]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_stacks/rack_bbr_common.c
MFV r356143:
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_stacks / rack_bbr_common.c
1 /*-
2  * Copyright (c) 2016-9
3  *      Netflix Inc.
4  *      All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 /*
29  * Author: Randall Stewart <rrs@netflix.com>
30  * This work is based on the ACM Queue paper
31  * BBR - Congestion Based Congestion Control
32  * and also numerous discussions with Neal, Yuchung and Van.
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_ratelimit.h"
43 #include "opt_kern_tls.h"
44 #include <sys/param.h>
45 #include <sys/arb.h>
46 #include <sys/module.h>
47 #include <sys/kernel.h>
48 #ifdef TCP_HHOOK
49 #include <sys/hhook.h>
50 #endif
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/proc.h>
54 #include <sys/qmath.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #ifdef KERN_TLS
58 #include <sys/ktls.h>
59 #endif
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 #include <sys/tree.h>
63 #ifdef NETFLIX_STATS
64 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
65 #endif
66 #include <sys/refcount.h>
67 #include <sys/queue.h>
68 #include <sys/smp.h>
69 #include <sys/kthread.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/tim_filter.h>
73 #include <sys/time.h>
74 #include <vm/uma.h>
75 #include <sys/kern_prefetch.h>
76
77 #include <net/route.h>
78 #include <net/vnet.h>
79 #include <net/ethernet.h>
80 #include <net/bpf.h>
81
82 #define TCPSTATES               /* for logging */
83
84 #include <netinet/in.h>
85 #include <netinet/in_kdtrace.h>
86 #include <netinet/in_pcb.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
89 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
90 #include <netinet/ip_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/ip6_var.h>
94 #define TCPOUTFLAGS
95 #include <netinet/tcp.h>
96 #include <netinet/tcp_fsm.h>
97 #include <netinet/tcp_seq.h>
98 #include <netinet/tcp_timer.h>
99 #include <netinet/tcp_var.h>
100 #include <netinet/tcpip.h>
101 #include <netinet/tcp_hpts.h>
102 #include <netinet/cc/cc.h>
103 #include <netinet/tcp_log_buf.h>
104 #ifdef TCPDEBUG
105 #include <netinet/tcp_debug.h>
106 #endif                          /* TCPDEBUG */
107 #ifdef TCP_OFFLOAD
108 #include <netinet/tcp_offload.h>
109 #endif
110 #ifdef INET6
111 #include <netinet6/tcp6_var.h>
112 #endif
113 #include <netinet/tcp_fastopen.h>
114
115 #include <netipsec/ipsec_support.h>
116 #include <net/if.h>
117 #include <net/if_var.h>
118
119 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
120 #include <netipsec/ipsec.h>
121 #include <netipsec/ipsec6.h>
122 #endif                          /* IPSEC */
123
124 #include <netinet/udp.h>
125 #include <netinet/udp_var.h>
126 #include <machine/in_cksum.h>
127
128 #ifdef MAC
129 #include <security/mac/mac_framework.h>
130 #endif
131 #include "rack_bbr_common.h"
132
133 /*
134  * Common TCP Functions - These are shared by borth
135  * rack and BBR.
136  */
137 #ifdef KERN_TLS
138 uint32_t
139 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
140 {
141         struct ktls_session *tls;
142         uint32_t len;
143
144 again:
145         tls = so->so_snd.sb_tls_info;
146         len = tls->params.max_frame_len;         /* max tls payload */
147         len += tls->params.tls_hlen;      /* tls header len  */
148         len += tls->params.tls_tlen;      /* tls trailer len */
149         if ((len * 4) > rwnd) {
150                 /*
151                  * Stroke this will suck counter and what
152                  * else should we do Drew? From the
153                  * TCP perspective I am not sure
154                  * what should be done...
