]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/tcp_stacks/rack_bbr_common.c
Remove all trailing white space from the BBR/Rack fold. Bits
[FreeBSD/FreeBSD.git] / sys / netinet / tcp_stacks / rack_bbr_common.c
1 /*-
2  * Copyright (c) 2016-9
3  *      Netflix Inc.
4  *      All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 /*
29  * Author: Randall Stewart <rrs@netflix.com>
30  * This work is based on the ACM Queue paper
31  * BBR - Congestion Based Congestion Control
32  * and also numerous discussions with Neal, Yuchung and Van.
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_ratelimit.h"
43 #include "opt_kern_tls.h"
44 #include <sys/param.h>
45 #include <sys/arb.h>
46 #include <sys/module.h>
47 #include <sys/kernel.h>
48 #ifdef TCP_HHOOK
49 #include <sys/hhook.h>
50 #endif
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/proc.h>
54 #include <sys/qmath.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #ifdef KERN_TLS
58 #include <sys/ktls.h>
59 #endif
60 #include <sys/sysctl.h>
61 #include <sys/systm.h>
62 #include <sys/tree.h>
63 #ifdef NETFLIX_STATS
64 #include <sys/stats.h> /* Must come after qmath.h and tree.h */
65 #endif
66 #include <sys/refcount.h>
67 #include <sys/queue.h>
68 #include <sys/smp.h>
69 #include <sys/kthread.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/tim_filter.h>
73 #include <sys/time.h>
74 #include <vm/uma.h>
75 #include <sys/kern_prefetch.h>
76
77 #include <net/route.h>
78 #include <net/vnet.h>
79 #include <net/ethernet.h>
80 #include <net/bpf.h>
81
82 #define TCPSTATES               /* for logging */
83
84 #include <netinet/in.h>
85 #include <netinet/in_kdtrace.h>
86 #include <netinet/in_pcb.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
89 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
90 #include <netinet/ip_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet/tcp.h>
95 #include <netinet/tcp_fsm.h>
96 #include <netinet/tcp_seq.h>
97 #include <netinet/tcp_timer.h>
98 #include <netinet/tcp_var.h>
99 #include <netinet/tcpip.h>
100 #include <netinet/tcp_hpts.h>
101 #include <netinet/cc/cc.h>
102 #include <netinet/tcp_log_buf.h>
103 #ifdef TCPDEBUG
104 #include <netinet/tcp_debug.h>
105 #endif                          /* TCPDEBUG */
106 #ifdef TCP_OFFLOAD
107 #include <netinet/tcp_offload.h>
108 #endif
109 #ifdef INET6
110 #include <netinet6/tcp6_var.h>
111 #endif
112 #include <netinet/tcp_fastopen.h>
113
114 #include <netipsec/ipsec_support.h>
115 #include <net/if.h>
116 #include <net/if_var.h>
117
118 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
119 #include <netipsec/ipsec.h>
120 #include <netipsec/ipsec6.h>
121 #endif                          /* IPSEC */
122
123 #include <netinet/udp.h>
124 #include <netinet/udp_var.h>
125 #include <machine/in_cksum.h>
126
127 #ifdef MAC
128 #include <security/mac/mac_framework.h>
129 #endif
130 #include "rack_bbr_common.h"
131
132 /*
133  * Common TCP Functions - These are shared by borth
134  * rack and BBR.
135  */
136 #ifdef KERN_TLS
137 uint32_t
138 ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
139 {
140         struct ktls_session *tls;
141         uint32_t len;
142
143 again:
144         tls = so->so_snd.sb_tls_info;
145         len = tls->params.max_frame_len;         /* max tls payload */
146         len += tls->params.tls_hlen;      /* tls header len  */
147         len += tls->params.tls_tlen;      /* tls trailer len */
148         if ((len * 4) > rwnd) {
149                 /*
150                  * Stroke this will suck counter and what
151                  * else should we do Drew? From the
152                  * TCP perspective I am not sure
153                  * what should be done...
