RACK_TLP_USE:                  /*  URL:tlp_use */
14151         case TCP_RACK_TLP_INC_VAR:              /*  URL:tlp_inc_var */
14152         case TCP_RACK_IDLE_REDUCE_HIGH:         /*  URL:idle_reduce_high */
14153         case TCP_BBR_RACK_RTT_USE:              /*  URL:rttuse */
14154         case TCP_BBR_USE_RACK_RR:               /*  URL:rackrr */
14155         case TCP_RACK_DO_DETECTION:             /*  URL:detect */
14156         case TCP_NO_PRR:                        /*  URL:noprr */
14157         case TCP_TIMELY_DYN_ADJ:                /*  URL:dynamic */
14158         case TCP_DATA_AFTER_CLOSE:
14159         case TCP_RACK_NONRXT_CFG_RATE:          /*  URL:nonrxtcr */
14160         case TCP_SHARED_CWND_ENABLE:            /*  URL:scwnd */
14161         case TCP_RACK_MBUF_QUEUE:               /*  URL:mqueue */
14162         case TCP_RACK_NO_PUSH_AT_MAX:           /*  URL:npush */
14163         case TCP_RACK_PACE_TO_FILL:             /*  URL:fillcw */
14164         case TCP_SHARED_CWND_TIME_LIMIT:        /*  URL:lscwnd */
14165         case TCP_RACK_PROFILE:                  /*  URL:profile */
14166                 break;
14167         default:
14168                 return (tcp_default_ctloutput(so, sopt, inp, tp));
14169                 break;
14170         }
14171         INP_WUNLOCK(inp);
14172         error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
14173         if (error)
14174                 return (error);
14175         INP_WLOCK(inp);
14176         if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
14177                 INP_WUNLOCK(inp);
14178                 return (ECONNRESET);
14179         }
14180         tp = intotcpcb(inp);
14181         rack = (struct tcp_rack *)tp->t_fb_ptr;
14182         switch (sopt->sopt_name) {
14183         case TCP_RACK_PROFILE:
14184                 RACK_OPTS_INC(tcp_profile);
14185                 if (optval == 1) {
14186                         /* pace_always=1 */
14187                         rack->rc_always_pace = 1;
14188                         tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
14189                         /* scwnd=1 */
14190                         rack->rack_enable_scwnd = 1;
14191                         /* dynamic=100 */
14192                         rack->rc_gp_dyn_mul = 1;
14193                         rack->r_ctl.rack_per_of_gp_ca = 100;
14194                         /* rrr_conf=3 */
14195                         rack->r_rr_config = 3;
14196                         /* npush=2 */
14197                         rack->r_ctl.rc_no_push_at_mrtt = 2;
14198                         /* fillcw=1 */
14199                         rack->rc_pace_to_cwnd = 1;
14200                         rack->rc_pace_fill_if_rttin_range = 0;
14201                         rack->rtt_limit_mul = 0;
14202                         /* noprr=1 */
14203                         rack->rack_no_prr = 1;
14204                         /* lscwnd=1 */
14205                         rack->r_limit_scw = 1;
14206                 } else if (optval == 2) {
14207                         /* pace_always=1 */
14208                         rack->rc_always_pace = 1;
14209                         tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
14210                         /* scwnd=1 */
14211                         rack->rack_enable_scwnd = 1;
14212                         /* dynamic=100 */
14213                         rack->rc_gp_dyn_mul = 1;
14214                         rack->r_ctl.rack_per_of_gp_ca = 100;
14215                         /* rrr_conf=3 */
14216                         rack->r_rr_config = 3;
14217                         /* npush=2 */
14218                         rack->r_ctl.rc_no_push_at_mrtt = 2;
14219                         /* fillcw=1 */
14220                         rack->rc_pace_to_cwnd = 1;
14221                         rack->rc_pace_fill_if_rttin_range = 0;
14222                         rack->rtt_limit_mul = 0;
14223                         /* noprr=1 */
14224                         rack->rack_no_prr = 1;
14225                         /* lscwnd=0 */
14226                         rack->r_limit_scw = 0;
14227                 }
14228                 break;
14229         case TCP_SHARED_CWND_TIME_LIMIT:
14230                 RACK_OPTS_INC(tcp_lscwnd);
14231                 if (optval)
14232                         rack->r_limit_scw = 1;
14233                 else
14234                         rack->r_limit_scw = 0;
14235                 break;
14236         case TCP_RACK_PACE_TO_FILL:
14237                 RACK_OPTS_INC(tcp_fillcw);
14238                 if (optval == 0)
14239                         rack->rc_pace_to_cwnd = 0;
14240                 else
14241                         rack->rc_pace_to_cwnd = 1;
14242                 if ((optval >= rack_gp_rtt_maxmul) &&
14243                     rack_gp_rtt_maxmul &&
14244                     (optval < 0xf)) {
14245                         rack->rc_pace_fill_if_rttin_range = 1;
