]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/udp_usrreq.c
MFV r302218: file 5.28.
[FreeBSD/FreeBSD.git] / sys / netinet / udp_usrreq.c
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * Copyright (c) 2014 Kevin Lo
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Robert N. M. Watson under
10  * contract to Juniper Networks, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      @(#)udp_usrreq.c        8.6 (Berkeley) 5/23/95
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45 #include "opt_rss.h"
46
47 #include <sys/param.h>
48 #include <sys/domain.h>
49 #include <sys/eventhandler.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/protosw.h>
58 #include <sys/sdt.h>
59 #include <sys/signalvar.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sx.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/systm.h>
66
67 #include <vm/uma.h>
68
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/route.h>
72 #include <net/rss_config.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #endif
83 #include <netinet/ip_icmp.h>
84 #include <netinet/icmp_var.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/ip_options.h>
87 #ifdef INET6
88 #include <netinet6/ip6_var.h>
89 #endif
90 #include <netinet/udp.h>
91 #include <netinet/udp_var.h>
92 #include <netinet/udplite.h>
93 #include <netinet/in_rss.h>
94
95 #ifdef IPSEC
96 #include <netipsec/ipsec.h>
97 #include <netipsec/esp.h>
98 #endif
99
100 #include <machine/in_cksum.h>
101
102 #include <security/mac/mac_framework.h>
103
104 /*
105  * UDP and UDP-Lite protocols implementation.
106  * Per RFC 768, August, 1980.
107  * Per RFC 3828, July, 2004.
108  */
109
110 /*
111  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
112  * removes the only data integrity mechanism for packets and malformed
113  * packets that would otherwise be discarded due to bad checksums, and may
114  * cause problems (especially for NFS data blocks).
115  */
116 VNET_DEFINE(int, udp_cksum) = 1;
117 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
118     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
119
120 int     udp_log_in_vain = 0;
121 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
122     &udp_log_in_vain, 0, "Log all incoming UDP packets");
123
124 VNET_DEFINE(int, udp_blackhole) = 0;
125 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
126     &VNET_NAME(udp_blackhole), 0,
127     "Do not send port unreachables for refused connects");
128
129 u_long  udp_sendspace = 9216;           /* really max datagram size */
130 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
131     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
132
133 u_long  udp_recvspace = 40 * (1024 +
134 #ifdef INET6
135                                       sizeof(struct sockaddr_in6)
136 #else
137                                       sizeof(struct sockaddr_in)
138 #endif
139                                       );        /* 40 1K datagrams */
140
141 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
142     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
143
144 VNET_DEFINE(struct inpcbhead, udb);             /* from udp_var.h */
145 VNET_DEFINE(struct inpcbinfo, udbinfo);
146 VNET_DEFINE(struct inpcbhead, ulitecb);
147 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
148 static VNET_DEFINE(uma_zone_t, udpcb_zone);
149 #define V_udpcb_zone                    VNET(udpcb_zone)
150
151 #ifndef UDBHASHSIZE
152 #define UDBHASHSIZE     128
153 #endif
154
155 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);          /* from udp_var.h */
156 VNET_PCPUSTAT_SYSINIT(udpstat);
157 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
158     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
159
160 #ifdef VIMAGE
161 VNET_PCPUSTAT_SYSUNINIT(udpstat);
162 #endif /* VIMAGE */
163 #ifdef INET
164 static void     udp_detach(struct socket *so);
165 static int      udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
166                     struct mbuf *, struct thread *);
167 #endif
168
169 #ifdef IPSEC
170 #ifdef IPSEC_NAT_T
171 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
172 #ifdef INET
173 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
174 #endif
175 #endif /* IPSEC_NAT_T */
176 #endif /* IPSEC */
177
178 static void
179 udp_zone_change(void *tag)
180 {
181
182         uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
183         uma_zone_set_max(V_udpcb_zone, maxsockets);
184 }
185
186 static int
187 udp_inpcb_init(void *mem, int size, int flags)
188 {
189         struct inpcb *inp;
190
191         inp = mem;
192         INP_LOCK_INIT(inp, "inp", "udpinp");
193         return (0);
194 }
195
196 static int
197 udplite_inpcb_init(void *mem, int size, int flags)
198 {
199         struct inpcb *inp;
200
201         inp = mem;
202         INP_LOCK_INIT(inp, "inp", "udpliteinp");
203         return (0);
204 }
205
206 void
207 udp_init(void)
208 {
209
210         /*
211          * For now default to 2-tuple UDP hashing - until the fragment
212          * reassembly code can also update the flowid.
213          *
214          * Once we can calculate the flowid that way and re-establish
215          * a 4-tuple, flip this to 4-tuple.
216          */
217         in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
218             "udp_inpcb", udp_inpcb_init, NULL, 0,
219             IPI_HASHFIELDS_2TUPLE);
220         V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
221             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
222         uma_zone_set_max(V_udpcb_zone, maxsockets);
223         uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
224         EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
225             EVENTHANDLER_PRI_ANY);
226 }
227
228 void
229 udplite_init(void)
230 {
231
232         in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
233             UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
234             0, IPI_HASHFIELDS_2TUPLE);
235 }
236
237 /*
238  * Kernel module interface for updating udpstat.  The argument is an index
239  * into udpstat treated as an array of u_long.  While this encodes the
240  * general layout of udpstat into the caller, it doesn't encode its location,
241  * so that future changes to add, for example, per-CPU stats support won't
242  * cause binary compatibility problems for kernel modules.
243  */
244 void
245 kmod_udpstat_inc(int statnum)
246 {
247
248         counter_u64_add(VNET(udpstat)[statnum], 1);
249 }
250
251 int
252 udp_newudpcb(struct inpcb *inp)
253 {
254         struct udpcb *up;
255
256         up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
257         if (up == NULL)
258                 return (ENOBUFS);
259         inp->inp_ppcb = up;
260         return (0);
261 }
262
263 void
264 udp_discardcb(struct udpcb *up)
265 {
266
267         uma_zfree(V_udpcb_zone, up);
268 }
269
270 #ifdef VIMAGE
271 static void
272 udp_destroy(void *unused __unused)
273 {
274
275         in_pcbinfo_destroy(&V_udbinfo);
276         uma_zdestroy(V_udpcb_zone);
277 }
278 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
279
280 static void
281 udplite_destroy(void *unused __unused)
282 {
283
284         in_pcbinfo_destroy(&V_ulitecbinfo);
285 }
286 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
287     NULL);
288 #endif
289
290 #ifdef INET
291 /*
292  * Subroutine of udp_input(), which appends the provided mbuf chain to the
293  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
294  * contains the source address.  If the socket ends up being an IPv6 socket,
295  * udp_append() will convert to a sockaddr_in6 before passing the address
296  * into the socket code.
297  *
298  * In the normal case udp_append() will return 0, indicating that you
299  * must unlock the inp. However if a tunneling protocol is in place we increment
300  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
301  * then decrement the reference count. If the inp_rele returns 1, indicating the
302  * inp is gone, we return that to the caller to tell them *not* to unlock
303  * the inp. In the case of multi-cast this will cause the distribution
304  * to stop (though most tunneling protocols known currently do *not* use
305  * multicast).
306  */
307 static int
308 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
309     struct sockaddr_in *udp_in)
310 {
311         struct sockaddr *append_sa;
312         struct socket *so;
313         struct mbuf *opts = NULL;
314 #ifdef INET6
315         struct sockaddr_in6 udp_in6;
316 #endif
317         struct udpcb *up;
318
319         INP_LOCK_ASSERT(inp);
320
321         /*
322          * Engage the tunneling protocol.
