]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_stacks/rack.c
tcp: Missing mfree in rack and bbr
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_stacks / rack.c
1 /*-
2  * Copyright (c) 2016-2020 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_ipsec.h"
33 #include "opt_tcpdebug.h"
34 #include "opt_ratelimit.h"
35 #include <sys/param.h>
36 #include <sys/arb.h>
37 #include <sys/module.h>
38 #include <sys/kernel.h>
39 #ifdef TCP_HHOOK
40 #include <sys/hhook.h>
41 #endif
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/mbuf.h>
47 #include <sys/proc.h>           /* for proc0 declaration */
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #ifdef STATS
53 #include <sys/qmath.h>
54 #include <sys/tree.h>
55 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
56 #else
57 #include <sys/tree.h>
58 #endif
59 #include <sys/refcount.h>
60 #include <sys/queue.h>
61 #include <sys/tim_filter.h>
62 #include <sys/smp.h>
63 #include <sys/kthread.h>
64 #include <sys/kern_prefetch.h>
65 #include <sys/protosw.h>
66 #ifdef TCP_ACCOUNTING
67 #include <sys/sched.h>
68 #include <machine/cpu.h>
69 #endif
70 #include <vm/uma.h>
71
72 #include <net/route.h>
73 #include <net/route/nhop.h>
74 #include <net/vnet.h>
75
76 #define TCPSTATES               /* for logging */
77
78 #include <netinet/in.h>
79 #include <netinet/in_kdtrace.h>
80 #include <netinet/in_pcb.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
83 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
84 #include <netinet/ip_var.h>
85 #include <netinet/ip6.h>
86 #include <netinet6/in6_pcb.h>
87 #include <netinet6/ip6_var.h>
88 #include <netinet/tcp.h>
89 #define TCPOUTFLAGS
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_log_buf.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcp_hpts.h>
96 #include <netinet/tcp_ratelimit.h>
97 #include <netinet/tcp_accounting.h>
98 #include <netinet/tcpip.h>
99 #include <netinet/cc/cc.h>
100 #include <netinet/cc/cc_newreno.h>
101 #include <netinet/tcp_fastopen.h>
102 #include <netinet/tcp_lro.h>
103 #ifdef NETFLIX_SHARED_CWND
104 #include <netinet/tcp_shared_cwnd.h>
105 #endif
106 #ifdef TCPDEBUG
107 #include <netinet/tcp_debug.h>
108 #endif                          /* TCPDEBUG */
109 #ifdef TCP_OFFLOAD
110 #include <netinet/tcp_offload.h>
111 #endif
112 #ifdef INET6
113 #include <netinet6/tcp6_var.h>
114 #endif
115
116 #include <netipsec/ipsec_support.h>
117
118 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
119 #include <netipsec/ipsec.h>
120 #include <netipsec/ipsec6.h>
121 #endif                          /* IPSEC */
122
123 #include <netinet/udp.h>
124 #include <netinet/udp_var.h>
125 #include <machine/in_cksum.h>
126
127 #ifdef MAC
128 #include <security/mac/mac_framework.h>
129 #endif
130 #include "sack_filter.h"
131 #include "tcp_rack.h"
132 #include "rack_bbr_common.h"
133
134 uma_zone_t rack_zone;
135 uma_zone_t rack_pcb_zone;
136
137 #ifndef TICKS2SBT
138 #define TICKS2SBT(__t)  (tick_sbt * ((sbintime_t)(__t)))
139 #endif
140
141 VNET_DECLARE(uint32_t, newreno_beta);
142 VNET_DECLARE(uint32_t, newreno_beta_ecn);
143 #define V_newreno_beta VNET(newreno_beta)
144 #define V_newreno_beta_ecn VNET(newreno_beta_ecn)
145
146
147 MALLOC_DEFINE(M_TCPFSB, "tcp_fsb", "TCP fast send block");
148 MALLOC_DEFINE(M_TCPDO, "tcp_do", "TCP deferred options");
149
150 struct sysctl_ctx_list rack_sysctl_ctx;
151 struct sysctl_oid *rack_sysctl_root;
152
153 #define CUM_ACKED 1
154 #define SACKED 2
155
156 /*
157  * The RACK module incorporates a number of
158  * TCP ideas that have been put out into the IETF
159  * over the last few years:
160  * - Matt Mathis's Rate Halving which slowly drops
161  *    the congestion window so that the ack clock can
162  *    be maintained during a recovery.
163  * - Yuchung Cheng's RACK TCP (for which its named) that
164  *    will stop us using the number of dup acks and instead
165  *    use time as the gage of when we retransmit.
166  * - Reorder Detection of RFC4737 and the Tail-Loss probe draft
167  *    of Dukkipati et.al.
168  * RACK depends on SACK, so if an endpoint arrives that
169  * cannot do SACK the state machine below will shuttle the
170  * connection back to using the "default" TCP stack that is
171  * in FreeBSD.
172  *
173  * To implement RACK the original TCP stack was first decomposed
174  * into a functional state machine with individual states
175  * for each of the possible TCP connection states. The do_segement
176  * functions role in life is to mandate the connection supports SACK
177  * initially and then assure that the RACK state matches the conenction
178  * state before calling the states do_segment function. Each
179  * state is simplified due to the fact that the original do_segment
180  * has been decomposed and we *know* what state we are in (no
181  * switches on the state) and all tests for SACK are gone. This
182  * greatly simplifies what each state does.
183  *
184  * TCP output is also over-written with a new version since it
185  * must maintain the new rack scoreboard.
186  *
187  */
188 static int32_t rack_tlp_thresh = 1;
189 static int32_t rack_tlp_limit = 2;      /* No more than 2 TLPs w-out new data */
190 static int32_t rack_tlp_use_greater = 1;
191 static int32_t rack_reorder_thresh = 2;
192 static int32_t rack_reorder_fade = 60000000;    /* 0 - never fade, def 60,000,000
193                                                  * - 60 seconds */
194 static uint8_t rack_req_measurements = 1;
195 /* Attack threshold detections */
196 static uint32_t rack_highest_sack_thresh_seen = 0;
197 static uint32_t rack_highest_move_thresh_seen = 0;
198 static int32_t rack_enable_hw_pacing = 0; /* Due to CCSP keep it off by default */
199 static int32_t rack_hw_pace_extra_slots = 2;    /* 2 extra MSS time betweens */
200 static int32_t rack_hw_rate_caps = 1; /* 1; */
201 static int32_t rack_hw_rate_min = 0; /* 1500000;*/
202 static int32_t rack_hw_rate_to_low = 0; /* 1200000; */
203 static int32_t rack_hw_up_only = 1;
204 static int32_t rack_stats_gets_ms_rtt = 1;
205 static int32_t rack_prr_addbackmax = 2;
206
207 static int32_t rack_pkt_delay = 1000;
208 static int32_t rack_send_a_lot_in_prr = 1;
209 static int32_t rack_min_to = 1000;      /* Number of microsecond  min timeout */
210 static int32_t rack_verbose_logging = 0;
211 static int32_t rack_ignore_data_after_close = 1;
212 static int32_t rack_enable_shared_cwnd = 1;
213 static int32_t rack_use_cmp_acks = 1;
214 static int32_t rack_use_fsb = 1;
215 static int32_t rack_use_rfo = 1;
216 static int32_t rack_use_rsm_rfo = 1;
217 static int32_t rack_max_abc_post_recovery = 2;
218 static int32_t rack_client_low_buf = 0;
219 #ifdef TCP_ACCOUNTING
220 static int32_t rack_tcp_accounting = 0;
221 #endif
222 static int32_t rack_limits_scwnd = 1;
223 static int32_t rack_enable_mqueue_for_nonpaced = 0;
224 static int32_t rack_disable_prr = 0;
225 static int32_t use_rack_rr = 1;
226 static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */
227 static int32_t rack_persist_min = 250000;       /* 250usec */
228 static int32_t rack_persist_max = 2000000;      /* 2 Second in usec's */
229 static int32_t rack_sack_not_required = 1;      /* set to one to allow non-sack to use rack */
230 static int32_t rack_default_init_window = 0;    /* Use system default */
231 static int32_t rack_limit_time_with_srtt = 0;
232 static int32_t rack_autosndbuf_inc = 20;        /* In percentage form */
233 static int32_t rack_enobuf_hw_boost_mult = 2;   /* How many times the hw rate we boost slot using time_between */
234 static int32_t rack_enobuf_hw_max = 12000;      /* 12 ms in usecs */
235 static int32_t rack_enobuf_hw_min = 10000;      /* 10 ms in usecs */
236 static int32_t rack_hw_rwnd_factor = 2;         /* How many max_segs the rwnd must be before we hold off sending */
237 /*
238  * Currently regular tcp has a rto_min of 30ms
239  * the backoff goes 12 times so that ends up
240  * being a total of 122.850 seconds before a
241  * connection is killed.
242  */
243 static uint32_t rack_def_data_window = 20;
244 static uint32_t rack_goal_bdp = 2;
245 static uint32_t rack_min_srtts = 1;
246 static uint32_t rack_min_measure_usec = 0;
247 static int32_t rack_tlp_min = 10000;    /* 10ms */
248 static int32_t rack_rto_min = 30000;    /* 30,000 usec same as main freebsd */
249 static int32_t rack_rto_max = 4000000;  /* 4 seconds in usec's */
250 static const int32_t rack_free_cache = 2;
251 static int32_t rack_hptsi_segments = 40;
252 static int32_t rack_rate_sample_method = USE_RTT_LOW;
253 static int32_t rack_pace_every_seg = 0;
254 static int32_t rack_delayed_ack_time = 40000;   /* 40ms in usecs */
255 static int32_t rack_slot_reduction = 4;
256 static int32_t rack_wma_divisor = 8;            /* For WMA calculation */
257 static int32_t rack_cwnd_block_ends_measure = 0;
258 static int32_t rack_rwnd_block_ends_measure = 0;
259 static int32_t rack_def_profile = 0;
260
261 static int32_t rack_lower_cwnd_at_tlp = 0;
262 static int32_t rack_limited_retran = 0;
263 static int32_t rack_always_send_oldest = 0;
264 static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
265
266 static uint16_t rack_per_of_gp_ss = 250;        /* 250 % slow-start */
267 static uint16_t rack_per_of_gp_ca = 200;        /* 200 % congestion-avoidance */
268 static uint16_t rack_per_of_gp_rec = 200;       /* 200 % of bw */
269
270 /* Probertt */
271 static uint16_t rack_per_of_gp_probertt = 60;   /* 60% of bw */
272 static uint16_t rack_per_of_gp_lowthresh = 40;  /* 40% is bottom */
273 static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */
274 static uint16_t rack_atexit_prtt_hbp = 130;     /* Clamp to 130% on exit prtt if highly buffered path */
275 static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */
276
277 static uint32_t rack_max_drain_wait = 2;        /* How man gp srtt's before we give up draining */
278 static uint32_t rack_must_drain = 1;            /* How many GP srtt's we *must* wait */
279 static uint32_t rack_probertt_use_min_rtt_entry = 1;    /* Use the min to calculate the goal else gp_srtt */
280 static uint32_t rack_probertt_use_min_rtt_exit = 0;
281 static uint32_t rack_probe_rtt_sets_cwnd = 0;
282 static uint32_t rack_probe_rtt_safety_val = 2000000;    /* No more than 2 sec in probe-rtt */
283 static uint32_t rack_time_between_probertt = 9600000;   /* 9.6 sec in usecs */
284 static uint32_t rack_probertt_gpsrtt_cnt_mul = 0;       /* How many srtt periods does probe-rtt last top fraction */
285 static uint32_t rack_probertt_gpsrtt_cnt_div = 0;       /* How many srtt periods does probe-rtt last bottom fraction */
286 static uint32_t rack_min_probertt_hold = 40000;         /* Equal to delayed ack time */
287 static uint32_t rack_probertt_filter_life = 10000000;
288 static uint32_t rack_probertt_lower_within = 10;
289 static uint32_t rack_min_rtt_movement = 250000; /* Must move at least 250ms (in microseconds)  to count as a lowering */
290 static int32_t rack_pace_one_seg = 0;           /* Shall we pace for less than 1.4Meg 1MSS at a time */
291 static int32_t rack_probertt_clear_is = 1;
292 static int32_t rack_max_drain_hbp = 1;          /* Extra drain times gpsrtt for highly buffered paths */
293 static int32_t rack_hbp_thresh = 3;             /* what is the divisor max_rtt/min_rtt to decided a hbp */
294
295 /* Part of pacing */
296 static int32_t rack_max_per_above = 30;         /* When we go to increment stop if above 100+this% */
297
298 /* Timely information */
299 /* Combine these two gives the range of 'no change' to bw */
300 /* ie the up/down provide the upper and lower bound */
301 static int32_t rack_gp_per_bw_mul_up = 2;       /* 2% */
302 static int32_t rack_gp_per_bw_mul_down = 4;     /* 4% */
303 static int32_t rack_gp_rtt_maxmul = 3;          /* 3 x maxmin */
304 static int32_t rack_gp_rtt_minmul = 1;          /* minrtt + (minrtt/mindiv) is lower rtt */
305 static int32_t rack_gp_rtt_mindiv = 4;          /* minrtt + (minrtt * minmul/mindiv) is lower rtt */
306 static int32_t rack_gp_decrease_per = 20;       /* 20% decrease in multipler */
307 static int32_t rack_gp_increase_per = 2;        /* 2% increase in multipler */
308 static int32_t rack_per_lower_bound = 50;       /* Don't allow to drop below this multiplier */
309 static int32_t rack_per_upper_bound_ss = 0;     /* Don't allow SS to grow above this */
310 static int32_t rack_per_upper_bound_ca = 0;     /* Don't allow CA to grow above this */
311 static int32_t rack_do_dyn_mul = 0;             /* Are the rack gp multipliers dynamic */
312 static int32_t rack_gp_no_rec_chg = 1;          /* Prohibit recovery from reducing it's multiplier */
313 static int32_t rack_timely_dec_clear = 6;       /* Do we clear decrement count at a value (6)? */
314 static int32_t rack_timely_max_push_rise = 3;   /* One round of pushing */
315 static int32_t rack_timely_max_push_drop = 3;   /* Three round of pushing */
316 static int32_t rack_timely_min_segs = 4;        /* 4 segment minimum */
317 static int32_t rack_use_max_for_nobackoff = 0;
318 static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */
319 static int32_t rack_timely_no_stopping = 0;
320 static int32_t rack_down_raise_thresh = 100;
321 static int32_t rack_req_segs = 1;
322 static uint64_t rack_bw_rate_cap = 0;
323
324 /* Weird delayed ack mode */
325 static int32_t rack_use_imac_dack = 0;
326 /* Rack specific counters */
327 counter_u64_t rack_badfr;
328 counter_u64_t rack_badfr_bytes;
329 counter_u64_t rack_rtm_prr_retran;
330 counter_u64_t rack_rtm_prr_newdata;
331 counter_u64_t rack_timestamp_mismatch;
332 counter_u64_t rack_reorder_seen;
333 counter_u64_t rack_paced_segments;
334 counter_u64_t rack_unpaced_segments;
335 counter_u64_t rack_calc_zero;
336 counter_u64_t rack_calc_nonzero;
337 counter_u64_t rack_saw_enobuf;
338 counter_u64_t rack_saw_enobuf_hw;
339 counter_u64_t rack_saw_enetunreach;
340 counter_u64_t rack_per_timer_hole;
341 counter_u64_t rack_large_ackcmp;
342 counter_u64_t rack_small_ackcmp;
343 #ifdef INVARIANTS
344 counter_u64_t rack_adjust_map_bw;
345 #endif
346 /* Tail loss probe counters */
347 counter_u64_t rack_tlp_tot;
348 counter_u64_t rack_tlp_newdata;
349 counter_u64_t rack_tlp_retran;
350 counter_u64_t rack_tlp_retran_bytes;
351 counter_u64_t rack_tlp_retran_fail;
352 counter_u64_t rack_to_tot;
353 counter_u64_t rack_to_arm_rack;
354 counter_u64_t rack_to_arm_tlp;
355 counter_u64_t rack_hot_alloc;
356 counter_u64_t rack_to_alloc;
357 counter_u64_t rack_to_alloc_hard;
358 counter_u64_t rack_to_alloc_emerg;
359 counter_u64_t rack_to_alloc_limited;
360 counter_u64_t rack_alloc_limited_conns;
361 counter_u64_t rack_split_limited;
362
363 #define MAX_NUM_OF_CNTS 13
364 counter_u64_t rack_proc_comp_ack[MAX_NUM_OF_CNTS];
365 counter_u64_t rack_multi_single_eq;
366 counter_u64_t rack_proc_non_comp_ack;
367
368 counter_u64_t rack_fto_send;
369 counter_u64_t rack_fto_rsm_send;
370 counter_u64_t rack_nfto_resend;
371 counter_u64_t rack_non_fto_send;
372 counter_u64_t rack_extended_rfo;
373
374 counter_u64_t rack_sack_proc_all;
375 counter_u64_t rack_sack_proc_short;
376 counter_u64_t rack_sack_proc_restart;
377 counter_u64_t rack_sack_attacks_detected;
378 counter_u64_t rack_sack_attacks_reversed;
379 counter_u64_t rack_sack_used_next_merge;
380 counter_u64_t rack_sack_splits;
381 counter_u64_t rack_sack_used_prev_merge;
382 counter_u64_t rack_sack_skipped_acked;
383 counter_u64_t rack_ack_total;
384 counter_u64_t rack_express_sack;
385 counter_u64_t rack_sack_total;
386 counter_u64_t rack_move_none;
387 counter_u64_t rack_move_some;
388
389 counter_u64_t rack_used_tlpmethod;
390 counter_u64_t rack_used_tlpmethod2;
391 counter_u64_t rack_enter_tlp_calc;
392 counter_u64_t rack_input_idle_reduces;
393 counter_u64_t rack_collapsed_win;
394 counter_u64_t rack_tlp_does_nada;
395 counter_u64_t rack_try_scwnd;
396 counter_u64_t rack_hw_pace_init_fail;
397 counter_u64_t rack_hw_pace_lost;
398 counter_u64_t rack_sbsndptr_right;
399 counter_u64_t rack_sbsndptr_wrong;
400
401 /* Temp CPU counters */
402 counter_u64_t rack_find_high;
403
404 counter_u64_t rack_progress_drops;
405 counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
406 counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
407
408
409 #define RACK_REXMTVAL(tp) max(rack_rto_min, ((tp)->t_srtt + ((tp)->t_rttvar << 2)))
410
411 #define RACK_TCPT_RANGESET(tv, value, tvmin, tvmax, slop) do {  \
412         (tv) = (value) + slop;   \
413         if ((u_long)(tv) < (u_long)(tvmin)) \
414                 (tv) = (tvmin); \
415         if ((u_long)(tv) > (u_long)(tvmax)) \
416                 (tv) = (tvmax); \
417 } while (0)
418
419 static void
420 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line);
421
422 static int
423 rack_process_ack(struct mbuf *m, struct tcphdr *th,
424     struct socket *so, struct tcpcb *tp, struct tcpopt *to,
425     uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
426 static int
427 rack_process_data(struct mbuf *m, struct tcphdr *th,
428     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
429     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
430 static void
431 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
432    uint32_t th_ack, uint16_t nsegs, uint16_t type, int32_t recovery);
433 static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
434 static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
435     uint8_t limit_type);
436 static struct rack_sendmap *
437 rack_check_recovery_mode(struct tcpcb *tp,
438     uint32_t tsused);
439 static void
440 rack_cong_signal(struct tcpcb *tp,
441                  uint32_t type, uint32_t ack);
442 static void rack_counter_destroy(void);
443 static int
444 rack_ctloutput(struct socket *so, struct sockopt *sopt,
445     struct inpcb *inp, struct tcpcb *tp);
446 static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
447 static void
448 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override);
449 static void
450 rack_do_segment(struct mbuf *m, struct tcphdr *th,
451     struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
452     uint8_t iptos);
453 static void rack_dtor(void *mem, int32_t size, void *arg);
454 static void
455 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
456     uint32_t flex1, uint32_t flex2,
457     uint32_t flex3, uint32_t flex4,
458     uint32_t flex5, uint32_t flex6,
459     uint16_t flex7, uint8_t mod);
460 static void
461 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
462    uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, struct rack_sendmap *rsm);
463 static struct rack_sendmap *
464 rack_find_high_nonack(struct tcp_rack *rack,
465     struct rack_sendmap *rsm);
466 static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
467 static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
468 static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
469 static int
470 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
471     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
472 static void
473 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
474                             tcp_seq th_ack, int line);
475 static uint32_t
476 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss);
477 static int32_t rack_handoff_ok(struct tcpcb *tp);
478 static int32_t rack_init(struct tcpcb *tp);
479 static void rack_init_sysctls(void);
480 static void
481 rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
482     struct tcphdr *th, int entered_rec, int dup_ack_struck);
483 static void
484 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
485     uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t ts,
486     struct rack_sendmap *hintrsm, uint16_t add_flags, struct mbuf *s_mb, uint32_t s_moff);
487
488 static void
489 rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
490     struct rack_sendmap *rsm);
491 static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm);
492 static int32_t rack_output(struct tcpcb *tp);
493
494 static uint32_t
495 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
496     struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
497     uint32_t cts, int *moved_two);
498 static void rack_post_recovery(struct tcpcb *tp, uint32_t th_seq);
499 static void rack_remxt_tmr(struct tcpcb *tp);
500 static int
501 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
502     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
503 static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
504 static int32_t rack_stopall(struct tcpcb *tp);
505 static void
506 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
507     uint32_t delta);
508 static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
509 static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
510 static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
511 static uint32_t
512 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
513     struct rack_sendmap *rsm, uint64_t ts, int32_t * lenp, uint16_t add_flag);
514 static void
515 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
516     struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag);
517 static int
518 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
519     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack);
520 static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
521 static int
522 rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
523     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
524     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
525 static int
526 rack_do_closing(struct mbuf *m, struct tcphdr *th,
527     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
528     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
529 static int
530 rack_do_established(struct mbuf *m, struct tcphdr *th,
531     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
532     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
533 static int
534 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
535     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
536     int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos);
537 static int
538 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
539     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
540     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
541 static int
542 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
543     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
544     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
545 static int
546 rack_do_lastack(struct mbuf *m, struct tcphdr *th,
547     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
548     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
549 static int
550 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
551     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
552     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
553 static int
554 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
555     struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
556     int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos);
557 struct rack_sendmap *
558 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
559     uint32_t tsused);
560 static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt,
561     uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt);
562 static void
563      tcp_rack_partialack(struct tcpcb *tp);
564 static int
565 rack_set_profile(struct tcp_rack *rack, int prof);
566 static void
567 rack_apply_deferred_options(struct tcp_rack *rack);
568
569 int32_t rack_clear_counter=0;
570
571 static void
572 rack_set_cc_pacing(struct tcp_rack *rack)
573 {
574         struct sockopt sopt;
575         struct cc_newreno_opts opt;
576         struct newreno old, *ptr;
577         struct tcpcb *tp;
578         int error;
579
580         if (rack->rc_pacing_cc_set)
581                 return;
582
583         tp = rack->rc_tp;
584         if (tp->cc_algo == NULL) {
585                 /* Tcb is leaving */
586                 printf("No cc algorithm?\n");
587                 return;
588         }
589         rack->rc_pacing_cc_set = 1;
590         if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
591                 /* Not new-reno we can't play games with beta! */
592                 printf("cc_algo:%s is not NEWRENO:%s\n",
593                        tp->cc_algo->name, CCALGONAME_NEWRENO);
594                 goto out;
595         }
596         ptr = ((struct newreno *)tp->ccv->cc_data);
597         if (CC_ALGO(tp)->ctl_output == NULL)  {
598                 /* Huh, why does new_reno no longer have a set function? */
599                 printf("no ctl_output for algo:%s\n", tp->cc_algo->name);
600                 goto out;
601         }
602         if (ptr == NULL) {
603                 /* Just the default values */
604                 old.beta = V_newreno_beta_ecn;
605                 old.beta_ecn = V_newreno_beta_ecn;
606                 old.newreno_flags = 0;
607         } else {
608                 old.beta = ptr->beta;
609                 old.beta_ecn = ptr->beta_ecn;
610                 old.newreno_flags = ptr->newreno_flags;
611         }
612         sopt.sopt_valsize = sizeof(struct cc_newreno_opts);
613         sopt.sopt_dir = SOPT_SET;
614         opt.name = CC_NEWRENO_BETA;
615         opt.val = rack->r_ctl.rc_saved_beta.beta;
616         error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
617         if (error)  {
618                 printf("Error returned by ctl_output %d\n", error);
619                 goto out;
620         }
621         /*
622          * Hack alert we need to set in our newreno_flags
623          * so that Abe behavior is also applied.
624          */
625         ((struct newreno *)tp->ccv->cc_data)->newreno_flags = CC_NEWRENO_BETA_ECN;
626         opt.name = CC_NEWRENO_BETA_ECN;
627         opt.val = rack->r_ctl.rc_saved_beta.beta_ecn;
628         error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
629         if (error) {
630                 printf("Error returned by ctl_output %d\n", error);
631                 goto out;
632         }
633         /* Save off the original values for restoral */
634         memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
635 out:
636         if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
637                 union tcp_log_stackspecific log;
638                 struct timeval tv;
639
640                 ptr = ((struct newreno *)tp->ccv->cc_data);
641                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
642                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
643                 if (ptr) {
644                         log.u_bbr.flex1 = ptr->beta;
645                         log.u_bbr.flex2 = ptr->beta_ecn;
646                         log.u_bbr.flex3 = ptr->newreno_flags;
647                 }
648                 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
649                 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn;
650                 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags;
651                 log.u_bbr.flex7 = rack->gp_ready;
652                 log.u_bbr.flex7 <<= 1;
653                 log.u_bbr.flex7 |= rack->use_fixed_rate;
654                 log.u_bbr.flex7 <<= 1;
655                 log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
656                 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
657                 log.u_bbr.flex8 = 3;
658                 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, error,
659                                0, &log, false, NULL, NULL, 0, &tv);
660         }
661 }
662
663 static void
664 rack_undo_cc_pacing(struct tcp_rack *rack)
665 {
666         struct newreno old, *ptr;
667         struct tcpcb *tp;
668
669         if (rack->rc_pacing_cc_set == 0)
670                 return;
671         tp = rack->rc_tp;
672         rack->rc_pacing_cc_set = 0;
673         if (tp->cc_algo == NULL)
674                 /* Tcb is leaving */
675                 return;
676         if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
677                 /* Not new-reno nothing to do! */
678                 return;
679         }
680         ptr = ((struct newreno *)tp->ccv->cc_data);
681         if (ptr == NULL) {
682                 /*
683                  * This happens at rack_fini() if the
684                  * cc module gets freed on us. In that
685                  * case we loose our "new" settings but
686                  * thats ok, since the tcb is going away anyway.
687                  */
688                 return;
689         }
690         /* Grab out our set values */
691         memcpy(&old, ptr, sizeof(struct newreno));
692         /* Copy back in the original values */
693         memcpy(ptr, &rack->r_ctl.rc_saved_beta, sizeof(struct newreno));
694         /* Now save back the values we had set in (for when pacing is restored) */
695         memcpy(&rack->r_ctl.rc_saved_beta, &old, sizeof(struct newreno));
696         if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
697                 union tcp_log_stackspecific log;
698                 struct timeval tv;
699
700                 ptr = ((struct newreno *)tp->ccv->cc_data);
701                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
702                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
703                 log.u_bbr.flex1 = ptr->beta;
704                 log.u_bbr.flex2 = ptr->beta_ecn;
705                 log.u_bbr.flex3 = ptr->newreno_flags;
706                 log.u_bbr.flex4 = rack->r_ctl.rc_saved_beta.beta;
707                 log.u_bbr.flex5 = rack->r_ctl.rc_saved_beta.beta_ecn;
708                 log.u_bbr.flex6 = rack->r_ctl.rc_saved_beta.newreno_flags;
709                 log.u_bbr.flex7 = rack->gp_ready;
710                 log.u_bbr.flex7 <<= 1;
711                 log.u_bbr.flex7 |= rack->use_fixed_rate;
712                 log.u_bbr.flex7 <<= 1;
713                 log.u_bbr.flex7 |= rack->rc_pacing_cc_set;
714                 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
715                 log.u_bbr.flex8 = 4;
716                 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
717                                0, &log, false, NULL, NULL, 0, &tv);
718         }
719 }
720
721 #ifdef NETFLIX_PEAKRATE
722 static inline void
723 rack_update_peakrate_thr(struct tcpcb *tp)
724 {
725         /* Keep in mind that t_maxpeakrate is in B/s. */
726         uint64_t peak;
727         peak = uqmax((tp->t_maxseg * 2),
728                      (((uint64_t)tp->t_maxpeakrate * (uint64_t)(tp->t_srtt)) / (uint64_t)HPTS_USEC_IN_SEC));
729         tp->t_peakrate_thr = (uint32_t)uqmin(peak, UINT32_MAX);
730 }
731 #endif
732
733 static int
734 sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
735 {
736         uint32_t stat;
737         int32_t error;
738         int i;
739
740         error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
741         if (error || req->newptr == NULL)
742                 return error;
743
744         error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
745         if (error)
746                 return (error);
747         if (stat == 1) {
748 #ifdef INVARIANTS
749                 printf("Clearing RACK counters\n");
750 #endif
751                 counter_u64_zero(rack_badfr);
752                 counter_u64_zero(rack_badfr_bytes);
753                 counter_u64_zero(rack_rtm_prr_retran);
754                 counter_u64_zero(rack_rtm_prr_newdata);
755                 counter_u64_zero(rack_timestamp_mismatch);
756                 counter_u64_zero(rack_reorder_seen);
757                 counter_u64_zero(rack_tlp_tot);
758                 counter_u64_zero(rack_tlp_newdata);
759                 counter_u64_zero(rack_tlp_retran);
760                 counter_u64_zero(rack_tlp_retran_bytes);
761                 counter_u64_zero(rack_tlp_retran_fail);
762                 counter_u64_zero(rack_to_tot);
763                 counter_u64_zero(rack_to_arm_rack);
764                 counter_u64_zero(rack_to_arm_tlp);
765                 counter_u64_zero(rack_paced_segments);
766                 counter_u64_zero(rack_calc_zero);
767                 counter_u64_zero(rack_calc_nonzero);
768                 counter_u64_zero(rack_unpaced_segments);
769                 counter_u64_zero(rack_saw_enobuf);
770                 counter_u64_zero(rack_saw_enobuf_hw);
771                 counter_u64_zero(rack_saw_enetunreach);
772                 counter_u64_zero(rack_per_timer_hole);
773                 counter_u64_zero(rack_large_ackcmp);
774                 counter_u64_zero(rack_small_ackcmp);
775 #ifdef INVARIANTS
776                 counter_u64_zero(rack_adjust_map_bw);
777 #endif
778                 counter_u64_zero(rack_to_alloc_hard);
779                 counter_u64_zero(rack_to_alloc_emerg);
780                 counter_u64_zero(rack_sack_proc_all);
781                 counter_u64_zero(rack_fto_send);
782                 counter_u64_zero(rack_fto_rsm_send);
783                 counter_u64_zero(rack_extended_rfo);
784                 counter_u64_zero(rack_hw_pace_init_fail);
785                 counter_u64_zero(rack_hw_pace_lost);
786                 counter_u64_zero(rack_sbsndptr_wrong);
787                 counter_u64_zero(rack_sbsndptr_right);
788                 counter_u64_zero(rack_non_fto_send);
789                 counter_u64_zero(rack_nfto_resend);
790                 counter_u64_zero(rack_sack_proc_short);
791                 counter_u64_zero(rack_sack_proc_restart);
792                 counter_u64_zero(rack_to_alloc);
793                 counter_u64_zero(rack_to_alloc_limited);
794                 counter_u64_zero(rack_alloc_limited_conns);
795                 counter_u64_zero(rack_split_limited);
796                 for (i = 0; i < MAX_NUM_OF_CNTS; i++) {
797                         counter_u64_zero(rack_proc_comp_ack[i]);
798                 }
799                 counter_u64_zero(rack_multi_single_eq);
800                 counter_u64_zero(rack_proc_non_comp_ack);
801                 counter_u64_zero(rack_find_high);
802                 counter_u64_zero(rack_sack_attacks_detected);
803                 counter_u64_zero(rack_sack_attacks_reversed);
804                 counter_u64_zero(rack_sack_used_next_merge);
805                 counter_u64_zero(rack_sack_used_prev_merge);
806                 counter_u64_zero(rack_sack_splits);
807                 counter_u64_zero(rack_sack_skipped_acked);
808                 counter_u64_zero(rack_ack_total);
809                 counter_u64_zero(rack_express_sack);
810                 counter_u64_zero(rack_sack_total);
811                 counter_u64_zero(rack_move_none);
812                 counter_u64_zero(rack_move_some);
813                 counter_u64_zero(rack_used_tlpmethod);
814                 counter_u64_zero(rack_used_tlpmethod2);
815                 counter_u64_zero(rack_enter_tlp_calc);
816                 counter_u64_zero(rack_progress_drops);
817                 counter_u64_zero(rack_tlp_does_nada);
818                 counter_u64_zero(rack_try_scwnd);
819                 counter_u64_zero(rack_collapsed_win);
820         }
821         rack_clear_counter = 0;
822         return (0);
823 }
824
825 static void
826 rack_init_sysctls(void)
827 {
828         int i;
829         struct sysctl_oid *rack_counters;
830         struct sysctl_oid *rack_attack;
831         struct sysctl_oid *rack_pacing;
832         struct sysctl_oid *rack_timely;
833         struct sysctl_oid *rack_timers;
834         struct sysctl_oid *rack_tlp;
835         struct sysctl_oid *rack_misc;
836         struct sysctl_oid *rack_measure;
837         struct sysctl_oid *rack_probertt;
838         struct sysctl_oid *rack_hw_pacing;
839
840         rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
841             SYSCTL_CHILDREN(rack_sysctl_root),
842             OID_AUTO,
843             "sack_attack",
844             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
845             "Rack Sack Attack Counters and Controls");
846         rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
847             SYSCTL_CHILDREN(rack_sysctl_root),
848             OID_AUTO,
849             "stats",
850             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
851             "Rack Counters");
852         SYSCTL_ADD_S32(&rack_sysctl_ctx,
853             SYSCTL_CHILDREN(rack_sysctl_root),
854             OID_AUTO, "rate_sample_method", CTLFLAG_RW,
855             &rack_rate_sample_method , USE_RTT_LOW,
856             "What method should we use for rate sampling 0=high, 1=low ");
857         /* Probe rtt related controls */
858         rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
859             SYSCTL_CHILDREN(rack_sysctl_root),
860             OID_AUTO,
861             "probertt",
862             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
863             "ProbeRTT related Controls");
864         SYSCTL_ADD_U16(&rack_sysctl_ctx,
865             SYSCTL_CHILDREN(rack_probertt),
866             OID_AUTO, "exit_per_hpb", CTLFLAG_RW,
867             &rack_atexit_prtt_hbp, 130,
868             "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%");
869         SYSCTL_ADD_U16(&rack_sysctl_ctx,
870             SYSCTL_CHILDREN(rack_probertt),
871             OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW,
872             &rack_atexit_prtt, 130,
873             "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%");
874         SYSCTL_ADD_U16(&rack_sysctl_ctx,
875             SYSCTL_CHILDREN(rack_probertt),
876             OID_AUTO, "gp_per_mul", CTLFLAG_RW,
877             &rack_per_of_gp_probertt, 60,
878             "What percentage of goodput do we pace at in probertt");
879         SYSCTL_ADD_U16(&rack_sysctl_ctx,
880             SYSCTL_CHILDREN(rack_probertt),
881             OID_AUTO, "gp_per_reduce", CTLFLAG_RW,
882             &rack_per_of_gp_probertt_reduce, 10,
883             "What percentage of goodput do we reduce every gp_srtt");
884         SYSCTL_ADD_U16(&rack_sysctl_ctx,
885             SYSCTL_CHILDREN(rack_probertt),
886             OID_AUTO, "gp_per_low", CTLFLAG_RW,
887             &rack_per_of_gp_lowthresh, 40,
888             "What percentage of goodput do we allow the multiplier to fall to");
889         SYSCTL_ADD_U32(&rack_sysctl_ctx,
890             SYSCTL_CHILDREN(rack_probertt),
891             OID_AUTO, "time_between", CTLFLAG_RW,
892             & rack_time_between_probertt, 96000000,
893             "How many useconds between the lowest rtt falling must past before we enter probertt");
894         SYSCTL_ADD_U32(&rack_sysctl_ctx,
895             SYSCTL_CHILDREN(rack_probertt),
896             OID_AUTO, "safety", CTLFLAG_RW,
897             &rack_probe_rtt_safety_val, 2000000,
898             "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)");
899         SYSCTL_ADD_U32(&rack_sysctl_ctx,
900             SYSCTL_CHILDREN(rack_probertt),
901             OID_AUTO, "sets_cwnd", CTLFLAG_RW,
902             &rack_probe_rtt_sets_cwnd, 0,
903             "Do we set the cwnd too (if always_lower is on)");
904         SYSCTL_ADD_U32(&rack_sysctl_ctx,
905             SYSCTL_CHILDREN(rack_probertt),
906             OID_AUTO, "maxdrainsrtts", CTLFLAG_RW,
907             &rack_max_drain_wait, 2,
908             "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal");
909         SYSCTL_ADD_U32(&rack_sysctl_ctx,
910             SYSCTL_CHILDREN(rack_probertt),
911             OID_AUTO, "mustdrainsrtts", CTLFLAG_RW,
912             &rack_must_drain, 1,
913             "We must drain this many gp_srtt's waiting for flight to reach goal");
914         SYSCTL_ADD_U32(&rack_sysctl_ctx,
915             SYSCTL_CHILDREN(rack_probertt),
916             OID_AUTO, "goal_use_min_entry", CTLFLAG_RW,
917             &rack_probertt_use_min_rtt_entry, 1,
918             "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry");
919         SYSCTL_ADD_U32(&rack_sysctl_ctx,
920             SYSCTL_CHILDREN(rack_probertt),
921             OID_AUTO, "goal_use_min_exit", CTLFLAG_RW,
922             &rack_probertt_use_min_rtt_exit, 0,
923             "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt");
924         SYSCTL_ADD_U32(&rack_sysctl_ctx,
925             SYSCTL_CHILDREN(rack_probertt),
926             OID_AUTO, "length_div", CTLFLAG_RW,
927             &rack_probertt_gpsrtt_cnt_div, 0,
928             "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)");
929         SYSCTL_ADD_U32(&rack_sysctl_ctx,
930             SYSCTL_CHILDREN(rack_probertt),
931             OID_AUTO, "length_mul", CTLFLAG_RW,
932             &rack_probertt_gpsrtt_cnt_mul, 0,
933             "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)");
934         SYSCTL_ADD_U32(&rack_sysctl_ctx,
935             SYSCTL_CHILDREN(rack_probertt),
936             OID_AUTO, "holdtim_at_target", CTLFLAG_RW,
937             &rack_min_probertt_hold, 200000,
938             "What is the minimum time we hold probertt at target");
939         SYSCTL_ADD_U32(&rack_sysctl_ctx,
940             SYSCTL_CHILDREN(rack_probertt),
941             OID_AUTO, "filter_life", CTLFLAG_RW,
942             &rack_probertt_filter_life, 10000000,
943             "What is the time for the filters life in useconds");
944         SYSCTL_ADD_U32(&rack_sysctl_ctx,
945             SYSCTL_CHILDREN(rack_probertt),
946             OID_AUTO, "lower_within", CTLFLAG_RW,
947             &rack_probertt_lower_within, 10,
948             "If the rtt goes lower within this percentage of the time, go into probe-rtt");
949         SYSCTL_ADD_U32(&rack_sysctl_ctx,
950             SYSCTL_CHILDREN(rack_probertt),
951             OID_AUTO, "must_move", CTLFLAG_RW,
952             &rack_min_rtt_movement, 250,
953             "How much is the minimum movement in rtt to count as a drop for probertt purposes");
954         SYSCTL_ADD_U32(&rack_sysctl_ctx,
955             SYSCTL_CHILDREN(rack_probertt),
956             OID_AUTO, "clear_is_cnts", CTLFLAG_RW,
957             &rack_probertt_clear_is, 1,
958             "Do we clear I/S counts on exiting probe-rtt");
959         SYSCTL_ADD_S32(&rack_sysctl_ctx,
960             SYSCTL_CHILDREN(rack_probertt),
961             OID_AUTO, "hbp_extra_drain", CTLFLAG_RW,
962             &rack_max_drain_hbp, 1,
963             "How many extra drain gpsrtt's do we get in highly buffered paths");
964         SYSCTL_ADD_S32(&rack_sysctl_ctx,
965             SYSCTL_CHILDREN(rack_probertt),
966             OID_AUTO, "hbp_threshold", CTLFLAG_RW,
967             &rack_hbp_thresh, 3,
968             "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold");
969         /* Pacing related sysctls */
970         rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
971             SYSCTL_CHILDREN(rack_sysctl_root),
972             OID_AUTO,
973             "pacing",
974             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
975             "Pacing related Controls");
976         SYSCTL_ADD_S32(&rack_sysctl_ctx,
977             SYSCTL_CHILDREN(rack_pacing),
978             OID_AUTO, "max_pace_over", CTLFLAG_RW,
979             &rack_max_per_above, 30,
980             "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)");
981         SYSCTL_ADD_S32(&rack_sysctl_ctx,
982             SYSCTL_CHILDREN(rack_pacing),
983             OID_AUTO, "pace_to_one", CTLFLAG_RW,
984             &rack_pace_one_seg, 0,
985             "Do we allow low b/w pacing of 1MSS instead of two");
986         SYSCTL_ADD_S32(&rack_sysctl_ctx,
987             SYSCTL_CHILDREN(rack_pacing),
988             OID_AUTO, "limit_wsrtt", CTLFLAG_RW,
989             &rack_limit_time_with_srtt, 0,
990             "Do we limit pacing time based on srtt");
991         SYSCTL_ADD_S32(&rack_sysctl_ctx,
992             SYSCTL_CHILDREN(rack_pacing),
993             OID_AUTO, "init_win", CTLFLAG_RW,
994             &rack_default_init_window, 0,
995             "Do we have a rack initial window 0 = system default");
996         SYSCTL_ADD_U16(&rack_sysctl_ctx,
997             SYSCTL_CHILDREN(rack_pacing),
998             OID_AUTO, "gp_per_ss", CTLFLAG_RW,
999             &rack_per_of_gp_ss, 250,
1000             "If non zero, what percentage of goodput to pace at in slow start");
1001         SYSCTL_ADD_U16(&rack_sysctl_ctx,
1002             SYSCTL_CHILDREN(rack_pacing),
1003             OID_AUTO, "gp_per_ca", CTLFLAG_RW,
1004             &rack_per_of_gp_ca, 150,
1005             "If non zero, what percentage of goodput to pace at in congestion avoidance");
1006         SYSCTL_ADD_U16(&rack_sysctl_ctx,
1007             SYSCTL_CHILDREN(rack_pacing),
1008             OID_AUTO, "gp_per_rec", CTLFLAG_RW,
1009             &rack_per_of_gp_rec, 200,
1010             "If non zero, what percentage of goodput to pace at in recovery");
1011         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1012             SYSCTL_CHILDREN(rack_pacing),
1013             OID_AUTO, "pace_max_seg", CTLFLAG_RW,
1014             &rack_hptsi_segments, 40,
1015             "What size is the max for TSO segments in pacing and burst mitigation");
1016         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1017             SYSCTL_CHILDREN(rack_pacing),
1018             OID_AUTO, "burst_reduces", CTLFLAG_RW,
1019             &rack_slot_reduction, 4,
1020             "When doing only burst mitigation what is the reduce divisor");
1021         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1022             SYSCTL_CHILDREN(rack_sysctl_root),
1023             OID_AUTO, "use_pacing", CTLFLAG_RW,
1024             &rack_pace_every_seg, 0,
1025             "If set we use pacing, if clear we use only the original burst mitigation");
1026         SYSCTL_ADD_U64(&rack_sysctl_ctx,
1027             SYSCTL_CHILDREN(rack_pacing),
1028             OID_AUTO, "rate_cap", CTLFLAG_RW,
1029             &rack_bw_rate_cap, 0,
1030             "If set we apply this value to the absolute rate cap used by pacing");
1031         SYSCTL_ADD_U8(&rack_sysctl_ctx,
1032             SYSCTL_CHILDREN(rack_sysctl_root),
1033             OID_AUTO, "req_measure_cnt", CTLFLAG_RW,
1034             &rack_req_measurements, 1,
1035             "If doing dynamic pacing, how many measurements must be in before we start pacing?");
1036         /* Hardware pacing */
1037         rack_hw_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1038             SYSCTL_CHILDREN(rack_sysctl_root),
1039             OID_AUTO,
1040             "hdwr_pacing",
1041             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1042             "Pacing related Controls");
1043         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1044             SYSCTL_CHILDREN(rack_hw_pacing),
1045             OID_AUTO, "rwnd_factor", CTLFLAG_RW,
1046             &rack_hw_rwnd_factor, 2,
1047             "How many times does snd_wnd need to be bigger than pace_max_seg so we will hold off and get more acks?");
1048         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1049             SYSCTL_CHILDREN(rack_hw_pacing),
1050             OID_AUTO, "pace_enobuf_mult", CTLFLAG_RW,
1051             &rack_enobuf_hw_boost_mult, 2,
1052             "By how many time_betweens should we boost the pacing time if we see a ENOBUFS?");
1053         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1054             SYSCTL_CHILDREN(rack_hw_pacing),
1055             OID_AUTO, "pace_enobuf_max", CTLFLAG_RW,
1056             &rack_enobuf_hw_max, 2,
1057             "What is the max boost the pacing time if we see a ENOBUFS?");
1058         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1059             SYSCTL_CHILDREN(rack_hw_pacing),
1060             OID_AUTO, "pace_enobuf_min", CTLFLAG_RW,
1061             &rack_enobuf_hw_min, 2,
1062             "What is the min boost the pacing time if we see a ENOBUFS?");
1063         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1064             SYSCTL_CHILDREN(rack_hw_pacing),
1065             OID_AUTO, "enable", CTLFLAG_RW,
1066             &rack_enable_hw_pacing, 0,
1067             "Should RACK attempt to use hw pacing?");
1068         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1069             SYSCTL_CHILDREN(rack_hw_pacing),
1070             OID_AUTO, "rate_cap", CTLFLAG_RW,
1071             &rack_hw_rate_caps, 1,
1072             "Does the highest hardware pacing rate cap the rate we will send at??");
1073         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1074             SYSCTL_CHILDREN(rack_hw_pacing),
1075             OID_AUTO, "rate_min", CTLFLAG_RW,
1076             &rack_hw_rate_min, 0,
1077             "Do we need a minimum estimate of this many bytes per second in order to engage hw pacing?");
1078         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1079             SYSCTL_CHILDREN(rack_hw_pacing),
1080             OID_AUTO, "rate_to_low", CTLFLAG_RW,
1081             &rack_hw_rate_to_low, 0,
1082             "If we fall below this rate, dis-engage hw pacing?");
1083         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1084             SYSCTL_CHILDREN(rack_hw_pacing),
1085             OID_AUTO, "up_only", CTLFLAG_RW,
1086             &rack_hw_up_only, 1,
1087             "Do we allow hw pacing to lower the rate selected?");
1088         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1089             SYSCTL_CHILDREN(rack_hw_pacing),
1090             OID_AUTO, "extra_mss_precise", CTLFLAG_RW,
1091             &rack_hw_pace_extra_slots, 2,
1092             "If the rates between software and hardware match precisely how many extra time_betweens do we get?");
1093         rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1094             SYSCTL_CHILDREN(rack_sysctl_root),
1095             OID_AUTO,
1096             "timely",
1097             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1098             "Rack Timely RTT Controls");
1099         /* Timely based GP dynmics */
1100         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1101             SYSCTL_CHILDREN(rack_timely),
1102             OID_AUTO, "upper", CTLFLAG_RW,
1103             &rack_gp_per_bw_mul_up, 2,
1104             "Rack timely upper range for equal b/w (in percentage)");
1105         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1106             SYSCTL_CHILDREN(rack_timely),
1107             OID_AUTO, "lower", CTLFLAG_RW,
1108             &rack_gp_per_bw_mul_down, 4,
1109             "Rack timely lower range for equal b/w (in percentage)");
1110         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1111             SYSCTL_CHILDREN(rack_timely),
1112             OID_AUTO, "rtt_max_mul", CTLFLAG_RW,
1113             &rack_gp_rtt_maxmul, 3,
1114             "Rack timely multipler of lowest rtt for rtt_max");
1115         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1116             SYSCTL_CHILDREN(rack_timely),
1117             OID_AUTO, "rtt_min_div", CTLFLAG_RW,
1118             &rack_gp_rtt_mindiv, 4,
1119             "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt");
1120         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1121             SYSCTL_CHILDREN(rack_timely),
1122             OID_AUTO, "rtt_min_mul", CTLFLAG_RW,
1123             &rack_gp_rtt_minmul, 1,
1124             "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt");
1125         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1126             SYSCTL_CHILDREN(rack_timely),
1127             OID_AUTO, "decrease", CTLFLAG_RW,
1128             &rack_gp_decrease_per, 20,
1129             "Rack timely decrease percentage of our GP multiplication factor");
1130         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1131             SYSCTL_CHILDREN(rack_timely),
1132             OID_AUTO, "increase", CTLFLAG_RW,
1133             &rack_gp_increase_per, 2,
1134             "Rack timely increase perentage of our GP multiplication factor");
1135         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1136             SYSCTL_CHILDREN(rack_timely),
1137             OID_AUTO, "lowerbound", CTLFLAG_RW,
1138             &rack_per_lower_bound, 50,
1139             "Rack timely lowest percentage we allow GP multiplier to fall to");
1140         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1141             SYSCTL_CHILDREN(rack_timely),
1142             OID_AUTO, "upperboundss", CTLFLAG_RW,
1143             &rack_per_upper_bound_ss, 0,
1144             "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)");
1145         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1146             SYSCTL_CHILDREN(rack_timely),
1147             OID_AUTO, "upperboundca", CTLFLAG_RW,
1148             &rack_per_upper_bound_ca, 0,
1149             "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)");
1150         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1151             SYSCTL_CHILDREN(rack_timely),
1152             OID_AUTO, "dynamicgp", CTLFLAG_RW,
1153             &rack_do_dyn_mul, 0,
1154             "Rack timely do we enable dynmaic timely goodput by default");
1155         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1156             SYSCTL_CHILDREN(rack_timely),
1157             OID_AUTO, "no_rec_red", CTLFLAG_RW,
1158             &rack_gp_no_rec_chg, 1,
1159             "Rack timely do we prohibit the recovery multiplier from being lowered");
1160         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1161             SYSCTL_CHILDREN(rack_timely),
1162             OID_AUTO, "red_clear_cnt", CTLFLAG_RW,
1163             &rack_timely_dec_clear, 6,
1164             "Rack timely what threshold do we count to before another boost during b/w decent");
1165         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1166             SYSCTL_CHILDREN(rack_timely),
1167             OID_AUTO, "max_push_rise", CTLFLAG_RW,
1168             &rack_timely_max_push_rise, 3,
1169             "Rack timely how many times do we push up with b/w increase");
1170         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1171             SYSCTL_CHILDREN(rack_timely),
1172             OID_AUTO, "max_push_drop", CTLFLAG_RW,
1173             &rack_timely_max_push_drop, 3,
1174             "Rack timely how many times do we push back on b/w decent");
1175         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1176             SYSCTL_CHILDREN(rack_timely),
1177             OID_AUTO, "min_segs", CTLFLAG_RW,
1178             &rack_timely_min_segs, 4,
1179             "Rack timely when setting the cwnd what is the min num segments");
1180         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1181             SYSCTL_CHILDREN(rack_timely),
1182             OID_AUTO, "noback_max", CTLFLAG_RW,
1183             &rack_use_max_for_nobackoff, 0,
1184             "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min");
1185         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1186             SYSCTL_CHILDREN(rack_timely),
1187             OID_AUTO, "interim_timely_only", CTLFLAG_RW,
1188             &rack_timely_int_timely_only, 0,
1189             "Rack timely when doing interim timely's do we only do timely (no b/w consideration)");
1190         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1191             SYSCTL_CHILDREN(rack_timely),
1192             OID_AUTO, "nonstop", CTLFLAG_RW,
1193             &rack_timely_no_stopping, 0,
1194             "Rack timely don't stop increase");
1195         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1196             SYSCTL_CHILDREN(rack_timely),
1197             OID_AUTO, "dec_raise_thresh", CTLFLAG_RW,
1198             &rack_down_raise_thresh, 100,
1199             "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)");
1200         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1201             SYSCTL_CHILDREN(rack_timely),
1202             OID_AUTO, "bottom_drag_segs", CTLFLAG_RW,
1203             &rack_req_segs, 1,
1204             "Bottom dragging if not these many segments outstanding and room");
1205
1206         /* TLP and Rack related parameters */
1207         rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1208             SYSCTL_CHILDREN(rack_sysctl_root),
1209             OID_AUTO,
1210             "tlp",
1211             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1212             "TLP and Rack related Controls");
1213         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1214             SYSCTL_CHILDREN(rack_tlp),
1215             OID_AUTO, "use_rrr", CTLFLAG_RW,
1216             &use_rack_rr, 1,
1217             "Do we use Rack Rapid Recovery");
1218         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1219             SYSCTL_CHILDREN(rack_tlp),
1220             OID_AUTO, "post_rec_labc", CTLFLAG_RW,
1221             &rack_max_abc_post_recovery, 2,
1222             "Since we do early recovery, do we override the l_abc to a value, if so what?");
1223         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1224             SYSCTL_CHILDREN(rack_tlp),
1225             OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW,
1226             &rack_non_rxt_use_cr, 0,
1227             "Do we use ss/ca rate if in recovery we are transmitting a new data chunk");
1228         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1229             SYSCTL_CHILDREN(rack_tlp),
1230             OID_AUTO, "tlpmethod", CTLFLAG_RW,
1231             &rack_tlp_threshold_use, TLP_USE_TWO_ONE,
1232             "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
1233         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1234             SYSCTL_CHILDREN(rack_tlp),
1235             OID_AUTO, "limit", CTLFLAG_RW,
1236             &rack_tlp_limit, 2,
1237             "How many TLP's can be sent without sending new data");
1238         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1239             SYSCTL_CHILDREN(rack_tlp),
1240             OID_AUTO, "use_greater", CTLFLAG_RW,
1241             &rack_tlp_use_greater, 1,
1242             "Should we use the rack_rtt time if its greater than srtt");
1243         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1244             SYSCTL_CHILDREN(rack_tlp),
1245             OID_AUTO, "tlpminto", CTLFLAG_RW,
1246             &rack_tlp_min, 10000,
1247             "TLP minimum timeout per the specification (in microseconds)");
1248         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1249             SYSCTL_CHILDREN(rack_tlp),
1250             OID_AUTO, "send_oldest", CTLFLAG_RW,
1251             &rack_always_send_oldest, 0,
1252             "Should we always send the oldest TLP and RACK-TLP");
1253         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1254             SYSCTL_CHILDREN(rack_tlp),
1255             OID_AUTO, "rack_tlimit", CTLFLAG_RW,
1256             &rack_limited_retran, 0,
1257             "How many times can a rack timeout drive out sends");
1258         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1259             SYSCTL_CHILDREN(rack_tlp),
1260             OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
1261             &rack_lower_cwnd_at_tlp, 0,
1262             "When a TLP completes a retran should we enter recovery");
1263         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1264             SYSCTL_CHILDREN(rack_tlp),
1265             OID_AUTO, "reorder_thresh", CTLFLAG_RW,
1266             &rack_reorder_thresh, 2,
1267             "What factor for rack will be added when seeing reordering (shift right)");
1268         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1269             SYSCTL_CHILDREN(rack_tlp),
1270             OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
1271             &rack_tlp_thresh, 1,
1272             "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
1273         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1274             SYSCTL_CHILDREN(rack_tlp),
1275             OID_AUTO, "reorder_fade", CTLFLAG_RW,
1276             &rack_reorder_fade, 60000000,
1277             "Does reorder detection fade, if so how many microseconds (0 means never)");
1278         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1279             SYSCTL_CHILDREN(rack_tlp),
1280             OID_AUTO, "pktdelay", CTLFLAG_RW,
1281             &rack_pkt_delay, 1000,
1282             "Extra RACK time (in microseconds) besides reordering thresh");
1283
1284         /* Timer related controls */
1285         rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1286             SYSCTL_CHILDREN(rack_sysctl_root),
1287             OID_AUTO,
1288             "timers",
1289             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1290             "Timer related controls");
1291         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1292             SYSCTL_CHILDREN(rack_timers),
1293             OID_AUTO, "persmin", CTLFLAG_RW,
1294             &rack_persist_min, 250000,
1295             "What is the minimum time in microseconds between persists");
1296         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1297             SYSCTL_CHILDREN(rack_timers),
1298             OID_AUTO, "persmax", CTLFLAG_RW,
1299             &rack_persist_max, 2000000,
1300             "What is the largest delay in microseconds between persists");
1301         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1302             SYSCTL_CHILDREN(rack_timers),
1303             OID_AUTO, "delayed_ack", CTLFLAG_RW,
1304             &rack_delayed_ack_time, 40000,
1305             "Delayed ack time (40ms in microseconds)");
1306         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1307             SYSCTL_CHILDREN(rack_timers),
1308             OID_AUTO, "minrto", CTLFLAG_RW,
1309             &rack_rto_min, 30000,
1310             "Minimum RTO in microseconds -- set with caution below 1000 due to TLP");
1311         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1312             SYSCTL_CHILDREN(rack_timers),
1313             OID_AUTO, "maxrto", CTLFLAG_RW,
1314             &rack_rto_max, 4000000,
1315             "Maxiumum RTO in microseconds -- should be at least as large as min_rto");
1316         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1317             SYSCTL_CHILDREN(rack_timers),
1318             OID_AUTO, "minto", CTLFLAG_RW,
1319             &rack_min_to, 1000,
1320             "Minimum rack timeout in microseconds");
1321         /* Measure controls */
1322         rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1323             SYSCTL_CHILDREN(rack_sysctl_root),
1324             OID_AUTO,
1325             "measure",
1326             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1327             "Measure related controls");
1328         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1329             SYSCTL_CHILDREN(rack_measure),
1330             OID_AUTO, "wma_divisor", CTLFLAG_RW,
1331             &rack_wma_divisor, 8,
1332             "When doing b/w calculation what is the  divisor for the WMA");
1333         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1334             SYSCTL_CHILDREN(rack_measure),
1335             OID_AUTO, "end_cwnd", CTLFLAG_RW,
1336             &rack_cwnd_block_ends_measure, 0,
1337             "Does a cwnd just-return end the measurement window (app limited)");
1338         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1339             SYSCTL_CHILDREN(rack_measure),
1340             OID_AUTO, "end_rwnd", CTLFLAG_RW,
1341             &rack_rwnd_block_ends_measure, 0,
1342             "Does an rwnd just-return end the measurement window (app limited -- not persists)");
1343         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1344             SYSCTL_CHILDREN(rack_measure),
1345             OID_AUTO, "min_target", CTLFLAG_RW,
1346             &rack_def_data_window, 20,
1347             "What is the minimum target window (in mss) for a GP measurements");
1348         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1349             SYSCTL_CHILDREN(rack_measure),
1350             OID_AUTO, "goal_bdp", CTLFLAG_RW,
1351             &rack_goal_bdp, 2,
1352             "What is the goal BDP to measure");
1353         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1354             SYSCTL_CHILDREN(rack_measure),
1355             OID_AUTO, "min_srtts", CTLFLAG_RW,
1356             &rack_min_srtts, 1,
1357             "What is the goal BDP to measure");
1358         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1359             SYSCTL_CHILDREN(rack_measure),
1360             OID_AUTO, "min_measure_tim", CTLFLAG_RW,
1361             &rack_min_measure_usec, 0,
1362             "What is the Minimum time time for a measurement if 0, this is off");
1363         /* Misc rack controls */
1364         rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
1365             SYSCTL_CHILDREN(rack_sysctl_root),
1366             OID_AUTO,
1367             "misc",
1368             CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1369             "Misc related controls");
1370 #ifdef TCP_ACCOUNTING
1371         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1372             SYSCTL_CHILDREN(rack_misc),
1373             OID_AUTO, "tcp_acct", CTLFLAG_RW,
1374             &rack_tcp_accounting, 0,
1375             "Should we turn on TCP accounting for all rack sessions?");
1376 #endif
1377         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1378             SYSCTL_CHILDREN(rack_misc),
1379             OID_AUTO, "prr_addback_max", CTLFLAG_RW,
1380             &rack_prr_addbackmax, 2,
1381             "What is the maximum number of MSS we allow to be added back if prr can't send all its data?");
1382         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1383             SYSCTL_CHILDREN(rack_misc),
1384             OID_AUTO, "stats_gets_ms", CTLFLAG_RW,
1385             &rack_stats_gets_ms_rtt, 1,
1386             "What do we feed the stats framework (1 = ms_rtt, 0 = us_rtt, 2 = ms_rtt from hdwr, > 2 usec rtt from hdwr)?");
1387         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1388             SYSCTL_CHILDREN(rack_misc),
1389             OID_AUTO, "clientlowbuf", CTLFLAG_RW,
1390             &rack_client_low_buf, 0,
1391             "Client low buffer level (below this we are more aggressive in DGP exiting recovery (0 = off)?");
1392         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1393             SYSCTL_CHILDREN(rack_misc),
1394             OID_AUTO, "defprofile", CTLFLAG_RW,
1395             &rack_def_profile, 0,
1396             "Should RACK use a default profile (0=no, num == profile num)?");
1397         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1398             SYSCTL_CHILDREN(rack_misc),
1399             OID_AUTO, "cmpack", CTLFLAG_RW,
1400             &rack_use_cmp_acks, 1,
1401             "Should RACK have LRO send compressed acks");
1402         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1403             SYSCTL_CHILDREN(rack_misc),
1404             OID_AUTO, "fsb", CTLFLAG_RW,
1405             &rack_use_fsb, 1,
1406             "Should RACK use the fast send block?");
1407         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1408             SYSCTL_CHILDREN(rack_misc),
1409             OID_AUTO, "rfo", CTLFLAG_RW,
1410             &rack_use_rfo, 1,
1411             "Should RACK use rack_fast_output()?");
1412         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1413             SYSCTL_CHILDREN(rack_misc),
1414             OID_AUTO, "rsmrfo", CTLFLAG_RW,
1415             &rack_use_rsm_rfo, 1,
1416             "Should RACK use rack_fast_rsm_output()?");
1417         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1418             SYSCTL_CHILDREN(rack_misc),
1419             OID_AUTO, "shared_cwnd", CTLFLAG_RW,
1420             &rack_enable_shared_cwnd, 1,
1421             "Should RACK try to use the shared cwnd on connections where allowed");
1422         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1423             SYSCTL_CHILDREN(rack_misc),
1424             OID_AUTO, "limits_on_scwnd", CTLFLAG_RW,
1425             &rack_limits_scwnd, 1,
1426             "Should RACK place low end time limits on the shared cwnd feature");
1427         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1428             SYSCTL_CHILDREN(rack_misc),
1429             OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW,
1430             &rack_enable_mqueue_for_nonpaced, 0,
1431             "Should RACK use mbuf queuing for non-paced connections");
1432         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1433             SYSCTL_CHILDREN(rack_misc),
1434             OID_AUTO, "iMac_dack", CTLFLAG_RW,
1435             &rack_use_imac_dack, 0,
1436             "Should RACK try to emulate iMac delayed ack");
1437         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1438             SYSCTL_CHILDREN(rack_misc),
1439             OID_AUTO, "no_prr", CTLFLAG_RW,
1440             &rack_disable_prr, 0,
1441             "Should RACK not use prr and only pace (must have pacing on)");
1442         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1443             SYSCTL_CHILDREN(rack_misc),
1444             OID_AUTO, "bb_verbose", CTLFLAG_RW,
1445             &rack_verbose_logging, 0,
1446             "Should RACK black box logging be verbose");
1447         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1448             SYSCTL_CHILDREN(rack_misc),
1449             OID_AUTO, "data_after_close", CTLFLAG_RW,
1450             &rack_ignore_data_after_close, 1,
1451             "Do we hold off sending a RST until all pending data is ack'd");
1452         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1453             SYSCTL_CHILDREN(rack_misc),
1454             OID_AUTO, "no_sack_needed", CTLFLAG_RW,
1455             &rack_sack_not_required, 1,
1456             "Do we allow rack to run on connections not supporting SACK");
1457         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1458             SYSCTL_CHILDREN(rack_misc),
1459             OID_AUTO, "prr_sendalot", CTLFLAG_RW,
1460             &rack_send_a_lot_in_prr, 1,
1461             "Send a lot in prr");
1462         SYSCTL_ADD_S32(&rack_sysctl_ctx,
1463             SYSCTL_CHILDREN(rack_misc),
1464             OID_AUTO, "autoscale", CTLFLAG_RW,
1465             &rack_autosndbuf_inc, 20,
1466             "What percentage should rack scale up its snd buffer by?");
1467         /* Sack Attacker detection stuff */
1468         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1469             SYSCTL_CHILDREN(rack_attack),
1470             OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
1471             &rack_highest_sack_thresh_seen, 0,
1472             "Highest sack to ack ratio seen");
1473         SYSCTL_ADD_U32(&rack_sysctl_ctx,
1474             SYSCTL_CHILDREN(rack_attack),
1475             OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
1476             &rack_highest_move_thresh_seen, 0,
1477             "Highest move to non-move ratio seen");
1478         rack_ack_total = counter_u64_alloc(M_WAITOK);
1479         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1480             SYSCTL_CHILDREN(rack_attack),
1481             OID_AUTO, "acktotal", CTLFLAG_RD,
1482             &rack_ack_total,
1483             "Total number of Ack's");
1484         rack_express_sack = counter_u64_alloc(M_WAITOK);
1485         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1486             SYSCTL_CHILDREN(rack_attack),
1487             OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
1488             &rack_express_sack,
1489             "Total expresss number of Sack's");
1490         rack_sack_total = counter_u64_alloc(M_WAITOK);
1491         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1492             SYSCTL_CHILDREN(rack_attack),
1493             OID_AUTO, "sacktotal", CTLFLAG_RD,
1494             &rack_sack_total,
1495             "Total number of SACKs");
1496         rack_move_none = counter_u64_alloc(M_WAITOK);
1497         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1498             SYSCTL_CHILDREN(rack_attack),
1499             OID_AUTO, "move_none", CTLFLAG_RD,
1500             &rack_move_none,
1501             "Total number of SACK index reuse of postions under threshold");
1502         rack_move_some = counter_u64_alloc(M_WAITOK);
1503         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1504             SYSCTL_CHILDREN(rack_attack),
1505             OID_AUTO, "move_some", CTLFLAG_RD,
1506             &rack_move_some,
1507             "Total number of SACK index reuse of postions over threshold");
1508         rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
1509         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1510             SYSCTL_CHILDREN(rack_attack),
1511             OID_AUTO, "attacks", CTLFLAG_RD,
1512             &rack_sack_attacks_detected,
1513             "Total number of SACK attackers that had sack disabled");
1514         rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
1515         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1516             SYSCTL_CHILDREN(rack_attack),
1517             OID_AUTO, "reversed", CTLFLAG_RD,
1518             &rack_sack_attacks_reversed,
1519             "Total number of SACK attackers that were later determined false positive");
1520         rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
1521         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1522             SYSCTL_CHILDREN(rack_attack),
1523             OID_AUTO, "nextmerge", CTLFLAG_RD,
1524             &rack_sack_used_next_merge,
1525             "Total number of times we used the next merge");
1526         rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
1527         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1528             SYSCTL_CHILDREN(rack_attack),
1529             OID_AUTO, "prevmerge", CTLFLAG_RD,
1530             &rack_sack_used_prev_merge,
1531             "Total number of times we used the prev merge");
1532         /* Counters */
1533         rack_fto_send = counter_u64_alloc(M_WAITOK);
1534         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1535             SYSCTL_CHILDREN(rack_counters),
1536             OID_AUTO, "fto_send", CTLFLAG_RD,
1537             &rack_fto_send, "Total number of rack_fast_output sends");
1538         rack_fto_rsm_send = counter_u64_alloc(M_WAITOK);
1539         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1540             SYSCTL_CHILDREN(rack_counters),
1541             OID_AUTO, "fto_rsm_send", CTLFLAG_RD,
1542             &rack_fto_rsm_send, "Total number of rack_fast_rsm_output sends");
1543         rack_nfto_resend = counter_u64_alloc(M_WAITOK);
1544         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1545             SYSCTL_CHILDREN(rack_counters),
1546             OID_AUTO, "nfto_resend", CTLFLAG_RD,
1547             &rack_nfto_resend, "Total number of rack_output retransmissions");
1548         rack_non_fto_send = counter_u64_alloc(M_WAITOK);
1549         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1550             SYSCTL_CHILDREN(rack_counters),
1551             OID_AUTO, "nfto_send", CTLFLAG_RD,
1552             &rack_non_fto_send, "Total number of rack_output first sends");
1553         rack_extended_rfo = counter_u64_alloc(M_WAITOK);
1554         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1555             SYSCTL_CHILDREN(rack_counters),
1556             OID_AUTO, "rfo_extended", CTLFLAG_RD,
1557             &rack_extended_rfo, "Total number of times we extended rfo");
1558
1559         rack_hw_pace_init_fail = counter_u64_alloc(M_WAITOK);
1560         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1561             SYSCTL_CHILDREN(rack_counters),
1562             OID_AUTO, "hwpace_init_fail", CTLFLAG_RD,
1563             &rack_hw_pace_init_fail, "Total number of times we failed to initialize hw pacing");
1564         rack_hw_pace_lost = counter_u64_alloc(M_WAITOK);
1565
1566         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1567             SYSCTL_CHILDREN(rack_counters),
1568             OID_AUTO, "hwpace_lost", CTLFLAG_RD,
1569             &rack_hw_pace_lost, "Total number of times we failed to initialize hw pacing");
1570
1571
1572
1573         rack_badfr = counter_u64_alloc(M_WAITOK);
1574         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1575             SYSCTL_CHILDREN(rack_counters),
1576             OID_AUTO, "badfr", CTLFLAG_RD,
1577             &rack_badfr, "Total number of bad FRs");
1578         rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
1579         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1580             SYSCTL_CHILDREN(rack_counters),
1581             OID_AUTO, "badfr_bytes", CTLFLAG_RD,
1582             &rack_badfr_bytes, "Total number of bad FRs");
1583         rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
1584         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1585             SYSCTL_CHILDREN(rack_counters),
1586             OID_AUTO, "prrsndret", CTLFLAG_RD,
1587             &rack_rtm_prr_retran,
1588             "Total number of prr based retransmits");
1589         rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
1590         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1591             SYSCTL_CHILDREN(rack_counters),
1592             OID_AUTO, "prrsndnew", CTLFLAG_RD,
1593             &rack_rtm_prr_newdata,
1594             "Total number of prr based new transmits");
1595         rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
1596         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1597             SYSCTL_CHILDREN(rack_counters),
1598             OID_AUTO, "tsnf", CTLFLAG_RD,
1599             &rack_timestamp_mismatch,
1600             "Total number of timestamps that we could not find the reported ts");
1601         rack_find_high = counter_u64_alloc(M_WAITOK);
1602         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1603             SYSCTL_CHILDREN(rack_counters),
1604             OID_AUTO, "findhigh", CTLFLAG_RD,
1605             &rack_find_high,
1606             "Total number of FIN causing find-high");
1607         rack_reorder_seen = counter_u64_alloc(M_WAITOK);
1608         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1609             SYSCTL_CHILDREN(rack_counters),
1610             OID_AUTO, "reordering", CTLFLAG_RD,
1611             &rack_reorder_seen,
1612             "Total number of times we added delay due to reordering");
1613         rack_tlp_tot = counter_u64_alloc(M_WAITOK);
1614         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1615             SYSCTL_CHILDREN(rack_counters),
1616             OID_AUTO, "tlp_to_total", CTLFLAG_RD,
1617             &rack_tlp_tot,
1618             "Total number of tail loss probe expirations");
1619         rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
1620         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1621             SYSCTL_CHILDREN(rack_counters),
1622             OID_AUTO, "tlp_new", CTLFLAG_RD,
1623             &rack_tlp_newdata,
1624             "Total number of tail loss probe sending new data");
1625         rack_tlp_retran = counter_u64_alloc(M_WAITOK);
1626         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1627             SYSCTL_CHILDREN(rack_counters),
1628             OID_AUTO, "tlp_retran", CTLFLAG_RD,
1629             &rack_tlp_retran,
1630             "Total number of tail loss probe sending retransmitted data");
1631         rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
1632         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1633             SYSCTL_CHILDREN(rack_counters),
1634             OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
1635             &rack_tlp_retran_bytes,
1636             "Total bytes of tail loss probe sending retransmitted data");
1637         rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
1638         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1639             SYSCTL_CHILDREN(rack_counters),
1640             OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
1641             &rack_tlp_retran_fail,
1642             "Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
1643         rack_to_tot = counter_u64_alloc(M_WAITOK);
1644         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1645             SYSCTL_CHILDREN(rack_counters),
1646             OID_AUTO, "rack_to_tot", CTLFLAG_RD,
1647             &rack_to_tot,
1648             "Total number of times the rack to expired");
1649         rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
1650         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1651             SYSCTL_CHILDREN(rack_counters),
1652             OID_AUTO, "arm_rack", CTLFLAG_RD,
1653             &rack_to_arm_rack,
1654             "Total number of times the rack timer armed");
1655         rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
1656         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1657             SYSCTL_CHILDREN(rack_counters),
1658             OID_AUTO, "arm_tlp", CTLFLAG_RD,
1659             &rack_to_arm_tlp,
1660             "Total number of times the tlp timer armed");
1661         rack_calc_zero = counter_u64_alloc(M_WAITOK);
1662         rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
1663         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1664             SYSCTL_CHILDREN(rack_counters),
1665             OID_AUTO, "calc_zero", CTLFLAG_RD,
1666             &rack_calc_zero,
1667             "Total number of times pacing time worked out to zero");
1668         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1669             SYSCTL_CHILDREN(rack_counters),
1670             OID_AUTO, "calc_nonzero", CTLFLAG_RD,
1671             &rack_calc_nonzero,
1672             "Total number of times pacing time worked out to non-zero");
1673         rack_paced_segments = counter_u64_alloc(M_WAITOK);
1674         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1675             SYSCTL_CHILDREN(rack_counters),
1676             OID_AUTO, "paced", CTLFLAG_RD,
1677             &rack_paced_segments,
1678             "Total number of times a segment send caused hptsi");
1679         rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
1680         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1681             SYSCTL_CHILDREN(rack_counters),
1682             OID_AUTO, "unpaced", CTLFLAG_RD,
1683             &rack_unpaced_segments,
1684             "Total number of times a segment did not cause hptsi");
1685         rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
1686         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1687             SYSCTL_CHILDREN(rack_counters),
1688             OID_AUTO, "saw_enobufs", CTLFLAG_RD,
1689             &rack_saw_enobuf,
1690             "Total number of times a sends returned enobuf for non-hdwr paced connections");
1691         rack_saw_enobuf_hw = counter_u64_alloc(M_WAITOK);
1692         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1693             SYSCTL_CHILDREN(rack_counters),
1694             OID_AUTO, "saw_enobufs_hw", CTLFLAG_RD,
1695             &rack_saw_enobuf_hw,
1696             "Total number of times a send returned enobuf for hdwr paced connections");
1697         rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
1698         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1699             SYSCTL_CHILDREN(rack_counters),
1700             OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
1701             &rack_saw_enetunreach,
1702             "Total number of times a send received a enetunreachable");
1703         rack_hot_alloc = counter_u64_alloc(M_WAITOK);
1704         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1705             SYSCTL_CHILDREN(rack_counters),
1706             OID_AUTO, "alloc_hot", CTLFLAG_RD,
1707             &rack_hot_alloc,
1708             "Total allocations from the top of our list");
1709         rack_to_alloc = counter_u64_alloc(M_WAITOK);
1710         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1711             SYSCTL_CHILDREN(rack_counters),
1712             OID_AUTO, "allocs", CTLFLAG_RD,
1713             &rack_to_alloc,
1714             "Total allocations of tracking structures");
1715         rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
1716         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1717             SYSCTL_CHILDREN(rack_counters),
1718             OID_AUTO, "allochard", CTLFLAG_RD,
1719             &rack_to_alloc_hard,
1720             "Total allocations done with sleeping the hard way");
1721         rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
1722         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1723             SYSCTL_CHILDREN(rack_counters),
1724             OID_AUTO, "allocemerg", CTLFLAG_RD,
1725             &rack_to_alloc_emerg,
1726             "Total allocations done from emergency cache");
1727         rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
1728         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1729             SYSCTL_CHILDREN(rack_counters),
1730             OID_AUTO, "alloc_limited", CTLFLAG_RD,
1731             &rack_to_alloc_limited,
1732             "Total allocations dropped due to limit");
1733         rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
1734         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1735             SYSCTL_CHILDREN(rack_counters),
1736             OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
1737             &rack_alloc_limited_conns,
1738             "Connections with allocations dropped due to limit");
1739         rack_split_limited = counter_u64_alloc(M_WAITOK);
1740         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1741             SYSCTL_CHILDREN(rack_counters),
1742             OID_AUTO, "split_limited", CTLFLAG_RD,
1743             &rack_split_limited,
1744             "Split allocations dropped due to limit");
1745
1746         for (i = 0; i < MAX_NUM_OF_CNTS; i++) {
1747                 char name[32];
1748                 sprintf(name, "cmp_ack_cnt_%d", i);
1749                 rack_proc_comp_ack[i] = counter_u64_alloc(M_WAITOK);
1750                 SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1751                                        SYSCTL_CHILDREN(rack_counters),
1752                                        OID_AUTO, name, CTLFLAG_RD,
1753                                        &rack_proc_comp_ack[i],
1754                                        "Number of compressed acks we processed");
1755         }
1756         rack_large_ackcmp = counter_u64_alloc(M_WAITOK);
1757         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1758             SYSCTL_CHILDREN(rack_counters),
1759             OID_AUTO, "cmp_large_mbufs", CTLFLAG_RD,
1760             &rack_large_ackcmp,
1761             "Number of TCP connections with large mbuf's for compressed acks");
1762         rack_small_ackcmp = counter_u64_alloc(M_WAITOK);
1763         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1764             SYSCTL_CHILDREN(rack_counters),
1765             OID_AUTO, "cmp_small_mbufs", CTLFLAG_RD,
1766             &rack_small_ackcmp,
1767             "Number of TCP connections with small mbuf's for compressed acks");
1768 #ifdef INVARIANTS
1769         rack_adjust_map_bw = counter_u64_alloc(M_WAITOK);
1770         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1771             SYSCTL_CHILDREN(rack_counters),
1772             OID_AUTO, "map_adjust_req", CTLFLAG_RD,
1773             &rack_adjust_map_bw,
1774             "Number of times we hit the case where the sb went up and down on a sendmap entry");
1775 #endif
1776         rack_multi_single_eq = counter_u64_alloc(M_WAITOK);
1777         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1778             SYSCTL_CHILDREN(rack_counters),
1779             OID_AUTO, "cmp_ack_equiv", CTLFLAG_RD,
1780             &rack_multi_single_eq,
1781             "Number of compressed acks total represented");
1782         rack_proc_non_comp_ack = counter_u64_alloc(M_WAITOK);
1783         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1784             SYSCTL_CHILDREN(rack_counters),
1785             OID_AUTO, "cmp_ack_not", CTLFLAG_RD,
1786             &rack_proc_non_comp_ack,
1787             "Number of non compresseds acks that we processed");
1788
1789
1790         rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
1791         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1792             SYSCTL_CHILDREN(rack_counters),
1793             OID_AUTO, "sack_long", CTLFLAG_RD,
1794             &rack_sack_proc_all,
1795             "Total times we had to walk whole list for sack processing");
1796         rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
1797         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1798             SYSCTL_CHILDREN(rack_counters),
1799             OID_AUTO, "sack_restart", CTLFLAG_RD,
1800             &rack_sack_proc_restart,
1801             "Total times we had to walk whole list due to a restart");
1802         rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
1803         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1804             SYSCTL_CHILDREN(rack_counters),
1805             OID_AUTO, "sack_short", CTLFLAG_RD,
1806             &rack_sack_proc_short,
1807             "Total times we took shortcut for sack processing");
1808         rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
1809         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1810             SYSCTL_CHILDREN(rack_counters),
1811             OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
1812             &rack_enter_tlp_calc,
1813             "Total times we called calc-tlp");
1814         rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
1815         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1816             SYSCTL_CHILDREN(rack_counters),
1817             OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
1818             &rack_used_tlpmethod,
1819             "Total number of runt sacks");
1820         rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
1821         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1822             SYSCTL_CHILDREN(rack_counters),
1823             OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
1824             &rack_used_tlpmethod2,
1825             "Total number of times we hit TLP method 2");
1826         rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
1827         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1828             SYSCTL_CHILDREN(rack_attack),
1829             OID_AUTO, "skipacked", CTLFLAG_RD,
1830             &rack_sack_skipped_acked,
1831             "Total number of times we skipped previously sacked");
1832         rack_sack_splits = counter_u64_alloc(M_WAITOK);
1833         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1834             SYSCTL_CHILDREN(rack_attack),
1835             OID_AUTO, "ofsplit", CTLFLAG_RD,
1836             &rack_sack_splits,
1837             "Total number of times we did the old fashion tree split");
1838         rack_progress_drops = counter_u64_alloc(M_WAITOK);
1839         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1840             SYSCTL_CHILDREN(rack_counters),
1841             OID_AUTO, "prog_drops", CTLFLAG_RD,
1842             &rack_progress_drops,
1843             "Total number of progress drops");
1844         rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
1845         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1846             SYSCTL_CHILDREN(rack_counters),
1847             OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
1848             &rack_input_idle_reduces,
1849             "Total number of idle reductions on input");
1850         rack_collapsed_win = counter_u64_alloc(M_WAITOK);
1851         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1852             SYSCTL_CHILDREN(rack_counters),
1853             OID_AUTO, "collapsed_win", CTLFLAG_RD,
1854             &rack_collapsed_win,
1855             "Total number of collapsed windows");
1856         rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
1857         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1858             SYSCTL_CHILDREN(rack_counters),
1859             OID_AUTO, "tlp_nada", CTLFLAG_RD,
1860             &rack_tlp_does_nada,
1861             "Total number of nada tlp calls");
1862         rack_try_scwnd = counter_u64_alloc(M_WAITOK);
1863         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1864             SYSCTL_CHILDREN(rack_counters),
1865             OID_AUTO, "tried_scwnd", CTLFLAG_RD,
1866             &rack_try_scwnd,
1867             "Total number of scwnd attempts");
1868
1869         rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
1870         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1871             SYSCTL_CHILDREN(rack_counters),
1872             OID_AUTO, "timer_hole", CTLFLAG_RD,
1873             &rack_per_timer_hole,
1874             "Total persists start in timer hole");
1875
1876         rack_sbsndptr_wrong = counter_u64_alloc(M_WAITOK);
1877         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1878             SYSCTL_CHILDREN(rack_counters),
1879             OID_AUTO, "sndptr_wrong", CTLFLAG_RD,
1880             &rack_sbsndptr_wrong, "Total number of times the saved sbsndptr was incorret");
1881         rack_sbsndptr_right = counter_u64_alloc(M_WAITOK);
1882         SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
1883             SYSCTL_CHILDREN(rack_counters),
1884             OID_AUTO, "sndptr_right", CTLFLAG_RD,
1885             &rack_sbsndptr_right, "Total number of times the saved sbsndptr was corret");
1886
1887         COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
1888         SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1889             OID_AUTO, "outsize", CTLFLAG_RD,
1890             rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
1891         COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
1892         SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
1893             OID_AUTO, "opts", CTLFLAG_RD,
1894             rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
1895         SYSCTL_ADD_PROC(&rack_sysctl_ctx,
1896             SYSCTL_CHILDREN(rack_sysctl_root),
1897             OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1898             &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
1899 }
1900
1901 static __inline int
1902 rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
1903 {
1904         if (SEQ_GEQ(b->r_start, a->r_start) &&
1905             SEQ_LT(b->r_start, a->r_end)) {
1906                 /*
1907                  * The entry b is within the
1908                  * block a. i.e.:
1909                  * a --   |-------------|
1910                  * b --   |----|
1911                  * <or>
1912                  * b --       |------|
1913                  * <or>
1914                  * b --       |-----------|
1915                  */
1916                 return (0);
1917         } else if (SEQ_GEQ(b->r_start, a->r_end)) {
1918                 /*
1919                  * b falls as either the next
1920                  * sequence block after a so a
1921                  * is said to be smaller than b.
1922                  * i.e:
1923                  * a --   |------|
1924                  * b --          |--------|
1925                  * or
1926                  * b --              |-----|
1927                  */
1928                 return (1);
1929         }
1930         /*
1931          * Whats left is where a is
1932          * larger than b. i.e:
1933          * a --         |-------|
1934          * b --  |---|
1935          * or even possibly
1936          * b --   |--------------|
1937          */
1938         return (-1);
1939 }
1940
1941 RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1942 RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
1943
1944 static uint32_t
1945 rc_init_window(struct tcp_rack *rack)
1946 {
1947         uint32_t win;
1948
1949         if (rack->rc_init_win == 0) {
1950                 /*
1951                  * Nothing set by the user, use the system stack
1952                  * default.
1953                  */
1954                 return (tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)));
1955         }
1956         win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win;
1957         return (win);
1958 }
1959
1960 static uint64_t
1961 rack_get_fixed_pacing_bw(struct tcp_rack *rack)
1962 {
1963         if (IN_FASTRECOVERY(rack->rc_tp->t_flags))
1964                 return (rack->r_ctl.rc_fixed_pacing_rate_rec);
1965         else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
1966                 return (rack->r_ctl.rc_fixed_pacing_rate_ss);
1967         else
1968                 return (rack->r_ctl.rc_fixed_pacing_rate_ca);
1969 }
1970
1971 static uint64_t
1972 rack_get_bw(struct tcp_rack *rack)
1973 {
1974         if (rack->use_fixed_rate) {
1975                 /* Return the fixed pacing rate */
1976                 return (rack_get_fixed_pacing_bw(rack));
1977         }
1978         if (rack->r_ctl.gp_bw == 0) {
1979                 /*
1980                  * We have yet no b/w measurement,
1981                  * if we have a user set initial bw
1982                  * return it. If we don't have that and
1983                  * we have an srtt, use the tcp IW (10) to
1984                  * calculate a fictional b/w over the SRTT
1985                  * which is more or less a guess. Note
1986                  * we don't use our IW from rack on purpose
1987                  * so if we have like IW=30, we are not
1988                  * calculating a "huge" b/w.
1989                  */
1990                 uint64_t bw, srtt;
1991                 if (rack->r_ctl.init_rate)
1992                         return (rack->r_ctl.init_rate);
1993
1994                 /* Has the user set a max peak rate? */
1995 #ifdef NETFLIX_PEAKRATE
1996                 if (rack->rc_tp->t_maxpeakrate)
1997                         return (rack->rc_tp->t_maxpeakrate);
1998 #endif
1999                 /* Ok lets come up with the IW guess, if we have a srtt */
2000                 if (rack->rc_tp->t_srtt == 0) {
2001                         /*
2002                          * Go with old pacing method
2003                          * i.e. burst mitigation only.
2004                          */
2005                         return (0);
2006                 }
2007                 /* Ok lets get the initial TCP win (not racks) */
2008                 bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp));
2009                 srtt = (uint64_t)rack->rc_tp->t_srtt;
2010                 bw *= (uint64_t)USECS_IN_SECOND;
2011                 bw /= srtt;
2012                 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
2013                         bw = rack->r_ctl.bw_rate_cap;
2014                 return (bw);
2015         } else {
2016                 uint64_t bw;
2017
2018                 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
2019                         /* Averaging is done, we can return the value */
2020                         bw = rack->r_ctl.gp_bw;
2021                 } else {
2022                         /* Still doing initial average must calculate */
2023                         bw = rack->r_ctl.gp_bw / rack->r_ctl.num_measurements;
2024                 }
2025 #ifdef NETFLIX_PEAKRATE
2026                 if ((rack->rc_tp->t_maxpeakrate) &&
2027                     (bw > rack->rc_tp->t_maxpeakrate)) {
2028                         /* The user has set a peak rate to pace at
2029                          * don't allow us to pace faster than that.
2030                          */
2031                         return (rack->rc_tp->t_maxpeakrate);
2032                 }
2033 #endif
2034                 if (rack->r_ctl.bw_rate_cap && (bw > rack->r_ctl.bw_rate_cap))
2035                         bw = rack->r_ctl.bw_rate_cap;
2036                 return (bw);
2037         }
2038 }
2039
2040 static uint16_t
2041 rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm)
2042 {
2043         if (rack->use_fixed_rate) {
2044                 return (100);
2045         } else if (rack->in_probe_rtt && (rsm == NULL))
2046                 return (rack->r_ctl.rack_per_of_gp_probertt);
2047         else if ((IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
2048                   rack->r_ctl.rack_per_of_gp_rec)) {
2049                 if (rsm) {
2050                         /* a retransmission always use the recovery rate */
2051                         return (rack->r_ctl.rack_per_of_gp_rec);
2052                 } else if (rack->rack_rec_nonrxt_use_cr) {
2053                         /* Directed to use the configured rate */
2054                         goto configured_rate;
2055                 } else if (rack->rack_no_prr &&
2056                            (rack->r_ctl.rack_per_of_gp_rec > 100)) {
2057                         /* No PRR, lets just use the b/w estimate only */
2058                         return (100);
2059                 } else {
2060                         /*
2061                          * Here we may have a non-retransmit but we
2062                          * have no overrides, so just use the recovery
2063                          * rate (prr is in effect).
2064                          */
2065                         return (rack->r_ctl.rack_per_of_gp_rec);
2066                 }
2067         }
2068 configured_rate:
2069         /* For the configured rate we look at our cwnd vs the ssthresh */
2070         if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh)
2071                 return (rack->r_ctl.rack_per_of_gp_ss);
2072         else
2073                 return (rack->r_ctl.rack_per_of_gp_ca);
2074 }
2075
2076 static void
2077 rack_log_hdwr_pacing(struct tcp_rack *rack,
2078                      uint64_t rate, uint64_t hw_rate, int line,
2079                      int error, uint16_t mod)
2080 {
2081         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2082                 union tcp_log_stackspecific log;
2083                 struct timeval tv;
2084                 const struct ifnet *ifp;
2085
2086                 memset(&log, 0, sizeof(log));
2087                 log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff);
2088                 log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff);
2089                 if (rack->r_ctl.crte) {
2090                         ifp = rack->r_ctl.crte->ptbl->rs_ifp;
2091                 } else if (rack->rc_inp->inp_route.ro_nh &&
2092                            rack->rc_inp->inp_route.ro_nh->nh_ifp) {
2093                         ifp = rack->rc_inp->inp_route.ro_nh->nh_ifp;
2094                 } else
2095                         ifp = NULL;
2096                 if (ifp) {
2097                         log.u_bbr.flex3 = (((uint64_t)ifp  >> 32) & 0x00000000ffffffff);
2098                         log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff);
2099                 }
2100                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2101                 log.u_bbr.bw_inuse = rate;
2102                 log.u_bbr.flex5 = line;
2103                 log.u_bbr.flex6 = error;
2104                 log.u_bbr.flex7 = mod;
2105                 log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs;
2106                 log.u_bbr.flex8 = rack->use_fixed_rate;
2107                 log.u_bbr.flex8 <<= 1;
2108                 log.u_bbr.flex8 |= rack->rack_hdrw_pacing;
2109                 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
2110                 log.u_bbr.delRate = rack->r_ctl.crte_prev_rate;
2111                 if (rack->r_ctl.crte)
2112                         log.u_bbr.cur_del_rate = rack->r_ctl.crte->rate;
2113                 else
2114                         log.u_bbr.cur_del_rate = 0;
2115                 log.u_bbr.rttProp = rack->r_ctl.last_hw_bw_req;
2116                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2117                     &rack->rc_inp->inp_socket->so_rcv,
2118                     &rack->rc_inp->inp_socket->so_snd,
2119                     BBR_LOG_HDWR_PACE, 0,
2120                     0, &log, false, &tv);
2121         }
2122 }
2123
2124 static uint64_t
2125 rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm, int *capped)
2126 {
2127         /*
2128          * We allow rack_per_of_gp_xx to dictate our bw rate we want.
2129          */
2130         uint64_t bw_est, high_rate;
2131         uint64_t gain;
2132
2133         gain = (uint64_t)rack_get_output_gain(rack, rsm);
2134         bw_est = bw * gain;
2135         bw_est /= (uint64_t)100;
2136         /* Never fall below the minimum (def 64kbps) */
2137         if (bw_est < RACK_MIN_BW)
2138                 bw_est = RACK_MIN_BW;
2139         if (rack->r_rack_hw_rate_caps) {
2140                 /* Rate caps are in place */
2141                 if (rack->r_ctl.crte != NULL) {
2142                         /* We have a hdwr rate already */
2143                         high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
2144                         if (bw_est >= high_rate) {
2145                                 /* We are capping bw at the highest rate table entry */
2146                                 rack_log_hdwr_pacing(rack,
2147                                                      bw_est, high_rate, __LINE__,
2148                                                      0, 3);
2149                                 bw_est = high_rate;
2150                                 if (capped)
2151                                         *capped = 1;
2152                         }
2153                 } else if ((rack->rack_hdrw_pacing == 0) &&
2154                            (rack->rack_hdw_pace_ena) &&
2155                            (rack->rack_attempt_hdwr_pace == 0) &&
2156                            (rack->rc_inp->inp_route.ro_nh != NULL) &&
2157                            (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
2158                         /*
2159                          * Special case, we have not yet attempted hardware
2160                          * pacing, and yet we may, when we do, find out if we are
2161                          * above the highest rate. We need to know the maxbw for the interface
2162                          * in question (if it supports ratelimiting). We get back
2163                          * a 0, if the interface is not found in the RL lists.
2164                          */
2165                         high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
2166                         if (high_rate) {
2167                                 /* Yep, we have a rate is it above this rate? */
2168                                 if (bw_est > high_rate) {
2169                                         bw_est = high_rate;
2170                                         if (capped)
2171                                                 *capped = 1;
2172                                 }
2173                         }
2174                 }
2175         }
2176         return (bw_est);
2177 }
2178
2179 static void
2180 rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
2181 {
2182         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2183                 union tcp_log_stackspecific log;
2184                 struct timeval tv;
2185
2186                 if ((mod != 1) && (rack_verbose_logging == 0)) {
2187                         /*
2188                          * We get 3 values currently for mod
2189                          * 1 - We are retransmitting and this tells the reason.
2190                          * 2 - We are clearing a dup-ack count.
2191                          * 3 - We are incrementing a dup-ack count.
2192                          *
2193                          * The clear/increment are only logged
2194                          * if you have BBverbose on.