155                  */
156                 if (tls->params.max_frame_len > 4096) {
157                         tls->params.max_frame_len -= 4096;
158                         if (tls->params.max_frame_len < 4096)
159                                 tls->params.max_frame_len = 4096;
160                         goto again;
161                 }
162         }
163         return (len);
164 }
165 #endif
166
167
168 /*
169  * The function ctf_process_inbound_raw() is used by
170  * transport developers to do the steps needed to
171  * support MBUF Queuing i.e. the flags in
172  * inp->inp_flags2:
173  *
174  * - INP_SUPPORTS_MBUFQ
175  * - INP_MBUF_QUEUE_READY
176  * - INP_DONT_SACK_QUEUE
177  * 
178  * These flags help control how LRO will deliver
179  * packets to the transport. You first set in inp_flags2
180  * the INP_SUPPORTS_MBUFQ to tell the LRO code that you
181  * will gladly take a queue of packets instead of a compressed
182  * single packet. You also set in your t_fb pointer the
183  * tfb_do_queued_segments to point to ctf_process_inbound_raw.
184  *
185  * This then gets you lists of inbound ACK's/Data instead
186  * of a condensed compressed ACK/DATA packet. Why would you
187  * want that? This will get you access to all the arrival
188  * times of at least LRO and possibly at the Hardware (if
189  * the interface card supports that) of the actual ACK/DATA.
190  * In some transport designs this is important since knowing
191  * the actual time we got the packet is useful information.
192  *
193  * Now there are some interesting Caveats that the transport
194  * designer needs to take into account when using this feature.
195  * 
196  * 1) It is used with HPTS and pacing, when the pacing timer
197  *    for output calls it will first call the input. 
198  * 2) When you set INP_MBUF_QUEUE_READY this tells LRO
199  *    queue normal packets, I am busy pacing out data and
200  *    will process the queued packets before my tfb_tcp_output
201  *    call from pacing. If a non-normal packet arrives, (e.g. sack)
202  *    you will be awoken immediately.
203  * 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
204  *    be awoken if a SACK has arrived. You would do this when
205  *    you were not only running a pacing for output timer
206  *    but a Rack timer as well i.e. you know you are in recovery
207  *    and are in the process (via the timers) of dealing with
208  *    the loss.
209  *
210  * Now a critical thing you must be aware of here is that the
211  * use of the flags has a far greater scope then just your 
212  * typical LRO. Why? Well thats because in the normal compressed
213  * LRO case at the end of a driver interupt all packets are going
214  * to get presented to the transport no matter if there is one
215  * or 100. With the MBUF_QUEUE model, this is not true. You will
216  * only be awoken to process the queue of packets when:
217  *     a) The flags discussed above allow it.
218  *          <or>
219  *     b) You exceed a ack or data limit (by default the
220  *        ack limit is infinity (64k acks) and the data 
221  *        limit is 64k of new TCP data)
222  *         <or> 
223  *     c) The push bit has been set by the peer
224  */
225
226 int
227 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
228 {
229         /*
230          * We are passed a raw change of mbuf packets
231          * that arrived in LRO. They are linked via
232          * the m_nextpkt link in the pkt-headers.
233          *
234          * We process each one by:
235          * a) saving off the next
236          * b) stripping off the ether-header
237          * c) formulating the arguments for
238          *    the tfb_tcp_hpts_do_segment
239          * d) calling each mbuf to tfb_tcp_hpts_do_segment
240          *    after adjusting the time to match the arrival time.
241          * Note that the LRO code assures no IP options are present.
242          *
243          * The symantics for calling tfb_tcp_hpts_do_segment are the 
244          * following:
245          * 1) It returns 0 if all went well and you (the caller) need
246          *    to release the lock.
247          * 2) If nxt_pkt is set, then the function will surpress calls
248          *    to tfb_tcp_output() since you are promising to call again
249          *    with another packet.
250          * 3) If it returns 1, then you must free all the packets being
251          *    shipped in, the tcb has been destroyed (or about to be destroyed).
252          */
253         struct mbuf *m_save;
254         struct ether_header *eh;
255         struct tcphdr *th;
256 #ifdef INET6
257         struct ip6_hdr *ip6 = NULL;     /* Keep compiler happy. */
258 #endif
259 #ifdef INET
260         struct ip *ip = NULL;           /* Keep compiler happy. */
261 #endif
262         struct ifnet *ifp;
263         struct timeval tv;
264         int32_t retval, nxt_pkt, tlen, off;
265         uint16_t etype;
266         uint16_t drop_hdrlen;
267         uint8_t iptos, no_vn=0, bpf_req=0;
268
269         NET_EPOCH_ASSERT();
270
271         if (m && m->m_pkthdr.rcvif)
272                 ifp = m->m_pkthdr.rcvif;
273         else
274                 ifp = NULL;
275         if (ifp) {
276                 bpf_req = bpf_peers_present(ifp->if_bpf);
277         } else  {
278                 /* 
279                  * We probably should not work around
280                  * but kassert, since lro alwasy sets rcvif.