154                  */
155                 if (tls->params.max_frame_len > 4096) {
156                         tls->params.max_frame_len -= 4096;
157                         if (tls->params.max_frame_len < 4096)
158                                 tls->params.max_frame_len = 4096;
159                         goto again;
160                 }
161         }
162         return (len);
163 }
164 #endif
165
166
167 /*
168  * The function ctf_process_inbound_raw() is used by
169  * transport developers to do the steps needed to
170  * support MBUF Queuing i.e. the flags in
171  * inp->inp_flags2:
172  *
173  * - INP_SUPPORTS_MBUFQ
174  * - INP_MBUF_QUEUE_READY
175  * - INP_DONT_SACK_QUEUE
176  *
177  * These flags help control how LRO will deliver
178  * packets to the transport. You first set in inp_flags2
179  * the INP_SUPPORTS_MBUFQ to tell the LRO code that you
180  * will gladly take a queue of packets instead of a compressed
181  * single packet. You also set in your t_fb pointer the
182  * tfb_do_queued_segments to point to ctf_process_inbound_raw.
183  *
184  * This then gets you lists of inbound ACK's/Data instead
185  * of a condensed compressed ACK/DATA packet. Why would you
186  * want that? This will get you access to all the arrival
187  * times of at least LRO and possibly at the Hardware (if
188  * the interface card supports that) of the actual ACK/DATA.
189  * In some transport designs this is important since knowing
190  * the actual time we got the packet is useful information.
191  *
192  * Now there are some interesting Caveats that the transport
193  * designer needs to take into account when using this feature.
194  *
195  * 1) It is used with HPTS and pacing, when the pacing timer
196  *    for output calls it will first call the input.
197  * 2) When you set INP_MBUF_QUEUE_READY this tells LRO
198  *    queue normal packets, I am busy pacing out data and
199  *    will process the queued packets before my tfb_tcp_output
200  *    call from pacing. If a non-normal packet arrives, (e.g. sack)
201  *    you will be awoken immediately.
202  * 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
203  *    be awoken if a SACK has arrived. You would do this when
204  *    you were not only running a pacing for output timer
205  *    but a Rack timer as well i.e. you know you are in recovery
206  *    and are in the process (via the timers) of dealing with
207  *    the loss.
208  *
209  * Now a critical thing you must be aware of here is that the
210  * use of the flags has a far greater scope then just your
211  * typical LRO. Why? Well thats because in the normal compressed
212  * LRO case at the end of a driver interupt all packets are going
213  * to get presented to the transport no matter if there is one
214  * or 100. With the MBUF_QUEUE model, this is not true. You will
215  * only be awoken to process the queue of packets when:
216  *     a) The flags discussed above allow it.
217  *          <or>
218  *     b) You exceed a ack or data limit (by default the
219  *        ack limit is infinity (64k acks) and the data
220  *        limit is 64k of new TCP data)
221  *         <or>
222  *     c) The push bit has been set by the peer
223  */
224
225 int
226 ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
227 {
228         /*
229          * We are passed a raw change of mbuf packets
230          * that arrived in LRO. They are linked via
231          * the m_nextpkt link in the pkt-headers.
232          *
233          * We process each one by:
234          * a) saving off the next
235          * b) stripping off the ether-header
236          * c) formulating the arguments for
237          *    the tfb_tcp_hpts_do_segment
238          * d) calling each mbuf to tfb_tcp_hpts_do_segment
239          *    after adjusting the time to match the arrival time.
240          * Note that the LRO code assures no IP options are present.
241          *
242          * The symantics for calling tfb_tcp_hpts_do_segment are the
243          * following:
244          * 1) It returns 0 if all went well and you (the caller) need
245          *    to release the lock.
246          * 2) If nxt_pkt is set, then the function will surpress calls
247          *    to tfb_tcp_output() since you are promising to call again
248          *    with another packet.
249          * 3) If it returns 1, then you must free all the packets being
250          *    shipped in, the tcb has been destroyed (or about to be destroyed).
251          */
252         struct mbuf *m_save;
253         struct ether_header *eh;
254         struct tcphdr *th;
255 #ifdef INET6
256         struct ip6_hdr *ip6 = NULL;     /* Keep compiler happy. */
257 #endif
258 #ifdef INET
259         struct ip *ip = NULL;           /* Keep compiler happy. */
260 #endif
261         struct ifnet *ifp;
262         struct timeval tv;
263         int32_t retval, nxt_pkt, tlen, off;
264         uint16_t etype;
265         uint16_t drop_hdrlen;
266         uint8_t iptos, no_vn=0, bpf_req=0;
267
268         NET_EPOCH_ASSERT();
269
270         if (m && m->m_pkthdr.rcvif)
271                 ifp = m->m_pkthdr.rcvif;
272         else
273                 ifp = NULL;
274         if (ifp) {
275                 bpf_req = bpf_peers_present(ifp->if_bpf);
276         } else  {
277                 /*
278                  * We probably should not work around
279                  * but kassert, since lro alwasy sets rcvif.
