]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_stacks/rack_bbr_common.c
MFC r351782:
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_stacks / rack_bbr_common.c
1 /*-
2  * Copyright (c) 2016-2018
3  *      Netflix Inc.
4  *      All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 /*
29  * Author: Randall Stewart <rrs@netflix.com>
30  * This work is based on the ACM Queue paper
31  * BBR - Congestion Based Congestion Control
32  * and also numerous discussions with Neal, Yuchung and Van.
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_ratelimit.h"
43 /*#include "opt_kern_tls.h"*/
44 #include <sys/param.h>
45 #include <sys/module.h>
46 #include <sys/kernel.h>
47 #ifdef TCP_HHOOK
48 #include <sys/hhook.h>
49 #endif
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #ifdef KERN_TLS
56 #include <sys/sockbuf_tls.h>
57 #endif
58 #include <sys/sysctl.h>
59 #include <sys/systm.h>
60 #include <sys/tree.h>
61 #include <sys/refcount.h>
62 #include <sys/queue.h>
63 #include <sys/smp.h>
64 #include <sys/kthread.h>
65 #include <sys/lock.h>
66 #include <sys/mutex.h>
67 #include <sys/time.h>
68 #include <vm/uma.h>
69 #include <sys/kern_prefetch.h>
70
71 #include <net/route.h>
72 #include <net/vnet.h>
73 #include <net/ethernet.h>
74 #include <net/bpf.h>
75
76 #define TCPSTATES               /* for logging */
77
78 #include <netinet/in.h>
79 #include <netinet/in_kdtrace.h>
80 #include <netinet/in_pcb.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
83 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
84 #include <netinet/ip_var.h>
85 #include <netinet/ip6.h>
86 #include <netinet6/in6_pcb.h>
87 #include <netinet6/ip6_var.h>
88 #define TCPOUTFLAGS
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/tcpip.h>
95 #include <netinet/tcp_hpts.h>
96 #include <netinet/cc/cc.h>
97 #include <netinet/tcp_log_buf.h>
98 #ifdef TCPDEBUG
99 #include <netinet/tcp_debug.h>
100 #endif                          /* TCPDEBUG */
101 #ifdef TCP_OFFLOAD
102 #include <netinet/tcp_offload.h>
103 #endif
104 #ifdef INET6
105 #include <netinet6/tcp6_var.h>
106 #endif
107 #include <netinet/tcp_fastopen.h>
108
109 #include <netipsec/ipsec_support.h>
110 #include <net/if.h>
111 #include <net/if_var.h>
112
113 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
114 #include <netipsec/ipsec.h>
115 #include <netipsec/ipsec6.h>
116 #endif                          /* IPSEC */
117
118 #include <netinet/udp.h>
119 #include <netinet/udp_var.h>
120 #include <machine/in_cksum.h>
121
122 #ifdef MAC
123 #include <security/mac/mac_framework.h>
124 #endif
125 #include "rack_bbr_common.h"
126
127 /*
128  * Common TCP Functions - These are shared by borth
129  * rack and BBR.
130  */
131
132
133 #ifdef KERN_TLS
134 uint32_t
135 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
136 {
137         struct sbtls_info *tls;
138         uint32_t len;
139
140 again:
141         tls = so->so_snd.sb_tls_info;
142         len = tls->sb_params.sb_maxlen;         /* max tls payload */
143         len += tls->sb_params.sb_tls_hlen;      /* tls header len  */
144         len += tls->sb_params.sb_tls_tlen;      /* tls trailer len */
145         if ((len * 4) > rwnd) {
146                 /*
147                  * Stroke this will suck counter and what
148                  * else should we do Drew? From the
149                  * TCP perspective I am not sure
150                  * what should be done...