14246                         rack->rtt_limit_mul = optval;
14247                 } else {
14248                         rack->rc_pace_fill_if_rttin_range = 0;
14249                         rack->rtt_limit_mul = 0;
14250                 }
14251                 break;
14252         case TCP_RACK_NO_PUSH_AT_MAX:
14253                 RACK_OPTS_INC(tcp_npush);
14254                 if (optval == 0)
14255                         rack->r_ctl.rc_no_push_at_mrtt = 0;
14256                 else if (optval < 0xff)
14257                         rack->r_ctl.rc_no_push_at_mrtt = optval;
14258                 else
14259                         error = EINVAL;
14260                 break;
14261         case TCP_SHARED_CWND_ENABLE:
14262                 RACK_OPTS_INC(tcp_rack_scwnd);
14263                 if (optval == 0)
14264                         rack->rack_enable_scwnd = 0;
14265                 else
14266                         rack->rack_enable_scwnd = 1;
14267                 break;
14268         case TCP_RACK_MBUF_QUEUE:
14269                 /* Now do we use the LRO mbuf-queue feature */
14270                 RACK_OPTS_INC(tcp_rack_mbufq);
14271                 if (optval)
14272                         rack->r_mbuf_queue = 1;
14273                 else
14274                         rack->r_mbuf_queue = 0;
14275                 if  (rack->r_mbuf_queue || rack->rc_always_pace)
14276                         tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
14277                 else
14278                         tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
14279                 break;
14280         case TCP_RACK_NONRXT_CFG_RATE:
14281                 RACK_OPTS_INC(tcp_rack_cfg_rate);
14282                 if (optval == 0)
14283                         rack->rack_rec_nonrxt_use_cr = 0;
14284                 else
14285                         rack->rack_rec_nonrxt_use_cr = 1;
14286                 break;
14287         case TCP_NO_PRR:
14288                 RACK_OPTS_INC(tcp_rack_noprr);
14289                 if (optval == 0)
14290                         rack->rack_no_prr = 0;
14291                 else
14292                         rack->rack_no_prr = 1;
14293                 break;
14294         case TCP_TIMELY_DYN_ADJ:
14295                 RACK_OPTS_INC(tcp_timely_dyn);
14296                 if (optval == 0)
14297                         rack->rc_gp_dyn_mul = 0;
14298                 else {
14299                         rack->rc_gp_dyn_mul = 1;
14300                         if (optval >= 100) {
14301                                 /*
14302                                  * If the user sets something 100 or more
14303                                  * its the gp_ca value.
14304                                  */
14305                                 rack->r_ctl.rack_per_of_gp_ca  = optval;
14306                         }
14307                 }
14308                 break;
14309         case TCP_RACK_DO_DETECTION:
14310                 RACK_OPTS_INC(tcp_rack_do_detection);
14311                 if (optval == 0)
14312                         rack->do_detection = 0;
14313                 else
14314                         rack->do_detection = 1;
14315                 break;
14316         case TCP_RACK_PROP_RATE:
14317                 if ((optval <= 0) || (optval >= 100)) {
14318                         error = EINVAL;
14319                         break;
14320                 }
14321                 RACK_OPTS_INC(tcp_rack_prop_rate);
14322                 rack->r_ctl.rc_prop_rate = optval;
14323                 break;
14324         case TCP_RACK_TLP_USE:
14325                 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
14326                         error = EINVAL;
14327                         break;
14328                 }
14329                 RACK_OPTS_INC(tcp_tlp_use);
14330                 rack->rack_tlp_threshold_use = optval;
14331                 break;
14332         case TCP_RACK_PROP:
14333                 /* RACK proportional rate reduction (bool) */
14334                 RACK_OPTS_INC(tcp_rack_prop);
14335                 rack->r_ctl.rc_prop_reduce = optval;
14336                 break;
14337         case TCP_RACK_TLP_REDUCE:
14338                 /* RACK TLP cwnd reduction (bool) */
14339                 RACK_OPTS_INC(tcp_rack_tlp_reduce);
14340                 rack->r_ctl.rc_tlp_cwnd_reduce = optval;
14341                 break;
14342         case TCP_RACK_EARLY_RECOV:
14343                 /* Should recovery happen early (bool) */
14344                 RACK_OPTS_INC(tcp_rack_early_recov);
14345                 rack->r_ctl.rc_early_recovery = optval;
14346                 break;
14347
14348         /*  Pacing related ones */
14349         case TCP_RACK_PACE_ALWAYS:
14350                 /*
14351                  * zero is old rack method, 1 is new
14352                  * method using a pacing rate.