2195                          */
2196                         return;
2197                 }
2198                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2199                 log.u_bbr.flex1 = tsused;
2200                 log.u_bbr.flex2 = thresh;
2201                 log.u_bbr.flex3 = rsm->r_flags;
2202                 log.u_bbr.flex4 = rsm->r_dupack;
2203                 log.u_bbr.flex5 = rsm->r_start;
2204                 log.u_bbr.flex6 = rsm->r_end;
2205                 log.u_bbr.flex8 = mod;
2206                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2207                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2208                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2209                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2210                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2211                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2212                 log.u_bbr.pacing_gain = rack->r_must_retran;
2213                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2214                     &rack->rc_inp->inp_socket->so_rcv,
2215                     &rack->rc_inp->inp_socket->so_snd,
2216                     BBR_LOG_SETTINGS_CHG, 0,
2217                     0, &log, false, &tv);
2218         }
2219 }
2220
2221 static void
2222 rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
2223 {
2224         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2225                 union tcp_log_stackspecific log;
2226                 struct timeval tv;
2227
2228                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2229                 log.u_bbr.flex1 = rack->rc_tp->t_srtt;
2230                 log.u_bbr.flex2 = to;
2231                 log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
2232                 log.u_bbr.flex4 = slot;
2233                 log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
2234                 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2235                 log.u_bbr.flex7 = rack->rc_in_persist;
2236                 log.u_bbr.flex8 = which;
2237                 if (rack->rack_no_prr)
2238                         log.u_bbr.pkts_out = 0;
2239                 else
2240                         log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
2241                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2242                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2243                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2244                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2245                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2246                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2247                 log.u_bbr.pacing_gain = rack->r_must_retran;
2248                 log.u_bbr.lt_epoch = rack->rc_tp->t_rxtshift;
2249                 log.u_bbr.lost = rack_rto_min;
2250                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2251                     &rack->rc_inp->inp_socket->so_rcv,
2252                     &rack->rc_inp->inp_socket->so_snd,
2253                     BBR_LOG_TIMERSTAR, 0,
2254                     0, &log, false, &tv);
2255         }
2256 }
2257
2258 static void
2259 rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm)
2260 {
2261         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2262                 union tcp_log_stackspecific log;
2263                 struct timeval tv;
2264
2265                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2266                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2267                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2268                 log.u_bbr.flex8 = to_num;
2269                 log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
2270                 log.u_bbr.flex2 = rack->rc_rack_rtt;
2271                 if (rsm == NULL)
2272                         log.u_bbr.flex3 = 0;
2273                 else
2274                         log.u_bbr.flex3 = rsm->r_end - rsm->r_start;
2275                 if (rack->rack_no_prr)
2276                         log.u_bbr.flex5 = 0;
2277                 else
2278                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2279                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2280                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2281                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2282                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2283                 log.u_bbr.pacing_gain = rack->r_must_retran;
2284                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2285                     &rack->rc_inp->inp_socket->so_rcv,
2286                     &rack->rc_inp->inp_socket->so_snd,
2287                     BBR_LOG_RTO, 0,
2288                     0, &log, false, &tv);
2289         }
2290 }
2291
2292 static void
2293 rack_log_map_chg(struct tcpcb *tp, struct tcp_rack *rack,
2294                  struct rack_sendmap *prev,
2295                  struct rack_sendmap *rsm,
2296                  struct rack_sendmap *next,
2297                  int flag, uint32_t th_ack, int line)
2298 {
2299         if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
2300                 union tcp_log_stackspecific log;
2301                 struct timeval tv;
2302
2303                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2304                 log.u_bbr.flex8 = flag;
2305                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2306                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2307                 log.u_bbr.cur_del_rate = (uint64_t)prev;
2308                 log.u_bbr.delRate = (uint64_t)rsm;
2309                 log.u_bbr.rttProp = (uint64_t)next;
2310                 log.u_bbr.flex7 = 0;
2311                 if (prev) {
2312                         log.u_bbr.flex1 = prev->r_start;
2313                         log.u_bbr.flex2 = prev->r_end;
2314                         log.u_bbr.flex7 |= 0x4;
2315                 }
2316                 if (rsm) {
2317                         log.u_bbr.flex3 = rsm->r_start;
2318                         log.u_bbr.flex4 = rsm->r_end;
2319                         log.u_bbr.flex7 |= 0x2;
2320                 }
2321                 if (next) {
2322                         log.u_bbr.flex5 = next->r_start;
2323                         log.u_bbr.flex6 = next->r_end;
2324                         log.u_bbr.flex7 |= 0x1;
2325                 }
2326                 log.u_bbr.applimited = line;
2327                 log.u_bbr.pkts_out = th_ack;
2328                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2329                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2330                 if (rack->rack_no_prr)
2331                         log.u_bbr.lost = 0;
2332                 else
2333                         log.u_bbr.lost = rack->r_ctl.rc_prr_sndcnt;
2334                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2335                     &rack->rc_inp->inp_socket->so_rcv,
2336                     &rack->rc_inp->inp_socket->so_snd,
2337                     TCP_LOG_MAPCHG, 0,
2338                     0, &log, false, &tv);
2339         }
2340 }
2341
2342 static void
2343 rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len,
2344                  struct rack_sendmap *rsm, int conf)
2345 {
2346         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2347                 union tcp_log_stackspecific log;
2348                 struct timeval tv;
2349                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2350                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2351                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2352                 log.u_bbr.flex1 = t;
2353                 log.u_bbr.flex2 = len;
2354                 log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt;
2355                 log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
2356                 log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
2357                 log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2358                 log.u_bbr.flex7 = conf;
2359                 log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot;
2360                 log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
2361                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2362                 log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtrcnt;
2363                 log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags;
2364                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2365                 if (rsm) {
2366                         log.u_bbr.pkt_epoch = rsm->r_start;
2367                         log.u_bbr.lost = rsm->r_end;
2368                         log.u_bbr.cwnd_gain = rsm->r_rtr_cnt;
2369                         log.u_bbr.pacing_gain = rsm->r_flags;
2370                 } else {
2371                         /* Its a SYN */
2372                         log.u_bbr.pkt_epoch = rack->rc_tp->iss;
2373                         log.u_bbr.lost = 0;
2374                         log.u_bbr.cwnd_gain = 0;
2375                         log.u_bbr.pacing_gain = 0;
2376                 }
2377                 /* Write out general bits of interest rrs here */
2378                 log.u_bbr.use_lt_bw = rack->rc_highly_buffered;
2379                 log.u_bbr.use_lt_bw <<= 1;
2380                 log.u_bbr.use_lt_bw |= rack->forced_ack;
2381                 log.u_bbr.use_lt_bw <<= 1;
2382                 log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul;
2383                 log.u_bbr.use_lt_bw <<= 1;
2384                 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
2385                 log.u_bbr.use_lt_bw <<= 1;
2386                 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
2387                 log.u_bbr.use_lt_bw <<= 1;
2388                 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
2389                 log.u_bbr.use_lt_bw <<= 1;
2390                 log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
2391                 log.u_bbr.use_lt_bw <<= 1;
2392                 log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom;
2393                 log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight;
2394                 log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts;
2395                 log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered;
2396                 log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts;
2397                 log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt;
2398                 log.u_bbr.bw_inuse = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
2399                 log.u_bbr.bw_inuse <<= 32;
2400                 if (rsm)
2401                         log.u_bbr.bw_inuse |= ((uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]);
2402                 TCP_LOG_EVENTP(tp, NULL,
2403                     &rack->rc_inp->inp_socket->so_rcv,
2404                     &rack->rc_inp->inp_socket->so_snd,
2405                     BBR_LOG_BBRRTT, 0,
2406                     0, &log, false, &tv);
2407
2408
2409         }
2410 }
2411
2412 static void
2413 rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
2414 {
2415         /*
2416          * Log the rtt sample we are
2417          * applying to the srtt algorithm in
2418          * useconds.
2419          */
2420         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2421                 union tcp_log_stackspecific log;
2422                 struct timeval tv;
2423
2424                 /* Convert our ms to a microsecond */
2425                 memset(&log, 0, sizeof(log));
2426                 log.u_bbr.flex1 = rtt;
2427                 log.u_bbr.flex2 = rack->r_ctl.ack_count;
2428                 log.u_bbr.flex3 = rack->r_ctl.sack_count;
2429                 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2430                 log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
2431                 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2432                 log.u_bbr.flex7 = 1;
2433                 log.u_bbr.flex8 = rack->sack_attack_disable;
2434                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2435                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2436                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2437                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2438                 log.u_bbr.pacing_gain = rack->r_must_retran;
2439                 /*
2440                  * We capture in delRate the upper 32 bits as
2441                  * the confidence level we had declared, and the
2442                  * lower 32 bits as the actual RTT using the arrival
2443                  * timestamp.
2444                  */
2445                 log.u_bbr.delRate = rack->r_ctl.rack_rs.confidence;
2446                 log.u_bbr.delRate <<= 32;
2447                 log.u_bbr.delRate |= rack->r_ctl.rack_rs.rs_us_rtt;
2448                 /* Lets capture all the things that make up t_rtxcur */
2449                 log.u_bbr.applimited = rack_rto_min;
2450                 log.u_bbr.epoch = rack_rto_max;
2451                 log.u_bbr.lt_epoch = rack->r_ctl.timer_slop;
2452                 log.u_bbr.lost = rack_rto_min;
2453                 log.u_bbr.pkt_epoch = TICKS_2_USEC(tcp_rexmit_slop);
2454                 log.u_bbr.rttProp = RACK_REXMTVAL(rack->rc_tp);
2455                 log.u_bbr.bw_inuse = rack->r_ctl.act_rcv_time.tv_sec;
2456                 log.u_bbr.bw_inuse *= HPTS_USEC_IN_SEC;
2457                 log.u_bbr.bw_inuse += rack->r_ctl.act_rcv_time.tv_usec;
2458                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2459                     &rack->rc_inp->inp_socket->so_rcv,
2460                     &rack->rc_inp->inp_socket->so_snd,
2461                     TCP_LOG_RTT, 0,
2462                     0, &log, false, &tv);
2463         }
2464 }
2465
2466 static void
2467 rack_log_rtt_sample_calc(struct tcp_rack *rack, uint32_t rtt, uint32_t send_time, uint32_t ack_time, int where)
2468 {
2469         if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
2470                 union tcp_log_stackspecific log;
2471                 struct timeval tv;
2472
2473                 /* Convert our ms to a microsecond */
2474                 memset(&log, 0, sizeof(log));
2475                 log.u_bbr.flex1 = rtt;
2476                 log.u_bbr.flex2 = send_time;
2477                 log.u_bbr.flex3 = ack_time;
2478                 log.u_bbr.flex4 = where;
2479                 log.u_bbr.flex7 = 2;
2480                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2481                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2482                     &rack->rc_inp->inp_socket->so_rcv,
2483                     &rack->rc_inp->inp_socket->so_snd,
2484                     TCP_LOG_RTT, 0,
2485                     0, &log, false, &tv);
2486         }
2487 }
2488
2489
2490
2491 static inline void
2492 rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick,  int event, int line)
2493 {
2494         if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
2495                 union tcp_log_stackspecific log;
2496                 struct timeval tv;
2497
2498                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2499                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2500                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2501                 log.u_bbr.flex1 = line;
2502                 log.u_bbr.flex2 = tick;
2503                 log.u_bbr.flex3 = tp->t_maxunacktime;
2504                 log.u_bbr.flex4 = tp->t_acktime;
2505                 log.u_bbr.flex8 = event;
2506                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2507                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2508                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2509                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2510                 log.u_bbr.pacing_gain = rack->r_must_retran;
2511                 TCP_LOG_EVENTP(tp, NULL,
2512                     &rack->rc_inp->inp_socket->so_rcv,
2513                     &rack->rc_inp->inp_socket->so_snd,
2514                     BBR_LOG_PROGRESS, 0,
2515                     0, &log, false, &tv);
2516         }
2517 }
2518
2519 static void
2520 rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv)
2521 {
2522         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2523                 union tcp_log_stackspecific log;
2524
2525                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2526                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2527                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2528                 log.u_bbr.flex1 = slot;
2529                 if (rack->rack_no_prr)
2530                         log.u_bbr.flex2 = 0;
2531                 else
2532                         log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
2533                 log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
2534                 log.u_bbr.flex8 = rack->rc_in_persist;
2535                 log.u_bbr.timeStamp = cts;
2536                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2537                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2538                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2539                 log.u_bbr.pacing_gain = rack->r_must_retran;
2540                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2541                     &rack->rc_inp->inp_socket->so_rcv,
2542                     &rack->rc_inp->inp_socket->so_snd,
2543                     BBR_LOG_BBRSND, 0,
2544                     0, &log, false, tv);
2545         }
2546 }
2547
2548 static void
2549 rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out, int nsegs)
2550 {
2551         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2552                 union tcp_log_stackspecific log;
2553                 struct timeval tv;
2554
2555                 memset(&log, 0, sizeof(log));
2556                 log.u_bbr.flex1 = did_out;
2557                 log.u_bbr.flex2 = nxt_pkt;
2558                 log.u_bbr.flex3 = way_out;
2559                 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2560                 if (rack->rack_no_prr)
2561                         log.u_bbr.flex5 = 0;
2562                 else
2563                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2564                 log.u_bbr.flex6 = nsegs;
2565                 log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
2566                 log.u_bbr.flex7 = rack->rc_ack_can_sendout_data;        /* Do we have ack-can-send set */
2567                 log.u_bbr.flex7 <<= 1;
2568                 log.u_bbr.flex7 |= rack->r_fast_output; /* is fast output primed */
2569                 log.u_bbr.flex7 <<= 1;
2570                 log.u_bbr.flex7 |= rack->r_wanted_output;       /* Do we want output */
2571                 log.u_bbr.flex8 = rack->rc_in_persist;
2572                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2573                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2574                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2575                 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2576                 log.u_bbr.use_lt_bw <<= 1;
2577                 log.u_bbr.use_lt_bw |= rack->r_might_revert;
2578                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2579                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2580                 log.u_bbr.pacing_gain = rack->r_must_retran;
2581                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2582                     &rack->rc_inp->inp_socket->so_rcv,
2583                     &rack->rc_inp->inp_socket->so_snd,
2584                     BBR_LOG_DOSEG_DONE, 0,
2585                     0, &log, false, &tv);
2586         }
2587 }
2588
2589 static void
2590 rack_log_type_pacing_sizes(struct tcpcb *tp, struct tcp_rack *rack, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint8_t frm)
2591 {
2592         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
2593                 union tcp_log_stackspecific log;
2594                 struct timeval tv;
2595                 uint32_t cts;
2596
2597                 memset(&log, 0, sizeof(log));
2598                 cts = tcp_get_usecs(&tv);
2599                 log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
2600                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
2601                 log.u_bbr.flex4 = arg1;
2602                 log.u_bbr.flex5 = arg2;
2603                 log.u_bbr.flex6 = arg3;
2604                 log.u_bbr.flex8 = frm;
2605                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2606                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2607                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2608                 log.u_bbr.applimited = rack->r_ctl.rc_sacked;
2609                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2610                 log.u_bbr.pacing_gain = rack->r_must_retran;
2611                 TCP_LOG_EVENTP(tp, NULL,
2612                     &tp->t_inpcb->inp_socket->so_rcv,
2613                     &tp->t_inpcb->inp_socket->so_snd,
2614                     TCP_HDWR_PACE_SIZE, 0,
2615                     0, &log, false, &tv);
2616         }
2617 }
2618
2619 static void
2620 rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot,
2621                           uint8_t hpts_calling, int reason, uint32_t cwnd_to_use)
2622 {
2623         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2624                 union tcp_log_stackspecific log;
2625                 struct timeval tv;
2626
2627                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2628                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2629                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2630                 log.u_bbr.flex1 = slot;
2631                 log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
2632                 log.u_bbr.flex4 = reason;
2633                 if (rack->rack_no_prr)
2634                         log.u_bbr.flex5 = 0;
2635                 else
2636                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2637                 log.u_bbr.flex7 = hpts_calling;
2638                 log.u_bbr.flex8 = rack->rc_in_persist;
2639                 log.u_bbr.lt_epoch = cwnd_to_use;
2640                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2641                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2642                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2643                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2644                 log.u_bbr.pacing_gain = rack->r_must_retran;
2645                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2646                     &rack->rc_inp->inp_socket->so_rcv,
2647                     &rack->rc_inp->inp_socket->so_snd,
2648                     BBR_LOG_JUSTRET, 0,
2649                     tlen, &log, false, &tv);
2650         }
2651 }
2652
2653 static void
2654 rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts,
2655                    struct timeval *tv, uint32_t flags_on_entry)
2656 {
2657         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2658                 union tcp_log_stackspecific log;
2659
2660                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2661                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
2662                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
2663                 log.u_bbr.flex1 = line;
2664                 log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to;
2665                 log.u_bbr.flex3 = flags_on_entry;
2666                 log.u_bbr.flex4 = us_cts;
2667                 if (rack->rack_no_prr)
2668                         log.u_bbr.flex5 = 0;
2669                 else
2670                         log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
2671                 log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
2672                 log.u_bbr.flex7 = hpts_removed;
2673                 log.u_bbr.flex8 = 1;
2674                 log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags;
2675                 log.u_bbr.timeStamp = us_cts;
2676                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2677                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2678                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2679                 log.u_bbr.pacing_gain = rack->r_must_retran;
2680                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2681                     &rack->rc_inp->inp_socket->so_rcv,
2682                     &rack->rc_inp->inp_socket->so_snd,
2683                     BBR_LOG_TIMERCANC, 0,
2684                     0, &log, false, tv);
2685         }
2686 }
2687
2688 static void
2689 rack_log_alt_to_to_cancel(struct tcp_rack *rack,
2690                           uint32_t flex1, uint32_t flex2,
2691                           uint32_t flex3, uint32_t flex4,
2692                           uint32_t flex5, uint32_t flex6,
2693                           uint16_t flex7, uint8_t mod)
2694 {
2695         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2696                 union tcp_log_stackspecific log;
2697                 struct timeval tv;
2698
2699                 if (mod == 1) {
2700                         /* No you can't use 1, its for the real to cancel */
2701                         return;
2702                 }
2703                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2704                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2705                 log.u_bbr.flex1 = flex1;
2706                 log.u_bbr.flex2 = flex2;
2707                 log.u_bbr.flex3 = flex3;
2708                 log.u_bbr.flex4 = flex4;
2709                 log.u_bbr.flex5 = flex5;
2710                 log.u_bbr.flex6 = flex6;
2711                 log.u_bbr.flex7 = flex7;
2712                 log.u_bbr.flex8 = mod;
2713                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2714                     &rack->rc_inp->inp_socket->so_rcv,
2715                     &rack->rc_inp->inp_socket->so_snd,
2716                     BBR_LOG_TIMERCANC, 0,
2717                     0, &log, false, &tv);
2718         }
2719 }
2720
2721 static void
2722 rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
2723 {
2724         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2725                 union tcp_log_stackspecific log;
2726                 struct timeval tv;
2727
2728                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2729                 log.u_bbr.flex1 = timers;
2730                 log.u_bbr.flex2 = ret;
2731                 log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
2732                 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
2733                 log.u_bbr.flex5 = cts;
2734                 if (rack->rack_no_prr)
2735                         log.u_bbr.flex6 = 0;
2736                 else
2737                         log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
2738                 log.u_bbr.pkts_out = rack->r_ctl.rc_out_at_rto;
2739                 log.u_bbr.delivered = rack->r_ctl.rc_snd_max_at_rto;
2740                 log.u_bbr.pacing_gain = rack->r_must_retran;
2741                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2742                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2743                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2744                     &rack->rc_inp->inp_socket->so_rcv,
2745                     &rack->rc_inp->inp_socket->so_snd,
2746                     BBR_LOG_TO_PROCESS, 0,
2747                     0, &log, false, &tv);
2748         }
2749 }
2750
2751 static void
2752 rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd)
2753 {
2754         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2755                 union tcp_log_stackspecific log;
2756                 struct timeval tv;
2757
2758                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2759                 log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
2760                 log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
2761                 if (rack->rack_no_prr)
2762                         log.u_bbr.flex3 = 0;
2763                 else
2764                         log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
2765                 log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
2766                 log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
2767                 log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
2768                 log.u_bbr.flex8 = frm;
2769                 log.u_bbr.pkts_out = orig_cwnd;
2770                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2771                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2772                 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
2773                 log.u_bbr.use_lt_bw <<= 1;
2774                 log.u_bbr.use_lt_bw |= rack->r_might_revert;
2775                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2776                     &rack->rc_inp->inp_socket->so_rcv,
2777                     &rack->rc_inp->inp_socket->so_snd,
2778                     BBR_LOG_BBRUPD, 0,
2779                     0, &log, false, &tv);
2780         }
2781 }
2782
2783 #ifdef NETFLIX_EXP_DETECTION
2784 static void
2785 rack_log_sad(struct tcp_rack *rack, int event)
2786 {
2787         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
2788                 union tcp_log_stackspecific log;
2789                 struct timeval tv;
2790
2791                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
2792                 log.u_bbr.flex1 = rack->r_ctl.sack_count;
2793                 log.u_bbr.flex2 = rack->r_ctl.ack_count;
2794                 log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
2795                 log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
2796                 log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
2797                 log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
2798                 log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
2799                 log.u_bbr.lt_epoch = (tcp_force_detection << 8);
2800                 log.u_bbr.lt_epoch |= rack->do_detection;
2801                 log.u_bbr.applimited = tcp_map_minimum;
2802                 log.u_bbr.flex7 = rack->sack_attack_disable;
2803                 log.u_bbr.flex8 = event;
2804                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
2805                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
2806                 log.u_bbr.delivered = tcp_sad_decay_val;
2807                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
2808                     &rack->rc_inp->inp_socket->so_rcv,
2809                     &rack->rc_inp->inp_socket->so_snd,
2810                     TCP_SAD_DETECTION, 0,
2811                     0, &log, false, &tv);
2812         }
2813 }
2814 #endif
2815
2816 static void
2817 rack_counter_destroy(void)
2818 {
2819         int i;
2820
2821         counter_u64_free(rack_fto_send);
2822         counter_u64_free(rack_fto_rsm_send);
2823         counter_u64_free(rack_nfto_resend);
2824         counter_u64_free(rack_hw_pace_init_fail);
2825         counter_u64_free(rack_hw_pace_lost);
2826         counter_u64_free(rack_non_fto_send);
2827         counter_u64_free(rack_extended_rfo);
2828         counter_u64_free(rack_ack_total);
2829         counter_u64_free(rack_express_sack);
2830         counter_u64_free(rack_sack_total);
2831         counter_u64_free(rack_move_none);
2832         counter_u64_free(rack_move_some);
2833         counter_u64_free(rack_sack_attacks_detected);
2834         counter_u64_free(rack_sack_attacks_reversed);
2835         counter_u64_free(rack_sack_used_next_merge);
2836         counter_u64_free(rack_sack_used_prev_merge);
2837         counter_u64_free(rack_badfr);
2838         counter_u64_free(rack_badfr_bytes);
2839         counter_u64_free(rack_rtm_prr_retran);
2840         counter_u64_free(rack_rtm_prr_newdata);
2841         counter_u64_free(rack_timestamp_mismatch);
2842         counter_u64_free(rack_find_high);
2843         counter_u64_free(rack_reorder_seen);
2844         counter_u64_free(rack_tlp_tot);
2845         counter_u64_free(rack_tlp_newdata);
2846         counter_u64_free(rack_tlp_retran);
2847         counter_u64_free(rack_tlp_retran_bytes);
2848         counter_u64_free(rack_tlp_retran_fail);
2849         counter_u64_free(rack_to_tot);
2850         counter_u64_free(rack_to_arm_rack);
2851         counter_u64_free(rack_to_arm_tlp);
2852         counter_u64_free(rack_calc_zero);
2853         counter_u64_free(rack_calc_nonzero);
2854         counter_u64_free(rack_paced_segments);
2855         counter_u64_free(rack_unpaced_segments);
2856         counter_u64_free(rack_saw_enobuf);
2857         counter_u64_free(rack_saw_enobuf_hw);
2858         counter_u64_free(rack_saw_enetunreach);
2859         counter_u64_free(rack_hot_alloc);
2860         counter_u64_free(rack_to_alloc);
2861         counter_u64_free(rack_to_alloc_hard);
2862         counter_u64_free(rack_to_alloc_emerg);
2863         counter_u64_free(rack_to_alloc_limited);
2864         counter_u64_free(rack_alloc_limited_conns);
2865         counter_u64_free(rack_split_limited);
2866         for (i = 0; i < MAX_NUM_OF_CNTS; i++) {
2867                 counter_u64_free(rack_proc_comp_ack[i]);
2868         }
2869         counter_u64_free(rack_multi_single_eq);
2870         counter_u64_free(rack_proc_non_comp_ack);
2871         counter_u64_free(rack_sack_proc_all);
2872         counter_u64_free(rack_sack_proc_restart);
2873         counter_u64_free(rack_sack_proc_short);
2874         counter_u64_free(rack_enter_tlp_calc);
2875         counter_u64_free(rack_used_tlpmethod);
2876         counter_u64_free(rack_used_tlpmethod2);
2877         counter_u64_free(rack_sack_skipped_acked);
2878         counter_u64_free(rack_sack_splits);
2879         counter_u64_free(rack_progress_drops);
2880         counter_u64_free(rack_input_idle_reduces);
2881         counter_u64_free(rack_collapsed_win);
2882         counter_u64_free(rack_tlp_does_nada);
2883         counter_u64_free(rack_try_scwnd);
2884         counter_u64_free(rack_per_timer_hole);
2885         counter_u64_free(rack_large_ackcmp);
2886         counter_u64_free(rack_small_ackcmp);
2887 #ifdef INVARIANTS
2888         counter_u64_free(rack_adjust_map_bw);
2889 #endif
2890         COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
2891         COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
2892 }
2893
2894 static struct rack_sendmap *
2895 rack_alloc(struct tcp_rack *rack)
2896 {
2897         struct rack_sendmap *rsm;
2898
2899         /*
2900          * First get the top of the list it in
2901          * theory is the "hottest" rsm we have,
2902          * possibly just freed by ack processing.
2903          */
2904         if (rack->rc_free_cnt > rack_free_cache) {
2905                 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2906                 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2907                 counter_u64_add(rack_hot_alloc, 1);
2908                 rack->rc_free_cnt--;
2909                 return (rsm);
2910         }
2911         /*
2912          * Once we get under our free cache we probably
2913          * no longer have a "hot" one available. Lets
2914          * get one from UMA.
2915          */
2916         rsm = uma_zalloc(rack_zone, M_NOWAIT);
2917         if (rsm) {
2918                 rack->r_ctl.rc_num_maps_alloced++;
2919                 counter_u64_add(rack_to_alloc, 1);
2920                 return (rsm);
2921         }
2922         /*
2923          * Dig in to our aux rsm's (the last two) since
2924          * UMA failed to get us one.
2925          */
2926         if (rack->rc_free_cnt) {
2927                 counter_u64_add(rack_to_alloc_emerg, 1);
2928                 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
2929                 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
2930                 rack->rc_free_cnt--;
2931                 return (rsm);
2932         }
2933         return (NULL);
2934 }
2935
2936 static struct rack_sendmap *
2937 rack_alloc_full_limit(struct tcp_rack *rack)
2938 {
2939         if ((V_tcp_map_entries_limit > 0) &&
2940             (rack->do_detection == 0) &&
2941             (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
2942                 counter_u64_add(rack_to_alloc_limited, 1);
2943                 if (!rack->alloc_limit_reported) {
2944                         rack->alloc_limit_reported = 1;
2945                         counter_u64_add(rack_alloc_limited_conns, 1);
2946                 }
2947                 return (NULL);
2948         }
2949         return (rack_alloc(rack));
2950 }
2951
2952 /* wrapper to allocate a sendmap entry, subject to a specific limit */
2953 static struct rack_sendmap *
2954 rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
2955 {
2956         struct rack_sendmap *rsm;
2957
2958         if (limit_type) {
2959                 /* currently there is only one limit type */
2960                 if (V_tcp_map_split_limit > 0 &&
2961                     (rack->do_detection == 0) &&
2962                     rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) {
2963                         counter_u64_add(rack_split_limited, 1);
2964                         if (!rack->alloc_limit_reported) {
2965                                 rack->alloc_limit_reported = 1;
2966                                 counter_u64_add(rack_alloc_limited_conns, 1);
2967                         }
2968                         return (NULL);
2969                 }
2970         }
2971
2972         /* allocate and mark in the limit type, if set */
2973         rsm = rack_alloc(rack);
2974         if (rsm != NULL && limit_type) {
2975                 rsm->r_limit_type = limit_type;
2976                 rack->r_ctl.rc_num_split_allocs++;
2977         }
2978         return (rsm);
2979 }
2980
2981 static void
2982 rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
2983 {
2984         if (rsm->r_flags & RACK_APP_LIMITED) {
2985                 if (rack->r_ctl.rc_app_limited_cnt > 0) {
2986                         rack->r_ctl.rc_app_limited_cnt--;
2987                 }
2988         }
2989         if (rsm->r_limit_type) {
2990                 /* currently there is only one limit type */
2991                 rack->r_ctl.rc_num_split_allocs--;
2992         }
2993         if (rsm == rack->r_ctl.rc_first_appl) {
2994                 if (rack->r_ctl.rc_app_limited_cnt == 0)
2995                         rack->r_ctl.rc_first_appl = NULL;
2996                 else {
2997                         /* Follow the next one out */
2998                         struct rack_sendmap fe;
2999
3000                         fe.r_start = rsm->r_nseq_appl;
3001                         rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
3002                 }
3003         }
3004         if (rsm == rack->r_ctl.rc_resend)
3005                 rack->r_ctl.rc_resend = NULL;
3006         if (rsm == rack->r_ctl.rc_rsm_at_retran)
3007                 rack->r_ctl.rc_rsm_at_retran = NULL;
3008         if (rsm == rack->r_ctl.rc_end_appl)
3009                 rack->r_ctl.rc_end_appl = NULL;
3010         if (rack->r_ctl.rc_tlpsend == rsm)
3011                 rack->r_ctl.rc_tlpsend = NULL;
3012         if (rack->r_ctl.rc_sacklast == rsm)
3013                 rack->r_ctl.rc_sacklast = NULL;
3014         memset(rsm, 0, sizeof(struct rack_sendmap));
3015         TAILQ_INSERT_HEAD(&rack->r_ctl.rc_free, rsm, r_tnext);
3016         rack->rc_free_cnt++;
3017 }
3018
3019 static void
3020 rack_free_trim(struct tcp_rack *rack)
3021 {
3022         struct rack_sendmap *rsm;
3023
3024         /*
3025          * Free up all the tail entries until
3026          * we get our list down to the limit.
3027          */
3028         while (rack->rc_free_cnt > rack_free_cache) {
3029                 rsm = TAILQ_LAST(&rack->r_ctl.rc_free, rack_head);
3030                 TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
3031                 rack->rc_free_cnt--;
3032                 uma_zfree(rack_zone, rsm);
3033         }
3034 }
3035
3036
3037 static uint32_t
3038 rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack)
3039 {
3040         uint64_t srtt, bw, len, tim;
3041         uint32_t segsiz, def_len, minl;
3042
3043         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
3044         def_len = rack_def_data_window * segsiz;
3045         if (rack->rc_gp_filled == 0) {
3046                 /*
3047                  * We have no measurement (IW is in flight?) so
3048                  * we can only guess using our data_window sysctl
3049                  * value (usually 100MSS).
3050                  */
3051                 return (def_len);
3052         }
3053         /*
3054          * Now we have a number of factors to consider.
3055          *
3056          * 1) We have a desired BDP which is usually
3057          *    at least 2.
3058          * 2) We have a minimum number of rtt's usually 1 SRTT
3059          *    but we allow it too to be more.
3060          * 3) We want to make sure a measurement last N useconds (if
3061          *    we have set rack_min_measure_usec.
3062          *
3063          * We handle the first concern here by trying to create a data
3064          * window of max(rack_def_data_window, DesiredBDP). The
3065          * second concern we handle in not letting the measurement
3066          * window end normally until at least the required SRTT's
3067          * have gone by which is done further below in
3068          * rack_enough_for_measurement(). Finally the third concern
3069          * we also handle here by calculating how long that time
3070          * would take at the current BW and then return the
3071          * max of our first calculation and that length. Note
3072          * that if rack_min_measure_usec is 0, we don't deal
3073          * with concern 3. Also for both Concern 1 and 3 an
3074          * application limited period could end the measurement
3075          * earlier.
3076          *
3077          * So lets calculate the BDP with the "known" b/w using
3078          * the SRTT has our rtt and then multiply it by the
3079          * goal.
3080          */
3081         bw = rack_get_bw(rack);
3082         srtt = (uint64_t)tp->t_srtt;
3083         len = bw * srtt;
3084         len /= (uint64_t)HPTS_USEC_IN_SEC;
3085         len *= max(1, rack_goal_bdp);
3086         /* Now we need to round up to the nearest MSS */
3087         len = roundup(len, segsiz);
3088         if (rack_min_measure_usec) {
3089                 /* Now calculate our min length for this b/w */
3090                 tim = rack_min_measure_usec;
3091                 minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC;
3092                 if (minl == 0)
3093                         minl = 1;
3094                 minl = roundup(minl, segsiz);
3095                 if (len < minl)
3096                         len = minl;
3097         }
3098         /*
3099          * Now if we have a very small window we want
3100          * to attempt to get the window that is
3101          * as small as possible. This happens on
3102          * low b/w connections and we don't want to
3103          * span huge numbers of rtt's between measurements.
3104          *
3105          * We basically include 2 over our "MIN window" so
3106          * that the measurement can be shortened (possibly) by
3107          * an ack'ed packet.
3108          */
3109         if (len < def_len)
3110                 return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz)));
3111         else
3112                 return (max((uint32_t)len, def_len));
3113
3114 }
3115
3116 static int
3117 rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack)
3118 {
3119         uint32_t tim, srtts, segsiz;
3120
3121         /*
3122          * Has enough time passed for the GP measurement to be valid?
3123          */
3124         if ((tp->snd_max == tp->snd_una) ||
3125             (th_ack == tp->snd_max)){
3126                 /* All is acked */
3127                 return (1);
3128         }
3129         if (SEQ_LT(th_ack, tp->gput_seq)) {
3130                 /* Not enough bytes yet */
3131                 return (0);
3132         }
3133         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
3134         if (SEQ_LT(th_ack, tp->gput_ack) &&
3135             ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
3136                 /* Not enough bytes yet */
3137                 return (0);
3138         }
3139         if (rack->r_ctl.rc_first_appl &&
3140             (rack->r_ctl.rc_first_appl->r_start == th_ack)) {
3141                 /*
3142                  * We are up to the app limited point
3143                  * we have to measure irrespective of the time..
3144                  */
3145                 return (1);
3146         }
3147         /* Now what about time? */
3148         srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts);
3149         tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts;
3150         if (tim >= srtts) {
3151                 return (1);
3152         }
3153         /* Nope not even a full SRTT has passed */
3154         return (0);
3155 }
3156
3157 static void
3158 rack_log_timely(struct tcp_rack *rack,
3159                 uint32_t logged, uint64_t cur_bw, uint64_t low_bnd,
3160                 uint64_t up_bnd, int line, uint8_t method)
3161 {
3162         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3163                 union tcp_log_stackspecific log;
3164                 struct timeval tv;
3165
3166                 memset(&log, 0, sizeof(log));
3167                 log.u_bbr.flex1 = logged;
3168                 log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt;
3169                 log.u_bbr.flex2 <<= 4;
3170                 log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt;
3171                 log.u_bbr.flex2 <<= 4;
3172                 log.u_bbr.flex2 |= rack->rc_gp_incr;
3173                 log.u_bbr.flex2 <<= 4;
3174                 log.u_bbr.flex2 |= rack->rc_gp_bwred;
3175                 log.u_bbr.flex3 = rack->rc_gp_incr;
3176                 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3177                 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca;
3178                 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec;
3179                 log.u_bbr.flex7 = rack->rc_gp_bwred;
3180                 log.u_bbr.flex8 = method;
3181                 log.u_bbr.cur_del_rate = cur_bw;
3182                 log.u_bbr.delRate = low_bnd;
3183                 log.u_bbr.bw_inuse = up_bnd;
3184                 log.u_bbr.rttProp = rack_get_bw(rack);
3185                 log.u_bbr.pkt_epoch = line;
3186                 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3187                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3188                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3189                 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3190                 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3191                 log.u_bbr.cwnd_gain = rack->rc_dragged_bottom;
3192                 log.u_bbr.cwnd_gain <<= 1;
3193                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec;
3194                 log.u_bbr.cwnd_gain <<= 1;
3195                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
3196                 log.u_bbr.cwnd_gain <<= 1;
3197                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
3198                 log.u_bbr.lost = rack->r_ctl.rc_loss_count;
3199                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
3200                     &rack->rc_inp->inp_socket->so_rcv,
3201                     &rack->rc_inp->inp_socket->so_snd,
3202                     TCP_TIMELY_WORK, 0,
3203                     0, &log, false, &tv);
3204         }
3205 }
3206
3207 static int
3208 rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult)
3209 {
3210         /*
3211          * Before we increase we need to know if
3212          * the estimate just made was less than
3213          * our pacing goal (i.e. (cur_bw * mult) > last_bw_est)
3214          *
3215          * If we already are pacing at a fast enough
3216          * rate to push us faster there is no sense of
3217          * increasing.
3218          *
3219          * We first caculate our actual pacing rate (ss or ca multipler
3220          * times our cur_bw).
3221          *
3222          * Then we take the last measured rate and multipy by our
3223          * maximum pacing overage to give us a max allowable rate.
3224          *
3225          * If our act_rate is smaller than our max_allowable rate
3226          * then we should increase. Else we should hold steady.
3227          *
3228          */
3229         uint64_t act_rate, max_allow_rate;
3230
3231         if (rack_timely_no_stopping)
3232                 return (1);
3233
3234         if ((cur_bw == 0) || (last_bw_est == 0)) {
3235                 /*
3236                  * Initial startup case or
3237                  * everything is acked case.
3238                  */
3239                 rack_log_timely(rack,  mult, cur_bw, 0, 0,
3240                                 __LINE__, 9);
3241                 return (1);
3242         }
3243         if (mult <= 100) {
3244                 /*
3245                  * We can always pace at or slightly above our rate.
3246                  */
3247                 rack_log_timely(rack,  mult, cur_bw, 0, 0,
3248                                 __LINE__, 9);
3249                 return (1);
3250         }
3251         act_rate = cur_bw * (uint64_t)mult;
3252         act_rate /= 100;
3253         max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100);
3254         max_allow_rate /= 100;
3255         if (act_rate < max_allow_rate) {
3256                 /*
3257                  * Here the rate we are actually pacing at
3258                  * is smaller than 10% above our last measurement.
3259                  * This means we are pacing below what we would
3260                  * like to try to achieve (plus some wiggle room).
3261                  */
3262                 rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
3263                                 __LINE__, 9);
3264                 return (1);
3265         } else {
3266                 /*
3267                  * Here we are already pacing at least rack_max_per_above(10%)
3268                  * what we are getting back. This indicates most likely
3269                  * that we are being limited (cwnd/rwnd/app) and can't
3270                  * get any more b/w. There is no sense of trying to
3271                  * raise up the pacing rate its not speeding us up
3272                  * and we already are pacing faster than we are getting.
3273                  */
3274                 rack_log_timely(rack,  mult, cur_bw, act_rate, max_allow_rate,
3275                                 __LINE__, 8);
3276                 return (0);
3277         }
3278 }
3279
3280 static void
3281 rack_validate_multipliers_at_or_above100(struct tcp_rack *rack)
3282 {
3283         /*
3284          * When we drag bottom, we want to assure
3285          * that no multiplier is below 1.0, if so
3286          * we want to restore it to at least that.
3287          */
3288         if (rack->r_ctl.rack_per_of_gp_rec  < 100) {
3289                 /* This is unlikely we usually do not touch recovery */
3290                 rack->r_ctl.rack_per_of_gp_rec = 100;
3291         }
3292         if (rack->r_ctl.rack_per_of_gp_ca < 100) {
3293                 rack->r_ctl.rack_per_of_gp_ca = 100;
3294         }
3295         if (rack->r_ctl.rack_per_of_gp_ss < 100) {
3296                 rack->r_ctl.rack_per_of_gp_ss = 100;
3297         }
3298 }
3299
3300 static void
3301 rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack)
3302 {
3303         if (rack->r_ctl.rack_per_of_gp_ca > 100) {
3304                 rack->r_ctl.rack_per_of_gp_ca = 100;
3305         }
3306         if (rack->r_ctl.rack_per_of_gp_ss > 100) {
3307                 rack->r_ctl.rack_per_of_gp_ss = 100;
3308         }
3309 }
3310
3311 static void
3312 rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override)
3313 {
3314         int32_t  calc, logged, plus;
3315
3316         logged = 0;
3317
3318         if (override) {
3319                 /*
3320                  * override is passed when we are
3321                  * loosing b/w and making one last
3322                  * gasp at trying to not loose out
3323                  * to a new-reno flow.
3324                  */
3325                 goto extra_boost;
3326         }
3327         /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */
3328         if (rack->rc_gp_incr &&
3329             ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) {
3330                 /*
3331                  * Reset and get 5 strokes more before the boost. Note
3332                  * that the count is 0 based so we have to add one.
3333                  */
3334 extra_boost:
3335                 plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST;
3336                 rack->rc_gp_timely_inc_cnt = 0;
3337         } else
3338                 plus = (uint32_t)rack_gp_increase_per;
3339         /* Must be at least 1% increase for true timely increases */
3340         if ((plus < 1) &&
3341             ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0)))
3342                 plus = 1;
3343         if (rack->rc_gp_saw_rec &&
3344             (rack->rc_gp_no_rec_chg == 0) &&
3345             rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3346                                   rack->r_ctl.rack_per_of_gp_rec)) {
3347                 /* We have been in recovery ding it too */
3348                 calc = rack->r_ctl.rack_per_of_gp_rec + plus;
3349                 if (calc > 0xffff)
3350                         calc = 0xffff;
3351                 logged |= 1;
3352                 rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc;
3353                 if (rack_per_upper_bound_ss &&
3354                     (rack->rc_dragged_bottom == 0) &&
3355                     (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss))
3356                         rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss;
3357         }
3358         if (rack->rc_gp_saw_ca &&
3359             (rack->rc_gp_saw_ss == 0) &&
3360             rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3361                                   rack->r_ctl.rack_per_of_gp_ca)) {
3362                 /* In CA */
3363                 calc = rack->r_ctl.rack_per_of_gp_ca + plus;
3364                 if (calc > 0xffff)
3365                         calc = 0xffff;
3366                 logged |= 2;
3367                 rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc;
3368                 if (rack_per_upper_bound_ca &&
3369                     (rack->rc_dragged_bottom == 0) &&
3370                     (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca))
3371                         rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca;
3372         }
3373         if (rack->rc_gp_saw_ss &&
3374             rack_bw_can_be_raised(rack, cur_bw, last_bw_est,
3375                                   rack->r_ctl.rack_per_of_gp_ss)) {
3376                 /* In SS */
3377                 calc = rack->r_ctl.rack_per_of_gp_ss + plus;
3378                 if (calc > 0xffff)
3379                         calc = 0xffff;
3380                 rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc;
3381                 if (rack_per_upper_bound_ss &&
3382                     (rack->rc_dragged_bottom == 0) &&
3383                     (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss))
3384                         rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss;
3385                 logged |= 4;
3386         }
3387         if (logged &&
3388             (rack->rc_gp_incr == 0)){
3389                 /* Go into increment mode */
3390                 rack->rc_gp_incr = 1;
3391                 rack->rc_gp_timely_inc_cnt = 0;
3392         }
3393         if (rack->rc_gp_incr &&
3394             logged &&
3395             (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) {
3396                 rack->rc_gp_timely_inc_cnt++;
3397         }
3398         rack_log_timely(rack,  logged, plus, 0, 0,
3399                         __LINE__, 1);
3400 }
3401
3402 static uint32_t
3403 rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff)
3404 {
3405         /*
3406          * norm_grad = rtt_diff / minrtt;
3407          * new_per = curper * (1 - B * norm_grad)
3408          *
3409          * B = rack_gp_decrease_per (default 10%)
3410          * rtt_dif = input var current rtt-diff
3411          * curper = input var current percentage
3412          * minrtt = from rack filter
3413          *
3414          */
3415         uint64_t perf;
3416
3417         perf = (((uint64_t)curper * ((uint64_t)1000000 -
3418                     ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 *
3419                      (((uint64_t)rtt_diff * (uint64_t)1000000)/
3420                       (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/
3421                      (uint64_t)1000000)) /
3422                 (uint64_t)1000000);
3423         if (perf > curper) {
3424                 /* TSNH */
3425                 perf = curper - 1;
3426         }
3427         return ((uint32_t)perf);
3428 }
3429
3430 static uint32_t
3431 rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt)
3432 {
3433         /*
3434          *                                   highrttthresh
3435          * result = curper * (1 - (B * ( 1 -  ------          ))
3436          *                                     gp_srtt
3437          *
3438          * B = rack_gp_decrease_per (default 10%)
3439          * highrttthresh = filter_min * rack_gp_rtt_maxmul
3440          */
3441         uint64_t perf;
3442         uint32_t highrttthresh;
3443
3444         highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
3445
3446         perf = (((uint64_t)curper * ((uint64_t)1000000 -
3447                                      ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 -
3448                                         ((uint64_t)highrttthresh * (uint64_t)1000000) /
3449                                                     (uint64_t)rtt)) / 100)) /(uint64_t)1000000);
3450         return (perf);
3451 }
3452
3453 static void
3454 rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff)
3455 {
3456         uint64_t logvar, logvar2, logvar3;
3457         uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val;
3458
3459         if (rack->rc_gp_incr) {
3460                 /* Turn off increment counting */
3461                 rack->rc_gp_incr = 0;
3462                 rack->rc_gp_timely_inc_cnt = 0;
3463         }
3464         ss_red = ca_red = rec_red = 0;
3465         logged = 0;
3466         /* Calculate the reduction value */
3467         if (rtt_diff < 0) {
3468                 rtt_diff *= -1;
3469         }
3470         /* Must be at least 1% reduction */
3471         if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) {
3472                 /* We have been in recovery ding it too */
3473                 if (timely_says == 2) {
3474                         new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt);
3475                         alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3476                         if (alt < new_per)
3477                                 val = alt;
3478                         else
3479                                 val = new_per;
3480                 } else
3481                          val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3482                 if (rack->r_ctl.rack_per_of_gp_rec > val) {
3483                         rec_red = (rack->r_ctl.rack_per_of_gp_rec - val);
3484                         rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val;
3485                 } else {
3486                         rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3487                         rec_red = 0;
3488                 }
3489                 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec)
3490                         rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound;
3491                 logged |= 1;
3492         }
3493         if (rack->rc_gp_saw_ss) {
3494                 /* Sent in SS */
3495                 if (timely_says == 2) {
3496                         new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt);
3497                         alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3498                         if (alt < new_per)
3499                                 val = alt;
3500                         else
3501                                 val = new_per;
3502                 } else
3503                         val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff);
3504                 if (rack->r_ctl.rack_per_of_gp_ss > new_per) {
3505                         ss_red = rack->r_ctl.rack_per_of_gp_ss - val;
3506                         rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val;
3507                 } else {
3508                         ss_red = new_per;
3509                         rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3510                         logvar = new_per;
3511                         logvar <<= 32;
3512                         logvar |= alt;
3513                         logvar2 = (uint32_t)rtt;
3514                         logvar2 <<= 32;
3515                         logvar2 |= (uint32_t)rtt_diff;
3516                         logvar3 = rack_gp_rtt_maxmul;
3517                         logvar3 <<= 32;
3518                         logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3519                         rack_log_timely(rack, timely_says,
3520                                         logvar2, logvar3,
3521                                         logvar, __LINE__, 10);
3522                 }
3523                 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss)
3524                         rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound;
3525                 logged |= 4;
3526         } else if (rack->rc_gp_saw_ca) {
3527                 /* Sent in CA */
3528                 if (timely_says == 2) {
3529                         new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt);
3530                         alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff);
3531                         if (alt < new_per)
3532                                 val = alt;
3533                         else
3534                                 val = new_per;
3535                 } else
3536                         val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff);
3537                 if (rack->r_ctl.rack_per_of_gp_ca > val) {
3538                         ca_red = rack->r_ctl.rack_per_of_gp_ca - val;
3539                         rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val;
3540                 } else {
3541                         rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3542                         ca_red = 0;
3543                         logvar = new_per;
3544                         logvar <<= 32;
3545                         logvar |= alt;
3546                         logvar2 = (uint32_t)rtt;
3547                         logvar2 <<= 32;
3548                         logvar2 |= (uint32_t)rtt_diff;
3549                         logvar3 = rack_gp_rtt_maxmul;
3550                         logvar3 <<= 32;
3551                         logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3552                         rack_log_timely(rack, timely_says,
3553                                         logvar2, logvar3,
3554                                         logvar, __LINE__, 10);
3555                 }
3556                 if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca)
3557                         rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound;
3558                 logged |= 2;
3559         }
3560         if (rack->rc_gp_timely_dec_cnt < 0x7) {
3561                 rack->rc_gp_timely_dec_cnt++;
3562                 if (rack_timely_dec_clear &&
3563                     (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear))
3564                         rack->rc_gp_timely_dec_cnt = 0;
3565         }
3566         logvar = ss_red;
3567         logvar <<= 32;
3568         logvar |= ca_red;
3569         rack_log_timely(rack,  logged, rec_red, rack_per_lower_bound, logvar,
3570                         __LINE__, 2);
3571 }
3572
3573 static void
3574 rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts,
3575                      uint32_t rtt, uint32_t line, uint8_t reas)
3576 {
3577         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
3578                 union tcp_log_stackspecific log;
3579                 struct timeval tv;
3580
3581                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
3582                 log.u_bbr.flex1 = line;
3583                 log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts;
3584                 log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts;
3585                 log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss;
3586                 log.u_bbr.flex5 = rtt;
3587                 log.u_bbr.flex6 = rack->rc_highly_buffered;
3588                 log.u_bbr.flex6 <<= 1;
3589                 log.u_bbr.flex6 |= rack->forced_ack;
3590                 log.u_bbr.flex6 <<= 1;
3591                 log.u_bbr.flex6 |= rack->rc_gp_dyn_mul;
3592                 log.u_bbr.flex6 <<= 1;
3593                 log.u_bbr.flex6 |= rack->in_probe_rtt;
3594                 log.u_bbr.flex6 <<= 1;
3595                 log.u_bbr.flex6 |= rack->measure_saw_probe_rtt;
3596                 log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt;
3597                 log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca;
3598                 log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec;
3599                 log.u_bbr.flex8 = reas;
3600                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
3601                 log.u_bbr.delRate = rack_get_bw(rack);
3602                 log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt;
3603                 log.u_bbr.cur_del_rate <<= 32;
3604                 log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt;
3605                 log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered;
3606                 log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff;
3607                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
3608                 log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt;
3609                 log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt;
3610                 log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts;
3611                 log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight;
3612                 log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3613                 log.u_bbr.rttProp = us_cts;
3614                 log.u_bbr.rttProp <<= 32;
3615                 log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt;
3616                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
3617                     &rack->rc_inp->inp_socket->so_rcv,
3618                     &rack->rc_inp->inp_socket->so_snd,
3619                     BBR_LOG_RTT_SHRINKS, 0,
3620                     0, &log, false, &rack->r_ctl.act_rcv_time);
3621         }
3622 }
3623
3624 static void
3625 rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt)
3626 {
3627         uint64_t bwdp;
3628
3629         bwdp = rack_get_bw(rack);
3630         bwdp *= (uint64_t)rtt;
3631         bwdp /= (uint64_t)HPTS_USEC_IN_SEC;
3632         rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz);
3633         if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) {
3634                 /*
3635                  * A window protocol must be able to have 4 packets
3636                  * outstanding as the floor in order to function
3637                  * (especially considering delayed ack :D).
3638                  */
3639                 rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs);
3640         }
3641 }
3642
3643 static void
3644 rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts)
3645 {
3646         /**
3647          * ProbeRTT is a bit different in rack_pacing than in
3648          * BBR. It is like BBR in that it uses the lowering of
3649          * the RTT as a signal that we saw something new and
3650          * counts from there for how long between. But it is
3651          * different in that its quite simple. It does not
3652          * play with the cwnd and wait until we get down
3653          * to N segments outstanding and hold that for
3654          * 200ms. Instead it just sets the pacing reduction
3655          * rate to a set percentage (70 by default) and hold
3656          * that for a number of recent GP Srtt's.
3657          */
3658         uint32_t segsiz;
3659
3660         if (rack->rc_gp_dyn_mul == 0)
3661                 return;
3662
3663         if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) {
3664                 /* We are idle */
3665                 return;
3666         }
3667         if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3668             SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3669                 /*
3670                  * Stop the goodput now, the idea here is
3671                  * that future measurements with in_probe_rtt
3672                  * won't register if they are not greater so
3673                  * we want to get what info (if any) is available
3674                  * now.
3675                  */
3676                 rack_do_goodput_measurement(rack->rc_tp, rack,
3677                                             rack->rc_tp->snd_una, __LINE__);
3678         }
3679         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3680         rack->r_ctl.rc_time_probertt_entered = us_cts;
3681         segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3682                      rack->r_ctl.rc_pace_min_segs);
3683         rack->in_probe_rtt = 1;
3684         rack->measure_saw_probe_rtt = 1;
3685         rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3686         rack->r_ctl.rc_time_probertt_starts = 0;
3687         rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt;
3688         if (rack_probertt_use_min_rtt_entry)
3689                 rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3690         else
3691                 rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt);
3692         rack_log_rtt_shrinks(rack,  us_cts,  get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3693                              __LINE__, RACK_RTTS_ENTERPROBE);
3694 }
3695
3696 static void
3697 rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts)
3698 {
3699         struct rack_sendmap *rsm;
3700         uint32_t segsiz;
3701
3702         segsiz = min(ctf_fixed_maxseg(rack->rc_tp),
3703                      rack->r_ctl.rc_pace_min_segs);
3704         rack->in_probe_rtt = 0;
3705         if ((rack->rc_tp->t_flags & TF_GPUTINPROG) &&
3706             SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) {
3707                 /*
3708                  * Stop the goodput now, the idea here is
3709                  * that future measurements with in_probe_rtt
3710                  * won't register if they are not greater so
3711                  * we want to get what info (if any) is available
3712                  * now.
3713                  */
3714                 rack_do_goodput_measurement(rack->rc_tp, rack,
3715                                             rack->rc_tp->snd_una, __LINE__);
3716         } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
3717                 /*
3718                  * We don't have enough data to make a measurement.
3719                  * So lets just stop and start here after exiting
3720                  * probe-rtt. We probably are not interested in
3721                  * the results anyway.
3722                  */
3723                 rack->rc_tp->t_flags &= ~TF_GPUTINPROG;
3724         }
3725         /*
3726          * Measurements through the current snd_max are going
3727          * to be limited by the slower pacing rate.
3728          *
3729          * We need to mark these as app-limited so we
3730          * don't collapse the b/w.
3731          */
3732         rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
3733         if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
3734                 if (rack->r_ctl.rc_app_limited_cnt == 0)
3735                         rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
3736                 else {
3737                         /*
3738                          * Go out to the end app limited and mark
3739                          * this new one as next and move the end_appl up
3740                          * to this guy.
3741                          */
3742                         if (rack->r_ctl.rc_end_appl)
3743                                 rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
3744                         rack->r_ctl.rc_end_appl = rsm;
3745                 }
3746                 rsm->r_flags |= RACK_APP_LIMITED;
3747                 rack->r_ctl.rc_app_limited_cnt++;
3748         }
3749         /*
3750          * Now, we need to examine our pacing rate multipliers.
3751          * If its under 100%, we need to kick it back up to
3752          * 100%. We also don't let it be over our "max" above
3753          * the actual rate i.e. 100% + rack_clamp_atexit_prtt.
3754          * Note setting clamp_atexit_prtt to 0 has the effect
3755          * of setting CA/SS to 100% always at exit (which is
3756          * the default behavior).
3757          */
3758         if (rack_probertt_clear_is) {
3759                 rack->rc_gp_incr = 0;
3760                 rack->rc_gp_bwred = 0;
3761                 rack->rc_gp_timely_inc_cnt = 0;
3762                 rack->rc_gp_timely_dec_cnt = 0;
3763         }
3764         /* Do we do any clamping at exit? */
3765         if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) {
3766                 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp;
3767                 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp;
3768         }
3769         if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) {
3770                 rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt;
3771                 rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt;
3772         }
3773         /*
3774          * Lets set rtt_diff to 0, so that we will get a "boost"
3775          * after exiting.
3776          */
3777         rack->r_ctl.rc_rtt_diff = 0;
3778
3779         /* Clear all flags so we start fresh */
3780         rack->rc_tp->t_bytes_acked = 0;
3781         rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND;
3782         /*
3783          * If configured to, set the cwnd and ssthresh to
3784          * our targets.
3785          */
3786         if (rack_probe_rtt_sets_cwnd) {
3787                 uint64_t ebdp;
3788                 uint32_t setto;
3789
3790                 /* Set ssthresh so we get into CA once we hit our target */
3791                 if (rack_probertt_use_min_rtt_exit == 1) {
3792                         /* Set to min rtt */
3793                         rack_set_prtt_target(rack, segsiz,
3794                                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt));
3795                 } else if (rack_probertt_use_min_rtt_exit == 2) {
3796                         /* Set to current gp rtt */
3797                         rack_set_prtt_target(rack, segsiz,
3798                                              rack->r_ctl.rc_gp_srtt);
3799                 } else if (rack_probertt_use_min_rtt_exit == 3) {
3800                         /* Set to entry gp rtt */
3801                         rack_set_prtt_target(rack, segsiz,
3802                                              rack->r_ctl.rc_entry_gp_rtt);
3803                 } else {
3804                         uint64_t sum;
3805                         uint32_t setval;
3806
3807                         sum = rack->r_ctl.rc_entry_gp_rtt;
3808                         sum *= 10;
3809                         sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt));
3810                         if (sum >= 20) {
3811                                 /*
3812                                  * A highly buffered path needs
3813                                  * cwnd space for timely to work.
3814                                  * Lets set things up as if
3815                                  * we are heading back here again.
3816                                  */
3817                                 setval = rack->r_ctl.rc_entry_gp_rtt;
3818                         } else if (sum >= 15) {
3819                                 /*
3820                                  * Lets take the smaller of the
3821                                  * two since we are just somewhat
3822                                  * buffered.
3823                                  */
3824                                 setval = rack->r_ctl.rc_gp_srtt;
3825                                 if (setval > rack->r_ctl.rc_entry_gp_rtt)
3826                                         setval = rack->r_ctl.rc_entry_gp_rtt;
3827                         } else {
3828                                 /*
3829                                  * Here we are not highly buffered
3830                                  * and should pick the min we can to
3831                                  * keep from causing loss.
3832                                  */
3833                                 setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
3834                         }
3835                         rack_set_prtt_target(rack, segsiz,
3836                                              setval);
3837                 }
3838                 if (rack_probe_rtt_sets_cwnd > 1) {
3839                         /* There is a percentage here to boost */
3840                         ebdp = rack->r_ctl.rc_target_probertt_flight;
3841                         ebdp *= rack_probe_rtt_sets_cwnd;
3842                         ebdp /= 100;
3843                         setto = rack->r_ctl.rc_target_probertt_flight + ebdp;
3844                 } else
3845                         setto = rack->r_ctl.rc_target_probertt_flight;
3846                 rack->rc_tp->snd_cwnd = roundup(setto, segsiz);
3847                 if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) {
3848                         /* Enforce a min */
3849                         rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs;
3850                 }
3851                 /* If we set in the cwnd also set the ssthresh point so we are in CA */
3852                 rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1);
3853         }
3854         rack_log_rtt_shrinks(rack,  us_cts,
3855                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3856                              __LINE__, RACK_RTTS_EXITPROBE);
3857         /* Clear times last so log has all the info */
3858         rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max;
3859         rack->r_ctl.rc_time_probertt_entered = us_cts;
3860         rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
3861         rack->r_ctl.rc_time_of_last_probertt = us_cts;
3862 }
3863
3864 static void
3865 rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts)
3866 {
3867         /* Check in on probe-rtt */
3868         if (rack->rc_gp_filled == 0) {
3869                 /* We do not do p-rtt unless we have gp measurements */
3870                 return;
3871         }
3872         if (rack->in_probe_rtt) {
3873                 uint64_t no_overflow;
3874                 uint32_t endtime, must_stay;
3875
3876                 if (rack->r_ctl.rc_went_idle_time &&
3877                     ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) {
3878                         /*
3879                          * We went idle during prtt, just exit now.
3880                          */
3881                         rack_exit_probertt(rack, us_cts);
3882                 } else if (rack_probe_rtt_safety_val &&
3883                     TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) &&
3884                     ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) {
3885                         /*
3886                          * Probe RTT safety value triggered!
3887                          */
3888                         rack_log_rtt_shrinks(rack,  us_cts,
3889                                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3890                                              __LINE__, RACK_RTTS_SAFETY);
3891                         rack_exit_probertt(rack, us_cts);
3892                 }
3893                 /* Calculate the max we will wait */
3894                 endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait);
3895                 if (rack->rc_highly_buffered)
3896                         endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp);
3897                 /* Calculate the min we must wait */
3898                 must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain);
3899                 if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) &&
3900                     TSTMP_LT(us_cts, endtime)) {
3901                         uint32_t calc;
3902                         /* Do we lower more? */
3903 no_exit:
3904                         if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered))
3905                                 calc = us_cts - rack->r_ctl.rc_time_probertt_entered;
3906                         else
3907                                 calc = 0;
3908                         calc /= max(rack->r_ctl.rc_gp_srtt, 1);
3909                         if (calc) {
3910                                 /* Maybe */
3911                                 calc *= rack_per_of_gp_probertt_reduce;
3912                                 rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc;
3913                                 /* Limit it too */
3914                                 if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh)
3915                                         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh;
3916                         }
3917                         /* We must reach target or the time set */
3918                         return;
3919                 }
3920                 if (rack->r_ctl.rc_time_probertt_starts == 0) {
3921                         if ((TSTMP_LT(us_cts, must_stay) &&
3922                              rack->rc_highly_buffered) ||
3923                              (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) >
3924                               rack->r_ctl.rc_target_probertt_flight)) {
3925                                 /* We are not past the must_stay time */
3926                                 goto no_exit;
3927                         }
3928                         rack_log_rtt_shrinks(rack,  us_cts,
3929                                              get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
3930                                              __LINE__, RACK_RTTS_REACHTARGET);
3931                         rack->r_ctl.rc_time_probertt_starts = us_cts;
3932                         if (rack->r_ctl.rc_time_probertt_starts == 0)
3933                                 rack->r_ctl.rc_time_probertt_starts = 1;
3934                         /* Restore back to our rate we want to pace at in prtt */
3935                         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
3936                 }
3937                 /*
3938                  * Setup our end time, some number of gp_srtts plus 200ms.
3939                  */
3940                 no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt *
3941                                (uint64_t)rack_probertt_gpsrtt_cnt_mul);
3942                 if (rack_probertt_gpsrtt_cnt_div)
3943                         endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div);
3944                 else
3945                         endtime = 0;
3946                 endtime += rack_min_probertt_hold;
3947                 endtime += rack->r_ctl.rc_time_probertt_starts;
3948                 if (TSTMP_GEQ(us_cts,  endtime)) {
3949                         /* yes, exit probertt */
3950                         rack_exit_probertt(rack, us_cts);
3951                 }
3952
3953         } else if ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) {
3954                 /* Go into probertt, its been too long since we went lower */
3955                 rack_enter_probertt(rack, us_cts);
3956         }
3957 }
3958
3959 static void
3960 rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est,
3961                        uint32_t rtt, int32_t rtt_diff)
3962 {
3963         uint64_t cur_bw, up_bnd, low_bnd, subfr;
3964         uint32_t losses;
3965
3966         if ((rack->rc_gp_dyn_mul == 0) ||
3967             (rack->use_fixed_rate) ||
3968             (rack->in_probe_rtt) ||
3969             (rack->rc_always_pace == 0)) {
3970                 /* No dynamic GP multipler in play */
3971                 return;
3972         }
3973         losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start;
3974         cur_bw = rack_get_bw(rack);
3975         /* Calculate our up and down range */
3976         up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up;
3977         up_bnd /= 100;
3978         up_bnd += rack->r_ctl.last_gp_comp_bw;
3979
3980         subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down;
3981         subfr /= 100;
3982         low_bnd = rack->r_ctl.last_gp_comp_bw - subfr;
3983         if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) {
3984                 /*
3985                  * This is the case where our RTT is above
3986                  * the max target and we have been configured
3987                  * to just do timely no bonus up stuff in that case.
3988                  *
3989                  * There are two configurations, set to 1, and we
3990                  * just do timely if we are over our max. If its
3991                  * set above 1 then we slam the multipliers down
3992                  * to 100 and then decrement per timely.
3993                  */
3994                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
3995                                 __LINE__, 3);
3996                 if (rack->r_ctl.rc_no_push_at_mrtt > 1)
3997                         rack_validate_multipliers_at_or_below_100(rack);
3998                 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
3999         } else if ((last_bw_est < low_bnd) && !losses) {
4000                 /*
4001                  * We are decreasing this is a bit complicated this
4002                  * means we are loosing ground. This could be
4003                  * because another flow entered and we are competing
4004                  * for b/w with it. This will push the RTT up which
4005                  * makes timely unusable unless we want to get shoved
4006                  * into a corner and just be backed off (the age
4007                  * old problem with delay based CC).
4008                  *
4009                  * On the other hand if it was a route change we
4010                  * would like to stay somewhat contained and not
4011                  * blow out the buffers.
4012                  */
4013                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
4014                                 __LINE__, 3);
4015                 rack->r_ctl.last_gp_comp_bw = cur_bw;
4016                 if (rack->rc_gp_bwred == 0) {
4017                         /* Go into reduction counting */
4018                         rack->rc_gp_bwred = 1;
4019                         rack->rc_gp_timely_dec_cnt = 0;
4020                 }
4021                 if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) ||
4022                     (timely_says == 0)) {
4023                         /*
4024                          * Push another time with a faster pacing
4025                          * to try to gain back (we include override to
4026                          * get a full raise factor).
4027                          */
4028                         if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) ||
4029                             (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) ||
4030                             (timely_says == 0) ||
4031                             (rack_down_raise_thresh == 0)) {
4032                                 /*
4033                                  * Do an override up in b/w if we were
4034                                  * below the threshold or if the threshold
4035                                  * is zero we always do the raise.
4036                                  */
4037                                 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1);
4038                         } else {
4039                                 /* Log it stays the same */
4040                                 rack_log_timely(rack,  0, last_bw_est, low_bnd, 0,
4041                                                 __LINE__, 11);
4042                         }
4043                         rack->rc_gp_timely_dec_cnt++;
4044                         /* We are not incrementing really no-count */
4045                         rack->rc_gp_incr = 0;
4046                         rack->rc_gp_timely_inc_cnt = 0;
4047                 } else {
4048                         /*
4049                          * Lets just use the RTT
4050                          * information and give up
4051                          * pushing.
4052                          */
4053                         goto use_timely;
4054                 }
4055         } else if ((timely_says != 2) &&
4056                     !losses &&
4057                     (last_bw_est > up_bnd)) {
4058                 /*
4059                  * We are increasing b/w lets keep going, updating
4060                  * our b/w and ignoring any timely input, unless
4061                  * of course we are at our max raise (if there is one).
4062                  */
4063
4064                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
4065                                 __LINE__, 3);
4066                 rack->r_ctl.last_gp_comp_bw = cur_bw;
4067                 if (rack->rc_gp_saw_ss &&
4068                     rack_per_upper_bound_ss &&
4069                      (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) {
4070                             /*
4071                              * In cases where we can't go higher
4072                              * we should just use timely.
4073                              */
4074                             goto use_timely;
4075                 }
4076                 if (rack->rc_gp_saw_ca &&
4077                     rack_per_upper_bound_ca &&
4078                     (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) {
4079                             /*
4080                              * In cases where we can't go higher
4081                              * we should just use timely.
4082                              */
4083                             goto use_timely;
4084                 }
4085                 rack->rc_gp_bwred = 0;
4086                 rack->rc_gp_timely_dec_cnt = 0;
4087                 /* You get a set number of pushes if timely is trying to reduce */
4088                 if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) {
4089                         rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
4090                 } else {
4091                         /* Log it stays the same */
4092                         rack_log_timely(rack,  0, last_bw_est, up_bnd, 0,
4093                             __LINE__, 12);
4094                 }
4095                 return;
4096         } else {
4097                 /*
4098                  * We are staying between the lower and upper range bounds
4099                  * so use timely to decide.
4100                  */
4101                 rack_log_timely(rack,  timely_says, cur_bw, low_bnd, up_bnd,
4102                                 __LINE__, 3);
4103 use_timely:
4104                 if (timely_says) {
4105                         rack->rc_gp_incr = 0;
4106                         rack->rc_gp_timely_inc_cnt = 0;
4107                         if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) &&
4108                             !losses &&
4109                             (last_bw_est < low_bnd)) {
4110                                 /* We are loosing ground */
4111                                 rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
4112                                 rack->rc_gp_timely_dec_cnt++;
4113                                 /* We are not incrementing really no-count */
4114                                 rack->rc_gp_incr = 0;
4115                                 rack->rc_gp_timely_inc_cnt = 0;
4116                         } else
4117                                 rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff);
4118                 } else {
4119                         rack->rc_gp_bwred = 0;
4120                         rack->rc_gp_timely_dec_cnt = 0;
4121                         rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0);
4122                 }
4123         }
4124 }
4125
4126 static int32_t
4127 rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt)
4128 {
4129         int32_t timely_says;
4130         uint64_t log_mult, log_rtt_a_diff;
4131
4132         log_rtt_a_diff = rtt;
4133         log_rtt_a_diff <<= 32;
4134         log_rtt_a_diff |= (uint32_t)rtt_diff;
4135         if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) *
4136                     rack_gp_rtt_maxmul)) {
4137                 /* Reduce the b/w multipler */
4138                 timely_says = 2;
4139                 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul;
4140                 log_mult <<= 32;
4141                 log_mult |= prev_rtt;
4142                 rack_log_timely(rack,  timely_says, log_mult,
4143                                 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
4144                                 log_rtt_a_diff, __LINE__, 4);
4145         } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
4146                            ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
4147                             max(rack_gp_rtt_mindiv , 1)))) {
4148                 /* Increase the b/w multipler */
4149                 log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) +
4150                         ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) /
4151                          max(rack_gp_rtt_mindiv , 1));
4152                 log_mult <<= 32;
4153                 log_mult |= prev_rtt;
4154                 timely_says = 0;
4155                 rack_log_timely(rack,  timely_says, log_mult ,
4156                                 get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt),
4157                                 log_rtt_a_diff, __LINE__, 5);
4158         } else {
4159                 /*
4160                  * Use a gradient to find it the timely gradient
4161                  * is:
4162                  * grad = rc_rtt_diff / min_rtt;
4163                  *
4164                  * anything below or equal to 0 will be
4165                  * a increase indication. Anything above
4166                  * zero is a decrease. Note we take care
4167                  * of the actual gradient calculation
4168                  * in the reduction (its not needed for
4169                  * increase).
4170                  */
4171                 log_mult = prev_rtt;
4172                 if (rtt_diff <= 0) {
4173                         /*
4174                          * Rttdiff is less than zero, increase the
4175                          * b/w multipler (its 0 or negative)
4176                          */
4177                         timely_says = 0;
4178                         rack_log_timely(rack,  timely_says, log_mult,
4179                                         get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6);
4180                 } else {
4181                         /* Reduce the b/w multipler */
4182                         timely_says = 1;
4183                         rack_log_timely(rack,  timely_says, log_mult,
4184                                         get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7);
4185                 }
4186         }
4187         return (timely_says);
4188 }
4189
4190 static void
4191 rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack,
4192                             tcp_seq th_ack, int line)
4193 {
4194         uint64_t tim, bytes_ps, ltim, stim, utim;
4195         uint32_t segsiz, bytes, reqbytes, us_cts;
4196         int32_t gput, new_rtt_diff, timely_says;
4197         uint64_t  resid_bw, subpart = 0, addpart = 0, srtt;
4198         int did_add = 0;
4199
4200         us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4201         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
4202         if (TSTMP_GEQ(us_cts, tp->gput_ts))
4203                 tim = us_cts - tp->gput_ts;
4204         else
4205                 tim = 0;
4206
4207         if (rack->r_ctl.rc_gp_cumack_ts > rack->r_ctl.rc_gp_output_ts)
4208                 stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts;
4209         else
4210                 stim = 0;
4211         /*
4212          * Use the larger of the send time or ack time. This prevents us
4213          * from being influenced by ack artifacts to come up with too
4214          * high of measurement. Note that since we are spanning over many more
4215          * bytes in most of our measurements hopefully that is less likely to
4216          * occur.
4217          */
4218         if (tim > stim)
4219                 utim = max(tim, 1);
4220         else
4221                 utim = max(stim, 1);
4222         /* Lets get a msec time ltim too for the old stuff */
4223         ltim = max(1, (utim / HPTS_USEC_IN_MSEC));
4224         gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim;
4225         reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz));
4226         if ((tim == 0) && (stim == 0)) {
4227                 /*
4228                  * Invalid measurement time, maybe
4229                  * all on one ack/one send?
4230                  */
4231                 bytes = 0;
4232                 bytes_ps = 0;
4233                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4234                                            0, 0, 0, 10, __LINE__, NULL);
4235                 goto skip_measurement;
4236         }
4237         if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) {
4238                 /* We never made a us_rtt measurement? */
4239                 bytes = 0;
4240                 bytes_ps = 0;
4241                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4242                                            0, 0, 0, 10, __LINE__, NULL);
4243                 goto skip_measurement;
4244         }
4245         /*
4246          * Calculate the maximum possible b/w this connection
4247          * could have. We base our calculation on the lowest
4248          * rtt we have seen during the measurement and the
4249          * largest rwnd the client has given us in that time. This
4250          * forms a BDP that is the maximum that we could ever
4251          * get to the client. Anything larger is not valid.
4252          *
4253          * I originally had code here that rejected measurements
4254          * where the time was less than 1/2 the latest us_rtt.
4255          * But after thinking on that I realized its wrong since
4256          * say you had a 150Mbps or even 1Gbps link, and you
4257          * were a long way away.. example I am in Europe (100ms rtt)
4258          * talking to my 1Gbps link in S.C. Now measuring say 150,000
4259          * bytes my time would be 1.2ms, and yet my rtt would say
4260          * the measurement was invalid the time was < 50ms. The
4261          * same thing is true for 150Mb (8ms of time).
4262          *
4263          * A better way I realized is to look at what the maximum
4264          * the connection could possibly do. This is gated on
4265          * the lowest RTT we have seen and the highest rwnd.
4266          * We should in theory never exceed that, if we are
4267          * then something on the path is storing up packets
4268          * and then feeding them all at once to our endpoint
4269          * messing up our measurement.
4270          */
4271         rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd;
4272         rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC;
4273         rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt;
4274         if (SEQ_LT(th_ack, tp->gput_seq)) {
4275                 /* No measurement can be made */
4276                 bytes = 0;
4277                 bytes_ps = 0;
4278                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4279                                            0, 0, 0, 10, __LINE__, NULL);
4280                 goto skip_measurement;
4281         } else
4282                 bytes = (th_ack - tp->gput_seq);
4283         bytes_ps = (uint64_t)bytes;
4284         /*
4285          * Don't measure a b/w for pacing unless we have gotten at least
4286          * an initial windows worth of data in this measurement interval.
4287          *
4288          * Small numbers of bytes get badly influenced by delayed ack and
4289          * other artifacts. Note we take the initial window or our
4290          * defined minimum GP (defaulting to 10 which hopefully is the
4291          * IW).
4292          */
4293         if (rack->rc_gp_filled == 0) {
4294                 /*
4295                  * The initial estimate is special. We
4296                  * have blasted out an IW worth of packets
4297                  * without a real valid ack ts results. We
4298                  * then setup the app_limited_needs_set flag,
4299                  * this should get the first ack in (probably 2
4300                  * MSS worth) to be recorded as the timestamp.
4301                  * We thus allow a smaller number of bytes i.e.
4302                  * IW - 2MSS.
4303                  */
4304                 reqbytes -= (2 * segsiz);
4305                 /* Also lets fill previous for our first measurement to be neutral */
4306                 rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4307         }
4308         if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) {
4309                 rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4310                                            rack->r_ctl.rc_app_limited_cnt,
4311                                            0, 0, 10, __LINE__, NULL);
4312                 goto skip_measurement;
4313         }
4314         /*
4315          * We now need to calculate the Timely like status so
4316          * we can update (possibly) the b/w multipliers.
4317          */
4318         new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt;
4319         if (rack->rc_gp_filled == 0) {
4320                 /* No previous reading */
4321                 rack->r_ctl.rc_rtt_diff = new_rtt_diff;
4322         } else {
4323                 if (rack->measure_saw_probe_rtt == 0) {
4324                         /*
4325                          * We don't want a probertt to be counted
4326                          * since it will be negative incorrectly. We
4327                          * expect to be reducing the RTT when we
4328                          * pace at a slower rate.
4329                          */
4330                         rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8);
4331                         rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8);
4332                 }
4333         }
4334         timely_says = rack_make_timely_judgement(rack,
4335                 rack->r_ctl.rc_gp_srtt,
4336                 rack->r_ctl.rc_rtt_diff,
4337                 rack->r_ctl.rc_prev_gp_srtt
4338                 );
4339         bytes_ps *= HPTS_USEC_IN_SEC;
4340         bytes_ps /= utim;
4341         if (bytes_ps > rack->r_ctl.last_max_bw) {
4342                 /*
4343                  * Something is on path playing
4344                  * since this b/w is not possible based
4345                  * on our BDP (highest rwnd and lowest rtt
4346                  * we saw in the measurement window).
4347                  *
4348                  * Another option here would be to
4349                  * instead skip the measurement.
4350                  */
4351                 rack_log_pacing_delay_calc(rack, bytes, reqbytes,
4352                                            bytes_ps, rack->r_ctl.last_max_bw, 0,
4353                                            11, __LINE__, NULL);
4354                 bytes_ps = rack->r_ctl.last_max_bw;
4355         }
4356         /* We store gp for b/w in bytes per second */
4357         if (rack->rc_gp_filled == 0) {
4358                 /* Initial measurment */
4359                 if (bytes_ps) {
4360                         rack->r_ctl.gp_bw = bytes_ps;
4361                         rack->rc_gp_filled = 1;
4362                         rack->r_ctl.num_measurements = 1;
4363                         rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
4364                 } else {
4365                         rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes,
4366                                                    rack->r_ctl.rc_app_limited_cnt,
4367                                                    0, 0, 10, __LINE__, NULL);
4368                 }
4369                 if (rack->rc_inp->inp_in_hpts &&
4370                     (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
4371                         /*
4372                          * Ok we can't trust the pacer in this case
4373                          * where we transition from un-paced to paced.
4374                          * Or for that matter when the burst mitigation
4375                          * was making a wild guess and got it wrong.
4376                          * Stop the pacer and clear up all the aggregate
4377                          * delays etc.
4378                          */
4379                         tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
4380                         rack->r_ctl.rc_hpts_flags = 0;
4381                         rack->r_ctl.rc_last_output_to = 0;
4382                 }
4383                 did_add = 2;
4384         } else if (rack->r_ctl.num_measurements < RACK_REQ_AVG) {
4385                 /* Still a small number run an average */
4386                 rack->r_ctl.gp_bw += bytes_ps;
4387                 addpart = rack->r_ctl.num_measurements;
4388                 rack->r_ctl.num_measurements++;
4389                 if (rack->r_ctl.num_measurements >= RACK_REQ_AVG) {
4390                         /* We have collected enought to move forward */
4391                         rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_measurements;
4392                 }
4393                 did_add = 3;
4394         } else {
4395                 /*
4396                  * We want to take 1/wma of the goodput and add in to 7/8th
4397                  * of the old value weighted by the srtt. So if your measurement
4398                  * period is say 2 SRTT's long you would get 1/4 as the
4399                  * value, if it was like 1/2 SRTT then you would get 1/16th.
4400                  *
4401                  * But we must be careful not to take too much i.e. if the
4402                  * srtt is say 20ms and the measurement is taken over
4403                  * 400ms our weight would be 400/20 i.e. 20. On the
4404                  * other hand if we get a measurement over 1ms with a
4405                  * 10ms rtt we only want to take a much smaller portion.
4406                  */
4407                 if (rack->r_ctl.num_measurements < 0xff) {
4408                         rack->r_ctl.num_measurements++;
4409                 }
4410                 srtt = (uint64_t)tp->t_srtt;
4411                 if (srtt == 0) {
4412                         /*
4413                          * Strange why did t_srtt go back to zero?
4414                          */
4415                         if (rack->r_ctl.rc_rack_min_rtt)
4416                                 srtt = rack->r_ctl.rc_rack_min_rtt;
4417                         else
4418                                 srtt = HPTS_USEC_IN_MSEC;
4419                 }
4420                 /*
4421                  * XXXrrs: Note for reviewers, in playing with
4422                  * dynamic pacing I discovered this GP calculation
4423                  * as done originally leads to some undesired results.
4424                  * Basically you can get longer measurements contributing
4425                  * too much to the WMA. Thus I changed it if you are doing
4426                  * dynamic adjustments to only do the aportioned adjustment
4427                  * if we have a very small (time wise) measurement. Longer
4428                  * measurements just get there weight (defaulting to 1/8)
4429                  * add to the WMA. We may want to think about changing
4430                  * this to always do that for both sides i.e. dynamic
4431                  * and non-dynamic... but considering lots of folks
4432                  * were playing with this I did not want to change the
4433                  * calculation per.se. without your thoughts.. Lawerence?
4434                  * Peter??
4435                  */
4436                 if (rack->rc_gp_dyn_mul == 0) {
4437                         subpart = rack->r_ctl.gp_bw * utim;
4438                         subpart /= (srtt * 8);
4439                         if (subpart < (rack->r_ctl.gp_bw / 2)) {
4440                                 /*
4441                                  * The b/w update takes no more
4442                                  * away then 1/2 our running total
4443                                  * so factor it in.
4444                                  */
4445                                 addpart = bytes_ps * utim;
4446                                 addpart /= (srtt * 8);
4447                         } else {
4448                                 /*
4449                                  * Don't allow a single measurement
4450                                  * to account for more than 1/2 of the
4451                                  * WMA. This could happen on a retransmission
4452                                  * where utim becomes huge compared to
4453                                  * srtt (multiple retransmissions when using
4454                                  * the sending rate which factors in all the
4455                                  * transmissions from the first one).
4456                                  */
4457                                 subpart = rack->r_ctl.gp_bw / 2;
4458                                 addpart = bytes_ps / 2;
4459                         }
4460                         resid_bw = rack->r_ctl.gp_bw - subpart;
4461                         rack->r_ctl.gp_bw = resid_bw + addpart;
4462                         did_add = 1;
4463                 } else {
4464                         if ((utim / srtt) <= 1) {
4465                                 /*
4466                                  * The b/w update was over a small period
4467                                  * of time. The idea here is to prevent a small
4468                                  * measurement time period from counting
4469                                  * too much. So we scale it based on the
4470                                  * time so it attributes less than 1/rack_wma_divisor
4471                                  * of its measurement.
4472                                  */
4473                                 subpart = rack->r_ctl.gp_bw * utim;
4474                                 subpart /= (srtt * rack_wma_divisor);
4475                                 addpart = bytes_ps * utim;
4476                                 addpart /= (srtt * rack_wma_divisor);
4477                         } else {
4478                                 /*
4479                                  * The scaled measurement was long
4480                                  * enough so lets just add in the
4481                                  * portion of the measurment i.e. 1/rack_wma_divisor
4482                                  */
4483                                 subpart = rack->r_ctl.gp_bw / rack_wma_divisor;
4484                                 addpart = bytes_ps / rack_wma_divisor;
4485                         }
4486                         if ((rack->measure_saw_probe_rtt == 0) ||
4487                             (bytes_ps > rack->r_ctl.gp_bw)) {
4488                                 /*
4489                                  * For probe-rtt we only add it in
4490                                  * if its larger, all others we just
4491                                  * add in.
4492                                  */
4493                                 did_add = 1;
4494                                 resid_bw = rack->r_ctl.gp_bw - subpart;
4495                                 rack->r_ctl.gp_bw = resid_bw + addpart;
4496                         }
4497                 }
4498         }
4499         if ((rack->gp_ready == 0) &&
4500             (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
4501                 /* We have enough measurements now */
4502                 rack->gp_ready = 1;
4503                 rack_set_cc_pacing(rack);
4504                 if (rack->defer_options)
4505                         rack_apply_deferred_options(rack);
4506         }
4507         rack_log_pacing_delay_calc(rack, subpart, addpart, bytes_ps, stim,
4508                                    rack_get_bw(rack), 22, did_add, NULL);
4509         /* We do not update any multipliers if we are in or have seen a probe-rtt */
4510         if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set)
4511                 rack_update_multiplier(rack, timely_says, bytes_ps,
4512                                        rack->r_ctl.rc_gp_srtt,
4513                                        rack->r_ctl.rc_rtt_diff);
4514         rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim,
4515                                    rack_get_bw(rack), 3, line, NULL);
4516         /* reset the gp srtt and setup the new prev */
4517         rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt;
4518         /* Record the lost count for the next measurement */
4519         rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count;
4520         /*
4521          * We restart our diffs based on the gpsrtt in the
4522          * measurement window.
4523          */
4524         rack->rc_gp_rtt_set = 0;
4525         rack->rc_gp_saw_rec = 0;
4526         rack->rc_gp_saw_ca = 0;
4527         rack->rc_gp_saw_ss = 0;
4528         rack->rc_dragged_bottom = 0;
4529 skip_measurement:
4530
4531 #ifdef STATS
4532         stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
4533                                  gput);
4534         /*
4535          * XXXLAS: This is a temporary hack, and should be
4536          * chained off VOI_TCP_GPUT when stats(9) grows an
4537          * API to deal with chained VOIs.
4538          */
4539         if (tp->t_stats_gput_prev > 0)
4540                 stats_voi_update_abs_s32(tp->t_stats,
4541                                          VOI_TCP_GPUT_ND,
4542                                          ((gput - tp->t_stats_gput_prev) * 100) /
4543                                          tp->t_stats_gput_prev);
4544 #endif
4545         tp->t_flags &= ~TF_GPUTINPROG;
4546         tp->t_stats_gput_prev = gput;
4547         /*
4548          * Now are we app limited now and there is space from where we
4549          * were to where we want to go?
4550          *
4551          * We don't do the other case i.e. non-applimited here since
4552          * the next send will trigger us picking up the missing data.
4553          */
4554         if (rack->r_ctl.rc_first_appl &&
4555             TCPS_HAVEESTABLISHED(tp->t_state) &&
4556             rack->r_ctl.rc_app_limited_cnt &&
4557             (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) &&
4558             ((rack->r_ctl.rc_first_appl->r_start - th_ack) >
4559              max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) {
4560                 /*
4561                  * Yep there is enough outstanding to make a measurement here.
4562                  */
4563                 struct rack_sendmap *rsm, fe;
4564
4565                 tp->t_flags |= TF_GPUTINPROG;
4566                 rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
4567                 rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
4568                 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
4569                 rack->app_limited_needs_set = 0;
4570                 tp->gput_seq = th_ack;
4571                 if (rack->in_probe_rtt)
4572                         rack->measure_saw_probe_rtt = 1;
4573                 else if ((rack->measure_saw_probe_rtt) &&
4574                          (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
4575                         rack->measure_saw_probe_rtt = 0;
4576                 if ((rack->r_ctl.rc_first_appl->r_start - th_ack) >= rack_get_measure_window(tp, rack)) {
4577                         /* There is a full window to gain info from */
4578                         tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
4579                 } else {
4580                         /* We can only measure up to the applimited point */
4581                         tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_start - th_ack);
4582                 }
4583                 /*
4584                  * Now we need to find the timestamp of the send at tp->gput_seq
4585                  * for the send based measurement.
4586                  */
4587                 fe.r_start = tp->gput_seq;
4588                 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
4589                 if (rsm) {
4590                         /* Ok send-based limit is set */
4591                         if (SEQ_LT(rsm->r_start, tp->gput_seq)) {
4592                                 /*
4593                                  * Move back to include the earlier part
4594                                  * so our ack time lines up right (this may
4595                                  * make an overlapping measurement but thats
4596                                  * ok).
4597                                  */
4598                                 tp->gput_seq = rsm->r_start;
4599                         }
4600                         if (rsm->r_flags & RACK_ACKED)
4601                                 tp->gput_ts = (uint32_t)rsm->r_ack_arrival;
4602                         else
4603                                 rack->app_limited_needs_set = 1;
4604                         rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
4605                 } else {
4606                         /*
4607                          * If we don't find the rsm due to some
4608                          * send-limit set the current time, which
4609                          * basically disables the send-limit.
4610                          */
4611                         struct timeval tv;
4612
4613                         microuptime(&tv);
4614                         rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
4615                 }
4616                 rack_log_pacing_delay_calc(rack,
4617                                            tp->gput_seq,
4618                                            tp->gput_ack,
4619                                            (uint64_t)rsm,
4620                                            tp->gput_ts,
4621                                            rack->r_ctl.rc_app_limited_cnt,
4622                                            9,
4623                                            __LINE__, NULL);
4624         }
4625 }
4626
4627 /*
4628  * CC wrapper hook functions
4629  */
4630 static void
4631 rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, uint32_t th_ack, uint16_t nsegs,
4632     uint16_t type, int32_t recovery)
4633 {
4634         uint32_t prior_cwnd, acked;
4635         struct tcp_log_buffer *lgb = NULL;
4636         uint8_t labc_to_use;
4637
4638         INP_WLOCK_ASSERT(tp->t_inpcb);
4639         tp->ccv->nsegs = nsegs;
4640         acked = tp->ccv->bytes_this_ack = (th_ack - tp->snd_una);
4641         if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
4642                 uint32_t max;
4643
4644                 max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
4645                 if (tp->ccv->bytes_this_ack > max) {
4646                         tp->ccv->bytes_this_ack = max;
4647                 }
4648         }
4649 #ifdef STATS
4650         stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
4651             ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd);
4652 #endif
4653         if ((tp->t_flags & TF_GPUTINPROG) &&
4654             rack_enough_for_measurement(tp, rack, th_ack)) {
4655                 /* Measure the Goodput */
4656                 rack_do_goodput_measurement(tp, rack, th_ack, __LINE__);
4657 #ifdef NETFLIX_PEAKRATE
4658                 if ((type == CC_ACK) &&
4659                     (tp->t_maxpeakrate)) {
4660                         /*
4661                          * We update t_peakrate_thr. This gives us roughly
4662                          * one update per round trip time. Note
4663                          * it will only be used if pace_always is off i.e
4664                          * we don't do this for paced flows.
4665                          */
4666                         rack_update_peakrate_thr(tp);
4667                 }
4668 #endif
4669         }
4670         /* Which way our we limited, if not cwnd limited no advance in CA */
4671         if (tp->snd_cwnd <= tp->snd_wnd)
4672                 tp->ccv->flags |= CCF_CWND_LIMITED;
4673         else
4674                 tp->ccv->flags &= ~CCF_CWND_LIMITED;
4675         if (tp->snd_cwnd > tp->snd_ssthresh) {
4676                 tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
4677                          nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
4678                 /* For the setting of a window past use the actual scwnd we are using */
4679                 if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) {
4680                         tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use;
4681                         tp->ccv->flags |= CCF_ABC_SENTAWND;
4682                 }
4683         } else {
4684                 tp->ccv->flags &= ~CCF_ABC_SENTAWND;
4685                 tp->t_bytes_acked = 0;
4686         }
4687         prior_cwnd = tp->snd_cwnd;
4688         if ((recovery == 0) || (rack_max_abc_post_recovery == 0) || rack->r_use_labc_for_rec ||
4689             (rack_client_low_buf && (rack->client_bufferlvl < rack_client_low_buf)))
4690                 labc_to_use = rack->rc_labc;
4691         else
4692                 labc_to_use = rack_max_abc_post_recovery;
4693         if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
4694                 union tcp_log_stackspecific log;
4695                 struct timeval tv;
4696
4697                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4698                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4699                 log.u_bbr.flex1 = th_ack;
4700                 log.u_bbr.flex2 = tp->ccv->flags;
4701                 log.u_bbr.flex3 = tp->ccv->bytes_this_ack;
4702                 log.u_bbr.flex4 = tp->ccv->nsegs;
4703                 log.u_bbr.flex5 = labc_to_use;
4704                 log.u_bbr.flex6 = prior_cwnd;
4705                 log.u_bbr.flex7 = V_tcp_do_newsack;
4706                 log.u_bbr.flex8 = 1;
4707                 lgb = tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4708                                      0, &log, false, NULL, NULL, 0, &tv);
4709         }
4710         if (CC_ALGO(tp)->ack_received != NULL) {
4711                 /* XXXLAS: Find a way to live without this */
4712                 tp->ccv->curack = th_ack;
4713                 tp->ccv->labc = labc_to_use;
4714                 tp->ccv->flags |= CCF_USE_LOCAL_ABC;
4715                 CC_ALGO(tp)->ack_received(tp->ccv, type);
4716         }
4717         if (lgb) {
4718                 lgb->tlb_stackinfo.u_bbr.flex6 = tp->snd_cwnd;
4719         }
4720         if (rack->r_must_retran) {
4721                 if (SEQ_GEQ(th_ack, rack->r_ctl.rc_snd_max_at_rto)) {
4722                         /*
4723                          * We now are beyond the rxt point so lets disable
4724                          * the flag.
4725                          */
4726                         rack->r_ctl.rc_out_at_rto = 0;
4727                         rack->r_must_retran = 0;
4728                 } else if ((prior_cwnd + ctf_fixed_maxseg(tp)) <= tp->snd_cwnd) {
4729                         /*
4730                          * Only decrement the rc_out_at_rto if the cwnd advances
4731                          * at least a whole segment. Otherwise next time the peer
4732                          * acks, we won't be able to send this generaly happens
4733                          * when we are in Congestion Avoidance.
4734                          */
4735                         if (acked <= rack->r_ctl.rc_out_at_rto){
4736                                 rack->r_ctl.rc_out_at_rto -= acked;
4737                         } else {
4738                                 rack->r_ctl.rc_out_at_rto = 0;
4739                         }
4740                 }
4741         }
4742 #ifdef STATS
4743         stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use);
4744 #endif
4745         if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) {
4746                 rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use;
4747         }
4748 #ifdef NETFLIX_PEAKRATE
4749         /* we enforce max peak rate if it is set and we are not pacing */
4750         if ((rack->rc_always_pace == 0) &&
4751             tp->t_peakrate_thr &&
4752             (tp->snd_cwnd > tp->t_peakrate_thr)) {
4753                 tp->snd_cwnd = tp->t_peakrate_thr;
4754         }
4755 #endif
4756 }
4757
4758 static void
4759 tcp_rack_partialack(struct tcpcb *tp)
4760 {
4761         struct tcp_rack *rack;
4762
4763         rack = (struct tcp_rack *)tp->t_fb_ptr;
4764         INP_WLOCK_ASSERT(tp->t_inpcb);
4765         /*
4766          * If we are doing PRR and have enough
4767          * room to send <or> we are pacing and prr
4768          * is disabled we will want to see if we
4769          * can send data (by setting r_wanted_output to
4770          * true).
4771          */
4772         if ((rack->r_ctl.rc_prr_sndcnt > 0) ||
4773             rack->rack_no_prr)
4774                 rack->r_wanted_output = 1;
4775 }
4776
4777 static void
4778 rack_post_recovery(struct tcpcb *tp, uint32_t th_ack)
4779 {
4780         struct tcp_rack *rack;
4781         uint32_t orig_cwnd;
4782
4783         orig_cwnd = tp->snd_cwnd;
4784         INP_WLOCK_ASSERT(tp->t_inpcb);
4785         rack = (struct tcp_rack *)tp->t_fb_ptr;
4786         /* only alert CC if we alerted when we entered */
4787         if (CC_ALGO(tp)->post_recovery != NULL) {
4788                 tp->ccv->curack = th_ack;
4789                 CC_ALGO(tp)->post_recovery(tp->ccv);
4790                 if (tp->snd_cwnd < tp->snd_ssthresh) {
4791                         /*
4792                          * Rack has burst control and pacing
4793                          * so lets not set this any lower than
4794                          * snd_ssthresh per RFC-6582 (option 2).
4795                          */
4796                         tp->snd_cwnd = tp->snd_ssthresh;
4797                 }
4798         }
4799         if (rack_verbose_logging && (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF)) {
4800                 union tcp_log_stackspecific log;
4801                 struct timeval tv;
4802
4803                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
4804                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
4805                 log.u_bbr.flex1 = th_ack;
4806                 log.u_bbr.flex2 = tp->ccv->flags;
4807                 log.u_bbr.flex3 = tp->ccv->bytes_this_ack;
4808                 log.u_bbr.flex4 = tp->ccv->nsegs;
4809                 log.u_bbr.flex5 = V_tcp_abc_l_var;
4810                 log.u_bbr.flex6 = orig_cwnd;
4811                 log.u_bbr.flex7 = V_tcp_do_newsack;
4812                 log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
4813                 log.u_bbr.flex8 = 2;
4814                 tcp_log_event_(tp, NULL, NULL, NULL, BBR_LOG_CWND, 0,
4815                                0, &log, false, NULL, NULL, 0, &tv);
4816         }
4817         if ((rack->rack_no_prr == 0) &&
4818             (rack->no_prr_addback == 0) &&
4819             (rack->r_ctl.rc_prr_sndcnt > 0)) {
4820                 /*
4821                  * Suck the next prr cnt back into cwnd, but
4822                  * only do that if we are not application limited.