323          */
324         up = intoudpcb(inp);
325         if (up->u_tun_func != NULL) {
326                 in_pcbref(inp);
327                 INP_RUNLOCK(inp);
328                 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in,
329                     up->u_tun_ctx);
330                 INP_RLOCK(inp);
331                 return (in_pcbrele_rlocked(inp));
332         }
333
334         off += sizeof(struct udphdr);
335
336 #ifdef IPSEC
337         /* Check AH/ESP integrity. */
338         if (ipsec4_in_reject(n, inp)) {
339                 m_freem(n);
340                 return (0);
341         }
342 #ifdef IPSEC_NAT_T
343         up = intoudpcb(inp);
344         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
345         if (up->u_flags & UF_ESPINUDP_ALL) {    /* IPSec UDP encaps. */
346                 n = udp4_espdecap(inp, n, off);
347                 if (n == NULL)                          /* Consumed. */
348                         return (0);
349         }
350 #endif /* IPSEC_NAT_T */
351 #endif /* IPSEC */
352 #ifdef MAC
353         if (mac_inpcb_check_deliver(inp, n) != 0) {
354                 m_freem(n);
355                 return (0);
356         }
357 #endif /* MAC */
358         if (inp->inp_flags & INP_CONTROLOPTS ||
359             inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
360 #ifdef INET6
361                 if (inp->inp_vflag & INP_IPV6)
362                         (void)ip6_savecontrol_v4(inp, n, &opts, NULL);
363                 else
364 #endif /* INET6 */
365                         ip_savecontrol(inp, &opts, ip, n);
366         }
367 #ifdef INET6
368         if (inp->inp_vflag & INP_IPV6) {
369                 bzero(&udp_in6, sizeof(udp_in6));
370                 udp_in6.sin6_len = sizeof(udp_in6);
371                 udp_in6.sin6_family = AF_INET6;
372                 in6_sin_2_v4mapsin6(udp_in, &udp_in6);
373                 append_sa = (struct sockaddr *)&udp_in6;
374         } else
375 #endif /* INET6 */
376                 append_sa = (struct sockaddr *)udp_in;
377         m_adj(n, off);
378
379         so = inp->inp_socket;
380         SOCKBUF_LOCK(&so->so_rcv);
381         if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
382                 SOCKBUF_UNLOCK(&so->so_rcv);
383                 m_freem(n);
384                 if (opts)
385                         m_freem(opts);
386                 UDPSTAT_INC(udps_fullsock);
387         } else
388                 sorwakeup_locked(so);
389         return (0);
390 }
391
392 int
393 udp_input(struct mbuf **mp, int *offp, int proto)
394 {
395         struct ip *ip;
396         struct udphdr *uh;
397         struct ifnet *ifp;
398         struct inpcb *inp;
399         uint16_t len, ip_len;
400         struct inpcbinfo *pcbinfo;
401         struct ip save_ip;
402         struct sockaddr_in udp_in;
403         struct mbuf *m;
404         struct m_tag *fwd_tag;
405         int cscov_partial, iphlen;
406
407         m = *mp;
408         iphlen = *offp;
409         ifp = m->m_pkthdr.rcvif;
410         *mp = NULL;
411         UDPSTAT_INC(udps_ipackets);
412
413         /*
414          * Strip IP options, if any; should skip this, make available to
415          * user, and use on returned packets, but we don't yet have a way to
416          * check the checksum with options still present.
417          */
418         if (iphlen > sizeof (struct ip)) {
419                 ip_stripoptions(m);
420                 iphlen = sizeof(struct ip);
421         }
422
423         /*
424          * Get IP and UDP header together in first mbuf.
425          */
426         ip = mtod(m, struct ip *);
427         if (m->m_len < iphlen + sizeof(struct udphdr)) {
428                 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
429                         UDPSTAT_INC(udps_hdrops);
430                         return (IPPROTO_DONE);
431                 }
432                 ip = mtod(m, struct ip *);
433         }
434         uh = (struct udphdr *)((caddr_t)ip + iphlen);
435         cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
436
437         /*
438          * Destination port of 0 is illegal, based on RFC768.
439          */
440         if (uh->uh_dport == 0)
441                 goto badunlocked;
442
443         /*
444          * Construct sockaddr format source address.  Stuff source address
445          * and datagram in user buffer.
446          */
447         bzero(&udp_in, sizeof(udp_in));
448         udp_in.sin_len = sizeof(udp_in);
449         udp_in.sin_family = AF_INET;
450         udp_in.sin_port = uh->uh_sport;
451         udp_in.sin_addr = ip->ip_src;
452
453         /*
454          * Make mbuf data length reflect UDP length.  If not enough data to
455          * reflect UDP length, drop.
456          */
457         len = ntohs((u_short)uh->uh_ulen);
458         ip_len = ntohs(ip->ip_len) - iphlen;
459         if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
460                 /* Zero means checksum over the complete packet. */
461                 if (len == 0)
462                         len = ip_len;
463                 cscov_partial = 0;
464         }
465         if (ip_len != len) {
466                 if (len > ip_len || len < sizeof(struct udphdr)) {
467                         UDPSTAT_INC(udps_badlen);
468                         goto badunlocked;
469                 }
470                 if (proto == IPPROTO_UDP)
471                         m_adj(m, len - ip_len);
472         }
473
474         /*
475          * Save a copy of the IP header in case we want restore it for
476          * sending an ICMP error message in response.
477          */
478         if (!V_udp_blackhole)
479                 save_ip = *ip;
480         else
481                 memset(&save_ip, 0, sizeof(save_ip));
482
483         /*
484          * Checksum extended UDP header and data.
485          */
486         if (uh->uh_sum) {
487                 u_short uh_sum;
488
489                 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
490                     !cscov_partial) {
491                         if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
492                                 uh_sum = m->m_pkthdr.csum_data;
493                         else
494                                 uh_sum = in_pseudo(ip->ip_src.s_addr,
495                                     ip->ip_dst.s_addr, htonl((u_short)len +
496                                     m->m_pkthdr.csum_data + proto));
497                         uh_sum ^= 0xffff;
498                 } else {
499                         char b[9];
500
501                         bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
502                         bzero(((struct ipovly *)ip)->ih_x1, 9);
503                         ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
504                             uh->uh_ulen : htons(ip_len);
505                         uh_sum = in_cksum(m, len + sizeof (struct ip));
506                         bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
507                 }
508                 if (uh_sum) {
509                         UDPSTAT_INC(udps_badsum);
510                         m_freem(m);
511                         return (IPPROTO_DONE);
512                 }
513         } else {
514                 if (proto == IPPROTO_UDP) {
515                         UDPSTAT_INC(udps_nosum);
516                 } else {
517                         /* UDPLite requires a checksum */
518                         /* XXX: What is the right UDPLite MIB counter here? */
519                         m_freem(m);
520                         return (IPPROTO_DONE);
521                 }
522         }
523
524         pcbinfo = udp_get_inpcbinfo(proto);
525         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
526             in_broadcast(ip->ip_dst, ifp)) {
527                 struct inpcb *last;
528                 struct inpcbhead *pcblist;
529                 struct ip_moptions *imo;
530
531                 INP_INFO_RLOCK(pcbinfo);
532                 pcblist = udp_get_pcblist(proto);
533                 last = NULL;
534                 LIST_FOREACH(inp, pcblist, inp_list) {
535                         if (inp->inp_lport != uh->uh_dport)
536                                 continue;
537 #ifdef INET6
538                         if ((inp->inp_vflag & INP_IPV4) == 0)
539                                 continue;
540 #endif
541                         if (inp->inp_laddr.s_addr != INADDR_ANY &&
542                             inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
543                                 continue;
544                         if (inp->inp_faddr.s_addr != INADDR_ANY &&
545                             inp->inp_faddr.s_addr != ip->ip_src.s_addr)
546                                 continue;
547                         if (inp->inp_fport != 0 &&
548                             inp->inp_fport != uh->uh_sport)
549                                 continue;
550
551                         INP_RLOCK(inp);
552
553                         /*
554                          * XXXRW: Because we weren't holding either the inpcb
555                          * or the hash lock when we checked for a match
556                          * before, we should probably recheck now that the
557                          * inpcb lock is held.
