]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netinet/udp_usrreq.c
Merge the following from ^/projects/release-vmimage:
[FreeBSD/FreeBSD.git] / sys / netinet / udp_usrreq.c
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *      The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * Copyright (c) 2014 Kevin Lo
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Robert N. M. Watson under
10  * contract to Juniper Networks, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      @(#)udp_usrreq.c        8.6 (Berkeley) 5/23/95
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ipfw.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_ipsec.h"
46 #include "opt_rss.h"
47
48 #include <sys/param.h>
49 #include <sys/domain.h>
50 #include <sys/eventhandler.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/sdt.h>
60 #include <sys/signalvar.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sx.h>
64 #include <sys/sysctl.h>
65 #include <sys/syslog.h>
66 #include <sys/systm.h>
67
68 #include <vm/uma.h>
69
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/route.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #endif
83 #include <netinet/ip_icmp.h>
84 #include <netinet/icmp_var.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/ip_options.h>
87 #ifdef INET6
88 #include <netinet6/ip6_var.h>
89 #endif
90 #include <netinet/udp.h>
91 #include <netinet/udp_var.h>
92 #include <netinet/udplite.h>
93 #include <netinet/in_rss.h>
94
95 #ifdef IPSEC
96 #include <netipsec/ipsec.h>
97 #include <netipsec/esp.h>
98 #endif
99
100 #include <machine/in_cksum.h>
101
102 #include <security/mac/mac_framework.h>
103
104 /*
105  * UDP and UDP-Lite protocols implementation.
106  * Per RFC 768, August, 1980.
107  * Per RFC 3828, July, 2004.
108  */
109
110 /*
111  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
112  * removes the only data integrity mechanism for packets and malformed
113  * packets that would otherwise be discarded due to bad checksums, and may
114  * cause problems (especially for NFS data blocks).
115  */
116 VNET_DEFINE(int, udp_cksum) = 1;
117 SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
118     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
119
120 int     udp_log_in_vain = 0;
121 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
122     &udp_log_in_vain, 0, "Log all incoming UDP packets");
123
124 VNET_DEFINE(int, udp_blackhole) = 0;
125 SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
126     &VNET_NAME(udp_blackhole), 0,
127     "Do not send port unreachables for refused connects");
128
129 u_long  udp_sendspace = 9216;           /* really max datagram size */
130                                         /* 40 1K datagrams */
131 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
132     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
133
134 u_long  udp_recvspace = 40 * (1024 +
135 #ifdef INET6
136                                       sizeof(struct sockaddr_in6)
137 #else
138                                       sizeof(struct sockaddr_in)
139 #endif
140                                       );
141
142 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
143     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
144
145 VNET_DEFINE(struct inpcbhead, udb);             /* from udp_var.h */
146 VNET_DEFINE(struct inpcbinfo, udbinfo);
147 VNET_DEFINE(struct inpcbhead, ulitecb);
148 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
149 static VNET_DEFINE(uma_zone_t, udpcb_zone);
150 #define V_udpcb_zone                    VNET(udpcb_zone)
151
152 #ifndef UDBHASHSIZE
153 #define UDBHASHSIZE     128
154 #endif
155
156 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);          /* from udp_var.h */
157 VNET_PCPUSTAT_SYSINIT(udpstat);
158 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
159     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
160
161 #ifdef VIMAGE
162 VNET_PCPUSTAT_SYSUNINIT(udpstat);
163 #endif /* VIMAGE */
164 #ifdef INET
165 static void     udp_detach(struct socket *so);
166 static int      udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
167                     struct mbuf *, struct thread *);
168 #endif
169
170 #ifdef IPSEC
171 #ifdef IPSEC_NAT_T
172 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
173 #ifdef INET
174 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
175 #endif
176 #endif /* IPSEC_NAT_T */
177 #endif /* IPSEC */
178
179 static void
180 udp_zone_change(void *tag)
181 {
182
183         uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
184         uma_zone_set_max(V_udpcb_zone, maxsockets);
185 }
186
187 static int
188 udp_inpcb_init(void *mem, int size, int flags)
189 {
190         struct inpcb *inp;
191
192         inp = mem;
193         INP_LOCK_INIT(inp, "inp", "udpinp");
194         return (0);
195 }
196
197 static int
198 udplite_inpcb_init(void *mem, int size, int flags)
199 {
200         struct inpcb *inp;
201
202         inp = mem;
203         INP_LOCK_INIT(inp, "inp", "udpliteinp");
204         return (0);
205 }
206
207 void
208 udp_init(void)
209 {
210
211         /*
212          * For now default to 2-tuple UDP hashing - until the fragment
213          * reassembly code can also update the flowid.
214          *
215          * Once we can calculate the flowid that way and re-establish
216          * a 4-tuple, flip this to 4-tuple.
217          */
218         in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
219             "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
220             IPI_HASHFIELDS_2TUPLE);
221         V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
222             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
223         uma_zone_set_max(V_udpcb_zone, maxsockets);
224         uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
225         EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
226             EVENTHANDLER_PRI_ANY);
227 }
228
229 void
230 udplite_init(void)
231 {
232
233         in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
234             UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
235             UMA_ZONE_NOFREE, IPI_HASHFIELDS_2TUPLE);
236 }
237
238 /*
239  * Kernel module interface for updating udpstat.  The argument is an index
240  * into udpstat treated as an array of u_long.  While this encodes the
241  * general layout of udpstat into the caller, it doesn't encode its location,
242  * so that future changes to add, for example, per-CPU stats support won't
243  * cause binary compatibility problems for kernel modules.
244  */
245 void
246 kmod_udpstat_inc(int statnum)
247 {
248
249         counter_u64_add(VNET(udpstat)[statnum], 1);
250 }
251
252 int
253 udp_newudpcb(struct inpcb *inp)
254 {
255         struct udpcb *up;
256
257         up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
258         if (up == NULL)
259                 return (ENOBUFS);
260         inp->inp_ppcb = up;
261         return (0);
262 }
263
264 void
265 udp_discardcb(struct udpcb *up)
266 {
267
268         uma_zfree(V_udpcb_zone, up);
269 }
270
271 #ifdef VIMAGE
272 void
273 udp_destroy(void)
274 {
275
276         in_pcbinfo_destroy(&V_udbinfo);
277         uma_zdestroy(V_udpcb_zone);
278 }
279
280 void
281 udplite_destroy(void)
282 {
283
284         in_pcbinfo_destroy(&V_ulitecbinfo);
285 }
286 #endif
287
288 #ifdef INET
289 /*
290  * Subroutine of udp_input(), which appends the provided mbuf chain to the
291  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
292  * contains the source address.  If the socket ends up being an IPv6 socket,
293  * udp_append() will convert to a sockaddr_in6 before passing the address
294  * into the socket code.