4823                  */
4824                 if (ctf_outstanding(tp) <= sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
4825                         /*
4826                          * We are allowed to add back to the cwnd the amount we did
4827                          * not get out if:
4828                          * a) no_prr_addback is off.
4829                          * b) we are not app limited
4830                          * c) we are doing prr
4831                          * <and>
4832                          * d) it is bounded by rack_prr_addbackmax (if addback is 0, then none).
4833                          */
4834                         tp->snd_cwnd += min((ctf_fixed_maxseg(tp) * rack_prr_addbackmax),
4835                                             rack->r_ctl.rc_prr_sndcnt);
4836                 }
4837                 rack->r_ctl.rc_prr_sndcnt = 0;
4838                 rack_log_to_prr(rack, 1, 0);
4839         }
4840         rack_log_to_prr(rack, 14, orig_cwnd);
4841         tp->snd_recover = tp->snd_una;
4842         EXIT_RECOVERY(tp->t_flags);
4843 }
4844
4845 static void
4846 rack_cong_signal(struct tcpcb *tp, uint32_t type, uint32_t ack)
4847 {
4848         struct tcp_rack *rack;
4849         uint32_t ssthresh_enter, cwnd_enter, in_rec_at_entry, orig_cwnd;
4850
4851         INP_WLOCK_ASSERT(tp->t_inpcb);
4852 #ifdef STATS
4853         stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
4854 #endif
4855         if (IN_RECOVERY(tp->t_flags) == 0) {
4856                 in_rec_at_entry = 0;
4857                 ssthresh_enter = tp->snd_ssthresh;
4858                 cwnd_enter = tp->snd_cwnd;
4859         } else
4860                 in_rec_at_entry = 1;
4861         rack = (struct tcp_rack *)tp->t_fb_ptr;
4862         switch (type) {
4863         case CC_NDUPACK:
4864                 tp->t_flags &= ~TF_WASFRECOVERY;
4865                 tp->t_flags &= ~TF_WASCRECOVERY;
4866                 if (!IN_FASTRECOVERY(tp->t_flags)) {
4867                         rack->r_ctl.rc_prr_delivered = 0;
4868                         rack->r_ctl.rc_prr_out = 0;
4869                         if (rack->rack_no_prr == 0) {
4870                                 rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
4871                                 rack_log_to_prr(rack, 2, in_rec_at_entry);
4872                         }
4873                         rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
4874                         tp->snd_recover = tp->snd_max;
4875                         if (tp->t_flags2 & TF2_ECN_PERMIT)
4876                                 tp->t_flags2 |= TF2_ECN_SND_CWR;
4877                 }
4878                 break;
4879         case CC_ECN:
4880                 if (!IN_CONGRECOVERY(tp->t_flags) ||
4881                     /*
4882                      * Allow ECN reaction on ACK to CWR, if
4883                      * that data segment was also CE marked.
4884                      */
4885                     SEQ_GEQ(ack, tp->snd_recover)) {
4886                         EXIT_CONGRECOVERY(tp->t_flags);
4887                         KMOD_TCPSTAT_INC(tcps_ecn_rcwnd);
4888                         tp->snd_recover = tp->snd_max + 1;
4889                         if (tp->t_flags2 & TF2_ECN_PERMIT)
4890                                 tp->t_flags2 |= TF2_ECN_SND_CWR;
4891                 }
4892                 break;
4893         case CC_RTO:
4894                 tp->t_dupacks = 0;
4895                 tp->t_bytes_acked = 0;
4896                 EXIT_RECOVERY(tp->t_flags);
4897                 tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 /
4898                     ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
4899                 orig_cwnd = tp->snd_cwnd;
4900                 tp->snd_cwnd = ctf_fixed_maxseg(tp);
4901                 rack_log_to_prr(rack, 16, orig_cwnd);
4902                 if (tp->t_flags2 & TF2_ECN_PERMIT)
4903                         tp->t_flags2 |= TF2_ECN_SND_CWR;
4904                 break;
4905         case CC_RTO_ERR:
4906                 KMOD_TCPSTAT_INC(tcps_sndrexmitbad);
4907                 /* RTO was unnecessary, so reset everything. */
4908                 tp->snd_cwnd = tp->snd_cwnd_prev;
4909                 tp->snd_ssthresh = tp->snd_ssthresh_prev;
4910                 tp->snd_recover = tp->snd_recover_prev;
4911                 if (tp->t_flags & TF_WASFRECOVERY) {
4912                         ENTER_FASTRECOVERY(tp->t_flags);
4913                         tp->t_flags &= ~TF_WASFRECOVERY;
4914                 }
4915                 if (tp->t_flags & TF_WASCRECOVERY) {
4916                         ENTER_CONGRECOVERY(tp->t_flags);
4917                         tp->t_flags &= ~TF_WASCRECOVERY;
4918                 }
4919                 tp->snd_nxt = tp->snd_max;
4920                 tp->t_badrxtwin = 0;
4921                 break;
4922         }
4923         if ((CC_ALGO(tp)->cong_signal != NULL)  &&
4924             (type != CC_RTO)){
4925                 tp->ccv->curack = ack;
4926                 CC_ALGO(tp)->cong_signal(tp->ccv, type);
4927         }
4928         if ((in_rec_at_entry == 0) && IN_RECOVERY(tp->t_flags)) {
4929                 rack_log_to_prr(rack, 15, cwnd_enter);
4930                 rack->r_ctl.dsack_byte_cnt = 0;
4931                 rack->r_ctl.retran_during_recovery = 0;
4932                 rack->r_ctl.rc_cwnd_at_erec = cwnd_enter;
4933                 rack->r_ctl.rc_ssthresh_at_erec = ssthresh_enter;
4934                 rack->r_ent_rec_ns = 1;
4935         }
4936 }
4937
4938 static inline void
4939 rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp)
4940 {
4941         uint32_t i_cwnd;
4942
4943         INP_WLOCK_ASSERT(tp->t_inpcb);
4944
4945 #ifdef NETFLIX_STATS
4946         KMOD_TCPSTAT_INC(tcps_idle_restarts);
4947         if (tp->t_state == TCPS_ESTABLISHED)
4948                 KMOD_TCPSTAT_INC(tcps_idle_estrestarts);
4949 #endif
4950         if (CC_ALGO(tp)->after_idle != NULL)
4951                 CC_ALGO(tp)->after_idle(tp->ccv);
4952
4953         if (tp->snd_cwnd == 1)
4954                 i_cwnd = tp->t_maxseg;          /* SYN(-ACK) lost */
4955         else
4956                 i_cwnd = rc_init_window(rack);
4957
4958         /*
4959          * Being idle is no differnt than the initial window. If the cc
4960          * clamps it down below the initial window raise it to the initial
4961          * window.
4962          */
4963         if (tp->snd_cwnd < i_cwnd) {
4964                 tp->snd_cwnd = i_cwnd;
4965         }
4966 }
4967
4968 /*
4969  * Indicate whether this ack should be delayed.  We can delay the ack if
4970  * following conditions are met:
4971  *      - There is no delayed ack timer in progress.
4972  *      - Our last ack wasn't a 0-sized window. We never want to delay
4973  *        the ack that opens up a 0-sized window.
4974  *      - LRO wasn't used for this segment. We make sure by checking that the
4975  *        segment size is not larger than the MSS.
4976  *      - Delayed acks are enabled or this is a half-synchronized T/TCP
4977  *        connection.
4978  */
4979 #define DELAY_ACK(tp, tlen)                      \
4980         (((tp->t_flags & TF_RXWIN0SENT) == 0) && \
4981         ((tp->t_flags & TF_DELACK) == 0) &&      \
4982         (tlen <= tp->t_maxseg) &&                \
4983         (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
4984
4985 static struct rack_sendmap *
4986 rack_find_lowest_rsm(struct tcp_rack *rack)
4987 {
4988         struct rack_sendmap *rsm;
4989
4990         /*
4991          * Walk the time-order transmitted list looking for an rsm that is
4992          * not acked. This will be the one that was sent the longest time
4993          * ago that is still outstanding.
4994          */
4995         TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
4996                 if (rsm->r_flags & RACK_ACKED) {
4997                         continue;
4998                 }
4999                 goto finish;
5000         }
5001 finish:
5002         return (rsm);
5003 }
5004
5005 static struct rack_sendmap *
5006 rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
5007 {
5008         struct rack_sendmap *prsm;
5009
5010         /*
5011          * Walk the sequence order list backward until we hit and arrive at
5012          * the highest seq not acked. In theory when this is called it
5013          * should be the last segment (which it was not).
5014          */
5015         counter_u64_add(rack_find_high, 1);
5016         prsm = rsm;
5017         RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
5018                 if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
5019                         continue;
5020                 }
5021                 return (prsm);
5022         }
5023         return (NULL);
5024 }
5025
5026 static uint32_t
5027 rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
5028 {
5029         int32_t lro;
5030         uint32_t thresh;
5031
5032         /*
5033          * lro is the flag we use to determine if we have seen reordering.
5034          * If it gets set we have seen reordering. The reorder logic either
5035          * works in one of two ways:
5036          *
5037          * If reorder-fade is configured, then we track the last time we saw
5038          * re-ordering occur. If we reach the point where enough time as
5039          * passed we no longer consider reordering has occuring.
5040          *
5041          * Or if reorder-face is 0, then once we see reordering we consider
5042          * the connection to alway be subject to reordering and just set lro
5043          * to 1.
5044          *
5045          * In the end if lro is non-zero we add the extra time for
5046          * reordering in.
5047          */
5048         if (srtt == 0)
5049                 srtt = 1;
5050         if (rack->r_ctl.rc_reorder_ts) {
5051                 if (rack->r_ctl.rc_reorder_fade) {
5052                         if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
5053                                 lro = cts - rack->r_ctl.rc_reorder_ts;
5054                                 if (lro == 0) {
5055                                         /*
5056                                          * No time as passed since the last
5057                                          * reorder, mark it as reordering.
5058                                          */
5059                                         lro = 1;
5060                                 }
5061                         } else {
5062                                 /* Negative time? */
5063                                 lro = 0;
5064                         }
5065                         if (lro > rack->r_ctl.rc_reorder_fade) {
5066                                 /* Turn off reordering seen too */
5067                                 rack->r_ctl.rc_reorder_ts = 0;
5068                                 lro = 0;
5069                         }
5070                 } else {
5071                         /* Reodering does not fade */
5072                         lro = 1;
5073                 }
5074         } else {
5075                 lro = 0;
5076         }
5077         thresh = srtt + rack->r_ctl.rc_pkt_delay;
5078         if (lro) {
5079                 /* It must be set, if not you get 1/4 rtt */
5080                 if (rack->r_ctl.rc_reorder_shift)
5081                         thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
5082                 else
5083                         thresh += (srtt >> 2);
5084         } else {
5085                 thresh += 1;
5086         }
5087         /* We don't let the rack timeout be above a RTO */
5088         if (thresh > rack->rc_tp->t_rxtcur) {
5089                 thresh = rack->rc_tp->t_rxtcur;
5090         }
5091         /* And we don't want it above the RTO max either */
5092         if (thresh > rack_rto_max) {
5093                 thresh = rack_rto_max;
5094         }
5095         return (thresh);
5096 }
5097
5098 static uint32_t
5099 rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
5100                      struct rack_sendmap *rsm, uint32_t srtt)
5101 {
5102         struct rack_sendmap *prsm;
5103         uint32_t thresh, len;
5104         int segsiz;
5105
5106         if (srtt == 0)
5107                 srtt = 1;
5108         if (rack->r_ctl.rc_tlp_threshold)
5109                 thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
5110         else
5111                 thresh = (srtt * 2);
5112
5113         /* Get the previous sent packet, if any */
5114         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
5115         counter_u64_add(rack_enter_tlp_calc, 1);
5116         len = rsm->r_end - rsm->r_start;
5117         if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
5118                 /* Exactly like the ID */
5119                 if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) {
5120                         uint32_t alt_thresh;
5121                         /*
5122                          * Compensate for delayed-ack with the d-ack time.
5123                          */
5124                         counter_u64_add(rack_used_tlpmethod, 1);
5125                         alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5126                         if (alt_thresh > thresh)
5127                                 thresh = alt_thresh;
5128                 }
5129         } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
5130                 /* 2.1 behavior */
5131                 prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
5132                 if (prsm && (len <= segsiz)) {
5133                         /*
5134                          * Two packets outstanding, thresh should be (2*srtt) +
5135                          * possible inter-packet delay (if any).
5136                          */
5137                         uint32_t inter_gap = 0;
5138                         int idx, nidx;
5139
5140                         counter_u64_add(rack_used_tlpmethod, 1);
5141                         idx = rsm->r_rtr_cnt - 1;
5142                         nidx = prsm->r_rtr_cnt - 1;
5143                         if (rsm->r_tim_lastsent[nidx] >= prsm->r_tim_lastsent[idx]) {
5144                                 /* Yes it was sent later (or at the same time) */
5145                                 inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
5146                         }
5147                         thresh += inter_gap;
5148                 } else if (len <= segsiz) {
5149                         /*
5150                          * Possibly compensate for delayed-ack.
5151                          */
5152                         uint32_t alt_thresh;
5153
5154                         counter_u64_add(rack_used_tlpmethod2, 1);
5155                         alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5156                         if (alt_thresh > thresh)
5157                                 thresh = alt_thresh;
5158                 }
5159         } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
5160                 /* 2.2 behavior */
5161                 if (len <= segsiz) {
5162                         uint32_t alt_thresh;
5163                         /*
5164                          * Compensate for delayed-ack with the d-ack time.
5165                          */
5166                         counter_u64_add(rack_used_tlpmethod, 1);
5167                         alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
5168                         if (alt_thresh > thresh)
5169                                 thresh = alt_thresh;
5170                 }
5171         }
5172         /* Not above an RTO */
5173         if (thresh > tp->t_rxtcur) {
5174                 thresh = tp->t_rxtcur;
5175         }
5176         /* Not above a RTO max */
5177         if (thresh > rack_rto_max) {
5178                 thresh = rack_rto_max;
5179         }
5180         /* Apply user supplied min TLP */
5181         if (thresh < rack_tlp_min) {
5182                 thresh = rack_tlp_min;
5183         }
5184         return (thresh);
5185 }
5186
5187 static uint32_t
5188 rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
5189 {
5190         /*
5191          * We want the rack_rtt which is the
5192          * last rtt we measured. However if that
5193          * does not exist we fallback to the srtt (which
5194          * we probably will never do) and then as a last
5195          * resort we use RACK_INITIAL_RTO if no srtt is
5196          * yet set.
5197          */
5198         if (rack->rc_rack_rtt)
5199                 return (rack->rc_rack_rtt);
5200         else if (tp->t_srtt == 0)
5201                 return (RACK_INITIAL_RTO);
5202         return (tp->t_srtt);
5203 }
5204
5205 static struct rack_sendmap *
5206 rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
5207 {
5208         /*
5209          * Check to see that we don't need to fall into recovery. We will
5210          * need to do so if our oldest transmit is past the time we should
5211          * have had an ack.
5212          */
5213         struct tcp_rack *rack;
5214         struct rack_sendmap *rsm;
5215         int32_t idx;
5216         uint32_t srtt, thresh;
5217
5218         rack = (struct tcp_rack *)tp->t_fb_ptr;
5219         if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
5220                 return (NULL);
5221         }
5222         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5223         if (rsm == NULL)
5224                 return (NULL);
5225
5226         if (rsm->r_flags & RACK_ACKED) {
5227                 rsm = rack_find_lowest_rsm(rack);
5228                 if (rsm == NULL)
5229                         return (NULL);
5230         }
5231         idx = rsm->r_rtr_cnt - 1;
5232         srtt = rack_grab_rtt(tp, rack);
5233         thresh = rack_calc_thresh_rack(rack, srtt, tsused);
5234         if (TSTMP_LT(tsused, ((uint32_t)rsm->r_tim_lastsent[idx]))) {
5235                 return (NULL);
5236         }
5237         if ((tsused - ((uint32_t)rsm->r_tim_lastsent[idx])) < thresh) {
5238                 return (NULL);
5239         }
5240         /* Ok if we reach here we are over-due and this guy can be sent */
5241         if (IN_RECOVERY(tp->t_flags) == 0) {
5242                 /*
5243                  * For the one that enters us into recovery record undo
5244                  * info.
5245                  */
5246                 rack->r_ctl.rc_rsm_start = rsm->r_start;
5247                 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
5248                 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
5249         }
5250         rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
5251         return (rsm);
5252 }
5253
5254 static uint32_t
5255 rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
5256 {
5257         int32_t t;
5258         int32_t tt;
5259         uint32_t ret_val;
5260
5261         t = (tp->t_srtt + (tp->t_rttvar << 2));
5262         RACK_TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
5263             rack_persist_min, rack_persist_max, rack->r_ctl.timer_slop);
5264         if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
5265                 tp->t_rxtshift++;
5266         rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
5267         ret_val = (uint32_t)tt;
5268         return (ret_val);
5269 }
5270
5271 static uint32_t
5272 rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
5273 {
5274         /*
5275          * Start the FR timer, we do this based on getting the first one in
5276          * the rc_tmap. Note that if its NULL we must stop the timer. in all
5277          * events we need to stop the running timer (if its running) before
5278          * starting the new one.
5279          */
5280         uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
5281         uint32_t srtt_cur;
5282         int32_t idx;
5283         int32_t is_tlp_timer = 0;
5284         struct rack_sendmap *rsm;
5285
5286         if (rack->t_timers_stopped) {
5287                 /* All timers have been stopped none are to run */
5288                 return (0);
5289         }
5290         if (rack->rc_in_persist) {
5291                 /* We can't start any timer in persists */
5292                 return (rack_get_persists_timer_val(tp, rack));
5293         }
5294         rack->rc_on_min_to = 0;
5295         if ((tp->t_state < TCPS_ESTABLISHED) ||
5296             ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
5297                 goto activate_rxt;
5298         }
5299         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5300         if ((rsm == NULL) || sup_rack) {
5301                 /* Nothing on the send map or no rack */
5302 activate_rxt:
5303                 time_since_sent = 0;
5304                 rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
5305                 if (rsm) {
5306                         /*
5307                          * Should we discount the RTX timer any?
5308                          *
5309                          * We want to discount it the smallest amount.
5310                          * If a timer (Rack/TLP or RXT) has gone off more
5311                          * recently thats the discount we want to use (now - timer time).
5312                          * If the retransmit of the oldest packet was more recent then
5313                          * we want to use that (now - oldest-packet-last_transmit_time).
5314                          *
5315                          */
5316                         idx = rsm->r_rtr_cnt - 1;
5317                         if (TSTMP_GEQ(rack->r_ctl.rc_tlp_rxt_last_time, ((uint32_t)rsm->r_tim_lastsent[idx])))
5318                                 tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5319                         else
5320                                 tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5321                         if (TSTMP_GT(cts, tstmp_touse))
5322                             time_since_sent = cts - tstmp_touse;
5323                 }
5324                 if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
5325                         rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
5326                         to = tp->t_rxtcur;
5327                         if (to > time_since_sent)
5328                                 to -= time_since_sent;
5329                         else
5330                                 to = rack->r_ctl.rc_min_to;
5331                         if (to == 0)
5332                                 to = 1;
5333                         /* Special case for KEEPINIT */
5334                         if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
5335                             (TP_KEEPINIT(tp) != 0) &&
5336                             rsm) {
5337                                 /*
5338                                  * We have to put a ceiling on the rxt timer
5339                                  * of the keep-init timeout.
5340                                  */
5341                                 uint32_t max_time, red;
5342
5343                                 max_time = TICKS_2_USEC(TP_KEEPINIT(tp));
5344                                 if (TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) {
5345                                         red = (cts - (uint32_t)rsm->r_tim_lastsent[0]);
5346                                         if (red < max_time)
5347                                                 max_time -= red;
5348                                         else
5349                                                 max_time = 1;
5350                                 }
5351                                 /* Reduce timeout to the keep value if needed */
5352                                 if (max_time < to)
5353                                         to = max_time;
5354                         }
5355                         return (to);
5356                 }
5357                 return (0);
5358         }
5359         if (rsm->r_flags & RACK_ACKED) {
5360                 rsm = rack_find_lowest_rsm(rack);
5361                 if (rsm == NULL) {
5362                         /* No lowest? */
5363                         goto activate_rxt;
5364                 }
5365         }
5366         if (rack->sack_attack_disable) {
5367                 /*
5368                  * We don't want to do
5369                  * any TLP's if you are an attacker.
5370                  * Though if you are doing what
5371                  * is expected you may still have
5372                  * SACK-PASSED marks.
5373                  */
5374                 goto activate_rxt;
5375         }
5376         /* Convert from ms to usecs */
5377         if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
5378                 if ((tp->t_flags & TF_SENTFIN) &&
5379                     ((tp->snd_max - tp->snd_una) == 1) &&
5380                     (rsm->r_flags & RACK_HAS_FIN)) {
5381                         /*
5382                          * We don't start a rack timer if all we have is a
5383                          * FIN outstanding.
5384                          */
5385                         goto activate_rxt;
5386                 }
5387                 if ((rack->use_rack_rr == 0) &&
5388                     (IN_FASTRECOVERY(tp->t_flags)) &&
5389                     (rack->rack_no_prr == 0) &&
5390                      (rack->r_ctl.rc_prr_sndcnt  < ctf_fixed_maxseg(tp))) {
5391                         /*
5392                          * We are not cheating, in recovery  and
5393                          * not enough ack's to yet get our next
5394                          * retransmission out.
5395                          *
5396                          * Note that classified attackers do not
5397                          * get to use the rack-cheat.
5398                          */
5399                         goto activate_tlp;
5400                 }
5401                 srtt = rack_grab_rtt(tp, rack);
5402                 thresh = rack_calc_thresh_rack(rack, srtt, cts);
5403                 idx = rsm->r_rtr_cnt - 1;
5404                 exp = ((uint32_t)rsm->r_tim_lastsent[idx]) + thresh;
5405                 if (SEQ_GEQ(exp, cts)) {
5406                         to = exp - cts;
5407                         if (to < rack->r_ctl.rc_min_to) {
5408                                 to = rack->r_ctl.rc_min_to;
5409                                 if (rack->r_rr_config == 3)
5410                                         rack->rc_on_min_to = 1;
5411                         }
5412                 } else {
5413                         to = rack->r_ctl.rc_min_to;
5414                         if (rack->r_rr_config == 3)
5415                                 rack->rc_on_min_to = 1;
5416                 }
5417         } else {
5418                 /* Ok we need to do a TLP not RACK */
5419 activate_tlp:
5420                 if ((rack->rc_tlp_in_progress != 0) &&
5421                     (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) {
5422                         /*
5423                          * The previous send was a TLP and we have sent
5424                          * N TLP's without sending new data.
5425                          */
5426                         goto activate_rxt;
5427                 }
5428                 rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
5429                 if (rsm == NULL) {
5430                         /* We found no rsm to TLP with. */
5431                         goto activate_rxt;
5432                 }
5433                 if (rsm->r_flags & RACK_HAS_FIN) {
5434                         /* If its a FIN we dont do TLP */
5435                         rsm = NULL;
5436                         goto activate_rxt;
5437                 }
5438                 idx = rsm->r_rtr_cnt - 1;
5439                 time_since_sent = 0;
5440                 if (TSTMP_GEQ(((uint32_t)rsm->r_tim_lastsent[idx]), rack->r_ctl.rc_tlp_rxt_last_time))
5441                         tstmp_touse = (uint32_t)rsm->r_tim_lastsent[idx];
5442                 else
5443                         tstmp_touse = (uint32_t)rack->r_ctl.rc_tlp_rxt_last_time;
5444                 if (TSTMP_GT(cts, tstmp_touse))
5445                     time_since_sent = cts - tstmp_touse;
5446                 is_tlp_timer = 1;
5447                 if (tp->t_srtt) {
5448                         if ((rack->rc_srtt_measure_made == 0) &&
5449                             (tp->t_srtt == 1)) {
5450                                 /*
5451                                  * If another stack as run and set srtt to 1,
5452                                  * then the srtt was 0, so lets use the initial.
5453                                  */
5454                                 srtt = RACK_INITIAL_RTO;
5455                         } else {
5456                                 srtt_cur = tp->t_srtt;
5457                                 srtt = srtt_cur;
5458                         }
5459                 } else
5460                         srtt = RACK_INITIAL_RTO;
5461                 /*
5462                  * If the SRTT is not keeping up and the
5463                  * rack RTT has spiked we want to use
5464                  * the last RTT not the smoothed one.
5465                  */
5466                 if (rack_tlp_use_greater &&
5467                     tp->t_srtt &&
5468                     (srtt < rack_grab_rtt(tp, rack))) {
5469                         srtt = rack_grab_rtt(tp, rack);
5470                 }
5471                 thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
5472                 if (thresh > time_since_sent) {
5473                         to = thresh - time_since_sent;
5474                 } else {
5475                         to = rack->r_ctl.rc_min_to;
5476                         rack_log_alt_to_to_cancel(rack,
5477                                                   thresh,               /* flex1 */
5478                                                   time_since_sent,      /* flex2 */
5479                                                   tstmp_touse,          /* flex3 */
5480                                                   rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */
5481                                                   (uint32_t)rsm->r_tim_lastsent[idx],
5482                                                   srtt,
5483                                                   idx, 99);
5484                 }
5485                 if (to < rack_tlp_min) {
5486                         to = rack_tlp_min;
5487                 }
5488                 if (to > TICKS_2_USEC(TCPTV_REXMTMAX)) {
5489                         /*
5490                          * If the TLP time works out to larger than the max
5491                          * RTO lets not do TLP.. just RTO.
5492                          */
5493                         goto activate_rxt;
5494                 }
5495         }
5496         if (is_tlp_timer == 0) {
5497                 rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
5498         } else {
5499                 rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
5500         }
5501         if (to == 0)
5502                 to = 1;
5503         return (to);
5504 }
5505
5506 static void
5507 rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5508 {
5509         if (rack->rc_in_persist == 0) {
5510                 if (tp->t_flags & TF_GPUTINPROG) {
5511                         /*
5512                          * Stop the goodput now, the calling of the
5513                          * measurement function clears the flag.
5514                          */
5515                         rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__);
5516                 }
5517 #ifdef NETFLIX_SHARED_CWND
5518                 if (rack->r_ctl.rc_scw) {
5519                         tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5520                         rack->rack_scwnd_is_idle = 1;
5521                 }
5522 #endif
5523                 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
5524                 if (rack->r_ctl.rc_went_idle_time == 0)
5525                         rack->r_ctl.rc_went_idle_time = 1;
5526                 rack_timer_cancel(tp, rack, cts, __LINE__);
5527                 tp->t_rxtshift = 0;
5528                 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5529                               rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5530                 rack->rc_in_persist = 1;
5531         }
5532 }
5533
5534 static void
5535 rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5536 {
5537         if (rack->rc_inp->inp_in_hpts) {
5538                 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
5539                 rack->r_ctl.rc_hpts_flags = 0;
5540         }
5541 #ifdef NETFLIX_SHARED_CWND
5542         if (rack->r_ctl.rc_scw) {
5543                 tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
5544                 rack->rack_scwnd_is_idle = 0;
5545         }
5546 #endif
5547         if (rack->rc_gp_dyn_mul &&
5548             (rack->use_fixed_rate == 0) &&
5549             (rack->rc_always_pace)) {
5550                 /*
5551                  * Do we count this as if a probe-rtt just
5552                  * finished?
5553                  */
5554                 uint32_t time_idle, idle_min;
5555
5556                 time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time;
5557                 idle_min = rack_min_probertt_hold;
5558                 if (rack_probertt_gpsrtt_cnt_div) {
5559                         uint64_t extra;
5560                         extra = (uint64_t)rack->r_ctl.rc_gp_srtt *
5561                                 (uint64_t)rack_probertt_gpsrtt_cnt_mul;
5562                         extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div;
5563                         idle_min += (uint32_t)extra;
5564                 }
5565                 if (time_idle >= idle_min) {
5566                         /* Yes, we count it as a probe-rtt. */
5567                         uint32_t us_cts;
5568
5569                         us_cts = tcp_get_usecs(NULL);
5570                         if (rack->in_probe_rtt == 0) {
5571                                 rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
5572                                 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
5573                                 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
5574                                 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
5575                         } else {
5576                                 rack_exit_probertt(rack, us_cts);
5577                         }
5578                 }
5579         }
5580         rack->rc_in_persist = 0;
5581         rack->r_ctl.rc_went_idle_time = 0;
5582         tp->t_rxtshift = 0;
5583         RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
5584            rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
5585         rack->r_ctl.rc_agg_delayed = 0;
5586         rack->r_early = 0;
5587         rack->r_late = 0;
5588         rack->r_ctl.rc_agg_early = 0;
5589 }
5590
5591 static void
5592 rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts,
5593                    struct hpts_diag *diag, struct timeval *tv)
5594 {
5595         if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
5596                 union tcp_log_stackspecific log;
5597
5598                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5599                 log.u_bbr.flex1 = diag->p_nxt_slot;
5600                 log.u_bbr.flex2 = diag->p_cur_slot;
5601                 log.u_bbr.flex3 = diag->slot_req;
5602                 log.u_bbr.flex4 = diag->inp_hptsslot;
5603                 log.u_bbr.flex5 = diag->slot_remaining;
5604                 log.u_bbr.flex6 = diag->need_new_to;
5605                 log.u_bbr.flex7 = diag->p_hpts_active;
5606                 log.u_bbr.flex8 = diag->p_on_min_sleep;
5607                 /* Hijack other fields as needed */
5608                 log.u_bbr.epoch = diag->have_slept;
5609                 log.u_bbr.lt_epoch = diag->yet_to_sleep;
5610                 log.u_bbr.pkts_out = diag->co_ret;
5611                 log.u_bbr.applimited = diag->hpts_sleep_time;
5612                 log.u_bbr.delivered = diag->p_prev_slot;
5613                 log.u_bbr.inflight = diag->p_runningtick;
5614                 log.u_bbr.bw_inuse = diag->wheel_tick;
5615                 log.u_bbr.rttProp = diag->wheel_cts;
5616                 log.u_bbr.timeStamp = cts;
5617                 log.u_bbr.delRate = diag->maxticks;
5618                 log.u_bbr.cur_del_rate = diag->p_curtick;
5619                 log.u_bbr.cur_del_rate <<= 32;
5620                 log.u_bbr.cur_del_rate |= diag->p_lasttick;
5621                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
5622                     &rack->rc_inp->inp_socket->so_rcv,
5623                     &rack->rc_inp->inp_socket->so_snd,
5624                     BBR_LOG_HPTSDIAG, 0,
5625                     0, &log, false, tv);
5626         }
5627
5628 }
5629
5630 static void
5631 rack_log_wakeup(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb, uint32_t len, int type)
5632 {
5633         if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
5634                 union tcp_log_stackspecific log;
5635                 struct timeval tv;
5636
5637                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
5638                 log.u_bbr.flex1 = sb->sb_flags;
5639                 log.u_bbr.flex2 = len;
5640                 log.u_bbr.flex3 = sb->sb_state;
5641                 log.u_bbr.flex8 = type;
5642                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
5643                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
5644                     &rack->rc_inp->inp_socket->so_rcv,
5645                     &rack->rc_inp->inp_socket->so_snd,
5646                     TCP_LOG_SB_WAKE, 0,
5647                     len, &log, false, &tv);
5648         }
5649 }
5650
5651 static void
5652 rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
5653       int32_t slot, uint32_t tot_len_this_send, int sup_rack)
5654 {
5655         struct hpts_diag diag;
5656         struct inpcb *inp;
5657         struct timeval tv;
5658         uint32_t delayed_ack = 0;
5659         uint32_t hpts_timeout;
5660         uint32_t entry_slot = slot;
5661         uint8_t stopped;
5662         uint32_t left = 0;
5663         uint32_t us_cts;
5664
5665         inp = tp->t_inpcb;
5666         if ((tp->t_state == TCPS_CLOSED) ||
5667             (tp->t_state == TCPS_LISTEN)) {
5668                 return;
5669         }
5670         if (inp->inp_in_hpts) {
5671                 /* Already on the pacer */
5672                 return;
5673         }
5674         stopped = rack->rc_tmr_stopped;
5675         if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
5676                 left = rack->r_ctl.rc_timer_exp - cts;
5677         }
5678         rack->r_ctl.rc_timer_exp = 0;
5679         rack->r_ctl.rc_hpts_flags = 0;
5680         us_cts = tcp_get_usecs(&tv);
5681         /* Now early/late accounting */
5682         rack_log_pacing_delay_calc(rack, entry_slot, slot, 0, 0, 0, 26, __LINE__, NULL);
5683         if (rack->r_early && (rack->rc_ack_can_sendout_data == 0)) {
5684                 /*
5685                  * We have a early carry over set,
5686                  * we can always add more time so we
5687                  * can always make this compensation.
5688                  *
5689                  * Note if ack's are allowed to wake us do not
5690                  * penalize the next timer for being awoke
5691                  * by an ack aka the rc_agg_early (non-paced mode).
5692                  */
5693                 slot += rack->r_ctl.rc_agg_early;
5694                 rack->r_early = 0;
5695                 rack->r_ctl.rc_agg_early = 0;
5696         }
5697         if (rack->r_late) {
5698                 /*
5699                  * This is harder, we can
5700                  * compensate some but it
5701                  * really depends on what
5702                  * the current pacing time is.
5703                  */
5704                 if (rack->r_ctl.rc_agg_delayed >= slot) {
5705                         /*
5706                          * We can't compensate for it all.
5707                          * And we have to have some time
5708                          * on the clock. We always have a min
5709                          * 10 slots (10 x 10 i.e. 100 usecs).
5710                          */
5711                         if (slot <= HPTS_TICKS_PER_USEC) {
5712                                 /* We gain delay */
5713                                 rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_USEC - slot);
5714                                 slot = HPTS_TICKS_PER_USEC;
5715                         } else {
5716                                 /* We take off some */
5717                                 rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_USEC);
5718                                 slot = HPTS_TICKS_PER_USEC;
5719                         }
5720                 } else {
5721                         slot -= rack->r_ctl.rc_agg_delayed;
5722                         rack->r_ctl.rc_agg_delayed = 0;
5723                         /* Make sure we have 100 useconds at minimum */
5724                         if (slot < HPTS_TICKS_PER_USEC) {
5725                                 rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_USEC - slot;
5726                                 slot = HPTS_TICKS_PER_USEC;
5727                         }
5728                         if (rack->r_ctl.rc_agg_delayed == 0)
5729                                 rack->r_late = 0;
5730                 }
5731         }
5732         if (slot) {
5733                 /* We are pacing too */
5734                 rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
5735         }
5736         hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
5737 #ifdef NETFLIX_EXP_DETECTION
5738         if (rack->sack_attack_disable &&
5739             (slot < tcp_sad_pacing_interval)) {
5740                 /*
5741                  * We have a potential attacker on
5742                  * the line. We have possibly some
5743                  * (or now) pacing time set. We want to
5744                  * slow down the processing of sacks by some
5745                  * amount (if it is an attacker). Set the default
5746                  * slot for attackers in place (unless the orginal
5747                  * interval is longer). Its stored in
5748                  * micro-seconds, so lets convert to msecs.
5749                  */
5750                 slot = tcp_sad_pacing_interval;
5751         }
5752 #endif
5753         if (tp->t_flags & TF_DELACK) {
5754                 delayed_ack = TICKS_2_USEC(tcp_delacktime);
5755                 rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
5756         }
5757         if (delayed_ack && ((hpts_timeout == 0) ||
5758                             (delayed_ack < hpts_timeout)))
5759                 hpts_timeout = delayed_ack;
5760         else
5761                 rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
5762         /*
5763          * If no timers are going to run and we will fall off the hptsi
5764          * wheel, we resort to a keep-alive timer if its configured.
5765          */
5766         if ((hpts_timeout == 0) &&
5767             (slot == 0)) {
5768                 if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
5769                     (tp->t_state <= TCPS_CLOSING)) {
5770                         /*
5771                          * Ok we have no timer (persists, rack, tlp, rxt  or
5772                          * del-ack), we don't have segments being paced. So
5773                          * all that is left is the keepalive timer.
5774                          */
5775                         if (TCPS_HAVEESTABLISHED(tp->t_state)) {
5776                                 /* Get the established keep-alive time */
5777                                 hpts_timeout = TICKS_2_USEC(TP_KEEPIDLE(tp));
5778                         } else {
5779                                 /*
5780                                  * Get the initial setup keep-alive time,
5781                                  * note that this is probably not going to
5782                                  * happen, since rack will be running a rxt timer
5783                                  * if a SYN of some sort is outstanding. It is
5784                                  * actually handled in rack_timeout_rxt().
5785                                  */
5786                                 hpts_timeout = TICKS_2_USEC(TP_KEEPINIT(tp));
5787                         }
5788                         rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
5789                         if (rack->in_probe_rtt) {
5790                                 /*
5791                                  * We want to instead not wake up a long time from
5792                                  * now but to wake up about the time we would
5793                                  * exit probe-rtt and initiate a keep-alive ack.
5794                                  * This will get us out of probe-rtt and update
5795                                  * our min-rtt.
5796                                  */
5797                                 hpts_timeout = rack_min_probertt_hold;
5798                         }
5799                 }
5800         }
5801         if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
5802             (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
5803                 /*
5804                  * RACK, TLP, persists and RXT timers all are restartable
5805                  * based on actions input .. i.e we received a packet (ack
5806                  * or sack) and that changes things (rw, or snd_una etc).
5807                  * Thus we can restart them with a new value. For
5808                  * keep-alive, delayed_ack we keep track of what was left
5809                  * and restart the timer with a smaller value.
5810                  */
5811                 if (left < hpts_timeout)
5812                         hpts_timeout = left;
5813         }
5814         if (hpts_timeout) {
5815                 /*
5816                  * Hack alert for now we can't time-out over 2,147,483
5817                  * seconds (a bit more than 596 hours), which is probably ok
5818                  * :).
5819                  */
5820                 if (hpts_timeout > 0x7ffffffe)
5821                         hpts_timeout = 0x7ffffffe;
5822                 rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
5823         }
5824         rack_log_pacing_delay_calc(rack, entry_slot, slot, hpts_timeout, 0, 0, 27, __LINE__, NULL);
5825         if ((rack->gp_ready == 0) &&
5826             (rack->use_fixed_rate == 0) &&
5827             (hpts_timeout < slot) &&
5828             (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) {
5829                 /*
5830                  * We have no good estimate yet for the
5831                  * old clunky burst mitigation or the
5832                  * real pacing. And the tlp or rxt is smaller
5833                  * than the pacing calculation. Lets not
5834                  * pace that long since we know the calculation
5835                  * so far is not accurate.
5836                  */
5837                 slot = hpts_timeout;
5838         }
5839         rack->r_ctl.last_pacing_time = slot;
5840         /**
5841          * Turn off all the flags for queuing by default. The
5842          * flags have important meanings to what happens when
5843          * LRO interacts with the transport. Most likely (by default now)
5844          * mbuf_queueing and ack compression are on. So the transport
5845          * has a couple of flags that control what happens (if those
5846          * are not on then these flags won't have any effect since it
5847          * won't go through the queuing LRO path).
5848          *
5849          * INP_MBUF_QUEUE_READY - This flags says that I am busy
5850          *                        pacing output, so don't disturb. But
5851          *                        it also means LRO can wake me if there
5852          *                        is a SACK arrival.
5853          *
5854          * INP_DONT_SACK_QUEUE - This flag is used in conjunction
5855          *                       with the above flag (QUEUE_READY) and
5856          *                       when present it says don't even wake me
5857          *                       if a SACK arrives.
5858          *
5859          * The idea behind these flags is that if we are pacing we
5860          * set the MBUF_QUEUE_READY and only get woken up if
5861          * a SACK arrives (which could change things) or if
5862          * our pacing timer expires. If, however, we have a rack
5863          * timer running, then we don't even want a sack to wake
5864          * us since the rack timer has to expire before we can send.
5865          *
5866          * Other cases should usually have none of the flags set
5867          * so LRO can call into us.
5868          */
5869         inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5870         if (slot) {
5871                 rack->r_ctl.rc_last_output_to = us_cts + slot;
5872                 /*
5873                  * A pacing timer (slot) is being set, in
5874                  * such a case we cannot send (we are blocked by
5875                  * the timer). So lets tell LRO that it should not
5876                  * wake us unless there is a SACK. Note this only
5877                  * will be effective if mbuf queueing is on or
5878                  * compressed acks are being processed.
5879                  */
5880                 inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
5881                 /*
5882                  * But wait if we have a Rack timer running
5883                  * even a SACK should not disturb us (with
5884                  * the exception of r_rr_config 3).
5885                  */
5886                 if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) &&
5887                     (rack->r_rr_config != 3))
5888                         inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
5889                 if (rack->rc_ack_can_sendout_data) {
5890                         /*
5891                          * Ahh but wait, this is that special case
5892                          * where the pacing timer can be disturbed
5893                          * backout the changes (used for non-paced
5894                          * burst limiting).
5895                          */
5896                         inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY);
5897                 }
5898                 if ((rack->use_rack_rr) &&
5899                     (rack->r_rr_config < 2) &&
5900                     ((hpts_timeout) && (hpts_timeout < slot))) {
5901                         /*
5902                          * Arrange for the hpts to kick back in after the
5903                          * t-o if the t-o does not cause a send.
5904                          */
5905                         (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout),
5906                                                    __LINE__, &diag);
5907                         rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5908                         rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5909                 } else {
5910                         (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot),
5911                                                    __LINE__, &diag);
5912                         rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5913                         rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
5914                 }
5915         } else if (hpts_timeout) {
5916                 /*
5917                  * With respect to inp_flags2 here, lets let any new acks wake
5918                  * us up here. Since we are not pacing (no pacing timer), output
5919                  * can happen so we should let it. If its a Rack timer, then any inbound
5920                  * packet probably won't change the sending (we will be blocked)
5921                  * but it may change the prr stats so letting it in (the set defaults
5922                  * at the start of this block) are good enough.
5923                  */
5924                 (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(hpts_timeout),
5925                                            __LINE__, &diag);
5926                 rack_log_hpts_diag(rack, us_cts, &diag, &tv);
5927                 rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
5928         } else {
5929                 /* No timer starting */
5930 #ifdef INVARIANTS
5931                 if (SEQ_GT(tp->snd_max, tp->snd_una)) {
5932                         panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
5933                             tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
5934                 }
5935 #endif
5936         }
5937         rack->rc_tmr_stopped = 0;
5938         if (slot)
5939                 rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv);
5940 }
5941
5942 /*
5943  * RACK Timer, here we simply do logging and house keeping.
5944  * the normal rack_output() function will call the
5945  * appropriate thing to check if we need to do a RACK retransmit.
5946  * We return 1, saying don't proceed with rack_output only
5947  * when all timers have been stopped (destroyed PCB?).
5948  */
5949 static int
5950 rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
5951 {
5952         /*
5953          * This timer simply provides an internal trigger to send out data.
5954          * The check_recovery_mode call will see if there are needed
5955          * retransmissions, if so we will enter fast-recovery. The output
5956          * call may or may not do the same thing depending on sysctl
5957          * settings.
5958          */
5959         struct rack_sendmap *rsm;
5960
5961         if (tp->t_timers->tt_flags & TT_STOPPED) {
5962                 return (1);
5963         }
5964         counter_u64_add(rack_to_tot, 1);
5965         if (rack->r_state && (rack->r_state != tp->t_state))
5966                 rack_set_state(tp, rack);
5967         rack->rc_on_min_to = 0;
5968         rsm = rack_check_recovery_mode(tp, cts);
5969         rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm);
5970         if (rsm) {
5971                 rack->r_ctl.rc_resend = rsm;
5972                 rack->r_timer_override = 1;
5973                 if (rack->use_rack_rr) {
5974                         /*
5975                          * Don't accumulate extra pacing delay
5976                          * we are allowing the rack timer to
5977                          * over-ride pacing i.e. rrr takes precedence
5978                          * if the pacing interval is longer than the rrr
5979                          * time (in other words we get the min pacing
5980                          * time versus rrr pacing time).
5981                          */
5982                         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
5983                 }
5984         }
5985         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
5986         if (rsm == NULL) {
5987                 /* restart a timer and return 1 */
5988                 rack_start_hpts_timer(rack, tp, cts,
5989                                       0, 0, 0);
5990                 return (1);
5991         }
5992         return (0);
5993 }
5994
5995 static void
5996 rack_adjust_orig_mlen(struct rack_sendmap *rsm)
5997 {
5998         if (rsm->m->m_len > rsm->orig_m_len) {
5999                 /*
6000                  * Mbuf grew, caused by sbcompress, our offset does
6001                  * not change.
6002                  */
6003                 rsm->orig_m_len = rsm->m->m_len;
6004         } else if (rsm->m->m_len < rsm->orig_m_len) {
6005                 /*
6006                  * Mbuf shrank, trimmed off the top by an ack, our
6007                  * offset changes.
6008                  */
6009                 rsm->soff -= (rsm->orig_m_len - rsm->m->m_len);
6010                 rsm->orig_m_len = rsm->m->m_len;
6011         }
6012 }
6013
6014 static void
6015 rack_setup_offset_for_rsm(struct rack_sendmap *src_rsm, struct rack_sendmap *rsm)
6016 {
6017         struct mbuf *m;
6018         uint32_t soff;
6019
6020         if (src_rsm->m && (src_rsm->orig_m_len != src_rsm->m->m_len)) {
6021                 /* Fix up the orig_m_len and possibly the mbuf offset */
6022                 rack_adjust_orig_mlen(src_rsm);
6023         }
6024         m = src_rsm->m;
6025         soff = src_rsm->soff + (src_rsm->r_end - src_rsm->r_start);
6026         while (soff >= m->m_len) {
6027                 /* Move out past this mbuf */
6028                 soff -= m->m_len;
6029                 m = m->m_next;
6030                 KASSERT((m != NULL),
6031                         ("rsm:%p nrsm:%p hit at soff:%u null m",
6032                          src_rsm, rsm, soff));
6033         }
6034         rsm->m = m;
6035         rsm->soff = soff;
6036         rsm->orig_m_len = m->m_len;
6037 }
6038
6039 static __inline void
6040 rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
6041                struct rack_sendmap *rsm, uint32_t start)
6042 {
6043         int idx;
6044
6045         nrsm->r_start = start;
6046         nrsm->r_end = rsm->r_end;
6047         nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
6048         nrsm->r_flags = rsm->r_flags;
6049         nrsm->r_dupack = rsm->r_dupack;
6050         nrsm->r_no_rtt_allowed = rsm->r_no_rtt_allowed;
6051         nrsm->r_rtr_bytes = 0;
6052         rsm->r_end = nrsm->r_start;
6053         nrsm->r_just_ret = rsm->r_just_ret;
6054         for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
6055                 nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
6056         }
6057         /* Now if we have SYN flag we keep it on the left edge */
6058         if (nrsm->r_flags & RACK_HAS_SYN)
6059                 nrsm->r_flags &= ~RACK_HAS_SYN;
6060         /* Now if we have a FIN flag we keep it on the right edge */
6061         if (rsm->r_flags & RACK_HAS_FIN)
6062                 rsm->r_flags &= ~RACK_HAS_FIN;
6063         /* Push bit must go to the right edge as well */
6064         if (rsm->r_flags & RACK_HAD_PUSH)
6065                 rsm->r_flags &= ~RACK_HAD_PUSH;
6066
6067         /*
6068          * Now we need to find nrsm's new location in the mbuf chain
6069          * we basically calculate a new offset, which is soff +
6070          * how much is left in original rsm. Then we walk out the mbuf
6071          * chain to find the righ postion, it may be the same mbuf
6072          * or maybe not.
6073          */
6074         KASSERT(((rsm->m != NULL) ||
6075                  (rsm->r_flags & (RACK_HAS_SYN|RACK_HAS_FIN))),
6076                 ("rsm:%p nrsm:%p rack:%p -- rsm->m is NULL?", rsm, nrsm, rack));
6077         if (rsm->m)
6078                 rack_setup_offset_for_rsm(rsm, nrsm);
6079 }
6080
6081 static struct rack_sendmap *
6082 rack_merge_rsm(struct tcp_rack *rack,
6083                struct rack_sendmap *l_rsm,
6084                struct rack_sendmap *r_rsm)
6085 {
6086         /*
6087          * We are merging two ack'd RSM's,
6088          * the l_rsm is on the left (lower seq
6089          * values) and the r_rsm is on the right
6090          * (higher seq value). The simplest way
6091          * to merge these is to move the right
6092          * one into the left. I don't think there
6093          * is any reason we need to try to find
6094          * the oldest (or last oldest retransmitted).
6095          */
6096         struct rack_sendmap *rm;
6097
6098         rack_log_map_chg(rack->rc_tp, rack, NULL,
6099                          l_rsm, r_rsm, MAP_MERGE, r_rsm->r_end, __LINE__);
6100         l_rsm->r_end = r_rsm->r_end;
6101         if (l_rsm->r_dupack < r_rsm->r_dupack)
6102                 l_rsm->r_dupack = r_rsm->r_dupack;
6103         if (r_rsm->r_rtr_bytes)
6104                 l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
6105         if (r_rsm->r_in_tmap) {
6106                 /* This really should not happen */
6107                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
6108                 r_rsm->r_in_tmap = 0;
6109         }
6110
6111         /* Now the flags */
6112         if (r_rsm->r_flags & RACK_HAS_FIN)
6113                 l_rsm->r_flags |= RACK_HAS_FIN;
6114         if (r_rsm->r_flags & RACK_TLP)
6115                 l_rsm->r_flags |= RACK_TLP;
6116         if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
6117                 l_rsm->r_flags |= RACK_RWND_COLLAPSED;
6118         if ((r_rsm->r_flags & RACK_APP_LIMITED)  &&
6119             ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) {
6120                 /*
6121                  * If both are app-limited then let the
6122                  * free lower the count. If right is app
6123                  * limited and left is not, transfer.
6124                  */
6125                 l_rsm->r_flags |= RACK_APP_LIMITED;
6126                 r_rsm->r_flags &= ~RACK_APP_LIMITED;
6127                 if (r_rsm == rack->r_ctl.rc_first_appl)
6128                         rack->r_ctl.rc_first_appl = l_rsm;
6129         }
6130         rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
6131 #ifdef INVARIANTS
6132         if (rm != r_rsm) {
6133                 panic("removing head in rack:%p rsm:%p rm:%p",
6134                       rack, r_rsm, rm);
6135         }
6136 #endif
6137         if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
6138                 /* Transfer the split limit to the map we free */
6139                 r_rsm->r_limit_type = l_rsm->r_limit_type;
6140                 l_rsm->r_limit_type = 0;
6141         }
6142         rack_free(rack, r_rsm);
6143         return (l_rsm);
6144 }
6145
6146 /*
6147  * TLP Timer, here we simply setup what segment we want to
6148  * have the TLP expire on, the normal rack_output() will then
6149  * send it out.
6150  *
6151  * We return 1, saying don't proceed with rack_output only
6152  * when all timers have been stopped (destroyed PCB?).
6153  */
6154 static int
6155 rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6156 {
6157         /*
6158          * Tail Loss Probe.
6159          */
6160         struct rack_sendmap *rsm = NULL;
6161         struct rack_sendmap *insret;
6162         struct socket *so;
6163         uint32_t amm;
6164         uint32_t out, avail;
6165         int collapsed_win = 0;
6166
6167         if (tp->t_timers->tt_flags & TT_STOPPED) {
6168                 return (1);
6169         }
6170         if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6171                 /* Its not time yet */
6172                 return (0);
6173         }
6174         if (ctf_progress_timeout_check(tp, true)) {
6175                 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6176                 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
6177                 return (1);
6178         }
6179         /*
6180          * A TLP timer has expired. We have been idle for 2 rtts. So we now
6181          * need to figure out how to force a full MSS segment out.
6182          */
6183         rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL);
6184         rack->r_ctl.retran_during_recovery = 0;
6185         rack->r_ctl.dsack_byte_cnt = 0;
6186         counter_u64_add(rack_tlp_tot, 1);
6187         if (rack->r_state && (rack->r_state != tp->t_state))
6188                 rack_set_state(tp, rack);
6189         so = tp->t_inpcb->inp_socket;
6190         avail = sbavail(&so->so_snd);
6191         out = tp->snd_max - tp->snd_una;
6192         if (out > tp->snd_wnd) {
6193                 /* special case, we need a retransmission */
6194                 collapsed_win = 1;
6195                 goto need_retran;
6196         }
6197         /*
6198          * Check our send oldest always settings, and if
6199          * there is an oldest to send jump to the need_retran.
6200          */
6201         if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0))
6202                 goto need_retran;
6203
6204         if (avail > out) {
6205                 /* New data is available */
6206                 amm = avail - out;
6207                 if (amm > ctf_fixed_maxseg(tp)) {
6208                         amm = ctf_fixed_maxseg(tp);
6209                         if ((amm + out) > tp->snd_wnd) {
6210                                 /* We are rwnd limited */
6211                                 goto need_retran;
6212                         }
6213                 } else if (amm < ctf_fixed_maxseg(tp)) {
6214                         /* not enough to fill a MTU */
6215                         goto need_retran;
6216                 }
6217                 if (IN_FASTRECOVERY(tp->t_flags)) {
6218                         /* Unlikely */
6219                         if (rack->rack_no_prr == 0) {
6220                                 if (out + amm <= tp->snd_wnd) {
6221                                         rack->r_ctl.rc_prr_sndcnt = amm;
6222                                         rack_log_to_prr(rack, 4, 0);
6223                                 }
6224                         } else
6225                                 goto need_retran;
6226                 } else {
6227                         /* Set the send-new override */
6228                         if (out + amm <= tp->snd_wnd)
6229                                 rack->r_ctl.rc_tlp_new_data = amm;
6230                         else
6231                                 goto need_retran;
6232                 }
6233                 rack->r_ctl.rc_tlpsend = NULL;
6234                 counter_u64_add(rack_tlp_newdata, 1);
6235                 goto send;
6236         }
6237 need_retran:
6238         /*
6239          * Ok we need to arrange the last un-acked segment to be re-sent, or
6240          * optionally the first un-acked segment.
6241          */
6242         if (collapsed_win == 0) {
6243                 if (rack_always_send_oldest)
6244                         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
6245                 else {
6246                         rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6247                         if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
6248                                 rsm = rack_find_high_nonack(rack, rsm);
6249                         }
6250                 }
6251                 if (rsm == NULL) {
6252                         counter_u64_add(rack_tlp_does_nada, 1);
6253 #ifdef TCP_BLACKBOX
6254                         tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6255 #endif
6256                         goto out;
6257                 }
6258         } else {
6259                 /*
6260                  * We must find the last segment
6261                  * that was acceptable by the client.
6262                  */
6263                 RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6264                         if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
6265                                 /* Found one */
6266                                 break;
6267                         }
6268                 }
6269                 if (rsm == NULL) {
6270                         /* None? if so send the first */
6271                         rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6272                         if (rsm == NULL) {
6273                                 counter_u64_add(rack_tlp_does_nada, 1);
6274 #ifdef TCP_BLACKBOX
6275                                 tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
6276 #endif
6277                                 goto out;
6278                         }
6279                 }
6280         }
6281         if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
6282                 /*
6283                  * We need to split this the last segment in two.
6284                  */
6285                 struct rack_sendmap *nrsm;
6286
6287                 nrsm = rack_alloc_full_limit(rack);
6288                 if (nrsm == NULL) {
6289                         /*
6290                          * No memory to split, we will just exit and punt
6291                          * off to the RXT timer.
6292                          */
6293                         counter_u64_add(rack_tlp_does_nada, 1);
6294                         goto out;
6295                 }
6296                 rack_clone_rsm(rack, nrsm, rsm,
6297                                (rsm->r_end - ctf_fixed_maxseg(tp)));
6298                 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
6299                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
6300 #ifdef INVARIANTS
6301                 if (insret != NULL) {
6302                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
6303                               nrsm, insret, rack, rsm);
6304                 }
6305 #endif
6306                 if (rsm->r_in_tmap) {
6307                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
6308                         nrsm->r_in_tmap = 1;
6309                 }
6310                 rsm->r_flags &= (~RACK_HAS_FIN);
6311                 rsm = nrsm;
6312         }
6313         rack->r_ctl.rc_tlpsend = rsm;
6314 send:
6315         rack->r_timer_override = 1;
6316         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6317         return (0);
6318 out:
6319         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
6320         return (0);
6321 }
6322
6323 /*
6324  * Delayed ack Timer, here we simply need to setup the
6325  * ACK_NOW flag and remove the DELACK flag. From there
6326  * the output routine will send the ack out.
6327  *
6328  * We only return 1, saying don't proceed, if all timers
6329  * are stopped (destroyed PCB?).
6330  */
6331 static int
6332 rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6333 {
6334         if (tp->t_timers->tt_flags & TT_STOPPED) {
6335                 return (1);
6336         }
6337         rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL);
6338         tp->t_flags &= ~TF_DELACK;
6339         tp->t_flags |= TF_ACKNOW;
6340         KMOD_TCPSTAT_INC(tcps_delack);
6341         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
6342         return (0);
6343 }
6344
6345 /*
6346  * Persists timer, here we simply send the
6347  * same thing as a keepalive will.
6348  * the one byte send.
6349  *
6350  * We only return 1, saying don't proceed, if all timers
6351  * are stopped (destroyed PCB?).
6352  */
6353 static int
6354 rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6355 {
6356         struct tcptemp *t_template;
6357         struct inpcb *inp;
6358         int32_t retval = 1;
6359
6360         inp = tp->t_inpcb;
6361
6362         if (tp->t_timers->tt_flags & TT_STOPPED) {
6363                 return (1);
6364         }
6365         if (rack->rc_in_persist == 0)
6366                 return (0);
6367         if (ctf_progress_timeout_check(tp, false)) {
6368                 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6369                 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6370                 tcp_set_inp_to_drop(inp, ETIMEDOUT);
6371                 return (1);
6372         }
6373         KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
6374         /*
6375          * Persistence timer into zero window. Force a byte to be output, if
6376          * possible.
6377          */
6378         KMOD_TCPSTAT_INC(tcps_persisttimeo);
6379         /*
6380          * Hack: if the peer is dead/unreachable, we do not time out if the
6381          * window is closed.  After a full backoff, drop the connection if
6382          * the idle time (no responses to probes) reaches the maximum
6383          * backoff that we would use if retransmitting.
6384          */
6385         if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
6386             (ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
6387              TICKS_2_USEC(ticks - tp->t_rcvtime) >= RACK_REXMTVAL(tp) * tcp_totbackoff)) {
6388                 KMOD_TCPSTAT_INC(tcps_persistdrop);
6389                 retval = 1;
6390                 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6391                 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
6392                 goto out;
6393         }
6394         if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
6395             tp->snd_una == tp->snd_max)
6396                 rack_exit_persist(tp, rack, cts);
6397         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
6398         /*
6399          * If the user has closed the socket then drop a persisting
6400          * connection after a much reduced timeout.
6401          */
6402         if (tp->t_state > TCPS_CLOSE_WAIT &&
6403             (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
6404                 retval = 1;
6405                 KMOD_TCPSTAT_INC(tcps_persistdrop);
6406                 tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX);
6407                 tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
6408                 goto out;
6409         }
6410         t_template = tcpip_maketemplate(rack->rc_inp);
6411         if (t_template) {
6412                 /* only set it if we were answered */
6413                 if (rack->forced_ack == 0) {
6414                         rack->forced_ack = 1;
6415                         rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6416                 }
6417                 tcp_respond(tp, t_template->tt_ipgen,
6418                             &t_template->tt_t, (struct mbuf *)NULL,
6419                             tp->rcv_nxt, tp->snd_una - 1, 0);
6420                 /* This sends an ack */
6421                 if (tp->t_flags & TF_DELACK)
6422                         tp->t_flags &= ~TF_DELACK;
6423                 free(t_template, M_TEMP);
6424         }
6425         if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
6426                 tp->t_rxtshift++;
6427 out:
6428         rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL);
6429         rack_start_hpts_timer(rack, tp, cts,
6430                               0, 0, 0);
6431         return (retval);
6432 }
6433
6434 /*
6435  * If a keepalive goes off, we had no other timers
6436  * happening. We always return 1 here since this
6437  * routine either drops the connection or sends
6438  * out a segment with respond.
6439  */
6440 static int
6441 rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6442 {
6443         struct tcptemp *t_template;
6444         struct inpcb *inp;
6445
6446         if (tp->t_timers->tt_flags & TT_STOPPED) {
6447                 return (1);
6448         }
6449         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
6450         inp = tp->t_inpcb;
6451         rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL);
6452         /*
6453          * Keep-alive timer went off; send something or drop connection if
6454          * idle for too long.
6455          */
6456         KMOD_TCPSTAT_INC(tcps_keeptimeo);
6457         if (tp->t_state < TCPS_ESTABLISHED)
6458                 goto dropit;
6459         if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
6460             tp->t_state <= TCPS_CLOSING) {
6461                 if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
6462                         goto dropit;
6463                 /*
6464                  * Send a packet designed to force a response if the peer is
6465                  * up and reachable: either an ACK if the connection is
6466                  * still alive, or an RST if the peer has closed the
6467                  * connection due to timeout or reboot. Using sequence
6468                  * number tp->snd_una-1 causes the transmitted zero-length
6469                  * segment to lie outside the receive window; by the
6470                  * protocol spec, this requires the correspondent TCP to
6471                  * respond.
6472                  */
6473                 KMOD_TCPSTAT_INC(tcps_keepprobe);
6474                 t_template = tcpip_maketemplate(inp);
6475                 if (t_template) {
6476                         if (rack->forced_ack == 0) {
6477                                 rack->forced_ack = 1;
6478                                 rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL);
6479                         }
6480                         tcp_respond(tp, t_template->tt_ipgen,
6481                             &t_template->tt_t, (struct mbuf *)NULL,
6482                             tp->rcv_nxt, tp->snd_una - 1, 0);
6483                         free(t_template, M_TEMP);
6484                 }
6485         }
6486         rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
6487         return (1);
6488 dropit:
6489         KMOD_TCPSTAT_INC(tcps_keepdrops);
6490         tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6491         tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
6492         return (1);
6493 }
6494
6495 /*
6496  * Retransmit helper function, clear up all the ack
6497  * flags and take care of important book keeping.
6498  */
6499 static void
6500 rack_remxt_tmr(struct tcpcb *tp)
6501 {
6502         /*
6503          * The retransmit timer went off, all sack'd blocks must be
6504          * un-acked.
6505          */
6506         struct rack_sendmap *rsm, *trsm = NULL;
6507         struct tcp_rack *rack;
6508
6509         rack = (struct tcp_rack *)tp->t_fb_ptr;
6510         rack_timer_cancel(tp, rack, tcp_get_usecs(NULL), __LINE__);
6511         rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL);
6512         if (rack->r_state && (rack->r_state != tp->t_state))
6513                 rack_set_state(tp, rack);
6514         /*
6515          * Ideally we would like to be able to
6516          * mark SACK-PASS on anything not acked here.
6517          *
6518          * However, if we do that we would burst out
6519          * all that data 1ms apart. This would be unwise,
6520          * so for now we will just let the normal rxt timer
6521          * and tlp timer take care of it.
6522          *
6523          * Also we really need to stick them back in sequence
6524          * order. This way we send in the proper order and any
6525          * sacks that come floating in will "re-ack" the data.
6526          * To do this we zap the tmap with an INIT and then
6527          * walk through and place every rsm in the RB tree
6528          * back in its seq ordered place.
6529          */
6530         TAILQ_INIT(&rack->r_ctl.rc_tmap);
6531         RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
6532                 rsm->r_dupack = 0;
6533                 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
6534                 /* We must re-add it back to the tlist */
6535                 if (trsm == NULL) {
6536                         TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
6537                 } else {
6538                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
6539                 }
6540                 rsm->r_in_tmap = 1;
6541                 trsm = rsm;
6542                 if (rsm->r_flags & RACK_ACKED)
6543                         rsm->r_flags |= RACK_WAS_ACKED;
6544                 rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
6545         }
6546         /* Clear the count (we just un-acked them) */
6547         rack->r_ctl.rc_last_timeout_snduna = tp->snd_una;
6548         rack->r_ctl.rc_sacked = 0;
6549         rack->r_ctl.rc_sacklast = NULL;
6550         rack->r_ctl.rc_agg_delayed = 0;
6551         rack->r_early = 0;
6552         rack->r_ctl.rc_agg_early = 0;
6553         rack->r_late = 0;
6554         /* Clear the tlp rtx mark */
6555         rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6556         if (rack->r_ctl.rc_resend != NULL)
6557                 rack->r_ctl.rc_resend->r_flags |= RACK_TO_REXT;
6558         rack->r_ctl.rc_prr_sndcnt = 0;
6559         rack_log_to_prr(rack, 6, 0);
6560         rack->r_timer_override = 1;
6561         if ((((tp->t_flags & TF_SACK_PERMIT) == 0)
6562 #ifdef NETFLIX_EXP_DETECTION
6563             || (rack->sack_attack_disable != 0)
6564 #endif
6565                     ) && ((tp->t_flags & TF_SENTFIN) == 0)) {
6566                 /*
6567                  * For non-sack customers new data
6568                  * needs to go out as retransmits until
6569                  * we retransmit up to snd_max.
6570                  */
6571                 rack->r_must_retran = 1;
6572                 rack->r_ctl.rc_out_at_rto = ctf_flight_size(rack->rc_tp,
6573                                                 rack->r_ctl.rc_sacked);
6574         }
6575         rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
6576 }
6577
6578 static void
6579 rack_convert_rtts(struct tcpcb *tp)
6580 {
6581         if (tp->t_srtt > 1) {
6582                 uint32_t val, frac;
6583
6584                 val = tp->t_srtt >> TCP_RTT_SHIFT;
6585                 frac = tp->t_srtt & 0x1f;
6586                 tp->t_srtt = TICKS_2_USEC(val);
6587                 /*
6588                  * frac is the fractional part of the srtt (if any)
6589                  * but its in ticks and every bit represents
6590                  * 1/32nd of a hz.
6591                  */
6592                 if (frac) {
6593                         if (hz == 1000) {
6594                                 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6595                         } else {
6596                                 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6597                         }
6598                         tp->t_srtt += frac;
6599                 }
6600         }
6601         if (tp->t_rttvar) {
6602                 uint32_t val, frac;
6603
6604                 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT;
6605                 frac = tp->t_rttvar & 0x1f;
6606                 tp->t_rttvar = TICKS_2_USEC(val);
6607                 /*
6608                  * frac is the fractional part of the srtt (if any)
6609                  * but its in ticks and every bit represents
6610                  * 1/32nd of a hz.
6611                  */
6612                 if (frac) {
6613                         if (hz == 1000) {
6614                                 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE);
6615                         } else {
6616                                 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE));
6617                         }
6618                         tp->t_rttvar += frac;
6619                 }
6620         }
6621         tp->t_rxtcur = RACK_REXMTVAL(tp);
6622         if (TCPS_HAVEESTABLISHED(tp->t_state)) {
6623                 tp->t_rxtcur += TICKS_2_USEC(tcp_rexmit_slop);
6624         }
6625         if (tp->t_rxtcur > rack_rto_max) {
6626                 tp->t_rxtcur = rack_rto_max;
6627         }
6628 }
6629
6630 static void
6631 rack_cc_conn_init(struct tcpcb *tp)
6632 {
6633         struct tcp_rack *rack;
6634         uint32_t srtt;
6635
6636         rack = (struct tcp_rack *)tp->t_fb_ptr;
6637         srtt = tp->t_srtt;
6638         cc_conn_init(tp);
6639         /*
6640          * Now convert to rack's internal format,
6641          * if required.
6642          */
6643         if ((srtt == 0) && (tp->t_srtt != 0))
6644                 rack_convert_rtts(tp);
6645         /*
6646          * We want a chance to stay in slowstart as
6647          * we create a connection. TCP spec says that
6648          * initially ssthresh is infinite. For our
6649          * purposes that is the snd_wnd.
6650          */
6651         if (tp->snd_ssthresh < tp->snd_wnd) {
6652                 tp->snd_ssthresh = tp->snd_wnd;
6653         }
6654         /*
6655          * We also want to assure a IW worth of
6656          * data can get inflight.
6657          */
6658         if (rc_init_window(rack) < tp->snd_cwnd)
6659                 tp->snd_cwnd = rc_init_window(rack);
6660 }
6661
6662 /*
6663  * Re-transmit timeout! If we drop the PCB we will return 1, otherwise
6664  * we will setup to retransmit the lowest seq number outstanding.
6665  */
6666 static int
6667 rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
6668 {
6669         int32_t rexmt;
6670         struct inpcb *inp;
6671         int32_t retval = 0;
6672         bool isipv6;
6673
6674         inp = tp->t_inpcb;
6675         if (tp->t_timers->tt_flags & TT_STOPPED) {
6676                 return (1);
6677         }
6678         if (ctf_progress_timeout_check(tp, false)) {
6679                 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6680                 rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
6681                 tcp_set_inp_to_drop(inp, ETIMEDOUT);
6682                 return (1);
6683         }
6684         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
6685         rack->r_ctl.retran_during_recovery = 0;
6686         rack->r_ctl.dsack_byte_cnt = 0;
6687         if (IN_FASTRECOVERY(tp->t_flags))
6688                 tp->t_flags |= TF_WASFRECOVERY;
6689         else
6690                 tp->t_flags &= ~TF_WASFRECOVERY;
6691         if (IN_CONGRECOVERY(tp->t_flags))
6692                 tp->t_flags |= TF_WASCRECOVERY;
6693         else
6694                 tp->t_flags &= ~TF_WASCRECOVERY;
6695         if (TCPS_HAVEESTABLISHED(tp->t_state) &&
6696             (tp->snd_una == tp->snd_max)) {
6697                 /* Nothing outstanding .. nothing to do */
6698                 return (0);
6699         }
6700         /*
6701          * Rack can only run one timer  at a time, so we cannot
6702          * run a KEEPINIT (gating SYN sending) and a retransmit
6703          * timer for the SYN. So if we are in a front state and
6704          * have a KEEPINIT timer we need to check the first transmit
6705          * against now to see if we have exceeded the KEEPINIT time
6706          * (if one is set).
6707          */
6708         if ((TCPS_HAVEESTABLISHED(tp->t_state) == 0) &&
6709             (TP_KEEPINIT(tp) != 0)) {
6710                 struct rack_sendmap *rsm;
6711
6712                 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
6713                 if (rsm) {
6714                         /* Ok we have something outstanding to test keepinit with */
6715                         if ((TSTMP_GT(cts, (uint32_t)rsm->r_tim_lastsent[0])) &&
6716                             ((cts - (uint32_t)rsm->r_tim_lastsent[0]) >= TICKS_2_USEC(TP_KEEPINIT(tp)))) {
6717                                 /* We have exceeded the KEEPINIT time */
6718                                 tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX);
6719                                 goto drop_it;
6720                         }
6721                 }
6722         }
6723         /*
6724          * Retransmission timer went off.  Message has not been acked within
6725          * retransmit interval.  Back off to a longer retransmit interval
6726          * and retransmit one segment.
6727          */
6728         rack_remxt_tmr(tp);
6729         if ((rack->r_ctl.rc_resend == NULL) ||
6730             ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
6731                 /*
6732                  * If the rwnd collapsed on
6733                  * the one we are retransmitting
6734                  * it does not count against the
6735                  * rxt count.
6736                  */
6737                 tp->t_rxtshift++;
6738         }
6739         if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
6740                 tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN);
6741 drop_it:
6742                 tp->t_rxtshift = TCP_MAXRXTSHIFT;
6743                 KMOD_TCPSTAT_INC(tcps_timeoutdrop);
6744                 retval = 1;
6745                 tcp_set_inp_to_drop(rack->rc_inp,
6746                     (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
6747                 goto out;
6748         }
6749         if (tp->t_state == TCPS_SYN_SENT) {
6750                 /*
6751                  * If the SYN was retransmitted, indicate CWND to be limited
6752                  * to 1 segment in cc_conn_init().
6753                  */
6754                 tp->snd_cwnd = 1;
6755         } else if (tp->t_rxtshift == 1) {
6756                 /*
6757                  * first retransmit; record ssthresh and cwnd so they can be
6758                  * recovered if this turns out to be a "bad" retransmit. A
6759                  * retransmit is considered "bad" if an ACK for this segment
6760                  * is received within RTT/2 interval; the assumption here is
6761                  * that the ACK was already in flight.  See "On Estimating
6762                  * End-to-End Network Path Properties" by Allman and Paxson
6763                  * for more details.
6764                  */
6765                 tp->snd_cwnd_prev = tp->snd_cwnd;
6766                 tp->snd_ssthresh_prev = tp->snd_ssthresh;
6767                 tp->snd_recover_prev = tp->snd_recover;
6768                 tp->t_badrxtwin = ticks + (USEC_2_TICKS(tp->t_srtt)/2);
6769                 tp->t_flags |= TF_PREVVALID;
6770         } else if ((tp->t_flags & TF_RCVD_TSTMP) == 0)
6771                 tp->t_flags &= ~TF_PREVVALID;
6772         KMOD_TCPSTAT_INC(tcps_rexmttimeo);
6773         if ((tp->t_state == TCPS_SYN_SENT) ||
6774             (tp->t_state == TCPS_SYN_RECEIVED))
6775                 rexmt = RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift];
6776         else
6777                 rexmt = max(rack_rto_min, (tp->t_srtt + (tp->t_rttvar << 2))) * tcp_backoff[tp->t_rxtshift];
6778
6779         RACK_TCPT_RANGESET(tp->t_rxtcur, rexmt,
6780            max(rack_rto_min, rexmt), rack_rto_max, rack->r_ctl.timer_slop);
6781         /*
6782          * We enter the path for PLMTUD if connection is established or, if
6783          * connection is FIN_WAIT_1 status, reason for the last is that if
6784          * amount of data we send is very small, we could send it in couple
6785          * of packets and process straight to FIN. In that case we won't
6786          * catch ESTABLISHED state.
6787          */
6788 #ifdef INET6
6789         isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false;
6790 #else
6791         isipv6 = false;
6792 #endif
6793         if (((V_tcp_pmtud_blackhole_detect == 1) ||
6794             (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) ||
6795             (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) &&
6796             ((tp->t_state == TCPS_ESTABLISHED) ||
6797             (tp->t_state == TCPS_FIN_WAIT_1))) {
6798                 /*
6799                  * Idea here is that at each stage of mtu probe (usually,
6800                  * 1448 -> 1188 -> 524) should be given 2 chances to recover
6801                  * before further clamping down. 'tp->t_rxtshift % 2 == 0'
6802                  * should take care of that.
6803                  */
6804                 if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
6805                     (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
6806                     (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
6807                     tp->t_rxtshift % 2 == 0)) {
6808                         /*
6809                          * Enter Path MTU Black-hole Detection mechanism: -
6810                          * Disable Path MTU Discovery (IP "DF" bit). -
6811                          * Reduce MTU to lower value than what we negotiated
6812                          * with peer.
6813                          */
6814                         if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
6815                                 /* Record that we may have found a black hole. */
6816                                 tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
6817                                 /* Keep track of previous MSS. */
6818                                 tp->t_pmtud_saved_maxseg = tp->t_maxseg;
6819                         }
6820
6821                         /*
6822                          * Reduce the MSS to blackhole value or to the
6823                          * default in an attempt to retransmit.
6824                          */
6825 #ifdef INET6
6826                         if (isipv6 &&
6827                             tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
6828                                 /* Use the sysctl tuneable blackhole MSS. */
6829                                 tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
6830                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6831                         } else if (isipv6) {
6832                                 /* Use the default MSS. */
6833                                 tp->t_maxseg = V_tcp_v6mssdflt;
6834                                 /*
6835                                  * Disable Path MTU Discovery when we switch
6836                                  * to minmss.
6837                                  */
6838                                 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6839                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6840                         }
6841 #endif
6842 #if defined(INET6) && defined(INET)
6843                         else
6844 #endif
6845 #ifdef INET
6846                         if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
6847                                 /* Use the sysctl tuneable blackhole MSS. */
6848                                 tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
6849                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated);
6850                         } else {
6851                                 /* Use the default MSS. */
6852                                 tp->t_maxseg = V_tcp_mssdflt;
6853                                 /*
6854                                  * Disable Path MTU Discovery when we switch
6855                                  * to minmss.
6856                                  */
6857                                 tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
6858                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
6859                         }
6860 #endif
6861                 } else {
6862                         /*
6863                          * If further retransmissions are still unsuccessful
6864                          * with a lowered MTU, maybe this isn't a blackhole
6865                          * and we restore the previous MSS and blackhole
6866                          * detection flags. The limit '6' is determined by
6867                          * giving each probe stage (1448, 1188, 524) 2
6868                          * chances to recover.
6869                          */
6870                         if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
6871                             (tp->t_rxtshift >= 6)) {
6872                                 tp->t_flags2 |= TF2_PLPMTU_PMTUD;
6873                                 tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
6874                                 tp->t_maxseg = tp->t_pmtud_saved_maxseg;
6875                                 KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed);
6876                         }
6877                 }
6878         }
6879         /*
6880          * Disable RFC1323 and SACK if we haven't got any response to
6881          * our third SYN to work-around some broken terminal servers
6882          * (most of which have hopefully been retired) that have bad VJ
6883          * header compression code which trashes TCP segments containing
6884          * unknown-to-them TCP options.
6885          */
6886         if (tcp_rexmit_drop_options && (tp->t_state == TCPS_SYN_SENT) &&
6887             (tp->t_rxtshift == 3))
6888                 tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP|TF_SACK_PERMIT);
6889         /*
6890          * If we backed off this far, our srtt estimate is probably bogus.
6891          * Clobber it so we'll take the next rtt measurement as our srtt;
6892          * move the current srtt into rttvar to keep the current retransmit
6893          * times until then.
6894          */
6895         if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
6896 #ifdef INET6
6897                 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
6898                         in6_losing(tp->t_inpcb);
6899                 else
6900 #endif
6901                         in_losing(tp->t_inpcb);
6902                 tp->t_rttvar += tp->t_srtt;
6903                 tp->t_srtt = 0;
6904         }
6905         sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
6906         tp->snd_recover = tp->snd_max;
6907         tp->t_flags |= TF_ACKNOW;
6908         tp->t_rtttime = 0;
6909         rack_cong_signal(tp, CC_RTO, tp->snd_una);
6910 out:
6911         return (retval);
6912 }
6913
6914 static int
6915 rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
6916 {
6917         int32_t ret = 0;
6918         int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
6919
6920         if (timers == 0) {
6921                 return (0);
6922         }
6923         if (tp->t_state == TCPS_LISTEN) {
6924                 /* no timers on listen sockets */
6925                 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
6926                         return (0);
6927                 return (1);
6928         }
6929         if ((timers & PACE_TMR_RACK) &&
6930             rack->rc_on_min_to) {
6931                 /*
6932                  * For the rack timer when we
6933                  * are on a min-timeout (which means rrr_conf = 3)
6934                  * we don't want to check the timer. It may
6935                  * be going off for a pace and thats ok we
6936                  * want to send the retransmit (if its ready).
6937                  *
6938                  * If its on a normal rack timer (non-min) then
6939                  * we will check if its expired.
6940                  */
6941                 goto skip_time_check;
6942         }
6943         if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
6944                 uint32_t left;
6945
6946                 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
6947                         ret = -1;
6948                         rack_log_to_processing(rack, cts, ret, 0);
6949                         return (0);
6950                 }
6951                 if (hpts_calling == 0) {
6952                         /*
6953                          * A user send or queued mbuf (sack) has called us? We
6954                          * return 0 and let the pacing guards
6955                          * deal with it if they should or
6956                          * should not cause a send.
6957                          */
6958                         ret = -2;
6959                         rack_log_to_processing(rack, cts, ret, 0);
6960                         return (0);
6961                 }
6962                 /*
6963                  * Ok our timer went off early and we are not paced false
6964                  * alarm, go back to sleep.
6965                  */
6966                 ret = -3;
6967                 left = rack->r_ctl.rc_timer_exp - cts;
6968                 tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
6969                 rack_log_to_processing(rack, cts, ret, left);
6970                 return (1);
6971         }
6972 skip_time_check:
6973         rack->rc_tmr_stopped = 0;
6974         rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
6975         if (timers & PACE_TMR_DELACK) {
6976                 ret = rack_timeout_delack(tp, rack, cts);
6977         } else if (timers & PACE_TMR_RACK) {
6978                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6979                 rack->r_fast_output = 0;
6980                 ret = rack_timeout_rack(tp, rack, cts);
6981         } else if (timers & PACE_TMR_TLP) {
6982                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6983                 ret = rack_timeout_tlp(tp, rack, cts);
6984         } else if (timers & PACE_TMR_RXT) {
6985                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
6986                 rack->r_fast_output = 0;
6987                 ret = rack_timeout_rxt(tp, rack, cts);
6988         } else if (timers & PACE_TMR_PERSIT) {
6989                 ret = rack_timeout_persist(tp, rack, cts);
6990         } else if (timers & PACE_TMR_KEEP) {
6991                 ret = rack_timeout_keepalive(tp, rack, cts);
6992         }
6993         rack_log_to_processing(rack, cts, ret, timers);
6994         return (ret);
6995 }
6996
6997 static void
6998 rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
6999 {
7000         struct timeval tv;
7001         uint32_t us_cts, flags_on_entry;
7002         uint8_t hpts_removed = 0;
7003
7004         flags_on_entry = rack->r_ctl.rc_hpts_flags;
7005         us_cts = tcp_get_usecs(&tv);
7006         if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
7007             ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) ||
7008              ((tp->snd_max - tp->snd_una) == 0))) {
7009                 tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7010                 hpts_removed = 1;
7011                 /* If we were not delayed cancel out the flag. */
7012                 if ((tp->snd_max - tp->snd_una) == 0)
7013                         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
7014                 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
7015         }
7016         if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
7017                 rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
7018                 if (rack->rc_inp->inp_in_hpts &&
7019                     ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
7020                         /*
7021                          * Canceling timer's when we have no output being
7022                          * paced. We also must remove ourselves from the
7023                          * hpts.
7024                          */
7025                         tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
7026                         hpts_removed = 1;
7027                 }
7028                 rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
7029         }
7030         if (hpts_removed == 0)
7031                 rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry);
7032 }
7033
7034 static void
7035 rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
7036 {
7037         return;
7038 }
7039
7040 static int
7041 rack_stopall(struct tcpcb *tp)
7042 {
7043         struct tcp_rack *rack;
7044         rack = (struct tcp_rack *)tp->t_fb_ptr;
7045         rack->t_timers_stopped = 1;
7046         return (0);
7047 }
7048
7049 static void
7050 rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
7051 {
7052         return;
7053 }
7054
7055 static int
7056 rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
7057 {
7058         return (0);
7059 }
7060
7061 static void
7062 rack_stop_all_timers(struct tcpcb *tp)
7063 {
7064         struct tcp_rack *rack;
7065
7066         /*
7067          * Assure no timers are running.
7068          */
7069         if (tcp_timer_active(tp, TT_PERSIST)) {
7070                 /* We enter in persists, set the flag appropriately */
7071                 rack = (struct tcp_rack *)tp->t_fb_ptr;
7072                 rack->rc_in_persist = 1;
7073         }
7074         tcp_timer_suspend(tp, TT_PERSIST);
7075         tcp_timer_suspend(tp, TT_REXMT);
7076         tcp_timer_suspend(tp, TT_KEEP);
7077         tcp_timer_suspend(tp, TT_DELACK);
7078 }
7079
7080 static void
7081 rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
7082     struct rack_sendmap *rsm, uint64_t ts, uint16_t add_flag)
7083 {
7084         int32_t idx;
7085         uint16_t stripped_flags;
7086
7087         rsm->r_rtr_cnt++;
7088         rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7089         rsm->r_dupack = 0;
7090         if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
7091                 rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
7092                 rsm->r_flags |= RACK_OVERMAX;
7093         }
7094         if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) {
7095                 rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
7096                 rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
7097         }
7098         idx = rsm->r_rtr_cnt - 1;
7099         rsm->r_tim_lastsent[idx] = ts;
7100         stripped_flags = rsm->r_flags & ~(RACK_SENT_SP|RACK_SENT_FP);
7101         if (rsm->r_flags & RACK_ACKED) {
7102                 /* Problably MTU discovery messing with us */
7103                 rsm->r_flags &= ~RACK_ACKED;
7104                 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
7105         }
7106         if (rsm->r_in_tmap) {
7107                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7108                 rsm->r_in_tmap = 0;
7109         }
7110         TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7111         rsm->r_in_tmap = 1;
7112         if (rsm->r_flags & RACK_SACK_PASSED) {
7113                 /* We have retransmitted due to the SACK pass */
7114                 rsm->r_flags &= ~RACK_SACK_PASSED;
7115                 rsm->r_flags |= RACK_WAS_SACKPASS;
7116         }
7117 }
7118
7119 static uint32_t
7120 rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
7121     struct rack_sendmap *rsm, uint64_t ts, int32_t *lenp, uint16_t add_flag)
7122 {
7123         /*
7124          * We (re-)transmitted starting at rsm->r_start for some length
7125          * (possibly less than r_end.
7126          */
7127         struct rack_sendmap *nrsm, *insret;
7128         uint32_t c_end;
7129         int32_t len;
7130
7131         len = *lenp;
7132         c_end = rsm->r_start + len;
7133         if (SEQ_GEQ(c_end, rsm->r_end)) {
7134                 /*
7135                  * We retransmitted the whole piece or more than the whole
7136                  * slopping into the next rsm.
7137                  */
7138                 rack_update_rsm(tp, rack, rsm, ts, add_flag);
7139                 if (c_end == rsm->r_end) {
7140                         *lenp = 0;
7141                         return (0);
7142                 } else {
7143                         int32_t act_len;
7144
7145                         /* Hangs over the end return whats left */
7146                         act_len = rsm->r_end - rsm->r_start;
7147                         *lenp = (len - act_len);
7148                         return (rsm->r_end);
7149                 }
7150                 /* We don't get out of this block. */
7151         }
7152         /*
7153          * Here we retransmitted less than the whole thing which means we
7154          * have to split this into what was transmitted and what was not.
7155          */
7156         nrsm = rack_alloc_full_limit(rack);
7157         if (nrsm == NULL) {
7158                 /*
7159                  * We can't get memory, so lets not proceed.
7160                  */
7161                 *lenp = 0;
7162                 return (0);
7163         }
7164         /*
7165          * So here we are going to take the original rsm and make it what we
7166          * retransmitted. nrsm will be the tail portion we did not
7167          * retransmit. For example say the chunk was 1, 11 (10 bytes). And
7168          * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
7169          * 1, 6 and the new piece will be 6, 11.
7170          */
7171         rack_clone_rsm(rack, nrsm, rsm, c_end);
7172         nrsm->r_dupack = 0;
7173         rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
7174         insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7175 #ifdef INVARIANTS
7176         if (insret != NULL) {
7177                 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7178                       nrsm, insret, rack, rsm);
7179         }
7180 #endif
7181         if (rsm->r_in_tmap) {
7182                 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7183                 nrsm->r_in_tmap = 1;
7184         }
7185         rsm->r_flags &= (~RACK_HAS_FIN);
7186         rack_update_rsm(tp, rack, rsm, ts, add_flag);
7187         /* Log a split of rsm into rsm and nrsm */
7188         rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7189         *lenp = 0;
7190         return (0);
7191 }
7192
7193 static void
7194 rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
7195                 uint32_t seq_out, uint8_t th_flags, int32_t err, uint64_t cts,
7196                 struct rack_sendmap *hintrsm, uint16_t add_flag, struct mbuf *s_mb, uint32_t s_moff)
7197 {
7198         struct tcp_rack *rack;
7199         struct rack_sendmap *rsm, *nrsm, *insret, fe;
7200         register uint32_t snd_max, snd_una;
7201
7202         /*
7203          * Add to the RACK log of packets in flight or retransmitted. If
7204          * there is a TS option we will use the TS echoed, if not we will
7205          * grab a TS.
7206          *
7207          * Retransmissions will increment the count and move the ts to its
7208          * proper place. Note that if options do not include TS's then we
7209          * won't be able to effectively use the ACK for an RTT on a retran.
7210          *
7211          * Notes about r_start and r_end. Lets consider a send starting at
7212          * sequence 1 for 10 bytes. In such an example the r_start would be
7213          * 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
7214          * This means that r_end is actually the first sequence for the next
7215          * slot (11).
7216          *
7217          */
7218         /*
7219          * If err is set what do we do XXXrrs? should we not add the thing?
7220          * -- i.e. return if err != 0 or should we pretend we sent it? --
7221          * i.e. proceed with add ** do this for now.
7222          */
7223         INP_WLOCK_ASSERT(tp->t_inpcb);
7224         if (err)
7225                 /*
7226                  * We don't log errors -- we could but snd_max does not
7227                  * advance in this case either.
7228                  */
7229                 return;
7230
7231         if (th_flags & TH_RST) {
7232                 /*
7233                  * We don't log resets and we return immediately from
7234                  * sending
7235                  */
7236                 return;
7237         }
7238         rack = (struct tcp_rack *)tp->t_fb_ptr;
7239         snd_una = tp->snd_una;
7240         snd_max = tp->snd_max;
7241         if (th_flags & (TH_SYN | TH_FIN)) {
7242                 /*
7243                  * The call to rack_log_output is made before bumping
7244                  * snd_max. This means we can record one extra byte on a SYN
7245                  * or FIN if seq_out is adding more on and a FIN is present
7246                  * (and we are not resending).
7247                  */
7248                 if ((th_flags & TH_SYN) && (seq_out == tp->iss))
7249                         len++;
7250                 if (th_flags & TH_FIN)
7251                         len++;
7252                 if (SEQ_LT(snd_max, tp->snd_nxt)) {
7253                         /*
7254                          * The add/update as not been done for the FIN/SYN
7255                          * yet.
7256                          */
7257                         snd_max = tp->snd_nxt;
7258                 }
7259         }
7260         if (SEQ_LEQ((seq_out + len), snd_una)) {
7261                 /* Are sending an old segment to induce an ack (keep-alive)? */
7262                 return;
7263         }
7264         if (SEQ_LT(seq_out, snd_una)) {
7265                 /* huh? should we panic? */
7266                 uint32_t end;
7267
7268                 end = seq_out + len;
7269                 seq_out = snd_una;
7270                 if (SEQ_GEQ(end, seq_out))
7271                         len = end - seq_out;
7272                 else
7273                         len = 0;
7274         }
7275         if (len == 0) {
7276                 /* We don't log zero window probes */
7277                 return;
7278         }
7279         rack->r_ctl.rc_time_last_sent = cts;
7280         if (IN_FASTRECOVERY(tp->t_flags)) {
7281                 rack->r_ctl.rc_prr_out += len;
7282         }
7283         /* First question is it a retransmission or new? */
7284         if (seq_out == snd_max) {
7285                 /* Its new */
7286 again:
7287                 rsm = rack_alloc(rack);
7288                 if (rsm == NULL) {
7289                         /*
7290                          * Hmm out of memory and the tcb got destroyed while
7291                          * we tried to wait.
7292                          */
7293                         return;
7294                 }
7295                 if (th_flags & TH_FIN) {
7296                         rsm->r_flags = RACK_HAS_FIN|add_flag;
7297                 } else {
7298                         rsm->r_flags = add_flag;
7299                 }
7300                 rsm->r_tim_lastsent[0] = cts;
7301                 rsm->r_rtr_cnt = 1;
7302                 rsm->r_rtr_bytes = 0;
7303                 if (th_flags & TH_SYN) {
7304                         /* The data space is one beyond snd_una */
7305                         rsm->r_flags |= RACK_HAS_SYN;
7306                 }
7307                 rsm->r_start = seq_out;
7308                 rsm->r_end = rsm->r_start + len;
7309                 rsm->r_dupack = 0;
7310                 /*
7311                  * save off the mbuf location that
7312                  * sndmbuf_noadv returned (which is
7313                  * where we started copying from)..
7314                  */
7315                 rsm->m = s_mb;
7316                 rsm->soff = s_moff;
7317                 /* rsm->m will be NULL if RACK_HAS_SYN or RACK_HAS_FIN is set */
7318                 if (rsm->m) {
7319                         if (rsm->m->m_len <= rsm->soff) {
7320                                 /*
7321                                  * XXXrrs Question, will this happen?
7322                                  *
7323                                  * If sbsndptr is set at the correct place
7324                                  * then s_moff should always be somewhere
7325                                  * within rsm->m. But if the sbsndptr was
7326                                  * off then that won't be true. If it occurs
7327                                  * we need to walkout to the correct location.
7328                                  */
7329                                 struct mbuf *lm;
7330
7331                                 lm = rsm->m;
7332                                 while (lm->m_len <= rsm->soff) {
7333                                         rsm->soff -= lm->m_len;
7334                                         lm = lm->m_next;
7335                                         KASSERT(lm != NULL, ("%s rack:%p lm goes null orig_off:%u origmb:%p rsm->soff:%u",
7336                                                              __func__, rack, s_moff, s_mb, rsm->soff));
7337                                 }
7338                                 rsm->m = lm;
7339                                 counter_u64_add(rack_sbsndptr_wrong, 1);
7340                         } else
7341                                 counter_u64_add(rack_sbsndptr_right, 1);
7342                         rsm->orig_m_len = rsm->m->m_len;
7343                 } else
7344                         rsm->orig_m_len = 0;
7345                 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
7346                 /* Log a new rsm */
7347                 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_NEW, 0, __LINE__);
7348                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7349 #ifdef INVARIANTS
7350                 if (insret != NULL) {
7351                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7352                               nrsm, insret, rack, rsm);
7353                 }
7354 #endif
7355                 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
7356                 rsm->r_in_tmap = 1;
7357                 /*
7358                  * Special case detection, is there just a single
7359                  * packet outstanding when we are not in recovery?
7360                  *
7361                  * If this is true mark it so.
7362                  */
7363                 if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
7364                     (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) {
7365                         struct rack_sendmap *prsm;
7366
7367                         prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
7368                         if (prsm)
7369                                 prsm->r_one_out_nr = 1;
7370                 }
7371                 return;
7372         }
7373         /*
7374          * If we reach here its a retransmission and we need to find it.
7375          */
7376         memset(&fe, 0, sizeof(fe));
7377 more:
7378         if (hintrsm && (hintrsm->r_start == seq_out)) {
7379                 rsm = hintrsm;
7380                 hintrsm = NULL;
7381         } else {
7382                 /* No hints sorry */
7383                 rsm = NULL;
7384         }
7385         if ((rsm) && (rsm->r_start == seq_out)) {
7386                 seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7387                 if (len == 0) {
7388                         return;
7389                 } else {
7390                         goto more;
7391                 }
7392         }
7393         /* Ok it was not the last pointer go through it the hard way. */
7394 refind:
7395         fe.r_start = seq_out;
7396         rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
7397         if (rsm) {
7398                 if (rsm->r_start == seq_out) {
7399                         seq_out = rack_update_entry(tp, rack, rsm, cts, &len, add_flag);
7400                         if (len == 0) {
7401                                 return;
7402                         } else {
7403                                 goto refind;
7404                         }
7405                 }
7406                 if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
7407                         /* Transmitted within this piece */
7408                         /*
7409                          * Ok we must split off the front and then let the
7410                          * update do the rest
7411                          */
7412                         nrsm = rack_alloc_full_limit(rack);
7413                         if (nrsm == NULL) {
7414                                 rack_update_rsm(tp, rack, rsm, cts, add_flag);
7415                                 return;
7416                         }
7417                         /*
7418                          * copy rsm to nrsm and then trim the front of rsm
7419                          * to not include this part.
7420                          */
7421                         rack_clone_rsm(rack, nrsm, rsm, seq_out);
7422                         insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
7423                         rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SPLIT, 0, __LINE__);
7424 #ifdef INVARIANTS
7425                         if (insret != NULL) {
7426                                 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
7427                                       nrsm, insret, rack, rsm);
7428                         }
7429 #endif
7430                         if (rsm->r_in_tmap) {
7431                                 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
7432                                 nrsm->r_in_tmap = 1;
7433                         }
7434                         rsm->r_flags &= (~RACK_HAS_FIN);
7435                         seq_out = rack_update_entry(tp, rack, nrsm, cts, &len, add_flag);
7436                         if (len == 0) {
7437                                 return;
7438                         } else if (len > 0)
7439                                 goto refind;
7440                 }
7441         }
7442         /*
7443          * Hmm not found in map did they retransmit both old and on into the
7444          * new?