558                          */
559
560                         /*
561                          * Handle socket delivery policy for any-source
562                          * and source-specific multicast. [RFC3678]
563                          */
564                         imo = inp->inp_moptions;
565                         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
566                                 struct sockaddr_in       group;
567                                 int                      blocked;
568                                 if (imo == NULL) {
569                                         INP_RUNLOCK(inp);
570                                         continue;
571                                 }
572                                 bzero(&group, sizeof(struct sockaddr_in));
573                                 group.sin_len = sizeof(struct sockaddr_in);
574                                 group.sin_family = AF_INET;
575                                 group.sin_addr = ip->ip_dst;
576
577                                 blocked = imo_multi_filter(imo, ifp,
578                                         (struct sockaddr *)&group,
579                                         (struct sockaddr *)&udp_in);
580                                 if (blocked != MCAST_PASS) {
581                                         if (blocked == MCAST_NOTGMEMBER)
582                                                 IPSTAT_INC(ips_notmember);
583                                         if (blocked == MCAST_NOTSMEMBER ||
584                                             blocked == MCAST_MUTED)
585                                                 UDPSTAT_INC(udps_filtermcast);
586                                         INP_RUNLOCK(inp);
587                                         continue;
588                                 }
589                         }
590                         if (last != NULL) {
591                                 struct mbuf *n;
592
593                                 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
594                                         UDP_PROBE(receive, NULL, last, ip,
595                                             last, uh);
596                                         if (udp_append(last, ip, n, iphlen,
597                                                 &udp_in)) {
598                                                 goto inp_lost;
599                                         }
600                                 }
601                                 INP_RUNLOCK(last);
602                         }
603                         last = inp;
604                         /*
605                          * Don't look for additional matches if this one does
606                          * not have either the SO_REUSEPORT or SO_REUSEADDR
607                          * socket options set.  This heuristic avoids
608                          * searching through all pcbs in the common case of a
609                          * non-shared port.  It assumes that an application
610                          * will never clear these options after setting them.
611                          */
612                         if ((last->inp_socket->so_options &
613                             (SO_REUSEPORT|SO_REUSEADDR)) == 0)
614                                 break;
615                 }
616
617                 if (last == NULL) {
618                         /*
619                          * No matching pcb found; discard datagram.  (No need
620                          * to send an ICMP Port Unreachable for a broadcast
621                          * or multicast datgram.)
622                          */
623                         UDPSTAT_INC(udps_noportbcast);
624                         if (inp)
625                                 INP_RUNLOCK(inp);
626                         INP_INFO_RUNLOCK(pcbinfo);
627                         goto badunlocked;
628                 }
629                 UDP_PROBE(receive, NULL, last, ip, last, uh);
630                 if (udp_append(last, ip, m, iphlen, &udp_in) == 0) 
631                         INP_RUNLOCK(last);
632         inp_lost:
633                 INP_INFO_RUNLOCK(pcbinfo);
634                 return (IPPROTO_DONE);
635         }
636
637         /*
638          * Locate pcb for datagram.
639          */
640
641         /*
642          * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
643          */
644         if ((m->m_flags & M_IP_NEXTHOP) &&
645             (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
646                 struct sockaddr_in *next_hop;
647
648                 next_hop = (struct sockaddr_in *)(fwd_tag + 1);
649
650                 /*
651                  * Transparently forwarded. Pretend to be the destination.
652                  * Already got one like this?
653                  */
654                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
655                     ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
656                 if (!inp) {
657                         /*
658                          * It's new.  Try to find the ambushing socket.
659                          * Because we've rewritten the destination address,
660                          * any hardware-generated hash is ignored.
661                          */
662                         inp = in_pcblookup(pcbinfo, ip->ip_src,
663                             uh->uh_sport, next_hop->sin_addr,
664                             next_hop->sin_port ? htons(next_hop->sin_port) :
665                             uh->uh_dport, INPLOOKUP_WILDCARD |
666                             INPLOOKUP_RLOCKPCB, ifp);
667                 }
668                 /* Remove the tag from the packet. We don't need it anymore. */
669                 m_tag_delete(m, fwd_tag);
670                 m->m_flags &= ~M_IP_NEXTHOP;
671         } else
672                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
673                     ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
674                     INPLOOKUP_RLOCKPCB, ifp, m);
675         if (inp == NULL) {
676                 if (udp_log_in_vain) {
677                         char buf[4*sizeof "123"];
678
679                         strcpy(buf, inet_ntoa(ip->ip_dst));
680                         log(LOG_INFO,
681                             "Connection attempt to UDP %s:%d from %s:%d\n",
682                             buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
683                             ntohs(uh->uh_sport));
684                 }
685                 UDPSTAT_INC(udps_noport);
686                 if (m->m_flags & (M_BCAST | M_MCAST)) {
687                         UDPSTAT_INC(udps_noportbcast);
688                         goto badunlocked;
689                 }
690                 if (V_udp_blackhole)
691                         goto badunlocked;
692                 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
693                         goto badunlocked;
694                 *ip = save_ip;
695                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
696                 return (IPPROTO_DONE);
697         }
698
699         /*
700          * Check the minimum TTL for socket.
701          */
702         INP_RLOCK_ASSERT(inp);
703         if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
704                 INP_RUNLOCK(inp);
705                 m_freem(m);
706                 return (IPPROTO_DONE);
707         }
708         if (cscov_partial) {
709                 struct udpcb *up;
710
711                 up = intoudpcb(inp);
712                 if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
713                         INP_RUNLOCK(inp);
714                         m_freem(m);
715                         return (IPPROTO_DONE);
716                 }
717         }
718
719         UDP_PROBE(receive, NULL, inp, ip, inp, uh);
720         if (udp_append(inp, ip, m, iphlen, &udp_in) == 0) 
721                 INP_RUNLOCK(inp);
722         return (IPPROTO_DONE);
723
724 badunlocked:
725         m_freem(m);
726         return (IPPROTO_DONE);
727 }
728 #endif /* INET */
729
730 /*
731  * Notify a udp user of an asynchronous error; just wake up so that they can
732  * collect error status.
733  */
734 struct inpcb *
735 udp_notify(struct inpcb *inp, int errno)
736 {
737
738         /*
739          * While udp_ctlinput() always calls udp_notify() with a read lock
740          * when invoking it directly, in_pcbnotifyall() currently uses write
741          * locks due to sharing code with TCP.  For now, accept either a read
742          * or a write lock, but a read lock is sufficient.
743          */
744         INP_LOCK_ASSERT(inp);
745         if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
746              errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
747                 RTFREE(inp->inp_route.ro_rt);
748                 inp->inp_route.ro_rt = (struct rtentry *)NULL;
749         }
750
751         inp->inp_socket->so_error = errno;
752         sorwakeup(inp->inp_socket);
753         sowwakeup(inp->inp_socket);
754         return (inp);
755 }
756
757 #ifdef INET
758 static void
759 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
760     struct inpcbinfo *pcbinfo)
761 {
762         struct ip *ip = vip;
763         struct udphdr *uh;
764         struct in_addr faddr;
765         struct inpcb *inp;
766
767         faddr = ((struct sockaddr_in *)sa)->sin_addr;
768         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
769                 return;
770
771         if (PRC_IS_REDIRECT(cmd)) {
772                 /* signal EHOSTDOWN, as it flushes the cached route */
773                 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
774                 return;
775         }
776
777         /*
778          * Hostdead is ugly because it goes linearly through all PCBs.
779          *
780          * XXX: We never get this from ICMP, otherwise it makes an excellent
781          * DoS attack on machines with many connections.