14353                  */
14354                 RACK_OPTS_INC(tcp_rack_pace_always);
14355                 if (optval > 0)
14356                         rack->rc_always_pace = 1;
14357                 else
14358                         rack->rc_always_pace = 0;
14359                 if  (rack->r_mbuf_queue || rack->rc_always_pace)
14360                         tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
14361                 else
14362                         tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
14363                 /* A rate may be set irate or other, if so set seg size */
14364                 rack_update_seg(rack);
14365                 break;
14366         case TCP_BBR_RACK_INIT_RATE:
14367                 RACK_OPTS_INC(tcp_initial_rate);
14368                 val = optval;
14369                 /* Change from kbits per second to bytes per second */
14370                 val *= 1000;
14371                 val /= 8;
14372                 rack->r_ctl.init_rate = val;
14373                 if (rack->rc_init_win != rack_default_init_window) {
14374                         uint32_t win, snt;
14375
14376                         /*
14377                          * Options don't always get applied
14378                          * in the order you think. So in order
14379                          * to assure we update a cwnd we need
14380                          * to check and see if we are still
14381                          * where we should raise the cwnd.
14382                          */
14383                         win = rc_init_window(rack);
14384                         if (SEQ_GT(tp->snd_max, tp->iss))
14385                                 snt = tp->snd_max - tp->iss;
14386                         else
14387                                 snt = 0;
14388                         if ((snt < win) &&
14389                             (tp->snd_cwnd < win))
14390                                 tp->snd_cwnd = win;
14391                 }
14392                 if (rack->rc_always_pace)
14393                         rack_update_seg(rack);
14394                 break;
14395         case TCP_BBR_IWINTSO:
14396                 RACK_OPTS_INC(tcp_initial_win);
14397                 if (optval && (optval <= 0xff)) {
14398                         uint32_t win, snt;
14399
14400                         rack->rc_init_win = optval;
14401                         win = rc_init_window(rack);
14402                         if (SEQ_GT(tp->snd_max, tp->iss))
14403                                 snt = tp->snd_max - tp->iss;
14404                         else
14405                                 snt = 0;
14406                         if ((snt < win) &&
14407                             (tp->t_srtt |
14408 #ifdef NETFLIX_PEAKRATE
14409                              tp->t_maxpeakrate |
14410 #endif
14411                              rack->r_ctl.init_rate)) {
14412                                 /*
14413                                  * We are not past the initial window
14414                                  * and we have some bases for pacing,
14415                                  * so we need to possibly adjust up
14416                                  * the cwnd. Note even if we don't set
14417                                  * the cwnd, its still ok to raise the rc_init_win
14418                                  * which can be used coming out of idle when we
14419                                  * would have a rate.