7445          */
7446         if (seq_out == tp->snd_max) {
7447                 goto again;
7448         } else if (SEQ_LT(seq_out, tp->snd_max)) {
7449 #ifdef INVARIANTS
7450                 printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
7451                        seq_out, len, tp->snd_una, tp->snd_max);
7452                 printf("Starting Dump of all rack entries\n");
7453                 RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
7454                         printf("rsm:%p start:%u end:%u\n",
7455                                rsm, rsm->r_start, rsm->r_end);
7456                 }
7457                 printf("Dump complete\n");
7458                 panic("seq_out not found rack:%p tp:%p",
7459                       rack, tp);
7460 #endif
7461         } else {
7462 #ifdef INVARIANTS
7463                 /*
7464                  * Hmm beyond sndmax? (only if we are using the new rtt-pack
7465                  * flag)
7466                  */
7467                 panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
7468                       seq_out, len, tp->snd_max, tp);
7469 #endif
7470         }
7471 }
7472
7473 /*
7474  * Record one of the RTT updates from an ack into
7475  * our sample structure.
7476  */
7477
7478 static void
7479 tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt,
7480                     int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt)
7481 {
7482         if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7483             (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
7484                 rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
7485         }
7486         if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7487             (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
7488                 rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
7489         }
7490         if (rack->rc_tp->t_flags & TF_GPUTINPROG) {
7491             if (us_rtt < rack->r_ctl.rc_gp_lowrtt)
7492                 rack->r_ctl.rc_gp_lowrtt = us_rtt;
7493             if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd)
7494                     rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
7495         }
7496         if ((confidence == 1) &&
7497             ((rsm == NULL) ||
7498              (rsm->r_just_ret) ||
7499              (rsm->r_one_out_nr &&
7500               len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) {
7501                 /*
7502                  * If the rsm had a just return
7503                  * hit it then we can't trust the
7504                  * rtt measurement for buffer deterimination
7505                  * Note that a confidence of 2, indicates
7506                  * SACK'd which overrides the r_just_ret or
7507                  * the r_one_out_nr. If it was a CUM-ACK and
7508                  * we had only two outstanding, but get an
7509                  * ack for only 1. Then that also lowers our
7510                  * confidence.
7511                  */
7512                 confidence = 0;
7513         }
7514         if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
7515             (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) {
7516                 if (rack->r_ctl.rack_rs.confidence == 0) {
7517                         /*
7518                          * We take anything with no current confidence
7519                          * saved.
7520                          */
7521                         rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7522                         rack->r_ctl.rack_rs.confidence = confidence;
7523                         rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7524                 } else if (confidence || rack->r_ctl.rack_rs.confidence) {
7525                         /*
7526                          * Once we have a confident number,
7527                          * we can update it with a smaller
7528                          * value since this confident number
7529                          * may include the DSACK time until
7530                          * the next segment (the second one) arrived.
7531                          */
7532                         rack->r_ctl.rack_rs.rs_us_rtt = us_rtt;
7533                         rack->r_ctl.rack_rs.confidence = confidence;
7534                         rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt;
7535                 }
7536         }
7537         rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence);
7538         rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
7539         rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
7540         rack->r_ctl.rack_rs.rs_rtt_cnt++;
7541 }
7542
7543 /*
7544  * Collect new round-trip time estimate
7545  * and update averages and current timeout.
7546  */
7547 static void
7548 tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
7549 {
7550         int32_t delta;
7551         uint32_t o_srtt, o_var;
7552         int32_t hrtt_up = 0;
7553         int32_t rtt;
7554
7555         if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
7556                 /* No valid sample */
7557                 return;
7558         if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
7559                 /* We are to use the lowest RTT seen in a single ack */
7560                 rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
7561         } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
7562                 /* We are to use the highest RTT seen in a single ack */
7563                 rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
7564         } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
7565                 /* We are to use the average RTT seen in a single ack */
7566                 rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
7567                                 (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
7568         } else {
7569 #ifdef INVARIANTS
7570                 panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
7571 #endif
7572                 return;
7573         }
7574         if (rtt == 0)
7575                 rtt = 1;
7576         if (rack->rc_gp_rtt_set == 0) {
7577                 /*
7578                  * With no RTT we have to accept
7579                  * even one we are not confident of.
7580                  */
7581                 rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt;
7582                 rack->rc_gp_rtt_set = 1;
7583         } else if (rack->r_ctl.rack_rs.confidence) {
7584                 /* update the running gp srtt */
7585                 rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8);
7586                 rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8;
7587         }
7588         if (rack->r_ctl.rack_rs.confidence) {
7589                 /*
7590                  * record the low and high for highly buffered path computation,
7591                  * we only do this if we are confident (not a retransmission).
7592                  */
7593                 if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) {
7594                         rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7595                         hrtt_up = 1;
7596                 }
7597                 if (rack->rc_highly_buffered == 0) {
7598                         /*
7599                          * Currently once we declare a path has
7600                          * highly buffered there is no going
7601                          * back, which may be a problem...
7602                          */
7603                         if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) {
7604                                 rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt,
7605                                                      rack->r_ctl.rc_highest_us_rtt,
7606                                                      rack->r_ctl.rc_lowest_us_rtt,
7607                                                      RACK_RTTS_SEEHBP);
7608                                 rack->rc_highly_buffered = 1;
7609                         }
7610                 }
7611         }
7612         if ((rack->r_ctl.rack_rs.confidence) ||
7613             (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) {
7614                 /*
7615                  * If we are highly confident of it <or> it was
7616                  * never retransmitted we accept it as the last us_rtt.
7617                  */
7618                 rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7619                 /* The lowest rtt can be set if its was not retransmited */
7620                 if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) {
7621                         rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt;
7622                         if (rack->r_ctl.rc_lowest_us_rtt == 0)
7623                                 rack->r_ctl.rc_lowest_us_rtt = 1;
7624                 }
7625         }
7626         o_srtt = tp->t_srtt;
7627         o_var = tp->t_rttvar;
7628         rack = (struct tcp_rack *)tp->t_fb_ptr;
7629         if (tp->t_srtt != 0) {
7630                 /*
7631                  * We keep a simple srtt in microseconds, like our rtt
7632                  * measurement. We don't need to do any tricks with shifting
7633                  * etc. Instead we just add in 1/8th of the new measurement
7634                  * and subtract out 1/8 of the old srtt. We do the same with
7635                  * the variance after finding the absolute value of the
7636                  * difference between this sample and the current srtt.
7637                  */
7638                 delta = tp->t_srtt - rtt;
7639                 /* Take off 1/8th of the current sRTT */
7640                 tp->t_srtt -= (tp->t_srtt >> 3);
7641                 /* Add in 1/8th of the new RTT just measured */
7642                 tp->t_srtt += (rtt >> 3);
7643                 if (tp->t_srtt <= 0)
7644                         tp->t_srtt = 1;
7645                 /* Now lets make the absolute value of the variance */
7646                 if (delta < 0)
7647                         delta = -delta;
7648                 /* Subtract out 1/8th */
7649                 tp->t_rttvar -= (tp->t_rttvar >> 3);
7650                 /* Add in 1/8th of the new variance we just saw */
7651                 tp->t_rttvar += (delta >> 3);
7652                 if (tp->t_rttvar <= 0)
7653                         tp->t_rttvar = 1;
7654                 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
7655                         tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
7656         } else {
7657                 /*
7658                  * No rtt measurement yet - use the unsmoothed rtt. Set the
7659                  * variance to half the rtt (so our first retransmit happens
7660                  * at 3*rtt).
7661                  */
7662                 tp->t_srtt = rtt;
7663                 tp->t_rttvar = rtt >> 1;
7664                 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
7665         }
7666         rack->rc_srtt_measure_made = 1;
7667         KMOD_TCPSTAT_INC(tcps_rttupdated);
7668         tp->t_rttupdated++;
7669 #ifdef STATS
7670         if (rack_stats_gets_ms_rtt == 0) {
7671                 /* Send in the microsecond rtt used for rxt timeout purposes */
7672                 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
7673         } else if (rack_stats_gets_ms_rtt == 1) {
7674                 /* Send in the millisecond rtt used for rxt timeout purposes */
7675                 int32_t ms_rtt;
7676
7677                 /* Round up */
7678                 ms_rtt = (rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7679                 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7680         } else if (rack_stats_gets_ms_rtt == 2) {
7681                 /* Send in the millisecond rtt has close to the path RTT as we can get  */
7682                 int32_t ms_rtt;
7683
7684                 /* Round up */
7685                 ms_rtt = (rack->r_ctl.rack_rs.rs_us_rtt + HPTS_USEC_IN_MSEC - 1) / HPTS_USEC_IN_MSEC;
7686                 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, ms_rtt));
7687         }  else {
7688                 /* Send in the microsecond rtt has close to the path RTT as we can get  */
7689                 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rack->r_ctl.rack_rs.rs_us_rtt));
7690         }
7691
7692 #endif
7693         /*
7694          * the retransmit should happen at rtt + 4 * rttvar. Because of the
7695          * way we do the smoothing, srtt and rttvar will each average +1/2
7696          * tick of bias.  When we compute the retransmit timer, we want 1/2
7697          * tick of rounding and 1 extra tick because of +-1/2 tick
7698          * uncertainty in the firing of the timer.  The bias will give us
7699          * exactly the 1.5 tick we need.  But, because the bias is
7700          * statistical, we have to test that we don't drop below the minimum
7701          * feasible timer (which is 2 ticks).
7702          */
7703         tp->t_rxtshift = 0;
7704         RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7705                       max(rack_rto_min, rtt + 2), rack_rto_max, rack->r_ctl.timer_slop);
7706         rack_log_rtt_sample(rack, rtt);
7707         tp->t_softerror = 0;
7708 }
7709
7710
7711 static void
7712 rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts)
7713 {
7714         /*
7715          * Apply to filter the inbound us-rtt at us_cts.
7716          */
7717         uint32_t old_rtt;
7718
7719         old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt);
7720         apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt,
7721                                us_rtt, us_cts);
7722         if (rack->r_ctl.last_pacing_time &&
7723             rack->rc_gp_dyn_mul &&
7724             (rack->r_ctl.last_pacing_time > us_rtt))
7725                 rack->pacing_longer_than_rtt = 1;
7726         else
7727                 rack->pacing_longer_than_rtt = 0;
7728         if (old_rtt > us_rtt) {
7729                 /* We just hit a new lower rtt time */
7730                 rack_log_rtt_shrinks(rack,  us_cts,  old_rtt,
7731                                      __LINE__, RACK_RTTS_NEWRTT);
7732                 /*
7733                  * Only count it if its lower than what we saw within our
7734                  * calculated range.
7735                  */
7736                 if ((old_rtt - us_rtt) > rack_min_rtt_movement) {
7737                         if (rack_probertt_lower_within &&
7738                             rack->rc_gp_dyn_mul &&
7739                             (rack->use_fixed_rate == 0) &&
7740                             (rack->rc_always_pace)) {
7741                                 /*
7742                                  * We are seeing a new lower rtt very close
7743                                  * to the time that we would have entered probe-rtt.
7744                                  * This is probably due to the fact that a peer flow
7745                                  * has entered probe-rtt. Lets go in now too.
7746                                  */
7747                                 uint32_t val;
7748
7749                                 val = rack_probertt_lower_within * rack_time_between_probertt;
7750                                 val /= 100;
7751                                 if ((rack->in_probe_rtt == 0)  &&
7752                                     ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) {
7753                                         rack_enter_probertt(rack, us_cts);
7754                                 }
7755                         }
7756                         rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
7757                 }
7758         }
7759 }
7760
7761 static int
7762 rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
7763     struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack)
7764 {
7765         int32_t i, all;
7766         uint32_t t, len_acked;
7767
7768         if ((rsm->r_flags & RACK_ACKED) ||
7769             (rsm->r_flags & RACK_WAS_ACKED))
7770                 /* Already done */
7771                 return (0);
7772         if (rsm->r_no_rtt_allowed) {
7773                 /* Not allowed */
7774                 return (0);
7775         }
7776         if (ack_type == CUM_ACKED) {
7777                 if (SEQ_GT(th_ack, rsm->r_end)) {
7778                         len_acked = rsm->r_end - rsm->r_start;
7779                         all = 1;
7780                 } else {
7781                         len_acked = th_ack - rsm->r_start;
7782                         all = 0;
7783                 }
7784         } else {
7785                 len_acked = rsm->r_end - rsm->r_start;
7786                 all = 0;
7787         }
7788         if (rsm->r_rtr_cnt == 1) {
7789                 uint32_t us_rtt;
7790
7791                 t = cts - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7792                 if ((int)t <= 0)
7793                         t = 1;
7794                 if (!tp->t_rttlow || tp->t_rttlow > t)
7795                         tp->t_rttlow = t;
7796                 if (!rack->r_ctl.rc_rack_min_rtt ||
7797                     SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7798                         rack->r_ctl.rc_rack_min_rtt = t;
7799                         if (rack->r_ctl.rc_rack_min_rtt == 0) {
7800                                 rack->r_ctl.rc_rack_min_rtt = 1;
7801                         }
7802                 }
7803                 if (TSTMP_GT(tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time), rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)]))
7804                         us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7805                 else
7806                         us_rtt = tcp_get_usecs(NULL) - (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
7807                 if (us_rtt == 0)
7808                         us_rtt = 1;
7809                 rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time));
7810                 if (ack_type == SACKED) {
7811                         rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 1);
7812                         tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt);
7813                 } else {
7814                         /*
7815                          * We need to setup what our confidence
7816                          * is in this ack.
7817                          *
7818                          * If the rsm was app limited and it is
7819                          * less than a mss in length (the end
7820                          * of the send) then we have a gap. If we
7821                          * were app limited but say we were sending
7822                          * multiple MSS's then we are more confident
7823                          * int it.
7824                          *
7825                          * When we are not app-limited then we see if
7826                          * the rsm is being included in the current
7827                          * measurement, we tell this by the app_limited_needs_set
7828                          * flag.
7829                          *
7830                          * Note that being cwnd blocked is not applimited
7831                          * as well as the pacing delay between packets which
7832                          * are sending only 1 or 2 MSS's also will show up
7833                          * in the RTT. We probably need to examine this algorithm
7834                          * a bit more and enhance it to account for the delay
7835                          * between rsm's. We could do that by saving off the
7836                          * pacing delay of each rsm (in an rsm) and then
7837                          * factoring that in somehow though for now I am
7838                          * not sure how :)
7839                          */
7840                         int calc_conf = 0;
7841
7842                         if (rsm->r_flags & RACK_APP_LIMITED) {
7843                                 if (all && (len_acked <= ctf_fixed_maxseg(tp)))
7844                                         calc_conf = 0;
7845                                 else
7846                                         calc_conf = 1;
7847                         } else if (rack->app_limited_needs_set == 0) {
7848                                 calc_conf = 1;
7849                         } else {
7850                                 calc_conf = 0;
7851                         }
7852                         rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)], cts, 2);
7853                         tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt,
7854                                             calc_conf, rsm, rsm->r_rtr_cnt);
7855                 }
7856                 if ((rsm->r_flags & RACK_TLP) &&
7857                     (!IN_FASTRECOVERY(tp->t_flags))) {
7858                         /* Segment was a TLP and our retrans matched */
7859                         if (rack->r_ctl.rc_tlp_cwnd_reduce) {
7860                                 rack->r_ctl.rc_rsm_start = tp->snd_max;
7861                                 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
7862                                 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
7863                                 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
7864                         }
7865                 }
7866                 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7867                         /* New more recent rack_tmit_time */
7868                         rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7869                         rack->rc_rack_rtt = t;
7870                 }
7871                 return (1);
7872         }
7873         /*
7874          * We clear the soft/rxtshift since we got an ack.
7875          * There is no assurance we will call the commit() function
7876          * so we need to clear these to avoid incorrect handling.
7877          */
7878         tp->t_rxtshift = 0;
7879         RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
7880                       rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
7881         tp->t_softerror = 0;
7882         if (to && (to->to_flags & TOF_TS) &&
7883             (ack_type == CUM_ACKED) &&
7884             (to->to_tsecr) &&
7885             ((rsm->r_flags & RACK_OVERMAX) == 0)) {
7886                 /*
7887                  * Now which timestamp does it match? In this block the ACK
7888                  * must be coming from a previous transmission.
7889                  */
7890                 for (i = 0; i < rsm->r_rtr_cnt; i++) {
7891                         if (rack_ts_to_msec(rsm->r_tim_lastsent[i]) == to->to_tsecr) {
7892                                 t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7893                                 if ((int)t <= 0)
7894                                         t = 1;
7895                                 if ((i + 1) < rsm->r_rtr_cnt) {
7896                                         /*
7897                                          * The peer ack'd from our previous
7898                                          * transmission. We have a spurious
7899                                          * retransmission and thus we dont
7900                                          * want to update our rack_rtt.
7901                                          */
7902                                         return (0);
7903                                 }
7904                                 if (!tp->t_rttlow || tp->t_rttlow > t)
7905                                         tp->t_rttlow = t;
7906                                 if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7907                                         rack->r_ctl.rc_rack_min_rtt = t;
7908                                         if (rack->r_ctl.rc_rack_min_rtt == 0) {
7909                                                 rack->r_ctl.rc_rack_min_rtt = 1;
7910                                         }
7911                                 }
7912                                 if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
7913                                            (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
7914                                         /* New more recent rack_tmit_time */
7915                                         rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
7916                                         rack->rc_rack_rtt = t;
7917                                 }
7918                                 rack_log_rtt_sample_calc(rack, t, (uint32_t)rsm->r_tim_lastsent[i], cts, 3);
7919                                 tcp_rack_xmit_timer(rack, t + 1, len_acked, t, 0, rsm,
7920                                                     rsm->r_rtr_cnt);
7921                                 return (1);
7922                         }
7923                 }
7924                 goto ts_not_found;
7925         } else {
7926                 /*
7927                  * Ok its a SACK block that we retransmitted. or a windows
7928                  * machine without timestamps. We can tell nothing from the
7929                  * time-stamp since its not there or the time the peer last
7930                  * recieved a segment that moved forward its cum-ack point.
7931                  */
7932 ts_not_found:
7933                 i = rsm->r_rtr_cnt - 1;
7934                 t = cts - (uint32_t)rsm->r_tim_lastsent[i];
7935                 if ((int)t <= 0)
7936                         t = 1;
7937                 if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7938                         /*
7939                          * We retransmitted and the ack came back in less
7940                          * than the smallest rtt we have observed. We most
7941                          * likely did an improper retransmit as outlined in
7942                          * 6.2 Step 2 point 2 in the rack-draft so we
7943                          * don't want to update our rack_rtt. We in
7944                          * theory (in future) might want to think about reverting our
7945                          * cwnd state but we won't for now.
7946                          */
7947                         return (0);
7948                 } else if (rack->r_ctl.rc_rack_min_rtt) {
7949                         /*
7950                          * We retransmitted it and the retransmit did the
7951                          * job.
7952                          */
7953                         if (!rack->r_ctl.rc_rack_min_rtt ||
7954                             SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
7955                                 rack->r_ctl.rc_rack_min_rtt = t;
7956                                 if (rack->r_ctl.rc_rack_min_rtt == 0) {
7957                                         rack->r_ctl.rc_rack_min_rtt = 1;
7958                                 }
7959                         }
7960                         if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, (uint32_t)rsm->r_tim_lastsent[i])) {
7961                                 /* New more recent rack_tmit_time */
7962                                 rack->r_ctl.rc_rack_tmit_time = (uint32_t)rsm->r_tim_lastsent[i];
7963                                 rack->rc_rack_rtt = t;
7964                         }
7965                         return (1);
7966                 }
7967         }
7968         return (0);
7969 }
7970
7971 /*
7972  * Mark the SACK_PASSED flag on all entries prior to rsm send wise.
7973  */
7974 static void
7975 rack_log_sack_passed(struct tcpcb *tp,
7976     struct tcp_rack *rack, struct rack_sendmap *rsm)
7977 {
7978         struct rack_sendmap *nrsm;
7979
7980         nrsm = rsm;
7981         TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
7982             rack_head, r_tnext) {
7983                 if (nrsm == rsm) {
7984                         /* Skip orginal segment he is acked */
7985                         continue;
7986                 }
7987                 if (nrsm->r_flags & RACK_ACKED) {
7988                         /*
7989                          * Skip ack'd segments, though we
7990                          * should not see these, since tmap
7991                          * should not have ack'd segments.
7992                          */
7993                         continue;
7994                 }
7995                 if (nrsm->r_flags & RACK_SACK_PASSED) {
7996                         /*
7997                          * We found one that is already marked
7998                          * passed, we have been here before and
7999                          * so all others below this are marked.
8000                          */
8001                         break;
8002                 }
8003                 nrsm->r_flags |= RACK_SACK_PASSED;
8004                 nrsm->r_flags &= ~RACK_WAS_SACKPASS;
8005         }
8006 }
8007
8008 static void
8009 rack_need_set_test(struct tcpcb *tp,
8010                    struct tcp_rack *rack,
8011                    struct rack_sendmap *rsm,
8012                    tcp_seq th_ack,
8013                    int line,
8014                    int use_which)
8015 {
8016
8017         if ((tp->t_flags & TF_GPUTINPROG) &&
8018             SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8019                 /*
8020                  * We were app limited, and this ack
8021                  * butts up or goes beyond the point where we want
8022                  * to start our next measurement. We need
8023                  * to record the new gput_ts as here and
8024                  * possibly update the start sequence.
8025                  */
8026                 uint32_t seq, ts;
8027
8028                 if (rsm->r_rtr_cnt > 1) {
8029                         /*
8030                          * This is a retransmit, can we
8031                          * really make any assessment at this
8032                          * point?  We are not really sure of
8033                          * the timestamp, is it this or the
8034                          * previous transmission?
8035                          *
8036                          * Lets wait for something better that
8037                          * is not retransmitted.
8038                          */
8039                         return;
8040                 }
8041                 seq = tp->gput_seq;
8042                 ts = tp->gput_ts;
8043                 rack->app_limited_needs_set = 0;
8044                 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
8045                 /* Do we start at a new end? */
8046                 if ((use_which == RACK_USE_BEG) &&
8047                     SEQ_GEQ(rsm->r_start, tp->gput_seq)) {
8048                         /*
8049                          * When we get an ACK that just eats
8050                          * up some of the rsm, we set RACK_USE_BEG
8051                          * since whats at r_start (i.e. th_ack)
8052                          * is left unacked and thats where the
8053                          * measurement not starts.
8054                          */
8055                         tp->gput_seq = rsm->r_start;
8056                         rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8057                 }
8058                 if ((use_which == RACK_USE_END) &&
8059                     SEQ_GEQ(rsm->r_end, tp->gput_seq)) {
8060                             /*
8061                              * We use the end when the cumack
8062                              * is moving forward and completely
8063                              * deleting the rsm passed so basically
8064                              * r_end holds th_ack.
8065                              *
8066                              * For SACK's we also want to use the end
8067                              * since this piece just got sacked and
8068                              * we want to target anything after that
8069                              * in our measurement.
8070                              */
8071                             tp->gput_seq = rsm->r_end;
8072                             rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8073                 }
8074                 if (use_which == RACK_USE_END_OR_THACK) {
8075                         /*
8076                          * special case for ack moving forward,
8077                          * not a sack, we need to move all the
8078                          * way up to where this ack cum-ack moves
8079                          * to.
8080                          */
8081                         if (SEQ_GT(th_ack, rsm->r_end))
8082                                 tp->gput_seq = th_ack;
8083                         else
8084                                 tp->gput_seq = rsm->r_end;
8085                         rack->r_ctl.rc_gp_output_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8086                 }
8087                 if (SEQ_GT(tp->gput_seq, tp->gput_ack)) {
8088                         /*
8089                          * We moved beyond this guy's range, re-calculate
8090                          * the new end point.
8091                          */
8092                         if (rack->rc_gp_filled == 0) {
8093                                 tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
8094                         } else {
8095                                 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
8096                         }
8097                 }
8098                 /*
8099                  * We are moving the goal post, we may be able to clear the
8100                  * measure_saw_probe_rtt flag.
8101                  */
8102                 if ((rack->in_probe_rtt == 0) &&
8103                     (rack->measure_saw_probe_rtt) &&
8104                     (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
8105                         rack->measure_saw_probe_rtt = 0;
8106                 rack_log_pacing_delay_calc(rack, ts, tp->gput_ts,
8107                                            seq, tp->gput_seq, 0, 5, line, NULL);
8108                 if (rack->rc_gp_filled &&
8109                     ((tp->gput_ack - tp->gput_seq) <
8110                      max(rc_init_window(rack), (MIN_GP_WIN *
8111                                                 ctf_fixed_maxseg(tp))))) {
8112                         uint32_t ideal_amount;
8113
8114                         ideal_amount = rack_get_measure_window(tp, rack);
8115                         if (ideal_amount > sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
8116                                 /*
8117                                  * There is no sense of continuing this measurement
8118                                  * because its too small to gain us anything we
8119                                  * trust. Skip it and that way we can start a new
8120                                  * measurement quicker.
8121                                  */
8122                                 tp->t_flags &= ~TF_GPUTINPROG;
8123                                 rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq,
8124                                                            0, 0, 0, 6, __LINE__, NULL);
8125                         } else {
8126                                 /*
8127                                  * Reset the window further out.
8128                                  */
8129                                 tp->gput_ack = tp->gput_seq + ideal_amount;
8130                         }
8131                 }
8132         }
8133 }
8134
8135 static uint32_t
8136 rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
8137                    struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
8138 {
8139         uint32_t start, end, changed = 0;
8140         struct rack_sendmap stack_map;
8141         struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
8142         int32_t used_ref = 1;
8143         int moved = 0;
8144
8145         start = sack->start;
8146         end = sack->end;
8147         rsm = *prsm;
8148         memset(&fe, 0, sizeof(fe));
8149 do_rest_ofb:
8150         if ((rsm == NULL) ||
8151             (SEQ_LT(end, rsm->r_start)) ||
8152             (SEQ_GEQ(start, rsm->r_end)) ||
8153             (SEQ_LT(start, rsm->r_start))) {
8154                 /*
8155                  * We are not in the right spot,
8156                  * find the correct spot in the tree.
8157                  */
8158                 used_ref = 0;
8159                 fe.r_start = start;
8160                 rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
8161                 moved++;
8162         }
8163         if (rsm == NULL) {
8164                 /* TSNH */
8165                 goto out;
8166         }
8167         /* Ok we have an ACK for some piece of this rsm */
8168         if (rsm->r_start != start) {
8169                 if ((rsm->r_flags & RACK_ACKED) == 0) {
8170                         /**
8171                          * Need to split this in two pieces the before and after,
8172                          * the before remains in the map, the after must be
8173                          * added. In other words we have:
8174                          * rsm        |--------------|
8175                          * sackblk        |------->
8176                          * rsm will become
8177                          *     rsm    |---|
8178                          * and nrsm will be  the sacked piece
8179                          *     nrsm       |----------|
8180                          *
8181                          * But before we start down that path lets
8182                          * see if the sack spans over on top of
8183                          * the next guy and it is already sacked.
8184                          */
8185                         next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8186                         if (next && (next->r_flags & RACK_ACKED) &&
8187                             SEQ_GEQ(end, next->r_start)) {
8188                                 /**
8189                                  * So the next one is already acked, and
8190                                  * we can thus by hookery use our stack_map
8191                                  * to reflect the piece being sacked and
8192                                  * then adjust the two tree entries moving
8193                                  * the start and ends around. So we start like:
8194                                  *  rsm     |------------|             (not-acked)
8195                                  *  next                 |-----------| (acked)
8196                                  *  sackblk        |-------->
8197                                  *  We want to end like so:
8198                                  *  rsm     |------|                   (not-acked)
8199                                  *  next           |-----------------| (acked)
8200                                  *  nrsm           |-----|
8201                                  * Where nrsm is a temporary stack piece we
8202                                  * use to update all the gizmos.
8203                                  */
8204                                 /* Copy up our fudge block */
8205                                 nrsm = &stack_map;
8206                                 memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8207                                 /* Now adjust our tree blocks */
8208                                 rsm->r_end = start;
8209                                 next->r_start = start;
8210                                 /* Now we must adjust back where next->m is */
8211                                 rack_setup_offset_for_rsm(rsm, next);
8212
8213                                 /* We don't need to adjust rsm, it did not change */
8214                                 /* Clear out the dup ack count of the remainder */
8215                                 rsm->r_dupack = 0;
8216                                 rsm->r_just_ret = 0;
8217                                 rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8218                                 /* Now lets make sure our fudge block is right */
8219                                 nrsm->r_start = start;
8220                                 /* Now lets update all the stats and such */
8221                                 rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8222                                 if (rack->app_limited_needs_set)
8223                                         rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8224                                 changed += (nrsm->r_end - nrsm->r_start);
8225                                 rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8226                                 if (nrsm->r_flags & RACK_SACK_PASSED) {
8227                                         counter_u64_add(rack_reorder_seen, 1);
8228                                         rack->r_ctl.rc_reorder_ts = cts;
8229                                 }
8230                                 /*
8231                                  * Now we want to go up from rsm (the
8232                                  * one left un-acked) to the next one
8233                                  * in the tmap. We do this so when
8234                                  * we walk backwards we include marking
8235                                  * sack-passed on rsm (The one passed in
8236                                  * is skipped since it is generally called
8237                                  * on something sacked before removing it
8238                                  * from the tmap).
8239                                  */
8240                                 if (rsm->r_in_tmap) {
8241                                         nrsm = TAILQ_NEXT(rsm, r_tnext);
8242                                         /*
8243                                          * Now that we have the next
8244                                          * one walk backwards from there.
8245                                          */
8246                                         if (nrsm && nrsm->r_in_tmap)
8247                                                 rack_log_sack_passed(tp, rack, nrsm);
8248                                 }
8249                                 /* Now are we done? */
8250                                 if (SEQ_LT(end, next->r_end) ||
8251                                     (end == next->r_end)) {
8252                                         /* Done with block */
8253                                         goto out;
8254                                 }
8255                                 rack_log_map_chg(tp, rack, &stack_map, rsm, next, MAP_SACK_M1, end, __LINE__);
8256                                 counter_u64_add(rack_sack_used_next_merge, 1);
8257                                 /* Postion for the next block */
8258                                 start = next->r_end;
8259                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
8260                                 if (rsm == NULL)
8261                                         goto out;
8262                         } else {
8263                                 /**
8264                                  * We can't use any hookery here, so we
8265                                  * need to split the map. We enter like
8266                                  * so:
8267                                  *  rsm      |--------|
8268                                  *  sackblk       |----->
8269                                  * We will add the new block nrsm and
8270                                  * that will be the new portion, and then
8271                                  * fall through after reseting rsm. So we
8272                                  * split and look like this:
8273                                  *  rsm      |----|
8274                                  *  sackblk       |----->
8275                                  *  nrsm          |---|
8276                                  * We then fall through reseting
8277                                  * rsm to nrsm, so the next block
8278                                  * picks it up.
8279                                  */
8280                                 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8281                                 if (nrsm == NULL) {
8282                                         /*
8283                                          * failed XXXrrs what can we do but loose the sack
8284                                          * info?
8285                                          */
8286                                         goto out;
8287                                 }
8288                                 counter_u64_add(rack_sack_splits, 1);
8289                                 rack_clone_rsm(rack, nrsm, rsm, start);
8290                                 rsm->r_just_ret = 0;
8291                                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8292 #ifdef INVARIANTS
8293                                 if (insret != NULL) {
8294                                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8295                                               nrsm, insret, rack, rsm);
8296                                 }
8297 #endif
8298                                 if (rsm->r_in_tmap) {
8299                                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8300                                         nrsm->r_in_tmap = 1;
8301                                 }
8302                                 rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M2, end, __LINE__);
8303                                 rsm->r_flags &= (~RACK_HAS_FIN);
8304                                 /* Position us to point to the new nrsm that starts the sack blk */
8305                                 rsm = nrsm;
8306                         }
8307                 } else {
8308                         /* Already sacked this piece */
8309                         counter_u64_add(rack_sack_skipped_acked, 1);
8310                         moved++;
8311                         if (end == rsm->r_end) {
8312                                 /* Done with block */
8313                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8314                                 goto out;
8315                         } else if (SEQ_LT(end, rsm->r_end)) {
8316                                 /* A partial sack to a already sacked block */
8317                                 moved++;
8318                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8319                                 goto out;
8320                         } else {
8321                                 /*
8322                                  * The end goes beyond this guy
8323                                  * repostion the start to the
8324                                  * next block.
8325                                  */
8326                                 start = rsm->r_end;
8327                                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8328                                 if (rsm == NULL)
8329                                         goto out;
8330                         }
8331                 }
8332         }
8333         if (SEQ_GEQ(end, rsm->r_end)) {
8334                 /**
8335                  * The end of this block is either beyond this guy or right
8336                  * at this guy. I.e.:
8337                  *  rsm ---                 |-----|
8338                  *  end                     |-----|
8339                  *  <or>
8340                  *  end                     |---------|
8341                  */
8342                 if ((rsm->r_flags & RACK_ACKED) == 0) {
8343                         rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8344                         changed += (rsm->r_end - rsm->r_start);
8345                         rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8346                         if (rsm->r_in_tmap) /* should be true */
8347                                 rack_log_sack_passed(tp, rack, rsm);
8348                         /* Is Reordering occuring? */
8349                         if (rsm->r_flags & RACK_SACK_PASSED) {
8350                                 rsm->r_flags &= ~RACK_SACK_PASSED;
8351                                 counter_u64_add(rack_reorder_seen, 1);
8352                                 rack->r_ctl.rc_reorder_ts = cts;
8353                         }
8354                         if (rack->app_limited_needs_set)
8355                                 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8356                         rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8357                         rsm->r_flags |= RACK_ACKED;
8358                         rsm->r_flags &= ~RACK_TLP;
8359                         if (rsm->r_in_tmap) {
8360                                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8361                                 rsm->r_in_tmap = 0;
8362                         }
8363                         rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_SACK_M3, end, __LINE__);
8364                 } else {
8365                         counter_u64_add(rack_sack_skipped_acked, 1);
8366                         moved++;
8367                 }
8368                 if (end == rsm->r_end) {
8369                         /* This block only - done, setup for next */
8370                         goto out;
8371                 }
8372                 /*
8373                  * There is more not coverend by this rsm move on
8374                  * to the next block in the RB tree.
8375                  */
8376                 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8377                 start = rsm->r_end;
8378                 rsm = nrsm;
8379                 if (rsm == NULL)
8380                         goto out;
8381                 goto do_rest_ofb;
8382         }
8383         /**
8384          * The end of this sack block is smaller than
8385          * our rsm i.e.:
8386          *  rsm ---                 |-----|
8387          *  end                     |--|
8388          */
8389         if ((rsm->r_flags & RACK_ACKED) == 0) {
8390                 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8391                 if (prev && (prev->r_flags & RACK_ACKED)) {
8392                         /**
8393                          * Goal, we want the right remainder of rsm to shrink
8394                          * in place and span from (rsm->r_start = end) to rsm->r_end.
8395                          * We want to expand prev to go all the way
8396                          * to prev->r_end <- end.
8397                          * so in the tree we have before:
8398                          *   prev     |--------|         (acked)
8399                          *   rsm               |-------| (non-acked)
8400                          *   sackblk           |-|
8401                          * We churn it so we end up with
8402                          *   prev     |----------|       (acked)
8403                          *   rsm                 |-----| (non-acked)
8404                          *   nrsm              |-| (temporary)
8405                          */
8406                         nrsm = &stack_map;
8407                         memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
8408                         prev->r_end = end;
8409                         rsm->r_start = end;
8410                         /* Now adjust nrsm (stack copy) to be
8411                          * the one that is the small
8412                          * piece that was "sacked".
8413                          */
8414                         nrsm->r_end = end;
8415                         rsm->r_dupack = 0;
8416                         rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8417                         /*
8418                          * Now that the rsm has had its start moved forward
8419                          * lets go ahead and get its new place in the world.
8420                          */
8421                         rack_setup_offset_for_rsm(prev, rsm);
8422                         /*
8423                          * Now nrsm is our new little piece
8424                          * that is acked (which was merged
8425                          * to prev). Update the rtt and changed
8426                          * based on that. Also check for reordering.
8427                          */
8428                         rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0);
8429                         if (rack->app_limited_needs_set)
8430                                 rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END);
8431                         changed += (nrsm->r_end - nrsm->r_start);
8432                         rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
8433                         if (nrsm->r_flags & RACK_SACK_PASSED) {
8434                                 counter_u64_add(rack_reorder_seen, 1);
8435                                 rack->r_ctl.rc_reorder_ts = cts;
8436                         }
8437                         rack_log_map_chg(tp, rack, prev, &stack_map, rsm, MAP_SACK_M4, end, __LINE__);
8438                         rsm = prev;
8439                         counter_u64_add(rack_sack_used_prev_merge, 1);
8440                 } else {
8441                         /**
8442                          * This is the case where our previous
8443                          * block is not acked either, so we must
8444                          * split the block in two.
8445                          */
8446                         nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
8447                         if (nrsm == NULL) {
8448                                 /* failed rrs what can we do but loose the sack info? */
8449                                 goto out;
8450                         }
8451                         /**
8452                          * In this case nrsm becomes
8453                          * nrsm->r_start = end;
8454                          * nrsm->r_end = rsm->r_end;
8455                          * which is un-acked.
8456                          * <and>
8457                          * rsm->r_end = nrsm->r_start;
8458                          * i.e. the remaining un-acked
8459                          * piece is left on the left
8460                          * hand side.
8461                          *
8462                          * So we start like this
8463                          * rsm      |----------| (not acked)
8464                          * sackblk  |---|
8465                          * build it so we have
8466                          * rsm      |---|         (acked)
8467                          * nrsm         |------|  (not acked)
8468                          */
8469                         counter_u64_add(rack_sack_splits, 1);
8470                         rack_clone_rsm(rack, nrsm, rsm, end);
8471                         rsm->r_flags &= (~RACK_HAS_FIN);
8472                         rsm->r_just_ret = 0;
8473                         insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
8474 #ifdef INVARIANTS
8475                         if (insret != NULL) {
8476                                 panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
8477                                       nrsm, insret, rack, rsm);
8478                         }
8479 #endif
8480                         if (rsm->r_in_tmap) {
8481                                 TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
8482                                 nrsm->r_in_tmap = 1;
8483                         }
8484                         nrsm->r_dupack = 0;
8485                         rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
8486                         rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0);
8487                         changed += (rsm->r_end - rsm->r_start);
8488                         rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
8489                         if (rsm->r_in_tmap) /* should be true */
8490                                 rack_log_sack_passed(tp, rack, rsm);
8491                         /* Is Reordering occuring? */
8492                         if (rsm->r_flags & RACK_SACK_PASSED) {
8493                                 rsm->r_flags &= ~RACK_SACK_PASSED;
8494                                 counter_u64_add(rack_reorder_seen, 1);
8495                                 rack->r_ctl.rc_reorder_ts = cts;
8496                         }
8497                         if (rack->app_limited_needs_set)
8498                                 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END);
8499                         rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8500                         rsm->r_flags |= RACK_ACKED;
8501                         rsm->r_flags &= ~RACK_TLP;
8502                         rack_log_map_chg(tp, rack, NULL, rsm, nrsm, MAP_SACK_M5, end, __LINE__);
8503                         if (rsm->r_in_tmap) {
8504                                 TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8505                                 rsm->r_in_tmap = 0;
8506                         }
8507                 }
8508         } else if (start != end){
8509                 /*
8510                  * The block was already acked.
8511                  */
8512                 counter_u64_add(rack_sack_skipped_acked, 1);
8513                 moved++;
8514         }
8515 out:
8516         if (rsm && (rsm->r_flags & RACK_ACKED)) {
8517                 /*
8518                  * Now can we merge where we worked
8519                  * with either the previous or
8520                  * next block?
8521                  */
8522                 next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8523                 while (next) {
8524                     if (next->r_flags & RACK_ACKED) {
8525                         /* yep this and next can be merged */
8526                         rsm = rack_merge_rsm(rack, rsm, next);
8527                         next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8528                     } else
8529                             break;
8530                 }
8531                 /* Now what about the previous? */
8532                 prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8533                 while (prev) {
8534                     if (prev->r_flags & RACK_ACKED) {
8535                         /* yep the previous and this can be merged */
8536                         rsm = rack_merge_rsm(rack, prev, rsm);
8537                         prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8538                     } else
8539                             break;
8540                 }
8541         }
8542         if (used_ref == 0) {
8543                 counter_u64_add(rack_sack_proc_all, 1);
8544         } else {
8545                 counter_u64_add(rack_sack_proc_short, 1);
8546         }
8547         /* Save off the next one for quick reference. */
8548         if (rsm)
8549                 nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8550         else
8551                 nrsm = NULL;
8552         *prsm = rack->r_ctl.rc_sacklast = nrsm;
8553         /* Pass back the moved. */
8554         *moved_two = moved;
8555         return (changed);
8556 }
8557
8558 static void inline
8559 rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
8560 {
8561         struct rack_sendmap *tmap;
8562
8563         tmap = NULL;
8564         while (rsm && (rsm->r_flags & RACK_ACKED)) {
8565                 /* Its no longer sacked, mark it so */
8566                 rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8567 #ifdef INVARIANTS
8568                 if (rsm->r_in_tmap) {
8569                         panic("rack:%p rsm:%p flags:0x%x in tmap?",
8570                               rack, rsm, rsm->r_flags);
8571                 }
8572 #endif
8573                 rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
8574                 /* Rebuild it into our tmap */
8575                 if (tmap == NULL) {
8576                         TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8577                         tmap = rsm;
8578                 } else {
8579                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
8580                         tmap = rsm;
8581                 }
8582                 tmap->r_in_tmap = 1;
8583                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8584         }
8585         /*
8586          * Now lets possibly clear the sack filter so we start
8587          * recognizing sacks that cover this area.
8588          */
8589         sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
8590
8591 }
8592
8593 static void
8594 rack_do_decay(struct tcp_rack *rack)
8595 {
8596         struct timeval res;
8597
8598 #define timersub(tvp, uvp, vvp)                                         \
8599         do {                                                            \
8600                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
8601                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
8602                 if ((vvp)->tv_usec < 0) {                               \
8603                         (vvp)->tv_sec--;                                \
8604                         (vvp)->tv_usec += 1000000;                      \
8605                 }                                                       \
8606         } while (0)
8607
8608         timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res);
8609 #undef timersub
8610
8611         rack->r_ctl.input_pkt++;
8612         if ((rack->rc_in_persist) ||
8613             (res.tv_sec >= 1) ||
8614             (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
8615                 /*
8616                  * Check for decay of non-SAD,
8617                  * we want all SAD detection metrics to
8618                  * decay 1/4 per second (or more) passed.
8619                  */
8620                 uint32_t pkt_delta;
8621
8622                 pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
8623                 /* Update our saved tracking values */
8624                 rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
8625                 rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
8626                 /* Now do we escape without decay? */
8627 #ifdef NETFLIX_EXP_DETECTION
8628                 if (rack->rc_in_persist ||
8629                     (rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
8630                     (pkt_delta < tcp_sad_low_pps)){
8631                         /*
8632                          * We don't decay idle connections
8633                          * or ones that have a low input pps.
8634                          */
8635                         return;
8636                 }
8637                 /* Decay the counters */
8638                 rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
8639                                                         tcp_sad_decay_val);
8640                 rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
8641                                                          tcp_sad_decay_val);
8642                 rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
8643                                                                tcp_sad_decay_val);
8644                 rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
8645                                                                 tcp_sad_decay_val);
8646 #endif
8647         }
8648 }
8649
8650 static void
8651 rack_process_to_cumack(struct tcpcb *tp, struct tcp_rack *rack, register uint32_t th_ack, uint32_t cts, struct tcpopt *to)
8652 {
8653         struct rack_sendmap *rsm, *rm;
8654
8655         /*
8656          * The ACK point is advancing to th_ack, we must drop off
8657          * the packets in the rack log and calculate any eligble
8658          * RTT's.
8659          */
8660         rack->r_wanted_output = 1;
8661 more:
8662         rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
8663         if (rsm == NULL) {
8664                 if ((th_ack - 1) == tp->iss) {
8665                         /*
8666                          * For the SYN incoming case we will not
8667                          * have called tcp_output for the sending of
8668                          * the SYN, so there will be no map. All
8669                          * other cases should probably be a panic.
8670                          */
8671                         return;
8672                 }
8673                 if (tp->t_flags & TF_SENTFIN) {
8674                         /* if we sent a FIN we often will not have map */
8675                         return;
8676                 }
8677 #ifdef INVARIANTS
8678                 panic("No rack map tp:%p for state:%d ack:%u rack:%p snd_una:%u snd_max:%u snd_nxt:%u\n",
8679                       tp,
8680                       tp->t_state, th_ack, rack,
8681                       tp->snd_una, tp->snd_max, tp->snd_nxt);
8682 #endif
8683                 return;
8684         }
8685         if (SEQ_LT(th_ack, rsm->r_start)) {
8686                 /* Huh map is missing this */
8687 #ifdef INVARIANTS
8688                 printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
8689                        rsm->r_start,
8690                        th_ack, tp->t_state, rack->r_state);
8691 #endif
8692                 return;
8693         }
8694         rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack);
8695         /* Now do we consume the whole thing? */
8696         if (SEQ_GEQ(th_ack, rsm->r_end)) {
8697                 /* Its all consumed. */
8698                 uint32_t left;
8699                 uint8_t newly_acked;
8700
8701                 rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_FREE, rsm->r_end, __LINE__);
8702                 rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
8703                 rsm->r_rtr_bytes = 0;
8704                 /* Record the time of highest cumack sent */
8705                 rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8706                 rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
8707 #ifdef INVARIANTS
8708                 if (rm != rsm) {
8709                         panic("removing head in rack:%p rsm:%p rm:%p",
8710                               rack, rsm, rm);
8711                 }
8712 #endif
8713                 if (rsm->r_in_tmap) {
8714                         TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
8715                         rsm->r_in_tmap = 0;
8716                 }
8717                 newly_acked = 1;
8718                 if (rsm->r_flags & RACK_ACKED) {
8719                         /*
8720                          * It was acked on the scoreboard -- remove
8721                          * it from total
8722                          */
8723                         rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
8724                         newly_acked = 0;
8725                 } else if (rsm->r_flags & RACK_SACK_PASSED) {
8726                         /*
8727                          * There are segments ACKED on the
8728                          * scoreboard further up. We are seeing
8729                          * reordering.
8730                          */
8731                         rsm->r_flags &= ~RACK_SACK_PASSED;
8732                         counter_u64_add(rack_reorder_seen, 1);
8733                         rsm->r_ack_arrival = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
8734                         rsm->r_flags |= RACK_ACKED;
8735                         rack->r_ctl.rc_reorder_ts = cts;
8736                         if (rack->r_ent_rec_ns) {
8737                                 /*
8738                                  * We have sent no more, and we saw an sack
8739                                  * then ack arrive.
8740                                  */
8741                                 rack->r_might_revert = 1;
8742                         }
8743                 }
8744                 if ((rsm->r_flags & RACK_TO_REXT) &&
8745                     (tp->t_flags & TF_RCVD_TSTMP) &&
8746                     (to->to_flags & TOF_TS) &&
8747                     (tp->t_flags & TF_PREVVALID)) {
8748                         /*
8749                          * We can use the timestamp to see
8750                          * if this retransmission was from the
8751                          * first transmit. If so we made a mistake.
8752                          */
8753                         tp->t_flags &= ~TF_PREVVALID;
8754                         if (to->to_tsecr == rack_ts_to_msec(rsm->r_tim_lastsent[0])) {
8755                                 /* The first transmit is what this ack is for */
8756                                 rack_cong_signal(tp, CC_RTO_ERR, th_ack);
8757                         }
8758                 }
8759                 left = th_ack - rsm->r_end;
8760                 if (rack->app_limited_needs_set && newly_acked)
8761                         rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK);
8762                 /* Free back to zone */
8763                 rack_free(rack, rsm);
8764                 if (left) {
8765                         goto more;
8766                 }
8767                 /* Check for reneging */
8768                 rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
8769                 if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
8770                         /*
8771                          * The peer has moved snd_una up to
8772                          * the edge of this send, i.e. one
8773                          * that it had previously acked. The only
8774                          * way that can be true if the peer threw
8775                          * away data (space issues) that it had
8776                          * previously sacked (else it would have
8777                          * given us snd_una up to (rsm->r_end).
8778                          * We need to undo the acked markings here.
8779                          *
8780                          * Note we have to look to make sure th_ack is
8781                          * our rsm->r_start in case we get an old ack
8782                          * where th_ack is behind snd_una.
8783                          */
8784                         rack_peer_reneges(rack, rsm, th_ack);
8785                 }
8786                 return;
8787         }
8788         if (rsm->r_flags & RACK_ACKED) {
8789                 /*
8790                  * It was acked on the scoreboard -- remove it from
8791                  * total for the part being cum-acked.
8792                  */
8793                 rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
8794         }
8795         /*
8796          * Clear the dup ack count for
8797          * the piece that remains.
8798          */
8799         rsm->r_dupack = 0;
8800         rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
8801         if (rsm->r_rtr_bytes) {
8802                 /*
8803                  * It was retransmitted adjust the
8804                  * sack holes for what was acked.
8805                  */
8806                 int ack_am;
8807
8808                 ack_am = (th_ack - rsm->r_start);
8809                 if (ack_am >= rsm->r_rtr_bytes) {
8810                         rack->r_ctl.rc_holes_rxt -= ack_am;
8811                         rsm->r_rtr_bytes -= ack_am;
8812                 }
8813         }
8814         /*
8815          * Update where the piece starts and record
8816          * the time of send of highest cumack sent.
8817          */
8818         rack->r_ctl.rc_gp_cumack_ts = rsm->r_tim_lastsent[(rsm->r_rtr_cnt-1)];
8819         rack_log_map_chg(tp, rack, NULL, rsm, NULL, MAP_TRIM_HEAD, th_ack, __LINE__);
8820         /* Now we need to move our offset forward too */
8821         if (rsm->m && (rsm->orig_m_len != rsm->m->m_len)) {
8822                 /* Fix up the orig_m_len and possibly the mbuf offset */
8823                 rack_adjust_orig_mlen(rsm);
8824         }
8825         rsm->soff += (th_ack - rsm->r_start);
8826         rsm->r_start = th_ack;
8827         /* Now do we need to move the mbuf fwd too? */
8828         if (rsm->m) {
8829                 while (rsm->soff >= rsm->m->m_len) {
8830                         rsm->soff -= rsm->m->m_len;
8831                         rsm->m = rsm->m->m_next;
8832                         KASSERT((rsm->m != NULL),
8833                                 (" nrsm:%p hit at soff:%u null m",
8834                                  rsm, rsm->soff));
8835                 }
8836                 rsm->orig_m_len = rsm->m->m_len;
8837         }
8838         if (rack->app_limited_needs_set)
8839                 rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG);
8840 }
8841
8842 static void
8843 rack_handle_might_revert(struct tcpcb *tp, struct tcp_rack *rack)
8844 {
8845         struct rack_sendmap *rsm;
8846         int sack_pass_fnd = 0;
8847
8848         if (rack->r_might_revert) {
8849                 /*
8850                  * Ok we have reordering, have not sent anything, we
8851                  * might want to revert the congestion state if nothing
8852                  * further has SACK_PASSED on it. Lets check.
8853                  *
8854                  * We also get here when we have DSACKs come in for
8855                  * all the data that we FR'd. Note that a rxt or tlp
8856                  * timer clears this from happening.
8857                  */
8858
8859                 TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
8860                         if (rsm->r_flags & RACK_SACK_PASSED) {
8861                                 sack_pass_fnd = 1;
8862                                 break;
8863                         }
8864                 }
8865                 if (sack_pass_fnd == 0) {
8866                         /*
8867                          * We went into recovery
8868                          * incorrectly due to reordering!
8869                          */
8870                         int orig_cwnd;
8871
8872                         rack->r_ent_rec_ns = 0;
8873                         orig_cwnd = tp->snd_cwnd;
8874                         tp->snd_cwnd = rack->r_ctl.rc_cwnd_at_erec;
8875                         tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at_erec;
8876                         tp->snd_recover = tp->snd_una;
8877                         rack_log_to_prr(rack, 14, orig_cwnd);
8878                         EXIT_RECOVERY(tp->t_flags);
8879                 }
8880                 rack->r_might_revert = 0;
8881         }
8882 }
8883
8884 #ifdef NETFLIX_EXP_DETECTION
8885 static void
8886 rack_do_detection(struct tcpcb *tp, struct tcp_rack *rack,  uint32_t bytes_this_ack, uint32_t segsiz)
8887 {
8888         if ((rack->do_detection || tcp_force_detection) &&
8889             tcp_sack_to_ack_thresh &&
8890             tcp_sack_to_move_thresh &&
8891             ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
8892                 /*
8893                  * We have thresholds set to find
8894                  * possible attackers and disable sack.
8895                  * Check them.
8896                  */
8897                 uint64_t ackratio, moveratio, movetotal;
8898
8899                 /* Log detecting */
8900                 rack_log_sad(rack, 1);
8901                 ackratio = (uint64_t)(rack->r_ctl.sack_count);
8902                 ackratio *= (uint64_t)(1000);
8903                 if (rack->r_ctl.ack_count)
8904                         ackratio /= (uint64_t)(rack->r_ctl.ack_count);
8905                 else {
8906                         /* We really should not hit here */
8907                         ackratio = 1000;
8908                 }
8909                 if ((rack->sack_attack_disable == 0) &&
8910                     (ackratio > rack_highest_sack_thresh_seen))
8911                         rack_highest_sack_thresh_seen = (uint32_t)ackratio;
8912                 movetotal = rack->r_ctl.sack_moved_extra;
8913                 movetotal += rack->r_ctl.sack_noextra_move;
8914                 moveratio = rack->r_ctl.sack_moved_extra;
8915                 moveratio *= (uint64_t)1000;
8916                 if (movetotal)
8917                         moveratio /= movetotal;
8918                 else {
8919                         /* No moves, thats pretty good */
8920                         moveratio = 0;
8921                 }
8922                 if ((rack->sack_attack_disable == 0) &&
8923                     (moveratio > rack_highest_move_thresh_seen))
8924                         rack_highest_move_thresh_seen = (uint32_t)moveratio;
8925                 if (rack->sack_attack_disable == 0) {
8926                         if ((ackratio > tcp_sack_to_ack_thresh) &&
8927                             (moveratio > tcp_sack_to_move_thresh)) {
8928                                 /* Disable sack processing */
8929                                 rack->sack_attack_disable = 1;
8930                                 if (rack->r_rep_attack == 0) {
8931                                         rack->r_rep_attack = 1;
8932                                         counter_u64_add(rack_sack_attacks_detected, 1);
8933                                 }
8934                                 if (tcp_attack_on_turns_on_logging) {
8935                                         /*
8936                                          * Turn on logging, used for debugging
8937                                          * false positives.
8938                                          */
8939                                         rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
8940                                 }
8941                                 /* Clamp the cwnd at flight size */
8942                                 rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
8943                                 rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
8944                                 rack_log_sad(rack, 2);
8945                         }
8946                 } else {
8947                         /* We are sack-disabled check for false positives */
8948                         if ((ackratio <= tcp_restoral_thresh) ||
8949                             (rack->r_ctl.rc_num_maps_alloced  < tcp_map_minimum)) {
8950                                 rack->sack_attack_disable = 0;
8951                                 rack_log_sad(rack, 3);
8952                                 /* Restart counting */
8953                                 rack->r_ctl.sack_count = 0;
8954                                 rack->r_ctl.sack_moved_extra = 0;
8955                                 rack->r_ctl.sack_noextra_move = 1;
8956                                 rack->r_ctl.ack_count = max(1,
8957                                       (bytes_this_ack / segsiz));
8958
8959                                 if (rack->r_rep_reverse == 0) {
8960                                         rack->r_rep_reverse = 1;
8961                                         counter_u64_add(rack_sack_attacks_reversed, 1);
8962                                 }
8963                                 /* Restore the cwnd */
8964                                 if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
8965                                         rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
8966                         }
8967                 }
8968         }
8969 }
8970 #endif
8971
8972 static void
8973 rack_note_dsack(struct tcp_rack *rack, tcp_seq start, tcp_seq end)
8974 {
8975
8976         uint32_t am;
8977
8978         if (SEQ_GT(end, start))
8979                 am = end - start;
8980         else
8981                 am = 0;
8982         /*
8983          * We keep track of how many DSACK blocks we get
8984          * after a recovery incident.
8985          */
8986         rack->r_ctl.dsack_byte_cnt += am;
8987         if (!IN_FASTRECOVERY(rack->rc_tp->t_flags) &&
8988             rack->r_ctl.retran_during_recovery &&
8989             (rack->r_ctl.dsack_byte_cnt >= rack->r_ctl.retran_during_recovery)) {
8990                 /*
8991                  * False recovery most likely culprit is reordering. If
8992                  * nothing else is missing we need to revert.
8993                  */
8994                 rack->r_might_revert = 1;
8995                 rack_handle_might_revert(rack->rc_tp, rack);
8996                 rack->r_might_revert = 0;
8997                 rack->r_ctl.retran_during_recovery = 0;
8998                 rack->r_ctl.dsack_byte_cnt = 0;
8999         }
9000 }
9001
9002 static void
9003 rack_update_prr(struct tcpcb *tp, struct tcp_rack *rack, uint32_t changed, tcp_seq th_ack)
9004 {
9005         /* Deal with changed and PRR here (in recovery only) */
9006         uint32_t pipe, snd_una;
9007
9008         rack->r_ctl.rc_prr_delivered += changed;
9009
9010         if (sbavail(&rack->rc_inp->inp_socket->so_snd) <= (tp->snd_max - tp->snd_una)) {
9011                 /*
9012                  * It is all outstanding, we are application limited
9013                  * and thus we don't need more room to send anything.
9014                  * Note we use tp->snd_una here and not th_ack because
9015                  * the data as yet not been cut from the sb.
9016                  */
9017                 rack->r_ctl.rc_prr_sndcnt = 0;
9018                 return;
9019         }
9020         /* Compute prr_sndcnt */
9021         if (SEQ_GT(tp->snd_una, th_ack)) {
9022                 snd_una = tp->snd_una;
9023         } else {
9024                 snd_una = th_ack;
9025         }
9026         pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
9027         if (pipe > tp->snd_ssthresh) {
9028                 long sndcnt;
9029
9030                 sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
9031                 if (rack->r_ctl.rc_prr_recovery_fs > 0)
9032                         sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
9033                 else {
9034                         rack->r_ctl.rc_prr_sndcnt = 0;
9035                         rack_log_to_prr(rack, 9, 0);
9036                         sndcnt = 0;
9037                 }
9038                 sndcnt++;
9039                 if (sndcnt > (long)rack->r_ctl.rc_prr_out)
9040                         sndcnt -= rack->r_ctl.rc_prr_out;
9041                 else
9042                         sndcnt = 0;
9043                 rack->r_ctl.rc_prr_sndcnt = sndcnt;
9044                 rack_log_to_prr(rack, 10, 0);
9045         } else {
9046                 uint32_t limit;
9047
9048                 if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
9049                         limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
9050                 else
9051                         limit = 0;
9052                 if (changed > limit)
9053                         limit = changed;
9054                 limit += ctf_fixed_maxseg(tp);
9055                 if (tp->snd_ssthresh > pipe) {
9056                         rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
9057                         rack_log_to_prr(rack, 11, 0);
9058                 } else {
9059                         rack->r_ctl.rc_prr_sndcnt = min(0, limit);
9060                         rack_log_to_prr(rack, 12, 0);
9061                 }
9062         }
9063 }
9064
9065 static void
9066 rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th, int entered_recovery, int dup_ack_struck)
9067 {
9068         uint32_t changed;
9069         struct tcp_rack *rack;
9070         struct rack_sendmap *rsm;
9071         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
9072         register uint32_t th_ack;
9073         int32_t i, j, k, num_sack_blks = 0;
9074         uint32_t cts, acked, ack_point, sack_changed = 0;
9075         int loop_start = 0, moved_two = 0;
9076         uint32_t tsused;
9077
9078
9079         INP_WLOCK_ASSERT(tp->t_inpcb);
9080         if (th->th_flags & TH_RST) {
9081                 /* We don't log resets */
9082                 return;
9083         }
9084         rack = (struct tcp_rack *)tp->t_fb_ptr;
9085         cts = tcp_get_usecs(NULL);
9086         rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9087         changed = 0;
9088         th_ack = th->th_ack;
9089         if (rack->sack_attack_disable == 0)
9090                 rack_do_decay(rack);
9091         if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
9092                 /*
9093                  * You only get credit for
9094                  * MSS and greater (and you get extra
9095                  * credit for larger cum-ack moves).
9096                  */
9097                 int ac;
9098
9099                 ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
9100                 rack->r_ctl.ack_count += ac;
9101                 counter_u64_add(rack_ack_total, ac);
9102         }
9103         if (rack->r_ctl.ack_count > 0xfff00000) {
9104                 /*
9105                  * reduce the number to keep us under
9106                  * a uint32_t.
9107                  */
9108                 rack->r_ctl.ack_count /= 2;
9109                 rack->r_ctl.sack_count /= 2;
9110         }
9111         if (SEQ_GT(th_ack, tp->snd_una)) {
9112                 rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
9113                 tp->t_acktime = ticks;
9114         }
9115         if (rsm && SEQ_GT(th_ack, rsm->r_start))
9116                 changed = th_ack - rsm->r_start;
9117         if (changed) {
9118                 rack_process_to_cumack(tp, rack, th_ack, cts, to);
9119         }
9120         if ((to->to_flags & TOF_SACK) == 0) {
9121                 /* We are done nothing left and no sack. */
9122                 rack_handle_might_revert(tp, rack);
9123                 /*
9124                  * For cases where we struck a dup-ack
9125                  * with no SACK, add to the changes so
9126                  * PRR will work right.
9127                  */
9128                 if (dup_ack_struck && (changed == 0)) {
9129                         changed += ctf_fixed_maxseg(rack->rc_tp);
9130                 }
9131                 goto out;
9132         }
9133         /* Sack block processing */
9134         if (SEQ_GT(th_ack, tp->snd_una))
9135                 ack_point = th_ack;
9136         else
9137                 ack_point = tp->snd_una;
9138         for (i = 0; i < to->to_nsacks; i++) {
9139                 bcopy((to->to_sacks + i * TCPOLEN_SACK),
9140                       &sack, sizeof(sack));
9141                 sack.start = ntohl(sack.start);
9142                 sack.end = ntohl(sack.end);
9143                 if (SEQ_GT(sack.end, sack.start) &&
9144                     SEQ_GT(sack.start, ack_point) &&
9145                     SEQ_LT(sack.start, tp->snd_max) &&
9146                     SEQ_GT(sack.end, ack_point) &&
9147                     SEQ_LEQ(sack.end, tp->snd_max)) {
9148                         sack_blocks[num_sack_blks] = sack;
9149                         num_sack_blks++;
9150 #ifdef NETFLIX_STATS
9151                 } else if (SEQ_LEQ(sack.start, th_ack) &&
9152                            SEQ_LEQ(sack.end, th_ack)) {
9153                         /*
9154                          * Its a D-SACK block.
9155                          */
9156                         tcp_record_dsack(sack.start, sack.end);
9157 #endif
9158                         rack_note_dsack(rack, sack.start, sack.end);
9159                 }
9160         }
9161         /*
9162          * Sort the SACK blocks so we can update the rack scoreboard with
9163          * just one pass.
9164          */
9165         num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
9166                                          num_sack_blks, th->th_ack);
9167         ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
9168         if (num_sack_blks == 0) {
9169                 /* Nothing to sack (DSACKs?) */
9170                 goto out_with_totals;
9171         }
9172         if (num_sack_blks < 2) {
9173                 /* Only one, we don't need to sort */
9174                 goto do_sack_work;
9175         }
9176         /* Sort the sacks */
9177         for (i = 0; i < num_sack_blks; i++) {
9178                 for (j = i + 1; j < num_sack_blks; j++) {
9179                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
9180                                 sack = sack_blocks[i];
9181                                 sack_blocks[i] = sack_blocks[j];
9182                                 sack_blocks[j] = sack;
9183                         }
9184                 }
9185         }
9186         /*
9187          * Now are any of the sack block ends the same (yes some
9188          * implementations send these)?
9189          */
9190 again:
9191         if (num_sack_blks == 0)
9192                 goto out_with_totals;
9193         if (num_sack_blks > 1) {
9194                 for (i = 0; i < num_sack_blks; i++) {
9195                         for (j = i + 1; j < num_sack_blks; j++) {
9196                                 if (sack_blocks[i].end == sack_blocks[j].end) {
9197                                         /*
9198                                          * Ok these two have the same end we
9199                                          * want the smallest end and then
9200                                          * throw away the larger and start
9201                                          * again.
9202                                          */
9203                                         if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
9204                                                 /*
9205                                                  * The second block covers
9206                                                  * more area use that
9207                                                  */
9208                                                 sack_blocks[i].start = sack_blocks[j].start;
9209                                         }
9210                                         /*
9211                                          * Now collapse out the dup-sack and
9212                                          * lower the count
9213                                          */
9214                                         for (k = (j + 1); k < num_sack_blks; k++) {
9215                                                 sack_blocks[j].start = sack_blocks[k].start;
9216                                                 sack_blocks[j].end = sack_blocks[k].end;
9217                                                 j++;
9218                                         }
9219                                         num_sack_blks--;
9220                                         goto again;
9221                                 }
9222                         }
9223                 }
9224         }
9225 do_sack_work:
9226         /*
9227          * First lets look to see if
9228          * we have retransmitted and
9229          * can use the transmit next?
9230          */
9231         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9232         if (rsm &&
9233             SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
9234             SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
9235                 /*
9236                  * We probably did the FR and the next
9237                  * SACK in continues as we would expect.
9238                  */
9239                 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
9240                 if (acked) {
9241                         rack->r_wanted_output = 1;
9242                         changed += acked;
9243                         sack_changed += acked;
9244                 }
9245                 if (num_sack_blks == 1) {
9246                         /*
9247                          * This is what we would expect from
9248                          * a normal implementation to happen
9249                          * after we have retransmitted the FR,
9250                          * i.e the sack-filter pushes down
9251                          * to 1 block and the next to be retransmitted
9252                          * is the sequence in the sack block (has more
9253                          * are acked). Count this as ACK'd data to boost
9254                          * up the chances of recovering any false positives.
9255                          */
9256                         rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
9257                         counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
9258                         counter_u64_add(rack_express_sack, 1);
9259                         if (rack->r_ctl.ack_count > 0xfff00000) {
9260                                 /*
9261                                  * reduce the number to keep us under
9262                                  * a uint32_t.
9263                                  */
9264                                 rack->r_ctl.ack_count /= 2;
9265                                 rack->r_ctl.sack_count /= 2;
9266                         }
9267                         goto out_with_totals;
9268                 } else {
9269                         /*
9270                          * Start the loop through the
9271                          * rest of blocks, past the first block.
9272                          */
9273                         moved_two = 0;
9274                         loop_start = 1;
9275                 }
9276         }
9277         /* Its a sack of some sort */
9278         rack->r_ctl.sack_count++;
9279         if (rack->r_ctl.sack_count > 0xfff00000) {
9280                 /*
9281                  * reduce the number to keep us under
9282                  * a uint32_t.
9283                  */
9284                 rack->r_ctl.ack_count /= 2;
9285                 rack->r_ctl.sack_count /= 2;
9286         }
9287         counter_u64_add(rack_sack_total, 1);
9288         if (rack->sack_attack_disable) {
9289                 /* An attacker disablement is in place */
9290                 if (num_sack_blks > 1) {
9291                         rack->r_ctl.sack_count += (num_sack_blks - 1);
9292                         rack->r_ctl.sack_moved_extra++;
9293                         counter_u64_add(rack_move_some, 1);
9294                         if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
9295                                 rack->r_ctl.sack_moved_extra /= 2;
9296                                 rack->r_ctl.sack_noextra_move /= 2;
9297                         }
9298                 }
9299                 goto out;
9300         }
9301         rsm = rack->r_ctl.rc_sacklast;
9302         for (i = loop_start; i < num_sack_blks; i++) {
9303                 acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
9304                 if (acked) {
9305                         rack->r_wanted_output = 1;
9306                         changed += acked;
9307                         sack_changed += acked;
9308                 }
9309                 if (moved_two) {
9310                         /*
9311                          * If we did not get a SACK for at least a MSS and
9312                          * had to move at all, or if we moved more than our
9313                          * threshold, it counts against the "extra" move.
9314                          */
9315                         rack->r_ctl.sack_moved_extra += moved_two;
9316                         counter_u64_add(rack_move_some, 1);
9317                 } else {
9318                         /*
9319                          * else we did not have to move
9320                          * any more than we would expect.
9321                          */
9322                         rack->r_ctl.sack_noextra_move++;
9323                         counter_u64_add(rack_move_none, 1);
9324                 }
9325                 if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
9326                         /*
9327                          * If the SACK was not a full MSS then
9328                          * we add to sack_count the number of
9329                          * MSS's (or possibly more than
9330                          * a MSS if its a TSO send) we had to skip by.
9331                          */
9332                         rack->r_ctl.sack_count += moved_two;
9333                         counter_u64_add(rack_sack_total, moved_two);
9334                 }
9335                 /*
9336                  * Now we need to setup for the next
9337                  * round. First we make sure we won't
9338                  * exceed the size of our uint32_t on
9339                  * the various counts, and then clear out
9340                  * moved_two.
9341                  */
9342                 if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
9343                     (rack->r_ctl.sack_noextra_move > 0xfff00000)) {
9344                         rack->r_ctl.sack_moved_extra /= 2;
9345                         rack->r_ctl.sack_noextra_move /= 2;
9346                 }
9347                 if (rack->r_ctl.sack_count > 0xfff00000) {
9348                         rack->r_ctl.ack_count /= 2;
9349                         rack->r_ctl.sack_count /= 2;
9350                 }
9351                 moved_two = 0;
9352         }
9353 out_with_totals:
9354         if (num_sack_blks > 1) {
9355                 /*
9356                  * You get an extra stroke if
9357                  * you have more than one sack-blk, this
9358                  * could be where we are skipping forward
9359                  * and the sack-filter is still working, or
9360                  * it could be an attacker constantly
9361                  * moving us.
9362                  */
9363                 rack->r_ctl.sack_moved_extra++;
9364                 counter_u64_add(rack_move_some, 1);
9365         }
9366 out:
9367 #ifdef NETFLIX_EXP_DETECTION
9368         rack_do_detection(tp, rack, BYTES_THIS_ACK(tp, th), ctf_fixed_maxseg(rack->rc_tp));
9369 #endif
9370         if (changed) {
9371                 /* Something changed cancel the rack timer */
9372                 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9373         }
9374         tsused = tcp_get_usecs(NULL);
9375         rsm = tcp_rack_output(tp, rack, tsused);
9376         if ((!IN_FASTRECOVERY(tp->t_flags)) &&
9377             rsm) {
9378                 /* Enter recovery */
9379                 rack->r_ctl.rc_rsm_start = rsm->r_start;
9380                 rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
9381                 rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
9382                 entered_recovery = 1;
9383                 rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
9384                 /*
9385                  * When we enter recovery we need to assure we send
9386                  * one packet.
9387                  */
9388                 if (rack->rack_no_prr == 0) {
9389                         rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
9390                         rack_log_to_prr(rack, 8, 0);
9391                 }
9392                 rack->r_timer_override = 1;
9393                 rack->r_early = 0;
9394                 rack->r_ctl.rc_agg_early = 0;
9395         } else if (IN_FASTRECOVERY(tp->t_flags) &&
9396                    rsm &&
9397                    (rack->r_rr_config == 3)) {
9398                 /*
9399                  * Assure we can output and we get no
9400                  * remembered pace time except the retransmit.
9401                  */
9402                 rack->r_timer_override = 1;
9403                 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
9404                 rack->r_ctl.rc_resend = rsm;
9405         }
9406         if (IN_FASTRECOVERY(tp->t_flags) &&
9407             (rack->rack_no_prr == 0) &&
9408             (entered_recovery == 0)) {
9409                 rack_update_prr(tp, rack, changed, th_ack);
9410                 if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) &&
9411                      ((rack->rc_inp->inp_in_hpts == 0) &&
9412                       ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) {
9413                         /*
9414                          * If you are pacing output you don't want
9415                          * to override.
9416                          */
9417                         rack->r_early = 0;
9418                         rack->r_ctl.rc_agg_early = 0;
9419                         rack->r_timer_override = 1;
9420                 }
9421         }
9422 }
9423
9424 static void
9425 rack_strike_dupack(struct tcp_rack *rack)
9426 {
9427         struct rack_sendmap *rsm;
9428
9429         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
9430         while (rsm && (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
9431                 rsm = TAILQ_NEXT(rsm, r_tnext);
9432         }
9433         if (rsm && (rsm->r_dupack < 0xff)) {
9434                 rsm->r_dupack++;
9435                 if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
9436                         struct timeval tv;
9437                         uint32_t cts;
9438                         /*
9439                          * Here we see if we need to retransmit. For
9440                          * a SACK type connection if enough time has passed
9441                          * we will get a return of the rsm. For a non-sack
9442                          * connection we will get the rsm returned if the
9443                          * dupack value is 3 or more.
9444                          */
9445                         cts = tcp_get_usecs(&tv);
9446                         rack->r_ctl.rc_resend = tcp_rack_output(rack->rc_tp, rack, cts);
9447                         if (rack->r_ctl.rc_resend != NULL) {
9448                                 if (!IN_FASTRECOVERY(rack->rc_tp->t_flags)) {
9449                                         rack_cong_signal(rack->rc_tp, CC_NDUPACK,
9450                                                          rack->rc_tp->snd_una);
9451                                 }
9452                                 rack->r_wanted_output = 1;
9453                                 rack->r_timer_override = 1;
9454                                 rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
9455                         }
9456                 } else {
9457                         rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
9458                 }
9459         }
9460 }
9461
9462 static void
9463 rack_check_bottom_drag(struct tcpcb *tp,
9464                        struct tcp_rack *rack,
9465                        struct socket *so, int32_t acked)
9466 {
9467         uint32_t segsiz, minseg;
9468
9469         segsiz = ctf_fixed_maxseg(tp);
9470         minseg = segsiz;
9471
9472         if (tp->snd_max == tp->snd_una) {
9473                 /*
9474                  * We are doing dynamic pacing and we are way
9475                  * under. Basically everything got acked while
9476                  * we were still waiting on the pacer to expire.
9477                  *
9478                  * This means we need to boost the b/w in
9479                  * addition to any earlier boosting of
9480                  * the multipler.
9481                  */
9482                 rack->rc_dragged_bottom = 1;
9483                 rack_validate_multipliers_at_or_above100(rack);
9484                 /*
9485                  * Lets use the segment bytes acked plus
9486                  * the lowest RTT seen as the basis to
9487                  * form a b/w estimate. This will be off
9488                  * due to the fact that the true estimate
9489                  * should be around 1/2 the time of the RTT
9490                  * but we can settle for that.
9491                  */
9492                 if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) &&
9493                     acked) {
9494                         uint64_t bw, calc_bw, rtt;
9495
9496                         rtt = rack->r_ctl.rack_rs.rs_us_rtt;
9497                         if (rtt == 0) {
9498                                 /* no us sample is there a ms one? */
9499                                 if (rack->r_ctl.rack_rs.rs_rtt_lowest) {
9500                                         rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
9501                                 } else {
9502                                         goto no_measurement;
9503                                 }
9504                         }
9505                         bw = acked;
9506                         calc_bw = bw * 1000000;
9507                         calc_bw /= rtt;
9508                         if (rack->r_ctl.last_max_bw &&
9509                             (rack->r_ctl.last_max_bw < calc_bw)) {
9510                                 /*
9511                                  * If we have a last calculated max bw
9512                                  * enforce it.
9513                                  */
9514                                 calc_bw = rack->r_ctl.last_max_bw;
9515                         }
9516                         /* now plop it in */
9517                         if (rack->rc_gp_filled == 0) {
9518                                 if (calc_bw > ONE_POINT_TWO_MEG) {
9519                                         /*
9520                                          * If we have no measurement
9521                                          * don't let us set in more than
9522                                          * 1.2Mbps. If we are still too
9523                                          * low after pacing with this we
9524                                          * will hopefully have a max b/w
9525                                          * available to sanity check things.
9526                                          */
9527                                         calc_bw = ONE_POINT_TWO_MEG;
9528                                 }
9529                                 rack->r_ctl.rc_rtt_diff = 0;
9530                                 rack->r_ctl.gp_bw = calc_bw;
9531                                 rack->rc_gp_filled = 1;
9532                                 if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9533                                         rack->r_ctl.num_measurements = RACK_REQ_AVG;
9534                                 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9535                         } else if (calc_bw > rack->r_ctl.gp_bw) {
9536                                 rack->r_ctl.rc_rtt_diff = 0;
9537                                 if (rack->r_ctl.num_measurements < RACK_REQ_AVG)
9538                                         rack->r_ctl.num_measurements = RACK_REQ_AVG;
9539                                 rack->r_ctl.gp_bw = calc_bw;
9540                                 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
9541                         } else
9542                                 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9543                         if ((rack->gp_ready == 0) &&
9544                             (rack->r_ctl.num_measurements >= rack->r_ctl.req_measurements)) {
9545                                 /* We have enough measurements now */
9546                                 rack->gp_ready = 1;
9547                                 rack_set_cc_pacing(rack);
9548                                 if (rack->defer_options)
9549                                         rack_apply_deferred_options(rack);
9550                         }
9551                         /*
9552                          * For acks over 1mss we do a extra boost to simulate
9553                          * where we would get 2 acks (we want 110 for the mul).
9554                          */
9555                         if (acked > segsiz)
9556                                 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9557                 } else {
9558                         /*
9559                          * zero rtt possibly?, settle for just an old increase.
9560                          */
9561 no_measurement:
9562                         rack_increase_bw_mul(rack, -1, 0, 0, 1);
9563                 }
9564         } else if ((IN_FASTRECOVERY(tp->t_flags) == 0) &&
9565                    (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)),
9566                                                minseg)) &&
9567                    (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9568                    (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) &&
9569                    (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <=
9570                     (segsiz * rack_req_segs))) {
9571                 /*
9572                  * We are doing dynamic GP pacing and
9573                  * we have everything except 1MSS or less
9574                  * bytes left out. We are still pacing away.
9575                  * And there is data that could be sent, This
9576                  * means we are inserting delayed ack time in
9577                  * our measurements because we are pacing too slow.
9578                  */
9579                 rack_validate_multipliers_at_or_above100(rack);
9580                 rack->rc_dragged_bottom = 1;
9581                 rack_increase_bw_mul(rack, -1, 0, 0, 1);
9582         }
9583 }
9584
9585
9586
9587 static void
9588 rack_gain_for_fastoutput(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t acked_amount)
9589 {
9590         /*
9591          * The fast output path is enabled and we
9592          * have moved the cumack forward. Lets see if
9593          * we can expand forward the fast path length by
9594          * that amount. What we would ideally like to
9595          * do is increase the number of bytes in the
9596          * fast path block (left_to_send) by the
9597          * acked amount. However we have to gate that
9598          * by two factors:
9599          * 1) The amount outstanding and the rwnd of the peer
9600          *    (i.e. we don't want to exceed the rwnd of the peer).
9601          *    <and>
9602          * 2) The amount of data left in the socket buffer (i.e.
9603          *    we can't send beyond what is in the buffer).
9604          *
9605          * Note that this does not take into account any increase
9606          * in the cwnd. We will only extend the fast path by
9607          * what was acked.
9608          */
9609         uint32_t new_total, gating_val;
9610
9611         new_total = acked_amount + rack->r_ctl.fsb.left_to_send;
9612         gating_val = min((sbavail(&so->so_snd) - (tp->snd_max - tp->snd_una)),
9613                          (tp->snd_wnd - (tp->snd_max - tp->snd_una)));
9614         if (new_total <= gating_val) {
9615                 /* We can increase left_to_send by the acked amount */
9616                 counter_u64_add(rack_extended_rfo, 1);
9617                 rack->r_ctl.fsb.left_to_send = new_total;
9618                 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(&rack->rc_inp->inp_socket->so_snd) - (tp->snd_max - tp->snd_una))),
9619                         ("rack:%p left_to_send:%u sbavail:%u out:%u",
9620                          rack, rack->r_ctl.fsb.left_to_send,
9621                          sbavail(&rack->rc_inp->inp_socket->so_snd),
9622                          (tp->snd_max - tp->snd_una)));
9623
9624         }
9625 }
9626
9627 static void
9628 rack_adjust_sendmap(struct tcp_rack *rack, struct sockbuf *sb, tcp_seq snd_una)
9629 {
9630         /*
9631          * Here any sendmap entry that points to the
9632          * beginning mbuf must be adjusted to the correct
9633          * offset. This must be called with:
9634          * 1) The socket buffer locked
9635          * 2) snd_una adjusted to its new postion.
9636          *
9637          * Note that (2) implies rack_ack_received has also
9638          * been called.
9639          *
9640          * We grab the first mbuf in the socket buffer and
9641          * then go through the front of the sendmap, recalculating
9642          * the stored offset for any sendmap entry that has
9643          * that mbuf. We must use the sb functions to do this
9644          * since its possible an add was done has well as
9645          * the subtraction we may have just completed. This should
9646          * not be a penalty though, since we just referenced the sb
9647          * to go in and trim off the mbufs that we freed (of course
9648          * there will be a penalty for the sendmap references though).
9649          */
9650         struct mbuf *m;
9651         struct rack_sendmap *rsm;
9652
9653         SOCKBUF_LOCK_ASSERT(sb);
9654         m = sb->sb_mb;
9655         rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
9656         if ((rsm == NULL) || (m == NULL)) {
9657                 /* Nothing outstanding */
9658                 return;
9659         }
9660         while (rsm->m && (rsm->m == m)) {
9661                 /* one to adjust */
9662 #ifdef INVARIANTS
9663                 struct mbuf *tm;
9664                 uint32_t soff;
9665
9666                 tm = sbsndmbuf(sb, (rsm->r_start - snd_una), &soff);
9667                 if (rsm->orig_m_len != m->m_len) {
9668                         rack_adjust_orig_mlen(rsm);
9669                 }
9670                 if (rsm->soff != soff) {
9671                         /*
9672                          * This is not a fatal error, we anticipate it
9673                          * might happen (the else code), so we count it here
9674                          * so that under invariant we can see that it really
9675                          * does happen.
9676                          */
9677                         counter_u64_add(rack_adjust_map_bw, 1);
9678                 }
9679                 rsm->m = tm;
9680                 rsm->soff = soff;
9681                 if (tm)
9682                         rsm->orig_m_len = rsm->m->m_len;
9683                 else
9684                         rsm->orig_m_len = 0;
9685 #else
9686                 rsm->m = sbsndmbuf(sb, (rsm->r_start - snd_una), &rsm->soff);
9687                 if (rsm->m)
9688                         rsm->orig_m_len = rsm->m->m_len;
9689                 else
9690                         rsm->orig_m_len = 0;
9691 #endif
9692                 rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
9693                               rsm);
9694                 if (rsm == NULL)
9695                         break;
9696         }
9697 }
9698
9699 /*
9700  * Return value of 1, we do not need to call rack_process_data().
9701  * return value of 0, rack_process_data can be called.
9702  * For ret_val if its 0 the TCP is locked, if its non-zero
9703  * its unlocked and probably unsafe to touch the TCB.
9704  */
9705 static int
9706 rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
9707     struct tcpcb *tp, struct tcpopt *to,
9708     uint32_t tiwin, int32_t tlen,
9709     int32_t * ofia, int32_t thflags, int32_t *ret_val)
9710 {
9711         int32_t ourfinisacked = 0;
9712         int32_t nsegs, acked_amount;
9713         int32_t acked;
9714         struct mbuf *mfree;
9715         struct tcp_rack *rack;
9716         int32_t under_pacing = 0;
9717         int32_t recovery = 0;
9718
9719         rack = (struct tcp_rack *)tp->t_fb_ptr;
9720         if (SEQ_GT(th->th_ack, tp->snd_max)) {
9721                 __ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val,
9722                                       &rack->r_ctl.challenge_ack_ts,
9723                                       &rack->r_ctl.challenge_ack_cnt);
9724                 rack->r_wanted_output = 1;
9725                 return (1);
9726         }
9727         if (rack->gp_ready &&
9728             (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
9729                 under_pacing = 1;
9730         }
9731         if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
9732                 int in_rec, dup_ack_struck = 0;
9733
9734                 in_rec = IN_FASTRECOVERY(tp->t_flags);
9735                 if (rack->rc_in_persist) {
9736                         tp->t_rxtshift = 0;
9737                         RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
9738                                       rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
9739                 }
9740                 if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd)) {
9741                         rack_strike_dupack(rack);
9742                         dup_ack_struck = 1;
9743                 }
9744                 rack_log_ack(tp, to, th, ((in_rec == 0) && IN_FASTRECOVERY(tp->t_flags)), dup_ack_struck);
9745         }
9746         if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
9747                 /*
9748                  * Old ack, behind (or duplicate to) the last one rcv'd
9749                  * Note: We mark reordering is occuring if its
9750                  * less than and we have not closed our window.
9751                  */
9752                 if (SEQ_LT(th->th_ack, tp->snd_una) && (sbspace(&so->so_rcv) > ctf_fixed_maxseg(tp))) {
9753                         counter_u64_add(rack_reorder_seen, 1);
9754                         rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
9755                 }
9756                 return (0);
9757         }
9758         /*
9759          * If we reach this point, ACK is not a duplicate, i.e., it ACKs
9760          * something we sent.
9761          */
9762         if (tp->t_flags & TF_NEEDSYN) {
9763                 /*
9764                  * T/TCP: Connection was half-synchronized, and our SYN has
9765                  * been ACK'd (so connection is now fully synchronized).  Go
9766                  * to non-starred state, increment snd_una for ACK of SYN,
9767                  * and check if we can do window scaling.
9768                  */
9769                 tp->t_flags &= ~TF_NEEDSYN;
9770                 tp->snd_una++;
9771                 /* Do window scaling? */
9772                 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
9773                     (TF_RCVD_SCALE | TF_REQ_SCALE)) {
9774                         tp->rcv_scale = tp->request_r_scale;
9775                         /* Send window already scaled. */
9776                 }
9777         }
9778         nsegs = max(1, m->m_pkthdr.lro_nsegs);
9779         INP_WLOCK_ASSERT(tp->t_inpcb);
9780
9781         acked = BYTES_THIS_ACK(tp, th);
9782         KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
9783         KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
9784         /*
9785          * If we just performed our first retransmit, and the ACK arrives
9786          * within our recovery window, then it was a mistake to do the
9787          * retransmit in the first place.  Recover our original cwnd and
9788          * ssthresh, and proceed to transmit where we left off.
9789          */
9790         if ((tp->t_flags & TF_PREVVALID) &&
9791             ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
9792                 tp->t_flags &= ~TF_PREVVALID;
9793                 if (tp->t_rxtshift == 1 &&
9794                     (int)(ticks - tp->t_badrxtwin) < 0)
9795                         rack_cong_signal(tp, CC_RTO_ERR, th->th_ack);
9796         }
9797         if (acked) {
9798                 /* assure we are not backed off */
9799                 tp->t_rxtshift = 0;
9800                 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
9801                               rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
9802                 rack->rc_tlp_in_progress = 0;
9803                 rack->r_ctl.rc_tlp_cnt_out = 0;
9804                 /*
9805                  * If it is the RXT timer we want to
9806                  * stop it, so we can restart a TLP.
9807                  */
9808                 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
9809                         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9810 #ifdef NETFLIX_HTTP_LOGGING
9811                 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
9812 #endif
9813         }
9814         /*
9815          * If we have a timestamp reply, update smoothed round trip time. If
9816          * no timestamp is present but transmit timer is running and timed
9817          * sequence number was acked, update smoothed round trip time. Since
9818          * we now have an rtt measurement, cancel the timer backoff (cf.,
9819          * Phil Karn's retransmit alg.). Recompute the initial retransmit
9820          * timer.
9821          *
9822          * Some boxes send broken timestamp replies during the SYN+ACK
9823          * phase, ignore timestamps of 0 or we could calculate a huge RTT
9824          * and blow up the retransmit timer.
9825          */
9826         /*
9827          * If all outstanding data is acked, stop retransmit timer and
9828          * remember to restart (more output or persist). If there is more
9829          * data to be acked, restart retransmit timer, using current
9830          * (possibly backed-off) value.
9831          */
9832         if (acked == 0) {
9833                 if (ofia)
9834                         *ofia = ourfinisacked;
9835                 return (0);
9836         }
9837         if (IN_RECOVERY(tp->t_flags)) {
9838                 if (SEQ_LT(th->th_ack, tp->snd_recover) &&
9839                     (SEQ_LT(th->th_ack, tp->snd_max))) {
9840                         tcp_rack_partialack(tp);
9841                 } else {
9842                         rack_post_recovery(tp, th->th_ack);
9843                         recovery = 1;
9844                 }
9845         }
9846         /*
9847          * Let the congestion control algorithm update congestion control
9848          * related information. This typically means increasing the
9849          * congestion window.
9850          */
9851         rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, recovery);
9852         SOCKBUF_LOCK(&so->so_snd);
9853         acked_amount = min(acked, (int)sbavail(&so->so_snd));
9854         tp->snd_wnd -= acked_amount;
9855         mfree = sbcut_locked(&so->so_snd, acked_amount);
9856         if ((sbused(&so->so_snd) == 0) &&
9857             (acked > acked_amount) &&
9858             (tp->t_state >= TCPS_FIN_WAIT_1) &&
9859             (tp->t_flags & TF_SENTFIN)) {
9860                 /*
9861                  * We must be sure our fin
9862                  * was sent and acked (we can be
9863                  * in FIN_WAIT_1 without having
9864                  * sent the fin).
9865                  */
9866                 ourfinisacked = 1;
9867         }
9868         tp->snd_una = th->th_ack;
9869         if (acked_amount && sbavail(&so->so_snd))
9870                 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
9871         rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
9872         /* NB: sowwakeup_locked() does an implicit unlock. */
9873         sowwakeup_locked(so);
9874         m_freem(mfree);
9875         if (SEQ_GT(tp->snd_una, tp->snd_recover))
9876                 tp->snd_recover = tp->snd_una;
9877
9878         if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
9879                 tp->snd_nxt = tp->snd_una;
9880         }
9881         if (under_pacing &&
9882             (rack->use_fixed_rate == 0) &&
9883             (rack->in_probe_rtt == 0) &&
9884             rack->rc_gp_dyn_mul &&
9885             rack->rc_always_pace) {
9886                 /* Check if we are dragging bottom */
9887                 rack_check_bottom_drag(tp, rack, so, acked);
9888         }
9889         if (tp->snd_una == tp->snd_max) {
9890                 /* Nothing left outstanding */
9891                 tp->t_flags &= ~TF_PREVVALID;
9892                 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
9893                 rack->r_ctl.retran_during_recovery = 0;
9894                 rack->r_ctl.dsack_byte_cnt = 0;
9895                 if (rack->r_ctl.rc_went_idle_time == 0)
9896                         rack->r_ctl.rc_went_idle_time = 1;
9897                 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
9898                 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
9899                         tp->t_acktime = 0;
9900                 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
9901                 /* Set need output so persist might get set */
9902                 rack->r_wanted_output = 1;
9903                 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
9904                 if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
9905                     (sbavail(&so->so_snd) == 0) &&
9906                     (tp->t_flags2 & TF2_DROP_AF_DATA)) {
9907                         /*
9908                          * The socket was gone and the
9909                          * peer sent data (now or in the past), time to
9910                          * reset him.
9911                          */
9912                         *ret_val = 1;
9913                         /* tcp_close will kill the inp pre-log the Reset */
9914                         tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
9915                         tp = tcp_close(tp);
9916                         ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
9917                         return (1);
9918                 }
9919         }
9920         if (ofia)
9921                 *ofia = ourfinisacked;
9922         return (0);
9923 }
9924
9925 static void
9926 rack_collapsed_window(struct tcp_rack *rack)
9927 {
9928         /*
9929          * Now we must walk the
9930          * send map and divide the
9931          * ones left stranded. These
9932          * guys can't cause us to abort
9933          * the connection and are really
9934          * "unsent". However if a buggy
9935          * client actually did keep some
9936          * of the data i.e. collapsed the win
9937          * and refused to ack and then opened
9938          * the win and acked that data. We would
9939          * get into an ack war, the simplier
9940          * method then of just pretending we
9941          * did not send those segments something
9942          * won't work.
9943          */
9944         struct rack_sendmap *rsm, *nrsm, fe, *insret;
9945         tcp_seq max_seq;
9946
9947         max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
9948         memset(&fe, 0, sizeof(fe));
9949         fe.r_start = max_seq;
9950         /* Find the first seq past or at maxseq */
9951         rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
9952         if (rsm == NULL) {
9953                 /* Nothing to do strange */
9954                 rack->rc_has_collapsed = 0;
9955                 return;
9956         }
9957         /*
9958          * Now do we need to split at
9959          * the collapse point?
9960          */
9961         if (SEQ_GT(max_seq, rsm->r_start)) {
9962                 nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
9963                 if (nrsm == NULL) {
9964                         /* We can't get a rsm, mark all? */
9965                         nrsm = rsm;
9966                         goto no_split;
9967                 }
9968                 /* Clone it */
9969                 rack_clone_rsm(rack, nrsm, rsm, max_seq);
9970                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
9971 #ifdef INVARIANTS
9972                 if (insret != NULL) {
9973                         panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
9974                               nrsm, insret, rack, rsm);
9975                 }
9976 #endif
9977                 rack_log_map_chg(rack->rc_tp, rack, NULL, rsm, nrsm, MAP_SPLIT, max_seq, __LINE__);
9978                 if (rsm->r_in_tmap) {
9979                         TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
9980                         nrsm->r_in_tmap = 1;
9981                 }
9982                 /*
9983                  * Set in the new RSM as the
9984                  * collapsed starting point
9985                  */
9986                 rsm = nrsm;
9987         }
9988 no_split:
9989         counter_u64_add(rack_collapsed_win, 1);
9990         RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
9991                 nrsm->r_flags |= RACK_RWND_COLLAPSED;
9992         }
9993         rack->rc_has_collapsed = 1;
9994 }
9995
9996 static void
9997 rack_un_collapse_window(struct tcp_rack *rack)
9998 {
9999         struct rack_sendmap *rsm;
10000
10001         RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
10002                 if (rsm->r_flags & RACK_RWND_COLLAPSED)
10003                         rsm->r_flags &= ~RACK_RWND_COLLAPSED;
10004                 else
10005                         break;
10006         }
10007         rack->rc_has_collapsed = 0;
10008 }
10009
10010 static void
10011 rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack,
10012                         int32_t tlen, int32_t tfo_syn)
10013 {
10014         if (DELAY_ACK(tp, tlen) || tfo_syn) {
10015                 if (rack->rc_dack_mode &&
10016                     (tlen > 500) &&
10017                     (rack->rc_dack_toggle == 1)) {
10018                         goto no_delayed_ack;
10019                 }
10020                 rack_timer_cancel(tp, rack,
10021                                   rack->r_ctl.rc_rcvtime, __LINE__);
10022                 tp->t_flags |= TF_DELACK;
10023         } else {
10024 no_delayed_ack:
10025                 rack->r_wanted_output = 1;
10026                 tp->t_flags |= TF_ACKNOW;
10027                 if (rack->rc_dack_mode) {
10028                         if (tp->t_flags & TF_DELACK)
10029                                 rack->rc_dack_toggle = 1;
10030                         else
10031                                 rack->rc_dack_toggle = 0;
10032                 }
10033         }
10034 }
10035
10036 static void
10037 rack_validate_fo_sendwin_up(struct tcpcb *tp, struct tcp_rack *rack)
10038 {
10039         /*
10040          * If fast output is in progress, lets validate that
10041          * the new window did not shrink on us and make it
10042          * so fast output should end.
10043          */
10044         if (rack->r_fast_output) {
10045                 uint32_t out;
10046
10047                 /*
10048                  * Calculate what we will send if left as is
10049                  * and compare that to our send window.
10050                  */
10051                 out = ctf_outstanding(tp);
10052                 if ((out + rack->r_ctl.fsb.left_to_send) > tp->snd_wnd) {
10053                         /* ok we have an issue */
10054                         if (out >= tp->snd_wnd) {
10055                                 /* Turn off fast output the window is met or collapsed */
10056                                 rack->r_fast_output = 0;
10057                         } else {
10058                                 /* we have some room left */
10059                                 rack->r_ctl.fsb.left_to_send = tp->snd_wnd - out;
10060                                 if (rack->r_ctl.fsb.left_to_send < ctf_fixed_maxseg(tp)) {
10061                                         /* If not at least 1 full segment never mind */
10062                                         rack->r_fast_output = 0;
10063                                 }
10064                         }
10065                 }
10066         }
10067 }
10068
10069
10070 /*
10071  * Return value of 1, the TCB is unlocked and most
10072  * likely gone, return value of 0, the TCP is still
10073  * locked.