782          */
783         if (cmd == PRC_HOSTDEAD)
784                 ip = NULL;
785         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
786                 return;
787         if (ip != NULL) {
788                 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
789                 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
790                     ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
791                 if (inp != NULL) {
792                         INP_RLOCK_ASSERT(inp);
793                         if (inp->inp_socket != NULL) {
794                                 udp_notify(inp, inetctlerrmap[cmd]);
795                         }
796                         INP_RUNLOCK(inp);
797                 } else {
798                         inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
799                                            ip->ip_src, uh->uh_sport,
800                                            INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
801                         if (inp != NULL) {
802                                 struct udpcb *up;
803
804                                 up = intoudpcb(inp);
805                                 if (up->u_icmp_func != NULL) {
806                                         INP_RUNLOCK(inp);
807                                         (*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx);
808                                 } else {
809                                         INP_RUNLOCK(inp);
810                                 }
811                         }
812                 }
813         } else
814                 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
815                     udp_notify);
816 }
817 void
818 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
819 {
820
821         return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
822 }
823
824 void
825 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
826 {
827
828         return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
829 }
830 #endif /* INET */
831
832 static int
833 udp_pcblist(SYSCTL_HANDLER_ARGS)
834 {
835         int error, i, n;
836         struct inpcb *inp, **inp_list;
837         inp_gen_t gencnt;
838         struct xinpgen xig;
839
840         /*
841          * The process of preparing the PCB list is too time-consuming and
842          * resource-intensive to repeat twice on every request.
843          */
844         if (req->oldptr == 0) {
845                 n = V_udbinfo.ipi_count;
846                 n += imax(n / 8, 10);
847                 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
848                 return (0);
849         }
850
851         if (req->newptr != 0)
852                 return (EPERM);
853
854         /*
855          * OK, now we're committed to doing something.
856          */
857         INP_INFO_RLOCK(&V_udbinfo);
858         gencnt = V_udbinfo.ipi_gencnt;
859         n = V_udbinfo.ipi_count;
860         INP_INFO_RUNLOCK(&V_udbinfo);
861
862         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
863                 + n * sizeof(struct xinpcb));
864         if (error != 0)
865                 return (error);
866
867         xig.xig_len = sizeof xig;
868         xig.xig_count = n;
869         xig.xig_gen = gencnt;
870         xig.xig_sogen = so_gencnt;
871         error = SYSCTL_OUT(req, &xig, sizeof xig);
872         if (error)
873                 return (error);
874
875         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
876         if (inp_list == NULL)
877                 return (ENOMEM);
878
879         INP_INFO_RLOCK(&V_udbinfo);
880         for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
881              inp = LIST_NEXT(inp, inp_list)) {
882                 INP_WLOCK(inp);
883                 if (inp->inp_gencnt <= gencnt &&
884                     cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
885                         in_pcbref(inp);
886                         inp_list[i++] = inp;
887                 }
888                 INP_WUNLOCK(inp);
889         }
890         INP_INFO_RUNLOCK(&V_udbinfo);
891         n = i;
892
893         error = 0;
894         for (i = 0; i < n; i++) {
895                 inp = inp_list[i];
896                 INP_RLOCK(inp);
897                 if (inp->inp_gencnt <= gencnt) {
898                         struct xinpcb xi;
899
900                         bzero(&xi, sizeof(xi));
901                         xi.xi_len = sizeof xi;
902                         /* XXX should avoid extra copy */
903                         bcopy(inp, &xi.xi_inp, sizeof *inp);
904                         if (inp->inp_socket)
905                                 sotoxsocket(inp->inp_socket, &xi.xi_socket);
906                         xi.xi_inp.inp_gencnt = inp->inp_gencnt;
907                         INP_RUNLOCK(inp);
908                         error = SYSCTL_OUT(req, &xi, sizeof xi);
909                 } else
910                         INP_RUNLOCK(inp);
911         }
912         INP_INFO_WLOCK(&V_udbinfo);
913         for (i = 0; i < n; i++) {
914                 inp = inp_list[i];
915                 INP_RLOCK(inp);
916                 if (!in_pcbrele_rlocked(inp))
917                         INP_RUNLOCK(inp);
918         }
919         INP_INFO_WUNLOCK(&V_udbinfo);
920
921         if (!error) {
922                 /*
923                  * Give the user an updated idea of our state.  If the
924                  * generation differs from what we told her before, she knows
925                  * that something happened while we were processing this
926                  * request, and it might be necessary to retry.
927                  */
928                 INP_INFO_RLOCK(&V_udbinfo);
929                 xig.xig_gen = V_udbinfo.ipi_gencnt;
930                 xig.xig_sogen = so_gencnt;
931                 xig.xig_count = V_udbinfo.ipi_count;
932                 INP_INFO_RUNLOCK(&V_udbinfo);
933                 error = SYSCTL_OUT(req, &xig, sizeof xig);
934         }
935         free(inp_list, M_TEMP);
936         return (error);
937 }
938
939 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
940     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
941     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
942
943 #ifdef INET
944 static int
945 udp_getcred(SYSCTL_HANDLER_ARGS)
946 {
947         struct xucred xuc;
948         struct sockaddr_in addrs[2];
949         struct inpcb *inp;
950         int error;
951
952         error = priv_check(req->td, PRIV_NETINET_GETCRED);
953         if (error)
954                 return (error);
955         error = SYSCTL_IN(req, addrs, sizeof(addrs));
956         if (error)
957                 return (error);
958         inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
959             addrs[0].sin_addr, addrs[0].sin_port,
960             INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
961         if (inp != NULL) {
962                 INP_RLOCK_ASSERT(inp);
963                 if (inp->inp_socket == NULL)
964                         error = ENOENT;
965                 if (error == 0)
966                         error = cr_canseeinpcb(req->td->td_ucred, inp);
967                 if (error == 0)
968                         cru2x(inp->inp_cred, &xuc);
969                 INP_RUNLOCK(inp);
970         } else
971                 error = ENOENT;
972         if (error == 0)
973                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
974         return (error);
975 }
976
977 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
978     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
979     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
980 #endif /* INET */
981
982 int
983 udp_ctloutput(struct socket *so, struct sockopt *sopt)
984 {
985         struct inpcb *inp;
986         struct udpcb *up;
987         int isudplite, error, optval;
988
989         error = 0;
990         isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
991         inp = sotoinpcb(so);
992         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
993         INP_WLOCK(inp);
994         if (sopt->sopt_level != so->so_proto->pr_protocol) {
995 #ifdef INET6
996                 if (INP_CHECK_SOCKAF(so, AF_INET6)) {
997                         INP_WUNLOCK(inp);
998                         error = ip6_ctloutput(so, sopt);
999                 }
1000 #endif
1001 #if defined(INET) && defined(INET6)
1002                 else
1003 #endif
1004 #ifdef INET
1005                 {
1006                         INP_WUNLOCK(inp);
1007                         error = ip_ctloutput(so, sopt);
1008                 }
1009 #endif
1010                 return (error);
1011         }
1012
1013         switch (sopt->sopt_dir) {
1014         case SOPT_SET:
1015                 switch (sopt->sopt_name) {
1016                 case UDP_ENCAP:
1017                         INP_WUNLOCK(inp);
1018                         error = sooptcopyin(sopt, &optval, sizeof optval,
1019                                             sizeof optval);
1020                         if (error)
1021                                 break;
1022                         inp = sotoinpcb(so);
1023                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1024                         INP_WLOCK(inp);
1025 #ifdef IPSEC_NAT_T
1026                         up = intoudpcb(inp);
1027                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1028 #endif
1029                         switch (optval) {
1030                         case 0:
1031                                 /* Clear all UDP encap. */
1032 #ifdef IPSEC_NAT_T
1033                                 up->u_flags &= ~UF_ESPINUDP_ALL;
1034 #endif
1035                                 break;
1036 #ifdef IPSEC_NAT_T
1037                         case UDP_ENCAP_ESPINUDP:
1038                         case UDP_ENCAP_ESPINUDP_NON_IKE:
1039                                 up->u_flags &= ~UF_ESPINUDP_ALL;
1040                                 if (optval == UDP_ENCAP_ESPINUDP)
1041                                         up->u_flags |= UF_ESPINUDP;
1042                                 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
1043                                         up->u_flags |= UF_ESPINUDP_NON_IKE;
1044                                 break;
1045 #endif
1046                         default:
1047                                 error = EINVAL;