280                  */
281                 no_vn = 1;
282                 goto skip_vnet;
283         }
284         CURVNET_SET(ifp->if_vnet);
285 skip_vnet:
286         while (m) {
287                 m_save = m->m_nextpkt;
288                 m->m_nextpkt = NULL;
289                 /* Now lets get the ether header */
290                 eh = mtod(m, struct ether_header *);
291                 etype = ntohs(eh->ether_type);
292                 /* Let the BPF see the packet */
293                 if (bpf_req && ifp)
294                         ETHER_BPF_MTAP(ifp, m);
295                 m_adj(m,  sizeof(*eh));
296                 /* Trim off the ethernet header */
297                 switch (etype) {
298 #ifdef INET6
299                 case ETHERTYPE_IPV6:
300                 {
301                         if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
302                                 m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
303                                 if (m == NULL) {
304                                         TCPSTAT_INC(tcps_rcvshort);
305                                         m_freem(m);
306                                         goto skipped_pkt;
307                                 }
308                         }
309                         ip6 = (struct ip6_hdr *)(eh + 1);
310                         th = (struct tcphdr *)(ip6 + 1);
311                         tlen = ntohs(ip6->ip6_plen);
312                         drop_hdrlen = sizeof(*ip6);
313                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
314                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
315                                         th->th_sum = m->m_pkthdr.csum_data;
316                                 else
317                                         th->th_sum = in6_cksum_pseudo(ip6, tlen,
318                                                                       IPPROTO_TCP, m->m_pkthdr.csum_data);
319                                 th->th_sum ^= 0xffff;
320                         } else
321                                 th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
322                         if (th->th_sum) {
323                                 TCPSTAT_INC(tcps_rcvbadsum);
324                                 m_freem(m);
325                                 goto skipped_pkt;
326                         }
327                         /*
328                          * Be proactive about unspecified IPv6 address in source.
329                          * As we use all-zero to indicate unbounded/unconnected pcb,
330                          * unspecified IPv6 address can be used to confuse us.
331                          *
332                          * Note that packets with unspecified IPv6 destination is
333                          * already dropped in ip6_input.
334                          */
335                         if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
336                                 /* XXX stat */
337                                 m_freem(m);
338                                 goto skipped_pkt;
339                         }
340                         iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
341                         break;
342                 }
343 #endif
344 #ifdef INET
345                 case ETHERTYPE_IP:
346                 {
347                         if (m->m_len < sizeof (struct tcpiphdr)) {
348                                 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
349                                     == NULL) {
350                                         TCPSTAT_INC(tcps_rcvshort);
351                                         m_freem(m);
352                                         goto skipped_pkt;
353                                 }
354                         }
355                         ip = (struct ip *)(eh + 1);
356                         th = (struct tcphdr *)(ip + 1);
357                         drop_hdrlen = sizeof(*ip);
358                         iptos = ip->ip_tos;
359                         tlen = ntohs(ip->ip_len) - sizeof(struct ip);
360                         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
361                                 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
362                                         th->th_sum = m->m_pkthdr.csum_data;
363                                 else
364                                         th->th_sum = in_pseudo(ip->ip_src.s_addr,
365                                                                ip->ip_dst.s_addr,
366                                                                htonl(m->m_pkthdr.csum_data + tlen +
367                                                                      IPPROTO_TCP));
368                                 th->th_sum ^= 0xffff;
369                         } else {
370                                 int len;
371                                 struct ipovly *ipov = (struct ipovly *)ip;
372                                 /*
373                                  * Checksum extended TCP header and data.
374                                  */
375                                 len = drop_hdrlen + tlen;
376                                 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
377                                 ipov->ih_len = htons(tlen);
378                                 th->th_sum = in_cksum(m, len);
379                                 /* Reset length for SDT probes. */
380                                 ip->ip_len = htons(len);
381                                 /* Reset TOS bits */
382                                 ip->ip_tos = iptos;
383                                 /* Re-initialization for later version check */
384                                 ip->ip_v = IPVERSION;
385                                 ip->ip_hl = sizeof(*ip) >> 2;
386                         }
387                         if (th->th_sum) {
388                                 TCPSTAT_INC(tcps_rcvbadsum);
389                                 m_freem(m);
390                                 goto skipped_pkt;
391                         }
392                         break;
393                 }
394 #endif
395                 }
396                 /*
397                  * Convert TCP protocol specific fields to host format.