10074  */
10075 static int
10076 rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
10077     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
10078     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
10079 {
10080         /*
10081          * Update window information. Don't look at window if no ACK: TAC's
10082          * send garbage on first SYN.
10083          */
10084         int32_t nsegs;
10085         int32_t tfo_syn;
10086         struct tcp_rack *rack;
10087
10088         rack = (struct tcp_rack *)tp->t_fb_ptr;
10089         INP_WLOCK_ASSERT(tp->t_inpcb);
10090         nsegs = max(1, m->m_pkthdr.lro_nsegs);
10091         if ((thflags & TH_ACK) &&
10092             (SEQ_LT(tp->snd_wl1, th->th_seq) ||
10093             (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
10094             (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
10095                 /* keep track of pure window updates */
10096                 if (tlen == 0 &&
10097                     tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
10098                         KMOD_TCPSTAT_INC(tcps_rcvwinupd);
10099                 tp->snd_wnd = tiwin;
10100                 rack_validate_fo_sendwin_up(tp, rack);
10101                 tp->snd_wl1 = th->th_seq;
10102                 tp->snd_wl2 = th->th_ack;
10103                 if (tp->snd_wnd > tp->max_sndwnd)
10104                         tp->max_sndwnd = tp->snd_wnd;
10105                 rack->r_wanted_output = 1;
10106         } else if (thflags & TH_ACK) {
10107                 if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
10108                         tp->snd_wnd = tiwin;
10109                         rack_validate_fo_sendwin_up(tp, rack);
10110                         tp->snd_wl1 = th->th_seq;
10111                         tp->snd_wl2 = th->th_ack;
10112                 }
10113         }
10114         if (tp->snd_wnd < ctf_outstanding(tp))
10115                 /* The peer collapsed the window */
10116                 rack_collapsed_window(rack);
10117         else if (rack->rc_has_collapsed)
10118                 rack_un_collapse_window(rack);
10119         /* Was persist timer active and now we have window space? */
10120         if ((rack->rc_in_persist != 0) &&
10121             (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10122                                 rack->r_ctl.rc_pace_min_segs))) {
10123                 rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10124                 tp->snd_nxt = tp->snd_max;
10125                 /* Make sure we output to start the timer */
10126                 rack->r_wanted_output = 1;
10127         }
10128         /* Do we enter persists? */
10129         if ((rack->rc_in_persist == 0) &&
10130             (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10131             TCPS_HAVEESTABLISHED(tp->t_state) &&
10132             (tp->snd_max == tp->snd_una) &&
10133             sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
10134             (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
10135                 /*
10136                  * Here the rwnd is less than
10137                  * the pacing size, we are established,
10138                  * nothing is outstanding, and there is
10139                  * data to send. Enter persists.
10140                  */
10141                 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10142         }
10143         if (tp->t_flags2 & TF2_DROP_AF_DATA) {
10144                 m_freem(m);
10145                 return (0);
10146         }
10147         /*
10148          * don't process the URG bit, ignore them drag
10149          * along the up.
10150          */
10151         tp->rcv_up = tp->rcv_nxt;
10152         INP_WLOCK_ASSERT(tp->t_inpcb);
10153
10154         /*
10155          * Process the segment text, merging it into the TCP sequencing
10156          * queue, and arranging for acknowledgment of receipt if necessary.
10157          * This process logically involves adjusting tp->rcv_wnd as data is
10158          * presented to the user (this happens in tcp_usrreq.c, case
10159          * PRU_RCVD).  If a FIN has already been received on this connection
10160          * then we just ignore the text.
10161          */
10162         tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
10163                    IS_FASTOPEN(tp->t_flags));
10164         if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
10165             TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10166                 tcp_seq save_start = th->th_seq;
10167                 tcp_seq save_rnxt  = tp->rcv_nxt;
10168                 int     save_tlen  = tlen;
10169
10170                 m_adj(m, drop_hdrlen);  /* delayed header drop */
10171                 /*
10172                  * Insert segment which includes th into TCP reassembly
10173                  * queue with control block tp.  Set thflags to whether
10174                  * reassembly now includes a segment with FIN.  This handles
10175                  * the common case inline (segment is the next to be
10176                  * received on an established connection, and the queue is
10177                  * empty), avoiding linkage into and removal from the queue
10178                  * and repetition of various conversions. Set DELACK for
10179                  * segments received in order, but ack immediately when
10180                  * segments are out of order (so fast retransmit can work).
10181                  */
10182                 if (th->th_seq == tp->rcv_nxt &&
10183                     SEGQ_EMPTY(tp) &&
10184                     (TCPS_HAVEESTABLISHED(tp->t_state) ||
10185                     tfo_syn)) {
10186 #ifdef NETFLIX_SB_LIMITS
10187                         u_int mcnt, appended;
10188
10189                         if (so->so_rcv.sb_shlim) {
10190                                 mcnt = m_memcnt(m);
10191                                 appended = 0;
10192                                 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10193                                     CFO_NOSLEEP, NULL) == false) {
10194                                         counter_u64_add(tcp_sb_shlim_fails, 1);
10195                                         m_freem(m);
10196                                         return (0);
10197                                 }
10198                         }
10199 #endif
10200                         rack_handle_delayed_ack(tp, rack, tlen, tfo_syn);
10201                         tp->rcv_nxt += tlen;
10202                         if (tlen &&
10203                             ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10204                             (tp->t_fbyte_in == 0)) {
10205                                 tp->t_fbyte_in = ticks;
10206                                 if (tp->t_fbyte_in == 0)
10207                                         tp->t_fbyte_in = 1;
10208                                 if (tp->t_fbyte_out && tp->t_fbyte_in)
10209                                         tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10210                         }
10211                         thflags = th->th_flags & TH_FIN;
10212                         KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10213                         KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10214                         SOCKBUF_LOCK(&so->so_rcv);
10215                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10216                                 m_freem(m);
10217                         } else
10218 #ifdef NETFLIX_SB_LIMITS
10219                                 appended =
10220 #endif
10221                                         sbappendstream_locked(&so->so_rcv, m, 0);
10222
10223                         rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10224                         /* NB: sorwakeup_locked() does an implicit unlock. */
10225                         sorwakeup_locked(so);
10226 #ifdef NETFLIX_SB_LIMITS
10227                         if (so->so_rcv.sb_shlim && appended != mcnt)
10228                                 counter_fo_release(so->so_rcv.sb_shlim,
10229                                     mcnt - appended);
10230 #endif
10231                 } else {
10232                         /*
10233                          * XXX: Due to the header drop above "th" is
10234                          * theoretically invalid by now.  Fortunately
10235                          * m_adj() doesn't actually frees any mbufs when
10236                          * trimming from the head.
10237                          */
10238                         tcp_seq temp = save_start;
10239
10240                         thflags = tcp_reass(tp, th, &temp, &tlen, m);
10241                         tp->t_flags |= TF_ACKNOW;
10242                         if (tp->t_flags & TF_WAKESOR) {
10243                                 tp->t_flags &= ~TF_WAKESOR;
10244                                 /* NB: sorwakeup_locked() does an implicit unlock. */
10245                                 sorwakeup_locked(so);
10246                         }
10247                 }
10248                 if ((tp->t_flags & TF_SACK_PERMIT) &&
10249                     (save_tlen > 0) &&
10250                     TCPS_HAVEESTABLISHED(tp->t_state)) {
10251                         if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
10252                                 /*
10253                                  * DSACK actually handled in the fastpath
10254                                  * above.
10255                                  */
10256                                 RACK_OPTS_INC(tcp_sack_path_1);
10257                                 tcp_update_sack_list(tp, save_start,
10258                                     save_start + save_tlen);
10259                         } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
10260                                 if ((tp->rcv_numsacks >= 1) &&
10261                                     (tp->sackblks[0].end == save_start)) {
10262                                         /*
10263                                          * Partial overlap, recorded at todrop
10264                                          * above.
10265                                          */
10266                                         RACK_OPTS_INC(tcp_sack_path_2a);
10267                                         tcp_update_sack_list(tp,
10268                                             tp->sackblks[0].start,
10269                                             tp->sackblks[0].end);
10270                                 } else {
10271                                         RACK_OPTS_INC(tcp_sack_path_2b);
10272                                         tcp_update_dsack_list(tp, save_start,
10273                                             save_start + save_tlen);
10274                                 }
10275                         } else if (tlen >= save_tlen) {
10276                                 /* Update of sackblks. */
10277                                 RACK_OPTS_INC(tcp_sack_path_3);
10278                                 tcp_update_dsack_list(tp, save_start,
10279                                     save_start + save_tlen);
10280                         } else if (tlen > 0) {
10281                                 RACK_OPTS_INC(tcp_sack_path_4);
10282                                 tcp_update_dsack_list(tp, save_start,
10283                                     save_start + tlen);
10284                         }
10285                 }
10286         } else {
10287                 m_freem(m);
10288                 thflags &= ~TH_FIN;
10289         }
10290
10291         /*
10292          * If FIN is received ACK the FIN and let the user know that the
10293          * connection is closing.
10294          */
10295         if (thflags & TH_FIN) {
10296                 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
10297                         /* The socket upcall is handled by socantrcvmore. */
10298                         socantrcvmore(so);
10299                         /*
10300                          * If connection is half-synchronized (ie NEEDSYN
10301                          * flag on) then delay ACK, so it may be piggybacked
10302                          * when SYN is sent. Otherwise, since we received a
10303                          * FIN then no more input can be expected, send ACK
10304                          * now.
10305                          */
10306                         if (tp->t_flags & TF_NEEDSYN) {
10307                                 rack_timer_cancel(tp, rack,
10308                                     rack->r_ctl.rc_rcvtime, __LINE__);
10309                                 tp->t_flags |= TF_DELACK;
10310                         } else {
10311                                 tp->t_flags |= TF_ACKNOW;
10312                         }
10313                         tp->rcv_nxt++;
10314                 }
10315                 switch (tp->t_state) {
10316                         /*
10317                          * In SYN_RECEIVED and ESTABLISHED STATES enter the
10318                          * CLOSE_WAIT state.
10319                          */
10320                 case TCPS_SYN_RECEIVED:
10321                         tp->t_starttime = ticks;
10322                         /* FALLTHROUGH */
10323                 case TCPS_ESTABLISHED:
10324                         rack_timer_cancel(tp, rack,
10325                             rack->r_ctl.rc_rcvtime, __LINE__);
10326                         tcp_state_change(tp, TCPS_CLOSE_WAIT);
10327                         break;
10328
10329                         /*
10330                          * If still in FIN_WAIT_1 STATE FIN has not been
10331                          * acked so enter the CLOSING state.
10332                          */
10333                 case TCPS_FIN_WAIT_1:
10334                         rack_timer_cancel(tp, rack,
10335                             rack->r_ctl.rc_rcvtime, __LINE__);
10336                         tcp_state_change(tp, TCPS_CLOSING);
10337                         break;
10338
10339                         /*
10340                          * In FIN_WAIT_2 state enter the TIME_WAIT state,
10341                          * starting the time-wait timer, turning off the
10342                          * other standard timers.
10343                          */
10344                 case TCPS_FIN_WAIT_2:
10345                         rack_timer_cancel(tp, rack,
10346                             rack->r_ctl.rc_rcvtime, __LINE__);
10347                         tcp_twstart(tp);
10348                         return (1);
10349                 }
10350         }
10351         /*
10352          * Return any desired output.
10353          */
10354         if ((tp->t_flags & TF_ACKNOW) ||
10355             (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
10356                 rack->r_wanted_output = 1;
10357         }
10358         INP_WLOCK_ASSERT(tp->t_inpcb);
10359         return (0);
10360 }
10361
10362 /*
10363  * Here nothing is really faster, its just that we
10364  * have broken out the fast-data path also just like
10365  * the fast-ack.
10366  */
10367 static int
10368 rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
10369     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10370     uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos)
10371 {
10372         int32_t nsegs;
10373         int32_t newsize = 0;    /* automatic sockbuf scaling */
10374         struct tcp_rack *rack;
10375 #ifdef NETFLIX_SB_LIMITS
10376         u_int mcnt, appended;
10377 #endif
10378 #ifdef TCPDEBUG
10379         /*
10380          * The size of tcp_saveipgen must be the size of the max ip header,
10381          * now IPv6.
10382          */
10383         u_char tcp_saveipgen[IP6_HDR_LEN];
10384         struct tcphdr tcp_savetcp;
10385         short ostate = 0;
10386
10387 #endif
10388         /*
10389          * If last ACK falls within this segment's sequence numbers, record
10390          * the timestamp. NOTE that the test is modified according to the
10391          * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10392          */
10393         if (__predict_false(th->th_seq != tp->rcv_nxt)) {
10394                 return (0);
10395         }
10396         if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10397                 return (0);
10398         }
10399         if (tiwin && tiwin != tp->snd_wnd) {
10400                 return (0);
10401         }
10402         if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
10403                 return (0);
10404         }
10405         if (__predict_false((to->to_flags & TOF_TS) &&
10406             (TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
10407                 return (0);
10408         }
10409         if (__predict_false((th->th_ack != tp->snd_una))) {
10410                 return (0);
10411         }
10412         if (__predict_false(tlen > sbspace(&so->so_rcv))) {
10413                 return (0);
10414         }
10415         if ((to->to_flags & TOF_TS) != 0 &&
10416             SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10417                 tp->ts_recent_age = tcp_ts_getticks();
10418                 tp->ts_recent = to->to_tsval;
10419         }
10420         rack = (struct tcp_rack *)tp->t_fb_ptr;
10421         /*
10422          * This is a pure, in-sequence data packet with nothing on the
10423          * reassembly queue and we have enough buffer space to take it.
10424          */
10425         nsegs = max(1, m->m_pkthdr.lro_nsegs);
10426
10427 #ifdef NETFLIX_SB_LIMITS
10428         if (so->so_rcv.sb_shlim) {
10429                 mcnt = m_memcnt(m);
10430                 appended = 0;
10431                 if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
10432                     CFO_NOSLEEP, NULL) == false) {
10433                         counter_u64_add(tcp_sb_shlim_fails, 1);
10434                         m_freem(m);
10435                         return (1);
10436                 }
10437         }
10438 #endif
10439         /* Clean receiver SACK report if present */
10440         if (tp->rcv_numsacks)
10441                 tcp_clean_sackreport(tp);
10442         KMOD_TCPSTAT_INC(tcps_preddat);
10443         tp->rcv_nxt += tlen;
10444         if (tlen &&
10445             ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
10446             (tp->t_fbyte_in == 0)) {
10447                 tp->t_fbyte_in = ticks;
10448                 if (tp->t_fbyte_in == 0)
10449                         tp->t_fbyte_in = 1;
10450                 if (tp->t_fbyte_out && tp->t_fbyte_in)
10451                         tp->t_flags2 |= TF2_FBYTES_COMPLETE;
10452         }
10453         /*
10454          * Pull snd_wl1 up to prevent seq wrap relative to th_seq.
10455          */
10456         tp->snd_wl1 = th->th_seq;
10457         /*
10458          * Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
10459          */
10460         tp->rcv_up = tp->rcv_nxt;
10461         KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs);
10462         KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen);
10463 #ifdef TCPDEBUG
10464         if (so->so_options & SO_DEBUG)
10465                 tcp_trace(TA_INPUT, ostate, tp,
10466                     (void *)tcp_saveipgen, &tcp_savetcp, 0);
10467 #endif
10468         newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
10469
10470         /* Add data to socket buffer. */
10471         SOCKBUF_LOCK(&so->so_rcv);
10472         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10473                 m_freem(m);
10474         } else {
10475                 /*
10476                  * Set new socket buffer size. Give up when limit is
10477                  * reached.
10478                  */
10479                 if (newsize)
10480                         if (!sbreserve_locked(&so->so_rcv,
10481                             newsize, so, NULL))
10482                                 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
10483                 m_adj(m, drop_hdrlen);  /* delayed header drop */
10484 #ifdef NETFLIX_SB_LIMITS
10485                 appended =
10486 #endif
10487                         sbappendstream_locked(&so->so_rcv, m, 0);
10488                 ctf_calc_rwin(so, tp);
10489         }
10490         rack_log_wakeup(tp,rack, &so->so_rcv, tlen, 1);
10491         /* NB: sorwakeup_locked() does an implicit unlock. */
10492         sorwakeup_locked(so);
10493 #ifdef NETFLIX_SB_LIMITS
10494         if (so->so_rcv.sb_shlim && mcnt != appended)
10495                 counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
10496 #endif
10497         rack_handle_delayed_ack(tp, rack, tlen, 0);
10498         if (tp->snd_una == tp->snd_max)
10499                 sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
10500         return (1);
10501 }
10502
10503 /*
10504  * This subfunction is used to try to highly optimize the
10505  * fast path. We again allow window updates that are
10506  * in sequence to remain in the fast-path. We also add
10507  * in the __predict's to attempt to help the compiler.
10508  * Note that if we return a 0, then we can *not* process
10509  * it and the caller should push the packet into the
10510  * slow-path.
10511  */
10512 static int
10513 rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
10514     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10515     uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
10516 {
10517         int32_t acked;
10518         int32_t nsegs;
10519 #ifdef TCPDEBUG
10520         /*
10521          * The size of tcp_saveipgen must be the size of the max ip header,
10522          * now IPv6.
10523          */
10524         u_char tcp_saveipgen[IP6_HDR_LEN];
10525         struct tcphdr tcp_savetcp;
10526         short ostate = 0;
10527 #endif
10528         int32_t under_pacing = 0;
10529         struct tcp_rack *rack;
10530
10531         if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
10532                 /* Old ack, behind (or duplicate to) the last one rcv'd */
10533                 return (0);
10534         }
10535         if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
10536                 /* Above what we have sent? */
10537                 return (0);
10538         }
10539         if (__predict_false(tp->snd_nxt != tp->snd_max)) {
10540                 /* We are retransmitting */
10541                 return (0);
10542         }
10543         if (__predict_false(tiwin == 0)) {
10544                 /* zero window */
10545                 return (0);
10546         }
10547         if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
10548                 /* We need a SYN or a FIN, unlikely.. */
10549                 return (0);
10550         }
10551         if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
10552                 /* Timestamp is behind .. old ack with seq wrap? */
10553                 return (0);
10554         }
10555         if (__predict_false(IN_RECOVERY(tp->t_flags))) {
10556                 /* Still recovering */
10557                 return (0);
10558         }
10559         rack = (struct tcp_rack *)tp->t_fb_ptr;
10560         if (rack->r_ctl.rc_sacked) {
10561                 /* We have sack holes on our scoreboard */
10562                 return (0);
10563         }
10564         /* Ok if we reach here, we can process a fast-ack */
10565         if (rack->gp_ready &&
10566             (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
10567                 under_pacing = 1;
10568         }
10569         nsegs = max(1, m->m_pkthdr.lro_nsegs);
10570         rack_log_ack(tp, to, th, 0, 0);
10571         /* Did the window get updated? */
10572         if (tiwin != tp->snd_wnd) {
10573                 tp->snd_wnd = tiwin;
10574                 rack_validate_fo_sendwin_up(tp, rack);
10575                 tp->snd_wl1 = th->th_seq;
10576                 if (tp->snd_wnd > tp->max_sndwnd)
10577                         tp->max_sndwnd = tp->snd_wnd;
10578         }
10579         /* Do we exit persists? */
10580         if ((rack->rc_in_persist != 0) &&
10581             (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
10582                                rack->r_ctl.rc_pace_min_segs))) {
10583                 rack_exit_persist(tp, rack, cts);
10584         }
10585         /* Do we enter persists? */
10586         if ((rack->rc_in_persist == 0) &&
10587             (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
10588             TCPS_HAVEESTABLISHED(tp->t_state) &&
10589             (tp->snd_max == tp->snd_una) &&
10590             sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
10591             (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
10592                 /*
10593                  * Here the rwnd is less than
10594                  * the pacing size, we are established,
10595                  * nothing is outstanding, and there is
10596                  * data to send. Enter persists.
10597                  */
10598                 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
10599         }
10600         /*
10601          * If last ACK falls within this segment's sequence numbers, record
10602          * the timestamp. NOTE that the test is modified according to the
10603          * latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
10604          */
10605         if ((to->to_flags & TOF_TS) != 0 &&
10606             SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
10607                 tp->ts_recent_age = tcp_ts_getticks();
10608                 tp->ts_recent = to->to_tsval;
10609         }
10610         /*
10611          * This is a pure ack for outstanding data.
10612          */
10613         KMOD_TCPSTAT_INC(tcps_predack);
10614
10615         /*
10616          * "bad retransmit" recovery.
10617          */
10618         if ((tp->t_flags & TF_PREVVALID) &&
10619             ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
10620                 tp->t_flags &= ~TF_PREVVALID;
10621                 if (tp->t_rxtshift == 1 &&
10622                     (int)(ticks - tp->t_badrxtwin) < 0)
10623                         rack_cong_signal(tp, CC_RTO_ERR, th->th_ack);
10624         }
10625         /*
10626          * Recalculate the transmit timer / rtt.
10627          *
10628          * Some boxes send broken timestamp replies during the SYN+ACK
10629          * phase, ignore timestamps of 0 or we could calculate a huge RTT
10630          * and blow up the retransmit timer.
10631          */
10632         acked = BYTES_THIS_ACK(tp, th);
10633
10634 #ifdef TCP_HHOOK
10635         /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
10636         hhook_run_tcp_est_in(tp, th, to);
10637 #endif
10638         KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs);
10639         KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
10640         if (acked) {
10641                 struct mbuf *mfree;
10642
10643                 rack_ack_received(tp, rack, th->th_ack, nsegs, CC_ACK, 0);
10644                 SOCKBUF_LOCK(&so->so_snd);
10645                 mfree = sbcut_locked(&so->so_snd, acked);
10646                 tp->snd_una = th->th_ack;
10647                 /* Note we want to hold the sb lock through the sendmap adjust */
10648                 rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
10649                 /* Wake up the socket if we have room to write more */
10650                 rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
10651                 sowwakeup_locked(so);
10652                 m_freem(mfree);
10653                 tp->t_rxtshift = 0;
10654                 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
10655                               rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
10656                 rack->rc_tlp_in_progress = 0;
10657                 rack->r_ctl.rc_tlp_cnt_out = 0;
10658                 /*
10659                  * If it is the RXT timer we want to
10660                  * stop it, so we can restart a TLP.
10661                  */
10662                 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
10663                         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10664 #ifdef NETFLIX_HTTP_LOGGING
10665                 tcp_http_check_for_comp(rack->rc_tp, th->th_ack);
10666 #endif
10667         }
10668         /*
10669          * Let the congestion control algorithm update congestion control
10670          * related information. This typically means increasing the
10671          * congestion window.
10672          */
10673         if (tp->snd_wnd < ctf_outstanding(tp)) {
10674                 /* The peer collapsed the window */
10675                 rack_collapsed_window(rack);
10676         } else if (rack->rc_has_collapsed)
10677                 rack_un_collapse_window(rack);
10678
10679         /*
10680          * Pull snd_wl2 up to prevent seq wrap relative to th_ack.
10681          */
10682         tp->snd_wl2 = th->th_ack;
10683         tp->t_dupacks = 0;
10684         m_freem(m);
10685         /* ND6_HINT(tp);         *//* Some progress has been made. */
10686
10687         /*
10688          * If all outstanding data are acked, stop retransmit timer,
10689          * otherwise restart timer using current (possibly backed-off)
10690          * value. If process is waiting for space, wakeup/selwakeup/signal.
10691          * If data are ready to send, let tcp_output decide between more
10692          * output or persist.
10693          */
10694 #ifdef TCPDEBUG
10695         if (so->so_options & SO_DEBUG)
10696                 tcp_trace(TA_INPUT, ostate, tp,
10697                     (void *)tcp_saveipgen,
10698                     &tcp_savetcp, 0);
10699 #endif
10700         if (under_pacing &&
10701             (rack->use_fixed_rate == 0) &&
10702             (rack->in_probe_rtt == 0) &&
10703             rack->rc_gp_dyn_mul &&
10704             rack->rc_always_pace) {
10705                 /* Check if we are dragging bottom */
10706                 rack_check_bottom_drag(tp, rack, so, acked);
10707         }
10708         if (tp->snd_una == tp->snd_max) {
10709                 tp->t_flags &= ~TF_PREVVALID;
10710                 rack->r_ctl.retran_during_recovery = 0;
10711                 rack->r_ctl.dsack_byte_cnt = 0;
10712                 rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
10713                 if (rack->r_ctl.rc_went_idle_time == 0)
10714                         rack->r_ctl.rc_went_idle_time = 1;
10715                 rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
10716                 if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
10717                         tp->t_acktime = 0;
10718                 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
10719         }
10720         if (acked && rack->r_fast_output)
10721                 rack_gain_for_fastoutput(rack, tp, so, (uint32_t)acked);
10722         if (sbavail(&so->so_snd)) {
10723                 rack->r_wanted_output = 1;
10724         }
10725         return (1);
10726 }
10727
10728 /*
10729  * Return value of 1, the TCB is unlocked and most
10730  * likely gone, return value of 0, the TCP is still
10731  * locked.
10732  */
10733 static int
10734 rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
10735     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10736     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
10737 {
10738         int32_t ret_val = 0;
10739         int32_t todrop;
10740         int32_t ourfinisacked = 0;
10741         struct tcp_rack *rack;
10742
10743         ctf_calc_rwin(so, tp);
10744         /*
10745          * If the state is SYN_SENT: if seg contains an ACK, but not for our
10746          * SYN, drop the input. if seg contains a RST, then drop the
10747          * connection. if seg does not contain SYN, then drop it. Otherwise
10748          * this is an acceptable SYN segment initialize tp->rcv_nxt and
10749          * tp->irs if seg contains ack then advance tp->snd_una if seg
10750          * contains an ECE and ECN support is enabled, the stream is ECN
10751          * capable. if SYN has been acked change to ESTABLISHED else
10752          * SYN_RCVD state arrange for segment to be acked (eventually)
10753          * continue processing rest of data/controls.
10754          */
10755         if ((thflags & TH_ACK) &&
10756             (SEQ_LEQ(th->th_ack, tp->iss) ||
10757             SEQ_GT(th->th_ack, tp->snd_max))) {
10758                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
10759                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10760                 return (1);
10761         }
10762         if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
10763                 TCP_PROBE5(connect__refused, NULL, tp,
10764                     mtod(m, const char *), tp, th);
10765                 tp = tcp_drop(tp, ECONNREFUSED);
10766                 ctf_do_drop(m, tp);
10767                 return (1);
10768         }
10769         if (thflags & TH_RST) {
10770                 ctf_do_drop(m, tp);
10771                 return (1);
10772         }
10773         if (!(thflags & TH_SYN)) {
10774                 ctf_do_drop(m, tp);
10775                 return (1);
10776         }
10777         tp->irs = th->th_seq;
10778         tcp_rcvseqinit(tp);
10779         rack = (struct tcp_rack *)tp->t_fb_ptr;
10780         if (thflags & TH_ACK) {
10781                 int tfo_partial = 0;
10782
10783                 KMOD_TCPSTAT_INC(tcps_connects);
10784                 soisconnected(so);
10785 #ifdef MAC
10786                 mac_socketpeer_set_from_mbuf(m, so);
10787 #endif
10788                 /* Do window scaling on this connection? */
10789                 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
10790                     (TF_RCVD_SCALE | TF_REQ_SCALE)) {
10791                         tp->rcv_scale = tp->request_r_scale;
10792                 }
10793                 tp->rcv_adv += min(tp->rcv_wnd,
10794                     TCP_MAXWIN << tp->rcv_scale);
10795                 /*
10796                  * If not all the data that was sent in the TFO SYN
10797                  * has been acked, resend the remainder right away.
10798                  */
10799                 if (IS_FASTOPEN(tp->t_flags) &&
10800                     (tp->snd_una != tp->snd_max)) {
10801                         tp->snd_nxt = th->th_ack;
10802                         tfo_partial = 1;
10803                 }
10804                 /*
10805                  * If there's data, delay ACK; if there's also a FIN ACKNOW
10806                  * will be turned on later.
10807                  */
10808                 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) {
10809                         rack_timer_cancel(tp, rack,
10810                                           rack->r_ctl.rc_rcvtime, __LINE__);
10811                         tp->t_flags |= TF_DELACK;
10812                 } else {
10813                         rack->r_wanted_output = 1;
10814                         tp->t_flags |= TF_ACKNOW;
10815                         rack->rc_dack_toggle = 0;
10816                 }
10817                 if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
10818                     (V_tcp_do_ecn == 1)) {
10819                         tp->t_flags2 |= TF2_ECN_PERMIT;
10820                         KMOD_TCPSTAT_INC(tcps_ecn_shs);
10821                 }
10822                 if (SEQ_GT(th->th_ack, tp->snd_una)) {
10823                         /*
10824                          * We advance snd_una for the
10825                          * fast open case. If th_ack is
10826                          * acknowledging data beyond
10827                          * snd_una we can't just call
10828                          * ack-processing since the
10829                          * data stream in our send-map
10830                          * will start at snd_una + 1 (one
10831                          * beyond the SYN). If its just
10832                          * equal we don't need to do that
10833                          * and there is no send_map.
10834                          */
10835                         tp->snd_una++;
10836                 }
10837                 /*
10838                  * Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
10839                  * SYN_SENT  --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
10840                  */
10841                 tp->t_starttime = ticks;
10842                 if (tp->t_flags & TF_NEEDFIN) {
10843                         tcp_state_change(tp, TCPS_FIN_WAIT_1);
10844                         tp->t_flags &= ~TF_NEEDFIN;
10845                         thflags &= ~TH_SYN;
10846                 } else {
10847                         tcp_state_change(tp, TCPS_ESTABLISHED);
10848                         TCP_PROBE5(connect__established, NULL, tp,
10849                             mtod(m, const char *), tp, th);
10850                         rack_cc_conn_init(tp);
10851                 }
10852         } else {
10853                 /*
10854                  * Received initial SYN in SYN-SENT[*] state => simultaneous
10855                  * open.  If segment contains CC option and there is a
10856                  * cached CC, apply TAO test. If it succeeds, connection is *
10857                  * half-synchronized. Otherwise, do 3-way handshake:
10858                  * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
10859                  * there was no CC option, clear cached CC value.
10860                  */
10861                 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
10862                 tcp_state_change(tp, TCPS_SYN_RECEIVED);
10863         }
10864         INP_WLOCK_ASSERT(tp->t_inpcb);
10865         /*
10866          * Advance th->th_seq to correspond to first data byte. If data,
10867          * trim to stay within window, dropping FIN if necessary.
10868          */
10869         th->th_seq++;
10870         if (tlen > tp->rcv_wnd) {
10871                 todrop = tlen - tp->rcv_wnd;
10872                 m_adj(m, -todrop);
10873                 tlen = tp->rcv_wnd;
10874                 thflags &= ~TH_FIN;
10875                 KMOD_TCPSTAT_INC(tcps_rcvpackafterwin);
10876                 KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
10877         }
10878         tp->snd_wl1 = th->th_seq - 1;
10879         tp->rcv_up = th->th_seq;
10880         /*
10881          * Client side of transaction: already sent SYN and data. If the
10882          * remote host used T/TCP to validate the SYN, our data will be
10883          * ACK'd; if so, enter normal data segment processing in the middle
10884          * of step 5, ack processing. Otherwise, goto step 6.
10885          */
10886         if (thflags & TH_ACK) {
10887                 /* For syn-sent we need to possibly update the rtt */
10888                 if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
10889                         uint32_t t, mcts;
10890
10891                         mcts = tcp_ts_getticks();
10892                         t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
10893                         if (!tp->t_rttlow || tp->t_rttlow > t)
10894                                 tp->t_rttlow = t;
10895                         rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 4);
10896                         tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
10897                         tcp_rack_xmit_timer_commit(rack, tp);
10898                 }
10899                 if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
10900                         return (ret_val);
10901                 /* We may have changed to FIN_WAIT_1 above */
10902                 if (tp->t_state == TCPS_FIN_WAIT_1) {
10903                         /*
10904                          * In FIN_WAIT_1 STATE in addition to the processing
10905                          * for the ESTABLISHED state if our FIN is now
10906                          * acknowledged then enter FIN_WAIT_2.
10907                          */
10908                         if (ourfinisacked) {
10909                                 /*
10910                                  * If we can't receive any more data, then
10911                                  * closing user can proceed. Starting the
10912                                  * timer is contrary to the specification,
10913                                  * but if we don't get a FIN we'll hang
10914                                  * forever.
10915                                  *
10916                                  * XXXjl: we should release the tp also, and
10917                                  * use a compressed state.
10918                                  */
10919                                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
10920                                         soisdisconnected(so);
10921                                         tcp_timer_activate(tp, TT_2MSL,
10922                                             (tcp_fast_finwait2_recycle ?
10923                                             tcp_finwait2_timeout :
10924                                             TP_MAXIDLE(tp)));
10925                                 }
10926                                 tcp_state_change(tp, TCPS_FIN_WAIT_2);
10927                         }
10928                 }
10929         }
10930         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
10931            tiwin, thflags, nxt_pkt));
10932 }
10933
10934 /*
10935  * Return value of 1, the TCB is unlocked and most
10936  * likely gone, return value of 0, the TCP is still
10937  * locked.
10938  */
10939 static int
10940 rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
10941     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
10942     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
10943 {
10944         struct tcp_rack *rack;
10945         int32_t ret_val = 0;
10946         int32_t ourfinisacked = 0;
10947
10948         ctf_calc_rwin(so, tp);
10949         if ((thflags & TH_ACK) &&
10950             (SEQ_LEQ(th->th_ack, tp->snd_una) ||
10951             SEQ_GT(th->th_ack, tp->snd_max))) {
10952                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
10953                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10954                 return (1);
10955         }
10956         rack = (struct tcp_rack *)tp->t_fb_ptr;
10957         if (IS_FASTOPEN(tp->t_flags)) {
10958                 /*
10959                  * When a TFO connection is in SYN_RECEIVED, the
10960                  * only valid packets are the initial SYN, a
10961                  * retransmit/copy of the initial SYN (possibly with
10962                  * a subset of the original data), a valid ACK, a
10963                  * FIN, or a RST.
10964                  */
10965                 if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
10966                         tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
10967                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
10968                         return (1);
10969                 } else if (thflags & TH_SYN) {
10970                         /* non-initial SYN is ignored */
10971                         if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
10972                             (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
10973                             (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
10974                                 ctf_do_drop(m, NULL);
10975                                 return (0);
10976                         }
10977                 } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
10978                         ctf_do_drop(m, NULL);
10979                         return (0);
10980                 }
10981         }
10982         if ((thflags & TH_RST) ||
10983             (tp->t_fin_is_rst && (thflags & TH_FIN)))
10984                 return (ctf_process_rst(m, th, so, tp));
10985         /*
10986          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
10987          * it's less than ts_recent, drop it.
10988          */
10989         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
10990             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
10991                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
10992                         return (ret_val);
10993         }
10994         /*
10995          * In the SYN-RECEIVED state, validate that the packet belongs to
10996          * this connection before trimming the data to fit the receive
10997          * window.  Check the sequence number versus IRS since we know the
10998          * sequence numbers haven't wrapped.  This is a partial fix for the
10999          * "LAND" DoS attack.
11000          */
11001         if (SEQ_LT(th->th_seq, tp->irs)) {
11002                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
11003                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11004                 return (1);
11005         }
11006         if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11007                               &rack->r_ctl.challenge_ack_ts,
11008                               &rack->r_ctl.challenge_ack_cnt)) {
11009                 return (ret_val);
11010         }
11011         /*
11012          * If last ACK falls within this segment's sequence numbers, record
11013          * its timestamp. NOTE: 1) That the test incorporates suggestions
11014          * from the latest proposal of the tcplw@cray.com list (Braden
11015          * 1993/04/26). 2) That updating only on newer timestamps interferes
11016          * with our earlier PAWS tests, so this check should be solely
11017          * predicated on the sequence space of this segment. 3) That we
11018          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11019          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11020          * SEG.Len, This modified check allows us to overcome RFC1323's
11021          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11022          * p.869. In such cases, we can still calculate the RTT correctly
11023          * when RCV.NXT == Last.ACK.Sent.
11024          */
11025         if ((to->to_flags & TOF_TS) != 0 &&
11026             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11027             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11028             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11029                 tp->ts_recent_age = tcp_ts_getticks();
11030                 tp->ts_recent = to->to_tsval;
11031         }
11032         tp->snd_wnd = tiwin;
11033         rack_validate_fo_sendwin_up(tp, rack);
11034         /*
11035          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11036          * is on (half-synchronized state), then queue data for later
11037          * processing; else drop segment and return.
11038          */
11039         if ((thflags & TH_ACK) == 0) {
11040                 if (IS_FASTOPEN(tp->t_flags)) {
11041                         rack_cc_conn_init(tp);
11042                 }
11043                 return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11044                     tiwin, thflags, nxt_pkt));
11045         }
11046         KMOD_TCPSTAT_INC(tcps_connects);
11047         soisconnected(so);
11048         /* Do window scaling? */
11049         if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
11050             (TF_RCVD_SCALE | TF_REQ_SCALE)) {
11051                 tp->rcv_scale = tp->request_r_scale;
11052         }
11053         /*
11054          * Make transitions: SYN-RECEIVED  -> ESTABLISHED SYN-RECEIVED* ->
11055          * FIN-WAIT-1
11056          */
11057         tp->t_starttime = ticks;
11058         if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
11059                 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
11060                 tp->t_tfo_pending = NULL;
11061         }
11062         if (tp->t_flags & TF_NEEDFIN) {
11063                 tcp_state_change(tp, TCPS_FIN_WAIT_1);
11064                 tp->t_flags &= ~TF_NEEDFIN;
11065         } else {
11066                 tcp_state_change(tp, TCPS_ESTABLISHED);
11067                 TCP_PROBE5(accept__established, NULL, tp,
11068                     mtod(m, const char *), tp, th);
11069                 /*
11070                  * TFO connections call cc_conn_init() during SYN
11071                  * processing.  Calling it again here for such connections
11072                  * is not harmless as it would undo the snd_cwnd reduction
11073                  * that occurs when a TFO SYN|ACK is retransmitted.
11074                  */
11075                 if (!IS_FASTOPEN(tp->t_flags))
11076                         rack_cc_conn_init(tp);
11077         }
11078         /*
11079          * Account for the ACK of our SYN prior to
11080          * regular ACK processing below, except for
11081          * simultaneous SYN, which is handled later.
11082          */
11083         if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
11084                 tp->snd_una++;
11085         /*
11086          * If segment contains data or ACK, will call tcp_reass() later; if
11087          * not, do so now to pass queued data to user.
11088          */
11089         if (tlen == 0 && (thflags & TH_FIN) == 0) {
11090                 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
11091                     (struct mbuf *)0);
11092                 if (tp->t_flags & TF_WAKESOR) {
11093                         tp->t_flags &= ~TF_WAKESOR;
11094                         /* NB: sorwakeup_locked() does an implicit unlock. */
11095                         sorwakeup_locked(so);
11096                 }
11097         }
11098         tp->snd_wl1 = th->th_seq - 1;
11099         /* For syn-recv we need to possibly update the rtt */
11100         if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
11101                 uint32_t t, mcts;
11102
11103                 mcts = tcp_ts_getticks();
11104                 t = (mcts - to->to_tsecr) * HPTS_USEC_IN_MSEC;
11105                 if (!tp->t_rttlow || tp->t_rttlow > t)
11106                         tp->t_rttlow = t;
11107                 rack_log_rtt_sample_calc(rack, t, (to->to_tsecr * 1000), (mcts * 1000), 5);
11108                 tcp_rack_xmit_timer(rack, t + 1, 1, t, 0, NULL, 2);
11109                 tcp_rack_xmit_timer_commit(rack, tp);
11110         }
11111         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11112                 return (ret_val);
11113         }
11114         if (tp->t_state == TCPS_FIN_WAIT_1) {
11115                 /* We could have went to FIN_WAIT_1 (or EST) above */
11116                 /*
11117                  * In FIN_WAIT_1 STATE in addition to the processing for the
11118                  * ESTABLISHED state if our FIN is now acknowledged then
11119                  * enter FIN_WAIT_2.
11120                  */
11121                 if (ourfinisacked) {
11122                         /*
11123                          * If we can't receive any more data, then closing
11124                          * user can proceed. Starting the timer is contrary
11125                          * to the specification, but if we don't get a FIN
11126                          * we'll hang forever.
11127                          *
11128                          * XXXjl: we should release the tp also, and use a
11129                          * compressed state.
11130                          */
11131                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11132                                 soisdisconnected(so);
11133                                 tcp_timer_activate(tp, TT_2MSL,
11134                                     (tcp_fast_finwait2_recycle ?
11135                                     tcp_finwait2_timeout :
11136                                     TP_MAXIDLE(tp)));
11137                         }
11138                         tcp_state_change(tp, TCPS_FIN_WAIT_2);
11139                 }
11140         }
11141         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11142             tiwin, thflags, nxt_pkt));
11143 }
11144
11145 /*
11146  * Return value of 1, the TCB is unlocked and most
11147  * likely gone, return value of 0, the TCP is still
11148  * locked.
11149  */
11150 static int
11151 rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
11152     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11153     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11154 {
11155         int32_t ret_val = 0;
11156         struct tcp_rack *rack;
11157
11158         /*
11159          * Header prediction: check for the two common cases of a
11160          * uni-directional data xfer.  If the packet has no control flags,
11161          * is in-sequence, the window didn't change and we're not
11162          * retransmitting, it's a candidate.  If the length is zero and the
11163          * ack moved forward, we're the sender side of the xfer.  Just free
11164          * the data acked & wake any higher level process that was blocked
11165          * waiting for space.  If the length is non-zero and the ack didn't
11166          * move, we're the receiver side.  If we're getting packets in-order
11167          * (the reassembly queue is empty), add the data toc The socket
11168          * buffer and note that we need a delayed ack. Make sure that the
11169          * hidden state-flags are also off. Since we check for
11170          * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
11171          */
11172         rack = (struct tcp_rack *)tp->t_fb_ptr;
11173         if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
11174             __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) &&
11175             __predict_true(SEGQ_EMPTY(tp)) &&
11176             __predict_true(th->th_seq == tp->rcv_nxt)) {
11177                 if (tlen == 0) {
11178                         if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
11179                             tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
11180                                 return (0);
11181                         }
11182                 } else {
11183                         if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
11184                             tiwin, nxt_pkt, iptos)) {
11185                                 return (0);
11186                         }
11187                 }
11188         }
11189         ctf_calc_rwin(so, tp);
11190
11191         if ((thflags & TH_RST) ||
11192             (tp->t_fin_is_rst && (thflags & TH_FIN)))
11193                 return (ctf_process_rst(m, th, so, tp));
11194
11195         /*
11196          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11197          * synchronized state.
11198          */
11199         if (thflags & TH_SYN) {
11200                 ctf_challenge_ack(m, th, tp, &ret_val);
11201                 return (ret_val);
11202         }
11203         /*
11204          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11205          * it's less than ts_recent, drop it.
11206          */
11207         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11208             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11209                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11210                         return (ret_val);
11211         }
11212         if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11213                               &rack->r_ctl.challenge_ack_ts,
11214                               &rack->r_ctl.challenge_ack_cnt)) {
11215                 return (ret_val);
11216         }
11217         /*
11218          * If last ACK falls within this segment's sequence numbers, record
11219          * its timestamp. NOTE: 1) That the test incorporates suggestions
11220          * from the latest proposal of the tcplw@cray.com list (Braden
11221          * 1993/04/26). 2) That updating only on newer timestamps interferes
11222          * with our earlier PAWS tests, so this check should be solely
11223          * predicated on the sequence space of this segment. 3) That we
11224          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11225          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11226          * SEG.Len, This modified check allows us to overcome RFC1323's
11227          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11228          * p.869. In such cases, we can still calculate the RTT correctly
11229          * when RCV.NXT == Last.ACK.Sent.
11230          */
11231         if ((to->to_flags & TOF_TS) != 0 &&
11232             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11233             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11234             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11235                 tp->ts_recent_age = tcp_ts_getticks();
11236                 tp->ts_recent = to->to_tsval;
11237         }
11238         /*
11239          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11240          * is on (half-synchronized state), then queue data for later
11241          * processing; else drop segment and return.
11242          */
11243         if ((thflags & TH_ACK) == 0) {
11244                 if (tp->t_flags & TF_NEEDSYN) {
11245                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11246                             tiwin, thflags, nxt_pkt));
11247
11248                 } else if (tp->t_flags & TF_ACKNOW) {
11249                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11250                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11251                         return (ret_val);
11252                 } else {
11253                         ctf_do_drop(m, NULL);
11254                         return (0);
11255                 }
11256         }
11257         /*
11258          * Ack processing.
11259          */
11260         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11261                 return (ret_val);
11262         }
11263         if (sbavail(&so->so_snd)) {
11264                 if (ctf_progress_timeout_check(tp, true)) {
11265                         rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__);
11266                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11267                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11268                         return (1);
11269                 }
11270         }
11271         /* State changes only happen in rack_process_data() */
11272         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11273             tiwin, thflags, nxt_pkt));
11274 }
11275
11276 /*
11277  * Return value of 1, the TCB is unlocked and most
11278  * likely gone, return value of 0, the TCP is still
11279  * locked.
11280  */
11281 static int
11282 rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
11283     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11284     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11285 {
11286         int32_t ret_val = 0;
11287         struct tcp_rack *rack;
11288
11289         rack = (struct tcp_rack *)tp->t_fb_ptr;
11290         ctf_calc_rwin(so, tp);
11291         if ((thflags & TH_RST) ||
11292             (tp->t_fin_is_rst && (thflags & TH_FIN)))
11293                 return (ctf_process_rst(m, th, so, tp));
11294         /*
11295          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11296          * synchronized state.
11297          */
11298         if (thflags & TH_SYN) {
11299                 ctf_challenge_ack(m, th, tp, &ret_val);
11300                 return (ret_val);
11301         }
11302         /*
11303          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11304          * it's less than ts_recent, drop it.
11305          */
11306         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11307             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11308                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11309                         return (ret_val);
11310         }
11311         if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11312                               &rack->r_ctl.challenge_ack_ts,
11313                               &rack->r_ctl.challenge_ack_cnt)) {
11314                 return (ret_val);
11315         }
11316         /*
11317          * If last ACK falls within this segment's sequence numbers, record
11318          * its timestamp. NOTE: 1) That the test incorporates suggestions
11319          * from the latest proposal of the tcplw@cray.com list (Braden
11320          * 1993/04/26). 2) That updating only on newer timestamps interferes
11321          * with our earlier PAWS tests, so this check should be solely
11322          * predicated on the sequence space of this segment. 3) That we
11323          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11324          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11325          * SEG.Len, This modified check allows us to overcome RFC1323's
11326          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11327          * p.869. In such cases, we can still calculate the RTT correctly
11328          * when RCV.NXT == Last.ACK.Sent.
11329          */
11330         if ((to->to_flags & TOF_TS) != 0 &&
11331             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11332             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11333             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11334                 tp->ts_recent_age = tcp_ts_getticks();
11335                 tp->ts_recent = to->to_tsval;
11336         }
11337         /*
11338          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11339          * is on (half-synchronized state), then queue data for later
11340          * processing; else drop segment and return.
11341          */
11342         if ((thflags & TH_ACK) == 0) {
11343                 if (tp->t_flags & TF_NEEDSYN) {
11344                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11345                             tiwin, thflags, nxt_pkt));
11346
11347                 } else if (tp->t_flags & TF_ACKNOW) {
11348                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11349                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11350                         return (ret_val);
11351                 } else {
11352                         ctf_do_drop(m, NULL);
11353                         return (0);
11354                 }
11355         }
11356         /*
11357          * Ack processing.
11358          */
11359         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
11360                 return (ret_val);
11361         }
11362         if (sbavail(&so->so_snd)) {
11363                 if (ctf_progress_timeout_check(tp, true)) {
11364                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11365                                                 tp, tick, PROGRESS_DROP, __LINE__);
11366                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11367                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11368                         return (1);
11369                 }
11370         }
11371         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11372             tiwin, thflags, nxt_pkt));
11373 }
11374
11375 static int
11376 rack_check_data_after_close(struct mbuf *m,
11377     struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
11378 {
11379         struct tcp_rack *rack;
11380
11381         rack = (struct tcp_rack *)tp->t_fb_ptr;
11382         if (rack->rc_allow_data_af_clo == 0) {
11383         close_now:
11384                 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11385                 /* tcp_close will kill the inp pre-log the Reset */
11386                 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
11387                 tp = tcp_close(tp);
11388                 KMOD_TCPSTAT_INC(tcps_rcvafterclose);
11389                 ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
11390                 return (1);
11391         }
11392         if (sbavail(&so->so_snd) == 0)
11393                 goto close_now;
11394         /* Ok we allow data that is ignored and a followup reset */
11395         tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
11396         tp->rcv_nxt = th->th_seq + *tlen;
11397         tp->t_flags2 |= TF2_DROP_AF_DATA;
11398         rack->r_wanted_output = 1;
11399         *tlen = 0;
11400         return (0);
11401 }
11402
11403 /*
11404  * Return value of 1, the TCB is unlocked and most
11405  * likely gone, return value of 0, the TCP is still
11406  * locked.
11407  */
11408 static int
11409 rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
11410     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11411     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11412 {
11413         int32_t ret_val = 0;
11414         int32_t ourfinisacked = 0;
11415         struct tcp_rack *rack;
11416
11417         rack = (struct tcp_rack *)tp->t_fb_ptr;
11418         ctf_calc_rwin(so, tp);
11419
11420         if ((thflags & TH_RST) ||
11421             (tp->t_fin_is_rst && (thflags & TH_FIN)))
11422                 return (ctf_process_rst(m, th, so, tp));
11423         /*
11424          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11425          * synchronized state.
11426          */
11427         if (thflags & TH_SYN) {
11428                 ctf_challenge_ack(m, th, tp, &ret_val);
11429                 return (ret_val);
11430         }
11431         /*
11432          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11433          * it's less than ts_recent, drop it.
11434          */
11435         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11436             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11437                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11438                         return (ret_val);
11439         }
11440         if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11441                               &rack->r_ctl.challenge_ack_ts,
11442                               &rack->r_ctl.challenge_ack_cnt)) {
11443                 return (ret_val);
11444         }
11445         /*
11446          * If new data are received on a connection after the user processes
11447          * are gone, then RST the other end.
11448          */
11449         if ((so->so_state & SS_NOFDREF) && tlen) {
11450                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
11451                         return (1);
11452         }
11453         /*
11454          * If last ACK falls within this segment's sequence numbers, record
11455          * its timestamp. NOTE: 1) That the test incorporates suggestions
11456          * from the latest proposal of the tcplw@cray.com list (Braden
11457          * 1993/04/26). 2) That updating only on newer timestamps interferes
11458          * with our earlier PAWS tests, so this check should be solely
11459          * predicated on the sequence space of this segment. 3) That we
11460          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11461          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11462          * SEG.Len, This modified check allows us to overcome RFC1323's
11463          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11464          * p.869. In such cases, we can still calculate the RTT correctly
11465          * when RCV.NXT == Last.ACK.Sent.
11466          */
11467         if ((to->to_flags & TOF_TS) != 0 &&
11468             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11469             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11470             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11471                 tp->ts_recent_age = tcp_ts_getticks();
11472                 tp->ts_recent = to->to_tsval;
11473         }
11474         /*
11475          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11476          * is on (half-synchronized state), then queue data for later
11477          * processing; else drop segment and return.
11478          */
11479         if ((thflags & TH_ACK) == 0) {
11480                 if (tp->t_flags & TF_NEEDSYN) {
11481                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11482                             tiwin, thflags, nxt_pkt));
11483                 } else if (tp->t_flags & TF_ACKNOW) {
11484                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11485                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11486                         return (ret_val);
11487                 } else {
11488                         ctf_do_drop(m, NULL);
11489                         return (0);
11490                 }
11491         }
11492         /*
11493          * Ack processing.
11494          */
11495         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11496                 return (ret_val);
11497         }
11498         if (ourfinisacked) {
11499                 /*
11500                  * If we can't receive any more data, then closing user can
11501                  * proceed. Starting the timer is contrary to the
11502                  * specification, but if we don't get a FIN we'll hang
11503                  * forever.
11504                  *
11505                  * XXXjl: we should release the tp also, and use a
11506                  * compressed state.
11507                  */
11508                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
11509                         soisdisconnected(so);
11510                         tcp_timer_activate(tp, TT_2MSL,
11511                             (tcp_fast_finwait2_recycle ?
11512                             tcp_finwait2_timeout :
11513                             TP_MAXIDLE(tp)));
11514                 }
11515                 tcp_state_change(tp, TCPS_FIN_WAIT_2);
11516         }
11517         if (sbavail(&so->so_snd)) {
11518                 if (ctf_progress_timeout_check(tp, true)) {
11519                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11520                                                 tp, tick, PROGRESS_DROP, __LINE__);
11521                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11522                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11523                         return (1);
11524                 }
11525         }
11526         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11527             tiwin, thflags, nxt_pkt));
11528 }
11529
11530 /*
11531  * Return value of 1, the TCB is unlocked and most
11532  * likely gone, return value of 0, the TCP is still
11533  * locked.
11534  */
11535 static int
11536 rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
11537     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11538     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11539 {
11540         int32_t ret_val = 0;
11541         int32_t ourfinisacked = 0;
11542         struct tcp_rack *rack;
11543
11544         rack = (struct tcp_rack *)tp->t_fb_ptr;
11545         ctf_calc_rwin(so, tp);
11546
11547         if ((thflags & TH_RST) ||
11548             (tp->t_fin_is_rst && (thflags & TH_FIN)))
11549                 return (ctf_process_rst(m, th, so, tp));
11550         /*
11551          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11552          * synchronized state.
11553          */
11554         if (thflags & TH_SYN) {
11555                 ctf_challenge_ack(m, th, tp, &ret_val);
11556                 return (ret_val);
11557         }
11558         /*
11559          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11560          * it's less than ts_recent, drop it.
11561          */
11562         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11563             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11564                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11565                         return (ret_val);
11566         }
11567         if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11568                               &rack->r_ctl.challenge_ack_ts,
11569                               &rack->r_ctl.challenge_ack_cnt)) {
11570                 return (ret_val);
11571         }
11572         /*
11573          * If new data are received on a connection after the user processes
11574          * are gone, then RST the other end.
11575          */
11576         if ((so->so_state & SS_NOFDREF) && tlen) {
11577                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
11578                         return (1);
11579         }
11580         /*
11581          * If last ACK falls within this segment's sequence numbers, record
11582          * its timestamp. NOTE: 1) That the test incorporates suggestions
11583          * from the latest proposal of the tcplw@cray.com list (Braden
11584          * 1993/04/26). 2) That updating only on newer timestamps interferes
11585          * with our earlier PAWS tests, so this check should be solely
11586          * predicated on the sequence space of this segment. 3) That we
11587          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11588          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11589          * SEG.Len, This modified check allows us to overcome RFC1323's
11590          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11591          * p.869. In such cases, we can still calculate the RTT correctly
11592          * when RCV.NXT == Last.ACK.Sent.
11593          */
11594         if ((to->to_flags & TOF_TS) != 0 &&
11595             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11596             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11597             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11598                 tp->ts_recent_age = tcp_ts_getticks();
11599                 tp->ts_recent = to->to_tsval;
11600         }
11601         /*
11602          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11603          * is on (half-synchronized state), then queue data for later
11604          * processing; else drop segment and return.
11605          */
11606         if ((thflags & TH_ACK) == 0) {
11607                 if (tp->t_flags & TF_NEEDSYN) {
11608                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11609                             tiwin, thflags, nxt_pkt));
11610                 } else if (tp->t_flags & TF_ACKNOW) {
11611                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11612                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11613                         return (ret_val);
11614                 } else {
11615                         ctf_do_drop(m, NULL);
11616                         return (0);
11617                 }
11618         }
11619         /*
11620          * Ack processing.
11621          */
11622         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11623                 return (ret_val);
11624         }
11625         if (ourfinisacked) {
11626                 tcp_twstart(tp);
11627                 m_freem(m);
11628                 return (1);
11629         }
11630         if (sbavail(&so->so_snd)) {
11631                 if (ctf_progress_timeout_check(tp, true)) {
11632                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11633                                                 tp, tick, PROGRESS_DROP, __LINE__);
11634                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11635                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11636                         return (1);
11637                 }
11638         }
11639         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11640             tiwin, thflags, nxt_pkt));
11641 }
11642
11643 /*
11644  * Return value of 1, the TCB is unlocked and most
11645  * likely gone, return value of 0, the TCP is still
11646  * locked.
11647  */
11648 static int
11649 rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
11650     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11651     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11652 {
11653         int32_t ret_val = 0;
11654         int32_t ourfinisacked = 0;
11655         struct tcp_rack *rack;
11656
11657         rack = (struct tcp_rack *)tp->t_fb_ptr;
11658         ctf_calc_rwin(so, tp);
11659
11660         if ((thflags & TH_RST) ||
11661             (tp->t_fin_is_rst && (thflags & TH_FIN)))
11662                 return (ctf_process_rst(m, th, so, tp));
11663         /*
11664          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11665          * synchronized state.
11666          */
11667         if (thflags & TH_SYN) {
11668                 ctf_challenge_ack(m, th, tp, &ret_val);
11669                 return (ret_val);
11670         }
11671         /*
11672          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11673          * it's less than ts_recent, drop it.
11674          */
11675         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11676             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11677                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11678                         return (ret_val);
11679         }
11680         if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11681                               &rack->r_ctl.challenge_ack_ts,
11682                               &rack->r_ctl.challenge_ack_cnt)) {
11683                 return (ret_val);
11684         }
11685         /*
11686          * If new data are received on a connection after the user processes
11687          * are gone, then RST the other end.
11688          */
11689         if ((so->so_state & SS_NOFDREF) && tlen) {
11690                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
11691                         return (1);
11692         }
11693         /*
11694          * If last ACK falls within this segment's sequence numbers, record
11695          * its timestamp. NOTE: 1) That the test incorporates suggestions
11696          * from the latest proposal of the tcplw@cray.com list (Braden
11697          * 1993/04/26). 2) That updating only on newer timestamps interferes
11698          * with our earlier PAWS tests, so this check should be solely
11699          * predicated on the sequence space of this segment. 3) That we
11700          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11701          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11702          * SEG.Len, This modified check allows us to overcome RFC1323's
11703          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11704          * p.869. In such cases, we can still calculate the RTT correctly
11705          * when RCV.NXT == Last.ACK.Sent.
11706          */
11707         if ((to->to_flags & TOF_TS) != 0 &&
11708             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11709             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11710             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11711                 tp->ts_recent_age = tcp_ts_getticks();
11712                 tp->ts_recent = to->to_tsval;
11713         }
11714         /*
11715          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11716          * is on (half-synchronized state), then queue data for later
11717          * processing; else drop segment and return.
11718          */
11719         if ((thflags & TH_ACK) == 0) {
11720                 if (tp->t_flags & TF_NEEDSYN) {
11721                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11722                             tiwin, thflags, nxt_pkt));
11723                 } else if (tp->t_flags & TF_ACKNOW) {
11724                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11725                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11726                         return (ret_val);
11727                 } else {
11728                         ctf_do_drop(m, NULL);
11729                         return (0);
11730                 }
11731         }
11732         /*
11733          * case TCPS_LAST_ACK: Ack processing.
11734          */
11735         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11736                 return (ret_val);
11737         }
11738         if (ourfinisacked) {
11739                 tp = tcp_close(tp);
11740                 ctf_do_drop(m, tp);
11741                 return (1);
11742         }
11743         if (sbavail(&so->so_snd)) {
11744                 if (ctf_progress_timeout_check(tp, true)) {
11745                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11746                                                 tp, tick, PROGRESS_DROP, __LINE__);
11747                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11748                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11749                         return (1);
11750                 }
11751         }
11752         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11753             tiwin, thflags, nxt_pkt));
11754 }
11755
11756 /*
11757  * Return value of 1, the TCB is unlocked and most
11758  * likely gone, return value of 0, the TCP is still
11759  * locked.
11760  */
11761 static int
11762 rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
11763     struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
11764     uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos)
11765 {
11766         int32_t ret_val = 0;
11767         int32_t ourfinisacked = 0;
11768         struct tcp_rack *rack;
11769
11770         rack = (struct tcp_rack *)tp->t_fb_ptr;
11771         ctf_calc_rwin(so, tp);
11772
11773         /* Reset receive buffer auto scaling when not in bulk receive mode. */
11774         if ((thflags & TH_RST) ||
11775             (tp->t_fin_is_rst && (thflags & TH_FIN)))
11776                 return (ctf_process_rst(m, th, so, tp));
11777         /*
11778          * RFC5961 Section 4.2 Send challenge ACK for any SYN in
11779          * synchronized state.
11780          */
11781         if (thflags & TH_SYN) {
11782                 ctf_challenge_ack(m, th, tp, &ret_val);
11783                 return (ret_val);
11784         }
11785         /*
11786          * RFC 1323 PAWS: If we have a timestamp reply on this segment and
11787          * it's less than ts_recent, drop it.
11788          */
11789         if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
11790             TSTMP_LT(to->to_tsval, tp->ts_recent)) {
11791                 if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
11792                         return (ret_val);
11793         }
11794         if (_ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val,
11795                               &rack->r_ctl.challenge_ack_ts,
11796                               &rack->r_ctl.challenge_ack_cnt)) {
11797                 return (ret_val);
11798         }
11799         /*
11800          * If new data are received on a connection after the user processes
11801          * are gone, then RST the other end.
11802          */
11803         if ((so->so_state & SS_NOFDREF) &&
11804             tlen) {
11805                 if (rack_check_data_after_close(m, tp, &tlen, th, so))
11806                         return (1);
11807         }
11808         /*
11809          * If last ACK falls within this segment's sequence numbers, record
11810          * its timestamp. NOTE: 1) That the test incorporates suggestions
11811          * from the latest proposal of the tcplw@cray.com list (Braden
11812          * 1993/04/26). 2) That updating only on newer timestamps interferes
11813          * with our earlier PAWS tests, so this check should be solely
11814          * predicated on the sequence space of this segment. 3) That we
11815          * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
11816          * + SEG.Len  instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
11817          * SEG.Len, This modified check allows us to overcome RFC1323's
11818          * limitations as described in Stevens TCP/IP Illustrated Vol. 2
11819          * p.869. In such cases, we can still calculate the RTT correctly
11820          * when RCV.NXT == Last.ACK.Sent.
11821          */
11822         if ((to->to_flags & TOF_TS) != 0 &&
11823             SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
11824             SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
11825             ((thflags & (TH_SYN | TH_FIN)) != 0))) {
11826                 tp->ts_recent_age = tcp_ts_getticks();
11827                 tp->ts_recent = to->to_tsval;
11828         }
11829         /*
11830          * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN flag
11831          * is on (half-synchronized state), then queue data for later
11832          * processing; else drop segment and return.
11833          */
11834         if ((thflags & TH_ACK) == 0) {
11835                 if (tp->t_flags & TF_NEEDSYN) {
11836                         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11837                             tiwin, thflags, nxt_pkt));
11838                 } else if (tp->t_flags & TF_ACKNOW) {
11839                         ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
11840                         ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1;
11841                         return (ret_val);
11842                 } else {
11843                         ctf_do_drop(m, NULL);
11844                         return (0);
11845                 }
11846         }
11847         /*
11848          * Ack processing.
11849          */
11850         if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
11851                 return (ret_val);
11852         }
11853         if (sbavail(&so->so_snd)) {
11854                 if (ctf_progress_timeout_check(tp, true)) {
11855                         rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
11856                                                 tp, tick, PROGRESS_DROP, __LINE__);
11857                         tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
11858                         ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
11859                         return (1);
11860                 }
11861         }
11862         return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
11863             tiwin, thflags, nxt_pkt));
11864 }
11865
11866 static void inline
11867 rack_clear_rate_sample(struct tcp_rack *rack)
11868 {
11869         rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
11870         rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
11871         rack->r_ctl.rack_rs.rs_rtt_tot = 0;
11872 }
11873
11874 static void
11875 rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line, uint64_t *fill_override)
11876 {
11877         uint64_t bw_est, rate_wanted;
11878         int chged = 0;
11879         uint32_t user_max, orig_min, orig_max;
11880
11881         orig_min = rack->r_ctl.rc_pace_min_segs;
11882         orig_max = rack->r_ctl.rc_pace_max_segs;
11883         user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs;
11884         if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs)
11885                 chged = 1;
11886         rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
11887         if (rack->use_fixed_rate || rack->rc_force_max_seg) {
11888                 if (user_max != rack->r_ctl.rc_pace_max_segs)
11889                         chged = 1;
11890         }
11891         if (rack->rc_force_max_seg) {
11892                 rack->r_ctl.rc_pace_max_segs = user_max;
11893         } else if (rack->use_fixed_rate) {
11894                 bw_est = rack_get_bw(rack);
11895                 if ((rack->r_ctl.crte == NULL) ||
11896                     (bw_est != rack->r_ctl.crte->rate)) {
11897                         rack->r_ctl.rc_pace_max_segs = user_max;
11898                 } else {
11899                         /* We are pacing right at the hardware rate */
11900                         uint32_t segsiz;
11901
11902                         segsiz = min(ctf_fixed_maxseg(tp),
11903                                      rack->r_ctl.rc_pace_min_segs);
11904                         rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(
11905                                                            tp, bw_est, segsiz, 0,
11906                                                            rack->r_ctl.crte, NULL);
11907                 }
11908         } else if (rack->rc_always_pace) {
11909                 if (rack->r_ctl.gp_bw ||
11910 #ifdef NETFLIX_PEAKRATE
11911                     rack->rc_tp->t_maxpeakrate ||
11912 #endif
11913                     rack->r_ctl.init_rate) {
11914                         /* We have a rate of some sort set */
11915                         uint32_t  orig;
11916
11917                         bw_est = rack_get_bw(rack);
11918                         orig = rack->r_ctl.rc_pace_max_segs;
11919                         if (fill_override)
11920                                 rate_wanted = *fill_override;
11921                         else
11922                                 rate_wanted = rack_get_output_bw(rack, bw_est, NULL, NULL);
11923                         if (rate_wanted) {
11924                                 /* We have something */
11925                                 rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack,
11926                                                                                    rate_wanted,
11927                                                                                    ctf_fixed_maxseg(rack->rc_tp));
11928                         } else
11929                                 rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs;
11930                         if (orig != rack->r_ctl.rc_pace_max_segs)
11931                                 chged = 1;
11932                 } else if ((rack->r_ctl.gp_bw == 0) &&
11933                            (rack->r_ctl.rc_pace_max_segs == 0)) {
11934                         /*
11935                          * If we have nothing limit us to bursting
11936                          * out IW sized pieces.
11937                          */
11938                         chged = 1;
11939                         rack->r_ctl.rc_pace_max_segs = rc_init_window(rack);
11940                 }
11941         }
11942         if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) {
11943                 chged = 1;
11944                 rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
11945         }
11946         if (chged)
11947                 rack_log_type_pacing_sizes(tp, rack, orig_min, orig_max, line, 2);
11948 }
11949
11950
11951 static void
11952 rack_init_fsb_block(struct tcpcb *tp, struct tcp_rack *rack)
11953 {
11954 #ifdef INET6
11955         struct ip6_hdr *ip6 = NULL;
11956 #endif
11957 #ifdef INET
11958         struct ip *ip = NULL;
11959 #endif
11960         struct udphdr *udp = NULL;
11961
11962         /* Ok lets fill in the fast block, it can only be used with no IP options! */
11963 #ifdef INET6
11964         if (rack->r_is_v6) {
11965                 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
11966                 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
11967                 if (tp->t_port) {
11968                         rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
11969                         udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
11970                         udp->uh_sport = htons(V_tcp_udp_tunneling_port);
11971                         udp->uh_dport = tp->t_port;
11972                         rack->r_ctl.fsb.udp = udp;
11973                         rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
11974                 } else
11975                 {
11976                         rack->r_ctl.fsb.th = (struct tcphdr *)(ip6 + 1);
11977                         rack->r_ctl.fsb.udp = NULL;
11978                 }
11979                 tcpip_fillheaders(rack->rc_inp,
11980                                   tp->t_port,
11981                                   ip6, rack->r_ctl.fsb.th);
11982         } else
11983 #endif                          /* INET6 */
11984         {
11985                 rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr);
11986                 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
11987                 if (tp->t_port) {
11988                         rack->r_ctl.fsb.tcp_ip_hdr_len += sizeof(struct udphdr);
11989                         udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
11990                         udp->uh_sport = htons(V_tcp_udp_tunneling_port);
11991                         udp->uh_dport = tp->t_port;
11992                         rack->r_ctl.fsb.udp = udp;
11993                         rack->r_ctl.fsb.th = (struct tcphdr *)(udp + 1);
11994                 } else
11995                 {
11996                         rack->r_ctl.fsb.udp = NULL;
11997                         rack->r_ctl.fsb.th = (struct tcphdr *)(ip + 1);
11998                 }
11999                 tcpip_fillheaders(rack->rc_inp,
12000                                   tp->t_port,
12001                                   ip, rack->r_ctl.fsb.th);
12002         }
12003         rack->r_fsb_inited = 1;
12004 }
12005
12006 static int
12007 rack_init_fsb(struct tcpcb *tp, struct tcp_rack *rack)
12008 {
12009         /*
12010          * Allocate the larger of spaces V6 if available else just
12011          * V4 and include udphdr (overbook)
12012          */
12013 #ifdef INET6
12014         rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + sizeof(struct udphdr);
12015 #else
12016         rack->r_ctl.fsb.tcp_ip_hdr_len = sizeof(struct tcpiphdr) + sizeof(struct udphdr);
12017 #endif
12018         rack->r_ctl.fsb.tcp_ip_hdr = malloc(rack->r_ctl.fsb.tcp_ip_hdr_len,
12019                                             M_TCPFSB, M_NOWAIT|M_ZERO);
12020         if (rack->r_ctl.fsb.tcp_ip_hdr == NULL) {
12021                 return (ENOMEM);
12022         }
12023         rack->r_fsb_inited = 0;
12024         return (0);
12025 }
12026
12027 static int
12028 rack_init(struct tcpcb *tp)
12029 {
12030         struct tcp_rack *rack = NULL;
12031         struct rack_sendmap *insret;
12032         uint32_t iwin, snt, us_cts;
12033         int err;
12034
12035         tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
12036         if (tp->t_fb_ptr == NULL) {
12037                 /*
12038                  * We need to allocate memory but cant. The INP and INP_INFO
12039                  * locks and they are recusive (happens during setup. So a
12040                  * scheme to drop the locks fails :(
12041                  *
12042                  */
12043                 return (ENOMEM);
12044         }
12045         memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
12046
12047         rack = (struct tcp_rack *)tp->t_fb_ptr;
12048         RB_INIT(&rack->r_ctl.rc_mtree);
12049         TAILQ_INIT(&rack->r_ctl.rc_free);
12050         TAILQ_INIT(&rack->r_ctl.rc_tmap);
12051         rack->rc_tp = tp;
12052         rack->rc_inp = tp->t_inpcb;
12053         /* Set the flag */
12054         rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
12055         /* Probably not needed but lets be sure */
12056         rack_clear_rate_sample(rack);
12057         /*
12058          * Save off the default values, socket options will poke
12059          * at these if pacing is not on or we have not yet
12060          * reached where pacing is on (gp_ready/fixed enabled).
12061          * When they get set into the CC module (when gp_ready
12062          * is enabled or we enable fixed) then we will set these
12063          * values into the CC and place in here the old values
12064          * so we have a restoral. Then we will set the flag
12065          * rc_pacing_cc_set. That way whenever we turn off pacing
12066          * or switch off this stack, we will know to go restore
12067          * the saved values.
12068          */
12069         rack->r_ctl.rc_saved_beta.beta = V_newreno_beta_ecn;
12070         rack->r_ctl.rc_saved_beta.beta_ecn = V_newreno_beta_ecn;
12071         /* We want abe like behavior as well */
12072         rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN;
12073         rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
12074         rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
12075         rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
12076         if (use_rack_rr)
12077                 rack->use_rack_rr = 1;
12078         if (V_tcp_delack_enabled)
12079                 tp->t_delayed_ack = 1;
12080         else
12081                 tp->t_delayed_ack = 0;
12082 #ifdef TCP_ACCOUNTING
12083         if (rack_tcp_accounting) {
12084                 tp->t_flags2 |= TF2_TCP_ACCOUNTING;
12085         }
12086 #endif
12087         if (rack_enable_shared_cwnd)
12088                 rack->rack_enable_scwnd = 1;
12089         rack->rc_user_set_max_segs = rack_hptsi_segments;
12090         rack->rc_force_max_seg = 0;
12091         if (rack_use_imac_dack)
12092                 rack->rc_dack_mode = 1;
12093         TAILQ_INIT(&rack->r_ctl.opt_list);
12094         rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
12095         rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
12096         rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
12097         rack->r_ctl.rc_lowest_us_rtt = 0xffffffff;
12098         rack->r_ctl.rc_highest_us_rtt = 0;
12099         rack->r_ctl.bw_rate_cap = rack_bw_rate_cap;
12100         rack->r_ctl.timer_slop = TICKS_2_USEC(tcp_rexmit_slop);
12101         if (rack_use_cmp_acks)
12102                 rack->r_use_cmp_ack = 1;
12103         if (rack_disable_prr)
12104                 rack->rack_no_prr = 1;
12105         if (rack_gp_no_rec_chg)
12106                 rack->rc_gp_no_rec_chg = 1;
12107         if (rack_pace_every_seg && tcp_can_enable_pacing()) {
12108                 rack->rc_always_pace = 1;
12109                 if (rack->use_fixed_rate || rack->gp_ready)
12110                         rack_set_cc_pacing(rack);
12111         } else
12112                 rack->rc_always_pace = 0;
12113         if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack)
12114                 rack->r_mbuf_queue = 1;
12115         else
12116                 rack->r_mbuf_queue = 0;
12117         if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
12118                 tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
12119         else
12120                 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12121         rack_set_pace_segments(tp, rack, __LINE__, NULL);
12122         if (rack_limits_scwnd)
12123                 rack->r_limit_scw = 1;
12124         else
12125                 rack->r_limit_scw = 0;
12126         rack->rc_labc = V_tcp_abc_l_var;
12127         rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
12128         rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
12129         rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
12130         rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
12131         rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
12132         rack->r_ctl.rc_min_to = rack_min_to;
12133         microuptime(&rack->r_ctl.act_rcv_time);
12134         rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time;
12135         rack->r_running_late = 0;
12136         rack->r_running_early = 0;
12137         rack->rc_init_win = rack_default_init_window;
12138         rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss;
12139         if (rack_hw_up_only)
12140                 rack->r_up_only = 1;
12141         if (rack_do_dyn_mul) {
12142                 /* When dynamic adjustment is on CA needs to start at 100% */
12143                 rack->rc_gp_dyn_mul = 1;
12144                 if (rack_do_dyn_mul >= 100)
12145                         rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
12146         } else
12147                 rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
12148         rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec;
12149         rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt;
12150         rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time);
12151         setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN,
12152                                 rack_probertt_filter_life);
12153         us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
12154         rack->r_ctl.rc_lower_rtt_us_cts = us_cts;
12155         rack->r_ctl.rc_time_of_last_probertt = us_cts;
12156         rack->r_ctl.challenge_ack_ts = tcp_ts_getticks();
12157         rack->r_ctl.rc_time_probertt_starts = 0;
12158         /* We require at least one measurement, even if the sysctl is 0 */
12159         if (rack_req_measurements)
12160                 rack->r_ctl.req_measurements = rack_req_measurements;
12161         else
12162                 rack->r_ctl.req_measurements = 1;
12163         if (rack_enable_hw_pacing)
12164                 rack->rack_hdw_pace_ena = 1;
12165         if (rack_hw_rate_caps)
12166                 rack->r_rack_hw_rate_caps = 1;
12167         /* Do we force on detection? */
12168 #ifdef NETFLIX_EXP_DETECTION
12169         if (tcp_force_detection)
12170                 rack->do_detection = 1;
12171         else
12172 #endif
12173                 rack->do_detection = 0;
12174         if (rack_non_rxt_use_cr)
12175                 rack->rack_rec_nonrxt_use_cr = 1;
12176         err = rack_init_fsb(tp, rack);
12177         if (err) {
12178                 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12179                 tp->t_fb_ptr = NULL;
12180                 return (err);
12181         }
12182         if (tp->snd_una != tp->snd_max) {
12183                 /* Create a send map for the current outstanding data */
12184                 struct rack_sendmap *rsm;
12185
12186                 rsm = rack_alloc(rack);
12187                 if (rsm == NULL) {
12188                         uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12189                         tp->t_fb_ptr = NULL;
12190                         return (ENOMEM);
12191                 }
12192                 rsm->r_no_rtt_allowed = 1;
12193                 rsm->r_tim_lastsent[0] = rack_to_usec_ts(&rack->r_ctl.act_rcv_time);
12194                 rsm->r_rtr_cnt = 1;
12195                 rsm->r_rtr_bytes = 0;
12196                 if (tp->t_flags & TF_SENTFIN) {
12197                         rsm->r_end = tp->snd_max - 1;
12198                         rsm->r_flags |= RACK_HAS_FIN;
12199                 } else {
12200                         rsm->r_end = tp->snd_max;
12201                 }
12202                 if (tp->snd_una == tp->iss) {
12203                         /* The data space is one beyond snd_una */
12204                         rsm->r_flags |= RACK_HAS_SYN;
12205                         rsm->r_start = tp->iss;
12206                         rsm->r_end = rsm->r_start + (tp->snd_max - tp->snd_una);
12207                 } else
12208                         rsm->r_start = tp->snd_una;
12209                 rsm->r_dupack = 0;
12210                 if (rack->rc_inp->inp_socket->so_snd.sb_mb != NULL) {
12211                         rsm->m = sbsndmbuf(&rack->rc_inp->inp_socket->so_snd, 0, &rsm->soff);
12212                         if (rsm->m)
12213                                 rsm->orig_m_len = rsm->m->m_len;
12214                         else
12215                                 rsm->orig_m_len = 0;
12216                 } else {
12217                         /*
12218                          * This can happen if we have a stand-alone FIN or
12219                          *  SYN.
12220                          */
12221                         rsm->m = NULL;
12222                         rsm->orig_m_len = 0;
12223                         rsm->soff = 0;
12224                 }
12225                 insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12226 #ifdef INVARIANTS
12227                 if (insret != NULL) {
12228                         panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
12229                               insret, rack, rsm);
12230                 }
12231 #endif
12232                 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
12233                 rsm->r_in_tmap = 1;
12234         }
12235         /*
12236          * Timers in Rack are kept in microseconds so lets
12237          * convert any initial incoming variables
12238          * from ticks into usecs. Note that we
12239          * also change the values of t_srtt and t_rttvar, if
12240          * they are non-zero. They are kept with a 5
12241          * bit decimal so we have to carefully convert
12242          * these to get the full precision.
12243          */
12244         rack_convert_rtts(tp);
12245         tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow);
12246         if (rack_def_profile)
12247                 rack_set_profile(rack, rack_def_profile);
12248         /* Cancel the GP measurement in progress */
12249         tp->t_flags &= ~TF_GPUTINPROG;
12250         if (SEQ_GT(tp->snd_max, tp->iss))
12251                 snt = tp->snd_max - tp->iss;
12252         else
12253                 snt = 0;
12254         iwin = rc_init_window(rack);
12255         if (snt < iwin) {
12256                 /* We are not past the initial window
12257                  * so we need to make sure cwnd is
12258                  * correct.
12259                  */
12260                 if (tp->snd_cwnd < iwin)
12261                         tp->snd_cwnd = iwin;
12262                 /*
12263                  * If we are within the initial window
12264                  * we want ssthresh to be unlimited. Setting
12265                  * it to the rwnd (which the default stack does
12266                  * and older racks) is not really a good idea
12267                  * since we want to be in SS and grow both the
12268                  * cwnd and the rwnd (via dynamic rwnd growth). If
12269                  * we set it to the rwnd then as the peer grows its
12270                  * rwnd we will be stuck in CA and never hit SS.
12271                  *
12272                  * Its far better to raise it up high (this takes the
12273                  * risk that there as been a loss already, probably
12274                  * we should have an indicator in all stacks of loss
12275                  * but we don't), but considering the normal use this
12276                  * is a risk worth taking. The consequences of not
12277                  * hitting SS are far worse than going one more time
12278                  * into it early on (before we have sent even a IW).
12279                  * It is highly unlikely that we will have had a loss
12280                  * before getting the IW out.
12281                  */
12282                 tp->snd_ssthresh = 0xffffffff;
12283         }
12284         rack_stop_all_timers(tp);
12285         /* Lets setup the fsb block */
12286         rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12287         rack_log_rtt_shrinks(rack,  us_cts,  tp->t_rxtcur,
12288                              __LINE__, RACK_RTTS_INIT);
12289         return (0);
12290 }
12291
12292 static int
12293 rack_handoff_ok(struct tcpcb *tp)
12294 {
12295         if ((tp->t_state == TCPS_CLOSED) ||
12296             (tp->t_state == TCPS_LISTEN)) {
12297                 /* Sure no problem though it may not stick */
12298                 return (0);
12299         }
12300         if ((tp->t_state == TCPS_SYN_SENT) ||
12301             (tp->t_state == TCPS_SYN_RECEIVED)) {
12302                 /*
12303                  * We really don't know if you support sack,
12304                  * you have to get to ESTAB or beyond to tell.
12305                  */
12306                 return (EAGAIN);
12307         }
12308         if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) > 1)) {
12309                 /*
12310                  * Rack will only send a FIN after all data is acknowledged.
12311                  * So in this case we have more data outstanding. We can't
12312                  * switch stacks until either all data and only the FIN
12313                  * is left (in which case rack_init() now knows how
12314                  * to deal with that) <or> all is acknowledged and we
12315                  * are only left with incoming data, though why you
12316                  * would want to switch to rack after all data is acknowledged
12317                  * I have no idea (rrs)!
12318                  */
12319                 return (EAGAIN);
12320         }
12321         if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
12322                 return (0);
12323         }
12324         /*
12325          * If we reach here we don't do SACK on this connection so we can
12326          * never do rack.
12327          */
12328         return (EINVAL);
12329 }
12330
12331
12332 static void
12333 rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
12334 {
12335         int ack_cmp = 0;
12336
12337         if (tp->t_fb_ptr) {
12338                 struct tcp_rack *rack;
12339                 struct rack_sendmap *rsm, *nrsm, *rm;
12340
12341                 rack = (struct tcp_rack *)tp->t_fb_ptr;
12342                 if (tp->t_in_pkt) {
12343                         /*
12344                          * It is unsafe to process the packets since a
12345                          * reset may be lurking in them (its rare but it
12346                          * can occur). If we were to find a RST, then we
12347                          * would end up dropping the connection and the
12348                          * INP lock, so when we return the caller (tcp_usrreq)
12349                          * will blow up when it trys to unlock the inp.
12350                          */
12351                         struct mbuf *save, *m;
12352
12353                         m = tp->t_in_pkt;
12354                         tp->t_in_pkt = NULL;
12355                         tp->t_tail_pkt = NULL;
12356                         while (m) {
12357                                 save = m->m_nextpkt;
12358                                 m->m_nextpkt = NULL;
12359                                 m_freem(m);
12360                                 m = save;
12361                         }
12362                         if ((tp->t_inpcb) &&
12363                             (tp->t_inpcb->inp_flags2 & INP_MBUF_ACKCMP))
12364                                 ack_cmp = 1;
12365                         if (ack_cmp) {
12366                                 /* Total if we used large or small (if ack-cmp was used). */
12367                                 if (rack->rc_inp->inp_flags2 & INP_MBUF_L_ACKS)
12368                                         counter_u64_add(rack_large_ackcmp, 1);
12369                                 else
12370                                         counter_u64_add(rack_small_ackcmp, 1);
12371                         }
12372                 }
12373                 tp->t_flags &= ~TF_FORCEDATA;
12374 #ifdef NETFLIX_SHARED_CWND
12375                 if (rack->r_ctl.rc_scw) {
12376                         uint32_t limit;
12377
12378                         if (rack->r_limit_scw)
12379                                 limit = max(1, rack->r_ctl.rc_lowest_us_rtt);
12380                         else
12381                                 limit = 0;
12382                         tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw,
12383                                                   rack->r_ctl.rc_scw_index,
12384                                                   limit);
12385                         rack->r_ctl.rc_scw = NULL;
12386                 }
12387 #endif
12388                 if (rack->r_ctl.fsb.tcp_ip_hdr) {
12389                         free(rack->r_ctl.fsb.tcp_ip_hdr, M_TCPFSB);
12390                         rack->r_ctl.fsb.tcp_ip_hdr = NULL;
12391                         rack->r_ctl.fsb.th = NULL;
12392                 }
12393                 /* Convert back to ticks, with  */
12394                 if (tp->t_srtt > 1) {
12395                         uint32_t val, frac;
12396
12397                         val = USEC_2_TICKS(tp->t_srtt);
12398                         frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12399                         tp->t_srtt = val << TCP_RTT_SHIFT;
12400                         /*
12401                          * frac is the fractional part here is left
12402                          * over from converting to hz and shifting.
12403                          * We need to convert this to the 5 bit
12404                          * remainder.
12405                          */
12406                         if (frac) {
12407                                 if (hz == 1000) {
12408                                         frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12409                                 } else {
12410                                         frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12411                                 }
12412                                 tp->t_srtt += frac;
12413                         }
12414                 }
12415                 if (tp->t_rttvar) {
12416                         uint32_t val, frac;
12417
12418                         val = USEC_2_TICKS(tp->t_rttvar);
12419                         frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz);
12420                         tp->t_rttvar = val <<  TCP_RTTVAR_SHIFT;
12421                         /*
12422                          * frac is the fractional part here is left
12423                          * over from converting to hz and shifting.
12424                          * We need to convert this to the 5 bit
12425                          * remainder.
12426                          */
12427                         if (frac) {
12428                                 if (hz == 1000) {
12429                                         frac = (((uint64_t)frac *  (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC);
12430                                 } else {
12431                                         frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC);
12432                                 }
12433                                 tp->t_rttvar += frac;
12434                         }
12435                 }
12436                 tp->t_rxtcur = USEC_2_TICKS(tp->t_rxtcur);
12437                 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow);
12438                 if (rack->rc_always_pace) {
12439                         tcp_decrement_paced_conn();
12440                         rack_undo_cc_pacing(rack);
12441                         rack->rc_always_pace = 0;
12442                 }
12443                 /* Clean up any options if they were not applied */
12444                 while (!TAILQ_EMPTY(&rack->r_ctl.opt_list)) {
12445                         struct deferred_opt_list *dol;
12446
12447                         dol = TAILQ_FIRST(&rack->r_ctl.opt_list);
12448                         TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
12449                         free(dol, M_TCPDO);
12450                 }
12451                 /* rack does not use force data but other stacks may clear it */
12452                 if (rack->r_ctl.crte != NULL) {
12453                         tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
12454                         rack->rack_hdrw_pacing = 0;
12455                         rack->r_ctl.crte = NULL;
12456                 }
12457 #ifdef TCP_BLACKBOX
12458                 tcp_log_flowend(tp);
12459 #endif
12460                 RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
12461                         rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
12462 #ifdef INVARIANTS
12463                         if (rm != rsm) {
12464                                 panic("At fini, rack:%p rsm:%p rm:%p",
12465                                       rack, rsm, rm);
12466                         }
12467 #endif
12468                         uma_zfree(rack_zone, rsm);
12469                 }
12470                 rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12471                 while (rsm) {
12472                         TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
12473                         uma_zfree(rack_zone, rsm);
12474                         rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
12475                 }
12476                 rack->rc_free_cnt = 0;
12477                 uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
12478                 tp->t_fb_ptr = NULL;
12479         }
12480         if (tp->t_inpcb) {
12481                 tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
12482                 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
12483                 tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
12484                 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_ACKCMP;
12485                 /* Cancel the GP measurement in progress */
12486                 tp->t_flags &= ~TF_GPUTINPROG;
12487                 tp->t_inpcb->inp_flags2 &= ~INP_MBUF_L_ACKS;
12488         }
12489         /* Make sure snd_nxt is correctly set */
12490         tp->snd_nxt = tp->snd_max;
12491 }
12492
12493 static void
12494 rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
12495 {
12496         switch (tp->t_state) {
12497         case TCPS_SYN_SENT:
12498                 rack->r_state = TCPS_SYN_SENT;
12499                 rack->r_substate = rack_do_syn_sent;
12500                 break;
12501         case TCPS_SYN_RECEIVED:
12502                 rack->r_state = TCPS_SYN_RECEIVED;
12503                 rack->r_substate = rack_do_syn_recv;
12504                 break;
12505         case TCPS_ESTABLISHED:
12506                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12507                 rack->r_state = TCPS_ESTABLISHED;
12508                 rack->r_substate = rack_do_established;
12509                 break;
12510         case TCPS_CLOSE_WAIT:
12511                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12512                 rack->r_state = TCPS_CLOSE_WAIT;
12513                 rack->r_substate = rack_do_close_wait;
12514                 break;
12515         case TCPS_FIN_WAIT_1:
12516                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12517                 rack->r_state = TCPS_FIN_WAIT_1;
12518                 rack->r_substate = rack_do_fin_wait_1;
12519                 break;
12520         case TCPS_CLOSING:
12521                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12522                 rack->r_state = TCPS_CLOSING;
12523                 rack->r_substate = rack_do_closing;
12524                 break;
12525         case TCPS_LAST_ACK:
12526                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12527                 rack->r_state = TCPS_LAST_ACK;
12528                 rack->r_substate = rack_do_lastack;
12529                 break;
12530         case TCPS_FIN_WAIT_2:
12531                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
12532                 rack->r_state = TCPS_FIN_WAIT_2;
12533                 rack->r_substate = rack_do_fin_wait_2;
12534                 break;
12535         case TCPS_LISTEN:
12536         case TCPS_CLOSED:
12537         case TCPS_TIME_WAIT:
12538         default:
12539                 break;
12540         };
12541         if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
12542                 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
12543
12544 }
12545
12546 static void
12547 rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
12548 {
12549         /*
12550          * We received an ack, and then did not
12551          * call send or were bounced out due to the
12552          * hpts was running. Now a timer is up as well, is
12553          * it the right timer?
12554          */
12555         struct rack_sendmap *rsm;
12556         int tmr_up;
12557
12558         tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
12559         if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
12560                 return;
12561         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
12562         if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
12563             (tmr_up == PACE_TMR_RXT)) {
12564                 /* Should be an RXT */
12565                 return;
12566         }
12567         if (rsm == NULL) {
12568                 /* Nothing outstanding? */
12569                 if (tp->t_flags & TF_DELACK) {
12570                         if (tmr_up == PACE_TMR_DELACK)
12571                                 /* We are supposed to have delayed ack up and we do */
12572                                 return;
12573                 } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
12574                         /*
12575                          * if we hit enobufs then we would expect the possiblity
12576                          * of nothing outstanding and the RXT up (and the hptsi timer).
12577                          */
12578                         return;
12579                 } else if (((V_tcp_always_keepalive ||
12580                              rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
12581                             (tp->t_state <= TCPS_CLOSING)) &&
12582                            (tmr_up == PACE_TMR_KEEP) &&
12583                            (tp->snd_max == tp->snd_una)) {
12584                         /* We should have keep alive up and we do */
12585                         return;
12586                 }
12587         }
12588         if (SEQ_GT(tp->snd_max, tp->snd_una) &&
12589                    ((tmr_up == PACE_TMR_TLP) ||
12590                     (tmr_up == PACE_TMR_RACK) ||
12591                     (tmr_up == PACE_TMR_RXT))) {
12592                 /*
12593                  * Either a Rack, TLP or RXT is fine if  we
12594                  * have outstanding data.
12595                  */
12596                 return;
12597         } else if (tmr_up == PACE_TMR_DELACK) {
12598                 /*
12599                  * If the delayed ack was going to go off
12600                  * before the rtx/tlp/rack timer were going to
12601                  * expire, then that would be the timer in control.
12602                  * Note we don't check the time here trusting the
12603                  * code is correct.
12604                  */
12605                 return;
12606         }
12607         /*
12608          * Ok the timer originally started is not what we want now.
12609          * We will force the hpts to be stopped if any, and restart
12610          * with the slot set to what was in the saved slot.
12611          */
12612         if (rack->rc_inp->inp_in_hpts) {
12613                 if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
12614                         uint32_t us_cts;
12615
12616                         us_cts = tcp_get_usecs(NULL);
12617                         if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
12618                                 rack->r_early = 1;
12619                                 rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
12620                         }
12621                         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
12622                 }
12623                 tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
12624         }
12625         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
12626         rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
12627 }
12628
12629
12630 static void
12631 rack_do_win_updates(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tiwin, uint32_t seq, uint32_t ack, uint32_t cts, uint32_t high_seq)
12632 {
12633         tp->snd_wnd = tiwin;
12634         rack_validate_fo_sendwin_up(tp, rack);
12635         tp->snd_wl1 = seq;
12636         tp->snd_wl2 = ack;
12637         if (tp->snd_wnd > tp->max_sndwnd)
12638                 tp->max_sndwnd = tp->snd_wnd;
12639         if (tp->snd_wnd < (tp->snd_max - high_seq)) {
12640                 /* The peer collapsed the window */
12641                 rack_collapsed_window(rack);
12642         } else if (rack->rc_has_collapsed)
12643                 rack_un_collapse_window(rack);
12644         /* Do we exit persists? */
12645         if ((rack->rc_in_persist != 0) &&
12646             (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
12647                                 rack->r_ctl.rc_pace_min_segs))) {
12648                 rack_exit_persist(tp, rack, cts);
12649         }
12650         /* Do we enter persists? */
12651         if ((rack->rc_in_persist == 0) &&
12652             (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
12653             TCPS_HAVEESTABLISHED(tp->t_state) &&
12654             (tp->snd_max == tp->snd_una) &&
12655             sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
12656             (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
12657                 /*
12658                  * Here the rwnd is less than
12659                  * the pacing size, we are established,
12660                  * nothing is outstanding, and there is
12661                  * data to send. Enter persists.