1048                                 break;
1049                         }
1050                         INP_WUNLOCK(inp);
1051                         break;
1052                 case UDPLITE_SEND_CSCOV:
1053                 case UDPLITE_RECV_CSCOV:
1054                         if (!isudplite) {
1055                                 INP_WUNLOCK(inp);
1056                                 error = ENOPROTOOPT;
1057                                 break;
1058                         }
1059                         INP_WUNLOCK(inp);
1060                         error = sooptcopyin(sopt, &optval, sizeof(optval),
1061                             sizeof(optval));
1062                         if (error != 0)
1063                                 break;
1064                         inp = sotoinpcb(so);
1065                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1066                         INP_WLOCK(inp);
1067                         up = intoudpcb(inp);
1068                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1069                         if ((optval != 0 && optval < 8) || (optval > 65535)) {
1070                                 INP_WUNLOCK(inp);
1071                                 error = EINVAL;
1072                                 break;
1073                         }
1074                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1075                                 up->u_txcslen = optval;
1076                         else
1077                                 up->u_rxcslen = optval;
1078                         INP_WUNLOCK(inp);
1079                         break;
1080                 default:
1081                         INP_WUNLOCK(inp);
1082                         error = ENOPROTOOPT;
1083                         break;
1084                 }
1085                 break;
1086         case SOPT_GET:
1087                 switch (sopt->sopt_name) {
1088 #ifdef IPSEC_NAT_T
1089                 case UDP_ENCAP:
1090                         up = intoudpcb(inp);
1091                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1092                         optval = up->u_flags & UF_ESPINUDP_ALL;
1093                         INP_WUNLOCK(inp);
1094                         error = sooptcopyout(sopt, &optval, sizeof optval);
1095                         break;
1096 #endif
1097                 case UDPLITE_SEND_CSCOV:
1098                 case UDPLITE_RECV_CSCOV:
1099                         if (!isudplite) {
1100                                 INP_WUNLOCK(inp);
1101                                 error = ENOPROTOOPT;
1102                                 break;
1103                         }
1104                         up = intoudpcb(inp);
1105                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1106                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1107                                 optval = up->u_txcslen;
1108                         else
1109                                 optval = up->u_rxcslen;
1110                         INP_WUNLOCK(inp);
1111                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1112                         break;
1113                 default:
1114                         INP_WUNLOCK(inp);
1115                         error = ENOPROTOOPT;
1116                         break;
1117                 }
1118                 break;
1119         }       
1120         return (error);
1121 }
1122
1123 #ifdef INET
1124 #define UH_WLOCKED      2
1125 #define UH_RLOCKED      1
1126 #define UH_UNLOCKED     0
1127 static int
1128 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1129     struct mbuf *control, struct thread *td)
1130 {
1131         struct udpiphdr *ui;
1132         int len = m->m_pkthdr.len;
1133         struct in_addr faddr, laddr;
1134         struct cmsghdr *cm;
1135         struct inpcbinfo *pcbinfo;
1136         struct sockaddr_in *sin, src;
1137         int cscov_partial = 0;
1138         int error = 0;
1139         int ipflags;
1140         u_short fport, lport;
1141         int unlock_udbinfo, unlock_inp;
1142         u_char tos;
1143         uint8_t pr;
1144         uint16_t cscov = 0;
1145         uint32_t flowid = 0;
1146         uint8_t flowtype = M_HASHTYPE_NONE;
1147
1148         /*
1149          * udp_output() may need to temporarily bind or connect the current
1150          * inpcb.  As such, we don't know up front whether we will need the
1151          * pcbinfo lock or not.  Do any work to decide what is needed up
1152          * front before acquiring any locks.
1153          */
1154         if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1155                 if (control)
1156                         m_freem(control);
1157                 m_freem(m);
1158                 return (EMSGSIZE);
1159         }
1160
1161         src.sin_family = 0;
1162         sin = (struct sockaddr_in *)addr;
1163         if (sin == NULL ||
1164             (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1165                 INP_WLOCK(inp);
1166                 unlock_inp = UH_WLOCKED;
1167         } else {
1168                 INP_RLOCK(inp);
1169                 unlock_inp = UH_RLOCKED;
1170         }
1171         tos = inp->inp_ip_tos;
1172         if (control != NULL) {
1173                 /*
1174                  * XXX: Currently, we assume all the optional information is
1175                  * stored in a single mbuf.
1176                  */
1177                 if (control->m_next) {
1178                         if (unlock_inp == UH_WLOCKED)
1179                                 INP_WUNLOCK(inp);
1180                         else
1181                                 INP_RUNLOCK(inp);
1182                         m_freem(control);
1183                         m_freem(m);
1184                         return (EINVAL);
1185                 }
1186                 for (; control->m_len > 0;
1187                     control->m_data += CMSG_ALIGN(cm->cmsg_len),
1188                     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1189                         cm = mtod(control, struct cmsghdr *);
1190                         if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1191                             || cm->cmsg_len > control->m_len) {
1192                                 error = EINVAL;
1193                                 break;
1194                         }
1195                         if (cm->cmsg_level != IPPROTO_IP)
1196                                 continue;
1197
1198                         switch (cm->cmsg_type) {
1199                         case IP_SENDSRCADDR:
1200                                 if (cm->cmsg_len !=
1201                                     CMSG_LEN(sizeof(struct in_addr))) {
1202                                         error = EINVAL;
1203                                         break;
1204                                 }
1205                                 bzero(&src, sizeof(src));
1206                                 src.sin_family = AF_INET;
1207                                 src.sin_len = sizeof(src);
1208                                 src.sin_port = inp->inp_lport;
1209                                 src.sin_addr =
1210                                     *(struct in_addr *)CMSG_DATA(cm);
1211                                 break;
1212
1213                         case IP_TOS:
1214                                 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1215                                         error = EINVAL;
1216                                         break;
1217                                 }
1218                                 tos = *(u_char *)CMSG_DATA(cm);
1219                                 break;
1220
1221                         case IP_FLOWID:
1222                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1223                                         error = EINVAL;
1224                                         break;
1225                                 }
1226                                 flowid = *(uint32_t *) CMSG_DATA(cm);
1227                                 break;
1228
1229                         case IP_FLOWTYPE:
1230                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1231                                         error = EINVAL;
1232                                         break;
1233                                 }
1234                                 flowtype = *(uint32_t *) CMSG_DATA(cm);
1235                                 break;
1236
1237 #ifdef  RSS
1238                         case IP_RSSBUCKETID:
1239                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1240                                         error = EINVAL;
1241                                         break;
1242                                 }
1243                                 /* This is just a placeholder for now */
1244                                 break;
1245 #endif  /* RSS */
1246                         default:
1247                                 error = ENOPROTOOPT;
1248                                 break;
1249                         }
1250                         if (error)
1251                                 break;
1252                 }
1253                 m_freem(control);
1254         }
1255         if (error) {
1256                 if (unlock_inp == UH_WLOCKED)
1257                         INP_WUNLOCK(inp);
1258                 else
1259                         INP_RUNLOCK(inp);
1260                 m_freem(m);
1261                 return (error);
1262         }
1263
1264         /*
1265          * Depending on whether or not the application has bound or connected
1266          * the socket, we may have to do varying levels of work.  The optimal
1267          * case is for a connected UDP socket, as a global lock isn't
1268          * required at all.
1269          *
1270          * In order to decide which we need, we require stability of the
1271          * inpcb binding, which we ensure by acquiring a read lock on the
1272          * inpcb.  This doesn't strictly follow the lock order, so we play
1273          * the trylock and retry game; note that we may end up with more
1274          * conservative locks than required the second time around, so later
1275          * assertions have to accept that.  Further analysis of the number of
1276          * misses under contention is required.
1277          *
1278          * XXXRW: Check that hash locking update here is correct.