295  */
296 static void
297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
298     struct sockaddr_in *udp_in)
299 {
300         struct sockaddr *append_sa;
301         struct socket *so;
302         struct mbuf *opts = 0;
303 #ifdef INET6
304         struct sockaddr_in6 udp_in6;
305 #endif
306         struct udpcb *up;
307
308         INP_LOCK_ASSERT(inp);
309
310         /*
311          * Engage the tunneling protocol.
312          */
313         up = intoudpcb(inp);
314         if (up->u_tun_func != NULL) {
315                 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in,
316                     up->u_tun_ctx);
317                 return;
318         }
319
320         off += sizeof(struct udphdr);
321
322 #ifdef IPSEC
323         /* Check AH/ESP integrity. */
324         if (ipsec4_in_reject(n, inp)) {
325                 m_freem(n);
326                 IPSECSTAT_INC(ips_in_polvio);
327                 return;
328         }
329 #ifdef IPSEC_NAT_T
330         up = intoudpcb(inp);
331         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
332         if (up->u_flags & UF_ESPINUDP_ALL) {    /* IPSec UDP encaps. */
333                 n = udp4_espdecap(inp, n, off);
334                 if (n == NULL)                          /* Consumed. */
335                         return;
336         }
337 #endif /* IPSEC_NAT_T */
338 #endif /* IPSEC */
339 #ifdef MAC
340         if (mac_inpcb_check_deliver(inp, n) != 0) {
341                 m_freem(n);
342                 return;
343         }
344 #endif /* MAC */
345         if (inp->inp_flags & INP_CONTROLOPTS ||
346             inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
347 #ifdef INET6
348                 if (inp->inp_vflag & INP_IPV6)
349                         (void)ip6_savecontrol_v4(inp, n, &opts, NULL);
350                 else
351 #endif /* INET6 */
352                         ip_savecontrol(inp, &opts, ip, n);
353         }
354 #ifdef INET6
355         if (inp->inp_vflag & INP_IPV6) {
356                 bzero(&udp_in6, sizeof(udp_in6));
357                 udp_in6.sin6_len = sizeof(udp_in6);
358                 udp_in6.sin6_family = AF_INET6;
359                 in6_sin_2_v4mapsin6(udp_in, &udp_in6);
360                 append_sa = (struct sockaddr *)&udp_in6;
361         } else
362 #endif /* INET6 */
363                 append_sa = (struct sockaddr *)udp_in;
364         m_adj(n, off);
365
366         so = inp->inp_socket;
367         SOCKBUF_LOCK(&so->so_rcv);
368         if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
369                 SOCKBUF_UNLOCK(&so->so_rcv);
370                 m_freem(n);
371                 if (opts)
372                         m_freem(opts);
373                 UDPSTAT_INC(udps_fullsock);
374         } else
375                 sorwakeup_locked(so);
376 }
377
378 int
379 udp_input(struct mbuf **mp, int *offp, int proto)
380 {
381         struct ip *ip;
382         struct udphdr *uh;
383         struct ifnet *ifp;
384         struct inpcb *inp;
385         uint16_t len, ip_len;
386         struct inpcbinfo *pcbinfo;
387         struct ip save_ip;
388         struct sockaddr_in udp_in;
389         struct mbuf *m;
390         struct m_tag *fwd_tag;
391         int cscov_partial, iphlen;
392
393         m = *mp;
394         iphlen = *offp;
395         ifp = m->m_pkthdr.rcvif;
396         *mp = NULL;
397         UDPSTAT_INC(udps_ipackets);
398
399         /*
400          * Strip IP options, if any; should skip this, make available to
401          * user, and use on returned packets, but we don't yet have a way to
402          * check the checksum with options still present.
403          */
404         if (iphlen > sizeof (struct ip)) {
405                 ip_stripoptions(m);
406                 iphlen = sizeof(struct ip);
407         }
408
409         /*
410          * Get IP and UDP header together in first mbuf.
411          */
412         ip = mtod(m, struct ip *);
413         if (m->m_len < iphlen + sizeof(struct udphdr)) {
414                 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
415                         UDPSTAT_INC(udps_hdrops);
416                         return (IPPROTO_DONE);
417                 }
418                 ip = mtod(m, struct ip *);
419         }
420         uh = (struct udphdr *)((caddr_t)ip + iphlen);
421         cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
422
423         /*
424          * Destination port of 0 is illegal, based on RFC768.
425          */
426         if (uh->uh_dport == 0)
427                 goto badunlocked;
428
429         /*
430          * Construct sockaddr format source address.  Stuff source address
431          * and datagram in user buffer.
432          */
433         bzero(&udp_in, sizeof(udp_in));
434         udp_in.sin_len = sizeof(udp_in);
435         udp_in.sin_family = AF_INET;
436         udp_in.sin_port = uh->uh_sport;
437         udp_in.sin_addr = ip->ip_src;
438
439         /*
440          * Make mbuf data length reflect UDP length.  If not enough data to
441          * reflect UDP length, drop.
442          */
443         len = ntohs((u_short)uh->uh_ulen);
444         ip_len = ntohs(ip->ip_len) - iphlen;
445         if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
446                 /* Zero means checksum over the complete packet. */
447                 if (len == 0)
448                         len = ip_len;
449                 cscov_partial = 0;
450         }
451         if (ip_len != len) {
452                 if (len > ip_len || len < sizeof(struct udphdr)) {
453                         UDPSTAT_INC(udps_badlen);
454                         goto badunlocked;
455                 }
456                 if (proto == IPPROTO_UDP)
457                         m_adj(m, len - ip_len);
458         }
459
460         /*
461          * Save a copy of the IP header in case we want restore it for
462          * sending an ICMP error message in response.
463          */
464         if (!V_udp_blackhole)
465                 save_ip = *ip;
466         else
467                 memset(&save_ip, 0, sizeof(save_ip));
468
469         /*
470          * Checksum extended UDP header and data.