281                  */
282                 no_vn = 1;
283                 goto skip_vnet;
284         }
285         CURVNET_SET(ifp->if_vnet);
286 skip_vnet:
287         while (m) {
288                 m_save = m->m_nextpkt;
289                 m->m_nextpkt = NULL;
290                 /* Now lets get the ether header */
291                 eh = mtod(m, struct ether_header *);
292                 etype = ntohs(eh->ether_type);
293                 /* Let the BPF see the packet */
294                 if (bpf_req && ifp)
295                         ETHER_BPF_MTAP(ifp, m);
296                 m_adj(m,  sizeof(*eh));
297                 /* Trim off the ethernet header */
298                 switch (etype) {
299 #ifdef INET6
300                 case ETHERTYPE_IPV6:
301                 {
302                         if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
303                                 m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
304                                 if (m == NULL) {
305                                         TCPSTAT_INC(tcps_rcvshort);
306                                         m_freem(m);
307                                         goto skipped_pkt;
308                                 }
309                         }
310                         ip6 = (struct ip6_hdr *)(eh + 1);
311                         th = (struct tcphdr *)(ip6 + 1);
312                         tlen = ntohs(ip6->ip6_plen);
313                         drop_hdrlen = sizeof(*ip6);
314                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
315                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
316                                         th->th_sum = m->m_pkthdr.csum_data;
317                                 else
318                                         th->th_sum = in6_cksum_pseudo(ip6, tlen,
319                                                                       IPPROTO_TCP, m->m_pkthdr.csum_data);
320                                 th->th_sum ^= 0xffff;
321                         } else
322                                 th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
323                         if (th->th_sum) {
324                                 TCPSTAT_INC(tcps_rcvbadsum);
325                                 m_freem(m);
326                                 goto skipped_pkt;
327                         }
328                         /*
329                          * Be proactive about unspecified IPv6 address in source.
330                          * As we use all-zero to indicate unbounded/unconnected pcb,
331                          * unspecified IPv6 address can be used to confuse us.
332                          *
333                          * Note that packets with unspecified IPv6 destination is
334                          * already dropped in ip6_input.
335                          */
336                         if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
337                                 /* XXX stat */
338                                 m_freem(m);
339                                 goto skipped_pkt;
340                         }
341                         iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
342                         break;
343                 }
344 #endif
345 #ifdef INET
346                 case ETHERTYPE_IP:
347                 {
348                         if (m->m_len < sizeof (struct tcpiphdr)) {
349                                 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
350                                     == NULL) {
351                                         TCPSTAT_INC(tcps_rcvshort);
352                                         m_freem(m);
353                                         goto skipped_pkt;
354                                 }
355                         }
356                         ip = (struct ip *)(eh + 1);
357                         th = (struct tcphdr *)(ip + 1);
358                         drop_hdrlen = sizeof(*ip);
359                         iptos = ip->ip_tos;
360                         tlen = ntohs(ip->ip_len) - sizeof(struct ip);
361                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
362                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
363                                         th->th_sum = m->m_pkthdr.csum_data;
364                                 else
365                                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
366                                                                ip->ip_dst.s_addr,
367                                                                htonl(m->m_pkthdr.csum_data + tlen +
368                                                                      IPPROTO_TCP));
369                                 th->th_sum ^= 0xffff;
370                         } else {
371                                 int len;
372                                 struct ipovly *ipov = (struct ipovly *)ip;
373                                 /*
374                                  * Checksum extended TCP header and data.
375                                  */
376                                 len = drop_hdrlen + tlen;
377                                 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
378                                 ipov->ih_len = htons(tlen);
379                                 th->th_sum = in_cksum(m, len);
380                                 /* Reset length for SDT probes. */
381                                 ip->ip_len = htons(len);
382                                 /* Reset TOS bits */
383                                 ip->ip_tos = iptos;
384                                 /* Re-initialization for later version check */
385                                 ip->ip_v = IPVERSION;
386                                 ip->ip_hl = sizeof(*ip) >> 2;
387                         }
388                         if (th->th_sum) {
389                                 TCPSTAT_INC(tcps_rcvbadsum);
390                                 m_freem(m);
391                                 goto skipped_pkt;
392                         }
393                         break;
394                 }
395 #endif
396                 }
397                 /*
398                  * Convert TCP protocol specific fields to host format.