151                  */
152                 if (tls->sb_params.sb_maxlen > 4096) {
153                         tls->sb_params.sb_maxlen -= 4096;
154                         if (tls->sb_params.sb_maxlen < 4096)
155                                 tls->sb_params.sb_maxlen = 4096;
156                         goto again;
157                 }
158         }
159         return (len);
160 }
161 #endif
162
163 int
164 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
165 {
166         /*
167          * We are passed a raw change of mbuf packets
168          * that arrived in LRO. They are linked via
169          * the m_nextpkt link in the pkt-headers.
170          *
171          * We process each one by:
172          * a) saving off the next
173          * b) stripping off the ether-header
174          * c) formulating the arguments for
175          *    the tfb_tcp_hpts_do_segment
176          * d) calling each mbuf to tfb_tcp_hpts_do_segment
177          *    after adjusting the time to match the arrival time.
178          * Note that the LRO code assures no IP options are present.
179          *
180          * The symantics for calling tfb_tcp_hpts_do_segment are the 
181          * following:
182          * 1) It returns 0 if all went well and you (the caller) need
183          *    to release the lock.
184          * 2) If nxt_pkt is set, then the function will surpress calls
185          *    to tfb_tcp_output() since you are promising to call again
186          *    with another packet.
187          * 3) If it returns 1, then you must free all the packets being
188          *    shipped in, the tcb has been destroyed (or about to be destroyed).
189          */
190         struct mbuf *m_save;
191         struct ether_header *eh;
192         struct epoch_tracker et;
193         struct tcphdr *th;
194 #ifdef INET6
195         struct ip6_hdr *ip6 = NULL;     /* Keep compiler happy. */
196 #endif
197 #ifdef INET
198         struct ip *ip = NULL;           /* Keep compiler happy. */
199 #endif
200         struct ifnet *ifp;
201         struct timeval tv;
202         int32_t retval, nxt_pkt, tlen, off;
203         uint16_t etype;
204         uint16_t drop_hdrlen;
205         uint8_t iptos, no_vn=0, bpf_req=0;
206
207         /* 
208          * This is a bit deceptive, we get the
209          * "info epoch" which is really the network
210          * epoch. This covers us on both any INP
211          * type change but also if the ifp goes
212          * away it covers us as well.
213          */
214         INP_INFO_RLOCK_ET(&V_tcbinfo, et);
215         if (m && m->m_pkthdr.rcvif)
216                 ifp = m->m_pkthdr.rcvif;
217         else
218                 ifp = NULL;
219         if (ifp) {
220                 bpf_req = bpf_peers_present(ifp->if_bpf);
221         } else  {
222                 /* 
223                  * We probably should not work around
224                  * but kassert, since lro alwasy sets rcvif.
225                  */
226                 no_vn = 1;
227                 goto skip_vnet;
228         }
229         CURVNET_SET(ifp->if_vnet);
230 skip_vnet:
231         while (m) {
232                 m_save = m->m_nextpkt;
233                 m->m_nextpkt = NULL;
234                 /* Now lets get the ether header */
235                 eh = mtod(m, struct ether_header *);
236                 etype = ntohs(eh->ether_type);
237                 /* Let the BPF see the packet */
238                 if (bpf_req && ifp)
239                         ETHER_BPF_MTAP(ifp, m);
240                 m_adj(m,  sizeof(*eh));
241                 /* Trim off the ethernet header */
242                 switch (etype) {
243 #ifdef INET6
244                 case ETHERTYPE_IPV6:
245                 {
246                         if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
247                                 m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
248                                 if (m == NULL) {
249                                         TCPSTAT_INC(tcps_rcvshort);
250                                         m_freem(m);
251                                         goto skipped_pkt;
252                                 }
253                         }
254                         ip6 = (struct ip6_hdr *)(eh + 1);
255                         th = (struct tcphdr *)(ip6 + 1);
256                         tlen = ntohs(ip6->ip6_plen);
257                         drop_hdrlen = sizeof(*ip6);
258                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
259                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
260                                         th->th_sum = m->m_pkthdr.csum_data;
261                                 else
262                                         th->th_sum = in6_cksum_pseudo(ip6, tlen,
263                                                                       IPPROTO_TCP, m->m_pkthdr.csum_data);
264                                 th->th_sum ^= 0xffff;
265                         } else
266                                 th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
267                         if (th->th_sum) {
268                                 TCPSTAT_INC(tcps_rcvbadsum);
269                                 m_freem(m);
270                                 goto skipped_pkt;
271                         }
272                         /*
273                          * Be proactive about unspecified IPv6 address in source.