471          */
472         if (uh->uh_sum) {
473                 u_short uh_sum;
474
475                 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
476                     !cscov_partial) {
477                         if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
478                                 uh_sum = m->m_pkthdr.csum_data;
479                         else
480                                 uh_sum = in_pseudo(ip->ip_src.s_addr,
481                                     ip->ip_dst.s_addr, htonl((u_short)len +
482                                     m->m_pkthdr.csum_data + proto));
483                         uh_sum ^= 0xffff;
484                 } else {
485                         char b[9];
486
487                         bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
488                         bzero(((struct ipovly *)ip)->ih_x1, 9);
489                         ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
490                             uh->uh_ulen : htons(ip_len);
491                         uh_sum = in_cksum(m, len + sizeof (struct ip));
492                         bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
493                 }
494                 if (uh_sum) {
495                         UDPSTAT_INC(udps_badsum);
496                         m_freem(m);
497                         return (IPPROTO_DONE);
498                 }
499         } else {
500                 if (proto == IPPROTO_UDP) {
501                         UDPSTAT_INC(udps_nosum);
502                 } else {
503                         /* UDPLite requires a checksum */
504                         /* XXX: What is the right UDPLite MIB counter here? */
505                         m_freem(m);
506                         return (IPPROTO_DONE);
507                 }
508         }
509
510         pcbinfo = get_inpcbinfo(proto);
511         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
512             in_broadcast(ip->ip_dst, ifp)) {
513                 struct inpcb *last;
514                 struct inpcbhead *pcblist;
515                 struct ip_moptions *imo;
516
517                 INP_INFO_RLOCK(pcbinfo);
518                 pcblist = get_pcblist(proto);
519                 last = NULL;
520                 LIST_FOREACH(inp, pcblist, inp_list) {
521                         if (inp->inp_lport != uh->uh_dport)
522                                 continue;
523 #ifdef INET6
524                         if ((inp->inp_vflag & INP_IPV4) == 0)
525                                 continue;
526 #endif
527                         if (inp->inp_laddr.s_addr != INADDR_ANY &&
528                             inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
529                                 continue;
530                         if (inp->inp_faddr.s_addr != INADDR_ANY &&
531                             inp->inp_faddr.s_addr != ip->ip_src.s_addr)
532                                 continue;
533                         if (inp->inp_fport != 0 &&
534                             inp->inp_fport != uh->uh_sport)
535                                 continue;
536
537                         INP_RLOCK(inp);
538
539                         /*
540                          * XXXRW: Because we weren't holding either the inpcb
541                          * or the hash lock when we checked for a match
542                          * before, we should probably recheck now that the
543                          * inpcb lock is held.
544                          */
545
546                         /*
547                          * Handle socket delivery policy for any-source
548                          * and source-specific multicast. [RFC3678]
549                          */
550                         imo = inp->inp_moptions;
551                         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
552                                 struct sockaddr_in       group;
553                                 int                      blocked;
554                                 if (imo == NULL) {
555                                         INP_RUNLOCK(inp);
556                                         continue;
557                                 }
558                                 bzero(&group, sizeof(struct sockaddr_in));
559                                 group.sin_len = sizeof(struct sockaddr_in);
560                                 group.sin_family = AF_INET;
561                                 group.sin_addr = ip->ip_dst;
562
563                                 blocked = imo_multi_filter(imo, ifp,
564                                         (struct sockaddr *)&group,
565                                         (struct sockaddr *)&udp_in);
566                                 if (blocked != MCAST_PASS) {
567                                         if (blocked == MCAST_NOTGMEMBER)
568                                                 IPSTAT_INC(ips_notmember);
569                                         if (blocked == MCAST_NOTSMEMBER ||
570                                             blocked == MCAST_MUTED)
571                                                 UDPSTAT_INC(udps_filtermcast);
572                                         INP_RUNLOCK(inp);
573                                         continue;
574                                 }
575                         }
576                         if (last != NULL) {
577                                 struct mbuf *n;
578
579                                 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
580                                         UDP_PROBE(receive, NULL, last, ip,
581                                             last, uh);
582                                         udp_append(last, ip, n, iphlen,
583                                             &udp_in);
584                                 }
585                                 INP_RUNLOCK(last);
586                         }
587                         last = inp;
588                         /*
589                          * Don't look for additional matches if this one does
590                          * not have either the SO_REUSEPORT or SO_REUSEADDR
591                          * socket options set.  This heuristic avoids
592                          * searching through all pcbs in the common case of a
593                          * non-shared port.  It assumes that an application
594                          * will never clear these options after setting them.
595                          */
596                         if ((last->inp_socket->so_options &
597                             (SO_REUSEPORT|SO_REUSEADDR)) == 0)
598                                 break;
599                 }
600
601                 if (last == NULL) {
602                         /*
603                          * No matching pcb found; discard datagram.  (No need
604                          * to send an ICMP Port Unreachable for a broadcast
605                          * or multicast datgram.)
606                          */
607                         UDPSTAT_INC(udps_noportbcast);
608                         if (inp)
609                                 INP_RUNLOCK(inp);
610                         INP_INFO_RUNLOCK(pcbinfo);
611                         goto badunlocked;
612                 }
613                 UDP_PROBE(receive, NULL, last, ip, last, uh);
614                 udp_append(last, ip, m, iphlen, &udp_in);
615                 INP_RUNLOCK(last);
616                 INP_INFO_RUNLOCK(pcbinfo);
617                 return (IPPROTO_DONE);
618         }
619
620         /*
621          * Locate pcb for datagram.
622          */
623
624         /*
625          * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
626          */
627         if ((m->m_flags & M_IP_NEXTHOP) &&
628             (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
629                 struct sockaddr_in *next_hop;
630
631                 next_hop = (struct sockaddr_in *)(fwd_tag + 1);
632
633                 /*
634                  * Transparently forwarded. Pretend to be the destination.
635                  * Already got one like this?
636                  */
637                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
638                     ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
639                 if (!inp) {
640                         /*
641                          * It's new.  Try to find the ambushing socket.
642                          * Because we've rewritten the destination address,
643                          * any hardware-generated hash is ignored.
644                          */
645                         inp = in_pcblookup(pcbinfo, ip->ip_src,
646                             uh->uh_sport, next_hop->sin_addr,
647                             next_hop->sin_port ? htons(next_hop->sin_port) :
648                             uh->uh_dport, INPLOOKUP_WILDCARD |
649                             INPLOOKUP_RLOCKPCB, ifp);
650                 }
651                 /* Remove the tag from the packet. We don't need it anymore. */
652                 m_tag_delete(m, fwd_tag);
653                 m->m_flags &= ~M_IP_NEXTHOP;
654         } else
655                 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
656                     ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
657                     INPLOOKUP_RLOCKPCB, ifp, m);
658         if (inp == NULL) {
659                 if (udp_log_in_vain) {
660                         char buf[4*sizeof "123"];
661
662                         strcpy(buf, inet_ntoa(ip->ip_dst));
663                         log(LOG_INFO,
664                             "Connection attempt to UDP %s:%d from %s:%d\n",
665                             buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
666                             ntohs(uh->uh_sport));
667                 }
668                 UDPSTAT_INC(udps_noport);
669                 if (m->m_flags & (M_BCAST | M_MCAST)) {
670                         UDPSTAT_INC(udps_noportbcast);
671                         goto badunlocked;
672                 }
673                 if (V_udp_blackhole)
674                         goto badunlocked;
675                 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
676                         goto badunlocked;
677                 *ip = save_ip;
678                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
679                 return (IPPROTO_DONE);
680         }
681
682         /*
683          * Check the minimum TTL for socket.