399                  */
400                 tcp_fields_to_host(th);
401
402                 off = th->th_off << 2;
403                 if (off < sizeof (struct tcphdr) || off > tlen) {
404                         TCPSTAT_INC(tcps_rcvbadoff);
405                                 m_freem(m);
406                                 goto skipped_pkt;
407                 }
408                 tlen -= off;
409                 drop_hdrlen += off;
410                 /* 
411                  * Now lets setup the timeval to be when we should
412                  * have been called (if we can).
413                  */
414                 m->m_pkthdr.lro_nsegs = 1;
415                 if (m->m_flags & M_TSTMP_LRO) {
416                         tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
417                         tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
418                 } else {
419                         /* Should not be should we kassert instead? */
420                         tcp_get_usecs(&tv);
421                 }
422                 /* Now what about next packet? */
423                 if (m_save || has_pkt)
424                         nxt_pkt = 1;
425                 else
426                         nxt_pkt = 0;
427                 retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
428                                                               iptos, nxt_pkt, &tv);
429                 if (retval) {
430                         /* We lost the lock and tcb probably */
431                         m = m_save;
432                         while(m) {
433                                 m_save = m->m_nextpkt;
434                                 m->m_nextpkt = NULL;
435                                 m_freem(m);
436                                 m = m_save;
437                         }
438                         if (no_vn == 0)
439                                 CURVNET_RESTORE();
440                         return(retval);
441                 }
442 skipped_pkt:
443                 m = m_save;
444         }
445         if (no_vn == 0)
446                 CURVNET_RESTORE();
447         return(retval);
448 }
449
450 int
451 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
452 {
453         struct mbuf *m;
454
455         /* First lets see if we have old packets */
456         if (tp->t_in_pkt) {
457                 m = tp->t_in_pkt;
458                 tp->t_in_pkt = NULL;
459                 tp->t_tail_pkt = NULL;
460                 if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
461                         /* We lost the tcpcb (maybe a RST came in)? */
462                         return(1);
463                 }
464         }
465         return (0);
466 }
467
468 uint32_t
469 ctf_outstanding(struct tcpcb *tp)
470 {
471         return(tp->snd_max - tp->snd_una);
472 }
473
474 uint32_t 
475 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
476 {
477         if (rc_sacked <= ctf_outstanding(tp))
478                 return(ctf_outstanding(tp) - rc_sacked);
479         else {
480                 /* TSNH */
481 #ifdef INVARIANTS
482                 panic("tp:%p rc_sacked:%d > out:%d",
483                       tp, rc_sacked, ctf_outstanding(tp));
484 #endif          
485                 return (0);
486         }
487 }
488
489 void
490 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
491     int32_t rstreason, int32_t tlen)
492 {
493         if (tp != NULL) {
494                 tcp_dropwithreset(m, th, tp, tlen, rstreason);
495                 INP_WUNLOCK(tp->t_inpcb);
496         } else
497                 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
498 }
499
500 /*
501  * ctf_drop_checks returns 1 for you should not proceed. It places
502  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
503  * that the TCB is unlocked and probably dropped. The 0 indicates the
504  * TCB is still valid and locked.
505  */
506 int
507 ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp,  int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
508 {
509         int32_t todrop;
510         int32_t thflags;
511         int32_t tlen;
512
513         thflags = *thf;
514         tlen = *tlenp;
515         todrop = tp->rcv_nxt - th->th_seq;
516         if (todrop > 0) {
517                 if (thflags & TH_SYN) {
518                         thflags &= ~TH_SYN;
519                         th->th_seq++;
520                         if (th->th_urp > 1)
521                                 th->th_urp--;
522                         else
523                                 thflags &= ~TH_URG;
524                         todrop--;
525                 }
526                 /*
527                  * Following if statement from Stevens, vol. 2, p. 960.