12662                  */
12663                 rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
12664         }
12665 }
12666
12667 static void
12668 rack_log_input_packet(struct tcpcb *tp, struct tcp_rack *rack, struct tcp_ackent *ae, int ackval, uint32_t high_seq)
12669 {
12670
12671         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
12672                 union tcp_log_stackspecific log;
12673                 struct timeval ltv;
12674                 char tcp_hdr_buf[60];
12675                 struct tcphdr *th;
12676                 struct timespec ts;
12677                 uint32_t orig_snd_una;
12678                 uint8_t xx = 0;
12679
12680 #ifdef NETFLIX_HTTP_LOGGING
12681                 struct http_sendfile_track *http_req;
12682
12683                 if (SEQ_GT(ae->ack, tp->snd_una)) {
12684                         http_req = tcp_http_find_req_for_seq(tp, (ae->ack-1));
12685                 } else {
12686                         http_req = tcp_http_find_req_for_seq(tp, ae->ack);
12687                 }
12688 #endif
12689                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
12690                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
12691                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
12692                 if (rack->rack_no_prr == 0)
12693                         log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
12694                 else
12695                         log.u_bbr.flex1 = 0;
12696                 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
12697                 log.u_bbr.use_lt_bw <<= 1;
12698                 log.u_bbr.use_lt_bw |= rack->r_might_revert;
12699                 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
12700                 log.u_bbr.inflight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
12701                 log.u_bbr.pkts_out = tp->t_maxseg;
12702                 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
12703                 log.u_bbr.flex7 = 1;
12704                 log.u_bbr.lost = ae->flags;
12705                 log.u_bbr.cwnd_gain = ackval;
12706                 log.u_bbr.pacing_gain = 0x2;
12707                 if (ae->flags & TSTMP_HDWR) {
12708                         /* Record the hardware timestamp if present */
12709                         log.u_bbr.flex3 = M_TSTMP;
12710                         ts.tv_sec = ae->timestamp / 1000000000;
12711                         ts.tv_nsec = ae->timestamp % 1000000000;
12712                         ltv.tv_sec = ts.tv_sec;
12713                         ltv.tv_usec = ts.tv_nsec / 1000;
12714                         log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
12715                 } else if (ae->flags & TSTMP_LRO) {
12716                         /* Record the LRO the arrival timestamp */
12717                         log.u_bbr.flex3 = M_TSTMP_LRO;
12718                         ts.tv_sec = ae->timestamp / 1000000000;
12719                         ts.tv_nsec = ae->timestamp % 1000000000;
12720                         ltv.tv_sec = ts.tv_sec;
12721                         ltv.tv_usec = ts.tv_nsec / 1000;
12722                         log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
12723                 }
12724                 log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
12725                 /* Log the rcv time */
12726                 log.u_bbr.delRate = ae->timestamp;
12727 #ifdef NETFLIX_HTTP_LOGGING
12728                 log.u_bbr.applimited = tp->t_http_closed;
12729                 log.u_bbr.applimited <<= 8;
12730                 log.u_bbr.applimited |= tp->t_http_open;
12731                 log.u_bbr.applimited <<= 8;
12732                 log.u_bbr.applimited |= tp->t_http_req;
12733                 if (http_req) {
12734                         /* Copy out any client req info */
12735                         /* seconds */
12736                         log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
12737                         /* useconds */
12738                         log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
12739                         log.u_bbr.rttProp = http_req->timestamp;
12740                         log.u_bbr.cur_del_rate = http_req->start;
12741                         if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
12742                                 log.u_bbr.flex8 |= 1;
12743                         } else {
12744                                 log.u_bbr.flex8 |= 2;
12745                                 log.u_bbr.bw_inuse = http_req->end;
12746                         }
12747                         log.u_bbr.flex6 = http_req->start_seq;
12748                         if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
12749                                 log.u_bbr.flex8 |= 4;
12750                                 log.u_bbr.epoch = http_req->end_seq;
12751                         }
12752                 }
12753 #endif
12754                 memset(tcp_hdr_buf, 0, sizeof(tcp_hdr_buf));
12755                 th = (struct tcphdr *)tcp_hdr_buf;
12756                 th->th_seq = ae->seq;
12757                 th->th_ack = ae->ack;
12758                 th->th_win = ae->win;
12759                 /* Now fill in the ports */
12760                 th->th_sport = tp->t_inpcb->inp_fport;
12761                 th->th_dport = tp->t_inpcb->inp_lport;
12762                 th->th_flags = ae->flags & 0xff;
12763                 /* Now do we have a timestamp option? */
12764                 if (ae->flags & HAS_TSTMP) {
12765                         u_char *cp;
12766                         uint32_t val;
12767
12768                         th->th_off = ((sizeof(struct tcphdr) + TCPOLEN_TSTAMP_APPA) >> 2);
12769                         cp = (u_char *)(th + 1);
12770                         *cp = TCPOPT_NOP;
12771                         cp++;
12772                         *cp = TCPOPT_NOP;
12773                         cp++;
12774                         *cp = TCPOPT_TIMESTAMP;
12775                         cp++;
12776                         *cp = TCPOLEN_TIMESTAMP;
12777                         cp++;
12778                         val = htonl(ae->ts_value);
12779                         bcopy((char *)&val,
12780                               (char *)cp, sizeof(uint32_t));
12781                         val = htonl(ae->ts_echo);
12782                         bcopy((char *)&val,
12783                               (char *)(cp + 4), sizeof(uint32_t));
12784                 } else
12785                         th->th_off = (sizeof(struct tcphdr) >> 2);
12786
12787                 /*
12788                  * For sane logging we need to play a little trick.
12789                  * If the ack were fully processed we would have moved
12790                  * snd_una to high_seq, but since compressed acks are
12791                  * processed in two phases, at this point (logging) snd_una
12792                  * won't be advanced. So we would see multiple acks showing
12793                  * the advancement. We can prevent that by "pretending" that
12794                  * snd_una was advanced and then un-advancing it so that the
12795                  * logging code has the right value for tlb_snd_una.
12796                  */
12797                 if (tp->snd_una != high_seq) {
12798                         orig_snd_una = tp->snd_una;
12799                         tp->snd_una = high_seq;
12800                         xx = 1;
12801                 } else
12802                         xx = 0;
12803                 TCP_LOG_EVENTP(tp, th,
12804                                &tp->t_inpcb->inp_socket->so_rcv,
12805                                &tp->t_inpcb->inp_socket->so_snd, TCP_LOG_IN, 0,
12806                                0, &log, true, &ltv);
12807                 if (xx) {
12808                         tp->snd_una = orig_snd_una;
12809                 }
12810         }
12811
12812 }
12813
12814 static int
12815 rack_do_compressed_ack_processing(struct tcpcb *tp, struct socket *so, struct mbuf *m, int nxt_pkt, struct timeval *tv)
12816 {
12817         /*
12818          * Handle a "special" compressed ack mbuf. Each incoming
12819          * ack has only four possible dispositions:
12820          *
12821          * A) It moves the cum-ack forward
12822          * B) It is behind the cum-ack.
12823          * C) It is a window-update ack.
12824          * D) It is a dup-ack.
12825          *
12826          * Note that we can have between 1 -> TCP_COMP_ACK_ENTRIES
12827          * in the incoming mbuf. We also need to still pay attention
12828          * to nxt_pkt since there may be another packet after this
12829          * one.
12830          */
12831 #ifdef TCP_ACCOUNTING
12832         uint64_t ts_val;
12833         uint64_t rdstc;
12834 #endif
12835         int segsiz;
12836         struct timespec ts;
12837         struct tcp_rack *rack;
12838         struct tcp_ackent *ae;
12839         uint32_t tiwin, us_cts, cts, acked, acked_amount, high_seq, win_seq, the_win, win_upd_ack;
12840         int cnt, i, did_out, ourfinisacked = 0;
12841         int win_up_req = 0;
12842         struct tcpopt to_holder, *to = NULL;
12843         int nsegs = 0;
12844         int under_pacing = 1;
12845         int recovery = 0;
12846         int idx;
12847 #ifdef TCP_ACCOUNTING
12848         sched_pin();
12849 #endif
12850         rack = (struct tcp_rack *)tp->t_fb_ptr;
12851         if (rack->gp_ready &&
12852             (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT))
12853                 under_pacing = 0;
12854         else
12855                 under_pacing = 1;
12856
12857         if (rack->r_state != tp->t_state)
12858                 rack_set_state(tp, rack);
12859         to = &to_holder;
12860         to->to_flags = 0;
12861         KASSERT((m->m_len >= sizeof(struct tcp_ackent)),
12862                 ("tp:%p m_cmpack:%p with invalid len:%u", tp, m, m->m_len));
12863         cnt = m->m_len / sizeof(struct tcp_ackent);
12864         idx = cnt / 5;
12865         if (idx >= MAX_NUM_OF_CNTS)
12866                 idx = MAX_NUM_OF_CNTS - 1;
12867         counter_u64_add(rack_proc_comp_ack[idx], 1);
12868         counter_u64_add(rack_multi_single_eq, cnt);
12869         high_seq = tp->snd_una;
12870         the_win = tp->snd_wnd;
12871         win_seq = tp->snd_wl1;
12872         win_upd_ack = tp->snd_wl2;
12873         cts = us_cts = tcp_tv_to_usectick(tv);
12874         segsiz = ctf_fixed_maxseg(tp);
12875         if ((rack->rc_gp_dyn_mul) &&
12876             (rack->use_fixed_rate == 0) &&
12877             (rack->rc_always_pace)) {
12878                 /* Check in on probertt */
12879                 rack_check_probe_rtt(rack, us_cts);
12880         }
12881         for (i = 0; i < cnt; i++) {
12882 #ifdef TCP_ACCOUNTING
12883                 ts_val = get_cyclecount();
12884 #endif
12885                 rack_clear_rate_sample(rack);
12886                 ae = ((mtod(m, struct tcp_ackent *)) + i);
12887                 /* Setup the window */
12888                 tiwin = ae->win << tp->snd_scale;
12889                 /* figure out the type of ack */
12890                 if (SEQ_LT(ae->ack, high_seq)) {
12891                         /* Case B*/
12892                         ae->ack_val_set = ACK_BEHIND;
12893                 } else if (SEQ_GT(ae->ack, high_seq)) {
12894                         /* Case A */
12895                         ae->ack_val_set = ACK_CUMACK;
12896                 } else if (tiwin == the_win) {
12897                         /* Case D */
12898                         ae->ack_val_set = ACK_DUPACK;
12899                 } else {
12900                         /* Case C */
12901                         ae->ack_val_set = ACK_RWND;
12902                 }
12903                 rack_log_input_packet(tp, rack, ae, ae->ack_val_set, high_seq);
12904                 /* Validate timestamp */
12905                 if (ae->flags & HAS_TSTMP) {
12906                         /* Setup for a timestamp */
12907                         to->to_flags = TOF_TS;
12908                         ae->ts_echo -= tp->ts_offset;
12909                         to->to_tsecr = ae->ts_echo;
12910                         to->to_tsval = ae->ts_value;
12911                         /*
12912                          * If echoed timestamp is later than the current time, fall back to
12913                          * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
12914                          * were used when this connection was established.
12915                          */
12916                         if (TSTMP_GT(ae->ts_echo, cts))
12917                                 ae->ts_echo = 0;
12918                         if (tp->ts_recent &&
12919                             TSTMP_LT(ae->ts_value, tp->ts_recent)) {
12920                                 if (ctf_ts_check_ac(tp, (ae->flags & 0xff))) {
12921 #ifdef TCP_ACCOUNTING
12922                                         rdstc = get_cyclecount();
12923                                         if (rdstc > ts_val) {
12924                                                 counter_u64_add(tcp_proc_time[ae->ack_val_set] ,
12925                                                                 (rdstc - ts_val));
12926                                                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
12927                                                         tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
12928                                                 }
12929                                         }
12930 #endif
12931                                         continue;
12932                                 }
12933                         }
12934                         if (SEQ_LEQ(ae->seq, tp->last_ack_sent) &&
12935                             SEQ_LEQ(tp->last_ack_sent, ae->seq)) {
12936                                 tp->ts_recent_age = tcp_ts_getticks();
12937                                 tp->ts_recent = ae->ts_value;
12938                         }
12939                 } else {
12940                         /* Setup for a no options */
12941                         to->to_flags = 0;
12942                 }
12943                 /* Update the rcv time and perform idle reduction possibly */
12944                 if  (tp->t_idle_reduce &&
12945                      (tp->snd_max == tp->snd_una) &&
12946                      ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
12947                         counter_u64_add(rack_input_idle_reduces, 1);
12948                         rack_cc_after_idle(rack, tp);
12949                 }
12950                 tp->t_rcvtime = ticks;
12951                 /* Now what about ECN? */
12952                 if (tp->t_flags2 & TF2_ECN_PERMIT) {
12953                         if (ae->flags & TH_CWR) {
12954                                 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
12955                                 tp->t_flags |= TF_ACKNOW;
12956                         }
12957                         switch (ae->codepoint & IPTOS_ECN_MASK) {
12958                         case IPTOS_ECN_CE:
12959                                 tp->t_flags2 |= TF2_ECN_SND_ECE;
12960                                 KMOD_TCPSTAT_INC(tcps_ecn_ce);
12961                                 break;
12962                         case IPTOS_ECN_ECT0:
12963                                 KMOD_TCPSTAT_INC(tcps_ecn_ect0);
12964                                 break;
12965                         case IPTOS_ECN_ECT1:
12966                                 KMOD_TCPSTAT_INC(tcps_ecn_ect1);
12967                                 break;
12968                         }
12969
12970                         /* Process a packet differently from RFC3168. */
12971                         cc_ecnpkt_handler_flags(tp, ae->flags, ae->codepoint);
12972                         /* Congestion experienced. */
12973                         if (ae->flags & TH_ECE) {
12974                                 rack_cong_signal(tp,  CC_ECN, ae->ack);
12975                         }
12976                 }
12977 #ifdef TCP_ACCOUNTING
12978                 /* Count for the specific type of ack in */
12979                 counter_u64_add(tcp_cnt_counters[ae->ack_val_set], 1);
12980                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
12981                         tp->tcp_cnt_counters[ae->ack_val_set]++;
12982                 }
12983 #endif
12984                 /*
12985                  * Note how we could move up these in the determination
12986                  * above, but we don't so that way the timestamp checks (and ECN)
12987                  * is done first before we do any processing on the ACK.
12988                  * The non-compressed path through the code has this
12989                  * weakness (noted by @jtl) that it actually does some
12990                  * processing before verifying the timestamp information.
12991                  * We don't take that path here which is why we set
12992                  * the ack_val_set first, do the timestamp and ecn
12993                  * processing, and then look at what we have setup.
12994                  */
12995                 if (ae->ack_val_set == ACK_BEHIND) {
12996                         /*
12997                          * Case B flag reordering, if window is not closed
12998                          * or it could be a keep-alive or persists
12999                          */
13000                         if (SEQ_LT(ae->ack, tp->snd_una) && (sbspace(&so->so_rcv) > segsiz)) {
13001                                 counter_u64_add(rack_reorder_seen, 1);
13002                                 rack->r_ctl.rc_reorder_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
13003                         }
13004                 } else if (ae->ack_val_set == ACK_DUPACK) {
13005                         /* Case D */
13006
13007                         rack_strike_dupack(rack);
13008                 } else if (ae->ack_val_set == ACK_RWND) {
13009                         /* Case C */
13010
13011                         win_up_req = 1;
13012                         win_upd_ack = ae->ack;
13013                         win_seq = ae->seq;
13014                         the_win = tiwin;
13015                 } else {
13016                         /* Case A */
13017
13018                         if (SEQ_GT(ae->ack, tp->snd_max)) {
13019                                 /*
13020                                  * We just send an ack since the incoming
13021                                  * ack is beyond the largest seq we sent.
13022                                  */
13023                                 if ((tp->t_flags & TF_ACKNOW) == 0) {
13024                                         ctf_ack_war_checks(tp, &rack->r_ctl.challenge_ack_ts, &rack->r_ctl.challenge_ack_cnt);
13025                                         if (tp->t_flags && TF_ACKNOW)
13026                                                 rack->r_wanted_output = 1;
13027                                 }
13028                         } else {
13029                                 nsegs++;
13030                                 /* If the window changed setup to update */
13031                                 if (tiwin != tp->snd_wnd) {
13032                                         win_up_req = 1;
13033                                         win_upd_ack = ae->ack;
13034                                         win_seq = ae->seq;
13035                                         the_win = tiwin;
13036                                 }
13037 #ifdef TCP_ACCOUNTING
13038                                 /* Account for the acks */
13039                                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13040                                         tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((ae->ack - high_seq) + segsiz - 1) / segsiz);
13041                                 }
13042                                 counter_u64_add(tcp_cnt_counters[CNT_OF_ACKS_IN],
13043                                                 (((ae->ack - high_seq) + segsiz - 1) / segsiz));
13044 #endif
13045                                 high_seq = ae->ack;
13046                                 /* Setup our act_rcv_time */
13047                                 if ((ae->flags & TSTMP_LRO) || (ae->flags & TSTMP_HDWR)) {
13048                                         ts.tv_sec = ae->timestamp / 1000000000;
13049                                         ts.tv_nsec = ae->timestamp % 1000000000;
13050                                         rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13051                                         rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13052                                 } else {
13053                                         rack->r_ctl.act_rcv_time = *tv;
13054                                 }
13055                                 rack_process_to_cumack(tp, rack, ae->ack, cts, to);
13056                         }
13057                 }
13058                 /* And lets be sure to commit the rtt measurements for this ack */
13059                 tcp_rack_xmit_timer_commit(rack, tp);
13060 #ifdef TCP_ACCOUNTING
13061                 rdstc = get_cyclecount();
13062                 if (rdstc > ts_val) {
13063                         counter_u64_add(tcp_proc_time[ae->ack_val_set] , (rdstc - ts_val));
13064                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13065                                 tp->tcp_proc_time[ae->ack_val_set] += (rdstc - ts_val);
13066                                 if (ae->ack_val_set == ACK_CUMACK)
13067                                         tp->tcp_proc_time[CYC_HANDLE_MAP] += (rdstc - ts_val);
13068                         }
13069                 }
13070 #endif
13071         }
13072 #ifdef TCP_ACCOUNTING
13073         ts_val = get_cyclecount();
13074 #endif
13075         acked_amount = acked = (high_seq - tp->snd_una);
13076         if (win_up_req) {
13077                 rack_do_win_updates(tp, rack, the_win, win_seq, win_upd_ack, cts, high_seq);
13078         }
13079         if (acked) {
13080                 if (rack->sack_attack_disable == 0)
13081                         rack_do_decay(rack);
13082                 if (acked >= segsiz) {
13083                         /*
13084                          * You only get credit for
13085                          * MSS and greater (and you get extra
13086                          * credit for larger cum-ack moves).
13087                          */
13088                         int ac;
13089
13090                         ac = acked / segsiz;
13091                         rack->r_ctl.ack_count += ac;
13092                         counter_u64_add(rack_ack_total, ac);
13093                 }
13094                 if (rack->r_ctl.ack_count > 0xfff00000) {
13095                         /*
13096                          * reduce the number to keep us under
13097                          * a uint32_t.
13098                          */
13099                         rack->r_ctl.ack_count /= 2;
13100                         rack->r_ctl.sack_count /= 2;
13101                 }
13102                 if (tp->t_flags & TF_NEEDSYN) {
13103                         /*
13104                          * T/TCP: Connection was half-synchronized, and our SYN has
13105                          * been ACK'd (so connection is now fully synchronized).  Go
13106                          * to non-starred state, increment snd_una for ACK of SYN,
13107                          * and check if we can do window scaling.
13108                          */
13109                         tp->t_flags &= ~TF_NEEDSYN;
13110                         tp->snd_una++;
13111                         acked_amount = acked = (high_seq - tp->snd_una);
13112                 }
13113                 if (acked > sbavail(&so->so_snd))
13114                         acked_amount = sbavail(&so->so_snd);
13115 #ifdef NETFLIX_EXP_DETECTION
13116                 /*
13117                  * We only care on a cum-ack move if we are in a sack-disabled
13118                  * state. We have already added in to the ack_count, and we never
13119                  * would disable on a cum-ack move, so we only care to do the
13120                  * detection if it may "undo" it, i.e. we were in disabled already.
13121                  */
13122                 if (rack->sack_attack_disable)
13123                         rack_do_detection(tp, rack, acked_amount, segsiz);
13124 #endif
13125                 if (IN_FASTRECOVERY(tp->t_flags) &&
13126                     (rack->rack_no_prr == 0))
13127                         rack_update_prr(tp, rack, acked_amount, high_seq);
13128                 if (IN_RECOVERY(tp->t_flags)) {
13129                         if (SEQ_LT(high_seq, tp->snd_recover) &&
13130                             (SEQ_LT(high_seq, tp->snd_max))) {
13131                                 tcp_rack_partialack(tp);
13132                         } else {
13133                                 rack_post_recovery(tp, high_seq);
13134                                 recovery = 1;
13135                         }
13136                 }
13137                 /* Handle the rack-log-ack part (sendmap) */
13138                 if ((sbused(&so->so_snd) == 0) &&
13139                     (acked > acked_amount) &&
13140                     (tp->t_state >= TCPS_FIN_WAIT_1) &&
13141                     (tp->t_flags & TF_SENTFIN)) {
13142                         /*
13143                          * We must be sure our fin
13144                          * was sent and acked (we can be
13145                          * in FIN_WAIT_1 without having
13146                          * sent the fin).
13147                          */
13148                         ourfinisacked = 1;
13149                         /*
13150                          * Lets make sure snd_una is updated
13151                          * since most likely acked_amount = 0 (it
13152                          * should be).
13153                          */
13154                         tp->snd_una = high_seq;
13155                 }
13156                 /* Did we make a RTO error? */
13157                 if ((tp->t_flags & TF_PREVVALID) &&
13158                     ((tp->t_flags & TF_RCVD_TSTMP) == 0)) {
13159                         tp->t_flags &= ~TF_PREVVALID;
13160                         if (tp->t_rxtshift == 1 &&
13161                             (int)(ticks - tp->t_badrxtwin) < 0)
13162                                 rack_cong_signal(tp, CC_RTO_ERR, high_seq);
13163                 }
13164                 /* Handle the data in the socket buffer */
13165                 KMOD_TCPSTAT_ADD(tcps_rcvackpack, 1);
13166                 KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked);
13167                 if (acked_amount > 0) {
13168                         struct mbuf *mfree;
13169
13170                         rack_ack_received(tp, rack, high_seq, nsegs, CC_ACK, recovery);
13171                         SOCKBUF_LOCK(&so->so_snd);
13172                         mfree = sbcut_locked(&so->so_snd, acked);
13173                         tp->snd_una = high_seq;
13174                         /* Note we want to hold the sb lock through the sendmap adjust */
13175                         rack_adjust_sendmap(rack, &so->so_snd, tp->snd_una);
13176                         /* Wake up the socket if we have room to write more */
13177                         rack_log_wakeup(tp,rack, &so->so_snd, acked, 2);
13178                         sowwakeup_locked(so);
13179                         m_freem(mfree);
13180                 }
13181                 /* update progress */
13182                 tp->t_acktime = ticks;
13183                 rack_log_progress_event(rack, tp, tp->t_acktime,
13184                                         PROGRESS_UPDATE, __LINE__);
13185                 /* Clear out shifts and such */
13186                 tp->t_rxtshift = 0;
13187                 RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
13188                                    rack_rto_min, rack_rto_max, rack->r_ctl.timer_slop);
13189                 rack->rc_tlp_in_progress = 0;
13190                 rack->r_ctl.rc_tlp_cnt_out = 0;
13191                 /* Send recover and snd_nxt must be dragged along */
13192                 if (SEQ_GT(tp->snd_una, tp->snd_recover))
13193                         tp->snd_recover = tp->snd_una;
13194                 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
13195                         tp->snd_nxt = tp->snd_una;
13196                 /*
13197                  * If the RXT timer is running we want to
13198                  * stop it, so we can restart a TLP (or new RXT).
13199                  */
13200                 if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT)
13201                         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13202 #ifdef NETFLIX_HTTP_LOGGING
13203                 tcp_http_check_for_comp(rack->rc_tp, high_seq);
13204 #endif
13205                 tp->snd_wl2 = high_seq;
13206                 tp->t_dupacks = 0;
13207                 if (under_pacing &&
13208                     (rack->use_fixed_rate == 0) &&
13209                     (rack->in_probe_rtt == 0) &&
13210                     rack->rc_gp_dyn_mul &&
13211                     rack->rc_always_pace) {
13212                         /* Check if we are dragging bottom */
13213                         rack_check_bottom_drag(tp, rack, so, acked);
13214                 }
13215                 if (tp->snd_una == tp->snd_max) {
13216                         tp->t_flags &= ~TF_PREVVALID;
13217                         rack->r_ctl.retran_during_recovery = 0;
13218                         rack->r_ctl.dsack_byte_cnt = 0;
13219                         rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL);
13220                         if (rack->r_ctl.rc_went_idle_time == 0)
13221                                 rack->r_ctl.rc_went_idle_time = 1;
13222                         rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
13223                         if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
13224                                 tp->t_acktime = 0;
13225                         /* Set so we might enter persists... */
13226                         rack->r_wanted_output = 1;
13227                         rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13228                         sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
13229                         if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
13230                             (sbavail(&so->so_snd) == 0) &&
13231                             (tp->t_flags2 & TF2_DROP_AF_DATA)) {
13232                                 /*
13233                                  * The socket was gone and the
13234                                  * peer sent data (not now in the past), time to
13235                                  * reset him.
13236                                  */
13237                                 rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
13238                                 /* tcp_close will kill the inp pre-log the Reset */
13239                                 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
13240 #ifdef TCP_ACCOUNTING
13241                                 rdstc = get_cyclecount();
13242                                 if (rdstc > ts_val) {
13243                                         counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13244                                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13245                                                 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13246                                                 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13247                                         }
13248                                 }
13249 #endif
13250                                 m_freem(m);
13251                                 tp = tcp_close(tp);
13252                                 if (tp == NULL) {
13253 #ifdef TCP_ACCOUNTING
13254                                         sched_unpin();
13255 #endif
13256                                         return (1);
13257                                 }
13258                                 /*
13259                                  * We would normally do drop-with-reset which would
13260                                  * send back a reset. We can't since we don't have
13261                                  * all the needed bits. Instead lets arrange for
13262                                  * a call to tcp_output(). That way since we
13263                                  * are in the closed state we will generate a reset.
13264                                  *
13265                                  * Note if tcp_accounting is on we don't unpin since
13266                                  * we do that after the goto label.
13267                                  */
13268                                 goto send_out_a_rst;
13269                         }
13270                         if ((sbused(&so->so_snd) == 0) &&
13271                             (tp->t_state >= TCPS_FIN_WAIT_1) &&
13272                             (tp->t_flags & TF_SENTFIN)) {
13273                                 /*
13274                                  * If we can't receive any more data, then closing user can
13275                                  * proceed. Starting the timer is contrary to the
13276                                  * specification, but if we don't get a FIN we'll hang
13277                                  * forever.
13278                                  *
13279                                  */
13280                                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13281                                         soisdisconnected(so);
13282                                         tcp_timer_activate(tp, TT_2MSL,
13283                                                            (tcp_fast_finwait2_recycle ?
13284                                                             tcp_finwait2_timeout :
13285                                                             TP_MAXIDLE(tp)));
13286                                 }
13287                                 if (ourfinisacked == 0) {
13288                                         /*
13289                                          * We don't change to fin-wait-2 if we have our fin acked
13290                                          * which means we are probably in TCPS_CLOSING.
13291                                          */
13292                                         tcp_state_change(tp, TCPS_FIN_WAIT_2);
13293                                 }
13294                         }
13295                 }
13296                 /* Wake up the socket if we have room to write more */
13297                 if (sbavail(&so->so_snd)) {
13298                         rack->r_wanted_output = 1;
13299                         if (ctf_progress_timeout_check(tp, true)) {
13300                                 rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr,
13301                                                         tp, tick, PROGRESS_DROP, __LINE__);
13302                                 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
13303                                 /*
13304                                  * We cheat here and don't send a RST, we should send one
13305                                  * when the pacer drops the connection.
13306                                  */
13307 #ifdef TCP_ACCOUNTING
13308                                 rdstc = get_cyclecount();
13309                                 if (rdstc > ts_val) {
13310                                         counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13311                                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13312                                                 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13313                                                 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13314                                         }
13315                                 }
13316                                 sched_unpin();
13317 #endif
13318                                 INP_WUNLOCK(rack->rc_inp);
13319                                 m_freem(m);
13320                                 return (1);
13321                         }
13322                 }
13323                 if (ourfinisacked) {
13324                         switch(tp->t_state) {
13325                         case TCPS_CLOSING:
13326 #ifdef TCP_ACCOUNTING
13327                                 rdstc = get_cyclecount();
13328                                 if (rdstc > ts_val) {
13329                                         counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13330                                                         (rdstc - ts_val));
13331                                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13332                                                 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13333                                                 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13334                                         }
13335                                 }
13336                                 sched_unpin();
13337 #endif
13338                                 tcp_twstart(tp);
13339                                 m_freem(m);
13340                                 return (1);
13341                                 break;
13342                         case TCPS_LAST_ACK:
13343 #ifdef TCP_ACCOUNTING
13344                                 rdstc = get_cyclecount();
13345                                 if (rdstc > ts_val) {
13346                                         counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13347                                                         (rdstc - ts_val));
13348                                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13349                                                 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13350                                                 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13351                                         }
13352                                 }
13353                                 sched_unpin();
13354 #endif
13355                                 tp = tcp_close(tp);
13356                                 ctf_do_drop(m, tp);
13357                                 return (1);
13358                                 break;
13359                         case TCPS_FIN_WAIT_1:
13360 #ifdef TCP_ACCOUNTING
13361                                 rdstc = get_cyclecount();
13362                                 if (rdstc > ts_val) {
13363                                         counter_u64_add(tcp_proc_time[ACK_CUMACK] ,
13364                                                         (rdstc - ts_val));
13365                                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13366                                                 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13367                                                 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13368                                         }
13369                                 }
13370 #endif
13371                                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
13372                                         soisdisconnected(so);
13373                                         tcp_timer_activate(tp, TT_2MSL,
13374                                                            (tcp_fast_finwait2_recycle ?
13375                                                             tcp_finwait2_timeout :
13376                                                             TP_MAXIDLE(tp)));
13377                                 }
13378                                 tcp_state_change(tp, TCPS_FIN_WAIT_2);
13379                                 break;
13380                         default:
13381                                 break;
13382                         }
13383                 }
13384                 if (rack->r_fast_output) {
13385                         /*
13386                          * We re doing fast output.. can we expand that?
13387                          */
13388                         rack_gain_for_fastoutput(rack, tp, so, acked_amount);
13389                 }
13390 #ifdef TCP_ACCOUNTING
13391                 rdstc = get_cyclecount();
13392                 if (rdstc > ts_val) {
13393                         counter_u64_add(tcp_proc_time[ACK_CUMACK] , (rdstc - ts_val));
13394                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13395                                 tp->tcp_proc_time[ACK_CUMACK] += (rdstc - ts_val);
13396                                 tp->tcp_proc_time[CYC_HANDLE_ACK] += (rdstc - ts_val);
13397                         }
13398                 }
13399
13400         } else if (win_up_req) {
13401                 rdstc = get_cyclecount();
13402                 if (rdstc > ts_val) {
13403                         counter_u64_add(tcp_proc_time[ACK_RWND] , (rdstc - ts_val));
13404                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13405                                 tp->tcp_proc_time[ACK_RWND] += (rdstc - ts_val);
13406                         }
13407                 }
13408 #endif
13409         }
13410         /* Now is there a next packet, if so we are done */
13411         m_freem(m);
13412         did_out = 0;
13413         if (nxt_pkt) {
13414 #ifdef TCP_ACCOUNTING
13415                 sched_unpin();
13416 #endif
13417                 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 5, nsegs);
13418                 return (0);
13419         }
13420         rack_handle_might_revert(tp, rack);
13421         ctf_calc_rwin(so, tp);
13422         if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
13423         send_out_a_rst:
13424                 (void)tp->t_fb->tfb_tcp_output(tp);
13425                 did_out = 1;
13426         }
13427         rack_free_trim(rack);
13428 #ifdef TCP_ACCOUNTING
13429         sched_unpin();
13430 #endif
13431         rack_timer_audit(tp, rack, &so->so_snd);
13432         rack_log_doseg_done(rack, cts, nxt_pkt, did_out, 6, nsegs);
13433         return (0);
13434 }
13435
13436
13437 static int
13438 rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
13439     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
13440     int32_t nxt_pkt, struct timeval *tv)
13441 {
13442 #ifdef TCP_ACCOUNTING
13443         uint64_t ts_val;
13444 #endif
13445         int32_t thflags, retval, did_out = 0;
13446         int32_t way_out = 0;
13447         uint32_t cts;
13448         uint32_t tiwin;
13449         struct timespec ts;
13450         struct tcpopt to;
13451         struct tcp_rack *rack;
13452         struct rack_sendmap *rsm;
13453         int32_t prev_state = 0;
13454 #ifdef TCP_ACCOUNTING
13455         int ack_val_set = 0xf;
13456 #endif
13457         int nsegs;
13458         uint32_t us_cts;
13459         /*
13460          * tv passed from common code is from either M_TSTMP_LRO or
13461          * tcp_get_usecs() if no LRO m_pkthdr timestamp is present.
13462          */
13463         if (m->m_flags & M_ACKCMP) {
13464                 return (rack_do_compressed_ack_processing(tp, so, m, nxt_pkt, tv));
13465         }
13466         if (m->m_flags & M_ACKCMP) {
13467                 panic("Impossible reach m has ackcmp? m:%p tp:%p", m, tp);
13468         }
13469         nsegs = m->m_pkthdr.lro_nsegs;
13470         counter_u64_add(rack_proc_non_comp_ack, 1);
13471         thflags = th->th_flags;
13472 #ifdef TCP_ACCOUNTING
13473         sched_pin();
13474         if (thflags & TH_ACK)
13475                 ts_val = get_cyclecount();
13476 #endif
13477         cts = tcp_tv_to_usectick(tv);
13478         rack = (struct tcp_rack *)tp->t_fb_ptr;
13479
13480         if ((m->m_flags & M_TSTMP) ||
13481             (m->m_flags & M_TSTMP_LRO)) {
13482                 mbuf_tstmp2timespec(m, &ts);
13483                 rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec;
13484                 rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000;
13485         } else
13486                 rack->r_ctl.act_rcv_time = *tv;
13487         kern_prefetch(rack, &prev_state);
13488         prev_state = 0;
13489         /*
13490          * Unscale the window into a 32-bit value. For the SYN_SENT state
13491          * the scale is zero.
13492          */
13493         tiwin = th->th_win << tp->snd_scale;
13494         /*
13495          * Parse options on any incoming segment.
13496          */
13497         memset(&to, 0, sizeof(to));
13498         tcp_dooptions(&to, (u_char *)(th + 1),
13499             (th->th_off << 2) - sizeof(struct tcphdr),
13500             (thflags & TH_SYN) ? TO_SYN : 0);
13501 #ifdef TCP_ACCOUNTING
13502         if (thflags & TH_ACK) {
13503                 /*
13504                  * We have a tradeoff here. We can either do what we are
13505                  * doing i.e. pinning to this CPU and then doing the accounting
13506                  * <or> we could do a critical enter, setup the rdtsc and cpu
13507                  * as in below, and then validate we are on the same CPU on
13508                  * exit. I have choosen to not do the critical enter since
13509                  * that often will gain you a context switch, and instead lock
13510                  * us (line above this if) to the same CPU with sched_pin(). This
13511                  * means we may be context switched out for a higher priority
13512                  * interupt but we won't be moved to another CPU.
13513                  *
13514                  * If this occurs (which it won't very often since we most likely
13515                  * are running this code in interupt context and only a higher
13516                  * priority will bump us ... clock?) we will falsely add in
13517                  * to the time the interupt processing time plus the ack processing
13518                  * time. This is ok since its a rare event.
13519                  */
13520                 ack_val_set = tcp_do_ack_accounting(tp, th, &to, tiwin,
13521                                                     ctf_fixed_maxseg(tp));
13522         }
13523 #endif
13524         NET_EPOCH_ASSERT();
13525         INP_WLOCK_ASSERT(tp->t_inpcb);
13526         KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
13527             __func__));
13528         KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
13529             __func__));
13530         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
13531                 union tcp_log_stackspecific log;
13532                 struct timeval ltv;
13533 #ifdef NETFLIX_HTTP_LOGGING
13534                 struct http_sendfile_track *http_req;
13535
13536                 if (SEQ_GT(th->th_ack, tp->snd_una)) {
13537                         http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1));
13538                 } else {
13539                         http_req = tcp_http_find_req_for_seq(tp, th->th_ack);
13540                 }
13541 #endif
13542                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
13543                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
13544                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
13545                 if (rack->rack_no_prr == 0)
13546                         log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
13547                 else
13548                         log.u_bbr.flex1 = 0;
13549                 log.u_bbr.use_lt_bw = rack->r_ent_rec_ns;
13550                 log.u_bbr.use_lt_bw <<= 1;
13551                 log.u_bbr.use_lt_bw |= rack->r_might_revert;
13552                 log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
13553                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
13554                 log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
13555                 log.u_bbr.flex3 = m->m_flags;
13556                 log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
13557                 log.u_bbr.lost = thflags;
13558                 log.u_bbr.pacing_gain = 0x1;
13559 #ifdef TCP_ACCOUNTING
13560                 log.u_bbr.cwnd_gain = ack_val_set;
13561 #endif
13562                 log.u_bbr.flex7 = 2;
13563                 if (m->m_flags & M_TSTMP) {
13564                         /* Record the hardware timestamp if present */
13565                         mbuf_tstmp2timespec(m, &ts);
13566                         ltv.tv_sec = ts.tv_sec;
13567                         ltv.tv_usec = ts.tv_nsec / 1000;
13568                         log.u_bbr.lt_epoch = tcp_tv_to_usectick(&ltv);
13569                 } else if (m->m_flags & M_TSTMP_LRO) {
13570                         /* Record the LRO the arrival timestamp */
13571                         mbuf_tstmp2timespec(m, &ts);
13572                         ltv.tv_sec = ts.tv_sec;
13573                         ltv.tv_usec = ts.tv_nsec / 1000;
13574                         log.u_bbr.flex5 = tcp_tv_to_usectick(&ltv);
13575                 }
13576                 log.u_bbr.timeStamp = tcp_get_usecs(&ltv);
13577                 /* Log the rcv time */
13578                 log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp;
13579 #ifdef NETFLIX_HTTP_LOGGING
13580                 log.u_bbr.applimited = tp->t_http_closed;
13581                 log.u_bbr.applimited <<= 8;
13582                 log.u_bbr.applimited |= tp->t_http_open;
13583                 log.u_bbr.applimited <<= 8;
13584                 log.u_bbr.applimited |= tp->t_http_req;
13585                 if (http_req) {
13586                         /* Copy out any client req info */
13587                         /* seconds */
13588                         log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC);
13589                         /* useconds */
13590                         log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC);
13591                         log.u_bbr.rttProp = http_req->timestamp;
13592                         log.u_bbr.cur_del_rate = http_req->start;
13593                         if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) {
13594                                 log.u_bbr.flex8 |= 1;
13595                         } else {
13596                                 log.u_bbr.flex8 |= 2;
13597                                 log.u_bbr.bw_inuse = http_req->end;
13598                         }
13599                         log.u_bbr.flex6 = http_req->start_seq;
13600                         if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) {
13601                                 log.u_bbr.flex8 |= 4;
13602                                 log.u_bbr.epoch = http_req->end_seq;
13603                         }
13604                 }
13605 #endif
13606                 TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
13607                     tlen, &log, true, &ltv);
13608         }
13609         if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
13610                 way_out = 4;
13611                 retval = 0;
13612                 m_freem(m);
13613                 goto done_with_input;
13614         }
13615         /*
13616          * If a segment with the ACK-bit set arrives in the SYN-SENT state
13617          * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
13618          */
13619         if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
13620             (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
13621                 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
13622                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
13623 #ifdef TCP_ACCOUNTING
13624                 sched_unpin();
13625 #endif
13626                 return (1);
13627         }
13628
13629         /*
13630          * Parse options on any incoming segment.
13631          */
13632         tcp_dooptions(&to, (u_char *)(th + 1),
13633             (th->th_off << 2) - sizeof(struct tcphdr),
13634             (thflags & TH_SYN) ? TO_SYN : 0);
13635
13636         /*
13637          * If timestamps were negotiated during SYN/ACK and a
13638          * segment without a timestamp is received, silently drop
13639          * the segment, unless it is a RST segment or missing timestamps are
13640          * tolerated.
13641          * See section 3.2 of RFC 7323.
13642          */
13643         if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS) &&
13644             ((thflags & TH_RST) == 0) && (V_tcp_tolerate_missing_ts == 0)) {
13645                 way_out = 5;
13646                 retval = 0;
13647                 m_freem(m);
13648                 goto done_with_input;
13649         }
13650
13651         /*
13652          * Segment received on connection. Reset idle time and keep-alive
13653          * timer. XXX: This should be done after segment validation to
13654          * ignore broken/spoofed segs.
13655          */
13656         if  (tp->t_idle_reduce &&
13657              (tp->snd_max == tp->snd_una) &&
13658              ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
13659                 counter_u64_add(rack_input_idle_reduces, 1);
13660                 rack_cc_after_idle(rack, tp);
13661         }
13662         tp->t_rcvtime = ticks;
13663 #ifdef STATS
13664         stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
13665 #endif
13666         if (tiwin > rack->r_ctl.rc_high_rwnd)
13667                 rack->r_ctl.rc_high_rwnd = tiwin;
13668         /*
13669          * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
13670          * this to occur after we've validated the segment.
13671          */
13672         if (tp->t_flags2 & TF2_ECN_PERMIT) {
13673                 if (thflags & TH_CWR) {
13674                         tp->t_flags2 &= ~TF2_ECN_SND_ECE;
13675                         tp->t_flags |= TF_ACKNOW;
13676                 }
13677                 switch (iptos & IPTOS_ECN_MASK) {
13678                 case IPTOS_ECN_CE:
13679                         tp->t_flags2 |= TF2_ECN_SND_ECE;
13680                         KMOD_TCPSTAT_INC(tcps_ecn_ce);
13681                         break;
13682                 case IPTOS_ECN_ECT0:
13683                         KMOD_TCPSTAT_INC(tcps_ecn_ect0);
13684                         break;
13685                 case IPTOS_ECN_ECT1:
13686                         KMOD_TCPSTAT_INC(tcps_ecn_ect1);
13687                         break;
13688                 }
13689
13690                 /* Process a packet differently from RFC3168. */
13691                 cc_ecnpkt_handler(tp, th, iptos);
13692
13693                 /* Congestion experienced. */
13694                 if (thflags & TH_ECE) {
13695                         rack_cong_signal(tp, CC_ECN, th->th_ack);
13696                 }
13697         }
13698
13699         /*
13700          * If echoed timestamp is later than the current time, fall back to
13701          * non RFC1323 RTT calculation.  Normalize timestamp if syncookies
13702          * were used when this connection was established.
13703          */
13704         if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
13705                 to.to_tsecr -= tp->ts_offset;
13706                 if (TSTMP_GT(to.to_tsecr, cts))
13707                         to.to_tsecr = 0;
13708         }
13709
13710         /*
13711          * If its the first time in we need to take care of options and
13712          * verify we can do SACK for rack!
13713          */
13714         if (rack->r_state == 0) {
13715                 /* Should be init'd by rack_init() */
13716                 KASSERT(rack->rc_inp != NULL,
13717                     ("%s: rack->rc_inp unexpectedly NULL", __func__));
13718                 if (rack->rc_inp == NULL) {
13719                         rack->rc_inp = tp->t_inpcb;
13720                 }
13721
13722                 /*
13723                  * Process options only when we get SYN/ACK back. The SYN
13724                  * case for incoming connections is handled in tcp_syncache.
13725                  * According to RFC1323 the window field in a SYN (i.e., a
13726                  * <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
13727                  * this is traditional behavior, may need to be cleaned up.
13728                  */
13729                 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
13730                         /* Handle parallel SYN for ECN */
13731                         if (!(thflags & TH_ACK) &&
13732                             ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) &&
13733                             ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) {
13734                                 tp->t_flags2 |= TF2_ECN_PERMIT;
13735                                 tp->t_flags2 |= TF2_ECN_SND_ECE;
13736                                 TCPSTAT_INC(tcps_ecn_shs);
13737                         }
13738                         if ((to.to_flags & TOF_SCALE) &&
13739                             (tp->t_flags & TF_REQ_SCALE)) {
13740                                 tp->t_flags |= TF_RCVD_SCALE;
13741                                 tp->snd_scale = to.to_wscale;
13742                         } else
13743                                 tp->t_flags &= ~TF_REQ_SCALE;
13744                         /*
13745                          * Initial send window.  It will be updated with the
13746                          * next incoming segment to the scaled value.
13747                          */
13748                         tp->snd_wnd = th->th_win;
13749                         rack_validate_fo_sendwin_up(tp, rack);
13750                         if ((to.to_flags & TOF_TS) &&
13751                             (tp->t_flags & TF_REQ_TSTMP)) {
13752                                 tp->t_flags |= TF_RCVD_TSTMP;
13753                                 tp->ts_recent = to.to_tsval;
13754                                 tp->ts_recent_age = cts;
13755                         } else
13756                                 tp->t_flags &= ~TF_REQ_TSTMP;
13757                         if (to.to_flags & TOF_MSS) {
13758                                 tcp_mss(tp, to.to_mss);
13759                         }
13760                         if ((tp->t_flags & TF_SACK_PERMIT) &&
13761                             (to.to_flags & TOF_SACKPERM) == 0)
13762                                 tp->t_flags &= ~TF_SACK_PERMIT;
13763                         if (IS_FASTOPEN(tp->t_flags)) {
13764                                 if (to.to_flags & TOF_FASTOPEN) {
13765                                         uint16_t mss;
13766
13767                                         if (to.to_flags & TOF_MSS)
13768                                                 mss = to.to_mss;
13769                                         else
13770                                                 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
13771                                                         mss = TCP6_MSS;
13772                                                 else
13773                                                         mss = TCP_MSS;
13774                                         tcp_fastopen_update_cache(tp, mss,
13775                                             to.to_tfo_len, to.to_tfo_cookie);
13776                                 } else
13777                                         tcp_fastopen_disable_path(tp);
13778                         }
13779                 }
13780                 /*
13781                  * At this point we are at the initial call. Here we decide
13782                  * if we are doing RACK or not. We do this by seeing if
13783                  * TF_SACK_PERMIT is set and the sack-not-required is clear.
13784                  * The code now does do dup-ack counting so if you don't
13785                  * switch back you won't get rack & TLP, but you will still
13786                  * get this stack.
13787                  */
13788
13789                 if ((rack_sack_not_required == 0) &&
13790                     ((tp->t_flags & TF_SACK_PERMIT) == 0)) {
13791                         tcp_switch_back_to_default(tp);
13792                         (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
13793                             tlen, iptos);
13794 #ifdef TCP_ACCOUNTING
13795                         sched_unpin();
13796 #endif
13797                         return (1);
13798                 }
13799                 tcp_set_hpts(tp->t_inpcb);
13800                 sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
13801         }
13802         if (thflags & TH_FIN)
13803                 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
13804         us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
13805         if ((rack->rc_gp_dyn_mul) &&
13806             (rack->use_fixed_rate == 0) &&
13807             (rack->rc_always_pace)) {
13808                 /* Check in on probertt */
13809                 rack_check_probe_rtt(rack, us_cts);
13810         }
13811         if (rack->forced_ack) {
13812                 uint32_t us_rtt;
13813
13814                 /*
13815                  * A persist or keep-alive was forced out, update our
13816                  * min rtt time. Note we do not worry about lost
13817                  * retransmissions since KEEP-ALIVES and persists
13818                  * are usually way long on times of sending (though
13819                  * if we were really paranoid or worried we could
13820                  * at least use timestamps if available to validate).
13821                  */
13822                 rack->forced_ack = 0;
13823                 us_rtt = us_cts - rack->r_ctl.forced_ack_ts;
13824                 if (us_rtt == 0)
13825                         us_rtt = 1;
13826                 rack_log_rtt_upd(tp, rack, us_rtt, 0, NULL, 3);
13827                 rack_apply_updated_usrtt(rack, us_rtt, us_cts);
13828         }
13829         /*
13830          * This is the one exception case where we set the rack state
13831          * always. All other times (timers etc) we must have a rack-state
13832          * set (so we assure we have done the checks above for SACK).
13833          */
13834         rack->r_ctl.rc_rcvtime = cts;
13835         if (rack->r_state != tp->t_state)
13836                 rack_set_state(tp, rack);
13837         if (SEQ_GT(th->th_ack, tp->snd_una) &&
13838             (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
13839                 kern_prefetch(rsm, &prev_state);
13840         prev_state = rack->r_state;
13841         rack_clear_rate_sample(rack);
13842         retval = (*rack->r_substate) (m, th, so,
13843             tp, &to, drop_hdrlen,
13844             tlen, tiwin, thflags, nxt_pkt, iptos);
13845 #ifdef INVARIANTS
13846         if ((retval == 0) &&
13847             (tp->t_inpcb == NULL)) {
13848                 panic("retval:%d tp:%p t_inpcb:NULL state:%d",
13849                     retval, tp, prev_state);
13850         }
13851 #endif
13852         if (retval == 0) {
13853                 /*
13854                  * If retval is 1 the tcb is unlocked and most likely the tp
13855                  * is gone.
13856                  */
13857                 INP_WLOCK_ASSERT(tp->t_inpcb);
13858                 if ((rack->rc_gp_dyn_mul) &&
13859                     (rack->rc_always_pace) &&
13860                     (rack->use_fixed_rate == 0) &&
13861                     rack->in_probe_rtt &&
13862                     (rack->r_ctl.rc_time_probertt_starts == 0)) {
13863                         /*
13864                          * If we are going for target, lets recheck before
13865                          * we output.
13866                          */
13867                         rack_check_probe_rtt(rack, us_cts);
13868                 }
13869                 if (rack->set_pacing_done_a_iw == 0) {
13870                         /* How much has been acked? */
13871                         if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
13872                                 /* We have enough to set in the pacing segment size */
13873                                 rack->set_pacing_done_a_iw = 1;
13874                                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
13875                         }
13876                 }
13877                 tcp_rack_xmit_timer_commit(rack, tp);
13878 #ifdef TCP_ACCOUNTING
13879                 /*
13880                  * If we set the ack_val_se to what ack processing we are doing
13881                  * we also want to track how many cycles we burned. Note
13882                  * the bits after tcp_output we let be "free". This is because
13883                  * we are also tracking the tcp_output times as well. Note the
13884                  * use of 0xf here since we only have 11 counter (0 - 0xa) and
13885                  * 0xf cannot be returned and is what we initialize it too to
13886                  * indicate we are not doing the tabulations.
13887                  */
13888                 if (ack_val_set != 0xf) {
13889                         uint64_t crtsc;
13890
13891                         crtsc = get_cyclecount();
13892                         counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
13893                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
13894                                 tp->tcp_proc_time[ack_val_set] += (crtsc - ts_val);
13895                         }
13896                 }
13897 #endif
13898                 if (nxt_pkt == 0) {
13899                         if ((rack->r_wanted_output != 0) || (rack->r_fast_output != 0)) {
13900 do_output_now:
13901                                 did_out = 1;
13902                                 (void)tp->t_fb->tfb_tcp_output(tp);
13903                         }
13904                         rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
13905                         rack_free_trim(rack);
13906                 }
13907                 if ((nxt_pkt == 0) &&
13908                     ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
13909                     (SEQ_GT(tp->snd_max, tp->snd_una) ||
13910                      (tp->t_flags & TF_DELACK) ||
13911                      ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
13912                       (tp->t_state <= TCPS_CLOSING)))) {
13913                         /* We could not send (probably in the hpts but stopped the timer earlier)? */
13914                         if ((tp->snd_max == tp->snd_una) &&
13915                             ((tp->t_flags & TF_DELACK) == 0) &&
13916                             (rack->rc_inp->inp_in_hpts) &&
13917                             (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
13918                                 /* keep alive not needed if we are hptsi output yet */
13919                                 ;
13920                         } else {
13921                                 int late = 0;
13922                                 if (rack->rc_inp->inp_in_hpts) {
13923                                         if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
13924                                                 us_cts = tcp_get_usecs(NULL);
13925                                                 if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) {
13926                                                         rack->r_early = 1;
13927                                                         rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts);
13928                                                 } else
13929                                                         late = 1;
13930                                                 rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
13931                                         }
13932                                         tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
13933                                 }
13934                                 if (late && (did_out == 0)) {
13935                                         /*
13936                                          * We are late in the sending
13937                                          * and we did not call the output
13938                                          * (this probably should not happen).
13939                                          */
13940                                         goto do_output_now;
13941                                 }
13942                                 rack_start_hpts_timer(rack, tp, tcp_get_usecs(NULL), 0, 0, 0);
13943                         }
13944                         way_out = 1;
13945                 } else if (nxt_pkt == 0) {
13946                         /* Do we have the correct timer running? */
13947                         rack_timer_audit(tp, rack, &so->so_snd);
13948                         way_out = 2;
13949                 }
13950         done_with_input:
13951                 rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out, max(1, nsegs));
13952                 if (did_out)
13953                         rack->r_wanted_output = 0;
13954 #ifdef INVARIANTS
13955                 if (tp->t_inpcb == NULL) {
13956                         panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
13957                               did_out,
13958                               retval, tp, prev_state);
13959                 }
13960 #endif
13961 #ifdef TCP_ACCOUNTING
13962         } else {
13963                 /*
13964                  * Track the time (see above).
13965                  */
13966                 if (ack_val_set != 0xf) {
13967                         uint64_t crtsc;
13968
13969                         crtsc = get_cyclecount();
13970                         counter_u64_add(tcp_proc_time[ack_val_set] , (crtsc - ts_val));
13971                         /*
13972                          * Note we *DO NOT* increment the per-tcb counters since
13973                          * in the else the TP may be gone!!
13974                          */
13975                 }
13976 #endif
13977         }
13978 #ifdef TCP_ACCOUNTING
13979         sched_unpin();
13980 #endif
13981         return (retval);
13982 }
13983
13984 void
13985 rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
13986     struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
13987 {
13988         struct timeval tv;
13989
13990         /* First lets see if we have old packets */
13991         if (tp->t_in_pkt) {
13992                 if (ctf_do_queued_segments(so, tp, 1)) {
13993                         m_freem(m);
13994                         return;
13995                 }
13996         }
13997         if (m->m_flags & M_TSTMP_LRO) {
13998                 tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
13999                 tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
14000         } else {
14001                 /* Should not be should we kassert instead? */
14002                 tcp_get_usecs(&tv);
14003         }
14004         if (rack_do_segment_nounlock(m, th, so, tp,
14005                                      drop_hdrlen, tlen, iptos, 0, &tv) == 0) {
14006                 INP_WUNLOCK(tp->t_inpcb);
14007         }
14008 }
14009
14010 struct rack_sendmap *
14011 tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
14012 {
14013         struct rack_sendmap *rsm = NULL;
14014         int32_t idx;
14015         uint32_t srtt = 0, thresh = 0, ts_low = 0;
14016
14017         /* Return the next guy to be re-transmitted */
14018         if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
14019                 return (NULL);
14020         }
14021         if (tp->t_flags & TF_SENTFIN) {
14022                 /* retran the end FIN? */
14023                 return (NULL);
14024         }
14025         /* ok lets look at this one */
14026         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
14027         if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
14028                 goto check_it;
14029         }
14030         rsm = rack_find_lowest_rsm(rack);
14031         if (rsm == NULL) {
14032                 return (NULL);
14033         }
14034 check_it:
14035         if (((rack->rc_tp->t_flags & TF_SACK_PERMIT) == 0) &&
14036             (rsm->r_dupack >= DUP_ACK_THRESHOLD)) {
14037                 /*
14038                  * No sack so we automatically do the 3 strikes and
14039                  * retransmit (no rack timer would be started).
14040                  */
14041
14042                 return (rsm);
14043         }
14044         if (rsm->r_flags & RACK_ACKED) {
14045                 return (NULL);
14046         }
14047         if (((rsm->r_flags & RACK_SACK_PASSED) == 0) &&
14048             (rsm->r_dupack < DUP_ACK_THRESHOLD)) {
14049                 /* Its not yet ready */
14050                 return (NULL);
14051         }
14052         srtt = rack_grab_rtt(tp, rack);
14053         idx = rsm->r_rtr_cnt - 1;
14054         ts_low = (uint32_t)rsm->r_tim_lastsent[idx];
14055         thresh = rack_calc_thresh_rack(rack, srtt, tsused);
14056         if ((tsused == ts_low) ||
14057             (TSTMP_LT(tsused, ts_low))) {
14058                 /* No time since sending */
14059                 return (NULL);
14060         }
14061         if ((tsused - ts_low) < thresh) {
14062                 /* It has not been long enough yet */
14063                 return (NULL);
14064         }
14065         if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
14066             ((rsm->r_flags & RACK_SACK_PASSED) &&
14067              (rack->sack_attack_disable == 0))) {
14068                 /*
14069                  * We have passed the dup-ack threshold <or>
14070                  * a SACK has indicated this is missing.
14071                  * Note that if you are a declared attacker
14072                  * it is only the dup-ack threshold that
14073                  * will cause retransmits.
14074                  */
14075                 /* log retransmit reason */
14076                 rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
14077                 rack->r_fast_output = 0;
14078                 return (rsm);
14079         }
14080         return (NULL);
14081 }
14082
14083 static void
14084 rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot,
14085                            uint64_t bw_est, uint64_t bw, uint64_t len_time, int method,
14086                            int line, struct rack_sendmap *rsm)
14087 {
14088         if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
14089                 union tcp_log_stackspecific log;
14090                 struct timeval tv;
14091
14092                 memset(&log, 0, sizeof(log));
14093                 log.u_bbr.flex1 = slot;
14094                 log.u_bbr.flex2 = len;
14095                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs;
14096                 log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs;
14097                 log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss;
14098                 log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca;
14099                 log.u_bbr.use_lt_bw = rack->rc_ack_can_sendout_data;
14100                 log.u_bbr.use_lt_bw <<= 1;
14101                 log.u_bbr.use_lt_bw |= rack->r_late;
14102                 log.u_bbr.use_lt_bw <<= 1;
14103                 log.u_bbr.use_lt_bw |= rack->r_early;
14104                 log.u_bbr.use_lt_bw <<= 1;
14105                 log.u_bbr.use_lt_bw |= rack->app_limited_needs_set;
14106                 log.u_bbr.use_lt_bw <<= 1;
14107                 log.u_bbr.use_lt_bw |= rack->rc_gp_filled;
14108                 log.u_bbr.use_lt_bw <<= 1;
14109                 log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt;
14110                 log.u_bbr.use_lt_bw <<= 1;
14111                 log.u_bbr.use_lt_bw |= rack->in_probe_rtt;
14112                 log.u_bbr.use_lt_bw <<= 1;
14113                 log.u_bbr.use_lt_bw |= rack->gp_ready;
14114                 log.u_bbr.pkt_epoch = line;
14115                 log.u_bbr.epoch = rack->r_ctl.rc_agg_delayed;
14116                 log.u_bbr.lt_epoch = rack->r_ctl.rc_agg_early;
14117                 log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec;
14118                 log.u_bbr.bw_inuse = bw_est;
14119                 log.u_bbr.delRate = bw;
14120                 if (rack->r_ctl.gp_bw == 0)
14121                         log.u_bbr.cur_del_rate = 0;
14122                 else
14123                         log.u_bbr.cur_del_rate = rack_get_bw(rack);
14124                 log.u_bbr.rttProp = len_time;
14125                 log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt;
14126                 log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit;
14127                 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
14128                 if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) {
14129                         /* We are in slow start */
14130                         log.u_bbr.flex7 = 1;
14131                 } else {
14132                         /* we are on congestion avoidance */
14133                         log.u_bbr.flex7 = 0;
14134                 }
14135                 log.u_bbr.flex8 = method;
14136                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14137                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14138                 log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec;
14139                 log.u_bbr.cwnd_gain <<= 1;
14140                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss;
14141                 log.u_bbr.cwnd_gain <<= 1;
14142                 log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca;
14143                 TCP_LOG_EVENTP(rack->rc_tp, NULL,
14144                     &rack->rc_inp->inp_socket->so_rcv,
14145                     &rack->rc_inp->inp_socket->so_snd,
14146                     BBR_LOG_HPTSI_CALC, 0,
14147                     0, &log, false, &tv);
14148         }
14149 }
14150
14151 static uint32_t
14152 rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss)
14153 {
14154         uint32_t new_tso, user_max;
14155
14156         user_max = rack->rc_user_set_max_segs * mss;
14157         if (rack->rc_force_max_seg) {
14158                 return (user_max);
14159         }
14160         if (rack->use_fixed_rate &&
14161             ((rack->r_ctl.crte == NULL) ||
14162              (bw != rack->r_ctl.crte->rate))) {
14163                 /* Use the user mss since we are not exactly matched */
14164                 return (user_max);
14165         }
14166         new_tso = tcp_get_pacing_burst_size(rack->rc_tp, bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL);
14167         if (new_tso > user_max)
14168                 new_tso = user_max;
14169         return (new_tso);
14170 }
14171
14172 static int32_t
14173 pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz, int *capped, uint64_t *rate_wanted, uint8_t non_paced)
14174 {
14175         uint64_t lentim, fill_bw;
14176
14177         /* Lets first see if we are full, if so continue with normal rate */
14178         rack->r_via_fill_cw = 0;
14179         if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use)
14180                 return (slot);
14181         if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd)
14182                 return (slot);
14183         if (rack->r_ctl.rc_last_us_rtt == 0)
14184                 return (slot);
14185         if (rack->rc_pace_fill_if_rttin_range &&
14186             (rack->r_ctl.rc_last_us_rtt >=
14187              (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) {
14188                 /* The rtt is huge, N * smallest, lets not fill */
14189                 return (slot);
14190         }
14191         /*
14192          * first lets calculate the b/w based on the last us-rtt
14193          * and the sndwnd.
14194          */
14195         fill_bw = rack->r_ctl.cwnd_to_use;
14196         /* Take the rwnd if its smaller */
14197         if (fill_bw > rack->rc_tp->snd_wnd)
14198                 fill_bw = rack->rc_tp->snd_wnd;
14199         if (rack->r_fill_less_agg) {
14200                 /*
14201                  * Now take away the inflight (this will reduce our
14202                  * aggressiveness and yeah, if we get that much out in 1RTT
14203                  * we will have had acks come back and still be behind).
14204                  */
14205                 fill_bw -= ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14206         }
14207         /* Now lets make it into a b/w */
14208         fill_bw *= (uint64_t)HPTS_USEC_IN_SEC;
14209         fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt;
14210         /* We are below the min b/w */
14211         if (non_paced)
14212                 *rate_wanted = fill_bw;
14213         if ((fill_bw < RACK_MIN_BW) || (fill_bw < *rate_wanted))
14214                 return (slot);
14215         if (rack->r_ctl.bw_rate_cap && (fill_bw > rack->r_ctl.bw_rate_cap))
14216                 fill_bw = rack->r_ctl.bw_rate_cap;
14217         rack->r_via_fill_cw = 1;
14218         if (rack->r_rack_hw_rate_caps &&
14219             (rack->r_ctl.crte != NULL)) {
14220                 uint64_t high_rate;
14221
14222                 high_rate = tcp_hw_highest_rate(rack->r_ctl.crte);
14223                 if (fill_bw > high_rate) {
14224                         /* We are capping bw at the highest rate table entry */
14225                         if (*rate_wanted > high_rate) {
14226                                 /* The original rate was also capped */
14227                                 rack->r_via_fill_cw = 0;
14228                         }
14229                         rack_log_hdwr_pacing(rack,
14230                                              fill_bw, high_rate, __LINE__,
14231                                              0, 3);
14232                         fill_bw = high_rate;
14233                         if (capped)
14234                                 *capped = 1;
14235                 }
14236         } else if ((rack->r_ctl.crte == NULL) &&
14237                    (rack->rack_hdrw_pacing == 0) &&
14238                    (rack->rack_hdw_pace_ena) &&
14239                    rack->r_rack_hw_rate_caps &&
14240                    (rack->rack_attempt_hdwr_pace == 0) &&
14241                    (rack->rc_inp->inp_route.ro_nh != NULL) &&
14242                    (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14243                 /*
14244                  * Ok we may have a first attempt that is greater than our top rate
14245                  * lets check.
14246                  */
14247                 uint64_t high_rate;
14248
14249                 high_rate = tcp_hw_highest_rate_ifp(rack->rc_inp->inp_route.ro_nh->nh_ifp, rack->rc_inp);
14250                 if (high_rate) {
14251                         if (fill_bw > high_rate) {
14252                                 fill_bw = high_rate;
14253                                 if (capped)
14254                                         *capped = 1;
14255                         }
14256                 }
14257         }
14258         /*
14259          * Ok fill_bw holds our mythical b/w to fill the cwnd
14260          * in a rtt, what does that time wise equate too?
14261          */
14262         lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC;
14263         lentim /= fill_bw;
14264         *rate_wanted = fill_bw;
14265         if (non_paced || (lentim < slot)) {
14266                 rack_log_pacing_delay_calc(rack, len, slot, fill_bw,
14267                                            0, lentim, 12, __LINE__, NULL);
14268                 return ((int32_t)lentim);
14269         } else
14270                 return (slot);
14271 }
14272
14273 static int32_t
14274 rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz)
14275 {
14276         struct rack_sendmap *lrsm;
14277         int32_t slot = 0;
14278         int can_start_hw_pacing = 1;
14279         int err;
14280
14281         if (rack->rc_always_pace == 0) {
14282                 /*
14283                  * We use the most optimistic possible cwnd/srtt for
14284                  * sending calculations. This will make our
14285                  * calculation anticipate getting more through
14286                  * quicker then possible. But thats ok we don't want
14287                  * the peer to have a gap in data sending.
14288                  */
14289                 uint32_t srtt, cwnd, tr_perms = 0;
14290                 int32_t reduce = 0;
14291
14292         old_method:
14293                 /*
14294                  * We keep no precise pacing with the old method
14295                  * instead we use the pacer to mitigate bursts.
14296                  */
14297                 if (rack->r_ctl.rc_rack_min_rtt)
14298                         srtt = rack->r_ctl.rc_rack_min_rtt;
14299                 else
14300                         srtt = max(tp->t_srtt, 1);
14301                 if (rack->r_ctl.rc_rack_largest_cwnd)
14302                         cwnd = rack->r_ctl.rc_rack_largest_cwnd;
14303                 else
14304                         cwnd = rack->r_ctl.cwnd_to_use;
14305                 /* Inflate cwnd by 1000 so srtt of usecs is in ms */
14306                 tr_perms = (cwnd * 1000) / srtt;
14307                 if (tr_perms == 0) {
14308                         tr_perms = ctf_fixed_maxseg(tp);
14309                 }
14310                 /*
14311                  * Calculate how long this will take to drain, if
14312                  * the calculation comes out to zero, thats ok we
14313                  * will use send_a_lot to possibly spin around for
14314                  * more increasing tot_len_this_send to the point
14315                  * that its going to require a pace, or we hit the
14316                  * cwnd. Which in that case we are just waiting for
14317                  * a ACK.
14318                  */
14319                 slot = len / tr_perms;
14320                 /* Now do we reduce the time so we don't run dry? */
14321                 if (slot && rack_slot_reduction) {
14322                         reduce = (slot / rack_slot_reduction);
14323                         if (reduce < slot) {
14324                                 slot -= reduce;
14325                         } else
14326                                 slot = 0;
14327                 }
14328                 slot *= HPTS_USEC_IN_MSEC;
14329                 if (rsm == NULL) {
14330                         /*
14331                          * We always consider ourselves app limited with old style
14332                          * that are not retransmits. This could be the initial
14333                          * measurement, but thats ok its all setup and specially
14334                          * handled. If another send leaks out, then that too will
14335                          * be mark app-limited.
14336                          */
14337                         lrsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
14338                         if (lrsm && ((lrsm->r_flags & RACK_APP_LIMITED) == 0)) {
14339                                 rack->r_ctl.rc_first_appl = lrsm;
14340                                 lrsm->r_flags |= RACK_APP_LIMITED;
14341                                 rack->r_ctl.rc_app_limited_cnt++;
14342                         }
14343                 }
14344                 if (rack->rc_pace_to_cwnd) {
14345                         uint64_t rate_wanted = 0;
14346
14347                         slot = pace_to_fill_cwnd(rack, slot, len, segsiz, NULL, &rate_wanted, 1);
14348                         rack->rc_ack_can_sendout_data = 1;
14349                         rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, 0, 0, 14, __LINE__, NULL);
14350                 } else
14351                         rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL);
14352         } else {
14353                 uint64_t bw_est, res, lentim, rate_wanted;
14354                 uint32_t orig_val, srtt, segs, oh;
14355                 int capped = 0;
14356                 int prev_fill;
14357
14358                 if ((rack->r_rr_config == 1) && rsm) {
14359                         return (rack->r_ctl.rc_min_to);
14360                 }
14361                 if (rack->use_fixed_rate) {
14362                         rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack);
14363                 } else if ((rack->r_ctl.init_rate == 0) &&
14364 #ifdef NETFLIX_PEAKRATE
14365                            (rack->rc_tp->t_maxpeakrate == 0) &&
14366 #endif
14367                            (rack->r_ctl.gp_bw == 0)) {
14368                         /* no way to yet do an estimate */
14369                         bw_est = rate_wanted = 0;
14370                 } else {
14371                         bw_est = rack_get_bw(rack);
14372                         rate_wanted = rack_get_output_bw(rack, bw_est, rsm, &capped);
14373                 }
14374                 if ((bw_est == 0) || (rate_wanted == 0) ||
14375                     ((rack->gp_ready == 0) && (rack->use_fixed_rate == 0))) {
14376                         /*
14377                          * No way yet to make a b/w estimate or
14378                          * our raise is set incorrectly.
14379                          */
14380                         goto old_method;
14381                 }
14382                 /* We need to account for all the overheads */
14383                 segs = (len + segsiz - 1) / segsiz;
14384                 /*
14385                  * We need the diff between 1514 bytes (e-mtu with e-hdr)
14386                  * and how much data we put in each packet. Yes this
14387                  * means we may be off if we are larger than 1500 bytes
14388                  * or smaller. But this just makes us more conservative.
14389                  */
14390                 if (rack_hw_rate_min &&
14391                     (bw_est < rack_hw_rate_min))
14392                         can_start_hw_pacing = 0;
14393                 if (ETHERNET_SEGMENT_SIZE > segsiz)
14394                         oh = ETHERNET_SEGMENT_SIZE - segsiz;
14395                 else
14396                         oh = 0;
14397                 segs *= oh;
14398                 lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC;
14399                 res = lentim / rate_wanted;
14400                 slot = (uint32_t)res;
14401                 orig_val = rack->r_ctl.rc_pace_max_segs;
14402                 if (rack->r_ctl.crte == NULL) {
14403                         /*
14404                          * Only do this if we are not hardware pacing
14405                          * since if we are doing hw-pacing below we will
14406                          * set make a call after setting up or changing
14407                          * the rate.
14408                          */
14409                         rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
14410                 } else if (rack->rc_inp->inp_snd_tag == NULL) {
14411                         /*
14412                          * We lost our rate somehow, this can happen
14413                          * if the interface changed underneath us.
14414                          */
14415                         tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14416                         rack->r_ctl.crte = NULL;
14417                         /* Lets re-allow attempting to setup pacing */
14418                         rack->rack_hdrw_pacing = 0;
14419                         rack->rack_attempt_hdwr_pace = 0;
14420                         rack_log_hdwr_pacing(rack,
14421                                              rate_wanted, bw_est, __LINE__,
14422                                              0, 6);
14423                 }
14424                 /* Did we change the TSO size, if so log it */
14425                 if (rack->r_ctl.rc_pace_max_segs != orig_val)
14426                         rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL);
14427                 prev_fill = rack->r_via_fill_cw;
14428                 if ((rack->rc_pace_to_cwnd) &&
14429                     (capped == 0) &&
14430                     (rack->use_fixed_rate == 0) &&
14431                     (rack->in_probe_rtt == 0) &&
14432                     (IN_FASTRECOVERY(rack->rc_tp->t_flags) == 0)) {
14433                         /*
14434                          * We want to pace at our rate *or* faster to
14435                          * fill the cwnd to the max if its not full.
14436                          */
14437                         slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz, &capped, &rate_wanted, 0);
14438                 }
14439                 if ((rack->rc_inp->inp_route.ro_nh != NULL) &&
14440                     (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) {
14441                         if ((rack->rack_hdw_pace_ena) &&
14442                             (can_start_hw_pacing > 0) &&
14443                             (rack->rack_hdrw_pacing == 0) &&
14444                             (rack->rack_attempt_hdwr_pace == 0)) {
14445                                 /*
14446                                  * Lets attempt to turn on hardware pacing
14447                                  * if we can.
14448                                  */
14449                                 rack->rack_attempt_hdwr_pace = 1;
14450                                 rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp,
14451                                                                        rack->rc_inp->inp_route.ro_nh->nh_ifp,
14452                                                                        rate_wanted,
14453                                                                        RS_PACING_GEQ,
14454                                                                        &err, &rack->r_ctl.crte_prev_rate);
14455                                 if (rack->r_ctl.crte) {
14456                                         rack->rack_hdrw_pacing = 1;
14457                                         rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted, segsiz,
14458                                                                                                  0, rack->r_ctl.crte,
14459                                                                                                  NULL);
14460                                         rack_log_hdwr_pacing(rack,
14461                                                              rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14462                                                              err, 0);
14463                                         rack->r_ctl.last_hw_bw_req = rate_wanted;
14464                                 } else {
14465                                         counter_u64_add(rack_hw_pace_init_fail, 1);
14466                                 }
14467                         } else if (rack->rack_hdrw_pacing &&
14468                                    (rack->r_ctl.last_hw_bw_req != rate_wanted)) {
14469                                 /* Do we need to adjust our rate? */
14470                                 const struct tcp_hwrate_limit_table *nrte;
14471
14472                                 if (rack->r_up_only &&
14473                                     (rate_wanted < rack->r_ctl.crte->rate)) {
14474                                         /**
14475                                          * We have four possible states here
14476                                          * having to do with the previous time
14477                                          * and this time.
14478                                          *   previous  |  this-time
14479                                          * A)     0      |     0   -- fill_cw not in the picture
14480                                          * B)     1      |     0   -- we were doing a fill-cw but now are not
14481                                          * C)     1      |     1   -- all rates from fill_cw
14482                                          * D)     0      |     1   -- we were doing non-fill and now we are filling
14483                                          *
14484                                          * For case A, C and D we don't allow a drop. But for
14485                                          * case B where we now our on our steady rate we do
14486                                          * allow a drop.
14487                                          *
14488                                          */
14489                                         if (!((prev_fill == 1) && (rack->r_via_fill_cw == 0)))
14490                                                 goto done_w_hdwr;
14491                                 }
14492                                 if ((rate_wanted > rack->r_ctl.crte->rate) ||
14493                                     (rate_wanted <= rack->r_ctl.crte_prev_rate)) {
14494                                         if (rack_hw_rate_to_low &&
14495                                             (bw_est < rack_hw_rate_to_low)) {
14496                                                 /*
14497                                                  * The pacing rate is too low for hardware, but
14498                                                  * do allow hardware pacing to be restarted.
14499                                                  */
14500                                                 rack_log_hdwr_pacing(rack,
14501                                                              bw_est, rack->r_ctl.crte->rate, __LINE__,
14502                                                              0, 5);
14503                                                 tcp_rel_pacing_rate(rack->r_ctl.crte, rack->rc_tp);
14504                                                 rack->r_ctl.crte = NULL;
14505                                                 rack->rack_attempt_hdwr_pace = 0;
14506                                                 rack->rack_hdrw_pacing = 0;
14507                                                 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14508                                                 goto done_w_hdwr;
14509                                         }
14510                                         nrte = tcp_chg_pacing_rate(rack->r_ctl.crte,
14511                                                                    rack->rc_tp,
14512                                                                    rack->rc_inp->inp_route.ro_nh->nh_ifp,
14513                                                                    rate_wanted,
14514                                                                    RS_PACING_GEQ,
14515                                                                    &err, &rack->r_ctl.crte_prev_rate);
14516                                         if (nrte == NULL) {
14517                                                 /* Lost the rate */
14518                                                 rack->rack_hdrw_pacing = 0;
14519                                                 rack->r_ctl.crte = NULL;
14520                                                 rack_log_hdwr_pacing(rack,
14521                                                                      rate_wanted, 0, __LINE__,
14522                                                                      err, 1);
14523                                                 rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14524                                                 counter_u64_add(rack_hw_pace_lost, 1);
14525                                         } else if (nrte != rack->r_ctl.crte) {
14526                                                 rack->r_ctl.crte = nrte;
14527                                                 rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(tp, rate_wanted,
14528                                                                                                          segsiz, 0,
14529                                                                                                          rack->r_ctl.crte,
14530                                                                                                          NULL);
14531                                                 rack_log_hdwr_pacing(rack,
14532                                                                      rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14533                                                                      err, 2);
14534                                                 rack->r_ctl.last_hw_bw_req = rate_wanted;
14535                                         }
14536                                 } else {
14537                                         /* We just need to adjust the segment size */
14538                                         rack_set_pace_segments(rack->rc_tp, rack, __LINE__, &rate_wanted);
14539                                         rack_log_hdwr_pacing(rack,
14540                                                              rate_wanted, rack->r_ctl.crte->rate, __LINE__,
14541                                                              0, 4);
14542                                         rack->r_ctl.last_hw_bw_req = rate_wanted;
14543                                 }
14544                         }
14545                 }
14546                 if ((rack->r_ctl.crte != NULL) &&
14547                     (rack->r_ctl.crte->rate == rate_wanted)) {
14548                         /*
14549                          * We need to add a extra if the rates
14550                          * are exactly matched. The idea is
14551                          * we want the software to make sure the
14552                          * queue is empty before adding more, this
14553                          * gives us N MSS extra pace times where
14554                          * N is our sysctl
14555                          */
14556                         slot += (rack->r_ctl.crte->time_between * rack_hw_pace_extra_slots);
14557                 }
14558 done_w_hdwr:
14559                 if (rack_limit_time_with_srtt &&
14560                     (rack->use_fixed_rate == 0) &&
14561 #ifdef NETFLIX_PEAKRATE
14562                     (rack->rc_tp->t_maxpeakrate == 0) &&
14563 #endif
14564                     (rack->rack_hdrw_pacing == 0)) {
14565                         /*
14566                          * Sanity check, we do not allow the pacing delay
14567                          * to be longer than the SRTT of the path. If it is
14568                          * a slow path, then adding a packet should increase
14569                          * the RTT and compensate for this i.e. the srtt will
14570                          * be greater so the allowed pacing time will be greater.
14571                          *
14572                          * Note this restriction is not for where a peak rate
14573                          * is set, we are doing fixed pacing or hardware pacing.
14574                          */
14575                         if (rack->rc_tp->t_srtt)
14576                                 srtt = rack->rc_tp->t_srtt;
14577                         else
14578                                 srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC;    /* its in ms convert */
14579                         if (srtt < slot) {
14580                                 rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL);
14581                                 slot = srtt;
14582                         }
14583                 }
14584                 rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm);
14585         }
14586         if (rack->r_ctl.crte && (rack->r_ctl.crte->rs_num_enobufs > 0)) {
14587                 /*
14588                  * If this rate is seeing enobufs when it
14589                  * goes to send then either the nic is out
14590                  * of gas or we are mis-estimating the time
14591                  * somehow and not letting the queue empty
14592                  * completely. Lets add to the pacing time.
14593                  */
14594                 int hw_boost_delay;
14595
14596                 hw_boost_delay = rack->r_ctl.crte->time_between * rack_enobuf_hw_boost_mult;
14597                 if (hw_boost_delay > rack_enobuf_hw_max)
14598                         hw_boost_delay = rack_enobuf_hw_max;
14599                 else if (hw_boost_delay < rack_enobuf_hw_min)
14600                         hw_boost_delay = rack_enobuf_hw_min;
14601                 slot += hw_boost_delay;
14602         }
14603         if (slot)
14604                 counter_u64_add(rack_calc_nonzero, 1);
14605         else
14606                 counter_u64_add(rack_calc_zero, 1);
14607         return (slot);
14608 }
14609
14610 static void
14611 rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack,
14612     tcp_seq startseq, uint32_t sb_offset)
14613 {
14614         struct rack_sendmap *my_rsm = NULL;
14615         struct rack_sendmap fe;
14616
14617         if (tp->t_state < TCPS_ESTABLISHED) {
14618                 /*
14619                  * We don't start any measurements if we are
14620                  * not at least established.
14621                  */
14622                 return;
14623         }
14624         tp->t_flags |= TF_GPUTINPROG;
14625         rack->r_ctl.rc_gp_lowrtt = 0xffffffff;
14626         rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd;
14627         tp->gput_seq = startseq;
14628         rack->app_limited_needs_set = 0;
14629         if (rack->in_probe_rtt)
14630                 rack->measure_saw_probe_rtt = 1;
14631         else if ((rack->measure_saw_probe_rtt) &&
14632                  (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit)))
14633                 rack->measure_saw_probe_rtt = 0;
14634         if (rack->rc_gp_filled)
14635                 tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time);
14636         else {
14637                 /* Special case initial measurement */
14638                 struct timeval tv;
14639
14640                 tp->gput_ts = tcp_get_usecs(&tv);
14641                 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
14642         }
14643         /*
14644          * We take a guess out into the future,
14645          * if we have no measurement and no
14646          * initial rate, we measure the first
14647          * initial-windows worth of data to
14648          * speed up getting some GP measurement and
14649          * thus start pacing.
14650          */
14651         if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) {
14652                 rack->app_limited_needs_set = 1;
14653                 tp->gput_ack = startseq + max(rc_init_window(rack),
14654                                               (MIN_GP_WIN * ctf_fixed_maxseg(tp)));
14655                 rack_log_pacing_delay_calc(rack,
14656                                            tp->gput_seq,
14657                                            tp->gput_ack,
14658                                            0,
14659                                            tp->gput_ts,
14660                                            rack->r_ctl.rc_app_limited_cnt,
14661                                            9,
14662                                            __LINE__, NULL);
14663                 return;
14664         }
14665         if (sb_offset) {
14666                 /*
14667                  * We are out somewhere in the sb
14668                  * can we use the already outstanding data?
14669                  */
14670
14671                 if (rack->r_ctl.rc_app_limited_cnt == 0) {
14672                         /*
14673                          * Yes first one is good and in this case
14674                          * the tp->gput_ts is correctly set based on
14675                          * the last ack that arrived (no need to
14676                          * set things up when an ack comes in).
14677                          */
14678                         my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
14679                         if ((my_rsm == NULL) ||
14680                             (my_rsm->r_rtr_cnt != 1)) {
14681                                 /* retransmission? */
14682                                 goto use_latest;
14683                         }
14684                 } else {
14685                         if (rack->r_ctl.rc_first_appl == NULL) {
14686                                 /*
14687                                  * If rc_first_appl is NULL
14688                                  * then the cnt should be 0.
14689                                  * This is probably an error, maybe
14690                                  * a KASSERT would be approprate.
14691                                  */
14692                                 goto use_latest;
14693                         }
14694                         /*
14695                          * If we have a marker pointer to the last one that is
14696                          * app limited we can use that, but we need to set
14697                          * things up so that when it gets ack'ed we record
14698                          * the ack time (if its not already acked).
14699                          */
14700                         rack->app_limited_needs_set = 1;
14701                         /*
14702                          * We want to get to the rsm that is either
14703                          * next with space i.e. over 1 MSS or the one
14704                          * after that (after the app-limited).
14705                          */
14706                         my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
14707                                          rack->r_ctl.rc_first_appl);
14708                         if (my_rsm) {
14709                                 if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp))
14710                                         /* Have to use the next one */
14711                                         my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree,
14712                                                          my_rsm);
14713                                 else {
14714                                         /* Use after the first MSS of it is acked */
14715                                         tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp);
14716                                         goto start_set;
14717                                 }
14718                         }
14719                         if ((my_rsm == NULL) ||
14720                             (my_rsm->r_rtr_cnt != 1)) {
14721                                 /*
14722                                  * Either its a retransmit or
14723                                  * the last is the app-limited one.
14724                                  */
14725                                 goto use_latest;
14726                         }
14727                 }
14728                 tp->gput_seq = my_rsm->r_start;
14729 start_set:
14730                 if (my_rsm->r_flags & RACK_ACKED) {
14731                         /*
14732                          * This one has been acked use the arrival ack time
14733                          */
14734                         tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
14735                         rack->app_limited_needs_set = 0;
14736                 }
14737                 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
14738                 tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack);
14739                 rack_log_pacing_delay_calc(rack,
14740                                            tp->gput_seq,
14741                                            tp->gput_ack,
14742                                            (uint64_t)my_rsm,
14743                                            tp->gput_ts,
14744                                            rack->r_ctl.rc_app_limited_cnt,
14745                                            9,
14746                                            __LINE__, NULL);
14747                 return;
14748         }
14749
14750 use_latest:
14751         /*
14752          * We don't know how long we may have been
14753          * idle or if this is the first-send. Lets
14754          * setup the flag so we will trim off
14755          * the first ack'd data so we get a true
14756          * measurement.
14757          */
14758         rack->app_limited_needs_set = 1;
14759         tp->gput_ack = startseq + rack_get_measure_window(tp, rack);
14760         /* Find this guy so we can pull the send time */
14761         fe.r_start = startseq;
14762         my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
14763         if (my_rsm) {
14764                 rack->r_ctl.rc_gp_output_ts = my_rsm->r_tim_lastsent[(my_rsm->r_rtr_cnt-1)];
14765                 if (my_rsm->r_flags & RACK_ACKED) {
14766                         /*
14767                          * Unlikely since its probably what was
14768                          * just transmitted (but I am paranoid).
14769                          */
14770                         tp->gput_ts = (uint32_t)my_rsm->r_ack_arrival;
14771                         rack->app_limited_needs_set = 0;
14772                 }
14773                 if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) {
14774                         /* This also is unlikely */
14775                         tp->gput_seq = my_rsm->r_start;
14776                 }
14777         } else {
14778                 /*
14779                  * TSNH unless we have some send-map limit,
14780                  * and even at that it should not be hitting
14781                  * that limit (we should have stopped sending).
14782                  */
14783                 struct timeval tv;
14784
14785                 microuptime(&tv);
14786                 rack->r_ctl.rc_gp_output_ts = rack_to_usec_ts(&tv);
14787         }
14788         rack_log_pacing_delay_calc(rack,
14789                                    tp->gput_seq,
14790                                    tp->gput_ack,
14791                                    (uint64_t)my_rsm,
14792                                    tp->gput_ts,
14793                                    rack->r_ctl.rc_app_limited_cnt,
14794                                    9, __LINE__, NULL);
14795 }
14796
14797 static inline uint32_t
14798 rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack,  uint32_t cwnd_to_use,
14799     uint32_t avail, int32_t sb_offset)
14800 {
14801         uint32_t len;
14802         uint32_t sendwin;
14803
14804         if (tp->snd_wnd > cwnd_to_use)
14805                 sendwin = cwnd_to_use;
14806         else
14807                 sendwin = tp->snd_wnd;
14808         if (ctf_outstanding(tp) >= tp->snd_wnd) {
14809                 /* We never want to go over our peers rcv-window */
14810                 len = 0;
14811         } else {
14812                 uint32_t flight;
14813
14814                 flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked);
14815                 if (flight >= sendwin) {
14816                         /*
14817                          * We have in flight what we are allowed by cwnd (if
14818                          * it was rwnd blocking it would have hit above out
14819                          * >= tp->snd_wnd).
14820                          */
14821                         return (0);
14822                 }
14823                 len = sendwin - flight;
14824                 if ((len + ctf_outstanding(tp)) > tp->snd_wnd) {
14825                         /* We would send too much (beyond the rwnd) */
14826                         len = tp->snd_wnd - ctf_outstanding(tp);
14827                 }
14828                 if ((len + sb_offset) > avail) {
14829                         /*
14830                          * We don't have that much in the SB, how much is
14831                          * there?
14832                          */
14833                         len = avail - sb_offset;
14834                 }
14835         }
14836         return (len);
14837 }
14838
14839 static void
14840 rack_log_fsb(struct tcp_rack *rack, struct tcpcb *tp, struct socket *so, uint32_t flags,
14841              unsigned ipoptlen, int32_t orig_len, int32_t len, int error,
14842              int rsm_is_null, int optlen, int line, uint16_t mode)
14843 {
14844         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
14845                 union tcp_log_stackspecific log;
14846                 struct timeval tv;
14847
14848                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
14849                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
14850                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
14851                 log.u_bbr.flex1 = error;
14852                 log.u_bbr.flex2 = flags;
14853                 log.u_bbr.flex3 = rsm_is_null;
14854                 log.u_bbr.flex4 = ipoptlen;
14855                 log.u_bbr.flex5 = tp->rcv_numsacks;
14856                 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
14857                 log.u_bbr.flex7 = optlen;
14858                 log.u_bbr.flex8 = rack->r_fsb_inited;
14859                 log.u_bbr.applimited = rack->r_fast_output;
14860                 log.u_bbr.bw_inuse = rack_get_bw(rack);
14861                 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
14862                 log.u_bbr.cwnd_gain = mode;
14863                 log.u_bbr.pkts_out = orig_len;
14864                 log.u_bbr.lt_epoch = len;
14865                 log.u_bbr.delivered = line;
14866                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
14867                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
14868                 tcp_log_event_(tp, NULL, &so->so_rcv, &so->so_snd, TCP_LOG_FSB, 0,
14869                                len, &log, false, NULL, NULL, 0, &tv);
14870         }
14871 }
14872
14873
14874 static struct mbuf *
14875 rack_fo_base_copym(struct mbuf *the_m, uint32_t the_off, int32_t *plen,
14876                    struct rack_fast_send_blk *fsb,
14877                    int32_t seglimit, int32_t segsize)
14878 {
14879 #ifdef KERN_TLS
14880         struct ktls_session *tls, *ntls;
14881         struct mbuf *start;
14882 #endif
14883         struct mbuf *m, *n, **np, *smb;
14884         struct mbuf *top;
14885         int32_t off, soff;
14886         int32_t len = *plen;
14887         int32_t fragsize;
14888         int32_t len_cp = 0;
14889         uint32_t mlen, frags;
14890
14891         soff = off = the_off;
14892         smb = m = the_m;
14893         np = &top;
14894         top = NULL;
14895 #ifdef KERN_TLS
14896         if (hw_tls && (m->m_flags & M_EXTPG))
14897                 tls = m->m_epg_tls;
14898         else
14899                 tls = NULL;
14900         start = m;
14901 #endif
14902         while (len > 0) {
14903                 if (m == NULL) {
14904                         *plen = len_cp;
14905                         break;
14906                 }
14907 #ifdef KERN_TLS
14908                 if (hw_tls) {
14909                         if (m->m_flags & M_EXTPG)
14910                                 ntls = m->m_epg_tls;
14911                         else
14912                                 ntls = NULL;
14913
14914                         /*
14915                          * Avoid mixing TLS records with handshake
14916                          * data or TLS records from different
14917                          * sessions.
14918                          */
14919                         if (tls != ntls) {
14920                                 MPASS(m != start);
14921                                 *plen = len_cp;
14922                                 break;
14923                         }
14924                 }
14925 #endif
14926                 mlen = min(len, m->m_len - off);
14927                 if (seglimit) {
14928                         /*
14929                          * For M_EXTPG mbufs, add 3 segments
14930                          * + 1 in case we are crossing page boundaries
14931                          * + 2 in case the TLS hdr/trailer are used
14932                          * It is cheaper to just add the segments
14933                          * than it is to take the cache miss to look
14934                          * at the mbuf ext_pgs state in detail.
14935                          */
14936                         if (m->m_flags & M_EXTPG) {
14937                                 fragsize = min(segsize, PAGE_SIZE);
14938                                 frags = 3;
14939                         } else {
14940                                 fragsize = segsize;
14941                                 frags = 0;
14942                         }
14943
14944                         /* Break if we really can't fit anymore. */
14945                         if ((frags + 1) >= seglimit) {
14946                                 *plen = len_cp;
14947                                 break;
14948                         }
14949
14950                         /*
14951                          * Reduce size if you can't copy the whole
14952                          * mbuf. If we can't copy the whole mbuf, also
14953                          * adjust len so the loop will end after this
14954                          * mbuf.
14955                          */
14956                         if ((frags + howmany(mlen, fragsize)) >= seglimit) {
14957                                 mlen = (seglimit - frags - 1) * fragsize;
14958                                 len = mlen;
14959                                 *plen = len_cp + len;
14960                         }
14961                         frags += howmany(mlen, fragsize);
14962                         if (frags == 0)
14963                                 frags++;
14964                         seglimit -= frags;
14965                         KASSERT(seglimit > 0,
14966                             ("%s: seglimit went too low", __func__));
14967                 }
14968                 n = m_get(M_NOWAIT, m->m_type);
14969                 *np = n;
14970                 if (n == NULL)
14971                         goto nospace;
14972                 n->m_len = mlen;
14973                 soff += mlen;
14974                 len_cp += n->m_len;
14975                 if (m->m_flags & (M_EXT|M_EXTPG)) {
14976                         n->m_data = m->m_data + off;
14977                         mb_dupcl(n, m);
14978                 } else {
14979                         bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
14980                             (u_int)n->m_len);
14981                 }
14982                 len -= n->m_len;
14983                 off = 0;
14984                 m = m->m_next;
14985                 np = &n->m_next;
14986                 if (len || (soff == smb->m_len)) {
14987                         /*
14988                          * We have more so we move forward  or
14989                          * we have consumed the entire mbuf and
14990                          * len has fell to 0.
14991                          */
14992                         soff = 0;
14993                         smb = m;
14994                 }
14995
14996         }
14997         if (fsb != NULL) {
14998                 fsb->m = smb;
14999                 fsb->off = soff;
15000                 if (smb) {
15001                         /*
15002                          * Save off the size of the mbuf. We do
15003                          * this so that we can recognize when it
15004                          * has been trimmed by sbcut() as acks
15005                          * come in.
15006                          */
15007                         fsb->o_m_len = smb->m_len;
15008                 } else {
15009                         /*
15010                          * This is the case where the next mbuf went to NULL. This
15011                          * means with this copy we have sent everything in the sb.
15012                          * In theory we could clear the fast_output flag, but lets
15013                          * not since its possible that we could get more added
15014                          * and acks that call the extend function which would let
15015                          * us send more.
15016                          */
15017                         fsb->o_m_len = 0;
15018                 }
15019         }
15020         return (top);
15021 nospace:
15022         if (top)
15023                 m_freem(top);
15024         return (NULL);
15025
15026 }
15027
15028 /*
15029  * This is a copy of m_copym(), taking the TSO segment size/limit
15030  * constraints into account, and advancing the sndptr as it goes.
15031  */
15032 static struct mbuf *
15033 rack_fo_m_copym(struct tcp_rack *rack, int32_t *plen,
15034                 int32_t seglimit, int32_t segsize, struct mbuf **s_mb, int *s_soff)
15035 {
15036         struct mbuf *m, *n;
15037         int32_t soff;
15038
15039         soff = rack->r_ctl.fsb.off;
15040         m = rack->r_ctl.fsb.m;
15041         if (rack->r_ctl.fsb.o_m_len != m->m_len) {
15042                 /*
15043                  * The mbuf had the front of it chopped off by an ack
15044                  * we need to adjust the soff/off by that difference.
15045                  */
15046                 uint32_t delta;
15047
15048                 delta = rack->r_ctl.fsb.o_m_len - m->m_len;
15049                 soff -= delta;
15050         }
15051         KASSERT(soff >= 0, ("%s, negative off %d", __FUNCTION__, soff));
15052         KASSERT(*plen >= 0, ("%s, negative len %d", __FUNCTION__, *plen));
15053         KASSERT(soff < m->m_len, ("%s rack:%p len:%u m:%p m->m_len:%u < off?",
15054                                  __FUNCTION__,
15055                                  rack, *plen, m, m->m_len));
15056         /* Save off the right location before we copy and advance */
15057         *s_soff = soff;
15058         *s_mb = rack->r_ctl.fsb.m;
15059         n = rack_fo_base_copym(m, soff, plen,
15060                                &rack->r_ctl.fsb,
15061                                seglimit, segsize);
15062         return (n);
15063 }
15064
15065 static int
15066 rack_fast_rsm_output(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm,
15067                      uint64_t ts_val, uint32_t cts, uint32_t ms_cts, struct timeval *tv, int len)
15068 {
15069         /*
15070          * Enter the fast retransmit path. We are given that a sched_pin is
15071          * in place (if accounting is compliled in) and the cycle count taken
15072          * at the entry is in the ts_val. The concept her is that the rsm
15073          * now holds the mbuf offsets and such so we can directly transmit
15074          * without a lot of overhead, the len field is already set for
15075          * us to prohibit us from sending too much (usually its 1MSS).