398                  */
399                 tcp_fields_to_host(th);
400
401                 off = th->th_off << 2;
402                 if (off < sizeof (struct tcphdr) || off > tlen) {
403                         TCPSTAT_INC(tcps_rcvbadoff);
404                                 m_freem(m);
405                                 goto skipped_pkt;
406                 }
407                 tlen -= off;
408                 drop_hdrlen += off;
409                 /*
410                  * Now lets setup the timeval to be when we should
411                  * have been called (if we can).
412                  */
413                 m->m_pkthdr.lro_nsegs = 1;
414                 if (m->m_flags & M_TSTMP_LRO) {
415                         tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
416                         tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
417                 } else {
418                         /* Should not be should we kassert instead? */
419                         tcp_get_usecs(&tv);
420                 }
421                 /* Now what about next packet? */
422                 if (m_save || has_pkt)
423                         nxt_pkt = 1;
424                 else
425                         nxt_pkt = 0;
426                 retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
427                                                               iptos, nxt_pkt, &tv);
428                 if (retval) {
429                         /* We lost the lock and tcb probably */
430                         m = m_save;
431                         while(m) {
432                                 m_save = m->m_nextpkt;
433                                 m->m_nextpkt = NULL;
434                                 m_freem(m);
435                                 m = m_save;
436                         }
437                         if (no_vn == 0)
438                                 CURVNET_RESTORE();
439                         return(retval);
440                 }
441 skipped_pkt:
442                 m = m_save;
443         }
444         if (no_vn == 0)
445                 CURVNET_RESTORE();
446         return(retval);
447 }
448
449 int
450 ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
451 {
452         struct mbuf *m;
453
454         /* First lets see if we have old packets */
455         if (tp->t_in_pkt) {
456                 m = tp->t_in_pkt;
457                 tp->t_in_pkt = NULL;
458                 tp->t_tail_pkt = NULL;
459                 if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
460                         /* We lost the tcpcb (maybe a RST came in)? */
461                         return(1);
462                 }
463         }
464         return (0);
465 }
466
467 uint32_t
468 ctf_outstanding(struct tcpcb *tp)
469 {
470         return(tp->snd_max - tp->snd_una);
471 }
472
473 uint32_t
474 ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
475 {
476         if (rc_sacked <= ctf_outstanding(tp))
477                 return(ctf_outstanding(tp) - rc_sacked);
478         else {
479                 /* TSNH */
480 #ifdef INVARIANTS
481                 panic("tp:%p rc_sacked:%d > out:%d",
482                       tp, rc_sacked, ctf_outstanding(tp));
483 #endif
484                 return (0);
485         }
486 }
487
488 void
489 ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
490     int32_t rstreason, int32_t tlen)
491 {
492         if (tp != NULL) {
493                 tcp_dropwithreset(m, th, tp, tlen, rstreason);
494                 INP_WUNLOCK(tp->t_inpcb);
495         } else
496                 tcp_dropwithreset(m, th, NULL, tlen, rstreason);
497 }
498
499 /*
500  * ctf_drop_checks returns 1 for you should not proceed. It places
501  * in ret_val what should be returned 1/0 by the caller. The 1 indicates
502  * that the TCB is unlocked and probably dropped. The 0 indicates the
503  * TCB is still valid and locked.
504  */
505 int
506 ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp,  int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
507 {
508         int32_t todrop;
509         int32_t thflags;
510         int32_t tlen;
511
512         thflags = *thf;
513         tlen = *tlenp;
514         todrop = tp->rcv_nxt - th->th_seq;
515         if (todrop > 0) {
516                 if (thflags & TH_SYN) {
517                         thflags &= ~TH_SYN;
518                         th->th_seq++;
519                         if (th->th_urp > 1)
520                                 th->th_urp--;
521                         else
522                                 thflags &= ~TH_URG;
523                         todrop--;
524                 }
525                 /*
526                  * Following if statement from Stevens, vol. 2, p. 960.