528                  */
529                 if (todrop > tlen
530                     || (todrop == tlen && (thflags & TH_FIN) == 0)) {
531                         /*
532                          * Any valid FIN must be to the left of the window.
533                          * At this point the FIN must be a duplicate or out
534                          * of sequence; drop it.
535                          */
536                         thflags &= ~TH_FIN;
537                         /*
538                          * Send an ACK to resynchronize and drop any data.
539                          * But keep on processing for RST or ACK.
540                          */
541                         tp->t_flags |= TF_ACKNOW;
542                         todrop = tlen;
543                         TCPSTAT_INC(tcps_rcvduppack);
544                         TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
545                 } else {
546                         TCPSTAT_INC(tcps_rcvpartduppack);
547                         TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
548                 }
549                 /*
550                  * DSACK - add SACK block for dropped range
551                  */
552                 if (tp->t_flags & TF_SACK_PERMIT) {
553                         tcp_update_sack_list(tp, th->th_seq,
554                             th->th_seq + todrop);
555                         /*
556                          * ACK now, as the next in-sequence segment
557                          * will clear the DSACK block again
558                          */
559                         tp->t_flags |= TF_ACKNOW;
560                 }
561                 *drop_hdrlen += todrop; /* drop from the top afterwards */
562                 th->th_seq += todrop;
563                 tlen -= todrop;
564                 if (th->th_urp > todrop)
565                         th->th_urp -= todrop;
566                 else {
567                         thflags &= ~TH_URG;
568                         th->th_urp = 0;
569                 }
570         }
571         /*
572          * If segment ends after window, drop trailing data (and PUSH and
573          * FIN); if nothing left, just ACK.
574          */
575         todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
576         if (todrop > 0) {
577                 TCPSTAT_INC(tcps_rcvpackafterwin);
578                 if (todrop >= tlen) {
579                         TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
580                         /*
581                          * If window is closed can only take segments at
582                          * window edge, and have to drop data and PUSH from
583                          * incoming segments.  Continue processing, but
584                          * remember to ack.  Otherwise, drop segment and
585                          * ack.
586                          */
587                         if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
588                                 tp->t_flags |= TF_ACKNOW;
589                                 TCPSTAT_INC(tcps_rcvwinprobe);
590                         } else {
591                                 ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
592                                 return (1);
593                         }
594                 } else
595                         TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
596                 m_adj(m, -todrop);
597                 tlen -= todrop;
598                 thflags &= ~(TH_PUSH | TH_FIN);
599         }
600         *thf = thflags;
601         *tlenp = tlen;
602         return (0);
603 }
604
605 /*
606  * The value in ret_val informs the caller
607  * if we dropped the tcb (and lock) or not.
608  * 1 = we dropped it, 0 = the TCB is still locked
609  * and valid.
610  */
611 void
612 ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
613 {
614         /*
615          * Generate an ACK dropping incoming segment if it occupies sequence
616          * space, where the ACK reflects our state.
617          *
618          * We can now skip the test for the RST flag since all paths to this
619          * code happen after packets containing RST have been dropped.
620          *
621          * In the SYN-RECEIVED state, don't send an ACK unless the segment
622          * we received passes the SYN-RECEIVED ACK test. If it fails send a
623          * RST.  This breaks the loop in the "LAND" DoS attack, and also
624          * prevents an ACK storm between two listening ports that have been
625          * sent forged SYN segments, each with the source address of the
626          * other.
627          */
628         if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
629             (SEQ_GT(tp->snd_una, th->th_ack) ||
630             SEQ_GT(th->th_ack, tp->snd_max))) {
631                 *ret_val = 1;
632                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
633                 return;
634         } else
635                 *ret_val = 0;
636         tp->t_flags |= TF_ACKNOW;
637         if (m)
638                 m_freem(m);
639 }
640
641 void
642 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
643 {
644
645         /*
646          * Drop space held by incoming segment and return.
647          */
648         if (tp != NULL)
649                 INP_WUNLOCK(tp->t_inpcb);
650         if (m)
651                 m_freem(m);
652 }
653
654 int
655 ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
656 {
657         /*
658          * RFC5961 Section 3.2
659          *
660          * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
661          * window, we send challenge ACK.
662          *
663          * Note: to take into account delayed ACKs, we should test against
664          * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
665          * of closed window, not covered by the RFC.