274                          * As we use all-zero to indicate unbounded/unconnected pcb,
275                          * unspecified IPv6 address can be used to confuse us.
276                          *
277                          * Note that packets with unspecified IPv6 destination is
278                          * already dropped in ip6_input.
279                          */
280                         if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
281                                 /* XXX stat */
282                                 m_freem(m);
283                                 goto skipped_pkt;
284                         }
285                         iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
286                         break;
287                 }
288 #endif
289 #ifdef INET
290                 case ETHERTYPE_IP:
291                 {
292                         if (m->m_len < sizeof (struct tcpiphdr)) {
293                                 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
294                                     == NULL) {
295                                         TCPSTAT_INC(tcps_rcvshort);
296                                         m_freem(m);
297                                         goto skipped_pkt;
298                                 }
299                         }
300                         ip = (struct ip *)(eh + 1);
301                         th = (struct tcphdr *)(ip + 1);
302                         drop_hdrlen = sizeof(*ip);
303                         iptos = ip->ip_tos;
304                         tlen = ntohs(ip->ip_len) - sizeof(struct ip);
305                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
306                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
307                                         th->th_sum = m->m_pkthdr.csum_data;
308                                 else
309                                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
310                                                                ip->ip_dst.s_addr,
311                                                                htonl(m->m_pkthdr.csum_data + tlen +
312                                                                      IPPROTO_TCP));
313                                 th->th_sum ^= 0xffff;
314                         } else {
315                                 int len;
316                                 struct ipovly *ipov = (struct ipovly *)ip;
317                                 /*
318                                  * Checksum extended TCP header and data.
319                                  */
320                                 len = drop_hdrlen + tlen;
321                                 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
322                                 ipov->ih_len = htons(tlen);
323                                 th->th_sum = in_cksum(m, len);
324                                 /* Reset length for SDT probes. */
325                                 ip->ip_len = htons(len);
326                                 /* Reset TOS bits */
327                                 ip->ip_tos = iptos;
328                                 /* Re-initialization for later version check */
329                                 ip->ip_v = IPVERSION;
330                                 ip->ip_hl = sizeof(*ip) >> 2;
331                         }
332                         if (th->th_sum) {
333                                 TCPSTAT_INC(tcps_rcvbadsum);
334                                 m_freem(m);
335                                 goto skipped_pkt;
336                         }
337                         break;
338                 }
339 #endif
340                 }
341                 /*
342                  * Convert TCP protocol specific fields to host format.
343                  */
344                 tcp_fields_to_host(th);
345
346                 off = th->th_off << 2;
347                 if (off < sizeof (struct tcphdr) || off > tlen) {
348                         TCPSTAT_INC(tcps_rcvbadoff);
349                                 m_freem(m);
350                                 goto skipped_pkt;
351                 }
352                 tlen -= off;
353                 drop_hdrlen += off;
354                 /* 
355                  * Now lets setup the timeval to be when we should
356                  * have been called (if we can).