684          */
685         INP_RLOCK_ASSERT(inp);
686         if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
687                 INP_RUNLOCK(inp);
688                 m_freem(m);
689                 return (IPPROTO_DONE);
690         }
691         if (cscov_partial) {
692                 struct udpcb *up;
693
694                 up = intoudpcb(inp);
695                 if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
696                         INP_RUNLOCK(inp);
697                         m_freem(m);
698                         return (IPPROTO_DONE);
699                 }
700         }
701
702         UDP_PROBE(receive, NULL, inp, ip, inp, uh);
703         udp_append(inp, ip, m, iphlen, &udp_in);
704         INP_RUNLOCK(inp);
705         return (IPPROTO_DONE);
706
707 badunlocked:
708         m_freem(m);
709         return (IPPROTO_DONE);
710 }
711 #endif /* INET */
712
713 /*
714  * Notify a udp user of an asynchronous error; just wake up so that they can
715  * collect error status.
716  */
717 struct inpcb *
718 udp_notify(struct inpcb *inp, int errno)
719 {
720
721         /*
722          * While udp_ctlinput() always calls udp_notify() with a read lock
723          * when invoking it directly, in_pcbnotifyall() currently uses write
724          * locks due to sharing code with TCP.  For now, accept either a read
725          * or a write lock, but a read lock is sufficient.
726          */
727         INP_LOCK_ASSERT(inp);
728
729         inp->inp_socket->so_error = errno;
730         sorwakeup(inp->inp_socket);
731         sowwakeup(inp->inp_socket);
732         return (inp);
733 }
734
735 #ifdef INET
736 static void
737 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
738     struct inpcbinfo *pcbinfo)
739 {
740         struct ip *ip = vip;
741         struct udphdr *uh;
742         struct in_addr faddr;
743         struct inpcb *inp;
744
745         faddr = ((struct sockaddr_in *)sa)->sin_addr;
746         if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
747                 return;
748
749         /*
750          * Redirects don't need to be handled up here.
751          */
752         if (PRC_IS_REDIRECT(cmd))
753                 return;
754
755         /*
756          * Hostdead is ugly because it goes linearly through all PCBs.
757          *
758          * XXX: We never get this from ICMP, otherwise it makes an excellent
759          * DoS attack on machines with many connections.
760          */
761         if (cmd == PRC_HOSTDEAD)
762                 ip = NULL;
763         else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
764                 return;
765         if (ip != NULL) {
766                 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
767                 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
768                     ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
769                 if (inp != NULL) {
770                         INP_RLOCK_ASSERT(inp);
771                         if (inp->inp_socket != NULL) {
772                                 udp_notify(inp, inetctlerrmap[cmd]);
773                         }
774                         INP_RUNLOCK(inp);
775                 }
776         } else
777                 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
778                     udp_notify);
779 }
780 void
781 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
782 {
783
784         return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
785 }
786
787 void
788 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
789 {
790
791         return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
792 }
793 #endif /* INET */
794
795 static int
796 udp_pcblist(SYSCTL_HANDLER_ARGS)
797 {
798         int error, i, n;
799         struct inpcb *inp, **inp_list;
800         inp_gen_t gencnt;
801         struct xinpgen xig;
802
803         /*
804          * The process of preparing the PCB list is too time-consuming and
805          * resource-intensive to repeat twice on every request.
806          */
807         if (req->oldptr == 0) {
808                 n = V_udbinfo.ipi_count;
809                 n += imax(n / 8, 10);
810                 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
811                 return (0);
812         }
813
814         if (req->newptr != 0)
815                 return (EPERM);
816
817         /*
818          * OK, now we're committed to doing something.
819          */
820         INP_INFO_RLOCK(&V_udbinfo);
821         gencnt = V_udbinfo.ipi_gencnt;
822         n = V_udbinfo.ipi_count;
823         INP_INFO_RUNLOCK(&V_udbinfo);
824
825         error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
826                 + n * sizeof(struct xinpcb));
827         if (error != 0)
828                 return (error);
829
830         xig.xig_len = sizeof xig;
831         xig.xig_count = n;
832         xig.xig_gen = gencnt;
833         xig.xig_sogen = so_gencnt;
834         error = SYSCTL_OUT(req, &xig, sizeof xig);
835         if (error)
836                 return (error);
837
838         inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
839         if (inp_list == 0)
840                 return (ENOMEM);
841
842         INP_INFO_RLOCK(&V_udbinfo);
843         for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
844              inp = LIST_NEXT(inp, inp_list)) {
845                 INP_WLOCK(inp);
846                 if (inp->inp_gencnt <= gencnt &&
847                     cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
848                         in_pcbref(inp);
849                         inp_list[i++] = inp;
850                 }
851                 INP_WUNLOCK(inp);
852         }
853         INP_INFO_RUNLOCK(&V_udbinfo);
854         n = i;
855
856         error = 0;
857         for (i = 0; i < n; i++) {
858                 inp = inp_list[i];
859                 INP_RLOCK(inp);
860                 if (inp->inp_gencnt <= gencnt) {
861                         struct xinpcb xi;
862
863                         bzero(&xi, sizeof(xi));
864                         xi.xi_len = sizeof xi;
865                         /* XXX should avoid extra copy */
866                         bcopy(inp, &xi.xi_inp, sizeof *inp);
867                         if (inp->inp_socket)
868                                 sotoxsocket(inp->inp_socket, &xi.xi_socket);
869                         xi.xi_inp.inp_gencnt = inp->inp_gencnt;
870                         INP_RUNLOCK(inp);
871                         error = SYSCTL_OUT(req, &xi, sizeof xi);
872                 } else
873                         INP_RUNLOCK(inp);
874         }
875         INP_INFO_WLOCK(&V_udbinfo);
876         for (i = 0; i < n; i++) {
877                 inp = inp_list[i];
878                 INP_RLOCK(inp);
879                 if (!in_pcbrele_rlocked(inp))
880                         INP_RUNLOCK(inp);
881         }
882         INP_INFO_WUNLOCK(&V_udbinfo);
883
884         if (!error) {
885                 /*
886                  * Give the user an updated idea of our state.  If the
887                  * generation differs from what we told her before, she knows
888                  * that something happened while we were processing this
889                  * request, and it might be necessary to retry.