527                  */
528                 if (todrop > tlen
529                     || (todrop == tlen && (thflags & TH_FIN) == 0)) {
530                         /*
531                          * Any valid FIN must be to the left of the window.
532                          * At this point the FIN must be a duplicate or out
533                          * of sequence; drop it.
534                          */
535                         thflags &= ~TH_FIN;
536                         /*
537                          * Send an ACK to resynchronize and drop any data.
538                          * But keep on processing for RST or ACK.
539                          */
540                         tp->t_flags |= TF_ACKNOW;
541                         todrop = tlen;
542                         TCPSTAT_INC(tcps_rcvduppack);
543                         TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
544                 } else {
545                         TCPSTAT_INC(tcps_rcvpartduppack);
546                         TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
547                 }
548                 /*
549                  * DSACK - add SACK block for dropped range
550                  */
551                 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
552                         tcp_update_sack_list(tp, th->th_seq,
553                             th->th_seq + todrop);
554                         /*
555                          * ACK now, as the next in-sequence segment
556                          * will clear the DSACK block again
557                          */
558                         tp->t_flags |= TF_ACKNOW;
559                 }
560                 *drop_hdrlen += todrop; /* drop from the top afterwards */
561                 th->th_seq += todrop;
562                 tlen -= todrop;
563                 if (th->th_urp > todrop)
564                         th->th_urp -= todrop;
565                 else {
566                         thflags &= ~TH_URG;
567                         th->th_urp = 0;
568                 }
569         }
570         /*
571          * If segment ends after window, drop trailing data (and PUSH and
572          * FIN); if nothing left, just ACK.
573          */
574         todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
575         if (todrop > 0) {
576                 TCPSTAT_INC(tcps_rcvpackafterwin);
577                 if (todrop >= tlen) {
578                         TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
579                         /*
580                          * If window is closed can only take segments at
581                          * window edge, and have to drop data and PUSH from
582                          * incoming segments.  Continue processing, but
583                          * remember to ack.  Otherwise, drop segment and
584                          * ack.
585                          */
586                         if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
587                                 tp->t_flags |= TF_ACKNOW;
588                                 TCPSTAT_INC(tcps_rcvwinprobe);
589                         } else {
590                                 ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
591                                 return (1);
592                         }
593                 } else
594                         TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
595                 m_adj(m, -todrop);
596                 tlen -= todrop;
597                 thflags &= ~(TH_PUSH | TH_FIN);
598         }
599         *thf = thflags;
600         *tlenp = tlen;
601         return (0);
602 }
603
604 /*
605  * The value in ret_val informs the caller
606  * if we dropped the tcb (and lock) or not.
607  * 1 = we dropped it, 0 = the TCB is still locked
608  * and valid.
609  */
610 void
611 ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
612 {
613         /*
614          * Generate an ACK dropping incoming segment if it occupies sequence
615          * space, where the ACK reflects our state.
616          *
617          * We can now skip the test for the RST flag since all paths to this
618          * code happen after packets containing RST have been dropped.
619          *
620          * In the SYN-RECEIVED state, don't send an ACK unless the segment
621          * we received passes the SYN-RECEIVED ACK test. If it fails send a
622          * RST.  This breaks the loop in the "LAND" DoS attack, and also
623          * prevents an ACK storm between two listening ports that have been
624          * sent forged SYN segments, each with the source address of the
625          * other.
626          */
627         if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
628             (SEQ_GT(tp->snd_una, th->th_ack) ||
629             SEQ_GT(th->th_ack, tp->snd_max))) {
630                 *ret_val = 1;
631                 ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
632                 return;
633         } else
634                 *ret_val = 0;
635         tp->t_flags |= TF_ACKNOW;
636         if (m)
637                 m_freem(m);
638 }
639
640 void
641 ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
642 {
643
644         /*
645          * Drop space held by incoming segment and return.
646          */
647         if (tp != NULL)
648                 INP_WUNLOCK(tp->t_inpcb);
649         if (m)
650                 m_freem(m);
651 }
652
653 int
654 ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
655 {
656         /*
657          * RFC5961 Section 3.2
658          *
659          * - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
660          * window, we send challenge ACK.
661          *
662          * Note: to take into account delayed ACKs, we should test against
663          * last_ack_sent instead of rcv_nxt. Note 2: we handle special case
664          * of closed window, not covered by the RFC.