1279          */
1280         pr = inp->inp_socket->so_proto->pr_protocol;
1281         pcbinfo = udp_get_inpcbinfo(pr);
1282         sin = (struct sockaddr_in *)addr;
1283         if (sin != NULL &&
1284             (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1285                 INP_HASH_WLOCK(pcbinfo);
1286                 unlock_udbinfo = UH_WLOCKED;
1287         } else if ((sin != NULL && (
1288             (sin->sin_addr.s_addr == INADDR_ANY) ||
1289             (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1290             (inp->inp_laddr.s_addr == INADDR_ANY) ||
1291             (inp->inp_lport == 0))) ||
1292             (src.sin_family == AF_INET)) {
1293                 INP_HASH_RLOCK(pcbinfo);
1294                 unlock_udbinfo = UH_RLOCKED;
1295         } else
1296                 unlock_udbinfo = UH_UNLOCKED;
1297
1298         /*
1299          * If the IP_SENDSRCADDR control message was specified, override the
1300          * source address for this datagram.  Its use is invalidated if the
1301          * address thus specified is incomplete or clobbers other inpcbs.
1302          */
1303         laddr = inp->inp_laddr;
1304         lport = inp->inp_lport;
1305         if (src.sin_family == AF_INET) {
1306                 INP_HASH_LOCK_ASSERT(pcbinfo);
1307                 if ((lport == 0) ||
1308                     (laddr.s_addr == INADDR_ANY &&
1309                      src.sin_addr.s_addr == INADDR_ANY)) {
1310                         error = EINVAL;
1311                         goto release;
1312                 }
1313                 error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1314                     &laddr.s_addr, &lport, td->td_ucred);
1315                 if (error)
1316                         goto release;
1317         }
1318
1319         /*
1320          * If a UDP socket has been connected, then a local address/port will
1321          * have been selected and bound.
1322          *
1323          * If a UDP socket has not been connected to, then an explicit
1324          * destination address must be used, in which case a local
1325          * address/port may not have been selected and bound.
1326          */
1327         if (sin != NULL) {
1328                 INP_LOCK_ASSERT(inp);
1329                 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1330                         error = EISCONN;
1331                         goto release;
1332                 }
1333
1334                 /*
1335                  * Jail may rewrite the destination address, so let it do
1336                  * that before we use it.
1337                  */
1338                 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1339                 if (error)
1340                         goto release;
1341
1342                 /*
1343                  * If a local address or port hasn't yet been selected, or if
1344                  * the destination address needs to be rewritten due to using
1345                  * a special INADDR_ constant, invoke in_pcbconnect_setup()
1346                  * to do the heavy lifting.  Once a port is selected, we
1347                  * commit the binding back to the socket; we also commit the
1348                  * binding of the address if in jail.
1349                  *
1350                  * If we already have a valid binding and we're not
1351                  * requesting a destination address rewrite, use a fast path.
1352                  */
1353                 if (inp->inp_laddr.s_addr == INADDR_ANY ||
1354                     inp->inp_lport == 0 ||
1355                     sin->sin_addr.s_addr == INADDR_ANY ||
1356                     sin->sin_addr.s_addr == INADDR_BROADCAST) {
1357                         INP_HASH_LOCK_ASSERT(pcbinfo);
1358                         error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1359                             &lport, &faddr.s_addr, &fport, NULL,
1360                             td->td_ucred);
1361                         if (error)
1362                                 goto release;
1363
1364                         /*
1365                          * XXXRW: Why not commit the port if the address is
1366                          * !INADDR_ANY?
1367                          */
1368                         /* Commit the local port if newly assigned. */
1369                         if (inp->inp_laddr.s_addr == INADDR_ANY &&
1370                             inp->inp_lport == 0) {
1371                                 INP_WLOCK_ASSERT(inp);
1372                                 INP_HASH_WLOCK_ASSERT(pcbinfo);
1373                                 /*
1374                                  * Remember addr if jailed, to prevent
1375                                  * rebinding.
1376                                  */
1377                                 if (prison_flag(td->td_ucred, PR_IP4))
1378                                         inp->inp_laddr = laddr;
1379                                 inp->inp_lport = lport;
1380                                 if (in_pcbinshash(inp) != 0) {
1381                                         inp->inp_lport = 0;
1382                                         error = EAGAIN;
1383                                         goto release;
1384                                 }
1385                                 inp->inp_flags |= INP_ANONPORT;
1386                         }
1387                 } else {
1388                         faddr = sin->sin_addr;
1389                         fport = sin->sin_port;
1390                 }
1391         } else {
1392                 INP_LOCK_ASSERT(inp);
1393                 faddr = inp->inp_faddr;
1394                 fport = inp->inp_fport;
1395                 if (faddr.s_addr == INADDR_ANY) {
1396                         error = ENOTCONN;
1397                         goto release;
1398                 }
1399         }
1400
1401         /*
1402          * Calculate data length and get a mbuf for UDP, IP, and possible
1403          * link-layer headers.  Immediate slide the data pointer back forward
1404          * since we won't use that space at this layer.
1405          */
1406         M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1407         if (m == NULL) {
1408                 error = ENOBUFS;
1409                 goto release;
1410         }
1411         m->m_data += max_linkhdr;
1412         m->m_len -= max_linkhdr;
1413         m->m_pkthdr.len -= max_linkhdr;
1414
1415         /*
1416          * Fill in mbuf with extended UDP header and addresses and length put
1417          * into network format.
1418          */
1419         ui = mtod(m, struct udpiphdr *);
1420         bzero(ui->ui_x1, sizeof(ui->ui_x1));    /* XXX still needed? */
1421         ui->ui_pr = pr;
1422         ui->ui_src = laddr;
1423         ui->ui_dst = faddr;
1424         ui->ui_sport = lport;
1425         ui->ui_dport = fport;
1426         ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1427         if (pr == IPPROTO_UDPLITE) {
1428                 struct udpcb *up;
1429                 uint16_t plen;
1430
1431                 up = intoudpcb(inp);
1432                 cscov = up->u_txcslen;
1433                 plen = (u_short)len + sizeof(struct udphdr);
1434                 if (cscov >= plen)
1435                         cscov = 0;
1436                 ui->ui_len = htons(plen);
1437                 ui->ui_ulen = htons(cscov);
1438                 /*
1439                  * For UDP-Lite, checksum coverage length of zero means
1440                  * the entire UDPLite packet is covered by the checksum.
1441                  */
1442                 cscov_partial = (cscov == 0) ? 0 : 1;
1443         } else
1444                 ui->ui_v = IPVERSION << 4;
1445
1446         /*
1447          * Set the Don't Fragment bit in the IP header.
1448          */
1449         if (inp->inp_flags & INP_DONTFRAG) {
1450                 struct ip *ip;
1451
1452                 ip = (struct ip *)&ui->ui_i;
1453                 ip->ip_off |= htons(IP_DF);
1454         }
1455
1456         ipflags = 0;
1457         if (inp->inp_socket->so_options & SO_DONTROUTE)
1458                 ipflags |= IP_ROUTETOIF;
1459         if (inp->inp_socket->so_options & SO_BROADCAST)
1460                 ipflags |= IP_ALLOWBROADCAST;
1461         if (inp->inp_flags & INP_ONESBCAST)
1462                 ipflags |= IP_SENDONES;
1463
1464 #ifdef MAC
1465         mac_inpcb_create_mbuf(inp, m);
1466 #endif
1467
1468         /*
1469          * Set up checksum and output datagram.
1470          */
1471         ui->ui_sum = 0;
1472         if (pr == IPPROTO_UDPLITE) {
1473                 if (inp->inp_flags & INP_ONESBCAST)
1474                         faddr.s_addr = INADDR_BROADCAST;
1475                 if (cscov_partial) {
1476                         if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1477                                 ui->ui_sum = 0xffff;
1478                 } else {
1479                         if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1480                                 ui->ui_sum = 0xffff;
1481                 }
1482         } else if (V_udp_cksum) {
1483                 if (inp->inp_flags & INP_ONESBCAST)
1484                         faddr.s_addr = INADDR_BROADCAST;
1485                 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1486                     htons((u_short)len + sizeof(struct udphdr) + pr));
1487                 m->m_pkthdr.csum_flags = CSUM_UDP;
1488                 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1489         }
1490         ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1491         ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;    /* XXX */
1492         ((struct ip *)ui)->ip_tos = tos;                /* XXX */
1493         UDPSTAT_INC(udps_opackets);
1494
1495         /*
1496          * Setup flowid / RSS information for outbound socket.