357                  */
358                 m->m_pkthdr.lro_nsegs = 1;
359                 if (m->m_flags & M_TSTMP_LRO) {
360                         tv.tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
361                         tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000) / 1000;
362                 } else {
363                         /* Should not be should we kassert instead? */
364                         tcp_get_usecs(&tv);
365                 }
366                 /* Now what about next packet? */
367                 if (m_save || has_pkt)
368                         nxt_pkt = 1;
369                 else
370                         nxt_pkt = 0;
371                 retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
372                                                               iptos, nxt_pkt, &tv);
373                 if (retval) {
374                         /* We lost the lock and tcb probably */
375                         m = m_save;
376                         while (m) {
377                                 m_save = m->m_nextpkt;
378                                 m->m_nextpkt = NULL;
379                                 m_freem(m);
380                                 m = m_save;
381                         }
382                         if (no_vn == 0)
383                                 CURVNET_RESTORE();
384                         INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
385                         return (retval);
386                 }
387 skipped_pkt:
388                 m = m_save;
389         }
390         if (no_vn == 0)
391                 CURVNET_RESTORE();
392         INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
393         return (retval);
394 }
395
396 int
397 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
398 {
399         struct mbuf *m;
400
401         /* First lets see if we have old packets */
402         if (tp->t_in_pkt) {
403                 m = tp->t_in_pkt;
404                 tp->t_in_pkt = NULL;
405                 tp->t_tail_pkt = NULL;
406                 if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
407                         /* We lost the tcpcb (maybe a RST came in)? */
408                         return (1);
409                 }
410         }
411         return (0);
412 }
413
414 uint32_t
415 ctf_outstanding(struct tcpcb *tp)
416 {
417         return (tp->snd_max - tp->snd_una);
418 }
419
420 uint32_t 
421 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
422 {
423         if (rc_sacked <= ctf_outstanding(tp))
424                 return (ctf_outstanding(tp) - rc_sacked);
425         else {
426                 /* TSNH */
427 #ifdef INVARIANTS
428                 panic("tp:%p rc_sacked:%d > out:%d",
429                       tp, rc_sacked, ctf_outstanding(tp));
430 #endif          
431                 return (0);
432         }
433 }
434
435 void
436 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
437     int32_t rstreason, int32_t tlen)
438 {
439         if (tp != NULL) {
440                 tcp_dropwithreset(m, th, tp, tlen, rstreason);
441                 INP_WUNLOCK(tp->t_inpcb);
442         } else
443                 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
444 }
445
446 /*
447  * ctf_drop_checks returns 1 for you should not proceed. It places
448  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
449  * that the TCB is unlocked and probably dropped. The 0 indicates the
450  * TCB is still valid and locked.
451  */
452 int
453 ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp,  int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
454 {
455         int32_t todrop;
456         int32_t thflags;
457         int32_t tlen;
458
459         thflags = *thf;
460         tlen = *tlenp;
461         todrop = tp->rcv_nxt - th->th_seq;
462         if (todrop > 0) {
463                 if (thflags & TH_SYN) {
464                         thflags &= ~TH_SYN;
465                         th->th_seq++;
466                         if (th->th_urp > 1)
467                                 th->th_urp--;
468                         else
469                                 thflags &= ~TH_URG;
470                         todrop--;
471                 }
472                 /*
473                  * Following if statement from Stevens, vol. 2, p. 960.
474                  */
475                 if (todrop > tlen
476                     || (todrop == tlen && (thflags & TH_FIN) == 0)) {
477                         /*
478                          * Any valid FIN must be to the left of the window.
479                          * At this point the FIN must be a duplicate or out
480                          * of sequence; drop it.
481                          */
482                         thflags &= ~TH_FIN;
483                         /*
484                          * Send an ACK to resynchronize and drop any data.
485                          * But keep on processing for RST or ACK.