14420                                  */
14421                                 if (tp->snd_cwnd < win)
14422                                         tp->snd_cwnd = win;
14423                         }
14424                         if (rack->rc_always_pace)
14425                                 rack_update_seg(rack);
14426                 } else
14427                         error = EINVAL;
14428                 break;
14429         case TCP_RACK_FORCE_MSEG:
14430                 RACK_OPTS_INC(tcp_rack_force_max_seg);
14431                 if (optval)
14432                         rack->rc_force_max_seg = 1;
14433                 else
14434                         rack->rc_force_max_seg = 0;
14435                 break;
14436         case TCP_RACK_PACE_MAX_SEG:
14437                 /* Max segments size in a pace in bytes */
14438                 RACK_OPTS_INC(tcp_rack_max_seg);
14439                 rack->rc_user_set_max_segs = optval;
14440                 rack_set_pace_segments(tp, rack, __LINE__);
14441                 break;
14442         case TCP_RACK_PACE_RATE_REC:
14443                 /* Set the fixed pacing rate in Bytes per second ca */
14444                 RACK_OPTS_INC(tcp_rack_pace_rate_rec);
14445                 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
14446                 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
14447                         rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
14448                 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
14449                         rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
14450                 rack->use_fixed_rate = 1;
14451                 rack_log_pacing_delay_calc(rack,
14452                                            rack->r_ctl.rc_fixed_pacing_rate_ss,
14453                                            rack->r_ctl.rc_fixed_pacing_rate_ca,
14454                                            rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
14455                                            __LINE__, NULL);
14456                 break;
14457
14458         case TCP_RACK_PACE_RATE_SS:
14459                 /* Set the fixed pacing rate in Bytes per second ca */
14460                 RACK_OPTS_INC(tcp_rack_pace_rate_ss);
14461                 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
14462                 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
14463                         rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
14464                 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
14465                         rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
14466                 rack->use_fixed_rate = 1;
14467                 rack_log_pacing_delay_calc(rack,
14468                                            rack->r_ctl.rc_fixed_pacing_rate_ss,
14469                                            rack->r_ctl.rc_fixed_pacing_rate_ca,
14470                                            rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
14471                                            __LINE__, NULL);
14472                 break;
14473
14474         case TCP_RACK_PACE_RATE_CA:
14475                 /* Set the fixed pacing rate in Bytes per second ca */
14476                 RACK_OPTS_INC(tcp_rack_pace_rate_ca);
14477                 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
14478                 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
14479                         rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
14480                 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
14481                         rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
14482                 rack->use_fixed_rate = 1;
14483                 rack_log_pacing_delay_calc(rack,
14484                                            rack->r_ctl.rc_fixed_pacing_rate_ss,
14485                                            rack->r_ctl.rc_fixed_pacing_rate_ca,
14486                                            rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
14487                                            __LINE__, NULL);
14488                 break;
14489         case TCP_RACK_GP_INCREASE_REC:
14490                 RACK_OPTS_INC(tcp_gp_inc_rec);
14491                 rack->r_ctl.rack_per_of_gp_rec = optval;
14492                 rack_log_pacing_delay_calc(rack,
14493                                            rack->r_ctl.rack_per_of_gp_ss,
14494                                            rack->r_ctl.rack_per_of_gp_ca,
14495                                            rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
14496                                            __LINE__, NULL);
14497                 break;
14498         case TCP_RACK_GP_INCREASE_CA:
14499                 RACK_OPTS_INC(tcp_gp_inc_ca);
14500                 ca = optval;
14501                 if (ca < 100) {
14502                         /*
14503                          * We don't allow any reduction
14504                          * over the GP b/w.
14505                          */
14506                         error = EINVAL;
14507                         break;
14508                 }
14509                 rack->r_ctl.rack_per_of_gp_ca = ca;
14510                 rack_log_pacing_delay_calc(rack,
14511                                            rack->r_ctl.rack_per_of_gp_ss,
14512                                            rack->r_ctl.rack_per_of_gp_ca,
14513                                            rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
14514                                            __LINE__, NULL);
14515                 break;
14516         case TCP_RACK_GP_INCREASE_SS:
14517                 RACK_OPTS_INC(tcp_gp_inc_ss);
14518                 ss = optval;
14519                 if (ss < 100) {
14520                         /*
14521                          * We don't allow any reduction
14522                          * over the GP b/w.