1497          *
1498          * Once the UDP code decides to set a flowid some other way,
1499          * this allows the flowid to be overridden by userland.
1500          */
1501         if (flowtype != M_HASHTYPE_NONE) {
1502                 m->m_pkthdr.flowid = flowid;
1503                 M_HASHTYPE_SET(m, flowtype);
1504 #ifdef  RSS
1505         } else {
1506                 uint32_t hash_val, hash_type;
1507                 /*
1508                  * Calculate an appropriate RSS hash for UDP and
1509                  * UDP Lite.
1510                  *
1511                  * The called function will take care of figuring out
1512                  * whether a 2-tuple or 4-tuple hash is required based
1513                  * on the currently configured scheme.
1514                  *
1515                  * Later later on connected socket values should be
1516                  * cached in the inpcb and reused, rather than constantly
1517                  * re-calculating it.
1518                  *
1519                  * UDP Lite is a different protocol number and will
1520                  * likely end up being hashed as a 2-tuple until
1521                  * RSS / NICs grow UDP Lite protocol awareness.
1522                  */
1523                 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1524                     pr, &hash_val, &hash_type) == 0) {
1525                         m->m_pkthdr.flowid = hash_val;
1526                         M_HASHTYPE_SET(m, hash_type);
1527                 }
1528 #endif
1529         }
1530
1531 #ifdef  RSS
1532         /*
1533          * Don't override with the inp cached flowid value.
1534          *
1535          * Depending upon the kind of send being done, the inp
1536          * flowid/flowtype values may actually not be appropriate
1537          * for this particular socket send.
1538          *
1539          * We should either leave the flowid at zero (which is what is
1540          * currently done) or set it to some software generated
1541          * hash value based on the packet contents.
1542          */
1543         ipflags |= IP_NODEFAULTFLOWID;
1544 #endif  /* RSS */
1545
1546         if (unlock_udbinfo == UH_WLOCKED)
1547                 INP_HASH_WUNLOCK(pcbinfo);
1548         else if (unlock_udbinfo == UH_RLOCKED)
1549                 INP_HASH_RUNLOCK(pcbinfo);
1550         UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1551         error = ip_output(m, inp->inp_options,
1552             (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1553             inp->inp_moptions, inp);
1554         if (unlock_inp == UH_WLOCKED)
1555                 INP_WUNLOCK(inp);
1556         else
1557                 INP_RUNLOCK(inp);
1558         return (error);
1559
1560 release:
1561         if (unlock_udbinfo == UH_WLOCKED) {
1562                 INP_HASH_WUNLOCK(pcbinfo);
1563                 INP_WUNLOCK(inp);
1564         } else if (unlock_udbinfo == UH_RLOCKED) {
1565                 INP_HASH_RUNLOCK(pcbinfo);
1566                 INP_RUNLOCK(inp);
1567         } else
1568                 INP_RUNLOCK(inp);
1569         m_freem(m);
1570         return (error);
1571 }
1572
1573
1574 #if defined(IPSEC) && defined(IPSEC_NAT_T)
1575 /*
1576  * Potentially decap ESP in UDP frame.  Check for an ESP header
1577  * and optional marker; if present, strip the UDP header and
1578  * push the result through IPSec.
1579  *
1580  * Returns mbuf to be processed (potentially re-allocated) or
1581  * NULL if consumed and/or processed.
1582  */
1583 static struct mbuf *
1584 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1585 {
1586         size_t minlen, payload, skip, iphlen;
1587         caddr_t data;
1588         struct udpcb *up;
1589         struct m_tag *tag;
1590         struct udphdr *udphdr;
1591         struct ip *ip;
1592
1593         INP_RLOCK_ASSERT(inp);
1594
1595         /* 
1596          * Pull up data so the longest case is contiguous:
1597          *    IP/UDP hdr + non ESP marker + ESP hdr.
1598          */
1599         minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1600         if (minlen > m->m_pkthdr.len)
1601                 minlen = m->m_pkthdr.len;
1602         if ((m = m_pullup(m, minlen)) == NULL) {
1603                 IPSECSTAT_INC(ips_in_inval);
1604                 return (NULL);          /* Bypass caller processing. */
1605         }
1606         data = mtod(m, caddr_t);        /* Points to ip header. */
1607         payload = m->m_len - off;       /* Size of payload. */
1608
1609         if (payload == 1 && data[off] == '\xff')
1610                 return (m);             /* NB: keepalive packet, no decap. */
1611
1612         up = intoudpcb(inp);
1613         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1614         KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1615             ("u_flags 0x%x", up->u_flags));
1616
1617         /* 
1618          * Check that the payload is large enough to hold an
1619          * ESP header and compute the amount of data to remove.
1620          *
1621          * NB: the caller has already done a pullup for us.
1622          * XXX can we assume alignment and eliminate bcopys?
1623          */
1624         if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1625                 /*
1626                  * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1627                  * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1628                  * possible AH mode non-IKE marker+non-ESP marker
1629                  * from draft-ietf-ipsec-udp-encaps-00.txt.
1630                  */
1631                 uint64_t marker;
1632
1633                 if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1634                         return (m);     /* NB: no decap. */
1635                 bcopy(data + off, &marker, sizeof(uint64_t));
1636                 if (marker != 0)        /* Non-IKE marker. */
1637                         return (m);     /* NB: no decap. */
1638                 skip = sizeof(uint64_t) + sizeof(struct udphdr);
1639         } else {
1640                 uint32_t spi;
1641
1642                 if (payload <= sizeof(struct esp)) {
1643                         IPSECSTAT_INC(ips_in_inval);
1644                         m_freem(m);
1645                         return (NULL);  /* Discard. */
1646                 }
1647                 bcopy(data + off, &spi, sizeof(uint32_t));
1648                 if (spi == 0)           /* Non-ESP marker. */
1649                         return (m);     /* NB: no decap. */
1650                 skip = sizeof(struct udphdr);
1651         }
1652
1653         /*
1654          * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1655          * the UDP ports. This is required if we want to select
1656          * the right SPD for multiple hosts behind same NAT.
1657          *
1658          * NB: ports are maintained in network byte order everywhere
1659          *     in the NAT-T code.
1660          */
1661         tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1662                 2 * sizeof(uint16_t), M_NOWAIT);
1663         if (tag == NULL) {
1664                 IPSECSTAT_INC(ips_in_nomem);
1665                 m_freem(m);
1666                 return (NULL);          /* Discard. */
1667         }
1668         iphlen = off - sizeof(struct udphdr);
1669         udphdr = (struct udphdr *)(data + iphlen);
1670         ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1671         ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1672         m_tag_prepend(m, tag);
1673
1674         /*
1675          * Remove the UDP header (and possibly the non ESP marker)
1676          * IP header length is iphlen
1677          * Before:
1678          *   <--- off --->
1679          *   +----+------+-----+
1680          *   | IP |  UDP | ESP |
1681          *   +----+------+-----+
1682          *        <-skip->
1683          * After:
1684          *          +----+-----+
1685          *          | IP | ESP |
1686          *          +----+-----+
1687          *   <-skip->
1688          */
1689         ovbcopy(data, data + skip, iphlen);
1690         m_adj(m, skip);
1691
1692         ip = mtod(m, struct ip *);
1693         ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1694         ip->ip_p = IPPROTO_ESP;
1695
1696         /*
1697          * We cannot yet update the cksums so clear any
1698          * h/w cksum flags as they are no longer valid.