665          */
666         int dropped = 0;
667
668         if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
669             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
670             (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
671
672                 KASSERT(tp->t_state != TCPS_SYN_SENT,
673                     ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
674                     __func__, th, tp));
675
676                 if (V_tcp_insecure_rst ||
677                     (tp->last_ack_sent == th->th_seq) ||
678                     (tp->rcv_nxt == th->th_seq) ||
679                     ((tp->last_ack_sent - 1) == th->th_seq)) {
680                         TCPSTAT_INC(tcps_drops);
681                         /* Drop the connection. */
682                         switch (tp->t_state) {
683                         case TCPS_SYN_RECEIVED:
684                                 so->so_error = ECONNREFUSED;
685                                 goto close;
686                         case TCPS_ESTABLISHED:
687                         case TCPS_FIN_WAIT_1:
688                         case TCPS_FIN_WAIT_2:
689                         case TCPS_CLOSE_WAIT:
690                         case TCPS_CLOSING:
691                         case TCPS_LAST_ACK:
692                                 so->so_error = ECONNRESET;
693                 close:
694                                 tcp_state_change(tp, TCPS_CLOSED);
695                                 /* FALLTHROUGH */
696                         default:
697                                 tp = tcp_close(tp);
698                         }
699                         dropped = 1;
700                         ctf_do_drop(m, tp);
701                 } else {
702                         TCPSTAT_INC(tcps_badrst);
703                         /* Send challenge ACK. */
704                         tcp_respond(tp, mtod(m, void *), th, m,
705                             tp->rcv_nxt, tp->snd_nxt, TH_ACK);
706                         tp->last_ack_sent = tp->rcv_nxt;
707                 }
708         } else {
709                 m_freem(m);
710         }
711         return (dropped);
712 }
713
714 /*
715  * The value in ret_val informs the caller
716  * if we dropped the tcb (and lock) or not.
717  * 1 = we dropped it, 0 = the TCB is still locked
718  * and valid.
719  */
720 void
721 ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
722 {
723
724         NET_EPOCH_ASSERT();
725
726         TCPSTAT_INC(tcps_badsyn);
727         if (V_tcp_insecure_syn &&
728             SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
729             SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
730                 tp = tcp_drop(tp, ECONNRESET);
731                 *ret_val = 1;
732                 ctf_do_drop(m, tp);
733         } else {
734                 /* Send challenge ACK. */
735                 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
736                     tp->snd_nxt, TH_ACK);
737                 tp->last_ack_sent = tp->rcv_nxt;
738                 m = NULL;
739                 *ret_val = 0;
740                 ctf_do_drop(m, NULL);
741         }
742 }
743
744 /*
745  * bbr_ts_check returns 1 for you should not proceed, the state
746  * machine should return. It places in ret_val what should
747  * be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
748  * that the TCB is unlocked and probably dropped. The 0 indicates the
749  * TCB is still valid and locked.
750  */
751 int
752 ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
753     int32_t tlen, int32_t thflags, int32_t * ret_val)
754 {
755
756         if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
757                 /*
758                  * Invalidate ts_recent.  If this segment updates ts_recent,
759                  * the age will be reset later and ts_recent will get a
760                  * valid value.  If it does not, setting ts_recent to zero
761                  * will at least satisfy the requirement that zero be placed
762                  * in the timestamp echo reply when ts_recent isn't valid.
763                  * The age isn't reset until we get a valid ts_recent
764                  * because we don't want out-of-order segments to be dropped
765                  * when ts_recent is old.
766                  */
767                 tp->ts_recent = 0;
768         } else {
769                 TCPSTAT_INC(tcps_rcvduppack);
770                 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
771                 TCPSTAT_INC(tcps_pawsdrop);
772                 *ret_val = 0;
773                 if (tlen) {
774                         ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
775                 } else {
776                         ctf_do_drop(m, NULL);
777                 }
778                 return (1);
779         }
780         return (0);
781 }
782
783 void
784 ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
785 {
786         int32_t win;
787
788         /*
789          * Calculate amount of space in receive window, and then do TCP
790          * input processing. Receive window is amount of space in rcv queue,
791          * but not less than advertised window.