890                  */
891                 INP_INFO_RLOCK(&V_udbinfo);
892                 xig.xig_gen = V_udbinfo.ipi_gencnt;
893                 xig.xig_sogen = so_gencnt;
894                 xig.xig_count = V_udbinfo.ipi_count;
895                 INP_INFO_RUNLOCK(&V_udbinfo);
896                 error = SYSCTL_OUT(req, &xig, sizeof xig);
897         }
898         free(inp_list, M_TEMP);
899         return (error);
900 }
901
902 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
903     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
904     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
905
906 #ifdef INET
907 static int
908 udp_getcred(SYSCTL_HANDLER_ARGS)
909 {
910         struct xucred xuc;
911         struct sockaddr_in addrs[2];
912         struct inpcb *inp;
913         int error;
914
915         error = priv_check(req->td, PRIV_NETINET_GETCRED);
916         if (error)
917                 return (error);
918         error = SYSCTL_IN(req, addrs, sizeof(addrs));
919         if (error)
920                 return (error);
921         inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
922             addrs[0].sin_addr, addrs[0].sin_port,
923             INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
924         if (inp != NULL) {
925                 INP_RLOCK_ASSERT(inp);
926                 if (inp->inp_socket == NULL)
927                         error = ENOENT;
928                 if (error == 0)
929                         error = cr_canseeinpcb(req->td->td_ucred, inp);
930                 if (error == 0)
931                         cru2x(inp->inp_cred, &xuc);
932                 INP_RUNLOCK(inp);
933         } else
934                 error = ENOENT;
935         if (error == 0)
936                 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
937         return (error);
938 }
939
940 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
941     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
942     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
943 #endif /* INET */
944
945 int
946 udp_ctloutput(struct socket *so, struct sockopt *sopt)
947 {
948         struct inpcb *inp;
949         struct udpcb *up;
950         int isudplite, error, optval;
951
952         error = 0;
953         isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
954         inp = sotoinpcb(so);
955         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
956         INP_WLOCK(inp);
957         if (sopt->sopt_level != so->so_proto->pr_protocol) {
958 #ifdef INET6
959                 if (INP_CHECK_SOCKAF(so, AF_INET6)) {
960                         INP_WUNLOCK(inp);
961                         error = ip6_ctloutput(so, sopt);
962                 }
963 #endif
964 #if defined(INET) && defined(INET6)
965                 else
966 #endif
967 #ifdef INET
968                 {
969                         INP_WUNLOCK(inp);
970                         error = ip_ctloutput(so, sopt);
971                 }
972 #endif
973                 return (error);
974         }
975
976         switch (sopt->sopt_dir) {
977         case SOPT_SET:
978                 switch (sopt->sopt_name) {
979                 case UDP_ENCAP:
980                         INP_WUNLOCK(inp);
981                         error = sooptcopyin(sopt, &optval, sizeof optval,
982                                             sizeof optval);
983                         if (error)
984                                 break;
985                         inp = sotoinpcb(so);
986                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
987                         INP_WLOCK(inp);
988 #ifdef IPSEC_NAT_T
989                         up = intoudpcb(inp);
990                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
991 #endif
992                         switch (optval) {
993                         case 0:
994                                 /* Clear all UDP encap. */
995 #ifdef IPSEC_NAT_T
996                                 up->u_flags &= ~UF_ESPINUDP_ALL;
997 #endif
998                                 break;
999 #ifdef IPSEC_NAT_T
1000                         case UDP_ENCAP_ESPINUDP:
1001                         case UDP_ENCAP_ESPINUDP_NON_IKE:
1002                                 up->u_flags &= ~UF_ESPINUDP_ALL;
1003                                 if (optval == UDP_ENCAP_ESPINUDP)
1004                                         up->u_flags |= UF_ESPINUDP;
1005                                 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
1006                                         up->u_flags |= UF_ESPINUDP_NON_IKE;
1007                                 break;
1008 #endif
1009                         default:
1010                                 error = EINVAL;
1011                                 break;
1012                         }
1013                         INP_WUNLOCK(inp);
1014                         break;
1015                 case UDPLITE_SEND_CSCOV:
1016                 case UDPLITE_RECV_CSCOV:
1017                         if (!isudplite) {
1018                                 INP_WUNLOCK(inp);
1019                                 error = ENOPROTOOPT;
1020                                 break;
1021                         }
1022                         INP_WUNLOCK(inp);
1023                         error = sooptcopyin(sopt, &optval, sizeof(optval),
1024                             sizeof(optval));
1025                         if (error != 0)
1026                                 break;
1027                         inp = sotoinpcb(so);
1028                         KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1029                         INP_WLOCK(inp);
1030                         up = intoudpcb(inp);
1031                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1032                         if ((optval != 0 && optval < 8) || (optval > 65535)) {
1033                                 INP_WUNLOCK(inp);
1034                                 error = EINVAL;
1035                                 break;
1036                         }
1037                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1038                                 up->u_txcslen = optval;
1039                         else
1040                                 up->u_rxcslen = optval;
1041                         INP_WUNLOCK(inp);
1042                         break;
1043                 default:
1044                         INP_WUNLOCK(inp);
1045                         error = ENOPROTOOPT;
1046                         break;
1047                 }
1048                 break;
1049         case SOPT_GET:
1050                 switch (sopt->sopt_name) {
1051 #ifdef IPSEC_NAT_T
1052                 case UDP_ENCAP:
1053                         up = intoudpcb(inp);
1054                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1055                         optval = up->u_flags & UF_ESPINUDP_ALL;
1056                         INP_WUNLOCK(inp);
1057                         error = sooptcopyout(sopt, &optval, sizeof optval);
1058                         break;
1059 #endif
1060                 case UDPLITE_SEND_CSCOV:
1061                 case UDPLITE_RECV_CSCOV:
1062                         if (!isudplite) {
1063                                 INP_WUNLOCK(inp);
1064                                 error = ENOPROTOOPT;
1065                                 break;
1066                         }
1067                         up = intoudpcb(inp);
1068                         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1069                         if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1070                                 optval = up->u_txcslen;
1071                         else
1072                                 optval = up->u_rxcslen;
1073                         INP_WUNLOCK(inp);
1074                         error = sooptcopyout(sopt, &optval, sizeof(optval));
1075                         break;
1076                 default:
1077                         INP_WUNLOCK(inp);
1078                         error = ENOPROTOOPT;
1079                         break;
1080                 }
1081                 break;
1082         }       
1083         return (error);
1084 }
1085
1086 #ifdef INET
1087 #define UH_WLOCKED      2
1088 #define UH_RLOCKED      1
1089 #define UH_UNLOCKED     0
1090 static int
1091 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1092     struct mbuf *control, struct thread *td)
1093 {
1094         struct udpiphdr *ui;
1095         int len = m->m_pkthdr.len;
1096         struct in_addr faddr, laddr;
1097         struct cmsghdr *cm;
1098         struct inpcbinfo *pcbinfo;
1099         struct sockaddr_in *sin, src;
1100         int cscov_partial = 0;
1101         int error = 0;
1102         int ipflags;
1103         u_short fport, lport;
1104         int unlock_udbinfo;
1105         u_char tos;
1106         uint8_t pr;
1107         uint16_t cscov = 0;
1108         uint32_t flowid = 0;
1109         int flowid_type = 0;
1110         int use_flowid = 0;
1111
1112         /*
1113          * udp_output() may need to temporarily bind or connect the current
1114          * inpcb.  As such, we don't know up front whether we will need the
1115          * pcbinfo lock or not.  Do any work to decide what is needed up
1116          * front before acquiring any locks.