1699          */
1700         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1701                 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1702
1703         (void) ipsec_common_input(m, iphlen, offsetof(struct ip, ip_p),
1704                                 AF_INET, ip->ip_p);
1705         return (NULL);                  /* NB: consumed, bypass processing. */
1706 }
1707 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1708
1709 static void
1710 udp_abort(struct socket *so)
1711 {
1712         struct inpcb *inp;
1713         struct inpcbinfo *pcbinfo;
1714
1715         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1716         inp = sotoinpcb(so);
1717         KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1718         INP_WLOCK(inp);
1719         if (inp->inp_faddr.s_addr != INADDR_ANY) {
1720                 INP_HASH_WLOCK(pcbinfo);
1721                 in_pcbdisconnect(inp);
1722                 inp->inp_laddr.s_addr = INADDR_ANY;
1723                 INP_HASH_WUNLOCK(pcbinfo);
1724                 soisdisconnected(so);
1725         }
1726         INP_WUNLOCK(inp);
1727 }
1728
1729 static int
1730 udp_attach(struct socket *so, int proto, struct thread *td)
1731 {
1732         struct inpcb *inp;
1733         struct inpcbinfo *pcbinfo;
1734         int error;
1735
1736         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1737         inp = sotoinpcb(so);
1738         KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1739         error = soreserve(so, udp_sendspace, udp_recvspace);
1740         if (error)
1741                 return (error);
1742         INP_INFO_WLOCK(pcbinfo);
1743         error = in_pcballoc(so, pcbinfo);
1744         if (error) {
1745                 INP_INFO_WUNLOCK(pcbinfo);
1746                 return (error);
1747         }
1748
1749         inp = sotoinpcb(so);
1750         inp->inp_vflag |= INP_IPV4;
1751         inp->inp_ip_ttl = V_ip_defttl;
1752
1753         error = udp_newudpcb(inp);
1754         if (error) {
1755                 in_pcbdetach(inp);
1756                 in_pcbfree(inp);
1757                 INP_INFO_WUNLOCK(pcbinfo);
1758                 return (error);
1759         }
1760
1761         INP_WUNLOCK(inp);
1762         INP_INFO_WUNLOCK(pcbinfo);
1763         return (0);
1764 }
1765 #endif /* INET */
1766
1767 int
1768 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1769 {
1770         struct inpcb *inp;
1771         struct udpcb *up;
1772
1773         KASSERT(so->so_type == SOCK_DGRAM,
1774             ("udp_set_kernel_tunneling: !dgram"));
1775         inp = sotoinpcb(so);
1776         KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1777         INP_WLOCK(inp);
1778         up = intoudpcb(inp);
1779         if ((up->u_tun_func != NULL) ||
1780             (up->u_icmp_func != NULL)) {
1781                 INP_WUNLOCK(inp);
1782                 return (EBUSY);
1783         }
1784         up->u_tun_func = f;
1785         up->u_icmp_func = i;
1786         up->u_tun_ctx = ctx;
1787         INP_WUNLOCK(inp);
1788         return (0);
1789 }
1790
1791 #ifdef INET
1792 static int
1793 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1794 {
1795         struct inpcb *inp;
1796         struct inpcbinfo *pcbinfo;
1797         int error;
1798
1799         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1800         inp = sotoinpcb(so);
1801         KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1802         INP_WLOCK(inp);
1803         INP_HASH_WLOCK(pcbinfo);
1804         error = in_pcbbind(inp, nam, td->td_ucred);
1805         INP_HASH_WUNLOCK(pcbinfo);
1806         INP_WUNLOCK(inp);
1807         return (error);
1808 }
1809
1810 static void
1811 udp_close(struct socket *so)
1812 {
1813         struct inpcb *inp;
1814         struct inpcbinfo *pcbinfo;
1815
1816         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1817         inp = sotoinpcb(so);
1818         KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1819         INP_WLOCK(inp);
1820         if (inp->inp_faddr.s_addr != INADDR_ANY) {
1821                 INP_HASH_WLOCK(pcbinfo);
1822                 in_pcbdisconnect(inp);
1823                 inp->inp_laddr.s_addr = INADDR_ANY;
1824                 INP_HASH_WUNLOCK(pcbinfo);
1825                 soisdisconnected(so);
1826         }
1827         INP_WUNLOCK(inp);
1828 }
1829
1830 static int
1831 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1832 {
1833         struct inpcb *inp;
1834         struct inpcbinfo *pcbinfo;
1835         struct sockaddr_in *sin;
1836         int error;
1837
1838         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1839         inp = sotoinpcb(so);
1840         KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1841         INP_WLOCK(inp);
1842         if (inp->inp_faddr.s_addr != INADDR_ANY) {
1843                 INP_WUNLOCK(inp);
1844                 return (EISCONN);
1845         }
1846         sin = (struct sockaddr_in *)nam;
1847         error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1848         if (error != 0) {
1849                 INP_WUNLOCK(inp);
1850                 return (error);
1851         }
1852         INP_HASH_WLOCK(pcbinfo);
1853         error = in_pcbconnect(inp, nam, td->td_ucred);
1854         INP_HASH_WUNLOCK(pcbinfo);
1855         if (error == 0)
1856                 soisconnected(so);
1857         INP_WUNLOCK(inp);
1858         return (error);
1859 }
1860
1861 static void
1862 udp_detach(struct socket *so)
1863 {
1864         struct inpcb *inp;
1865         struct inpcbinfo *pcbinfo;
1866         struct udpcb *up;
1867
1868         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1869         inp = sotoinpcb(so);
1870         KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1871         KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1872             ("udp_detach: not disconnected"));
1873         INP_INFO_WLOCK(pcbinfo);
1874         INP_WLOCK(inp);
1875         up = intoudpcb(inp);
1876         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1877         inp->inp_ppcb = NULL;
1878         in_pcbdetach(inp);
1879         in_pcbfree(inp);
1880         INP_INFO_WUNLOCK(pcbinfo);
1881         udp_discardcb(up);
1882 }
1883
1884 static int
1885 udp_disconnect(struct socket *so)
1886 {
1887         struct inpcb *inp;
1888         struct inpcbinfo *pcbinfo;
1889
1890         pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1891         inp = sotoinpcb(so);
1892         KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1893         INP_WLOCK(inp);
1894         if (inp->inp_faddr.s_addr == INADDR_ANY) {
1895                 INP_WUNLOCK(inp);
1896                 return (ENOTCONN);
1897         }
1898         INP_HASH_WLOCK(pcbinfo);
1899         in_pcbdisconnect(inp);
1900         inp->inp_laddr.s_addr = INADDR_ANY;
1901         INP_HASH_WUNLOCK(pcbinfo);
1902         SOCK_LOCK(so);
1903         so->so_state &= ~SS_ISCONNECTED;                /* XXX */
1904         SOCK_UNLOCK(so);
1905         INP_WUNLOCK(inp);
1906         return (0);
1907 }
1908
1909 static int
1910 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1911     struct mbuf *control, struct thread *td)
1912 {
1913         struct inpcb *inp;
1914
1915         inp = sotoinpcb(so);
1916         KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1917         return (udp_output(inp, m, addr, control, td));
1918 }
1919 #endif /* INET */
1920
1921 int
1922 udp_shutdown(struct socket *so)
1923 {
1924         struct inpcb *inp;
1925
1926         inp = sotoinpcb(so);
1927         KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1928         INP_WLOCK(inp);
1929         socantsendmore(so);
1930         INP_WUNLOCK(inp);
1931         return (0);
1932 }
1933
1934 #ifdef INET
1935 struct pr_usrreqs udp_usrreqs = {
1936         .pru_abort =            udp_abort,
1937         .pru_attach =           udp_attach,
1938         .pru_bind =             udp_bind,
1939         .pru_connect =          udp_connect,
1940         .pru_control =          in_control,
1941         .pru_detach =           udp_detach,
1942         .pru_disconnect =       udp_disconnect,
1943         .pru_peeraddr =         in_getpeeraddr,
1944         .pru_send =             udp_send,
1945         .pru_soreceive =        soreceive_dgram,
1946         .pru_sosend =           sosend_dgram,
1947         .pru_shutdown =         udp_shutdown,
1948         .pru_sockaddr =         in_getsockaddr,
1949         .pru_sosetlabel =       in_pcbsosetlabel,
1950         .pru_close =            udp_close,
1951 };
1952 #endif /* INET */