14523                          */
14524                         error = EINVAL;
14525                         break;
14526                 }
14527                 rack->r_ctl.rack_per_of_gp_ss = ss;
14528                 rack_log_pacing_delay_calc(rack,
14529                                            rack->r_ctl.rack_per_of_gp_ss,
14530                                            rack->r_ctl.rack_per_of_gp_ca,
14531                                            rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
14532                                            __LINE__, NULL);
14533                 break;
14534         case TCP_RACK_RR_CONF:
14535                 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate);
14536                 if (optval && optval <= 3)
14537                         rack->r_rr_config = optval;
14538                 else
14539                         rack->r_rr_config = 0;
14540                 break;
14541         case TCP_BBR_HDWR_PACE:
14542                 RACK_OPTS_INC(tcp_hdwr_pacing);
14543                 if (optval){
14544                         if (rack->rack_hdrw_pacing == 0) {
14545                                 rack->rack_hdw_pace_ena = 1;
14546                                 rack->rack_attempt_hdwr_pace = 0;
14547                         } else
14548                                 error = EALREADY;
14549                 } else {
14550                         rack->rack_hdw_pace_ena = 0;
14551 #ifdef RATELIMIT
14552                         if (rack->rack_hdrw_pacing) {
14553                                 rack->rack_hdrw_pacing = 0;
14554                                 in_pcbdetach_txrtlmt(rack->rc_inp);
14555                         }
14556 #endif
14557                 }
14558                 break;
14559         /*  End Pacing related ones */
14560         case TCP_RACK_PRR_SENDALOT:
14561                 /* Allow PRR to send more than one seg */
14562                 RACK_OPTS_INC(tcp_rack_prr_sendalot);
14563                 rack->r_ctl.rc_prr_sendalot = optval;
14564                 break;
14565         case TCP_RACK_MIN_TO:
14566                 /* Minimum time between rack t-o's in ms */
14567                 RACK_OPTS_INC(tcp_rack_min_to);
14568                 rack->r_ctl.rc_min_to = optval;
14569                 break;
14570         case TCP_RACK_EARLY_SEG:
14571                 /* If early recovery max segments */
14572                 RACK_OPTS_INC(tcp_rack_early_seg);
14573                 rack->r_ctl.rc_early_recovery_segs = optval;
14574                 break;
14575         case TCP_RACK_REORD_THRESH:
14576                 /* RACK reorder threshold (shift amount) */
14577                 RACK_OPTS_INC(tcp_rack_reord_thresh);
14578                 if ((optval > 0) && (optval < 31))
14579                         rack->r_ctl.rc_reorder_shift = optval;
14580                 else
14581                         error = EINVAL;
14582                 break;
14583         case TCP_RACK_REORD_FADE:
14584                 /* Does reordering fade after ms time */
14585                 RACK_OPTS_INC(tcp_rack_reord_fade);
14586                 rack->r_ctl.rc_reorder_fade = optval;
14587                 break;
14588         case TCP_RACK_TLP_THRESH:
14589                 /* RACK TLP theshold i.e. srtt+(srtt/N) */
14590                 RACK_OPTS_INC(tcp_rack_tlp_thresh);
14591                 if (optval)
14592                         rack->r_ctl.rc_tlp_threshold = optval;
14593                 else
14594                         error = EINVAL;
14595                 break;
14596         case TCP_BBR_USE_RACK_RR:
14597                 RACK_OPTS_INC(tcp_rack_rr);
14598                 if (optval)
14599                         rack->use_rack_rr = 1;
14600                 else
14601                         rack->use_rack_rr = 0;
14602                 break;
14603         case TCP_RACK_PKT_DELAY:
14604                 /* RACK added ms i.e. rack-rtt + reord + N */
14605                 RACK_OPTS_INC(tcp_rack_pkt_delay);
14606                 rack->r_ctl.rc_pkt_delay = optval;
14607                 break;
14608         case TCP_RACK_TLP_INC_VAR:
14609                 /* Does TLP include rtt variance in t-o */
14610                 error = EINVAL;
14611                 break;
14612         case TCP_RACK_IDLE_REDUCE_HIGH:
14613                 error = EINVAL;
14614                 break;
14615         case TCP_DELACK:
14616                 if (optval == 0)
14617                         tp->t_delayed_ack = 0;
14618                 else
14619                         tp->t_delayed_ack = 1;
14620                 if (tp->t_flags & TF_DELACK) {
14621                         tp->t_flags &= ~TF_DELACK;
14622                         tp->t_flags |= TF_ACKNOW;
14623                         NET_EPOCH_ENTER(et);
14624                         rack_output(tp);
14625                         NET_EPOCH_EXIT(et);
14626                 }
14627                 break;
14628
14629         case TCP_BBR_RACK_RTT_USE:
14630                 if ((optval != USE_RTT_HIGH) &&
14631                     (optval != USE_RTT_LOW) &&
14632                     (optval != USE_RTT_AVG))
14633                         error = EINVAL;
14634                 else
14635                         rack->r_ctl.rc_rate_sample_method = optval;
14636                 break;
14637         case TCP_DATA_AFTER_CLOSE:
14638                 if (optval)
14639                         rack->rc_allow_data_af_clo = 1;
14640                 else
14641                         rack->rc_allow_data_af_clo = 0;
14642                 break;
14643         case TCP_RACK_PACE_REDUCE:
14644                 /* sysctl only now */
14645                 error = EINVAL;
14646                 break;
14647         default:
14648                 return (tcp_default_ctloutput(so, sopt, inp, tp));
14649                 break;
14650         }
14651 #ifdef NETFLIX_STATS
14652         tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
14653 #endif
14654         INP_WUNLOCK(inp);
14655         return (error);
14656 }
14657
14658 static int
14659 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
14660     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
14661 {
14662         int32_t error, optval;
14663         uint64_t val;
14664         /*
14665          * Because all our options are either boolean or an int, we can just
14666          * pull everything into optval and then unlock and copy. If we ever
14667          * add a option that is not a int, then this will have quite an
14668          * impact to this routine.