486                          */
487                         tp->t_flags |= TF_ACKNOW;
488                         todrop = tlen;
489                         TCPSTAT_INC(tcps_rcvduppack);
490                         TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
491                 } else {
492                         TCPSTAT_INC(tcps_rcvpartduppack);
493                         TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
494                 }
495                 /*
496                  * DSACK - add SACK block for dropped range
497                  */
498                 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
499                         tcp_update_sack_list(tp, th->th_seq, th->th_seq + tlen);
500                         /*
501                          * ACK now, as the next in-sequence segment
502                          * will clear the DSACK block again
503                          */
504                         tp->t_flags |= TF_ACKNOW;
505                 }
506                 *drop_hdrlen += todrop; /* drop from the top afterwards */
507                 th->th_seq += todrop;
508                 tlen -= todrop;
509                 if (th->th_urp > todrop)
510                         th->th_urp -= todrop;
511                 else {
512                         thflags &= ~TH_URG;
513                         th->th_urp = 0;
514                 }
515         }
516         /*
517          * If segment ends after window, drop trailing data (and PUSH and
518          * FIN); if nothing left, just ACK.
519          */
520         todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
521         if (todrop > 0) {
522                 TCPSTAT_INC(tcps_rcvpackafterwin);
523                 if (todrop >= tlen) {
524                         TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
525                         /*
526                          * If window is closed can only take segments at
527                          * window edge, and have to drop data and PUSH from
528                          * incoming segments.  Continue processing, but
529                          * remember to ack.  Otherwise, drop segment and
530                          * ack.
531                          */
532                         if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
533                                 tp->t_flags |= TF_ACKNOW;
534                                 TCPSTAT_INC(tcps_rcvwinprobe);
535                         } else {
536                                 ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
537                                 return (1);
538                         }
539                 } else
540                         TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
541                 m_adj(m, -todrop);
542                 tlen -= todrop;
543                 thflags &= ~(TH_PUSH | TH_FIN);
544         }
545         *thf = thflags;
546         *tlenp = tlen;
547         return (0);
548 }
549
550 /*
551  * The value in ret_val informs the caller
552  * if we dropped the tcb (and lock) or not.
553  * 1 = we dropped it, 0 = the TCB is still locked
554  * and valid.
555  */
556 void
557 ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
558 {
559         /*
560          * Generate an ACK dropping incoming segment if it occupies sequence
561          * space, where the ACK reflects our state.
562          *
563          * We can now skip the test for the RST flag since all paths to this
564          * code happen after packets containing RST have been dropped.
565          *
566          * In the SYN-RECEIVED state, don't send an ACK unless the segment
567          * we received passes the SYN-RECEIVED ACK test. If it fails send a
568          * RST.  This breaks the loop in the "LAND" DoS attack, and also
569          * prevents an ACK storm between two listening ports that have been
570          * sent forged SYN segments, each with the source address of the
571          * other.
572          */
573         if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
574             (SEQ_GT(tp->snd_una, th->th_ack) ||
575             SEQ_GT(th->th_ack, tp->snd_max))) {
576                 *ret_val = 1;
577                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
578                 return;
579         } else
580                 *ret_val = 0;
581         tp->t_flags |= TF_ACKNOW;
582         if (m)
583                 m_freem(m);
584 }
585
586 void
587 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
588 {
589
590         /*
591          * Drop space held by incoming segment and return.
592          */
593         if (tp != NULL)
594                 INP_WUNLOCK(tp->t_inpcb);
595         if (m)
596                 m_freem(m);
597 }
598
599 int
600 ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
601 {
602         /*
603          * RFC5961 Section 3.2
604          *
605          * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
606          * window, we send challenge ACK.
607          *
608          * Note: to take into account delayed ACKs, we should test against
609          * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
610          * of closed window, not covered by the RFC.