792          */
793         win = sbspace(&so->so_rcv);
794         if (win < 0)
795                 win = 0;
796         tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
797 }
798
799 void
800 ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
801     int32_t rstreason, int32_t tlen)
802 {
803
804         if (tp->t_inpcb) {
805                 tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
806         }
807         tcp_dropwithreset(m, th, tp, tlen, rstreason);
808         INP_WUNLOCK(tp->t_inpcb);
809 }
810
811 uint32_t
812 ctf_fixed_maxseg(struct tcpcb *tp)
813 {
814         int optlen;
815
816         if (tp->t_flags & TF_NOOPT)
817                 return (tp->t_maxseg);
818
819         /*
820          * Here we have a simplified code from tcp_addoptions(),
821          * without a proper loop, and having most of paddings hardcoded.
822          * We only consider fixed options that we would send every
823          * time I.e. SACK is not considered.
824          *
825          */
826 #define PAD(len)        ((((len) / 4) + !!((len) % 4)) * 4)
827         if (TCPS_HAVEESTABLISHED(tp->t_state)) {
828                 if (tp->t_flags & TF_RCVD_TSTMP)
829                         optlen = TCPOLEN_TSTAMP_APPA;
830                 else
831                         optlen = 0;
832 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
833                 if (tp->t_flags & TF_SIGNATURE)
834                         optlen += PAD(TCPOLEN_SIGNATURE);
835 #endif
836         } else {
837                 if (tp->t_flags & TF_REQ_TSTMP)
838                         optlen = TCPOLEN_TSTAMP_APPA;
839                 else
840                         optlen = PAD(TCPOLEN_MAXSEG);
841                 if (tp->t_flags & TF_REQ_SCALE)
842                         optlen += PAD(TCPOLEN_WINDOW);
843 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
844                 if (tp->t_flags & TF_SIGNATURE)
845                         optlen += PAD(TCPOLEN_SIGNATURE);
846 #endif
847                 if (tp->t_flags & TF_SACK_PERMIT)
848                         optlen += PAD(TCPOLEN_SACK_PERMITTED);
849         }
850 #undef PAD
851         optlen = min(optlen, TCP_MAXOLEN);
852         return (tp->t_maxseg - optlen);
853 }
854
855 void
856 ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
857 {
858         if (tp->t_logstate != TCP_LOG_STATE_OFF) {
859                 union tcp_log_stackspecific log;
860                 struct timeval tv;
861
862                 memset(&log, 0, sizeof(log));
863                 log.u_bbr.timeStamp = tcp_get_usecs(&tv);
864                 log.u_bbr.flex8 = num_sack_blks;
865                 if (num_sack_blks > 0) {
866                         log.u_bbr.flex1 = sack_blocks[0].start;
867                         log.u_bbr.flex2 = sack_blocks[0].end;
868                 }
869                 if (num_sack_blks > 1) {
870                         log.u_bbr.flex3 = sack_blocks[1].start;
871                         log.u_bbr.flex4 = sack_blocks[1].end;
872                 }
873                 if (num_sack_blks > 2) {
874                         log.u_bbr.flex5 = sack_blocks[2].start;
875                         log.u_bbr.flex6 = sack_blocks[2].end;
876                 }
877                 if (num_sack_blks > 3) {
878                         log.u_bbr.applimited = sack_blocks[3].start;
879                         log.u_bbr.pkts_out = sack_blocks[3].end;
880                 }
881                 TCP_LOG_EVENTP(tp, NULL,
882                     &tp->t_inpcb->inp_socket->so_rcv,
883                     &tp->t_inpcb->inp_socket->so_snd,
884                     TCP_SACK_FILTER_RES, 0,
885                     0, &log, false, &tv);
886         }
887 }
888
889 uint32_t
890 ctf_decay_count(uint32_t count, uint32_t decay)
891 {
892         /*
893          * Given a count, decay it by a set percentage. The
894          * percentage is in thousands i.e. 100% = 1000,
895          * 19.3% = 193.
896          */
897         uint64_t perc_count, decay_per;
898         uint32_t decayed_count;
899         if (decay > 1000) {
900                 /* We don't raise it */
901                 return (count);
902         }
903         perc_count = count;
904         decay_per = decay;
905         perc_count *= decay_per;
906         perc_count /= 1000;
907         /*
908          * So now perc_count holds the
909          * count decay value.
910          */
911         decayed_count = count - (uint32_t)perc_count;
912         return(decayed_count);
913 }