14669          */
14670         error = 0;
14671         switch (sopt->sopt_name) {
14672         case TCP_RACK_PROFILE:
14673                 /* You cannot retrieve a profile, its write only */
14674                 error = EINVAL;
14675                 break;
14676         case TCP_RACK_PACE_TO_FILL:
14677                 optval = rack->rc_pace_to_cwnd;
14678                 break;
14679         case TCP_RACK_NO_PUSH_AT_MAX:
14680                 optval = rack->r_ctl.rc_no_push_at_mrtt;
14681                 break;
14682         case TCP_SHARED_CWND_ENABLE:
14683                 optval = rack->rack_enable_scwnd;
14684                 break;
14685         case TCP_RACK_NONRXT_CFG_RATE:
14686                 optval = rack->rack_rec_nonrxt_use_cr;
14687                 break;
14688         case TCP_NO_PRR:
14689                 optval = rack->rack_no_prr;
14690                 break;
14691         case TCP_RACK_DO_DETECTION:
14692                 optval = rack->do_detection;
14693                 break;
14694         case TCP_RACK_MBUF_QUEUE:
14695                 /* Now do we use the LRO mbuf-queue feature */
14696                 optval = rack->r_mbuf_queue;
14697                 break;
14698         case TCP_TIMELY_DYN_ADJ:
14699                 optval = rack->rc_gp_dyn_mul;
14700                 break;
14701         case TCP_BBR_IWINTSO:
14702                 optval = rack->rc_init_win;
14703                 break;
14704         case TCP_RACK_PROP_RATE:
14705                 optval = rack->r_ctl.rc_prop_rate;
14706                 break;
14707         case TCP_RACK_PROP:
14708                 /* RACK proportional rate reduction (bool) */
14709                 optval = rack->r_ctl.rc_prop_reduce;
14710                 break;
14711         case TCP_RACK_TLP_REDUCE:
14712                 /* RACK TLP cwnd reduction (bool) */
14713                 optval = rack->r_ctl.rc_tlp_cwnd_reduce;
14714                 break;
14715         case TCP_RACK_EARLY_RECOV:
14716                 /* Should recovery happen early (bool) */
14717                 optval = rack->r_ctl.rc_early_recovery;
14718                 break;
14719         case TCP_RACK_PACE_REDUCE:
14720                 /* RACK Hptsi reduction factor (divisor) */
14721                 error = EINVAL;
14722                 break;
14723         case TCP_BBR_RACK_INIT_RATE:
14724                 val = rack->r_ctl.init_rate;
14725                 /* convert to kbits per sec */
14726                 val *= 8;
14727                 val /= 1000;
14728                 optval = (uint32_t)val;
14729                 break;
14730         case TCP_RACK_FORCE_MSEG:
14731                 optval = rack->rc_force_max_seg;
14732                 break;
14733         case TCP_RACK_PACE_MAX_SEG:
14734                 /* Max segments in a pace */
14735                 optval = rack->rc_user_set_max_segs;
14736                 break;
14737         case TCP_RACK_PACE_ALWAYS:
14738                 /* Use the always pace method */
14739                 optval = rack->rc_always_pace;
14740                 break;
14741         case TCP_RACK_PRR_SENDALOT:
14742                 /* Allow PRR to send more than one seg */
14743                 optval = rack->r_ctl.rc_prr_sendalot;
14744                 break;
14745         case TCP_RACK_MIN_TO:
14746                 /* Minimum time between rack t-o's in ms */
14747                 optval = rack->r_ctl.rc_min_to;
14748                 break;
14749         case TCP_RACK_EARLY_SEG:
14750                 /* If early recovery max segments */
14751                 optval = rack->r_ctl.rc_early_recovery_segs;
14752                 break;
14753         case TCP_RACK_REORD_THRESH:
14754                 /* RACK reorder threshold (shift amount) */
14755                 optval = rack->r_ctl.rc_reorder_shift;
14756                 break;
14757         case TCP_RACK_REORD_FADE:
14758                 /* Does reordering fade after ms time */
14759                 optval = rack->r_ctl.rc_reorder_fade;
14760                 break;
14761         case TCP_BBR_USE_RACK_RR:
14762                 /* Do we use the rack cheat for rxt */
14763                 optval = rack->use_rack_rr;