1117          */
1118         if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1119                 if (control)
1120                         m_freem(control);
1121                 m_freem(m);
1122                 return (EMSGSIZE);
1123         }
1124
1125         src.sin_family = 0;
1126         INP_RLOCK(inp);
1127         tos = inp->inp_ip_tos;
1128         if (control != NULL) {
1129                 /*
1130                  * XXX: Currently, we assume all the optional information is
1131                  * stored in a single mbuf.
1132                  */
1133                 if (control->m_next) {
1134                         INP_RUNLOCK(inp);
1135                         m_freem(control);
1136                         m_freem(m);
1137                         return (EINVAL);
1138                 }
1139                 for (; control->m_len > 0;
1140                     control->m_data += CMSG_ALIGN(cm->cmsg_len),
1141                     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1142                         cm = mtod(control, struct cmsghdr *);
1143                         if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1144                             || cm->cmsg_len > control->m_len) {
1145                                 error = EINVAL;
1146                                 break;
1147                         }
1148                         if (cm->cmsg_level != IPPROTO_IP)
1149                                 continue;
1150
1151                         switch (cm->cmsg_type) {
1152                         case IP_SENDSRCADDR:
1153                                 if (cm->cmsg_len !=
1154                                     CMSG_LEN(sizeof(struct in_addr))) {
1155                                         error = EINVAL;
1156                                         break;
1157                                 }
1158                                 bzero(&src, sizeof(src));
1159                                 src.sin_family = AF_INET;
1160                                 src.sin_len = sizeof(src);
1161                                 src.sin_port = inp->inp_lport;
1162                                 src.sin_addr =
1163                                     *(struct in_addr *)CMSG_DATA(cm);
1164                                 break;
1165
1166                         case IP_TOS:
1167                                 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1168                                         error = EINVAL;
1169                                         break;
1170                                 }
1171                                 tos = *(u_char *)CMSG_DATA(cm);
1172                                 break;
1173
1174                         case IP_FLOWID:
1175                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1176                                         error = EINVAL;
1177                                         break;
1178                                 }
1179                                 flowid = *(uint32_t *) CMSG_DATA(cm);
1180                                 break;
1181
1182                         case IP_FLOWTYPE:
1183                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1184                                         error = EINVAL;
1185                                         break;
1186                                 }
1187                                 flowid_type = *(uint32_t *) CMSG_DATA(cm);
1188                                 use_flowid = 1;
1189                                 break;
1190
1191 #ifdef  RSS
1192                         case IP_RSSBUCKETID:
1193                                 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1194                                         error = EINVAL;
1195                                         break;
1196                                 }
1197                                 /* This is just a placeholder for now */
1198                                 break;
1199 #endif  /* RSS */
1200                         default:
1201                                 error = ENOPROTOOPT;
1202                                 break;
1203                         }
1204                         if (error)
1205                                 break;
1206                 }
1207                 m_freem(control);
1208         }
1209         if (error) {
1210                 INP_RUNLOCK(inp);
1211                 m_freem(m);
1212                 return (error);
1213         }
1214
1215         /*
1216          * Depending on whether or not the application has bound or connected
1217          * the socket, we may have to do varying levels of work.  The optimal
1218          * case is for a connected UDP socket, as a global lock isn't
1219          * required at all.
1220          *
1221          * In order to decide which we need, we require stability of the
1222          * inpcb binding, which we ensure by acquiring a read lock on the
1223          * inpcb.  This doesn't strictly follow the lock order, so we play
1224          * the trylock and retry game; note that we may end up with more
1225          * conservative locks than required the second time around, so later
1226          * assertions have to accept that.  Further analysis of the number of
1227          * misses under contention is required.
1228          *
1229          * XXXRW: Check that hash locking update here is correct.
1230          */
1231         pr = inp->inp_socket->so_proto->pr_protocol;
1232         pcbinfo = get_inpcbinfo(pr);
1233         sin = (struct sockaddr_in *)addr;
1234         if (sin != NULL &&
1235             (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1236                 INP_RUNLOCK(inp);
1237                 INP_WLOCK(inp);
1238                 INP_HASH_WLOCK(pcbinfo);
1239                 unlock_udbinfo = UH_WLOCKED;
1240         } else if ((sin != NULL && (
1241             (sin->sin_addr.s_addr == INADDR_ANY) ||
1242             (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1243             (inp->inp_laddr.s_addr == INADDR_ANY) ||
1244             (inp->inp_lport == 0))) ||
1245             (src.sin_family == AF_INET)) {
1246                 INP_HASH_RLOCK(pcbinfo);
1247                 unlock_udbinfo = UH_RLOCKED;
1248         } else
1249                 unlock_udbinfo = UH_UNLOCKED;
1250
1251         /*
1252          * If the IP_SENDSRCADDR control message was specified, override the
1253          * source address for this datagram.  Its use is invalidated if the
1254          * address thus specified is incomplete or clobbers other inpcbs.
1255          */
1256         laddr = inp->inp_laddr;
1257         lport = inp->inp_lport;
1258         if (src.sin_family == AF_INET) {
1259                 INP_HASH_LOCK_ASSERT(pcbinfo);
1260                 if ((lport == 0) ||
1261                     (laddr.s_addr == INADDR_ANY &&
1262                      src.sin_addr.s_addr == INADDR_ANY)) {
1263                         error = EINVAL;
1264                         goto release;
1265                 }
1266                 error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1267                     &laddr.s_addr, &lport, td->td_ucred);
1268                 if (error)
1269                         goto release;
1270         }
1271
1272         /*
1273          * If a UDP socket has been connected, then a local address/port will
1274          * have been selected and bound.