611          */
612         int dropped = 0;
613
614         if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
615             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
616             (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
617
618                 INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
619                 KASSERT(tp->t_state != TCPS_SYN_SENT,
620                     ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
621                     __func__, th, tp));
622
623                 if (V_tcp_insecure_rst ||
624                     (tp->last_ack_sent == th->th_seq) ||
625                     (tp->rcv_nxt == th->th_seq) ||
626                     ((tp->last_ack_sent - 1) == th->th_seq)) {
627                         TCPSTAT_INC(tcps_drops);
628                         /* Drop the connection. */
629                         switch (tp->t_state) {
630                         case TCPS_SYN_RECEIVED:
631                                 so->so_error = ECONNREFUSED;
632                                 goto close;
633                         case TCPS_ESTABLISHED:
634                         case TCPS_FIN_WAIT_1:
635                         case TCPS_FIN_WAIT_2:
636                         case TCPS_CLOSE_WAIT:
637                         case TCPS_CLOSING:
638                         case TCPS_LAST_ACK:
639                                 so->so_error = ECONNRESET;
640                 close:
641                                 tcp_state_change(tp, TCPS_CLOSED);
642                                 /* FALLTHROUGH */
643                         default:
644                                 tp = tcp_close(tp);
645                         }
646                         dropped = 1;
647                         ctf_do_drop(m, tp);
648                 } else {
649                         TCPSTAT_INC(tcps_badrst);
650                         /* Send challenge ACK. */
651                         tcp_respond(tp, mtod(m, void *), th, m,
652                             tp->rcv_nxt, tp->snd_nxt, TH_ACK);
653                         tp->last_ack_sent = tp->rcv_nxt;
654                 }
655         } else {
656                 m_freem(m);
657         }
658         return (dropped);
659 }
660
661 /*
662  * The value in ret_val informs the caller
663  * if we dropped the tcb (and lock) or not.
664  * 1 = we dropped it, 0 = the TCB is still locked
665  * and valid.
666  */
667 void
668 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
669 {
670         INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
671
672         TCPSTAT_INC(tcps_badsyn);
673         if (V_tcp_insecure_syn &&
674             SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
675             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
676                 tp = tcp_drop(tp, ECONNRESET);
677                 *ret_val = 1;
678                 ctf_do_drop(m, tp);
679         } else {
680                 /* Send challenge ACK. */
681                 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
682                     tp->snd_nxt, TH_ACK);
683                 tp->last_ack_sent = tp->rcv_nxt;
684                 m = NULL;
685                 *ret_val = 0;
686                 ctf_do_drop(m, NULL);
687         }
688 }
689
690 /*
691  * bbr_ts_check returns 1 for you should not proceed, the state
692  * machine should return. It places in ret_val what should
693  * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
694  * that the TCB is unlocked and probably dropped. The 0 indicates the
695  * TCB is still valid and locked.
696  */
697 int
698 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
699     int32_t tlen, int32_t thflags, int32_t * ret_val)
700 {
701
702         if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
703                 /*
704                  * Invalidate ts_recent.  If this segment updates ts_recent,
705                  * the age will be reset later and ts_recent will get a
706                  * valid value.  If it does not, setting ts_recent to zero
707                  * will at least satisfy the requirement that zero be placed
708                  * in the timestamp echo reply when ts_recent isn't valid.
709                  * The age isn't reset until we get a valid ts_recent
710                  * because we don't want out-of-order segments to be dropped
711                  * when ts_recent is old.
712                  */
713                 tp->ts_recent = 0;
714         } else {
715                 TCPSTAT_INC(tcps_rcvduppack);
716                 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
717                 TCPSTAT_INC(tcps_pawsdrop);
718                 *ret_val = 0;
719                 if (tlen) {
720                         ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
721                 } else {
722                         ctf_do_drop(m, NULL);
723                 }
724                 return (1);
725         }
726         return (0);
727 }
728
729 void
730 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
731 {
732         int32_t win;
733
734         /*
735          * Calculate amount of space in receive window, and then do TCP
736          * input processing. Receive window is amount of space in rcv queue,
737          * but not less than advertised window.
738          */
739         win = sbspace(&so->so_rcv);
740         if (win < 0)
741                 win = 0;
742         tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
743 }
744
745 void
746 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
747     int32_t rstreason, int32_t tlen)
748 {
749
750         if (tp->t_inpcb) {
751                 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
752         }
753         tcp_dropwithreset(m, th, tp, tlen, rstreason);
754         INP_WUNLOCK(tp->t_inpcb);
755 }
756
757 uint32_t
758 ctf_fixed_maxseg(struct tcpcb *tp)
759 {
760         int optlen;
761
762         if (tp->t_flags & TF_NOOPT)
763                 return (tp->t_maxseg);
764
765         /*
766          * Here we have a simplified code from tcp_addoptions(),
767          * without a proper loop, and having most of paddings hardcoded.