15076          */
15077         struct ip *ip = NULL;
15078         struct udphdr *udp = NULL;
15079         struct tcphdr *th = NULL;
15080         struct mbuf *m = NULL;
15081         struct inpcb *inp;
15082         uint8_t *cpto;
15083         struct tcp_log_buffer *lgb;
15084 #ifdef TCP_ACCOUNTING
15085         uint64_t crtsc;
15086         int cnt_thru = 1;
15087 #endif
15088         int doing_tlp = 0;
15089         struct tcpopt to;
15090         u_char opt[TCP_MAXOLEN];
15091         uint32_t hdrlen, optlen;
15092         int32_t slot, segsiz, max_val, tso = 0, error, flags, ulen = 0;
15093         uint32_t us_cts;
15094         uint32_t if_hw_tsomaxsegcount = 0, startseq;
15095         uint32_t if_hw_tsomaxsegsize;
15096
15097 #ifdef INET6
15098         struct ip6_hdr *ip6 = NULL;
15099
15100         if (rack->r_is_v6) {
15101                 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
15102                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
15103         } else
15104 #endif                          /* INET6 */
15105         {
15106                 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
15107                 hdrlen = sizeof(struct tcpiphdr);
15108         }
15109         if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
15110                 goto failed;
15111         }
15112         if (rsm->r_flags & RACK_TLP)
15113                 doing_tlp = 1;
15114         startseq = rsm->r_start;
15115         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
15116         inp = rack->rc_inp;
15117         to.to_flags = 0;
15118         flags = tcp_outflags[tp->t_state];
15119         if (flags & (TH_SYN|TH_RST)) {
15120                 goto failed;
15121         }
15122         if (rsm->r_flags & RACK_HAS_FIN) {
15123                 /* We can't send a FIN here */
15124                 goto failed;
15125         }
15126         if (flags & TH_FIN) {
15127                 /* We never send a FIN */
15128                 flags &= ~TH_FIN;
15129         }
15130         if (tp->t_flags & TF_RCVD_TSTMP) {
15131                 to.to_tsval = ms_cts + tp->ts_offset;
15132                 to.to_tsecr = tp->ts_recent;
15133                 to.to_flags = TOF_TS;
15134         }
15135         optlen = tcp_addoptions(&to, opt);
15136         hdrlen += optlen;
15137         udp = rack->r_ctl.fsb.udp;
15138         if (udp)
15139                 hdrlen += sizeof(struct udphdr);
15140         if (rack->r_ctl.rc_pace_max_segs)
15141                 max_val = rack->r_ctl.rc_pace_max_segs;
15142         else if (rack->rc_user_set_max_segs)
15143                 max_val = rack->rc_user_set_max_segs * segsiz;
15144         else
15145                 max_val = len;
15146         if ((tp->t_flags & TF_TSO) &&
15147             V_tcp_do_tso &&
15148             (len > segsiz) &&
15149             (tp->t_port == 0))
15150                 tso = 1;
15151 #ifdef INET6
15152         if (MHLEN < hdrlen + max_linkhdr)
15153                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
15154         else
15155 #endif
15156                 m = m_gethdr(M_NOWAIT, MT_DATA);
15157         if (m == NULL)
15158                 goto failed;
15159         m->m_data += max_linkhdr;
15160         m->m_len = hdrlen;
15161         th = rack->r_ctl.fsb.th;
15162         /* Establish the len to send */
15163         if (len > max_val)
15164                 len = max_val;
15165         if ((tso) && (len + optlen > tp->t_maxseg)) {
15166                 uint32_t if_hw_tsomax;
15167                 int32_t max_len;
15168
15169                 /* extract TSO information */
15170                 if_hw_tsomax = tp->t_tsomax;
15171                 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
15172                 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
15173                 /*
15174                  * Check if we should limit by maximum payload
15175                  * length:
15176                  */
15177                 if (if_hw_tsomax != 0) {
15178                         /* compute maximum TSO length */
15179                         max_len = (if_hw_tsomax - hdrlen -
15180                                    max_linkhdr);
15181                         if (max_len <= 0) {
15182                                 goto failed;
15183                         } else if (len > max_len) {
15184                                 len = max_len;
15185                         }
15186                 }
15187                 if (len <= segsiz) {
15188                         /*
15189                          * In case there are too many small fragments don't
15190                          * use TSO:
15191                          */
15192                         tso = 0;
15193                 }
15194         } else {
15195                 tso = 0;
15196         }
15197         if ((tso == 0) && (len > segsiz))
15198                 len = segsiz;
15199         us_cts = tcp_get_usecs(tv);
15200         if ((len == 0) ||
15201             (len <= MHLEN - hdrlen - max_linkhdr)) {
15202                 goto failed;
15203         }
15204         th->th_seq = htonl(rsm->r_start);
15205         th->th_ack = htonl(tp->rcv_nxt);
15206         /*
15207          * The PUSH bit should only be applied
15208          * if the full retransmission is made. If
15209          * we are sending less than this is the
15210          * left hand edge and should not have
15211          * the PUSH bit.
15212          */
15213         if ((rsm->r_flags & RACK_HAD_PUSH) &&
15214             (len == (rsm->r_end - rsm->r_start)))
15215                 flags |= TH_PUSH;
15216         th->th_flags = flags;
15217         th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
15218         if (th->th_win == 0) {
15219                 tp->t_sndzerowin++;
15220                 tp->t_flags |= TF_RXWIN0SENT;
15221         } else
15222                 tp->t_flags &= ~TF_RXWIN0SENT;
15223         if (rsm->r_flags & RACK_TLP) {
15224                 /*
15225                  * TLP should not count in retran count, but
15226                  * in its own bin
15227                  */
15228                 counter_u64_add(rack_tlp_retran, 1);
15229                 counter_u64_add(rack_tlp_retran_bytes, len);
15230         } else {
15231                 tp->t_sndrexmitpack++;
15232                 KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
15233                 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
15234         }
15235 #ifdef STATS
15236         stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
15237                                  len);
15238 #endif
15239         if (rsm->m == NULL)
15240                 goto failed;
15241         if (rsm->orig_m_len != rsm->m->m_len) {
15242                 /* Fix up the orig_m_len and possibly the mbuf offset */
15243                 rack_adjust_orig_mlen(rsm);
15244         }
15245         m->m_next = rack_fo_base_copym(rsm->m, rsm->soff, &len, NULL, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize);
15246         if (len <= segsiz) {
15247                 /*
15248                  * Must have ran out of mbufs for the copy
15249                  * shorten it to no longer need tso. Lets
15250                  * not put on sendalot since we are low on
15251                  * mbufs.
15252                  */
15253                 tso = 0;
15254         }
15255         if ((m->m_next == NULL) || (len <= 0)){
15256                 goto failed;
15257         }
15258         if (udp) {
15259                 if (rack->r_is_v6)
15260                         ulen = hdrlen + len - sizeof(struct ip6_hdr);
15261                 else
15262                         ulen = hdrlen + len - sizeof(struct ip);
15263                 udp->uh_ulen = htons(ulen);
15264         }
15265         m->m_pkthdr.rcvif = (struct ifnet *)0;
15266         m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
15267 #ifdef INET6
15268         if (rack->r_is_v6) {
15269                 if (tp->t_port) {
15270                         m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
15271                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15272                         udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
15273                         th->th_sum = htons(0);
15274                         UDPSTAT_INC(udps_opackets);
15275                 } else {
15276                         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
15277                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15278                         th->th_sum = in6_cksum_pseudo(ip6,
15279                                                       sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
15280                                                       0);
15281                 }
15282         }
15283 #endif
15284 #if defined(INET6) && defined(INET)
15285         else
15286 #endif
15287 #ifdef INET
15288         {
15289                 if (tp->t_port) {
15290                         m->m_pkthdr.csum_flags = CSUM_UDP;
15291                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15292                         udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
15293                                                 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
15294                         th->th_sum = htons(0);
15295                         UDPSTAT_INC(udps_opackets);
15296                 } else {
15297                         m->m_pkthdr.csum_flags = CSUM_TCP;
15298                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15299                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
15300                                                ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
15301                                                                         IPPROTO_TCP + len + optlen));
15302                 }
15303                 /* IP version must be set here for ipv4/ipv6 checking later */
15304                 KASSERT(ip->ip_v == IPVERSION,
15305                         ("%s: IP version incorrect: %d", __func__, ip->ip_v));
15306         }
15307 #endif
15308         if (tso) {
15309                 KASSERT(len > tp->t_maxseg - optlen,
15310                         ("%s: len <= tso_segsz tp:%p", __func__, tp));
15311                 m->m_pkthdr.csum_flags |= CSUM_TSO;
15312                 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
15313         }
15314 #ifdef INET6
15315         if (rack->r_is_v6) {
15316                 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
15317                 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
15318                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
15319                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15320                 else
15321                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15322         }
15323 #endif
15324 #if defined(INET) && defined(INET6)
15325         else
15326 #endif
15327 #ifdef INET
15328         {
15329                 ip->ip_len = htons(m->m_pkthdr.len);
15330                 ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
15331                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
15332                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15333                         if (tp->t_port == 0 || len < V_tcp_minmss) {
15334                                 ip->ip_off |= htons(IP_DF);
15335                         }
15336                 } else {
15337                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15338                 }
15339         }
15340 #endif
15341         /* Time to copy in our header */
15342         cpto = mtod(m, uint8_t *);
15343         memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
15344         th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
15345         if (optlen) {
15346                 bcopy(opt, th + 1, optlen);
15347                 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
15348         } else {
15349                 th->th_off = sizeof(struct tcphdr) >> 2;
15350         }
15351         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15352                 union tcp_log_stackspecific log;
15353
15354                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15355                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
15356                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
15357                 if (rack->rack_no_prr)
15358                         log.u_bbr.flex1 = 0;
15359                 else
15360                         log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
15361                 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
15362                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
15363                 log.u_bbr.flex4 = max_val;
15364                 log.u_bbr.flex5 = 0;
15365                 /* Save off the early/late values */
15366                 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15367                 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
15368                 log.u_bbr.bw_inuse = rack_get_bw(rack);
15369                 log.u_bbr.flex8 = 1;
15370                 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15371                 log.u_bbr.flex7 = 55;
15372                 log.u_bbr.pkts_out = tp->t_maxseg;
15373                 log.u_bbr.timeStamp = cts;
15374                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15375                 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
15376                 log.u_bbr.delivered = 0;
15377                 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
15378                                      len, &log, false, NULL, NULL, 0, tv);
15379         } else
15380                 lgb = NULL;
15381 #ifdef INET6
15382         if (rack->r_is_v6) {
15383                 error = ip6_output(m, NULL,
15384                                    &inp->inp_route6,
15385                                    0, NULL, NULL, inp);
15386         }
15387 #endif
15388 #if defined(INET) && defined(INET6)
15389         else
15390 #endif
15391 #ifdef INET
15392         {
15393                 error = ip_output(m, NULL,
15394                                   &inp->inp_route,
15395                                   0, 0, inp);
15396         }
15397 #endif
15398         m = NULL;
15399         if (lgb) {
15400                 lgb->tlb_errno = error;
15401                 lgb = NULL;
15402         }
15403         if (error) {
15404                 goto failed;
15405         }
15406         rack_log_output(tp, &to, len, rsm->r_start, flags, error, rack_to_usec_ts(tv),
15407                         rsm, RACK_SENT_FP, rsm->m, rsm->soff);
15408         if (doing_tlp && (rack->fast_rsm_hack == 0)) {
15409                 rack->rc_tlp_in_progress = 1;
15410                 rack->r_ctl.rc_tlp_cnt_out++;
15411         }
15412         if (error == 0)
15413                 tcp_account_for_send(tp, len, 1, doing_tlp);
15414         tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
15415         rack->forced_ack = 0;   /* If we send something zap the FA flag */
15416         if (IN_FASTRECOVERY(tp->t_flags) && rsm)
15417                 rack->r_ctl.retran_during_recovery += len;
15418         {
15419                 int idx;
15420
15421                 idx = (len / segsiz) + 3;
15422                 if (idx >= TCP_MSS_ACCT_ATIMER)
15423                         counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
15424                 else
15425                         counter_u64_add(rack_out_size[idx], 1);
15426         }
15427         if (tp->t_rtttime == 0) {
15428                 tp->t_rtttime = ticks;
15429                 tp->t_rtseq = startseq;
15430                 KMOD_TCPSTAT_INC(tcps_segstimed);
15431         }
15432         counter_u64_add(rack_fto_rsm_send, 1);
15433         if (error && (error == ENOBUFS)) {
15434                 slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
15435                 if (rack->rc_enobuf < 0x7f)
15436                         rack->rc_enobuf++;
15437                 if (slot < (10 * HPTS_USEC_IN_MSEC))
15438                         slot = 10 * HPTS_USEC_IN_MSEC;
15439         } else
15440                 slot = rack_get_pacing_delay(rack, tp, len, NULL, segsiz);
15441         if ((slot == 0) ||
15442             (rack->rc_always_pace == 0) ||
15443             (rack->r_rr_config == 1)) {
15444                 /*
15445                  * We have no pacing set or we
15446                  * are using old-style rack or
15447                  * we are overriden to use the old 1ms pacing.
15448                  */
15449                 slot = rack->r_ctl.rc_min_to;
15450         }
15451         rack_start_hpts_timer(rack, tp, cts, slot, len, 0);
15452         if (rack->r_must_retran) {
15453                 rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
15454                 if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
15455                         /*
15456                          * We have retransmitted all we need.
15457                          */
15458                         rack->r_must_retran = 0;
15459                         rack->r_ctl.rc_out_at_rto = 0;
15460                 }
15461         }
15462 #ifdef TCP_ACCOUNTING
15463         crtsc = get_cyclecount();
15464         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15465                 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
15466         }
15467         counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
15468         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15469                 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
15470         }
15471         counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
15472         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15473                 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((len + segsiz - 1) / segsiz);
15474         }
15475         counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((len + segsiz - 1) / segsiz));
15476         sched_unpin();
15477 #endif
15478         return (0);
15479 failed:
15480         if (m)
15481                 m_free(m);
15482         return (-1);
15483 }
15484
15485 static void
15486 rack_sndbuf_autoscale(struct tcp_rack *rack)
15487 {
15488         /*
15489          * Automatic sizing of send socket buffer.  Often the send buffer
15490          * size is not optimally adjusted to the actual network conditions
15491          * at hand (delay bandwidth product).  Setting the buffer size too
15492          * small limits throughput on links with high bandwidth and high
15493          * delay (eg. trans-continental/oceanic links).  Setting the
15494          * buffer size too big consumes too much real kernel memory,
15495          * especially with many connections on busy servers.
15496          *
15497          * The criteria to step up the send buffer one notch are:
15498          *  1. receive window of remote host is larger than send buffer
15499          *     (with a fudge factor of 5/4th);
15500          *  2. send buffer is filled to 7/8th with data (so we actually
15501          *     have data to make use of it);
15502          *  3. send buffer fill has not hit maximal automatic size;
15503          *  4. our send window (slow start and cogestion controlled) is
15504          *     larger than sent but unacknowledged data in send buffer.
15505          *
15506          * Note that the rack version moves things much faster since
15507          * we want to avoid hitting cache lines in the rack_fast_output()
15508          * path so this is called much less often and thus moves
15509          * the SB forward by a percentage.
15510          */
15511         struct socket *so;
15512         struct tcpcb *tp;
15513         uint32_t sendwin, scaleup;
15514
15515         tp = rack->rc_tp;
15516         so = rack->rc_inp->inp_socket;
15517         sendwin = min(rack->r_ctl.cwnd_to_use, tp->snd_wnd);
15518         if (V_tcp_do_autosndbuf && so->so_snd.sb_flags & SB_AUTOSIZE) {
15519                 if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat &&
15520                     sbused(&so->so_snd) >=
15521                     (so->so_snd.sb_hiwat / 8 * 7) &&
15522                     sbused(&so->so_snd) < V_tcp_autosndbuf_max &&
15523                     sendwin >= (sbused(&so->so_snd) -
15524                     (tp->snd_nxt - tp->snd_una))) {
15525                         if (rack_autosndbuf_inc)
15526                                 scaleup = (rack_autosndbuf_inc * so->so_snd.sb_hiwat) / 100;
15527                         else
15528                                 scaleup = V_tcp_autosndbuf_inc;
15529                         if (scaleup < V_tcp_autosndbuf_inc)
15530                                 scaleup = V_tcp_autosndbuf_inc;
15531                         scaleup += so->so_snd.sb_hiwat;
15532                         if (scaleup > V_tcp_autosndbuf_max)
15533                                 scaleup = V_tcp_autosndbuf_max;
15534                         if (!sbreserve_locked(&so->so_snd, scaleup, so, curthread))
15535                                 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
15536                 }
15537         }
15538 }
15539
15540 static int
15541 rack_fast_output(struct tcpcb *tp, struct tcp_rack *rack, uint64_t ts_val,
15542                  uint32_t cts, uint32_t ms_cts, struct timeval *tv, long tot_len, int *send_err)
15543 {
15544         /*
15545          * Enter to do fast output. We are given that the sched_pin is
15546          * in place (if accounting is compiled in) and the cycle count taken
15547          * at entry is in place in ts_val. The idea here is that
15548          * we know how many more bytes needs to be sent (presumably either
15549          * during pacing or to fill the cwnd and that was greater than
15550          * the max-burst). We have how much to send and all the info we
15551          * need to just send.
15552          */
15553         struct ip *ip = NULL;
15554         struct udphdr *udp = NULL;
15555         struct tcphdr *th = NULL;
15556         struct mbuf *m, *s_mb;
15557         struct inpcb *inp;
15558         uint8_t *cpto;
15559         struct tcp_log_buffer *lgb;
15560 #ifdef TCP_ACCOUNTING
15561         uint64_t crtsc;
15562 #endif
15563         struct tcpopt to;
15564         u_char opt[TCP_MAXOLEN];
15565         uint32_t hdrlen, optlen;
15566         int cnt_thru = 1;
15567         int32_t slot, segsiz, len, max_val, tso = 0, sb_offset, error, flags, ulen = 0;
15568         uint32_t us_cts, s_soff;
15569         uint32_t if_hw_tsomaxsegcount = 0, startseq;
15570         uint32_t if_hw_tsomaxsegsize;
15571         uint16_t add_flag = RACK_SENT_FP;
15572 #ifdef INET6
15573         struct ip6_hdr *ip6 = NULL;
15574
15575         if (rack->r_is_v6) {
15576                 ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
15577                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
15578         } else
15579 #endif                          /* INET6 */
15580         {
15581                 ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
15582                 hdrlen = sizeof(struct tcpiphdr);
15583         }
15584         if (tp->t_port && (V_tcp_udp_tunneling_port == 0)) {
15585                 m = NULL;
15586                 goto failed;
15587         }
15588         startseq = tp->snd_max;
15589         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
15590         inp = rack->rc_inp;
15591         len = rack->r_ctl.fsb.left_to_send;
15592         to.to_flags = 0;
15593         flags = rack->r_ctl.fsb.tcp_flags;
15594         if (tp->t_flags & TF_RCVD_TSTMP) {
15595                 to.to_tsval = ms_cts + tp->ts_offset;
15596                 to.to_tsecr = tp->ts_recent;
15597                 to.to_flags = TOF_TS;
15598         }
15599         optlen = tcp_addoptions(&to, opt);
15600         hdrlen += optlen;
15601         udp = rack->r_ctl.fsb.udp;
15602         if (udp)
15603                 hdrlen += sizeof(struct udphdr);
15604         if (rack->r_ctl.rc_pace_max_segs)
15605                 max_val = rack->r_ctl.rc_pace_max_segs;
15606         else if (rack->rc_user_set_max_segs)
15607                 max_val = rack->rc_user_set_max_segs * segsiz;
15608         else
15609                 max_val = len;
15610         if ((tp->t_flags & TF_TSO) &&
15611             V_tcp_do_tso &&
15612             (len > segsiz) &&
15613             (tp->t_port == 0))
15614                 tso = 1;
15615 again:
15616 #ifdef INET6
15617         if (MHLEN < hdrlen + max_linkhdr)
15618                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
15619         else
15620 #endif
15621                 m = m_gethdr(M_NOWAIT, MT_DATA);
15622         if (m == NULL)
15623                 goto failed;
15624         m->m_data += max_linkhdr;
15625         m->m_len = hdrlen;
15626         th = rack->r_ctl.fsb.th;
15627         /* Establish the len to send */
15628         if (len > max_val)
15629                 len = max_val;
15630         if ((tso) && (len + optlen > tp->t_maxseg)) {
15631                 uint32_t if_hw_tsomax;
15632                 int32_t max_len;
15633
15634                 /* extract TSO information */
15635                 if_hw_tsomax = tp->t_tsomax;
15636                 if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
15637                 if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
15638                 /*
15639                  * Check if we should limit by maximum payload
15640                  * length:
15641                  */
15642                 if (if_hw_tsomax != 0) {
15643                         /* compute maximum TSO length */
15644                         max_len = (if_hw_tsomax - hdrlen -
15645                                    max_linkhdr);
15646                         if (max_len <= 0) {
15647                                 goto failed;
15648                         } else if (len > max_len) {
15649                                 len = max_len;
15650                         }
15651                 }
15652                 if (len <= segsiz) {
15653                         /*
15654                          * In case there are too many small fragments don't
15655                          * use TSO:
15656                          */
15657                         tso = 0;
15658                 }
15659         } else {
15660                 tso = 0;
15661         }
15662         if ((tso == 0) && (len > segsiz))
15663                 len = segsiz;
15664         us_cts = tcp_get_usecs(tv);
15665         if ((len == 0) ||
15666             (len <= MHLEN - hdrlen - max_linkhdr)) {
15667                 goto failed;
15668         }
15669         sb_offset = tp->snd_max - tp->snd_una;
15670         th->th_seq = htonl(tp->snd_max);
15671         th->th_ack = htonl(tp->rcv_nxt);
15672         th->th_flags = flags;
15673         th->th_win = htons((u_short)(rack->r_ctl.fsb.recwin >> tp->rcv_scale));
15674         if (th->th_win == 0) {
15675                 tp->t_sndzerowin++;
15676                 tp->t_flags |= TF_RXWIN0SENT;
15677         } else
15678                 tp->t_flags &= ~TF_RXWIN0SENT;
15679         tp->snd_up = tp->snd_una;       /* drag it along, its deprecated */
15680         KMOD_TCPSTAT_INC(tcps_sndpack);
15681         KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
15682 #ifdef STATS
15683         stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
15684                                  len);
15685 #endif
15686         if (rack->r_ctl.fsb.m == NULL)
15687                 goto failed;
15688
15689         /* s_mb and s_soff are saved for rack_log_output */
15690         m->m_next = rack_fo_m_copym(rack, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, &s_mb, &s_soff);
15691         if (len <= segsiz) {
15692                 /*
15693                  * Must have ran out of mbufs for the copy
15694                  * shorten it to no longer need tso. Lets
15695                  * not put on sendalot since we are low on
15696                  * mbufs.
15697                  */
15698                 tso = 0;
15699         }
15700         if (rack->r_ctl.fsb.rfo_apply_push &&
15701             (len == rack->r_ctl.fsb.left_to_send)) {
15702                 th->th_flags |= TH_PUSH;
15703                 add_flag |= RACK_HAD_PUSH;
15704         }
15705         if ((m->m_next == NULL) || (len <= 0)){
15706                 goto failed;
15707         }
15708         if (udp) {
15709                 if (rack->r_is_v6)
15710                         ulen = hdrlen + len - sizeof(struct ip6_hdr);
15711                 else
15712                         ulen = hdrlen + len - sizeof(struct ip);
15713                 udp->uh_ulen = htons(ulen);
15714         }
15715         m->m_pkthdr.rcvif = (struct ifnet *)0;
15716         if (tp->t_state == TCPS_ESTABLISHED &&
15717             (tp->t_flags2 & TF2_ECN_PERMIT)) {
15718                 /*
15719                  * If the peer has ECN, mark data packets with ECN capable
15720                  * transmission (ECT). Ignore pure ack packets,
15721                  * retransmissions.
15722                  */
15723                 if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
15724 #ifdef INET6
15725                         if (rack->r_is_v6)
15726                                 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
15727                         else
15728 #endif
15729                                 ip->ip_tos |= IPTOS_ECN_ECT0;
15730                         KMOD_TCPSTAT_INC(tcps_ecn_ect0);
15731                         /*
15732                          * Reply with proper ECN notifications.
15733                          * Only set CWR on new data segments.
15734                          */
15735                         if (tp->t_flags2 & TF2_ECN_SND_CWR) {
15736                                 flags |= TH_CWR;
15737                                 tp->t_flags2 &= ~TF2_ECN_SND_CWR;
15738                         }
15739                 }
15740                 if (tp->t_flags2 & TF2_ECN_SND_ECE)
15741                         flags |= TH_ECE;
15742         }
15743         m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
15744 #ifdef INET6
15745         if (rack->r_is_v6) {
15746                 if (tp->t_port) {
15747                         m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
15748                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15749                         udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
15750                         th->th_sum = htons(0);
15751                         UDPSTAT_INC(udps_opackets);
15752                 } else {
15753                         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
15754                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15755                         th->th_sum = in6_cksum_pseudo(ip6,
15756                                                       sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
15757                                                       0);
15758                 }
15759         }
15760 #endif
15761 #if defined(INET6) && defined(INET)
15762         else
15763 #endif
15764 #ifdef INET
15765         {
15766                 if (tp->t_port) {
15767                         m->m_pkthdr.csum_flags = CSUM_UDP;
15768                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
15769                         udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
15770                                                 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
15771                         th->th_sum = htons(0);
15772                         UDPSTAT_INC(udps_opackets);
15773                 } else {
15774                         m->m_pkthdr.csum_flags = CSUM_TCP;
15775                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
15776                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
15777                                                ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
15778                                                                         IPPROTO_TCP + len + optlen));
15779                 }
15780                 /* IP version must be set here for ipv4/ipv6 checking later */
15781                 KASSERT(ip->ip_v == IPVERSION,
15782                         ("%s: IP version incorrect: %d", __func__, ip->ip_v));
15783         }
15784 #endif
15785         if (tso) {
15786                 KASSERT(len > tp->t_maxseg - optlen,
15787                         ("%s: len <= tso_segsz tp:%p", __func__, tp));
15788                 m->m_pkthdr.csum_flags |= CSUM_TSO;
15789                 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
15790         }
15791 #ifdef INET6
15792         if (rack->r_is_v6) {
15793                 ip6->ip6_hlim = rack->r_ctl.fsb.hoplimit;
15794                 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
15795                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
15796                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15797                 else
15798                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15799         }
15800 #endif
15801 #if defined(INET) && defined(INET6)
15802         else
15803 #endif
15804 #ifdef INET
15805         {
15806                 ip->ip_len = htons(m->m_pkthdr.len);
15807                 ip->ip_ttl = rack->r_ctl.fsb.hoplimit;
15808                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
15809                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
15810                         if (tp->t_port == 0 || len < V_tcp_minmss) {
15811                                 ip->ip_off |= htons(IP_DF);
15812                         }
15813                 } else {
15814                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
15815                 }
15816         }
15817 #endif
15818         /* Time to copy in our header */
15819         cpto = mtod(m, uint8_t *);
15820         memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
15821         th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
15822         if (optlen) {
15823                 bcopy(opt, th + 1, optlen);
15824                 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
15825         } else {
15826                 th->th_off = sizeof(struct tcphdr) >> 2;
15827         }
15828         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
15829                 union tcp_log_stackspecific log;
15830
15831                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
15832                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
15833                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
15834                 if (rack->rack_no_prr)
15835                         log.u_bbr.flex1 = 0;
15836                 else
15837                         log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
15838                 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
15839                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
15840                 log.u_bbr.flex4 = max_val;
15841                 log.u_bbr.flex5 = 0;
15842                 /* Save off the early/late values */
15843                 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
15844                 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
15845                 log.u_bbr.bw_inuse = rack_get_bw(rack);
15846                 log.u_bbr.flex8 = 0;
15847                 log.u_bbr.pacing_gain = rack_get_output_gain(rack, NULL);
15848                 log.u_bbr.flex7 = 44;
15849                 log.u_bbr.pkts_out = tp->t_maxseg;
15850                 log.u_bbr.timeStamp = cts;
15851                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
15852                 log.u_bbr.lt_epoch = rack->r_ctl.cwnd_to_use;
15853                 log.u_bbr.delivered = 0;
15854                 lgb = tcp_log_event_(tp, th, NULL, NULL, TCP_LOG_OUT, ERRNO_UNK,
15855                                      len, &log, false, NULL, NULL, 0, tv);
15856         } else
15857                 lgb = NULL;
15858 #ifdef INET6
15859         if (rack->r_is_v6) {
15860                 error = ip6_output(m, NULL,
15861                                    &inp->inp_route6,
15862                                    0, NULL, NULL, inp);
15863         }
15864 #endif
15865 #if defined(INET) && defined(INET6)
15866         else
15867 #endif
15868 #ifdef INET
15869         {
15870                 error = ip_output(m, NULL,
15871                                   &inp->inp_route,
15872                                   0, 0, inp);
15873         }
15874 #endif
15875         if (lgb) {
15876                 lgb->tlb_errno = error;
15877                 lgb = NULL;
15878         }
15879         if (error) {
15880                 *send_err = error;
15881                 m = NULL;
15882                 goto failed;
15883         }
15884         rack_log_output(tp, &to, len, tp->snd_max, flags, error, rack_to_usec_ts(tv),
15885                         NULL, add_flag, s_mb, s_soff);
15886         m = NULL;
15887         if (tp->snd_una == tp->snd_max) {
15888                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
15889                 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
15890                 tp->t_acktime = ticks;
15891         }
15892         if (error == 0)
15893                 tcp_account_for_send(tp, len, 0, 0);
15894
15895         rack->forced_ack = 0;   /* If we send something zap the FA flag */
15896         tot_len += len;
15897         if ((tp->t_flags & TF_GPUTINPROG) == 0)
15898                 rack_start_gp_measurement(tp, rack, tp->snd_max, sb_offset);
15899         tp->snd_max += len;
15900         tp->snd_nxt = tp->snd_max;
15901         {
15902                 int idx;
15903
15904                 idx = (len / segsiz) + 3;
15905                 if (idx >= TCP_MSS_ACCT_ATIMER)
15906                         counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
15907                 else
15908                         counter_u64_add(rack_out_size[idx], 1);
15909         }
15910         if (len <= rack->r_ctl.fsb.left_to_send)
15911                 rack->r_ctl.fsb.left_to_send -= len;
15912         else
15913                 rack->r_ctl.fsb.left_to_send = 0;
15914         if (rack->r_ctl.fsb.left_to_send < segsiz) {
15915                 rack->r_fast_output = 0;
15916                 rack->r_ctl.fsb.left_to_send = 0;
15917                 /* At the end of fast_output scale up the sb */
15918                 SOCKBUF_LOCK(&rack->rc_inp->inp_socket->so_snd);
15919                 rack_sndbuf_autoscale(rack);
15920                 SOCKBUF_UNLOCK(&rack->rc_inp->inp_socket->so_snd);
15921         }
15922         if (tp->t_rtttime == 0) {
15923                 tp->t_rtttime = ticks;
15924                 tp->t_rtseq = startseq;
15925                 KMOD_TCPSTAT_INC(tcps_segstimed);
15926         }
15927         if ((rack->r_ctl.fsb.left_to_send >= segsiz) &&
15928             (max_val > len) &&
15929             (tso == 0)) {
15930                 max_val -= len;
15931                 len = segsiz;
15932                 th = rack->r_ctl.fsb.th;
15933                 cnt_thru++;
15934                 goto again;
15935         }
15936         tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
15937         counter_u64_add(rack_fto_send, 1);
15938         slot = rack_get_pacing_delay(rack, tp, tot_len, NULL, segsiz);
15939         rack_start_hpts_timer(rack, tp, cts, slot, tot_len, 0);
15940 #ifdef TCP_ACCOUNTING
15941         crtsc = get_cyclecount();
15942         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15943                 tp->tcp_cnt_counters[SND_OUT_DATA] += cnt_thru;
15944         }
15945         counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], cnt_thru);
15946         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15947                 tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
15948         }
15949         counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
15950         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
15951                 tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len + segsiz - 1) / segsiz);
15952         }
15953         counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len + segsiz - 1) / segsiz));
15954         sched_unpin();
15955 #endif
15956         return (0);
15957 failed:
15958         if (m)
15959                 m_free(m);
15960         rack->r_fast_output = 0;
15961         return (-1);
15962 }
15963
15964 static int
15965 rack_output(struct tcpcb *tp)
15966 {
15967         struct socket *so;
15968         uint32_t recwin;
15969         uint32_t sb_offset, s_moff = 0;
15970         int32_t len, flags, error = 0;
15971         struct mbuf *m, *s_mb = NULL;
15972         struct mbuf *mb;
15973         uint32_t if_hw_tsomaxsegcount = 0;
15974         uint32_t if_hw_tsomaxsegsize;
15975         int32_t segsiz, minseg;
15976         long tot_len_this_send = 0;
15977 #ifdef INET
15978         struct ip *ip = NULL;
15979 #endif
15980 #ifdef TCPDEBUG
15981         struct ipovly *ipov = NULL;
15982 #endif
15983         struct udphdr *udp = NULL;
15984         struct tcp_rack *rack;
15985         struct tcphdr *th;
15986         uint8_t pass = 0;
15987         uint8_t mark = 0;
15988         uint8_t wanted_cookie = 0;
15989         u_char opt[TCP_MAXOLEN];
15990         unsigned ipoptlen, optlen, hdrlen, ulen=0;
15991         uint32_t rack_seq;
15992
15993 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
15994         unsigned ipsec_optlen = 0;
15995
15996 #endif
15997         int32_t idle, sendalot;
15998         int32_t sub_from_prr = 0;
15999         volatile int32_t sack_rxmit;
16000         struct rack_sendmap *rsm = NULL;
16001         int32_t tso, mtu;
16002         struct tcpopt to;
16003         int32_t slot = 0;
16004         int32_t sup_rack = 0;
16005         uint32_t cts, ms_cts, delayed, early;
16006         uint16_t add_flag = RACK_SENT_SP;
16007         uint8_t hpts_calling,  doing_tlp = 0;
16008         uint32_t cwnd_to_use, pace_max_seg;
16009         int32_t do_a_prefetch = 0;
16010         int32_t prefetch_rsm = 0;
16011         int32_t orig_len = 0;
16012         struct timeval tv;
16013         int32_t prefetch_so_done = 0;
16014         struct tcp_log_buffer *lgb;
16015         struct inpcb *inp;
16016         struct sockbuf *sb;
16017         uint64_t ts_val = 0;
16018 #ifdef TCP_ACCOUNTING
16019         uint64_t crtsc;
16020 #endif
16021 #ifdef INET6
16022         struct ip6_hdr *ip6 = NULL;
16023         int32_t isipv6;
16024 #endif
16025         uint8_t filled_all = 0;
16026         bool hw_tls = false;
16027
16028         /* setup and take the cache hits here */
16029         rack = (struct tcp_rack *)tp->t_fb_ptr;
16030 #ifdef TCP_ACCOUNTING
16031         sched_pin();
16032         ts_val = get_cyclecount();
16033 #endif
16034         hpts_calling = rack->rc_inp->inp_hpts_calls;
16035         NET_EPOCH_ASSERT();
16036         INP_WLOCK_ASSERT(rack->rc_inp);
16037 #ifdef TCP_OFFLOAD
16038         if (tp->t_flags & TF_TOE) {
16039 #ifdef TCP_ACCOUNTING
16040                 sched_unpin();
16041 #endif
16042                 return (tcp_offload_output(tp));
16043         }
16044 #endif
16045         /*
16046          * For TFO connections in SYN_RECEIVED, only allow the initial
16047          * SYN|ACK and those sent by the retransmit timer.
16048          */
16049         if (IS_FASTOPEN(tp->t_flags) &&
16050             (tp->t_state == TCPS_SYN_RECEIVED) &&
16051             SEQ_GT(tp->snd_max, tp->snd_una) &&    /* initial SYN|ACK sent */
16052             (rack->r_ctl.rc_resend == NULL)) {         /* not a retransmit */
16053 #ifdef TCP_ACCOUNTING
16054                 sched_unpin();
16055 #endif
16056                 return (0);
16057         }
16058 #ifdef INET6
16059         if (rack->r_state) {
16060                 /* Use the cache line loaded if possible */
16061                 isipv6 = rack->r_is_v6;
16062         } else {
16063                 isipv6 = (rack->rc_inp->inp_vflag & INP_IPV6) != 0;
16064         }
16065 #endif
16066         early = 0;
16067         cts = tcp_get_usecs(&tv);
16068         ms_cts = tcp_tv_to_mssectick(&tv);
16069         if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
16070             rack->rc_inp->inp_in_hpts) {
16071                 /*
16072                  * We are on the hpts for some timer but not hptsi output.
16073                  * Remove from the hpts unconditionally.
16074                  */
16075                 rack_timer_cancel(tp, rack, cts, __LINE__);
16076         }
16077         /* Are we pacing and late? */
16078         if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16079             TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
16080                 /* We are delayed */
16081                 delayed = cts - rack->r_ctl.rc_last_output_to;
16082         } else {
16083                 delayed = 0;
16084         }
16085         /* Do the timers, which may override the pacer */
16086         if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
16087                 if (rack_process_timers(tp, rack, cts, hpts_calling)) {
16088                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
16089 #ifdef TCP_ACCOUNTING
16090                         sched_unpin();
16091 #endif
16092                         return (0);
16093                 }
16094         }
16095         if (rack->rc_in_persist) {
16096                 if (rack->rc_inp->inp_in_hpts == 0) {
16097                         /* Timer is not running */
16098                         rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
16099                 }
16100 #ifdef TCP_ACCOUNTING
16101                 sched_unpin();
16102 #endif
16103                 return (0);
16104         }
16105         if ((rack->r_timer_override) ||
16106             (rack->rc_ack_can_sendout_data) ||
16107             (delayed) ||
16108             (tp->t_state < TCPS_ESTABLISHED)) {
16109                 rack->rc_ack_can_sendout_data = 0;
16110                 if (rack->rc_inp->inp_in_hpts)
16111                         tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
16112         } else if (rack->rc_inp->inp_in_hpts) {
16113                 /*
16114                  * On the hpts you can't pass even if ACKNOW is on, we will
16115                  * when the hpts fires.
16116                  */
16117 #ifdef TCP_ACCOUNTING
16118                 crtsc = get_cyclecount();
16119                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16120                         tp->tcp_proc_time[SND_BLOCKED] += (crtsc - ts_val);
16121                 }
16122                 counter_u64_add(tcp_proc_time[SND_BLOCKED], (crtsc - ts_val));
16123                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
16124                         tp->tcp_cnt_counters[SND_BLOCKED]++;
16125                 }
16126                 counter_u64_add(tcp_cnt_counters[SND_BLOCKED], 1);
16127                 sched_unpin();
16128 #endif
16129                 counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
16130                 return (0);
16131         }
16132         rack->rc_inp->inp_hpts_calls = 0;
16133         /* Finish out both pacing early and late accounting */
16134         if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
16135             TSTMP_GT(rack->r_ctl.rc_last_output_to, cts)) {
16136                 early = rack->r_ctl.rc_last_output_to - cts;
16137         } else
16138                 early = 0;
16139         if (delayed) {
16140                 rack->r_ctl.rc_agg_delayed += delayed;
16141                 rack->r_late = 1;
16142         } else if (early) {
16143                 rack->r_ctl.rc_agg_early += early;
16144                 rack->r_early = 1;
16145         }
16146         /* Now that early/late accounting is done turn off the flag */
16147         rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT;
16148         rack->r_wanted_output = 0;
16149         rack->r_timer_override = 0;
16150         if ((tp->t_state != rack->r_state) &&
16151             TCPS_HAVEESTABLISHED(tp->t_state)) {
16152                 rack_set_state(tp, rack);
16153         }
16154         if ((rack->r_fast_output) &&
16155             (tp->rcv_numsacks == 0)) {
16156                 int ret;
16157
16158                 error = 0;
16159                 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
16160                 if (ret >= 0)
16161                         return(ret);
16162                 else if (error) {
16163                         inp = rack->rc_inp;
16164                         so = inp->inp_socket;
16165                         sb = &so->so_snd;
16166                         goto nomore;
16167                 }
16168         }
16169         inp = rack->rc_inp;
16170         /*
16171          * For TFO connections in SYN_SENT or SYN_RECEIVED,
16172          * only allow the initial SYN or SYN|ACK and those sent
16173          * by the retransmit timer.
16174          */
16175         if (IS_FASTOPEN(tp->t_flags) &&
16176             ((tp->t_state == TCPS_SYN_RECEIVED) ||
16177              (tp->t_state == TCPS_SYN_SENT)) &&
16178             SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
16179             (tp->t_rxtshift == 0)) {              /* not a retransmit */
16180                 cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16181                 so = inp->inp_socket;
16182                 sb = &so->so_snd;
16183                 goto just_return_nolock;
16184         }
16185         /*
16186          * Determine length of data that should be transmitted, and flags
16187          * that will be used. If there is some data or critical controls
16188          * (SYN, RST) to send, then transmit; otherwise, investigate
16189          * further.
16190          */
16191         idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
16192         if (tp->t_idle_reduce) {
16193                 if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
16194                         rack_cc_after_idle(rack, tp);
16195         }
16196         tp->t_flags &= ~TF_LASTIDLE;
16197         if (idle) {
16198                 if (tp->t_flags & TF_MORETOCOME) {
16199                         tp->t_flags |= TF_LASTIDLE;
16200                         idle = 0;
16201                 }
16202         }
16203         if ((tp->snd_una == tp->snd_max) &&
16204             rack->r_ctl.rc_went_idle_time &&
16205             TSTMP_GT(cts, rack->r_ctl.rc_went_idle_time)) {
16206                 idle = cts - rack->r_ctl.rc_went_idle_time;
16207                 if (idle > rack_min_probertt_hold) {
16208                         /* Count as a probe rtt */
16209                         if (rack->in_probe_rtt == 0) {
16210                                 rack->r_ctl.rc_lower_rtt_us_cts = cts;
16211                                 rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts;
16212                                 rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts;
16213                                 rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts;
16214                         } else {
16215                                 rack_exit_probertt(rack, cts);
16216                         }
16217                 }
16218                 idle = 0;
16219         }
16220         if (rack_use_fsb && (rack->r_fsb_inited == 0))
16221                 rack_init_fsb_block(tp, rack);
16222 again:
16223         /*
16224          * If we've recently taken a timeout, snd_max will be greater than
16225          * snd_nxt.  There may be SACK information that allows us to avoid
16226          * resending already delivered data.  Adjust snd_nxt accordingly.
16227          */
16228         sendalot = 0;
16229         cts = tcp_get_usecs(&tv);
16230         ms_cts = tcp_tv_to_mssectick(&tv);
16231         tso = 0;
16232         mtu = 0;
16233         segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs);
16234         minseg = segsiz;
16235         if (rack->r_ctl.rc_pace_max_segs == 0)
16236                 pace_max_seg = rack->rc_user_set_max_segs * segsiz;
16237         else
16238                 pace_max_seg = rack->r_ctl.rc_pace_max_segs;
16239         sb_offset = tp->snd_max - tp->snd_una;
16240         cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd;
16241         flags = tcp_outflags[tp->t_state];
16242         while (rack->rc_free_cnt < rack_free_cache) {
16243                 rsm = rack_alloc(rack);
16244                 if (rsm == NULL) {
16245                         if (inp->inp_hpts_calls)
16246                                 /* Retry in a ms */
16247                                 slot = (1 * HPTS_USEC_IN_MSEC);
16248                         so = inp->inp_socket;
16249                         sb = &so->so_snd;
16250                         goto just_return_nolock;
16251                 }
16252                 TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
16253                 rack->rc_free_cnt++;
16254                 rsm = NULL;
16255         }
16256         if (inp->inp_hpts_calls)
16257                 inp->inp_hpts_calls = 0;
16258         sack_rxmit = 0;
16259         len = 0;
16260         rsm = NULL;
16261         if (flags & TH_RST) {
16262                 SOCKBUF_LOCK(&inp->inp_socket->so_snd);
16263                 so = inp->inp_socket;
16264                 sb = &so->so_snd;
16265                 goto send;
16266         }
16267         if (rack->r_ctl.rc_resend) {
16268                 /* Retransmit timer */
16269                 rsm = rack->r_ctl.rc_resend;
16270                 rack->r_ctl.rc_resend = NULL;
16271                 rsm->r_flags &= ~RACK_TLP;
16272                 len = rsm->r_end - rsm->r_start;
16273                 sack_rxmit = 1;
16274                 sendalot = 0;
16275                 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16276                         ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16277                          __func__, __LINE__,
16278                          rsm->r_start, tp->snd_una, tp, rack, rsm));
16279                 sb_offset = rsm->r_start - tp->snd_una;
16280                 if (len >= segsiz)
16281                         len = segsiz;
16282         } else if ((rsm = tcp_rack_output(tp, rack, cts)) != NULL) {
16283                 /* We have a retransmit that takes precedence */
16284                 rsm->r_flags &= ~RACK_TLP;
16285                 if ((!IN_FASTRECOVERY(tp->t_flags)) &&
16286                     ((tp->t_flags & TF_WASFRECOVERY) == 0)) {
16287                         /* Enter recovery if not induced by a time-out */
16288                         rack->r_ctl.rc_rsm_start = rsm->r_start;
16289                         rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
16290                         rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
16291                         rack_cong_signal(tp, CC_NDUPACK, tp->snd_una);
16292                 }
16293 #ifdef INVARIANTS
16294                 if (SEQ_LT(rsm->r_start, tp->snd_una)) {
16295                         panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
16296                               tp, rack, rsm, rsm->r_start, tp->snd_una);
16297                 }
16298 #endif
16299                 len = rsm->r_end - rsm->r_start;
16300                 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16301                         ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16302                          __func__, __LINE__,
16303                          rsm->r_start, tp->snd_una, tp, rack, rsm));
16304                 sb_offset = rsm->r_start - tp->snd_una;
16305                 sendalot = 0;
16306                 if (len >= segsiz)
16307                         len = segsiz;
16308                 if (len > 0) {
16309                         sack_rxmit = 1;
16310                         KMOD_TCPSTAT_INC(tcps_sack_rexmits);
16311                         KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes,
16312                             min(len, segsiz));
16313                         counter_u64_add(rack_rtm_prr_retran, 1);
16314                 }
16315         } else if (rack->r_ctl.rc_tlpsend) {
16316                 /* Tail loss probe */
16317                 long cwin;
16318                 long tlen;
16319
16320                 doing_tlp = 1;
16321                 /*
16322                  * Check if we can do a TLP with a RACK'd packet
16323                  * this can happen if we are not doing the rack
16324                  * cheat and we skipped to a TLP and it
16325                  * went off.
16326                  */
16327                 rsm = rack->r_ctl.rc_tlpsend;
16328                 rsm->r_flags |= RACK_TLP;
16329
16330                 rack->r_ctl.rc_tlpsend = NULL;
16331                 sack_rxmit = 1;
16332                 tlen = rsm->r_end - rsm->r_start;
16333                 if (tlen > segsiz)
16334                         tlen = segsiz;
16335                 KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
16336                         ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
16337                          __func__, __LINE__,
16338                          rsm->r_start, tp->snd_una, tp, rack, rsm));
16339                 sb_offset = rsm->r_start - tp->snd_una;
16340                 cwin = min(tp->snd_wnd, tlen);
16341                 len = cwin;
16342         }
16343         if (rack->r_must_retran &&
16344             (rsm == NULL)) {
16345                 /*
16346                  * Non-Sack and we had a RTO or MTU change, we
16347                  * need to retransmit until we reach
16348                  * the former snd_max (rack->r_ctl.rc_snd_max_at_rto).
16349                  */
16350                 if (SEQ_GT(tp->snd_max, tp->snd_una)) {
16351                         int sendwin, flight;
16352
16353                         sendwin = min(tp->snd_wnd, tp->snd_cwnd);
16354                         flight = ctf_flight_size(tp, rack->r_ctl.rc_out_at_rto);
16355                         if (flight >= sendwin) {
16356                                 so = inp->inp_socket;
16357                                 sb = &so->so_snd;
16358                                 goto just_return_nolock;
16359                         }
16360                         rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
16361                         KASSERT(rsm != NULL, ("rsm is NULL rack:%p r_must_retran set", rack));
16362                         if (rsm == NULL) {
16363                                 /* TSNH */
16364                                 rack->r_must_retran = 0;
16365                                 rack->r_ctl.rc_out_at_rto = 0;
16366                                 rack->r_must_retran = 0;
16367                                 so = inp->inp_socket;
16368                                 sb = &so->so_snd;
16369                                 goto just_return_nolock;
16370                         }
16371                         sack_rxmit = 1;
16372                         len = rsm->r_end - rsm->r_start;
16373                         sendalot = 0;
16374                         sb_offset = rsm->r_start - tp->snd_una;
16375                         if (len >= segsiz)
16376                                 len = segsiz;
16377                 } else {
16378                         /* We must be done if there is nothing outstanding */
16379                         rack->r_must_retran = 0;
16380                         rack->r_ctl.rc_out_at_rto = 0;
16381                 }
16382         }
16383         /*
16384          * Enforce a connection sendmap count limit if set
16385          * as long as we are not retransmiting.
16386          */
16387         if ((rsm == NULL) &&
16388             (rack->do_detection == 0) &&
16389             (V_tcp_map_entries_limit > 0) &&
16390             (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) {
16391                 counter_u64_add(rack_to_alloc_limited, 1);
16392                 if (!rack->alloc_limit_reported) {
16393                         rack->alloc_limit_reported = 1;
16394                         counter_u64_add(rack_alloc_limited_conns, 1);
16395                 }
16396                 so = inp->inp_socket;
16397                 sb = &so->so_snd;
16398                 goto just_return_nolock;
16399         }
16400         if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
16401                 /* we are retransmitting the fin */
16402                 len--;
16403                 if (len) {
16404                         /*
16405                          * When retransmitting data do *not* include the
16406                          * FIN. This could happen from a TLP probe.
16407                          */
16408                         flags &= ~TH_FIN;
16409                 }
16410         }
16411 #ifdef INVARIANTS
16412         /* For debugging */
16413         rack->r_ctl.rc_rsm_at_retran = rsm;
16414 #endif
16415         if (rsm && rack->r_fsb_inited && rack_use_rsm_rfo &&
16416             ((rsm->r_flags & RACK_HAS_FIN) == 0)) {
16417                 int ret;
16418
16419                 ret = rack_fast_rsm_output(tp, rack, rsm, ts_val, cts, ms_cts, &tv, len);
16420                 if (ret == 0)
16421                         return (0);
16422         }
16423         so = inp->inp_socket;
16424         sb = &so->so_snd;
16425         if (do_a_prefetch == 0) {
16426                 kern_prefetch(sb, &do_a_prefetch);
16427                 do_a_prefetch = 1;
16428         }
16429 #ifdef NETFLIX_SHARED_CWND
16430         if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) &&
16431             rack->rack_enable_scwnd) {
16432                 /* We are doing cwnd sharing */
16433                 if (rack->gp_ready &&
16434                     (rack->rack_attempted_scwnd == 0) &&
16435                     (rack->r_ctl.rc_scw == NULL) &&
16436                     tp->t_lib) {
16437                         /* The pcbid is in, lets make an attempt */
16438                         counter_u64_add(rack_try_scwnd, 1);
16439                         rack->rack_attempted_scwnd = 1;
16440                         rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp,
16441                                                                    &rack->r_ctl.rc_scw_index,
16442                                                                    segsiz);
16443                 }
16444                 if (rack->r_ctl.rc_scw &&
16445                     (rack->rack_scwnd_is_idle == 1) &&
16446                     sbavail(&so->so_snd)) {
16447                         /* we are no longer out of data */
16448                         tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
16449                         rack->rack_scwnd_is_idle = 0;
16450                 }
16451                 if (rack->r_ctl.rc_scw) {
16452                         /* First lets update and get the cwnd */
16453                         rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw,
16454                                                                     rack->r_ctl.rc_scw_index,
16455                                                                     tp->snd_cwnd, tp->snd_wnd, segsiz);
16456                 }
16457         }
16458 #endif
16459         /*
16460          * Get standard flags, and add SYN or FIN if requested by 'hidden'
16461          * state flags.
16462          */
16463         if (tp->t_flags & TF_NEEDFIN)
16464                 flags |= TH_FIN;
16465         if (tp->t_flags & TF_NEEDSYN)
16466                 flags |= TH_SYN;
16467         if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
16468                 void *end_rsm;
16469                 end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
16470                 if (end_rsm)
16471                         kern_prefetch(end_rsm, &prefetch_rsm);
16472                 prefetch_rsm = 1;
16473         }
16474         SOCKBUF_LOCK(sb);
16475         /*
16476          * If snd_nxt == snd_max and we have transmitted a FIN, the
16477          * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
16478          * negative length.  This can also occur when TCP opens up its
16479          * congestion window while receiving additional duplicate acks after
16480          * fast-retransmit because TCP will reset snd_nxt to snd_max after
16481          * the fast-retransmit.
16482          *
16483          * In the normal retransmit-FIN-only case, however, snd_nxt will be
16484          * set to snd_una, the sb_offset will be 0, and the length may wind
16485          * up 0.
16486          *
16487          * If sack_rxmit is true we are retransmitting from the scoreboard
16488          * in which case len is already set.
16489          */
16490         if ((sack_rxmit == 0) &&
16491             (TCPS_HAVEESTABLISHED(tp->t_state) || IS_FASTOPEN(tp->t_flags))) {
16492                 uint32_t avail;
16493
16494                 avail = sbavail(sb);
16495                 if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
16496                         sb_offset = tp->snd_nxt - tp->snd_una;
16497                 else
16498                         sb_offset = 0;
16499                 if ((IN_FASTRECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) {
16500                         if (rack->r_ctl.rc_tlp_new_data) {
16501                                 /* TLP is forcing out new data */
16502                                 if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
16503                                         rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
16504                                 }
16505                                 if ((rack->r_ctl.rc_tlp_new_data + sb_offset) > tp->snd_wnd) {
16506                                         if (tp->snd_wnd > sb_offset)
16507                                                 len = tp->snd_wnd - sb_offset;
16508                                         else
16509                                                 len = 0;
16510                                 } else {
16511                                         len = rack->r_ctl.rc_tlp_new_data;
16512                                 }
16513                                 rack->r_ctl.rc_tlp_new_data = 0;
16514                                 doing_tlp = 1;
16515                         }  else {
16516                                 len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset);
16517                         }
16518                         if ((rack->r_ctl.crte == NULL) && IN_FASTRECOVERY(tp->t_flags) && (len > segsiz)) {
16519                                 /*
16520                                  * For prr=off, we need to send only 1 MSS
16521                                  * at a time. We do this because another sack could
16522                                  * be arriving that causes us to send retransmits and
16523                                  * we don't want to be on a long pace due to a larger send
16524                                  * that keeps us from sending out the retransmit.
16525                                  */
16526                                 len = segsiz;
16527                         }
16528                 } else {
16529                         uint32_t outstanding;
16530                         /*
16531                          * We are inside of a Fast recovery episode, this
16532                          * is caused by a SACK or 3 dup acks. At this point
16533                          * we have sent all the retransmissions and we rely
16534                          * on PRR to dictate what we will send in the form of
16535                          * new data.
16536                          */
16537
16538                         outstanding = tp->snd_max - tp->snd_una;
16539                         if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
16540                                 if (tp->snd_wnd > outstanding) {
16541                                         len = tp->snd_wnd - outstanding;
16542                                         /* Check to see if we have the data */
16543                                         if ((sb_offset + len) > avail) {
16544                                                 /* It does not all fit */
16545                                                 if (avail > sb_offset)
16546                                                         len = avail - sb_offset;
16547                                                 else
16548                                                         len = 0;
16549                                         }
16550                                 } else {
16551                                         len = 0;
16552                                 }
16553                         } else if (avail > sb_offset) {
16554                                 len = avail - sb_offset;
16555                         } else {
16556                                 len = 0;
16557                         }
16558                         if (len > 0) {
16559                                 if (len > rack->r_ctl.rc_prr_sndcnt) {
16560                                         len = rack->r_ctl.rc_prr_sndcnt;
16561                                 }
16562                                 if (len > 0) {
16563                                         sub_from_prr = 1;
16564                                         counter_u64_add(rack_rtm_prr_newdata, 1);
16565                                 }
16566                         }
16567                         if (len > segsiz) {
16568                                 /*
16569                                  * We should never send more than a MSS when
16570                                  * retransmitting or sending new data in prr
16571                                  * mode unless the override flag is on. Most
16572                                  * likely the PRR algorithm is not going to
16573                                  * let us send a lot as well :-)
16574                                  */
16575                                 if (rack->r_ctl.rc_prr_sendalot == 0) {
16576                                         len = segsiz;
16577                                 }
16578                         } else if (len < segsiz) {
16579                                 /*
16580                                  * Do we send any? The idea here is if the
16581                                  * send empty's the socket buffer we want to
16582                                  * do it. However if not then lets just wait
16583                                  * for our prr_sndcnt to get bigger.
16584                                  */
16585                                 long leftinsb;
16586
16587                                 leftinsb = sbavail(sb) - sb_offset;
16588                                 if (leftinsb > len) {
16589                                         /* This send does not empty the sb */
16590                                         len = 0;
16591                                 }
16592                         }
16593                 }
16594         } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) {
16595                 /*
16596                  * If you have not established
16597                  * and are not doing FAST OPEN
16598                  * no data please.
16599                  */
16600                 if ((sack_rxmit == 0) &&
16601                     (!IS_FASTOPEN(tp->t_flags))){
16602                         len = 0;
16603                         sb_offset = 0;
16604                 }
16605         }
16606         if (prefetch_so_done == 0) {
16607                 kern_prefetch(so, &prefetch_so_done);
16608                 prefetch_so_done = 1;
16609         }
16610         /*
16611          * Lop off SYN bit if it has already been sent.  However, if this is
16612          * SYN-SENT state and if segment contains data and if we don't know
16613          * that foreign host supports TAO, suppress sending segment.
16614          */
16615         if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
16616             ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
16617                 /*
16618                  * When sending additional segments following a TFO SYN|ACK,
16619                  * do not include the SYN bit.
16620                  */
16621                 if (IS_FASTOPEN(tp->t_flags) &&
16622                     (tp->t_state == TCPS_SYN_RECEIVED))
16623                         flags &= ~TH_SYN;
16624         }
16625         /*
16626          * Be careful not to send data and/or FIN on SYN segments. This
16627          * measure is needed to prevent interoperability problems with not
16628          * fully conformant TCP implementations.
16629          */
16630         if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
16631                 len = 0;
16632                 flags &= ~TH_FIN;
16633         }
16634         /*
16635          * On TFO sockets, ensure no data is sent in the following cases:
16636          *
16637          *  - When retransmitting SYN|ACK on a passively-created socket
16638          *
16639          *  - When retransmitting SYN on an actively created socket
16640          *
16641          *  - When sending a zero-length cookie (cookie request) on an
16642          *    actively created socket
16643          *
16644          *  - When the socket is in the CLOSED state (RST is being sent)
16645          */
16646         if (IS_FASTOPEN(tp->t_flags) &&
16647             (((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
16648              ((tp->t_state == TCPS_SYN_SENT) &&
16649               (tp->t_tfo_client_cookie_len == 0)) ||
16650              (flags & TH_RST))) {
16651                 sack_rxmit = 0;
16652                 len = 0;
16653         }
16654         /* Without fast-open there should never be data sent on a SYN */
16655         if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) {
16656                 tp->snd_nxt = tp->iss;
16657                 len = 0;
16658         }
16659         if ((len > segsiz) && (tcp_dsack_block_exists(tp))) {
16660                 /* We only send 1 MSS if we have a DSACK block */
16661                 add_flag |= RACK_SENT_W_DSACK;
16662                 len = segsiz;
16663         }
16664         orig_len = len;
16665         if (len <= 0) {
16666                 /*
16667                  * If FIN has been sent but not acked, but we haven't been
16668                  * called to retransmit, len will be < 0.  Otherwise, window
16669                  * shrank after we sent into it.  If window shrank to 0,
16670                  * cancel pending retransmit, pull snd_nxt back to (closed)
16671                  * window, and set the persist timer if it isn't already
16672                  * going.  If the window didn't close completely, just wait
16673                  * for an ACK.
16674                  *
16675                  * We also do a general check here to ensure that we will
16676                  * set the persist timer when we have data to send, but a
16677                  * 0-byte window. This makes sure the persist timer is set
16678                  * even if the packet hits one of the "goto send" lines
16679                  * below.
16680                  */
16681                 len = 0;
16682                 if ((tp->snd_wnd == 0) &&
16683                     (TCPS_HAVEESTABLISHED(tp->t_state)) &&
16684                     (tp->snd_una == tp->snd_max) &&
16685                     (sb_offset < (int)sbavail(sb))) {
16686                         rack_enter_persist(tp, rack, cts);
16687                 }
16688         } else if ((rsm == NULL) &&
16689                    (doing_tlp == 0) &&
16690                    (len < pace_max_seg)) {
16691                 /*
16692                  * We are not sending a maximum sized segment for
16693                  * some reason. Should we not send anything (think
16694                  * sws or persists)?
16695                  */
16696                 if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
16697                     (TCPS_HAVEESTABLISHED(tp->t_state)) &&
16698                     (len < minseg) &&
16699                     (len < (int)(sbavail(sb) - sb_offset))) {
16700                         /*
16701                          * Here the rwnd is less than
16702                          * the minimum pacing size, this is not a retransmit,
16703                          * we are established and
16704                          * the send is not the last in the socket buffer
16705                          * we send nothing, and we may enter persists
16706                          * if nothing is outstanding.
16707                          */
16708                         len = 0;
16709                         if (tp->snd_max == tp->snd_una) {
16710                                 /*
16711                                  * Nothing out we can
16712                                  * go into persists.
16713                                  */
16714                                 rack_enter_persist(tp, rack, cts);
16715                         }
16716                      } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) &&
16717                            (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
16718                            (len < (int)(sbavail(sb) - sb_offset)) &&
16719                            (len < minseg)) {
16720                         /*
16721                          * Here we are not retransmitting, and
16722                          * the cwnd is not so small that we could
16723                          * not send at least a min size (rxt timer
16724                          * not having gone off), We have 2 segments or
16725                          * more already in flight, its not the tail end
16726                          * of the socket buffer  and the cwnd is blocking
16727                          * us from sending out a minimum pacing segment size.
16728                          * Lets not send anything.
16729                          */
16730                         len = 0;
16731                 } else if (((tp->snd_wnd - ctf_outstanding(tp)) <
16732                             min((rack->r_ctl.rc_high_rwnd/2), minseg)) &&
16733                            (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) &&
16734                            (len < (int)(sbavail(sb) - sb_offset)) &&
16735                            (TCPS_HAVEESTABLISHED(tp->t_state))) {
16736                         /*
16737                          * Here we have a send window but we have
16738                          * filled it up and we can't send another pacing segment.
16739                          * We also have in flight more than 2 segments
16740                          * and we are not completing the sb i.e. we allow
16741                          * the last bytes of the sb to go out even if
16742                          * its not a full pacing segment.
16743                          */
16744                         len = 0;
16745                 } else if ((rack->r_ctl.crte != NULL) &&
16746                            (tp->snd_wnd >= (pace_max_seg * max(1, rack_hw_rwnd_factor))) &&
16747                            (cwnd_to_use >= (pace_max_seg + (4 * segsiz))) &&
16748                            (ctf_flight_size(tp, rack->r_ctl.rc_sacked) >= (2 * segsiz)) &&
16749                            (len < (int)(sbavail(sb) - sb_offset))) {
16750                         /*
16751                          * Here we are doing hardware pacing, this is not a TLP,
16752                          * we are not sending a pace max segment size, there is rwnd
16753                          * room to send at least N pace_max_seg, the cwnd is greater
16754                          * than or equal to a full pacing segments plus 4 mss and we have 2 or
16755                          * more segments in flight and its not the tail of the socket buffer.
16756                          *
16757                          * We don't want to send instead we need to get more ack's in to
16758                          * allow us to send a full pacing segment. Normally, if we are pacing
16759                          * about the right speed, we should have finished our pacing
16760                          * send as most of the acks have come back if we are at the
16761                          * right rate. This is a bit fuzzy since return path delay
16762                          * can delay the acks, which is why we want to make sure we
16763                          * have cwnd space to have a bit more than a max pace segments in flight.
16764                          *
16765                          * If we have not gotten our acks back we are pacing at too high a
16766                          * rate delaying will not hurt and will bring our GP estimate down by
16767                          * injecting the delay. If we don't do this we will send
16768                          * 2 MSS out in response to the acks being clocked in which
16769                          * defeats the point of hw-pacing (i.e. to help us get
16770                          * larger TSO's out).
16771                          */
16772                         len = 0;
16773
16774                 }
16775
16776         }
16777         /* len will be >= 0 after this point. */
16778         KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
16779         rack_sndbuf_autoscale(rack);
16780         /*
16781          * Decide if we can use TCP Segmentation Offloading (if supported by
16782          * hardware).
16783          *
16784          * TSO may only be used if we are in a pure bulk sending state.  The
16785          * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
16786          * options prevent using TSO.  With TSO the TCP header is the same
16787          * (except for the sequence number) for all generated packets.  This
16788          * makes it impossible to transmit any options which vary per
16789          * generated segment or packet.
16790          *
16791          * IPv4 handling has a clear separation of ip options and ip header
16792          * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
16793          * the right thing below to provide length of just ip options and thus
16794          * checking for ipoptlen is enough to decide if ip options are present.
16795          */
16796         ipoptlen = 0;
16797 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
16798         /*
16799          * Pre-calculate here as we save another lookup into the darknesses
16800          * of IPsec that way and can actually decide if TSO is ok.
16801          */
16802 #ifdef INET6
16803         if (isipv6 && IPSEC_ENABLED(ipv6))
16804                 ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
16805 #ifdef INET
16806         else
16807 #endif
16808 #endif                          /* INET6 */
16809 #ifdef INET
16810                 if (IPSEC_ENABLED(ipv4))
16811                         ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
16812 #endif                          /* INET */
16813 #endif
16814
16815 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
16816         ipoptlen += ipsec_optlen;
16817 #endif
16818         if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz &&
16819             (tp->t_port == 0) &&
16820             ((tp->t_flags & TF_SIGNATURE) == 0) &&
16821             tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
16822             ipoptlen == 0)
16823                 tso = 1;
16824         {
16825                 uint32_t outstanding;
16826
16827                 outstanding = tp->snd_max - tp->snd_una;
16828                 if (tp->t_flags & TF_SENTFIN) {
16829                         /*
16830                          * If we sent a fin, snd_max is 1 higher than
16831                          * snd_una
16832                          */
16833                         outstanding--;
16834                 }
16835                 if (sack_rxmit) {
16836                         if ((rsm->r_flags & RACK_HAS_FIN) == 0)
16837                                 flags &= ~TH_FIN;
16838                 } else {
16839                         if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
16840                                    sbused(sb)))
16841                                 flags &= ~TH_FIN;
16842                 }
16843         }
16844         recwin = lmin(lmax(sbspace(&so->so_rcv), 0),
16845             (long)TCP_MAXWIN << tp->rcv_scale);
16846
16847         /*
16848          * Sender silly window avoidance.   We transmit under the following
16849          * conditions when len is non-zero:
16850          *
16851          * - We have a full segment (or more with TSO) - This is the last
16852          * buffer in a write()/send() and we are either idle or running
16853          * NODELAY - we've timed out (e.g. persist timer) - we have more
16854          * then 1/2 the maximum send window's worth of data (receiver may be
16855          * limited the window size) - we need to retransmit
16856          */
16857         if (len) {
16858                 if (len >= segsiz) {
16859                         goto send;
16860                 }
16861                 /*
16862                  * NOTE! on localhost connections an 'ack' from the remote
16863                  * end may occur synchronously with the output and cause us
16864                  * to flush a buffer queued with moretocome.  XXX
16865                  *
16866                  */
16867                 if (!(tp->t_flags & TF_MORETOCOME) &&   /* normal case */
16868                     (idle || (tp->t_flags & TF_NODELAY)) &&
16869                     ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
16870                     (tp->t_flags & TF_NOPUSH) == 0) {
16871                         pass = 2;
16872                         goto send;
16873                 }
16874                 if ((tp->snd_una == tp->snd_max) && len) {      /* Nothing outstanding */
16875                         pass = 22;
16876                         goto send;
16877                 }
16878                 if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
16879                         pass = 4;
16880                         goto send;
16881                 }
16882                 if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */
16883                         pass = 5;
16884                         goto send;
16885                 }
16886                 if (sack_rxmit) {
16887                         pass = 6;
16888                         goto send;
16889                 }
16890                 if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) &&
16891                     (ctf_outstanding(tp) < (segsiz * 2))) {
16892                         /*
16893                          * We have less than two MSS outstanding (delayed ack)
16894                          * and our rwnd will not let us send a full sized
16895                          * MSS. Lets go ahead and let this small segment
16896                          * out because we want to try to have at least two
16897                          * packets inflight to not be caught by delayed ack.
16898                          */
16899                         pass = 12;
16900                         goto send;
16901                 }
16902         }
16903         /*
16904          * Sending of standalone window updates.
16905          *
16906          * Window updates are important when we close our window due to a
16907          * full socket buffer and are opening it again after the application
16908          * reads data from it.  Once the window has opened again and the
16909          * remote end starts to send again the ACK clock takes over and
16910          * provides the most current window information.
16911          *
16912          * We must avoid the silly window syndrome whereas every read from
16913          * the receive buffer, no matter how small, causes a window update
16914          * to be sent.  We also should avoid sending a flurry of window
16915          * updates when the socket buffer had queued a lot of data and the
16916          * application is doing small reads.
16917          *
16918          * Prevent a flurry of pointless window updates by only sending an
16919          * update when we can increase the advertized window by more than
16920          * 1/4th of the socket buffer capacity.  When the buffer is getting
16921          * full or is very small be more aggressive and send an update
16922          * whenever we can increase by two mss sized segments. In all other
16923          * situations the ACK's to new incoming data will carry further
16924          * window increases.
16925          *
16926          * Don't send an independent window update if a delayed ACK is
16927          * pending (it will get piggy-backed on it) or the remote side
16928          * already has done a half-close and won't send more data.  Skip
16929          * this if the connection is in T/TCP half-open state.
16930          */
16931         if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
16932             !(tp->t_flags & TF_DELACK) &&
16933             !TCPS_HAVERCVDFIN(tp->t_state)) {
16934                 /*
16935                  * "adv" is the amount we could increase the window, taking
16936                  * into account that we are limited by TCP_MAXWIN <<
16937                  * tp->rcv_scale.
16938                  */
16939                 int32_t adv;
16940                 int oldwin;
16941
16942                 adv = recwin;
16943                 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
16944                         oldwin = (tp->rcv_adv - tp->rcv_nxt);
16945                         if (adv > oldwin)
16946                             adv -= oldwin;
16947                         else {
16948                                 /* We can't increase the window */
16949                                 adv = 0;
16950                         }
16951                 } else
16952                         oldwin = 0;
16953
16954                 /*
16955                  * If the new window size ends up being the same as or less
16956                  * than the old size when it is scaled, then don't force
16957                  * a window update.
16958                  */
16959                 if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale)
16960                         goto dontupdate;
16961
16962                 if (adv >= (int32_t)(2 * segsiz) &&
16963                     (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
16964                      recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
16965                      so->so_rcv.sb_hiwat <= 8 * segsiz)) {
16966                         pass = 7;
16967                         goto send;
16968                 }
16969                 if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) {
16970                         pass = 23;
16971                         goto send;
16972                 }
16973         }
16974 dontupdate:
16975
16976         /*
16977          * Send if we owe the peer an ACK, RST, SYN, or urgent data.  ACKNOW
16978          * is also a catch-all for the retransmit timer timeout case.
16979          */
16980         if (tp->t_flags & TF_ACKNOW) {
16981                 pass = 8;
16982                 goto send;
16983         }
16984         if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
16985                 pass = 9;
16986                 goto send;
16987         }
16988         /*
16989          * If our state indicates that FIN should be sent and we have not
16990          * yet done so, then we need to send.
16991          */
16992         if ((flags & TH_FIN) &&
16993             (tp->snd_nxt == tp->snd_una)) {
16994                 pass = 11;
16995                 goto send;
16996         }
16997         /*
16998          * No reason to send a segment, just return.
16999          */
17000 just_return:
17001         SOCKBUF_UNLOCK(sb);
17002 just_return_nolock:
17003         {
17004                 int app_limited = CTF_JR_SENT_DATA;
17005
17006                 if (tot_len_this_send > 0) {
17007                         /* Make sure snd_nxt is up to max */
17008                         rack->r_ctl.fsb.recwin = recwin;
17009                         slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz);
17010                         if ((error == 0) &&
17011                             rack_use_rfo &&
17012                             ((flags & (TH_SYN|TH_FIN)) == 0) &&
17013                             (ipoptlen == 0) &&
17014                             (tp->snd_nxt == tp->snd_max) &&
17015                             (tp->rcv_numsacks == 0) &&
17016                             rack->r_fsb_inited &&
17017                             TCPS_HAVEESTABLISHED(tp->t_state) &&
17018                             (rack->r_must_retran == 0) &&
17019                             ((tp->t_flags & TF_NEEDFIN) == 0) &&
17020                             (len > 0) && (orig_len > 0) &&
17021                             (orig_len > len) &&
17022                             ((orig_len - len) >= segsiz) &&
17023                             ((optlen == 0) ||
17024                              ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
17025                                 /* We can send at least one more MSS using our fsb */
17026
17027                                 rack->r_fast_output = 1;
17028                                 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
17029                                 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
17030                                 rack->r_ctl.fsb.tcp_flags = flags;
17031                                 rack->r_ctl.fsb.left_to_send = orig_len - len;
17032                                 KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
17033                                         ("rack:%p left_to_send:%u sbavail:%u out:%u",
17034                                         rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
17035                                          (tp->snd_max - tp->snd_una)));
17036                                 if (rack->r_ctl.fsb.left_to_send < segsiz)
17037                                         rack->r_fast_output = 0;
17038                                 else {
17039                                         if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
17040                                                 rack->r_ctl.fsb.rfo_apply_push = 1;
17041                                         else
17042                                                 rack->r_ctl.fsb.rfo_apply_push = 0;
17043                                 }
17044                         } else
17045                                 rack->r_fast_output = 0;
17046
17047
17048                         rack_log_fsb(rack, tp, so, flags,
17049                                      ipoptlen, orig_len, len, 0,
17050                                      1, optlen, __LINE__, 1);
17051                         if (SEQ_GT(tp->snd_max, tp->snd_nxt))
17052                                 tp->snd_nxt = tp->snd_max;
17053                 } else {
17054                         int end_window = 0;
17055                         uint32_t seq = tp->gput_ack;
17056
17057                         rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17058                         if (rsm) {
17059                                 /*
17060                                  * Mark the last sent that we just-returned (hinting
17061                                  * that delayed ack may play a role in any rtt measurement).
17062                                  */
17063                                 rsm->r_just_ret = 1;
17064                         }
17065                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
17066                         rack->r_ctl.rc_agg_delayed = 0;
17067                         rack->r_early = 0;
17068                         rack->r_late = 0;
17069                         rack->r_ctl.rc_agg_early = 0;
17070                         if ((ctf_outstanding(tp) +
17071                              min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)),
17072                                  minseg)) >= tp->snd_wnd) {
17073                                 /* We are limited by the rwnd */
17074                                 app_limited = CTF_JR_RWND_LIMITED;
17075                                 if (IN_FASTRECOVERY(tp->t_flags))
17076                                     rack->r_ctl.rc_prr_sndcnt = 0;
17077                         } else if (ctf_outstanding(tp) >= sbavail(sb)) {
17078                                 /* We are limited by whats available -- app limited */
17079                                 app_limited = CTF_JR_APP_LIMITED;
17080                                 if (IN_FASTRECOVERY(tp->t_flags))
17081                                     rack->r_ctl.rc_prr_sndcnt = 0;
17082                         } else if ((idle == 0) &&
17083                                    ((tp->t_flags & TF_NODELAY) == 0) &&
17084                                    ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) &&
17085                                    (len < segsiz)) {
17086                                 /*
17087                                  * No delay is not on and the
17088                                  * user is sending less than 1MSS. This
17089                                  * brings out SWS avoidance so we
17090                                  * don't send. Another app-limited case.
17091                                  */
17092                                 app_limited = CTF_JR_APP_LIMITED;
17093                         } else if (tp->t_flags & TF_NOPUSH) {
17094                                 /*
17095                                  * The user has requested no push of
17096                                  * the last segment and we are
17097                                  * at the last segment. Another app
17098                                  * limited case.
17099                                  */
17100                                 app_limited = CTF_JR_APP_LIMITED;
17101                         } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) {
17102                                 /* Its the cwnd */
17103                                 app_limited = CTF_JR_CWND_LIMITED;
17104                         } else if (IN_FASTRECOVERY(tp->t_flags) &&
17105                                    (rack->rack_no_prr == 0) &&
17106                                    (rack->r_ctl.rc_prr_sndcnt < segsiz)) {
17107                                 app_limited = CTF_JR_PRR;
17108                         } else {
17109                                 /* Now why here are we not sending? */
17110 #ifdef NOW
17111 #ifdef INVARIANTS
17112                                 panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use);
17113 #endif
17114 #endif
17115                                 app_limited = CTF_JR_ASSESSING;
17116                         }
17117                         /*
17118                          * App limited in some fashion, for our pacing GP
17119                          * measurements we don't want any gap (even cwnd).
17120                          * Close  down the measurement window.
17121                          */
17122                         if (rack_cwnd_block_ends_measure &&
17123                             ((app_limited == CTF_JR_CWND_LIMITED) ||
17124                              (app_limited == CTF_JR_PRR))) {
17125                                 /*
17126                                  * The reason we are not sending is
17127                                  * the cwnd (or prr). We have been configured
17128                                  * to end the measurement window in
17129                                  * this case.
17130                                  */
17131                                 end_window = 1;
17132                         } else if (rack_rwnd_block_ends_measure &&
17133                                    (app_limited == CTF_JR_RWND_LIMITED)) {
17134                                 /*
17135                                  * We are rwnd limited and have been
17136                                  * configured to end the measurement
17137                                  * window in this case.
17138                                  */
17139                                 end_window = 1;
17140                         } else if (app_limited == CTF_JR_APP_LIMITED) {
17141                                 /*
17142                                  * A true application limited period, we have
17143                                  * ran out of data.
17144                                  */
17145                                 end_window = 1;
17146                         } else if (app_limited == CTF_JR_ASSESSING) {
17147                                 /*
17148                                  * In the assessing case we hit the end of
17149                                  * the if/else and had no known reason
17150                                  * This will panic us under invariants..
17151                                  *
17152                                  * If we get this out in logs we need to
17153                                  * investagate which reason we missed.
17154                                  */
17155                                 end_window = 1;
17156                         }
17157                         if (end_window) {
17158                                 uint8_t log = 0;
17159
17160                                 if ((tp->t_flags & TF_GPUTINPROG) &&
17161                                     SEQ_GT(tp->gput_ack, tp->snd_max)) {
17162                                         /* Mark the last packet has app limited */
17163                                         tp->gput_ack = tp->snd_max;
17164                                         log = 1;
17165                                 }
17166                                 rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
17167                                 if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) {
17168                                         if (rack->r_ctl.rc_app_limited_cnt == 0)
17169                                                 rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm;
17170                                         else {
17171                                                 /*
17172                                                  * Go out to the end app limited and mark
17173                                                  * this new one as next and move the end_appl up
17174                                                  * to this guy.
17175                                                  */
17176                                                 if (rack->r_ctl.rc_end_appl)
17177                                                         rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start;
17178                                                 rack->r_ctl.rc_end_appl = rsm;
17179                                         }
17180                                         rsm->r_flags |= RACK_APP_LIMITED;
17181                                         rack->r_ctl.rc_app_limited_cnt++;
17182                                 }
17183                                 if (log)
17184                                         rack_log_pacing_delay_calc(rack,
17185                                                                    rack->r_ctl.rc_app_limited_cnt, seq,
17186                                                                    tp->gput_ack, 0, 0, 4, __LINE__, NULL);
17187                         }
17188                 }
17189                 if (slot) {
17190                         /* set the rack tcb into the slot N */
17191                         counter_u64_add(rack_paced_segments, 1);
17192                 } else if (tot_len_this_send) {
17193                         counter_u64_add(rack_unpaced_segments, 1);
17194                 }
17195                 /* Check if we need to go into persists or not */
17196                 if ((tp->snd_max == tp->snd_una) &&
17197                     TCPS_HAVEESTABLISHED(tp->t_state) &&
17198                     sbavail(sb) &&
17199                     (sbavail(sb) > tp->snd_wnd) &&
17200                     (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) {
17201                         /* Yes lets make sure to move to persist before timer-start */
17202                         rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
17203                 }
17204                 rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
17205                 rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use);
17206         }
17207 #ifdef NETFLIX_SHARED_CWND
17208         if ((sbavail(sb) == 0) &&
17209             rack->r_ctl.rc_scw) {
17210                 tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index);
17211                 rack->rack_scwnd_is_idle = 1;
17212         }
17213 #endif
17214 #ifdef TCP_ACCOUNTING
17215         if (tot_len_this_send > 0) {
17216                 crtsc = get_cyclecount();
17217                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17218                         tp->tcp_cnt_counters[SND_OUT_DATA]++;
17219                 }
17220                 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
17221                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17222                         tp->tcp_proc_time[SND_OUT_DATA] += (crtsc - ts_val);
17223                 }
17224                 counter_u64_add(tcp_proc_time[SND_OUT_DATA], (crtsc - ts_val));
17225                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17226                         tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) / segsiz);
17227                 }
17228                 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) / segsiz));
17229         } else {
17230                 crtsc = get_cyclecount();
17231                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17232                         tp->tcp_cnt_counters[SND_LIMITED]++;
17233                 }
17234                 counter_u64_add(tcp_cnt_counters[SND_LIMITED], 1);
17235                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17236                         tp->tcp_proc_time[SND_LIMITED] += (crtsc - ts_val);
17237                 }
17238                 counter_u64_add(tcp_proc_time[SND_LIMITED], (crtsc - ts_val));
17239         }
17240         sched_unpin();
17241 #endif
17242         return (0);
17243
17244 send:
17245         if (rsm || sack_rxmit)
17246                 counter_u64_add(rack_nfto_resend, 1);
17247         else
17248                 counter_u64_add(rack_non_fto_send, 1);
17249         if ((flags & TH_FIN) &&
17250             sbavail(sb)) {
17251                 /*
17252                  * We do not transmit a FIN
17253                  * with data outstanding. We
17254                  * need to make it so all data
17255                  * is acked first.
17256                  */
17257                 flags &= ~TH_FIN;
17258         }
17259         /* Enforce stack imposed max seg size if we have one */
17260         if (rack->r_ctl.rc_pace_max_segs &&
17261             (len > rack->r_ctl.rc_pace_max_segs)) {
17262                 mark = 1;
17263                 len = rack->r_ctl.rc_pace_max_segs;
17264         }
17265         SOCKBUF_LOCK_ASSERT(sb);
17266         if (len > 0) {
17267                 if (len >= segsiz)
17268                         tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
17269                 else
17270                         tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
17271         }
17272         /*
17273          * Before ESTABLISHED, force sending of initial options unless TCP
17274          * set not to do any options. NOTE: we assume that the IP/TCP header
17275          * plus TCP options always fit in a single mbuf, leaving room for a
17276          * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
17277          * + optlen <= MCLBYTES
17278          */
17279         optlen = 0;
17280 #ifdef INET6
17281         if (isipv6)
17282                 hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
17283         else
17284 #endif
17285                 hdrlen = sizeof(struct tcpiphdr);
17286
17287         /*
17288          * Compute options for segment. We only have to care about SYN and
17289          * established connection segments.  Options for SYN-ACK segments
17290          * are handled in TCP syncache.
17291          */
17292         to.to_flags = 0;
17293         if ((tp->t_flags & TF_NOOPT) == 0) {
17294                 /* Maximum segment size. */
17295                 if (flags & TH_SYN) {
17296                         tp->snd_nxt = tp->iss;
17297                         to.to_mss = tcp_mssopt(&inp->inp_inc);
17298                         if (tp->t_port)
17299                                 to.to_mss -= V_tcp_udp_tunneling_overhead;
17300                         to.to_flags |= TOF_MSS;
17301
17302                         /*
17303                          * On SYN or SYN|ACK transmits on TFO connections,
17304                          * only include the TFO option if it is not a
17305                          * retransmit, as the presence of the TFO option may
17306                          * have caused the original SYN or SYN|ACK to have
17307                          * been dropped by a middlebox.
17308                          */
17309                         if (IS_FASTOPEN(tp->t_flags) &&
17310                             (tp->t_rxtshift == 0)) {
17311                                 if (tp->t_state == TCPS_SYN_RECEIVED) {
17312                                         to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
17313                                         to.to_tfo_cookie =
17314                                                 (u_int8_t *)&tp->t_tfo_cookie.server;
17315                                         to.to_flags |= TOF_FASTOPEN;
17316                                         wanted_cookie = 1;
17317                                 } else if (tp->t_state == TCPS_SYN_SENT) {
17318                                         to.to_tfo_len =
17319                                                 tp->t_tfo_client_cookie_len;
17320                                         to.to_tfo_cookie =
17321                                                 tp->t_tfo_cookie.client;
17322                                         to.to_flags |= TOF_FASTOPEN;
17323                                         wanted_cookie = 1;
17324                                         /*
17325                                          * If we wind up having more data to
17326                                          * send with the SYN than can fit in
17327                                          * one segment, don't send any more
17328                                          * until the SYN|ACK comes back from
17329                                          * the other end.
17330                                          */
17331                                         sendalot = 0;
17332                                 }
17333                         }
17334                 }
17335                 /* Window scaling. */
17336                 if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
17337                         to.to_wscale = tp->request_r_scale;
17338                         to.to_flags |= TOF_SCALE;
17339                 }
17340                 /* Timestamps. */
17341                 if ((tp->t_flags & TF_RCVD_TSTMP) ||
17342                     ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
17343                         to.to_tsval = ms_cts + tp->ts_offset;
17344                         to.to_tsecr = tp->ts_recent;
17345                         to.to_flags |= TOF_TS;
17346                 }
17347                 /* Set receive buffer autosizing timestamp. */
17348                 if (tp->rfbuf_ts == 0 &&
17349                     (so->so_rcv.sb_flags & SB_AUTOSIZE))
17350                         tp->rfbuf_ts = tcp_ts_getticks();
17351                 /* Selective ACK's. */
17352                 if (tp->t_flags & TF_SACK_PERMIT) {
17353                         if (flags & TH_SYN)
17354                                 to.to_flags |= TOF_SACKPERM;
17355                         else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
17356                                  tp->rcv_numsacks > 0) {
17357                                 to.to_flags |= TOF_SACK;
17358                                 to.to_nsacks = tp->rcv_numsacks;
17359                                 to.to_sacks = (u_char *)tp->sackblks;
17360                         }
17361                 }
17362 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
17363                 /* TCP-MD5 (RFC2385). */
17364                 if (tp->t_flags & TF_SIGNATURE)
17365                         to.to_flags |= TOF_SIGNATURE;
17366 #endif                          /* TCP_SIGNATURE */
17367
17368                 /* Processing the options. */
17369                 hdrlen += optlen = tcp_addoptions(&to, opt);
17370                 /*
17371                  * If we wanted a TFO option to be added, but it was unable
17372                  * to fit, ensure no data is sent.
17373                  */
17374                 if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
17375                     !(to.to_flags & TOF_FASTOPEN))
17376                         len = 0;
17377         }
17378         if (tp->t_port) {
17379                 if (V_tcp_udp_tunneling_port == 0) {
17380                         /* The port was removed?? */
17381                         SOCKBUF_UNLOCK(&so->so_snd);
17382 #ifdef TCP_ACCOUNTING
17383                         crtsc = get_cyclecount();
17384                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17385                                 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
17386                         }
17387                         counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
17388                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
17389                                 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
17390                         }
17391                         counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
17392                         sched_unpin();
17393 #endif
17394                         return (EHOSTUNREACH);
17395                 }
17396                 hdrlen += sizeof(struct udphdr);
17397         }
17398 #ifdef INET6
17399         if (isipv6)
17400                 ipoptlen = ip6_optlen(tp->t_inpcb);
17401         else
17402 #endif
17403                 if (tp->t_inpcb->inp_options)
17404                         ipoptlen = tp->t_inpcb->inp_options->m_len -
17405                                 offsetof(struct ipoption, ipopt_list);
17406                 else
17407                         ipoptlen = 0;
17408 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
17409         ipoptlen += ipsec_optlen;
17410 #endif
17411
17412         /*
17413          * Adjust data length if insertion of options will bump the packet
17414          * length beyond the t_maxseg length. Clear the FIN bit because we
17415          * cut off the tail of the segment.
17416          */
17417         if (len + optlen + ipoptlen > tp->t_maxseg) {
17418                 if (tso) {
17419                         uint32_t if_hw_tsomax;
17420                         uint32_t moff;
17421                         int32_t max_len;
17422
17423                         /* extract TSO information */
17424                         if_hw_tsomax = tp->t_tsomax;
17425                         if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
17426                         if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
17427                         KASSERT(ipoptlen == 0,
17428                                 ("%s: TSO can't do IP options", __func__));
17429
17430                         /*
17431                          * Check if we should limit by maximum payload
17432                          * length:
17433                          */
17434                         if (if_hw_tsomax != 0) {
17435                                 /* compute maximum TSO length */
17436                                 max_len = (if_hw_tsomax - hdrlen -
17437                                            max_linkhdr);
17438                                 if (max_len <= 0) {
17439                                         len = 0;
17440                                 } else if (len > max_len) {
17441                                         sendalot = 1;
17442                                         len = max_len;
17443                                         mark = 2;
17444                                 }
17445                         }
17446                         /*
17447                          * Prevent the last segment from being fractional
17448                          * unless the send sockbuf can be emptied:
17449                          */
17450                         max_len = (tp->t_maxseg - optlen);
17451                         if ((sb_offset + len) < sbavail(sb)) {
17452                                 moff = len % (u_int)max_len;
17453                                 if (moff != 0) {
17454                                         mark = 3;
17455                                         len -= moff;
17456                                 }
17457                         }
17458                         /*
17459                          * In case there are too many small fragments don't
17460                          * use TSO:
17461                          */
17462                         if (len <= segsiz) {
17463                                 mark = 4;
17464                                 tso = 0;
17465                         }
17466                         /*
17467                          * Send the FIN in a separate segment after the bulk
17468                          * sending is done. We don't trust the TSO
17469                          * implementations to clear the FIN flag on all but
17470                          * the last segment.
17471                          */
17472                         if (tp->t_flags & TF_NEEDFIN) {
17473                                 sendalot = 4;
17474                         }
17475                 } else {
17476                         mark = 5;
17477                         if (optlen + ipoptlen >= tp->t_maxseg) {
17478                                 /*
17479                                  * Since we don't have enough space to put
17480                                  * the IP header chain and the TCP header in
17481                                  * one packet as required by RFC 7112, don't
17482                                  * send it. Also ensure that at least one
17483                                  * byte of the payload can be put into the
17484                                  * TCP segment.
17485                                  */
17486                                 SOCKBUF_UNLOCK(&so->so_snd);
17487                                 error = EMSGSIZE;
17488                                 sack_rxmit = 0;
17489                                 goto out;
17490                         }
17491                         len = tp->t_maxseg - optlen - ipoptlen;
17492                         sendalot = 5;
17493                 }
17494         } else {
17495                 tso = 0;
17496                 mark = 6;
17497         }
17498         KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
17499                 ("%s: len > IP_MAXPACKET", __func__));
17500 #ifdef DIAGNOSTIC
17501 #ifdef INET6
17502         if (max_linkhdr + hdrlen > MCLBYTES)
17503 #else
17504                 if (max_linkhdr + hdrlen > MHLEN)
17505 #endif
17506                         panic("tcphdr too big");
17507 #endif
17508
17509         /*
17510          * This KASSERT is here to catch edge cases at a well defined place.
17511          * Before, those had triggered (random) panic conditions further
17512          * down.
17513          */
17514         KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
17515         if ((len == 0) &&
17516             (flags & TH_FIN) &&
17517             (sbused(sb))) {
17518                 /*
17519                  * We have outstanding data, don't send a fin by itself!.
17520                  */
17521                 goto just_return;
17522         }
17523         /*
17524          * Grab a header mbuf, attaching a copy of data to be transmitted,
17525          * and initialize the header from the template for sends on this
17526          * connection.
17527          */
17528         hw_tls = (sb->sb_flags & SB_TLS_IFNET) != 0;
17529         if (len) {
17530                 uint32_t max_val;
17531                 uint32_t moff;
17532
17533                 if (rack->r_ctl.rc_pace_max_segs)
17534                         max_val = rack->r_ctl.rc_pace_max_segs;
17535                 else if (rack->rc_user_set_max_segs)
17536                         max_val = rack->rc_user_set_max_segs * segsiz;
17537                 else
17538                         max_val = len;
17539                 /*
17540                  * We allow a limit on sending with hptsi.
17541                  */
17542                 if (len > max_val) {
17543                         mark = 7;
17544                         len = max_val;
17545                 }
17546 #ifdef INET6
17547                 if (MHLEN < hdrlen + max_linkhdr)
17548                         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
17549                 else
17550 #endif
17551                         m = m_gethdr(M_NOWAIT, MT_DATA);
17552
17553                 if (m == NULL) {
17554                         SOCKBUF_UNLOCK(sb);
17555                         error = ENOBUFS;
17556                         sack_rxmit = 0;
17557                         goto out;
17558                 }
17559                 m->m_data += max_linkhdr;
17560                 m->m_len = hdrlen;
17561
17562                 /*
17563                  * Start the m_copy functions from the closest mbuf to the
17564                  * sb_offset in the socket buffer chain.
17565                  */
17566                 mb = sbsndptr_noadv(sb, sb_offset, &moff);
17567                 s_mb = mb;
17568                 s_moff = moff;
17569                 if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
17570                         m_copydata(mb, moff, (int)len,
17571                                    mtod(m, caddr_t)+hdrlen);
17572                         if (SEQ_LT(tp->snd_nxt, tp->snd_max))
17573                                 sbsndptr_adv(sb, mb, len);
17574                         m->m_len += len;
17575                 } else {
17576                         struct sockbuf *msb;
17577
17578                         if (SEQ_LT(tp->snd_nxt, tp->snd_max))
17579                                 msb = NULL;
17580                         else
17581                                 msb = sb;
17582                         m->m_next = tcp_m_copym(
17583                                 mb, moff, &len,
17584                                 if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
17585                                 ((rsm == NULL) ? hw_tls : 0)
17586 #ifdef NETFLIX_COPY_ARGS
17587                                 , &filled_all
17588 #endif
17589                                 );
17590                         if (len <= (tp->t_maxseg - optlen)) {
17591                                 /*
17592                                  * Must have ran out of mbufs for the copy
17593                                  * shorten it to no longer need tso. Lets
17594                                  * not put on sendalot since we are low on
17595                                  * mbufs.
17596                                  */
17597                                 tso = 0;
17598                         }
17599                         if (m->m_next == NULL) {
17600                                 SOCKBUF_UNLOCK(sb);
17601                                 (void)m_free(m);
17602                                 error = ENOBUFS;
17603                                 sack_rxmit = 0;
17604                                 goto out;
17605                         }
17606                 }
17607                 if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
17608                         if (rsm && (rsm->r_flags & RACK_TLP)) {
17609                                 /*
17610                                  * TLP should not count in retran count, but
17611                                  * in its own bin
17612                                  */
17613                                 counter_u64_add(rack_tlp_retran, 1);
17614                                 counter_u64_add(rack_tlp_retran_bytes, len);
17615                         } else {
17616                                 tp->t_sndrexmitpack++;
17617                                 KMOD_TCPSTAT_INC(tcps_sndrexmitpack);
17618                                 KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len);
17619                         }
17620 #ifdef STATS
17621                         stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
17622                                                  len);
17623 #endif
17624                 } else {
17625                         KMOD_TCPSTAT_INC(tcps_sndpack);
17626                         KMOD_TCPSTAT_ADD(tcps_sndbyte, len);
17627 #ifdef STATS
17628                         stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
17629                                                  len);
17630 #endif
17631                 }
17632                 /*
17633                  * If we're sending everything we've got, set PUSH. (This
17634                  * will keep happy those implementations which only give
17635                  * data to the user when a buffer fills or a PUSH comes in.)
17636                  */
17637                 if (sb_offset + len == sbused(sb) &&
17638                     sbused(sb) &&
17639                     !(flags & TH_SYN)) {
17640                         flags |= TH_PUSH;
17641                         add_flag |= RACK_HAD_PUSH;
17642                 }
17643
17644                 SOCKBUF_UNLOCK(sb);
17645         } else {
17646                 SOCKBUF_UNLOCK(sb);
17647                 if (tp->t_flags & TF_ACKNOW)
17648                         KMOD_TCPSTAT_INC(tcps_sndacks);
17649                 else if (flags & (TH_SYN | TH_FIN | TH_RST))
17650                         KMOD_TCPSTAT_INC(tcps_sndctrl);
17651                 else
17652                         KMOD_TCPSTAT_INC(tcps_sndwinup);
17653
17654                 m = m_gethdr(M_NOWAIT, MT_DATA);
17655                 if (m == NULL) {
17656                         error = ENOBUFS;
17657                         sack_rxmit = 0;
17658                         goto out;
17659                 }
17660 #ifdef INET6
17661                 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
17662                     MHLEN >= hdrlen) {
17663                         M_ALIGN(m, hdrlen);
17664                 } else
17665 #endif
17666                         m->m_data += max_linkhdr;
17667                 m->m_len = hdrlen;
17668         }
17669         SOCKBUF_UNLOCK_ASSERT(sb);
17670         m->m_pkthdr.rcvif = (struct ifnet *)0;
17671 #ifdef MAC
17672         mac_inpcb_create_mbuf(inp, m);
17673 #endif
17674         if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) &&  rack->r_fsb_inited) {
17675 #ifdef INET6
17676                 if (isipv6)
17677                         ip6 = (struct ip6_hdr *)rack->r_ctl.fsb.tcp_ip_hdr;
17678                 else
17679 #endif                          /* INET6 */
17680                         ip = (struct ip *)rack->r_ctl.fsb.tcp_ip_hdr;
17681                 th = rack->r_ctl.fsb.th;
17682                 udp = rack->r_ctl.fsb.udp;
17683                 if (udp) {
17684 #ifdef INET6
17685                         if (isipv6)
17686                                 ulen = hdrlen + len - sizeof(struct ip6_hdr);
17687                         else
17688 #endif                          /* INET6 */
17689                                 ulen = hdrlen + len - sizeof(struct ip);
17690                         udp->uh_ulen = htons(ulen);
17691                 }
17692         } else {
17693 #ifdef INET6
17694                 if (isipv6) {
17695                         ip6 = mtod(m, struct ip6_hdr *);
17696                         if (tp->t_port) {
17697                                 udp = (struct udphdr *)((caddr_t)ip6 + sizeof(struct ip6_hdr));
17698                                 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
17699                                 udp->uh_dport = tp->t_port;
17700                                 ulen = hdrlen + len - sizeof(struct ip6_hdr);
17701                                 udp->uh_ulen = htons(ulen);
17702                                 th = (struct tcphdr *)(udp + 1);
17703                         } else
17704                                 th = (struct tcphdr *)(ip6 + 1);
17705                         tcpip_fillheaders(inp, tp->t_port, ip6, th);
17706                 } else
17707 #endif                          /* INET6 */
17708                 {
17709                         ip = mtod(m, struct ip *);
17710 #ifdef TCPDEBUG
17711                         ipov = (struct ipovly *)ip;
17712 #endif
17713                         if (tp->t_port) {
17714                                 udp = (struct udphdr *)((caddr_t)ip + sizeof(struct ip));
17715                                 udp->uh_sport = htons(V_tcp_udp_tunneling_port);
17716                                 udp->uh_dport = tp->t_port;
17717                                 ulen = hdrlen + len - sizeof(struct ip);
17718                                 udp->uh_ulen = htons(ulen);
17719                                 th = (struct tcphdr *)(udp + 1);
17720                         } else
17721                                 th = (struct tcphdr *)(ip + 1);
17722                         tcpip_fillheaders(inp, tp->t_port, ip, th);
17723                 }
17724         }
17725         /*
17726          * Fill in fields, remembering maximum advertised window for use in
17727          * delaying messages about window sizes. If resending a FIN, be sure
17728          * not to use a new sequence number.