1275          *
1276          * If a UDP socket has not been connected to, then an explicit
1277          * destination address must be used, in which case a local
1278          * address/port may not have been selected and bound.
1279          */
1280         if (sin != NULL) {
1281                 INP_LOCK_ASSERT(inp);
1282                 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1283                         error = EISCONN;
1284                         goto release;
1285                 }
1286
1287                 /*
1288                  * Jail may rewrite the destination address, so let it do
1289                  * that before we use it.
1290                  */
1291                 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1292                 if (error)
1293                         goto release;
1294
1295                 /*
1296                  * If a local address or port hasn't yet been selected, or if
1297                  * the destination address needs to be rewritten due to using
1298                  * a special INADDR_ constant, invoke in_pcbconnect_setup()
1299                  * to do the heavy lifting.  Once a port is selected, we
1300                  * commit the binding back to the socket; we also commit the
1301                  * binding of the address if in jail.
1302                  *
1303                  * If we already have a valid binding and we're not
1304                  * requesting a destination address rewrite, use a fast path.
1305                  */
1306                 if (inp->inp_laddr.s_addr == INADDR_ANY ||
1307                     inp->inp_lport == 0 ||
1308                     sin->sin_addr.s_addr == INADDR_ANY ||
1309                     sin->sin_addr.s_addr == INADDR_BROADCAST) {
1310                         INP_HASH_LOCK_ASSERT(pcbinfo);
1311                         error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1312                             &lport, &faddr.s_addr, &fport, NULL,
1313                             td->td_ucred);
1314                         if (error)
1315                                 goto release;
1316
1317                         /*
1318                          * XXXRW: Why not commit the port if the address is
1319                          * !INADDR_ANY?
1320                          */
1321                         /* Commit the local port if newly assigned. */
1322                         if (inp->inp_laddr.s_addr == INADDR_ANY &&
1323                             inp->inp_lport == 0) {
1324                                 INP_WLOCK_ASSERT(inp);
1325                                 INP_HASH_WLOCK_ASSERT(pcbinfo);
1326                                 /*
1327                                  * Remember addr if jailed, to prevent
1328                                  * rebinding.
1329                                  */
1330                                 if (prison_flag(td->td_ucred, PR_IP4))
1331                                         inp->inp_laddr = laddr;
1332                                 inp->inp_lport = lport;
1333                                 if (in_pcbinshash(inp) != 0) {
1334                                         inp->inp_lport = 0;
1335                                         error = EAGAIN;
1336                                         goto release;
1337                                 }
1338                                 inp->inp_flags |= INP_ANONPORT;
1339                         }
1340                 } else {
1341                         faddr = sin->sin_addr;
1342                         fport = sin->sin_port;
1343                 }
1344         } else {
1345                 INP_LOCK_ASSERT(inp);
1346                 faddr = inp->inp_faddr;
1347                 fport = inp->inp_fport;
1348                 if (faddr.s_addr == INADDR_ANY) {
1349                         error = ENOTCONN;
1350                         goto release;
1351                 }
1352         }
1353
1354         /*
1355          * Calculate data length and get a mbuf for UDP, IP, and possible
1356          * link-layer headers.  Immediate slide the data pointer back forward
1357          * since we won't use that space at this layer.
1358          */
1359         M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1360         if (m == NULL) {
1361                 error = ENOBUFS;
1362                 goto release;
1363         }
1364         m->m_data += max_linkhdr;
1365         m->m_len -= max_linkhdr;
1366         m->m_pkthdr.len -= max_linkhdr;
1367
1368         /*
1369          * Fill in mbuf with extended UDP header and addresses and length put
1370          * into network format.
1371          */
1372         ui = mtod(m, struct udpiphdr *);
1373         bzero(ui->ui_x1, sizeof(ui->ui_x1));    /* XXX still needed? */
1374         ui->ui_pr = pr;
1375         ui->ui_src = laddr;
1376         ui->ui_dst = faddr;
1377         ui->ui_sport = lport;
1378         ui->ui_dport = fport;
1379         ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1380         if (pr == IPPROTO_UDPLITE) {
1381                 struct udpcb *up;
1382                 uint16_t plen;
1383
1384                 up = intoudpcb(inp);
1385                 cscov = up->u_txcslen;
1386                 plen = (u_short)len + sizeof(struct udphdr);
1387                 if (cscov >= plen)
1388                         cscov = 0;
1389                 ui->ui_len = htons(plen);
1390                 ui->ui_ulen = htons(cscov);
1391                 /*
1392                  * For UDP-Lite, checksum coverage length of zero means
1393                  * the entire UDPLite packet is covered by the checksum.
1394                  */
1395                 cscov_partial = (cscov == 0) ? 0 : 1;
1396         } else
1397                 ui->ui_v = IPVERSION << 4;
1398
1399         /*
1400          * Set the Don't Fragment bit in the IP header.
1401          */
1402         if (inp->inp_flags & INP_DONTFRAG) {
1403                 struct ip *ip;
1404
1405                 ip = (struct ip *)&ui->ui_i;
1406                 ip->ip_off |= htons(IP_DF);
1407         }
1408
1409         ipflags = 0;
1410         if (inp->inp_socket->so_options & SO_DONTROUTE)
1411                 ipflags |= IP_ROUTETOIF;
1412         if (inp->inp_socket->so_options & SO_BROADCAST)
1413                 ipflags |= IP_ALLOWBROADCAST;
1414         if (inp->inp_flags & INP_ONESBCAST)
1415                 ipflags |= IP_SENDONES;
1416
1417 #ifdef MAC
1418         mac_inpcb_create_mbuf(inp, m);
1419 #endif
1420
1421         /*
1422          * Set up checksum and output datagram.
1423          */
1424         ui->ui_sum = 0;
1425         if (pr == IPPROTO_UDPLITE) {
1426                 if (inp->inp_flags & INP_ONESBCAST)
1427                         faddr.s_addr = INADDR_BROADCAST;
1428                 if (cscov_partial) {
1429                         if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1430                                 ui->ui_sum = 0xffff;
1431                 } else {
1432                         if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1433                                 ui->ui_sum = 0xffff;
1434                 }
1435         } else if (V_udp_cksum) {
1436                 if (inp->inp_flags & INP_ONESBCAST)
1437                         faddr.s_addr = INADDR_BROADCAST;
1438                 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1439                     htons((u_short)len + sizeof(struct udphdr) + pr));
1440                 m->m_pkthdr.csum_flags = CSUM_UDP;
1441                 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1442         }
1443         ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1444         ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;    /* XXX */
1445         ((struct ip *)ui)->ip_tos = tos;                /* XXX */
1446         UDPSTAT_INC(udps_opackets);
1447
1448         /*
1449          * Setup flowid / RSS information for outbound socket.