666          */
667         int dropped = 0;
668
669         if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
670             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
671             (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
672
673                 KASSERT(tp->t_state != TCPS_SYN_SENT,
674                     ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
675                     __func__, th, tp));
676
677                 if (V_tcp_insecure_rst ||
678                     (tp->last_ack_sent == th->th_seq) ||
679                     (tp->rcv_nxt == th->th_seq) ||
680                     ((tp->last_ack_sent - 1) == th->th_seq)) {
681                         TCPSTAT_INC(tcps_drops);
682                         /* Drop the connection. */
683                         switch (tp->t_state) {
684                         case TCPS_SYN_RECEIVED:
685                                 so->so_error = ECONNREFUSED;
686                                 goto close;
687                         case TCPS_ESTABLISHED:
688                         case TCPS_FIN_WAIT_1:
689                         case TCPS_FIN_WAIT_2:
690                         case TCPS_CLOSE_WAIT:
691                         case TCPS_CLOSING:
692                         case TCPS_LAST_ACK:
693                                 so->so_error = ECONNRESET;
694                 close:
695                                 tcp_state_change(tp, TCPS_CLOSED);
696                                 /* FALLTHROUGH */
697                         default:
698                                 tp = tcp_close(tp);
699                         }
700                         dropped = 1;
701                         ctf_do_drop(m, tp);
702                 } else {
703                         TCPSTAT_INC(tcps_badrst);
704                         /* Send challenge ACK. */
705                         tcp_respond(tp, mtod(m, void *), th, m,
706                             tp->rcv_nxt, tp->snd_nxt, TH_ACK);
707                         tp->last_ack_sent = tp->rcv_nxt;
708                 }
709         } else {
710                 m_freem(m);
711         }
712         return (dropped);
713 }
714
715 /*
716  * The value in ret_val informs the caller
717  * if we dropped the tcb (and lock) or not.
718  * 1 = we dropped it, 0 = the TCB is still locked
719  * and valid.
720  */
721 void
722 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
723 {
724
725         NET_EPOCH_ASSERT();
726
727         TCPSTAT_INC(tcps_badsyn);
728         if (V_tcp_insecure_syn &&
729             SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
730             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
731                 tp = tcp_drop(tp, ECONNRESET);
732                 *ret_val = 1;
733                 ctf_do_drop(m, tp);
734         } else {
735                 /* Send challenge ACK. */
736                 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
737                     tp->snd_nxt, TH_ACK);
738                 tp->last_ack_sent = tp->rcv_nxt;
739                 m = NULL;
740                 *ret_val = 0;
741                 ctf_do_drop(m, NULL);
742         }
743 }
744
745 /*
746  * bbr_ts_check returns 1 for you should not proceed, the state
747  * machine should return. It places in ret_val what should
748  * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
749  * that the TCB is unlocked and probably dropped. The 0 indicates the
750  * TCB is still valid and locked.
751  */
752 int
753 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
754     int32_t tlen, int32_t thflags, int32_t * ret_val)
755 {
756
757         if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
758                 /*
759                  * Invalidate ts_recent.  If this segment updates ts_recent,
760                  * the age will be reset later and ts_recent will get a
761                  * valid value.  If it does not, setting ts_recent to zero
762                  * will at least satisfy the requirement that zero be placed
763                  * in the timestamp echo reply when ts_recent isn't valid.
764                  * The age isn't reset until we get a valid ts_recent
765                  * because we don't want out-of-order segments to be dropped
766                  * when ts_recent is old.
767                  */
768                 tp->ts_recent = 0;
769         } else {
770                 TCPSTAT_INC(tcps_rcvduppack);
771                 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
772                 TCPSTAT_INC(tcps_pawsdrop);
773                 *ret_val = 0;
774                 if (tlen) {
775                         ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
776                 } else {
777                         ctf_do_drop(m, NULL);
778                 }
779                 return (1);
780         }
781         return (0);
782 }
783
784 void
785 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
786 {
787         int32_t win;
788
789         /*
790          * Calculate amount of space in receive window, and then do TCP
791          * input processing. Receive window is amount of space in rcv queue,
792          * but not less than advertised window.