768          * We only consider fixed options that we would send every
769          * time I.e. SACK is not considered.
770          * 
771          */
772 #define PAD(len)        ((((len) / 4) + !!((len) % 4)) * 4)
773         if (TCPS_HAVEESTABLISHED(tp->t_state)) {
774                 if (tp->t_flags & TF_RCVD_TSTMP)
775                         optlen = TCPOLEN_TSTAMP_APPA;
776                 else
777                         optlen = 0;
778 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
779                 if (tp->t_flags & TF_SIGNATURE)
780                         optlen += PAD(TCPOLEN_SIGNATURE);
781 #endif
782         } else {
783                 if (tp->t_flags & TF_REQ_TSTMP)
784                         optlen = TCPOLEN_TSTAMP_APPA;
785                 else
786                         optlen = PAD(TCPOLEN_MAXSEG);
787                 if (tp->t_flags & TF_REQ_SCALE)
788                         optlen += PAD(TCPOLEN_WINDOW);
789 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
790                 if (tp->t_flags & TF_SIGNATURE)
791                         optlen += PAD(TCPOLEN_SIGNATURE);
792 #endif
793                 if (tp->t_flags & TF_SACK_PERMIT)
794                         optlen += PAD(TCPOLEN_SACK_PERMITTED);
795         }
796 #undef PAD
797         optlen = min(optlen, TCP_MAXOLEN);
798         return (tp->t_maxseg - optlen);
799 }
800
801 void
802 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
803 {
804         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
805                 union tcp_log_stackspecific log;
806                 struct timeval tv;
807
808                 memset(&log, 0, sizeof(log));
809                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
810                 log.u_bbr.flex8 = num_sack_blks;
811                 if (num_sack_blks > 0) {
812                         log.u_bbr.flex1 = sack_blocks[0].start;
813                         log.u_bbr.flex2 = sack_blocks[0].end;
814                 }
815                 if (num_sack_blks > 1) {
816                         log.u_bbr.flex3 = sack_blocks[1].start;
817                         log.u_bbr.flex4 = sack_blocks[1].end;
818                 }
819                 if (num_sack_blks > 2) {
820                         log.u_bbr.flex5 = sack_blocks[2].start;
821                         log.u_bbr.flex6 = sack_blocks[2].end;
822                 }
823                 if (num_sack_blks > 3) {
824                         log.u_bbr.applimited = sack_blocks[3].start;
825                         log.u_bbr.pkts_out = sack_blocks[3].end;
826                 }
827                 TCP_LOG_EVENTP(tp, NULL,
828                     &tp->t_inpcb->inp_socket->so_rcv,
829                     &tp->t_inpcb->inp_socket->so_snd,
830                     TCP_SACK_FILTER_RES, 0,
831                     0, &log, false, &tv);
832         }
833 }
834
835 uint32_t 
836 ctf_decay_count(uint32_t count, uint32_t decay)
837 {
838         /*
839          * Given a count, decay it by a set percentage. The
840          * percentage is in thousands i.e. 100% = 1000, 
841          * 19.3% = 193.
842          */
843         uint64_t perc_count, decay_per;
844         uint32_t decayed_count;
845         if (decay > 1000) {
846                 /* We don't raise it */
847                 return (count);
848         }
849         perc_count = count;
850         decay_per = decay;
851         perc_count *= decay_per;
852         perc_count /= 1000;
853         /* 
854          * So now perc_count holds the 
855          * count decay value.
856          */
857         decayed_count = count - (uint32_t)perc_count;
858         return (decayed_count);
859 }