14764                 break;
14765         case TCP_RACK_RR_CONF:
14766                 optval = rack->r_rr_config;
14767                 break;
14768         case TCP_BBR_HDWR_PACE:
14769                 optval = rack->rack_hdw_pace_ena;
14770                 break;
14771         case TCP_RACK_TLP_THRESH:
14772                 /* RACK TLP theshold i.e. srtt+(srtt/N) */
14773                 optval = rack->r_ctl.rc_tlp_threshold;
14774                 break;
14775         case TCP_RACK_PKT_DELAY:
14776                 /* RACK added ms i.e. rack-rtt + reord + N */
14777                 optval = rack->r_ctl.rc_pkt_delay;
14778                 break;
14779         case TCP_RACK_TLP_USE:
14780                 optval = rack->rack_tlp_threshold_use;
14781                 break;
14782         case TCP_RACK_TLP_INC_VAR:
14783                 /* Does TLP include rtt variance in t-o */
14784                 error = EINVAL;
14785                 break;
14786         case TCP_RACK_IDLE_REDUCE_HIGH:
14787                 error = EINVAL;
14788                 break;
14789         case TCP_RACK_PACE_RATE_CA:
14790                 optval = rack->r_ctl.rc_fixed_pacing_rate_ca;
14791                 break;
14792         case TCP_RACK_PACE_RATE_SS:
14793                 optval = rack->r_ctl.rc_fixed_pacing_rate_ss;
14794                 break;
14795         case TCP_RACK_PACE_RATE_REC:
14796                 optval = rack->r_ctl.rc_fixed_pacing_rate_rec;
14797                 break;
14798         case TCP_RACK_GP_INCREASE_SS:
14799                 optval = rack->r_ctl.rack_per_of_gp_ca;
14800                 break;
14801         case TCP_RACK_GP_INCREASE_CA:
14802                 optval = rack->r_ctl.rack_per_of_gp_ss;
14803                 break;
14804         case TCP_BBR_RACK_RTT_USE:
14805                 optval = rack->r_ctl.rc_rate_sample_method;
14806                 break;
14807         case TCP_DELACK:
14808                 optval = tp->t_delayed_ack;
14809                 break;
14810         case TCP_DATA_AFTER_CLOSE:
14811                 optval = rack->rc_allow_data_af_clo;
14812                 break;
14813         case TCP_SHARED_CWND_TIME_LIMIT:
14814                 optval = rack->r_limit_scw;
14815                 break;
14816         default:
14817                 return (tcp_default_ctloutput(so, sopt, inp, tp));
14818                 break;
14819         }
14820         INP_WUNLOCK(inp);
14821         if (error == 0) {
14822                 error = sooptcopyout(sopt, &optval, sizeof optval);
14823         }
14824         return (error);
14825 }
14826
14827 static int
14828 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
14829 {
14830         int32_t error = EINVAL;
14831         struct tcp_rack *rack;
14832
14833         rack = (struct tcp_rack *)tp->t_fb_ptr;
14834         if (rack == NULL) {
14835                 /* Huh? */
14836                 goto out;
14837         }
14838         if (sopt->sopt_dir == SOPT_SET) {
14839                 return (rack_set_sockopt(so, sopt, inp, tp, rack));
14840         } else if (sopt->sopt_dir == SOPT_GET) {
14841                 return (rack_get_sockopt(so, sopt, inp, tp, rack));
14842         }
14843 out:
14844         INP_WUNLOCK(inp);
14845         return (error);
14846 }
14847
14848 static int
14849 rack_pru_options(struct tcpcb *tp, int flags)
14850 {
14851         if (flags & PRUS_OOB)
14852                 return (EOPNOTSUPP);
14853         return (0);
14854 }
14855
14856 static struct tcp_function_block __tcp_rack = {
14857         .tfb_tcp_block_name = __XSTRING(STACKNAME),
14858         .tfb_tcp_output = rack_output,
14859         .tfb_do_queued_segments = ctf_do_queued_segments,
14860         .tfb_do_segment_nounlock = rack_do_segment_nounlock,
14861         .tfb_tcp_do_segment = rack_do_segment,
14862         .tfb_tcp_ctloutput = rack_ctloutput,
14863         .tfb_tcp_fb_init = rack_init,
14864         .tfb_tcp_fb_fini = rack_fini,
14865         .tfb_tcp_timer_stop_all = rack_stopall,
14866         .tfb_tcp_timer_activate = rack_timer_activate,
14867         .tfb_tcp_timer_active = rack_timer_active,
14868         .tfb_tcp_timer_stop = rack_timer_stop,
14869         .tfb_tcp_rexmit_tmr = rack_remxt_tmr,