793          */
794         win = sbspace(&so->so_rcv);
795         if (win < 0)
796                 win = 0;
797         tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
798 }
799
800 void
801 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
802     int32_t rstreason, int32_t tlen)
803 {
804
805         if (tp->t_inpcb) {
806                 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
807         }
808         tcp_dropwithreset(m, th, tp, tlen, rstreason);
809         INP_WUNLOCK(tp->t_inpcb);
810 }
811
812 uint32_t
813 ctf_fixed_maxseg(struct tcpcb *tp)
814 {
815         int optlen;
816
817         if (tp->t_flags & TF_NOOPT)
818                 return (tp->t_maxseg);
819
820         /*
821          * Here we have a simplified code from tcp_addoptions(),
822          * without a proper loop, and having most of paddings hardcoded.
823          * We only consider fixed options that we would send every
824          * time I.e. SACK is not considered.
825          * 
826          */
827 #define PAD(len)        ((((len) / 4) + !!((len) % 4)) * 4)
828         if (TCPS_HAVEESTABLISHED(tp->t_state)) {
829                 if (tp->t_flags & TF_RCVD_TSTMP)
830                         optlen = TCPOLEN_TSTAMP_APPA;
831                 else
832                         optlen = 0;
833 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
834                 if (tp->t_flags & TF_SIGNATURE)
835                         optlen += PAD(TCPOLEN_SIGNATURE);
836 #endif
837         } else {
838                 if (tp->t_flags & TF_REQ_TSTMP)
839                         optlen = TCPOLEN_TSTAMP_APPA;
840                 else
841                         optlen = PAD(TCPOLEN_MAXSEG);
842                 if (tp->t_flags & TF_REQ_SCALE)
843                         optlen += PAD(TCPOLEN_WINDOW);
844 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
845                 if (tp->t_flags & TF_SIGNATURE)
846                         optlen += PAD(TCPOLEN_SIGNATURE);
847 #endif
848                 if (tp->t_flags & TF_SACK_PERMIT)
849                         optlen += PAD(TCPOLEN_SACK_PERMITTED);
850         }
851 #undef PAD
852         optlen = min(optlen, TCP_MAXOLEN);
853         return (tp->t_maxseg - optlen);
854 }
855
856 void
857 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
858 {
859         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
860                 union tcp_log_stackspecific log;
861                 struct timeval tv;
862
863                 memset(&log, 0, sizeof(log));
864                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
865                 log.u_bbr.flex8 = num_sack_blks;
866                 if (num_sack_blks > 0) {
867                         log.u_bbr.flex1 = sack_blocks[0].start;
868                         log.u_bbr.flex2 = sack_blocks[0].end;
869                 }
870                 if (num_sack_blks > 1) {
871                         log.u_bbr.flex3 = sack_blocks[1].start;
872                         log.u_bbr.flex4 = sack_blocks[1].end;
873                 }
874                 if (num_sack_blks > 2) {
875                         log.u_bbr.flex5 = sack_blocks[2].start;
876                         log.u_bbr.flex6 = sack_blocks[2].end;
877                 }
878                 if (num_sack_blks > 3) {
879                         log.u_bbr.applimited = sack_blocks[3].start;
880                         log.u_bbr.pkts_out = sack_blocks[3].end;
881                 }
882                 TCP_LOG_EVENTP(tp, NULL,
883                     &tp->t_inpcb->inp_socket->so_rcv,
884                     &tp->t_inpcb->inp_socket->so_snd,
885                     TCP_SACK_FILTER_RES, 0,
886                     0, &log, false, &tv);
887         }
888 }
889
890 uint32_t 
891 ctf_decay_count(uint32_t count, uint32_t decay)
892 {
893         /*
894          * Given a count, decay it by a set percentage. The
895          * percentage is in thousands i.e. 100% = 1000, 
896          * 19.3% = 193.
897          */
898         uint64_t perc_count, decay_per;
899         uint32_t decayed_count;
900         if (decay > 1000) {
901                 /* We don't raise it */
902                 return (count);
903         }
904         perc_count = count;
905         decay_per = decay;
906         perc_count *= decay_per;
907         perc_count /= 1000;
908         /* 
909          * So now perc_count holds the 
910          * count decay value.
911          */
912         decayed_count = count - (uint32_t)perc_count;
913         return(decayed_count);
914 }