17729          */
17730         if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
17731             tp->snd_nxt == tp->snd_max)
17732                 tp->snd_nxt--;
17733         /*
17734          * If we are starting a connection, send ECN setup SYN packet. If we
17735          * are on a retransmit, we may resend those bits a number of times
17736          * as per RFC 3168.
17737          */
17738         if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
17739                 if (tp->t_rxtshift >= 1) {
17740                         if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
17741                                 flags |= TH_ECE | TH_CWR;
17742                 } else
17743                         flags |= TH_ECE | TH_CWR;
17744         }
17745         /* Handle parallel SYN for ECN */
17746         if ((tp->t_state == TCPS_SYN_RECEIVED) &&
17747             (tp->t_flags2 & TF2_ECN_SND_ECE)) {
17748                 flags |= TH_ECE;
17749                 tp->t_flags2 &= ~TF2_ECN_SND_ECE;
17750         }
17751         if (TCPS_HAVEESTABLISHED(tp->t_state) &&
17752             (tp->t_flags2 & TF2_ECN_PERMIT)) {
17753                 /*
17754                  * If the peer has ECN, mark data packets with ECN capable
17755                  * transmission (ECT). Ignore pure ack packets,
17756                  * retransmissions.
17757                  */
17758                 if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
17759                     (sack_rxmit == 0)) {
17760 #ifdef INET6
17761                         if (isipv6)
17762                                 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
17763                         else
17764 #endif
17765                                 ip->ip_tos |= IPTOS_ECN_ECT0;
17766                         KMOD_TCPSTAT_INC(tcps_ecn_ect0);
17767                         /*
17768                          * Reply with proper ECN notifications.
17769                          * Only set CWR on new data segments.
17770                          */
17771                         if (tp->t_flags2 & TF2_ECN_SND_CWR) {
17772                                 flags |= TH_CWR;
17773                                 tp->t_flags2 &= ~TF2_ECN_SND_CWR;
17774                         }
17775                 }
17776                 if (tp->t_flags2 & TF2_ECN_SND_ECE)
17777                         flags |= TH_ECE;
17778         }
17779         /*
17780          * If we are doing retransmissions, then snd_nxt will not reflect
17781          * the first unsent octet.  For ACK only packets, we do not want the
17782          * sequence number of the retransmitted packet, we want the sequence
17783          * number of the next unsent octet.  So, if there is no data (and no
17784          * SYN or FIN), use snd_max instead of snd_nxt when filling in
17785          * ti_seq.  But if we are in persist state, snd_max might reflect
17786          * one byte beyond the right edge of the window, so use snd_nxt in
17787          * that case, since we know we aren't doing a retransmission.
17788          * (retransmit and persist are mutually exclusive...)
17789          */
17790         if (sack_rxmit == 0) {
17791                 if (len || (flags & (TH_SYN | TH_FIN))) {
17792                         th->th_seq = htonl(tp->snd_nxt);
17793                         rack_seq = tp->snd_nxt;
17794                 } else {
17795                         th->th_seq = htonl(tp->snd_max);
17796                         rack_seq = tp->snd_max;
17797                 }
17798         } else {
17799                 th->th_seq = htonl(rsm->r_start);
17800                 rack_seq = rsm->r_start;
17801         }
17802         th->th_ack = htonl(tp->rcv_nxt);
17803         th->th_flags = flags;
17804         /*
17805          * Calculate receive window.  Don't shrink window, but avoid silly
17806          * window syndrome.
17807          * If a RST segment is sent, advertise a window of zero.
17808          */
17809         if (flags & TH_RST) {
17810                 recwin = 0;
17811         } else {
17812                 if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
17813                     recwin < (long)segsiz) {
17814                         recwin = 0;
17815                 }
17816                 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
17817                     recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
17818                         recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
17819         }
17820
17821         /*
17822          * According to RFC1323 the window field in a SYN (i.e., a <SYN> or
17823          * <SYN,ACK>) segment itself is never scaled.  The <SYN,ACK> case is
17824          * handled in syncache.
17825          */
17826         if (flags & TH_SYN)
17827                 th->th_win = htons((u_short)
17828                                    (min(sbspace(&so->so_rcv), TCP_MAXWIN)));
17829         else {
17830                 /* Avoid shrinking window with window scaling. */
17831                 recwin = roundup2(recwin, 1 << tp->rcv_scale);
17832                 th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
17833         }
17834         /*
17835          * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
17836          * window.  This may cause the remote transmitter to stall.  This
17837          * flag tells soreceive() to disable delayed acknowledgements when
17838          * draining the buffer.  This can occur if the receiver is
17839          * attempting to read more data than can be buffered prior to
17840          * transmitting on the connection.
17841          */
17842         if (th->th_win == 0) {
17843                 tp->t_sndzerowin++;
17844                 tp->t_flags |= TF_RXWIN0SENT;
17845         } else
17846                 tp->t_flags &= ~TF_RXWIN0SENT;
17847         tp->snd_up = tp->snd_una;       /* drag it along, its deprecated */
17848         /* Now are we using fsb?, if so copy the template data to the mbuf */
17849         if ((ipoptlen == 0) && (rack->r_ctl.fsb.tcp_ip_hdr) && rack->r_fsb_inited) {
17850                 uint8_t *cpto;
17851
17852                 cpto = mtod(m, uint8_t *);
17853                 memcpy(cpto, rack->r_ctl.fsb.tcp_ip_hdr, rack->r_ctl.fsb.tcp_ip_hdr_len);
17854                 /*
17855                  * We have just copied in:
17856                  * IP/IP6
17857                  * <optional udphdr>
17858                  * tcphdr (no options)
17859                  *
17860                  * We need to grab the correct pointers into the mbuf
17861                  * for both the tcp header, and possibly the udp header (if tunneling).
17862                  * We do this by using the offset in the copy buffer and adding it
17863                  * to the mbuf base pointer (cpto).
17864                  */
17865 #ifdef INET6
17866                 if (isipv6)
17867                         ip6 = mtod(m, struct ip6_hdr *);
17868                 else
17869 #endif                          /* INET6 */
17870                         ip = mtod(m, struct ip *);
17871                 th = (struct tcphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.th - rack->r_ctl.fsb.tcp_ip_hdr));
17872                 /* If we have a udp header lets set it into the mbuf as well */
17873                 if (udp)
17874                         udp = (struct udphdr *)(cpto + ((uint8_t *)rack->r_ctl.fsb.udp - rack->r_ctl.fsb.tcp_ip_hdr));
17875         }
17876 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
17877         if (to.to_flags & TOF_SIGNATURE) {
17878                 /*
17879                  * Calculate MD5 signature and put it into the place
17880                  * determined before.
17881                  * NOTE: since TCP options buffer doesn't point into
17882                  * mbuf's data, calculate offset and use it.
17883                  */
17884                 if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
17885                                                        (u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
17886                         /*
17887                          * Do not send segment if the calculation of MD5
17888                          * digest has failed.
17889                          */
17890                         goto out;
17891                 }
17892         }
17893 #endif
17894         if (optlen) {
17895                 bcopy(opt, th + 1, optlen);
17896                 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
17897         }
17898         /*
17899          * Put TCP length in extended header, and then checksum extended
17900          * header and data.
17901          */
17902         m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
17903 #ifdef INET6
17904         if (isipv6) {
17905                 /*
17906                  * ip6_plen is not need to be filled now, and will be filled
17907                  * in ip6_output.
17908                  */
17909                 if (tp->t_port) {
17910                         m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
17911                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
17912                         udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
17913                         th->th_sum = htons(0);
17914                         UDPSTAT_INC(udps_opackets);
17915                 } else {
17916                         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
17917                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
17918                         th->th_sum = in6_cksum_pseudo(ip6,
17919                                                       sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
17920                                                       0);
17921                 }
17922         }
17923 #endif
17924 #if defined(INET6) && defined(INET)
17925         else
17926 #endif
17927 #ifdef INET
17928         {
17929                 if (tp->t_port) {
17930                         m->m_pkthdr.csum_flags = CSUM_UDP;
17931                         m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
17932                         udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
17933                                                 ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
17934                         th->th_sum = htons(0);
17935                         UDPSTAT_INC(udps_opackets);
17936                 } else {
17937                         m->m_pkthdr.csum_flags = CSUM_TCP;
17938                         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
17939                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
17940                                                ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
17941                                                                         IPPROTO_TCP + len + optlen));
17942                 }
17943                 /* IP version must be set here for ipv4/ipv6 checking later */
17944                 KASSERT(ip->ip_v == IPVERSION,
17945                         ("%s: IP version incorrect: %d", __func__, ip->ip_v));
17946         }
17947 #endif
17948         /*
17949          * Enable TSO and specify the size of the segments. The TCP pseudo
17950          * header checksum is always provided. XXX: Fixme: This is currently
17951          * not the case for IPv6.
17952          */
17953         if (tso) {
17954                 KASSERT(len > tp->t_maxseg - optlen,
17955                         ("%s: len <= tso_segsz", __func__));
17956                 m->m_pkthdr.csum_flags |= CSUM_TSO;
17957                 m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
17958         }
17959         KASSERT(len + hdrlen == m_length(m, NULL),
17960                 ("%s: mbuf chain different than expected: %d + %u != %u",
17961                  __func__, len, hdrlen, m_length(m, NULL)));
17962
17963 #ifdef TCP_HHOOK
17964         /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
17965         hhook_run_tcp_est_out(tp, th, &to, len, tso);
17966 #endif
17967         /* We're getting ready to send; log now. */
17968         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
17969                 union tcp_log_stackspecific log;
17970
17971                 memset(&log.u_bbr, 0, sizeof(log.u_bbr));
17972                 log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
17973                 log.u_bbr.ininput = rack->rc_inp->inp_in_input;
17974                 if (rack->rack_no_prr)
17975                         log.u_bbr.flex1 = 0;
17976                 else
17977                         log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
17978                 log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
17979                 log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
17980                 log.u_bbr.flex4 = orig_len;
17981                 if (filled_all)
17982                         log.u_bbr.flex5 = 0x80000000;
17983                 else
17984                         log.u_bbr.flex5 = 0;
17985                 /* Save off the early/late values */
17986                 log.u_bbr.flex6 = rack->r_ctl.rc_agg_early;
17987                 log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed;
17988                 log.u_bbr.bw_inuse = rack_get_bw(rack);
17989                 if (rsm || sack_rxmit) {
17990                         if (doing_tlp)
17991                                 log.u_bbr.flex8 = 2;
17992                         else
17993                                 log.u_bbr.flex8 = 1;
17994                 } else {
17995                         log.u_bbr.flex8 = 0;
17996                 }
17997                 log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm);
17998                 log.u_bbr.flex7 = mark;
17999                 log.u_bbr.flex7 <<= 8;
18000                 log.u_bbr.flex7 |= pass;
18001                 log.u_bbr.pkts_out = tp->t_maxseg;
18002                 log.u_bbr.timeStamp = cts;
18003                 log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
18004                 log.u_bbr.lt_epoch = cwnd_to_use;
18005                 log.u_bbr.delivered = sendalot;
18006                 lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
18007                                      len, &log, false, NULL, NULL, 0, &tv);
18008         } else
18009                 lgb = NULL;
18010
18011         /*
18012          * Fill in IP length and desired time to live and send to IP level.
18013          * There should be a better way to handle ttl and tos; we could keep
18014          * them in the template, but need a way to checksum without them.
18015          */
18016         /*
18017          * m->m_pkthdr.len should have been set before cksum calcuration,
18018          * because in6_cksum() need it.
18019          */
18020 #ifdef INET6
18021         if (isipv6) {
18022                 /*
18023                  * we separately set hoplimit for every segment, since the
18024                  * user might want to change the value via setsockopt. Also,
18025                  * desired default hop limit might be changed via Neighbor
18026                  * Discovery.
18027                  */
18028                 rack->r_ctl.fsb.hoplimit = ip6->ip6_hlim = in6_selecthlim(inp, NULL);
18029
18030                 /*
18031                  * Set the packet size here for the benefit of DTrace
18032                  * probes. ip6_output() will set it properly; it's supposed
18033                  * to include the option header lengths as well.
18034                  */
18035                 ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
18036
18037                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
18038                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18039                 else
18040                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18041
18042                 if (tp->t_state == TCPS_SYN_SENT)
18043                         TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
18044
18045                 TCP_PROBE5(send, NULL, tp, ip6, tp, th);
18046                 /* TODO: IPv6 IP6TOS_ECT bit on */
18047                 error = ip6_output(m,
18048 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18049                                    inp->in6p_outputopts,
18050 #else
18051                                    NULL,
18052 #endif
18053                                    &inp->inp_route6,
18054                                    ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0),
18055                                    NULL, NULL, inp);
18056
18057                 if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL)
18058                         mtu = inp->inp_route6.ro_nh->nh_mtu;
18059         }
18060 #endif                          /* INET6 */
18061 #if defined(INET) && defined(INET6)
18062         else
18063 #endif
18064 #ifdef INET
18065         {
18066                 ip->ip_len = htons(m->m_pkthdr.len);
18067 #ifdef INET6
18068                 if (inp->inp_vflag & INP_IPV6PROTO)
18069                         ip->ip_ttl = in6_selecthlim(inp, NULL);
18070 #endif                          /* INET6 */
18071                 rack->r_ctl.fsb.hoplimit = ip->ip_ttl;
18072                 /*
18073                  * If we do path MTU discovery, then we set DF on every
18074                  * packet. This might not be the best thing to do according
18075                  * to RFC3390 Section 2. However the tcp hostcache migitates
18076                  * the problem so it affects only the first tcp connection
18077                  * with a host.
18078                  *
18079                  * NB: Don't set DF on small MTU/MSS to have a safe
18080                  * fallback.
18081                  */
18082                 if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
18083                         tp->t_flags2 |= TF2_PLPMTU_PMTUD;
18084                         if (tp->t_port == 0 || len < V_tcp_minmss) {
18085                                 ip->ip_off |= htons(IP_DF);
18086                         }
18087                 } else {
18088                         tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
18089                 }
18090
18091                 if (tp->t_state == TCPS_SYN_SENT)
18092                         TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
18093
18094                 TCP_PROBE5(send, NULL, tp, ip, tp, th);
18095
18096                 error = ip_output(m,
18097 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
18098                                   inp->inp_options,
18099 #else
18100                                   NULL,
18101 #endif
18102                                   &inp->inp_route,
18103                                   ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0,
18104                                   inp);
18105                 if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL)
18106                         mtu = inp->inp_route.ro_nh->nh_mtu;
18107         }
18108 #endif                          /* INET */
18109
18110 out:
18111         if (lgb) {
18112                 lgb->tlb_errno = error;
18113                 lgb = NULL;
18114         }
18115         /*
18116          * In transmit state, time the transmission and arrange for the
18117          * retransmit.  In persist state, just set snd_max.
18118          */
18119         if (error == 0) {
18120                 tcp_account_for_send(tp, len, (rsm != NULL), doing_tlp);
18121                 rack->forced_ack = 0;   /* If we send something zap the FA flag */
18122                 if (rsm && (doing_tlp == 0)) {
18123                         /* Set we retransmitted */
18124                         rack->rc_gp_saw_rec = 1;
18125                 } else {
18126                         if (cwnd_to_use > tp->snd_ssthresh) {
18127                                 /* Set we sent in CA */
18128                                 rack->rc_gp_saw_ca = 1;
18129                         } else {
18130                                 /* Set we sent in SS */
18131                                 rack->rc_gp_saw_ss = 1;
18132                         }
18133                 }
18134                 if (TCPS_HAVEESTABLISHED(tp->t_state) &&
18135                     (tp->t_flags & TF_SACK_PERMIT) &&
18136                     tp->rcv_numsacks > 0)
18137                         tcp_clean_dsack_blocks(tp);
18138                 tot_len_this_send += len;
18139                 if (len == 0)
18140                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
18141                 else if (len == 1) {
18142                         counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
18143                 } else if (len > 1) {
18144                         int idx;
18145
18146                         idx = (len / segsiz) + 3;
18147                         if (idx >= TCP_MSS_ACCT_ATIMER)
18148                                 counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
18149                         else
18150                                 counter_u64_add(rack_out_size[idx], 1);
18151                 }
18152         }
18153         if ((rack->rack_no_prr == 0) &&
18154             sub_from_prr &&
18155             (error == 0)) {
18156                 if (rack->r_ctl.rc_prr_sndcnt >= len)
18157                         rack->r_ctl.rc_prr_sndcnt -= len;
18158                 else
18159                         rack->r_ctl.rc_prr_sndcnt = 0;
18160         }
18161         sub_from_prr = 0;
18162         if (doing_tlp && (rsm == NULL)) {
18163                 /* New send doing a TLP */
18164                 add_flag |= RACK_TLP;
18165         }
18166         rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error,
18167                         rack_to_usec_ts(&tv),
18168                         rsm, add_flag, s_mb, s_moff);
18169
18170
18171         if ((error == 0) &&
18172             (len > 0) &&
18173             (tp->snd_una == tp->snd_max))
18174                 rack->r_ctl.rc_tlp_rxt_last_time = cts;
18175         {
18176                 tcp_seq startseq = tp->snd_nxt;
18177
18178                 /* Track our lost count */
18179                 if (rsm && (doing_tlp == 0))
18180                         rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start;
18181                 /*
18182                  * Advance snd_nxt over sequence space of this segment.
18183                  */
18184                 if (error)
18185                         /* We don't log or do anything with errors */
18186                         goto nomore;
18187                 if (doing_tlp == 0) {
18188                         if (rsm == NULL) {
18189                                 /*
18190                                  * Not a retransmission of some
18191                                  * sort, new data is going out so
18192                                  * clear our TLP count and flag.
18193                                  */
18194                                 rack->rc_tlp_in_progress = 0;
18195                                 rack->r_ctl.rc_tlp_cnt_out = 0;
18196                         }
18197                 } else {
18198                         /*
18199                          * We have just sent a TLP, mark that it is true
18200                          * and make sure our in progress is set so we
18201                          * continue to check the count.
18202                          */
18203                         rack->rc_tlp_in_progress = 1;
18204                         rack->r_ctl.rc_tlp_cnt_out++;
18205                 }
18206                 if (flags & (TH_SYN | TH_FIN)) {
18207                         if (flags & TH_SYN)
18208                                 tp->snd_nxt++;
18209                         if (flags & TH_FIN) {
18210                                 tp->snd_nxt++;
18211                                 tp->t_flags |= TF_SENTFIN;
18212                         }
18213                 }
18214                 /* In the ENOBUFS case we do *not* update snd_max */
18215                 if (sack_rxmit)
18216                         goto nomore;
18217
18218                 tp->snd_nxt += len;
18219                 if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
18220                         if (tp->snd_una == tp->snd_max) {
18221                                 /*
18222                                  * Update the time we just added data since
18223                                  * none was outstanding.
18224                                  */
18225                                 rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
18226                                 tp->t_acktime = ticks;
18227                         }
18228                         tp->snd_max = tp->snd_nxt;
18229                         /*
18230                          * Time this transmission if not a retransmission and
18231                          * not currently timing anything.
18232                          * This is only relevant in case of switching back to
18233                          * the base stack.
18234                          */
18235                         if (tp->t_rtttime == 0) {
18236                                 tp->t_rtttime = ticks;
18237                                 tp->t_rtseq = startseq;
18238                                 KMOD_TCPSTAT_INC(tcps_segstimed);
18239                         }
18240                         if (len &&
18241                             ((tp->t_flags & TF_GPUTINPROG) == 0))
18242                                 rack_start_gp_measurement(tp, rack, startseq, sb_offset);
18243                 }
18244                 /*
18245                  * If we are doing FO we need to update the mbuf position and subtract
18246                  * this happens when the peer sends us duplicate information and
18247                  * we thus want to send a DSACK.
18248                  *
18249                  * XXXRRS: This brings to mind a ?, when we send a DSACK block is TSO
18250                  * turned off? If not then we are going to echo multiple DSACK blocks
18251                  * out (with the TSO), which we should not be doing.
18252                  */
18253                 if (rack->r_fast_output && len) {
18254                         if (rack->r_ctl.fsb.left_to_send > len)
18255                                 rack->r_ctl.fsb.left_to_send -= len;
18256                         else
18257                                 rack->r_ctl.fsb.left_to_send = 0;
18258                         if (rack->r_ctl.fsb.left_to_send < segsiz)
18259                                 rack->r_fast_output = 0;
18260                         if (rack->r_fast_output) {
18261                                 rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18262                                 rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18263                         }
18264                 }
18265         }
18266 nomore:
18267         if (error) {
18268                 rack->r_ctl.rc_agg_delayed = 0;
18269                 rack->r_early = 0;
18270                 rack->r_late = 0;
18271                 rack->r_ctl.rc_agg_early = 0;
18272                 SOCKBUF_UNLOCK_ASSERT(sb);      /* Check gotos. */
18273                 /*
18274                  * Failures do not advance the seq counter above. For the
18275                  * case of ENOBUFS we will fall out and retry in 1ms with
18276                  * the hpts. Everything else will just have to retransmit
18277                  * with the timer.
18278                  *
18279                  * In any case, we do not want to loop around for another
18280                  * send without a good reason.
18281                  */
18282                 sendalot = 0;
18283                 switch (error) {
18284                 case EPERM:
18285                         tp->t_softerror = error;
18286 #ifdef TCP_ACCOUNTING
18287                         crtsc = get_cyclecount();
18288                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18289                                 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18290                         }
18291                         counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18292                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18293                                 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18294                         }
18295                         counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18296                         sched_unpin();
18297 #endif
18298                         return (error);
18299                 case ENOBUFS:
18300                         /*
18301                          * Pace us right away to retry in a some
18302                          * time
18303                          */
18304                         slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC);
18305                         if (rack->rc_enobuf < 0x7f)
18306                                 rack->rc_enobuf++;
18307                         if (slot < (10 * HPTS_USEC_IN_MSEC))
18308                                 slot = 10 * HPTS_USEC_IN_MSEC;
18309                         if (rack->r_ctl.crte != NULL) {
18310                                 counter_u64_add(rack_saw_enobuf_hw, 1);
18311                                 tcp_rl_log_enobuf(rack->r_ctl.crte);
18312                         }
18313                         counter_u64_add(rack_saw_enobuf, 1);
18314                         goto enobufs;
18315                 case EMSGSIZE:
18316                         /*
18317                          * For some reason the interface we used initially
18318                          * to send segments changed to another or lowered
18319                          * its MTU. If TSO was active we either got an
18320                          * interface without TSO capabilits or TSO was
18321                          * turned off. If we obtained mtu from ip_output()
18322                          * then update it and try again.
18323                          */
18324                         if (tso)
18325                                 tp->t_flags &= ~TF_TSO;
18326                         if (mtu != 0) {
18327                                 tcp_mss_update(tp, -1, mtu, NULL, NULL);
18328                                 goto again;
18329                         }
18330                         slot = 10 * HPTS_USEC_IN_MSEC;
18331                         rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18332 #ifdef TCP_ACCOUNTING
18333                         crtsc = get_cyclecount();
18334                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18335                                 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18336                         }
18337                         counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18338                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18339                                 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18340                         }
18341                         counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18342                         sched_unpin();
18343 #endif
18344                         return (error);
18345                 case ENETUNREACH:
18346                         counter_u64_add(rack_saw_enetunreach, 1);
18347                 case EHOSTDOWN:
18348                 case EHOSTUNREACH:
18349                 case ENETDOWN:
18350                         if (TCPS_HAVERCVDSYN(tp->t_state)) {
18351                                 tp->t_softerror = error;
18352                         }
18353                         /* FALLTHROUGH */
18354                 default:
18355                         slot = 10 * HPTS_USEC_IN_MSEC;
18356                         rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
18357 #ifdef TCP_ACCOUNTING
18358                         crtsc = get_cyclecount();
18359                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18360                                 tp->tcp_cnt_counters[SND_OUT_FAIL]++;
18361                         }
18362                         counter_u64_add(tcp_cnt_counters[SND_OUT_FAIL], 1);
18363                         if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18364                                 tp->tcp_proc_time[SND_OUT_FAIL] += (crtsc - ts_val);
18365                         }
18366                         counter_u64_add(tcp_proc_time[SND_OUT_FAIL], (crtsc - ts_val));
18367                         sched_unpin();
18368 #endif
18369                         return (error);
18370                 }
18371         } else {
18372                 rack->rc_enobuf = 0;
18373                 if (IN_FASTRECOVERY(tp->t_flags) && rsm)
18374                         rack->r_ctl.retran_during_recovery += len;
18375         }
18376         KMOD_TCPSTAT_INC(tcps_sndtotal);
18377
18378         /*
18379          * Data sent (as far as we can tell). If this advertises a larger
18380          * window than any other segment, then remember the size of the
18381          * advertised window. Any pending ACK has now been sent.
18382          */
18383         if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
18384                 tp->rcv_adv = tp->rcv_nxt + recwin;
18385
18386         tp->last_ack_sent = tp->rcv_nxt;
18387         tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
18388 enobufs:
18389         if (sendalot) {
18390                 /* Do we need to turn off sendalot? */
18391                 if (rack->r_ctl.rc_pace_max_segs &&
18392                     (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) {
18393                         /* We hit our max. */
18394                         sendalot = 0;
18395                 } else if ((rack->rc_user_set_max_segs) &&
18396                            (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) {
18397                         /* We hit the user defined max */
18398                         sendalot = 0;
18399                 }
18400         }
18401         if ((error == 0) && (flags & TH_FIN))
18402                 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN);
18403         if (flags & TH_RST) {
18404                 /*
18405                  * We don't send again after sending a RST.
18406                  */
18407                 slot = 0;
18408                 sendalot = 0;
18409                 if (error == 0)
18410                         tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
18411         } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) {
18412                 /*
18413                  * Get our pacing rate, if an error
18414                  * occurred in sending (ENOBUF) we would
18415                  * hit the else if with slot preset. Other
18416                  * errors return.
18417                  */
18418                 slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz);
18419         }
18420         if (rsm &&
18421             (rsm->r_flags & RACK_HAS_SYN) == 0 &&
18422             rack->use_rack_rr) {
18423                 /* Its a retransmit and we use the rack cheat? */
18424                 if ((slot == 0) ||
18425                     (rack->rc_always_pace == 0) ||
18426                     (rack->r_rr_config == 1)) {
18427                         /*
18428                          * We have no pacing set or we
18429                          * are using old-style rack or
18430                          * we are overriden to use the old 1ms pacing.
18431                          */
18432                         slot = rack->r_ctl.rc_min_to;
18433                 }
18434         }
18435         /* We have sent clear the flag */
18436         rack->r_ent_rec_ns = 0;
18437         if (rack->r_must_retran) {
18438                 if (rsm) {
18439                         rack->r_ctl.rc_out_at_rto -= (rsm->r_end - rsm->r_start);
18440                         if (SEQ_GEQ(rsm->r_end, rack->r_ctl.rc_snd_max_at_rto)) {
18441                                 /*
18442                                  * We have retransmitted all.
18443                                  */
18444                                 rack->r_must_retran = 0;
18445                                 rack->r_ctl.rc_out_at_rto = 0;
18446                         }
18447                 } else if (SEQ_GEQ(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
18448                         /*
18449                          * Sending new data will also kill
18450                          * the loop.
18451                          */
18452                         rack->r_must_retran = 0;
18453                         rack->r_ctl.rc_out_at_rto = 0;
18454                 }
18455         }
18456         rack->r_ctl.fsb.recwin = recwin;
18457         if ((tp->t_flags & (TF_WASCRECOVERY|TF_WASFRECOVERY)) &&
18458             SEQ_GT(tp->snd_max, rack->r_ctl.rc_snd_max_at_rto)) {
18459                 /*
18460                  * We hit an RTO and now have past snd_max at the RTO
18461                  * clear all the WAS flags.
18462                  */
18463                 tp->t_flags &= ~(TF_WASCRECOVERY|TF_WASFRECOVERY);
18464         }
18465         if (slot) {
18466                 /* set the rack tcb into the slot N */
18467                 counter_u64_add(rack_paced_segments, 1);
18468                 if ((error == 0) &&
18469                     rack_use_rfo &&
18470                     ((flags & (TH_SYN|TH_FIN)) == 0) &&
18471                     (rsm == NULL) &&
18472                     (tp->snd_nxt == tp->snd_max) &&
18473                     (ipoptlen == 0) &&
18474                     (tp->rcv_numsacks == 0) &&
18475                     rack->r_fsb_inited &&
18476                     TCPS_HAVEESTABLISHED(tp->t_state) &&
18477                     (rack->r_must_retran == 0) &&
18478                     ((tp->t_flags & TF_NEEDFIN) == 0) &&
18479                     (len > 0) && (orig_len > 0) &&
18480                     (orig_len > len) &&
18481                     ((orig_len - len) >= segsiz) &&
18482                     ((optlen == 0) ||
18483                      ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
18484                         /* We can send at least one more MSS using our fsb */
18485
18486                         rack->r_fast_output = 1;
18487                         rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18488                         rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18489                         rack->r_ctl.fsb.tcp_flags = flags;
18490                         rack->r_ctl.fsb.left_to_send = orig_len - len;
18491                         KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
18492                                 ("rack:%p left_to_send:%u sbavail:%u out:%u",
18493                                  rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
18494                                  (tp->snd_max - tp->snd_una)));
18495                         if (rack->r_ctl.fsb.left_to_send < segsiz)
18496                                 rack->r_fast_output = 0;
18497                         else {
18498                                 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
18499                                         rack->r_ctl.fsb.rfo_apply_push = 1;
18500                                 else
18501                                         rack->r_ctl.fsb.rfo_apply_push = 0;
18502                         }
18503                 } else
18504                         rack->r_fast_output = 0;
18505                 rack_log_fsb(rack, tp, so, flags,
18506                              ipoptlen, orig_len, len, error,
18507                              (rsm == NULL), optlen, __LINE__, 2);
18508         } else if (sendalot) {
18509                 int ret;
18510
18511                 if (len)
18512                         counter_u64_add(rack_unpaced_segments, 1);
18513                 sack_rxmit = 0;
18514                 if ((error == 0) &&
18515                     rack_use_rfo &&
18516                     ((flags & (TH_SYN|TH_FIN)) == 0) &&
18517                     (rsm == NULL) &&
18518                     (ipoptlen == 0) &&
18519                     (tp->rcv_numsacks == 0) &&
18520                     (tp->snd_nxt == tp->snd_max) &&
18521                     (rack->r_must_retran == 0) &&
18522                     rack->r_fsb_inited &&
18523                     TCPS_HAVEESTABLISHED(tp->t_state) &&
18524                     ((tp->t_flags & TF_NEEDFIN) == 0) &&
18525                     (len > 0) && (orig_len > 0) &&
18526                     (orig_len > len) &&
18527                     ((orig_len - len) >= segsiz) &&
18528                     ((optlen == 0) ||
18529                      ((optlen == TCPOLEN_TSTAMP_APPA) && (to.to_flags & TOF_TS)))) {
18530                         /* we can use fast_output for more */
18531
18532                         rack->r_fast_output = 1;
18533                         rack->r_ctl.fsb.m = sbsndmbuf(sb, (tp->snd_max - tp->snd_una), &rack->r_ctl.fsb.off);
18534                         rack->r_ctl.fsb.o_m_len = rack->r_ctl.fsb.m->m_len;
18535                         rack->r_ctl.fsb.tcp_flags = flags;
18536                         rack->r_ctl.fsb.left_to_send = orig_len - len;
18537                         KASSERT((rack->r_ctl.fsb.left_to_send <= (sbavail(sb) - (tp->snd_max - tp->snd_una))),
18538                                 ("rack:%p left_to_send:%u sbavail:%u out:%u",
18539                                  rack, rack->r_ctl.fsb.left_to_send, sbavail(sb),
18540                                  (tp->snd_max - tp->snd_una)));
18541                         if (rack->r_ctl.fsb.left_to_send < segsiz) {
18542                                 rack->r_fast_output = 0;
18543                         }
18544                         if (rack->r_fast_output) {
18545                                 if (rack->r_ctl.fsb.left_to_send == (sbavail(sb) - (tp->snd_max - tp->snd_una)))
18546                                         rack->r_ctl.fsb.rfo_apply_push = 1;
18547                                 else
18548                                         rack->r_ctl.fsb.rfo_apply_push = 0;
18549                                 rack_log_fsb(rack, tp, so, flags,
18550                                              ipoptlen, orig_len, len, error,
18551                                              (rsm == NULL), optlen, __LINE__, 3);
18552                                 error = 0;
18553                                 ret = rack_fast_output(tp, rack, ts_val, cts, ms_cts, &tv, tot_len_this_send, &error);
18554                                 if (ret >= 0)
18555                                         return (ret);
18556                                 else if (error)
18557                                         goto nomore;
18558
18559                         }
18560                 }
18561                 goto again;
18562         } else if (len) {
18563                 counter_u64_add(rack_unpaced_segments, 1);
18564         }
18565         /* Assure when we leave that snd_nxt will point to top */
18566         if (SEQ_GT(tp->snd_max, tp->snd_nxt))
18567                 tp->snd_nxt = tp->snd_max;
18568         rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
18569 #ifdef TCP_ACCOUNTING
18570         crtsc = get_cyclecount() - ts_val;
18571         if (tot_len_this_send) {
18572                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18573                         tp->tcp_cnt_counters[SND_OUT_DATA]++;
18574                 }
18575                 counter_u64_add(tcp_cnt_counters[SND_OUT_DATA], 1);
18576                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18577                         tp->tcp_proc_time[SND_OUT_DATA] += crtsc;
18578                 }
18579                 counter_u64_add(tcp_proc_time[SND_OUT_DATA], crtsc);
18580                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18581                         tp->tcp_cnt_counters[CNT_OF_MSS_OUT] += ((tot_len_this_send + segsiz - 1) /segsiz);
18582                 }
18583                 counter_u64_add(tcp_cnt_counters[CNT_OF_MSS_OUT], ((tot_len_this_send + segsiz - 1) /segsiz));
18584         } else {
18585                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18586                         tp->tcp_cnt_counters[SND_OUT_ACK]++;
18587                 }
18588                 counter_u64_add(tcp_cnt_counters[SND_OUT_ACK], 1);
18589                 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) {
18590                         tp->tcp_proc_time[SND_OUT_ACK] += crtsc;
18591                 }
18592                 counter_u64_add(tcp_proc_time[SND_OUT_ACK], crtsc);
18593         }
18594         sched_unpin();
18595 #endif
18596         if (error == ENOBUFS)
18597                 error = 0;
18598         return (error);
18599 }
18600
18601 static void
18602 rack_update_seg(struct tcp_rack *rack)
18603 {
18604         uint32_t orig_val;
18605
18606         orig_val = rack->r_ctl.rc_pace_max_segs;
18607         rack_set_pace_segments(rack->rc_tp, rack, __LINE__, NULL);
18608         if (orig_val != rack->r_ctl.rc_pace_max_segs)
18609                 rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL);
18610 }
18611
18612 static void
18613 rack_mtu_change(struct tcpcb *tp)
18614 {
18615         /*
18616          * The MSS may have changed
18617          */
18618         struct tcp_rack *rack;
18619
18620         rack = (struct tcp_rack *)tp->t_fb_ptr;
18621         if (rack->r_ctl.rc_pace_min_segs != ctf_fixed_maxseg(tp)) {
18622                 /*
18623                  * The MTU has changed we need to resend everything
18624                  * since all we have sent is lost. We first fix
18625                  * up the mtu though.
18626                  */
18627                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
18628                 /* We treat this like a full retransmit timeout without the cwnd adjustment */
18629                 rack_remxt_tmr(tp);
18630                 rack->r_fast_output = 0;
18631                 rack->r_ctl.rc_out_at_rto = ctf_flight_size(tp,
18632                                                 rack->r_ctl.rc_sacked);
18633                 rack->r_ctl.rc_snd_max_at_rto = tp->snd_max;
18634                 rack->r_must_retran = 1;
18635
18636         }
18637         sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
18638         /* We don't use snd_nxt to retransmit */
18639         tp->snd_nxt = tp->snd_max;
18640 }
18641
18642 static int
18643 rack_set_profile(struct tcp_rack *rack, int prof)
18644 {
18645         int err = EINVAL;
18646         if (prof == 1) {
18647                 /* pace_always=1 */
18648                 if (rack->rc_always_pace == 0) {
18649                         if (tcp_can_enable_pacing() == 0)
18650                                 return (EBUSY);
18651                 }
18652                 rack->rc_always_pace = 1;
18653                 if (rack->use_fixed_rate || rack->gp_ready)
18654                         rack_set_cc_pacing(rack);
18655                 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18656                 rack->rack_attempt_hdwr_pace = 0;
18657                 /* cmpack=1 */
18658                 if (rack_use_cmp_acks)
18659                         rack->r_use_cmp_ack = 1;
18660                 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
18661                     rack->r_use_cmp_ack)
18662                         rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18663                 /* scwnd=1 */
18664                 rack->rack_enable_scwnd = 1;
18665                 /* dynamic=100 */
18666                 rack->rc_gp_dyn_mul = 1;
18667                 /* gp_inc_ca */
18668                 rack->r_ctl.rack_per_of_gp_ca = 100;
18669                 /* rrr_conf=3 */
18670                 rack->r_rr_config = 3;
18671                 /* npush=2 */
18672                 rack->r_ctl.rc_no_push_at_mrtt = 2;
18673                 /* fillcw=1 */
18674                 rack->rc_pace_to_cwnd = 1;
18675                 rack->rc_pace_fill_if_rttin_range = 0;
18676                 rack->rtt_limit_mul = 0;
18677                 /* noprr=1 */
18678                 rack->rack_no_prr = 1;
18679                 /* lscwnd=1 */
18680                 rack->r_limit_scw = 1;
18681                 /* gp_inc_rec */
18682                 rack->r_ctl.rack_per_of_gp_rec = 90;
18683                 err = 0;
18684
18685         } else if (prof == 3) {
18686                 /* Same as profile one execept fill_cw becomes 2 (less aggressive set) */
18687                 /* pace_always=1 */
18688                 if (rack->rc_always_pace == 0) {
18689                         if (tcp_can_enable_pacing() == 0)
18690                                 return (EBUSY);
18691                 }
18692                 rack->rc_always_pace = 1;
18693                 if (rack->use_fixed_rate || rack->gp_ready)
18694                         rack_set_cc_pacing(rack);
18695                 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18696                 rack->rack_attempt_hdwr_pace = 0;
18697                 /* cmpack=1 */
18698                 if (rack_use_cmp_acks)
18699                         rack->r_use_cmp_ack = 1;
18700                 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state) &&
18701                     rack->r_use_cmp_ack)
18702                         rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18703                 /* scwnd=1 */
18704                 rack->rack_enable_scwnd = 1;
18705                 /* dynamic=100 */
18706                 rack->rc_gp_dyn_mul = 1;
18707                 /* gp_inc_ca */
18708                 rack->r_ctl.rack_per_of_gp_ca = 100;
18709                 /* rrr_conf=3 */
18710                 rack->r_rr_config = 3;
18711                 /* npush=2 */
18712                 rack->r_ctl.rc_no_push_at_mrtt = 2;
18713                 /* fillcw=2 */
18714                 rack->rc_pace_to_cwnd = 1;
18715                 rack->r_fill_less_agg = 1;
18716                 rack->rc_pace_fill_if_rttin_range = 0;
18717                 rack->rtt_limit_mul = 0;
18718                 /* noprr=1 */
18719                 rack->rack_no_prr = 1;
18720                 /* lscwnd=1 */
18721                 rack->r_limit_scw = 1;
18722                 /* gp_inc_rec */
18723                 rack->r_ctl.rack_per_of_gp_rec = 90;
18724                 err = 0;
18725
18726
18727         } else if (prof == 2) {
18728                 /* cmpack=1 */
18729                 if (rack->rc_always_pace == 0) {
18730                         if (tcp_can_enable_pacing() == 0)
18731                                 return (EBUSY);
18732                 }
18733                 rack->rc_always_pace = 1;
18734                 if (rack->use_fixed_rate || rack->gp_ready)
18735                         rack_set_cc_pacing(rack);
18736                 rack->r_use_cmp_ack = 1;
18737                 if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
18738                         rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18739                 /* pace_always=1 */
18740                 rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18741                 /* scwnd=1 */
18742                 rack->rack_enable_scwnd = 1;
18743                 /* dynamic=100 */
18744                 rack->rc_gp_dyn_mul = 1;
18745                 rack->r_ctl.rack_per_of_gp_ca = 100;
18746                 /* rrr_conf=3 */
18747                 rack->r_rr_config = 3;
18748                 /* npush=2 */
18749                 rack->r_ctl.rc_no_push_at_mrtt = 2;
18750                 /* fillcw=1 */
18751                 rack->rc_pace_to_cwnd = 1;
18752                 rack->rc_pace_fill_if_rttin_range = 0;
18753                 rack->rtt_limit_mul = 0;
18754                 /* noprr=1 */
18755                 rack->rack_no_prr = 1;
18756                 /* lscwnd=0 */
18757                 rack->r_limit_scw = 0;
18758                 err = 0;
18759         } else if (prof == 0) {
18760                 /* This changes things back to the default settings */
18761                 err = 0;
18762                 if (rack->rc_always_pace) {
18763                         tcp_decrement_paced_conn();
18764                         rack_undo_cc_pacing(rack);
18765                         rack->rc_always_pace = 0;
18766                 }
18767                 if (rack_pace_every_seg && tcp_can_enable_pacing()) {
18768                         rack->rc_always_pace = 1;
18769                         if (rack->use_fixed_rate || rack->gp_ready)
18770                                 rack_set_cc_pacing(rack);
18771                 } else
18772                         rack->rc_always_pace = 0;
18773                 if (rack_use_cmp_acks)
18774                         rack->r_use_cmp_ack = 1;
18775                 else
18776                         rack->r_use_cmp_ack = 0;
18777                 if (rack_disable_prr)
18778                         rack->rack_no_prr = 1;
18779                 else
18780                         rack->rack_no_prr = 0;
18781                 if (rack_gp_no_rec_chg)
18782                         rack->rc_gp_no_rec_chg = 1;
18783                 else
18784                         rack->rc_gp_no_rec_chg = 0;
18785                 if (rack_enable_mqueue_for_nonpaced || rack->r_use_cmp_ack) {
18786                         rack->r_mbuf_queue = 1;
18787                         if (TCPS_HAVEESTABLISHED(rack->rc_tp->t_state))
18788                                 rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18789                         rack->rc_inp->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18790                 } else {
18791                         rack->r_mbuf_queue = 0;
18792                         rack->rc_inp->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
18793                 }
18794                 if (rack_enable_shared_cwnd)
18795                         rack->rack_enable_scwnd = 1;
18796                 else
18797                         rack->rack_enable_scwnd = 0;
18798                 if (rack_do_dyn_mul) {
18799                         /* When dynamic adjustment is on CA needs to start at 100% */
18800                         rack->rc_gp_dyn_mul = 1;
18801                         if (rack_do_dyn_mul >= 100)
18802                                 rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul;
18803                 } else {
18804                         rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca;
18805                         rack->rc_gp_dyn_mul = 0;
18806                 }
18807                 rack->r_rr_config = 0;
18808                 rack->r_ctl.rc_no_push_at_mrtt = 0;
18809                 rack->rc_pace_to_cwnd = 0;
18810                 rack->rc_pace_fill_if_rttin_range = 0;
18811                 rack->rtt_limit_mul = 0;
18812
18813                 if (rack_enable_hw_pacing)
18814                         rack->rack_hdw_pace_ena = 1;
18815                 else
18816                         rack->rack_hdw_pace_ena = 0;
18817                 if (rack_disable_prr)
18818                         rack->rack_no_prr = 1;
18819                 else
18820                         rack->rack_no_prr = 0;
18821                 if (rack_limits_scwnd)
18822                         rack->r_limit_scw  = 1;
18823                 else
18824                         rack->r_limit_scw  = 0;
18825                 err = 0;
18826         }
18827         return (err);
18828 }
18829
18830 static int
18831 rack_add_deferred_option(struct tcp_rack *rack, int sopt_name, uint64_t loptval)
18832 {
18833         struct deferred_opt_list *dol;
18834
18835         dol = malloc(sizeof(struct deferred_opt_list),
18836                      M_TCPFSB, M_NOWAIT|M_ZERO);
18837         if (dol == NULL) {
18838                 /*
18839                  * No space yikes -- fail out..
18840                  */
18841                 return (0);
18842         }
18843         dol->optname = sopt_name;
18844         dol->optval = loptval;
18845         TAILQ_INSERT_TAIL(&rack->r_ctl.opt_list, dol, next);
18846         return (1);
18847 }
18848
18849 static int
18850 rack_process_option(struct tcpcb *tp, struct tcp_rack *rack, int sopt_name,
18851                     uint32_t optval, uint64_t loptval)
18852 {
18853         struct epoch_tracker et;
18854         struct sockopt sopt;
18855         struct cc_newreno_opts opt;
18856         uint64_t val;
18857         int error = 0;
18858         uint16_t ca, ss;
18859
18860         switch (sopt_name) {
18861
18862         case TCP_RACK_PACING_BETA:
18863                 RACK_OPTS_INC(tcp_rack_beta);
18864                 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
18865                         /* This only works for newreno. */
18866                         error = EINVAL;
18867                         break;
18868                 }
18869                 if (rack->rc_pacing_cc_set) {
18870                         /*
18871                          * Set them into the real CC module
18872                          * whats in the rack pcb is the old values
18873                          * to be used on restoral/
18874                          */
18875                         sopt.sopt_dir = SOPT_SET;
18876                         opt.name = CC_NEWRENO_BETA;
18877                         opt.val = optval;
18878                         if (CC_ALGO(tp)->ctl_output != NULL)
18879                                 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
18880                         else {
18881                                 error = ENOENT;
18882                                 break;
18883                         }
18884                 } else {
18885                         /*
18886                          * Not pacing yet so set it into our local
18887                          * rack pcb storage.
18888                          */
18889                         rack->r_ctl.rc_saved_beta.beta = optval;
18890                 }
18891                 break;
18892         case TCP_RACK_TIMER_SLOP:
18893                 RACK_OPTS_INC(tcp_rack_timer_slop);
18894                 rack->r_ctl.timer_slop = optval;
18895                 if (rack->rc_tp->t_srtt) {
18896                         /*
18897                          * If we have an SRTT lets update t_rxtcur
18898                          * to have the new slop.
18899                          */
18900                         RACK_TCPT_RANGESET(tp->t_rxtcur, RACK_REXMTVAL(tp),
18901                                            rack_rto_min, rack_rto_max,
18902                                            rack->r_ctl.timer_slop);
18903                 }
18904                 break;
18905         case TCP_RACK_PACING_BETA_ECN:
18906                 RACK_OPTS_INC(tcp_rack_beta_ecn);
18907                 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0) {
18908                         /* This only works for newreno. */
18909                         error = EINVAL;
18910                         break;
18911                 }
18912                 if (rack->rc_pacing_cc_set) {
18913                         /*
18914                          * Set them into the real CC module
18915                          * whats in the rack pcb is the old values
18916                          * to be used on restoral/
18917                          */
18918                         sopt.sopt_dir = SOPT_SET;
18919                         opt.name = CC_NEWRENO_BETA_ECN;
18920                         opt.val = optval;
18921                         if (CC_ALGO(tp)->ctl_output != NULL)
18922                                 error = CC_ALGO(tp)->ctl_output(tp->ccv, &sopt, &opt);
18923                         else
18924                                 error = ENOENT;
18925                 } else {
18926                         /*
18927                          * Not pacing yet so set it into our local
18928                          * rack pcb storage.
18929                          */
18930                         rack->r_ctl.rc_saved_beta.beta_ecn = optval;
18931                         rack->r_ctl.rc_saved_beta.newreno_flags = CC_NEWRENO_BETA_ECN;
18932                 }
18933                 break;
18934         case TCP_DEFER_OPTIONS:
18935                 RACK_OPTS_INC(tcp_defer_opt);
18936                 if (optval) {
18937                         if (rack->gp_ready) {
18938                                 /* Too late */
18939                                 error = EINVAL;
18940                                 break;
18941                         }
18942                         rack->defer_options = 1;
18943                 } else
18944                         rack->defer_options = 0;
18945                 break;
18946         case TCP_RACK_MEASURE_CNT:
18947                 RACK_OPTS_INC(tcp_rack_measure_cnt);
18948                 if (optval && (optval <= 0xff)) {
18949                         rack->r_ctl.req_measurements = optval;
18950                 } else
18951                         error = EINVAL;
18952                 break;
18953         case TCP_REC_ABC_VAL:
18954                 RACK_OPTS_INC(tcp_rec_abc_val);
18955                 if (optval > 0)
18956                         rack->r_use_labc_for_rec = 1;
18957                 else
18958                         rack->r_use_labc_for_rec = 0;
18959                 break;
18960         case TCP_RACK_ABC_VAL:
18961                 RACK_OPTS_INC(tcp_rack_abc_val);
18962                 if ((optval > 0) && (optval < 255))
18963                         rack->rc_labc = optval;
18964                 else
18965                         error = EINVAL;
18966                 break;
18967         case TCP_HDWR_UP_ONLY:
18968                 RACK_OPTS_INC(tcp_pacing_up_only);
18969                 if (optval)
18970                         rack->r_up_only = 1;
18971                 else
18972                         rack->r_up_only = 0;
18973                 break;
18974         case TCP_PACING_RATE_CAP:
18975                 RACK_OPTS_INC(tcp_pacing_rate_cap);
18976                 rack->r_ctl.bw_rate_cap = loptval;
18977                 break;
18978         case TCP_RACK_PROFILE:
18979                 RACK_OPTS_INC(tcp_profile);
18980                 error = rack_set_profile(rack, optval);
18981                 break;
18982         case TCP_USE_CMP_ACKS:
18983                 RACK_OPTS_INC(tcp_use_cmp_acks);
18984                 if ((optval == 0) && (rack->rc_inp->inp_flags2 & INP_MBUF_ACKCMP)) {
18985                         /* You can't turn it off once its on! */
18986                         error = EINVAL;
18987                 } else if ((optval == 1) && (rack->r_use_cmp_ack == 0)) {
18988                         rack->r_use_cmp_ack = 1;
18989                         rack->r_mbuf_queue = 1;
18990                         tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
18991                 }
18992                 if (rack->r_use_cmp_ack && TCPS_HAVEESTABLISHED(tp->t_state))
18993                         rack->rc_inp->inp_flags2 |= INP_MBUF_ACKCMP;
18994                 break;
18995         case TCP_SHARED_CWND_TIME_LIMIT:
18996                 RACK_OPTS_INC(tcp_lscwnd);
18997                 if (optval)
18998                         rack->r_limit_scw = 1;
18999                 else
19000                         rack->r_limit_scw = 0;
19001                 break;
19002         case TCP_RACK_PACE_TO_FILL:
19003                 RACK_OPTS_INC(tcp_fillcw);
19004                 if (optval == 0)
19005                         rack->rc_pace_to_cwnd = 0;
19006                 else {
19007                         rack->rc_pace_to_cwnd = 1;
19008                         if (optval > 1)
19009                                 rack->r_fill_less_agg = 1;
19010                 }
19011                 if ((optval >= rack_gp_rtt_maxmul) &&
19012                     rack_gp_rtt_maxmul &&
19013                     (optval < 0xf)) {
19014                         rack->rc_pace_fill_if_rttin_range = 1;
19015                         rack->rtt_limit_mul = optval;
19016                 } else {
19017                         rack->rc_pace_fill_if_rttin_range = 0;
19018                         rack->rtt_limit_mul = 0;
19019                 }
19020                 break;
19021         case TCP_RACK_NO_PUSH_AT_MAX:
19022                 RACK_OPTS_INC(tcp_npush);
19023                 if (optval == 0)
19024                         rack->r_ctl.rc_no_push_at_mrtt = 0;
19025                 else if (optval < 0xff)
19026                         rack->r_ctl.rc_no_push_at_mrtt = optval;
19027                 else
19028                         error = EINVAL;
19029                 break;
19030         case TCP_SHARED_CWND_ENABLE:
19031                 RACK_OPTS_INC(tcp_rack_scwnd);
19032                 if (optval == 0)
19033                         rack->rack_enable_scwnd = 0;
19034                 else
19035                         rack->rack_enable_scwnd = 1;
19036                 break;
19037         case TCP_RACK_MBUF_QUEUE:
19038                 /* Now do we use the LRO mbuf-queue feature */
19039                 RACK_OPTS_INC(tcp_rack_mbufq);
19040                 if (optval || rack->r_use_cmp_ack)
19041                         rack->r_mbuf_queue = 1;
19042                 else
19043                         rack->r_mbuf_queue = 0;
19044                 if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19045                         tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19046                 else
19047                         tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19048                 break;
19049         case TCP_RACK_NONRXT_CFG_RATE:
19050                 RACK_OPTS_INC(tcp_rack_cfg_rate);
19051                 if (optval == 0)
19052                         rack->rack_rec_nonrxt_use_cr = 0;
19053                 else
19054                         rack->rack_rec_nonrxt_use_cr = 1;
19055                 break;
19056         case TCP_NO_PRR:
19057                 RACK_OPTS_INC(tcp_rack_noprr);
19058                 if (optval == 0)
19059                         rack->rack_no_prr = 0;
19060                 else if (optval == 1)
19061                         rack->rack_no_prr = 1;
19062                 else if (optval == 2)
19063                         rack->no_prr_addback = 1;
19064                 else
19065                         error = EINVAL;
19066                 break;
19067         case TCP_TIMELY_DYN_ADJ:
19068                 RACK_OPTS_INC(tcp_timely_dyn);
19069                 if (optval == 0)
19070                         rack->rc_gp_dyn_mul = 0;
19071                 else {
19072                         rack->rc_gp_dyn_mul = 1;
19073                         if (optval >= 100) {
19074                                 /*
19075                                  * If the user sets something 100 or more
19076                                  * its the gp_ca value.
19077                                  */
19078                                 rack->r_ctl.rack_per_of_gp_ca  = optval;
19079                         }
19080                 }
19081                 break;
19082         case TCP_RACK_DO_DETECTION:
19083                 RACK_OPTS_INC(tcp_rack_do_detection);
19084                 if (optval == 0)
19085                         rack->do_detection = 0;
19086                 else
19087                         rack->do_detection = 1;
19088                 break;
19089         case TCP_RACK_TLP_USE:
19090                 if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
19091                         error = EINVAL;
19092                         break;
19093                 }
19094                 RACK_OPTS_INC(tcp_tlp_use);
19095                 rack->rack_tlp_threshold_use = optval;
19096                 break;
19097         case TCP_RACK_TLP_REDUCE:
19098                 /* RACK TLP cwnd reduction (bool) */
19099                 RACK_OPTS_INC(tcp_rack_tlp_reduce);
19100                 rack->r_ctl.rc_tlp_cwnd_reduce = optval;
19101                 break;
19102         /*  Pacing related ones */
19103         case TCP_RACK_PACE_ALWAYS:
19104                 /*
19105                  * zero is old rack method, 1 is new
19106                  * method using a pacing rate.
19107                  */
19108                 RACK_OPTS_INC(tcp_rack_pace_always);
19109                 if (optval > 0) {
19110                         if (rack->rc_always_pace) {
19111                                 error = EALREADY;
19112                                 break;
19113                         } else if (tcp_can_enable_pacing()) {
19114                                 rack->rc_always_pace = 1;
19115                                 if (rack->use_fixed_rate || rack->gp_ready)
19116                                         rack_set_cc_pacing(rack);
19117                         }
19118                         else {
19119                                 error = ENOSPC;
19120                                 break;
19121                         }
19122                 } else {
19123                         if (rack->rc_always_pace) {
19124                                 tcp_decrement_paced_conn();
19125                                 rack->rc_always_pace = 0;
19126                                 rack_undo_cc_pacing(rack);
19127                         }
19128                 }
19129                 if  (rack->r_mbuf_queue || rack->rc_always_pace || rack->r_use_cmp_ack)
19130                         tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
19131                 else
19132                         tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
19133                 /* A rate may be set irate or other, if so set seg size */
19134                 rack_update_seg(rack);
19135                 break;
19136         case TCP_BBR_RACK_INIT_RATE:
19137                 RACK_OPTS_INC(tcp_initial_rate);
19138                 val = optval;
19139                 /* Change from kbits per second to bytes per second */
19140                 val *= 1000;
19141                 val /= 8;
19142                 rack->r_ctl.init_rate = val;
19143                 if (rack->rc_init_win != rack_default_init_window) {
19144                         uint32_t win, snt;
19145
19146                         /*
19147                          * Options don't always get applied
19148                          * in the order you think. So in order
19149                          * to assure we update a cwnd we need
19150                          * to check and see if we are still
19151                          * where we should raise the cwnd.
19152                          */
19153                         win = rc_init_window(rack);
19154                         if (SEQ_GT(tp->snd_max, tp->iss))
19155                                 snt = tp->snd_max - tp->iss;
19156                         else
19157                                 snt = 0;
19158                         if ((snt < win) &&
19159                             (tp->snd_cwnd < win))
19160                                 tp->snd_cwnd = win;
19161                 }
19162                 if (rack->rc_always_pace)
19163                         rack_update_seg(rack);
19164                 break;
19165         case TCP_BBR_IWINTSO:
19166                 RACK_OPTS_INC(tcp_initial_win);
19167                 if (optval && (optval <= 0xff)) {
19168                         uint32_t win, snt;
19169
19170                         rack->rc_init_win = optval;
19171                         win = rc_init_window(rack);
19172                         if (SEQ_GT(tp->snd_max, tp->iss))
19173                                 snt = tp->snd_max - tp->iss;
19174                         else
19175                                 snt = 0;
19176                         if ((snt < win) &&
19177                             (tp->t_srtt |
19178 #ifdef NETFLIX_PEAKRATE
19179                              tp->t_maxpeakrate |
19180 #endif
19181                              rack->r_ctl.init_rate)) {
19182                                 /*
19183                                  * We are not past the initial window
19184                                  * and we have some bases for pacing,
19185                                  * so we need to possibly adjust up
19186                                  * the cwnd. Note even if we don't set
19187                                  * the cwnd, its still ok to raise the rc_init_win
19188                                  * which can be used coming out of idle when we
19189                                  * would have a rate.
19190                                  */
19191                                 if (tp->snd_cwnd < win)
19192                                         tp->snd_cwnd = win;
19193                         }
19194                         if (rack->rc_always_pace)
19195                                 rack_update_seg(rack);
19196                 } else
19197                         error = EINVAL;
19198                 break;
19199         case TCP_RACK_FORCE_MSEG:
19200                 RACK_OPTS_INC(tcp_rack_force_max_seg);
19201                 if (optval)
19202                         rack->rc_force_max_seg = 1;
19203                 else
19204                         rack->rc_force_max_seg = 0;
19205                 break;
19206         case TCP_RACK_PACE_MAX_SEG:
19207                 /* Max segments size in a pace in bytes */
19208                 RACK_OPTS_INC(tcp_rack_max_seg);
19209                 rack->rc_user_set_max_segs = optval;
19210                 rack_set_pace_segments(tp, rack, __LINE__, NULL);
19211                 break;
19212         case TCP_RACK_PACE_RATE_REC:
19213                 /* Set the fixed pacing rate in Bytes per second ca */
19214                 RACK_OPTS_INC(tcp_rack_pace_rate_rec);
19215                 rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19216                 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19217                         rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19218                 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19219                         rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19220                 rack->use_fixed_rate = 1;
19221                 if (rack->rc_always_pace)
19222                         rack_set_cc_pacing(rack);
19223                 rack_log_pacing_delay_calc(rack,
19224                                            rack->r_ctl.rc_fixed_pacing_rate_ss,
19225                                            rack->r_ctl.rc_fixed_pacing_rate_ca,
19226                                            rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19227                                            __LINE__, NULL);
19228                 break;
19229
19230         case TCP_RACK_PACE_RATE_SS:
19231                 /* Set the fixed pacing rate in Bytes per second ca */
19232                 RACK_OPTS_INC(tcp_rack_pace_rate_ss);
19233                 rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19234                 if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0)
19235                         rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19236                 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19237                         rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19238                 rack->use_fixed_rate = 1;
19239                 if (rack->rc_always_pace)
19240                         rack_set_cc_pacing(rack);
19241                 rack_log_pacing_delay_calc(rack,
19242                                            rack->r_ctl.rc_fixed_pacing_rate_ss,
19243                                            rack->r_ctl.rc_fixed_pacing_rate_ca,
19244                                            rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19245                                            __LINE__, NULL);
19246                 break;
19247
19248         case TCP_RACK_PACE_RATE_CA:
19249                 /* Set the fixed pacing rate in Bytes per second ca */
19250                 RACK_OPTS_INC(tcp_rack_pace_rate_ca);
19251                 rack->r_ctl.rc_fixed_pacing_rate_ca = optval;
19252                 if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0)
19253                         rack->r_ctl.rc_fixed_pacing_rate_ss = optval;
19254                 if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0)
19255                         rack->r_ctl.rc_fixed_pacing_rate_rec = optval;
19256                 rack->use_fixed_rate = 1;
19257                 if (rack->rc_always_pace)
19258                         rack_set_cc_pacing(rack);
19259                 rack_log_pacing_delay_calc(rack,
19260                                            rack->r_ctl.rc_fixed_pacing_rate_ss,
19261                                            rack->r_ctl.rc_fixed_pacing_rate_ca,
19262                                            rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8,
19263                                            __LINE__, NULL);
19264                 break;
19265         case TCP_RACK_GP_INCREASE_REC:
19266                 RACK_OPTS_INC(tcp_gp_inc_rec);
19267                 rack->r_ctl.rack_per_of_gp_rec = optval;
19268                 rack_log_pacing_delay_calc(rack,
19269                                            rack->r_ctl.rack_per_of_gp_ss,
19270                                            rack->r_ctl.rack_per_of_gp_ca,
19271                                            rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19272                                            __LINE__, NULL);
19273                 break;
19274         case TCP_RACK_GP_INCREASE_CA:
19275                 RACK_OPTS_INC(tcp_gp_inc_ca);
19276                 ca = optval;
19277                 if (ca < 100) {
19278                         /*
19279                          * We don't allow any reduction
19280                          * over the GP b/w.
19281                          */
19282                         error = EINVAL;
19283                         break;
19284                 }
19285                 rack->r_ctl.rack_per_of_gp_ca = ca;
19286                 rack_log_pacing_delay_calc(rack,
19287                                            rack->r_ctl.rack_per_of_gp_ss,
19288                                            rack->r_ctl.rack_per_of_gp_ca,
19289                                            rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19290                                            __LINE__, NULL);
19291                 break;
19292         case TCP_RACK_GP_INCREASE_SS:
19293                 RACK_OPTS_INC(tcp_gp_inc_ss);
19294                 ss = optval;
19295                 if (ss < 100) {
19296                         /*
19297                          * We don't allow any reduction
19298                          * over the GP b/w.
19299                          */
19300                         error = EINVAL;
19301                         break;
19302                 }
19303                 rack->r_ctl.rack_per_of_gp_ss = ss;
19304                 rack_log_pacing_delay_calc(rack,
19305                                            rack->r_ctl.rack_per_of_gp_ss,
19306                                            rack->r_ctl.rack_per_of_gp_ca,
19307                                            rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1,
19308                                            __LINE__, NULL);
19309                 break;
19310         case TCP_RACK_RR_CONF:
19311                 RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate);
19312                 if (optval && optval <= 3)
19313                         rack->r_rr_config = optval;
19314                 else
19315                         rack->r_rr_config = 0;
19316                 break;
19317         case TCP_HDWR_RATE_CAP:
19318                 RACK_OPTS_INC(tcp_hdwr_rate_cap);
19319                 if (optval) {
19320                         if (rack->r_rack_hw_rate_caps == 0)
19321                                 rack->r_rack_hw_rate_caps = 1;
19322                         else
19323                                 error = EALREADY;
19324                 } else {
19325                         rack->r_rack_hw_rate_caps = 0;
19326                 }
19327                 break;
19328         case TCP_BBR_HDWR_PACE:
19329                 RACK_OPTS_INC(tcp_hdwr_pacing);
19330                 if (optval){
19331                         if (rack->rack_hdrw_pacing == 0) {
19332                                 rack->rack_hdw_pace_ena = 1;
19333                                 rack->rack_attempt_hdwr_pace = 0;
19334                         } else
19335                                 error = EALREADY;
19336                 } else {
19337                         rack->rack_hdw_pace_ena = 0;
19338 #ifdef RATELIMIT
19339                         if (rack->r_ctl.crte != NULL) {
19340                                 rack->rack_hdrw_pacing = 0;
19341                                 rack->rack_attempt_hdwr_pace = 0;
19342                                 tcp_rel_pacing_rate(rack->r_ctl.crte, tp);
19343                                 rack->r_ctl.crte = NULL;
19344                         }
19345 #endif
19346                 }
19347                 break;
19348         /*  End Pacing related ones */
19349         case TCP_RACK_PRR_SENDALOT:
19350                 /* Allow PRR to send more than one seg */
19351                 RACK_OPTS_INC(tcp_rack_prr_sendalot);
19352                 rack->r_ctl.rc_prr_sendalot = optval;
19353                 break;
19354         case TCP_RACK_MIN_TO:
19355                 /* Minimum time between rack t-o's in ms */
19356                 RACK_OPTS_INC(tcp_rack_min_to);
19357                 rack->r_ctl.rc_min_to = optval;
19358                 break;
19359         case TCP_RACK_EARLY_SEG:
19360                 /* If early recovery max segments */
19361                 RACK_OPTS_INC(tcp_rack_early_seg);
19362                 rack->r_ctl.rc_early_recovery_segs = optval;
19363                 break;
19364         case TCP_RACK_REORD_THRESH:
19365                 /* RACK reorder threshold (shift amount) */
19366                 RACK_OPTS_INC(tcp_rack_reord_thresh);
19367                 if ((optval > 0) && (optval < 31))
19368                         rack->r_ctl.rc_reorder_shift = optval;
19369                 else
19370                         error = EINVAL;
19371                 break;
19372         case TCP_RACK_REORD_FADE:
19373                 /* Does reordering fade after ms time */
19374                 RACK_OPTS_INC(tcp_rack_reord_fade);
19375                 rack->r_ctl.rc_reorder_fade = optval;
19376                 break;
19377         case TCP_RACK_TLP_THRESH:
19378                 /* RACK TLP theshold i.e. srtt+(srtt/N) */
19379                 RACK_OPTS_INC(tcp_rack_tlp_thresh);
19380                 if (optval)
19381                         rack->r_ctl.rc_tlp_threshold = optval;
19382                 else
19383                         error = EINVAL;
19384                 break;
19385         case TCP_BBR_USE_RACK_RR:
19386                 RACK_OPTS_INC(tcp_rack_rr);
19387                 if (optval)
19388                         rack->use_rack_rr = 1;
19389                 else
19390                         rack->use_rack_rr = 0;
19391                 break;
19392         case TCP_FAST_RSM_HACK:
19393                 RACK_OPTS_INC(tcp_rack_fastrsm_hack);
19394                 if (optval)
19395                         rack->fast_rsm_hack = 1;
19396                 else
19397                         rack->fast_rsm_hack = 0;
19398                 break;
19399         case TCP_RACK_PKT_DELAY:
19400                 /* RACK added ms i.e. rack-rtt + reord + N */
19401                 RACK_OPTS_INC(tcp_rack_pkt_delay);
19402                 rack->r_ctl.rc_pkt_delay = optval;
19403                 break;
19404         case TCP_DELACK:
19405                 RACK_OPTS_INC(tcp_rack_delayed_ack);
19406                 if (optval == 0)
19407                         tp->t_delayed_ack = 0;
19408                 else
19409                         tp->t_delayed_ack = 1;
19410                 if (tp->t_flags & TF_DELACK) {
19411                         tp->t_flags &= ~TF_DELACK;
19412                         tp->t_flags |= TF_ACKNOW;
19413                         NET_EPOCH_ENTER(et);
19414                         rack_output(tp);
19415                         NET_EPOCH_EXIT(et);
19416                 }
19417                 break;
19418
19419         case TCP_BBR_RACK_RTT_USE:
19420                 RACK_OPTS_INC(tcp_rack_rtt_use);
19421                 if ((optval != USE_RTT_HIGH) &&
19422                     (optval != USE_RTT_LOW) &&
19423                     (optval != USE_RTT_AVG))
19424                         error = EINVAL;
19425                 else
19426                         rack->r_ctl.rc_rate_sample_method = optval;
19427                 break;
19428         case TCP_DATA_AFTER_CLOSE:
19429                 RACK_OPTS_INC(tcp_data_after_close);
19430                 if (optval)
19431                         rack->rc_allow_data_af_clo = 1;
19432                 else
19433                         rack->rc_allow_data_af_clo = 0;
19434                 break;
19435         default:
19436                 break;
19437         }
19438 #ifdef NETFLIX_STATS
19439         tcp_log_socket_option(tp, sopt_name, optval, error);
19440 #endif
19441         return (error);
19442 }
19443
19444
19445 static void
19446 rack_apply_deferred_options(struct tcp_rack *rack)
19447 {
19448         struct deferred_opt_list *dol, *sdol;
19449         uint32_t s_optval;
19450
19451         TAILQ_FOREACH_SAFE(dol, &rack->r_ctl.opt_list, next, sdol) {
19452                 TAILQ_REMOVE(&rack->r_ctl.opt_list, dol, next);
19453                 /* Disadvantage of deferal is you loose the error return */
19454                 s_optval = (uint32_t)dol->optval;
19455                 (void)rack_process_option(rack->rc_tp, rack, dol->optname, s_optval, dol->optval);
19456                 free(dol, M_TCPDO);
19457         }
19458 }
19459
19460 static int
19461 rack_pru_options(struct tcpcb *tp, int flags)
19462 {
19463         if (flags & PRUS_OOB)
19464                 return (EOPNOTSUPP);
19465         return (0);
19466 }
19467
19468 static struct tcp_function_block __tcp_rack = {
19469         .tfb_tcp_block_name = __XSTRING(STACKNAME),
19470         .tfb_tcp_output = rack_output,
19471         .tfb_do_queued_segments = ctf_do_queued_segments,
19472         .tfb_do_segment_nounlock = rack_do_segment_nounlock,
19473         .tfb_tcp_do_segment = rack_do_segment,
19474         .tfb_tcp_ctloutput = rack_ctloutput,
19475         .tfb_tcp_fb_init = rack_init,
19476         .tfb_tcp_fb_fini = rack_fini,
19477         .tfb_tcp_timer_stop_all = rack_stopall,
19478         .tfb_tcp_timer_activate = rack_timer_activate,
19479         .tfb_tcp_timer_active = rack_timer_active,
19480         .tfb_tcp_timer_stop = rack_timer_stop,
19481         .tfb_tcp_rexmit_tmr = rack_remxt_tmr,
19482         .tfb_tcp_handoff_ok = rack_handoff_ok,
19483         .tfb_tcp_mtu_chg = rack_mtu_change,
19484         .tfb_pru_options = rack_pru_options,
19485
19486 };
19487
19488 /*
19489  * rack_ctloutput() must drop the inpcb lock before performing copyin on
19490  * socket option arguments.  When it re-acquires the lock after the copy, it
19491  * has to revalidate that the connection is still valid for the socket
19492  * option.
19493  */
19494 static int
19495 rack_set_sockopt(struct socket *so, struct sockopt *sopt,
19496     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
19497 {
19498         uint64_t loptval;
19499         int32_t error = 0, optval;
19500
19501         switch (sopt->sopt_name) {
19502         case TCP_RACK_TLP_REDUCE:               /*  URL:tlp_reduce */
19503         /*  Pacing related ones */
19504         case TCP_RACK_PACE_ALWAYS:              /*  URL:pace_always */
19505         case TCP_BBR_RACK_INIT_RATE:            /*  URL:irate */
19506         case TCP_BBR_IWINTSO:                   /*  URL:tso_iwin */
19507         case TCP_RACK_PACE_MAX_SEG:             /*  URL:pace_max_seg */
19508         case TCP_RACK_FORCE_MSEG:               /*  URL:force_max_seg */
19509         case TCP_RACK_PACE_RATE_CA:             /*  URL:pr_ca */
19510         case TCP_RACK_PACE_RATE_SS:             /*  URL:pr_ss*/
19511         case TCP_RACK_PACE_RATE_REC:            /*  URL:pr_rec */
19512         case TCP_RACK_GP_INCREASE_CA:           /*  URL:gp_inc_ca */
19513         case TCP_RACK_GP_INCREASE_SS:           /*  URL:gp_inc_ss */
19514         case TCP_RACK_GP_INCREASE_REC:          /*  URL:gp_inc_rec */
19515         case TCP_RACK_RR_CONF:                  /*  URL:rrr_conf */
19516         case TCP_BBR_HDWR_PACE:                 /*  URL:hdwrpace */
19517         case TCP_HDWR_RATE_CAP:                 /*  URL: hdwrcap boolean */
19518         case TCP_PACING_RATE_CAP:               /*  URL:cap-- used by side-channel */
19519         case TCP_HDWR_UP_ONLY:                  /*  URL:uponly -- hardware pacing  boolean */
19520        /* End pacing related */
19521         case TCP_FAST_RSM_HACK:                 /*  URL:frsm_hack */
19522         case TCP_DELACK:                        /*  URL:delack (in base TCP i.e. tcp_hints along with cc etc ) */
19523         case TCP_RACK_PRR_SENDALOT:             /*  URL:prr_sendalot */
19524         case TCP_RACK_MIN_TO:                   /*  URL:min_to */
19525         case TCP_RACK_EARLY_SEG:                /*  URL:early_seg */
19526         case TCP_RACK_REORD_THRESH:             /*  URL:reord_thresh */
19527         case TCP_RACK_REORD_FADE:               /*  URL:reord_fade */
19528         case TCP_RACK_TLP_THRESH:               /*  URL:tlp_thresh */
19529         case TCP_RACK_PKT_DELAY:                /*  URL:pkt_delay */
19530         case TCP_RACK_TLP_USE:                  /*  URL:tlp_use */
19531         case TCP_BBR_RACK_RTT_USE:              /*  URL:rttuse */
19532         case TCP_BBR_USE_RACK_RR:               /*  URL:rackrr */
19533         case TCP_RACK_DO_DETECTION:             /*  URL:detect */
19534         case TCP_NO_PRR:                        /*  URL:noprr */
19535         case TCP_TIMELY_DYN_ADJ:                /*  URL:dynamic */
19536         case TCP_DATA_AFTER_CLOSE:              /*  no URL */
19537         case TCP_RACK_NONRXT_CFG_RATE:          /*  URL:nonrxtcr */
19538         case TCP_SHARED_CWND_ENABLE:            /*  URL:scwnd */
19539         case TCP_RACK_MBUF_QUEUE:               /*  URL:mqueue */
19540         case TCP_RACK_NO_PUSH_AT_MAX:           /*  URL:npush */
19541         case TCP_RACK_PACE_TO_FILL:             /*  URL:fillcw */
19542         case TCP_SHARED_CWND_TIME_LIMIT:        /*  URL:lscwnd */
19543         case TCP_RACK_PROFILE:                  /*  URL:profile */
19544         case TCP_USE_CMP_ACKS:                  /*  URL:cmpack */
19545         case TCP_RACK_ABC_VAL:                  /*  URL:labc */
19546         case TCP_REC_ABC_VAL:                   /*  URL:reclabc */
19547         case TCP_RACK_MEASURE_CNT:              /*  URL:measurecnt */
19548         case TCP_DEFER_OPTIONS:                 /*  URL:defer */
19549         case TCP_RACK_PACING_BETA:              /*  URL:pacing_beta */
19550         case TCP_RACK_PACING_BETA_ECN:          /*  URL:pacing_beta_ecn */
19551         case TCP_RACK_TIMER_SLOP:               /*  URL:timer_slop */
19552                 break;
19553         default:
19554                 /* Filter off all unknown options to the base stack */
19555                 return (tcp_default_ctloutput(so, sopt, inp, tp));
19556                 break;
19557         }
19558         INP_WUNLOCK(inp);
19559         if (sopt->sopt_name == TCP_PACING_RATE_CAP) {
19560                 error = sooptcopyin(sopt, &loptval, sizeof(loptval), sizeof(loptval));
19561                 /*
19562                  * We truncate it down to 32 bits for the socket-option trace this
19563                  * means rates > 34Gbps won't show right, but thats probably ok.
19564                  */
19565                 optval = (uint32_t)loptval;
19566         } else {
19567                 error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
19568                 /* Save it in 64 bit form too */
19569                 loptval = optval;
19570         }
19571         if (error)
19572                 return (error);
19573         INP_WLOCK(inp);
19574         if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
19575                 INP_WUNLOCK(inp);
19576                 return (ECONNRESET);
19577         }
19578         if (tp->t_fb != &__tcp_rack) {
19579                 INP_WUNLOCK(inp);
19580                 return (ENOPROTOOPT);
19581         }
19582         if (rack->defer_options && (rack->gp_ready == 0) &&
19583             (sopt->sopt_name != TCP_DEFER_OPTIONS) &&
19584             (sopt->sopt_name != TCP_RACK_PACING_BETA) &&
19585             (sopt->sopt_name != TCP_RACK_PACING_BETA_ECN) &&
19586             (sopt->sopt_name != TCP_RACK_MEASURE_CNT)) {
19587                 /* Options are beind deferred */
19588                 if (rack_add_deferred_option(rack, sopt->sopt_name, loptval)) {
19589                         INP_WUNLOCK(inp);
19590                         return (0);
19591                 } else {
19592                         /* No memory to defer, fail */
19593                         INP_WUNLOCK(inp);
19594                         return (ENOMEM);
19595                 }
19596         }
19597         error = rack_process_option(tp, rack, sopt->sopt_name, optval, loptval);
19598         INP_WUNLOCK(inp);
19599         return (error);
19600 }
19601
19602 static void
19603 rack_fill_info(struct tcpcb *tp, struct tcp_info *ti)
19604 {
19605
19606         INP_WLOCK_ASSERT(tp->t_inpcb);
19607         bzero(ti, sizeof(*ti));
19608
19609         ti->tcpi_state = tp->t_state;
19610         if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP))
19611                 ti->tcpi_options |= TCPI_OPT_TIMESTAMPS;
19612         if (tp->t_flags & TF_SACK_PERMIT)
19613                 ti->tcpi_options |= TCPI_OPT_SACK;
19614         if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) {
19615                 ti->tcpi_options |= TCPI_OPT_WSCALE;
19616                 ti->tcpi_snd_wscale = tp->snd_scale;
19617                 ti->tcpi_rcv_wscale = tp->rcv_scale;
19618         }
19619         if (tp->t_flags2 & TF2_ECN_PERMIT)
19620                 ti->tcpi_options |= TCPI_OPT_ECN;
19621         if (tp->t_flags & TF_FASTOPEN)
19622                 ti->tcpi_options |= TCPI_OPT_TFO;
19623         /* still kept in ticks is t_rcvtime */
19624         ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick;
19625         /* Since we hold everything in precise useconds this is easy */
19626         ti->tcpi_rtt = tp->t_srtt;
19627         ti->tcpi_rttvar = tp->t_rttvar;
19628         ti->tcpi_rto = tp->t_rxtcur;
19629         ti->tcpi_snd_ssthresh = tp->snd_ssthresh;
19630         ti->tcpi_snd_cwnd = tp->snd_cwnd;
19631         /*
19632          * FreeBSD-specific extension fields for tcp_info.
19633          */
19634         ti->tcpi_rcv_space = tp->rcv_wnd;
19635         ti->tcpi_rcv_nxt = tp->rcv_nxt;
19636         ti->tcpi_snd_wnd = tp->snd_wnd;
19637         ti->tcpi_snd_bwnd = 0;          /* Unused, kept for compat. */
19638         ti->tcpi_snd_nxt = tp->snd_nxt;
19639         ti->tcpi_snd_mss = tp->t_maxseg;
19640         ti->tcpi_rcv_mss = tp->t_maxseg;
19641         ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack;
19642         ti->tcpi_rcv_ooopack = tp->t_rcvoopack;
19643         ti->tcpi_snd_zerowin = tp->t_sndzerowin;
19644 #ifdef NETFLIX_STATS
19645         ti->tcpi_total_tlp = tp->t_sndtlppack;
19646         ti->tcpi_total_tlp_bytes = tp->t_sndtlpbyte;
19647         memcpy(&ti->tcpi_rxsyninfo, &tp->t_rxsyninfo, sizeof(struct tcpsyninfo));
19648 #endif
19649 #ifdef TCP_OFFLOAD
19650         if (tp->t_flags & TF_TOE) {
19651                 ti->tcpi_options |= TCPI_OPT_TOE;
19652                 tcp_offload_tcp_info(tp, ti);
19653         }
19654 #endif
19655 }
19656
19657 static int
19658 rack_get_sockopt(struct socket *so, struct sockopt *sopt,
19659     struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
19660 {
19661         int32_t error, optval;
19662         uint64_t val, loptval;
19663         struct  tcp_info ti;
19664         /*
19665          * Because all our options are either boolean or an int, we can just
19666          * pull everything into optval and then unlock and copy. If we ever
19667          * add a option that is not a int, then this will have quite an
19668          * impact to this routine.
19669          */
19670         error = 0;
19671         switch (sopt->sopt_name) {
19672         case TCP_INFO:
19673                 /* First get the info filled */
19674                 rack_fill_info(tp, &ti);
19675                 /* Fix up the rtt related fields if needed */
19676                 INP_WUNLOCK(inp);
19677                 error = sooptcopyout(sopt, &ti, sizeof ti);
19678                 return (error);
19679         /*
19680          * Beta is the congestion control value for NewReno that influences how
19681          * much of a backoff happens when loss is detected. It is normally set
19682          * to 50 for 50% i.e. the cwnd is reduced to 50% of its previous value
19683          * when you exit recovery.
19684          */
19685         case TCP_RACK_PACING_BETA:
19686                 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0)
19687                         error = EINVAL;
19688                 else if (rack->rc_pacing_cc_set == 0)
19689                         optval = rack->r_ctl.rc_saved_beta.beta;
19690                 else {
19691                         /*
19692                          * Reach out into the CC data and report back what
19693                          * I have previously set. Yeah it looks hackish but
19694                          * we don't want to report the saved values.
19695                          */
19696                         if (tp->ccv->cc_data)
19697                                 optval = ((struct newreno *)tp->ccv->cc_data)->beta;
19698                         else
19699                                 error = EINVAL;
19700                 }
19701                 break;
19702                 /*
19703                  * Beta_ecn is the congestion control value for NewReno that influences how
19704                  * much of a backoff happens when a ECN mark is detected. It is normally set
19705                  * to 80 for 80% i.e. the cwnd is reduced by 20% of its previous value when
19706                  * you exit recovery. Note that classic ECN has a beta of 50, it is only
19707                  * ABE Ecn that uses this "less" value, but we do too with pacing :)
19708                  */
19709
19710         case TCP_RACK_PACING_BETA_ECN:
19711                 if (strcmp(tp->cc_algo->name, CCALGONAME_NEWRENO) != 0)
19712                         error = EINVAL;
19713                 else if (rack->rc_pacing_cc_set == 0)
19714                         optval = rack->r_ctl.rc_saved_beta.beta_ecn;
19715                 else {
19716                         /*
19717                          * Reach out into the CC data and report back what
19718                          * I have previously set. Yeah it looks hackish but
19719                          * we don't want to report the saved values.
19720                          */
19721                         if (tp->ccv->cc_data)
19722                                 optval = ((struct newreno *)tp->ccv->cc_data)->beta_ecn;
19723                         else
19724                                 error = EINVAL;
19725                 }
19726                 break;
19727         case TCP_FAST_RSM_HACK:
19728                 optval = rack->fast_rsm_hack;
19729                 break;
19730         case TCP_DEFER_OPTIONS:
19731                 optval = rack->defer_options;
19732                 break;
19733         case TCP_RACK_MEASURE_CNT:
19734                 optval = rack->r_ctl.req_measurements;
19735                 break;
19736         case TCP_REC_ABC_VAL:
19737                 optval = rack->r_use_labc_for_rec;
19738                 break;
19739         case TCP_RACK_ABC_VAL:
19740                 optval = rack->rc_labc;
19741                 break;
19742         case TCP_HDWR_UP_ONLY:
19743                 optval= rack->r_up_only;
19744                 break;
19745         case TCP_PACING_RATE_CAP:
19746                 loptval = rack->r_ctl.bw_rate_cap;
19747                 break;
19748         case TCP_RACK_PROFILE:
19749                 /* You cannot retrieve a profile, its write only */
19750                 error = EINVAL;
19751                 break;
19752         case TCP_USE_CMP_ACKS:
19753                 optval = rack->r_use_cmp_ack;
19754                 break;
19755         case TCP_RACK_PACE_TO_FILL:
19756                 optval = rack->rc_pace_to_cwnd;
19757                 if (optval && rack->r_fill_less_agg)
19758                         optval++;
19759                 break;
19760         case TCP_RACK_NO_PUSH_AT_MAX:
19761                 optval = rack->r_ctl.rc_no_push_at_mrtt;
19762                 break;
19763         case TCP_SHARED_CWND_ENABLE:
19764                 optval = rack->rack_enable_scwnd;
19765                 break;
19766         case TCP_RACK_NONRXT_CFG_RATE:
19767                 optval = rack->rack_rec_nonrxt_use_cr;
19768                 break;
19769         case TCP_NO_PRR:
19770                 if (rack->rack_no_prr  == 1)
19771                         optval = 1;
19772                 else if (rack->no_prr_addback == 1)
19773                         optval = 2;
19774                 else
19775                         optval = 0;
19776                 break;
19777         case TCP_RACK_DO_DETECTION:
19778                 optval = rack->do_detection;
19779                 break;
19780         case TCP_RACK_MBUF_QUEUE:
19781                 /* Now do we use the LRO mbuf-queue feature */
19782                 optval = rack->r_mbuf_queue;
19783                 break;
19784         case TCP_TIMELY_DYN_ADJ:
19785                 optval = rack->rc_gp_dyn_mul;
19786                 break;
19787         case TCP_BBR_IWINTSO:
19788                 optval = rack->rc_init_win;
19789                 break;
19790         case TCP_RACK_TLP_REDUCE:
19791                 /* RACK TLP cwnd reduction (bool) */
19792                 optval = rack->r_ctl.rc_tlp_cwnd_reduce;
19793                 break;
19794         case TCP_BBR_RACK_INIT_RATE:
19795                 val = rack->r_ctl.init_rate;
19796                 /* convert to kbits per sec */
19797                 val *= 8;
19798                 val /= 1000;
19799                 optval = (uint32_t)val;
19800                 break;
19801         case TCP_RACK_FORCE_MSEG:
19802                 optval = rack->rc_force_max_seg;
19803                 break;
19804         case TCP_RACK_PACE_MAX_SEG:
19805                 /* Max segments in a pace */
19806                 optval = rack->rc_user_set_max_segs;
19807                 break;
19808         case TCP_RACK_PACE_ALWAYS:
19809                 /* Use the always pace method */
19810                 optval = rack->rc_always_pace;
19811                 break;
19812         case TCP_RACK_PRR_SENDALOT:
19813                 /* Allow PRR to send more than one seg */
19814                 optval = rack->r_ctl.rc_prr_sendalot;
19815                 break;
19816         case TCP_RACK_MIN_TO:
19817                 /* Minimum time between rack t-o's in ms */
19818                 optval = rack->r_ctl.rc_min_to;
19819                 break;
19820         case TCP_RACK_EARLY_SEG:
19821                 /* If early recovery max segments */
19822                 optval = rack->r_ctl.rc_early_recovery_segs;
19823                 break;
19824         case TCP_RACK_REORD_THRESH:
19825                 /* RACK reorder threshold (shift amount) */
19826                 optval = rack->r_ctl.rc_reorder_shift;
19827                 break;
19828         case TCP_RACK_REORD_FADE:
19829                 /* Does reordering fade after ms time */
19830                 optval = rack->r_ctl.rc_reorder_fade;
19831                 break;
19832         case TCP_BBR_USE_RACK_RR:
19833                 /* Do we use the rack cheat for rxt */
19834                 optval = rack->use_rack_rr;
19835                 break;
19836         case TCP_RACK_RR_CONF:
19837                 optval = rack->r_rr_config;
19838                 break;
19839         case TCP_HDWR_RATE_CAP:
19840                 optval = rack->r_rack_hw_rate_caps;
19841                 break;
19842         case TCP_BBR_HDWR_PACE:
19843                 optval = rack->rack_hdw_pace_ena;
19844                 break;
19845         case TCP_RACK_TLP_THRESH:
19846                 /* RACK TLP theshold i.e. srtt+(srtt/N) */
19847                 optval = rack->r_ctl.rc_tlp_threshold;
19848                 break;
19849         case TCP_RACK_PKT_DELAY:
19850                 /* RACK added ms i.e. rack-rtt + reord + N */
19851                 optval = rack->r_ctl.rc_pkt_delay;
19852                 break;
19853         case TCP_RACK_TLP_USE:
19854                 optval = rack->rack_tlp_threshold_use;
19855                 break;
19856         case TCP_RACK_PACE_RATE_CA:
19857                 optval = rack->r_ctl.rc_fixed_pacing_rate_ca;
19858                 break;
19859         case TCP_RACK_PACE_RATE_SS:
19860                 optval = rack->r_ctl.rc_fixed_pacing_rate_ss;
19861                 break;
19862         case TCP_RACK_PACE_RATE_REC:
19863                 optval = rack->r_ctl.rc_fixed_pacing_rate_rec;
19864                 break;
19865         case TCP_RACK_GP_INCREASE_SS:
19866                 optval = rack->r_ctl.rack_per_of_gp_ca;
19867                 break;
19868         case TCP_RACK_GP_INCREASE_CA:
19869                 optval = rack->r_ctl.rack_per_of_gp_ss;
19870                 break;
19871         case TCP_BBR_RACK_RTT_USE:
19872                 optval = rack->r_ctl.rc_rate_sample_method;
19873                 break;
19874         case TCP_DELACK:
19875                 optval = tp->t_delayed_ack;
19876                 break;
19877         case TCP_DATA_AFTER_CLOSE:
19878                 optval = rack->rc_allow_data_af_clo;
19879                 break;
19880         case TCP_SHARED_CWND_TIME_LIMIT:
19881                 optval = rack->r_limit_scw;
19882                 break;
19883         case TCP_RACK_TIMER_SLOP:
19884                 optval = rack->r_ctl.timer_slop;
19885                 break;
19886         default:
19887                 return (tcp_default_ctloutput(so, sopt, inp, tp));
19888                 break;
19889         }
19890         INP_WUNLOCK(inp);
19891         if (error == 0) {
19892                 if (TCP_PACING_RATE_CAP)
19893                         error = sooptcopyout(sopt, &loptval, sizeof loptval);
19894                 else
19895                         error = sooptcopyout(sopt, &optval, sizeof optval);
19896         }
19897         return (error);
19898 }
19899
19900 static int
19901 rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
19902 {
19903         int32_t error = EINVAL;
19904         struct tcp_rack *rack;
19905
19906         rack = (struct tcp_rack *)tp->t_fb_ptr;
19907         if (rack == NULL) {
19908                 /* Huh? */
19909                 goto out;
19910         }
19911         if (sopt->sopt_dir == SOPT_SET) {
19912                 return (rack_set_sockopt(so, sopt, inp, tp, rack));
19913         } else if (sopt->sopt_dir == SOPT_GET) {
19914                 return (rack_get_sockopt(so, sopt, inp, tp, rack));
19915         }
19916 out:
19917         INP_WUNLOCK(inp);
19918         return (error);
19919 }
19920
19921 static const char *rack_stack_names[] = {
19922         __XSTRING(STACKNAME),
19923 #ifdef STACKALIAS
19924         __XSTRING(STACKALIAS),
19925 #endif
19926 };
19927
19928 static int
19929 rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
19930 {
19931         memset(mem, 0, size);
19932         return (0);
19933 }
19934
19935 static void
19936 rack_dtor(void *mem, int32_t size, void *arg)
19937 {
19938
19939 }
19940
19941 static bool rack_mod_inited = false;
19942
19943 static int
19944 tcp_addrack(module_t mod, int32_t type, void *data)
19945 {
19946         int32_t err = 0;
19947         int num_stacks;
19948
19949         switch (type) {
19950         case MOD_LOAD:
19951                 rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
19952                     sizeof(struct rack_sendmap),
19953                     rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
19954
19955                 rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
19956                     sizeof(struct tcp_rack),
19957                     rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
19958
19959                 sysctl_ctx_init(&rack_sysctl_ctx);
19960                 rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
19961                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
19962                     OID_AUTO,
19963 #ifdef STACKALIAS
19964                     __XSTRING(STACKALIAS),
19965 #else
19966                     __XSTRING(STACKNAME),
19967 #endif
19968                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
19969                     "");
19970                 if (rack_sysctl_root == NULL) {
19971                         printf("Failed to add sysctl node\n");
19972                         err = EFAULT;
19973                         goto free_uma;
19974                 }
19975                 rack_init_sysctls();
19976                 num_stacks = nitems(rack_stack_names);
19977                 err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
19978                     rack_stack_names, &num_stacks);
19979                 if (err) {
19980                         printf("Failed to register %s stack name for "
19981                             "%s module\n", rack_stack_names[num_stacks],
19982                             __XSTRING(MODNAME));
19983                         sysctl_ctx_free(&rack_sysctl_ctx);
19984 free_uma:
19985                         uma_zdestroy(rack_zone);
19986                         uma_zdestroy(rack_pcb_zone);
19987                         rack_counter_destroy();
19988                         printf("Failed to register rack module -- err:%d\n", err);
19989                         return (err);
19990                 }
19991                 tcp_lro_reg_mbufq();
19992                 rack_mod_inited = true;
19993                 break;
19994         case MOD_QUIESCE:
19995                 err = deregister_tcp_functions(&__tcp_rack, true, false);
19996                 break;
19997         case MOD_UNLOAD:
19998                 err = deregister_tcp_functions(&__tcp_rack, false, true);
19999                 if (err == EBUSY)
20000                         break;
20001                 if (rack_mod_inited) {
20002                         uma_zdestroy(rack_zone);
20003                         uma_zdestroy(rack_pcb_zone);
20004                         sysctl_ctx_free(&rack_sysctl_ctx);
20005                         rack_counter_destroy();
20006                         rack_mod_inited = false;
20007                 }
20008                 tcp_lro_dereg_mbufq();
20009                 err = 0;
20010                 break;
20011         default:
20012                 return (EOPNOTSUPP);
20013         }
20014         return (err);
20015 }
20016
20017 static moduledata_t tcp_rack = {
20018         .name = __XSTRING(MODNAME),
20019         .evhand = tcp_addrack,
20020         .priv = 0
20021 };
20022
20023 MODULE_VERSION(MODNAME, 1);
20024 DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
20025 MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);