14870         .tfb_tcp_handoff_ok = rack_handoff_ok,
14871         .tfb_pru_options = rack_pru_options,
14872 };
14873
14874 static const char *rack_stack_names[] = {
14875         __XSTRING(STACKNAME),
14876 #ifdef STACKALIAS
14877         __XSTRING(STACKALIAS),
14878 #endif
14879 };
14880
14881 static int
14882 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
14883 {
14884         memset(mem, 0, size);
14885         return (0);
14886 }
14887
14888 static void
14889 rack_dtor(void *mem, int32_t size, void *arg)
14890 {
14891
14892 }
14893
14894 static bool rack_mod_inited = false;
14895
14896 static int
14897 tcp_addrack(module_t mod, int32_t type, void *data)
14898 {
14899         int32_t err = 0;
14900         int num_stacks;
14901
14902         switch (type) {
14903         case MOD_LOAD:
14904                 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
14905                     sizeof(struct rack_sendmap),
14906                     rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
14907
14908                 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
14909                     sizeof(struct tcp_rack),
14910                     rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
14911
14912                 sysctl_ctx_init(&rack_sysctl_ctx);
14913                 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
14914                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
14915                     OID_AUTO,
14916 #ifdef STACKALIAS
14917                     __XSTRING(STACKALIAS),
14918 #else
14919                     __XSTRING(STACKNAME),
14920 #endif
14921                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
14922                     "");
14923                 if (rack_sysctl_root == NULL) {
14924                         printf("Failed to add sysctl node\n");
14925                         err = EFAULT;
14926                         goto free_uma;
14927                 }
14928                 rack_init_sysctls();
14929                 num_stacks = nitems(rack_stack_names);
14930                 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
14931                     rack_stack_names, &num_stacks);
14932                 if (err) {
14933                         printf("Failed to register %s stack name for "
14934                             "%s module\n", rack_stack_names[num_stacks],
14935                             __XSTRING(MODNAME));
14936                         sysctl_ctx_free(&rack_sysctl_ctx);
14937 free_uma:
14938                         uma_zdestroy(rack_zone);
14939                         uma_zdestroy(rack_pcb_zone);
14940                         rack_counter_destroy();
14941                         printf("Failed to register rack module -- err:%d\n", err);
14942                         return (err);
14943                 }
14944                 tcp_lro_reg_mbufq();
14945                 rack_mod_inited = true;
14946                 break;
14947         case MOD_QUIESCE:
14948                 err = deregister_tcp_functions(&__tcp_rack, true, false);
14949                 break;
14950         case MOD_UNLOAD:
14951                 err = deregister_tcp_functions(&__tcp_rack, false, true);
14952                 if (err == EBUSY)
14953                         break;
14954                 if (rack_mod_inited) {
14955                         uma_zdestroy(rack_zone);
14956                         uma_zdestroy(rack_pcb_zone);
14957                         sysctl_ctx_free(&rack_sysctl_ctx);
14958                         rack_counter_destroy();
14959                         rack_mod_inited = false;
14960                 }
14961                 tcp_lro_dereg_mbufq();
14962                 err = 0;
14963                 break;
14964         default:
14965                 return (EOPNOTSUPP);
14966         }
14967         return (err);
14968 }
14969
14970 static moduledata_t tcp_rack = {
14971         .name = __XSTRING(MODNAME),
14972         .evhand = tcp_addrack,
14973         .priv = 0
14974 };
14975
14976 MODULE_VERSION(MODNAME, 1);
14977 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
14978 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);