1450          *
1451          * Once the UDP code decides to set a flowid some other way,
1452          * this allows the flowid to be overridden by userland.
1453          */
1454         if (use_flowid) {
1455                 m->m_flags |= M_FLOWID;
1456                 m->m_pkthdr.flowid = flowid;
1457                 M_HASHTYPE_SET(m, flowid_type);
1458 #ifdef  RSS
1459         } else {
1460                 uint32_t hash_val, hash_type;
1461                 /*
1462                  * Calculate an appropriate RSS hash for UDP and
1463                  * UDP Lite.
1464                  *
1465                  * The called function will take care of figuring out
1466                  * whether a 2-tuple or 4-tuple hash is required based
1467                  * on the currently configured scheme.
1468                  *
1469                  * Later later on connected socket values should be
1470                  * cached in the inpcb and reused, rather than constantly
1471                  * re-calculating it.
1472                  *
1473                  * UDP Lite is a different protocol number and will
1474                  * likely end up being hashed as a 2-tuple until
1475                  * RSS / NICs grow UDP Lite protocol awareness.
1476                  */
1477                 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1478                     pr, &hash_val, &hash_type) == 0) {
1479                         m->m_pkthdr.flowid = hash_val;
1480                         m->m_flags |= M_FLOWID;
1481                         M_HASHTYPE_SET(m, hash_type);
1482                 }
1483 #endif
1484         }
1485
1486 #ifdef  RSS
1487         /*
1488          * Don't override with the inp cached flowid value.
1489          *
1490          * Depending upon the kind of send being done, the inp
1491          * flowid/flowtype values may actually not be appropriate
1492          * for this particular socket send.
1493          *
1494          * We should either leave the flowid at zero (which is what is
1495          * currently done) or set it to some software generated
1496          * hash value based on the packet contents.
1497          */
1498         ipflags |= IP_NODEFAULTFLOWID;
1499 #endif  /* RSS */
1500
1501         if (unlock_udbinfo == UH_WLOCKED)
1502                 INP_HASH_WUNLOCK(pcbinfo);
1503         else if (unlock_udbinfo == UH_RLOCKED)
1504                 INP_HASH_RUNLOCK(pcbinfo);
1505         UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1506         error = ip_output(m, inp->inp_options, NULL, ipflags,
1507             inp->inp_moptions, inp);
1508         if (unlock_udbinfo == UH_WLOCKED)
1509                 INP_WUNLOCK(inp);
1510         else
1511                 INP_RUNLOCK(inp);
1512         return (error);
1513
1514 release:
1515         if (unlock_udbinfo == UH_WLOCKED) {
1516                 INP_HASH_WUNLOCK(pcbinfo);
1517                 INP_WUNLOCK(inp);
1518         } else if (unlock_udbinfo == UH_RLOCKED) {
1519                 INP_HASH_RUNLOCK(pcbinfo);
1520                 INP_RUNLOCK(inp);
1521         } else
1522                 INP_RUNLOCK(inp);
1523         m_freem(m);
1524         return (error);
1525 }
1526
1527
1528 #if defined(IPSEC) && defined(IPSEC_NAT_T)
1529 /*
1530  * Potentially decap ESP in UDP frame.  Check for an ESP header
1531  * and optional marker; if present, strip the UDP header and
1532  * push the result through IPSec.
1533  *
1534  * Returns mbuf to be processed (potentially re-allocated) or
1535  * NULL if consumed and/or processed.
1536  */
1537 static struct mbuf *
1538 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1539 {
1540         size_t minlen, payload, skip, iphlen;
1541         caddr_t data;
1542         struct udpcb *up;
1543         struct m_tag *tag;
1544         struct udphdr *udphdr;
1545         struct ip *ip;
1546
1547         INP_RLOCK_ASSERT(inp);
1548
1549         /* 
1550          * Pull up data so the longest case is contiguous:
1551          *    IP/UDP hdr + non ESP marker + ESP hdr.
1552          */
1553         minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1554         if (minlen > m->m_pkthdr.len)
1555                 minlen = m->m_pkthdr.len;
1556         if ((m = m_pullup(m, minlen)) == NULL) {
1557                 IPSECSTAT_INC(ips_in_inval);
1558                 return (NULL);          /* Bypass caller processing. */
1559         }
1560         data = mtod(m, caddr_t);        /* Points to ip header. */
1561         payload = m->m_len - off;       /* Size of payload. */
1562
1563         if (payload == 1 && data[off] == '\xff')
1564                 return (m);             /* NB: keepalive packet, no decap. */
1565
1566         up = intoudpcb(inp);
1567         KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1568         KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1569             ("u_flags 0x%x", up->u_flags));
1570
1571         /* 
1572          * Check that the payload is large enough to hold an
1573          * ESP header and compute the amount of data to remove.
1574          *
1575          * NB: the caller has already done a pullup for us.
1576          * XXX can we assume alignment and eliminate bcopys?
1577          */
1578         if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1579                 /*
1580                  * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1581                  * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1582                  * possible AH mode non-IKE marker+non-ESP marker
1583                  * from draft-ietf-ipsec-udp-encaps-00.txt.
1584                  */
1585                 uint64_t marker;
1586
1587                 if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1588                         return (m);     /* NB: no decap. */
1589                 bcopy(data + off, &marker, sizeof(uint64_t));
1590                 if (marker != 0)        /* Non-IKE marker. */
1591                         return (m);     /* NB: no decap. */
1592                 skip = sizeof(uint64_t) + sizeof(struct udphdr);
1593         } else {
1594                 uint32_t spi;
1595
1596                 if (payload <= sizeof(struct esp)) {
1597                         IPSECSTAT_INC(ips_in_inval);
1598                         m_freem(m);
1599                         return (NULL);  /* Discard. */
1600                 }
1601                 bcopy(data + off, &spi, sizeof(uint32_t));
1602                 if (spi == 0)           /* Non-ESP marker. */
1603                         return (m);     /* NB: no decap. */
1604                 skip = sizeof(struct udphdr);
1605         }
1606
1607         /*
1608          * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1609          * the UDP ports. This is required if we want to select
1610          * the right SPD for multiple hosts behind same NAT.
1611          *
1612          * NB: ports are maintained in network byte order everywhere
1613          *     in the NAT-T code.
1614          */
1615         tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1616                 2 * sizeof(uint16_t), M_NOWAIT);
1617         if (tag == NULL) {
1618                 IPSECSTAT_INC(ips_in_nomem);
1619                 m_freem(m);
1620                 return (NULL);          /* Discard. */
1621         }
1622         iphlen = off - sizeof(struct udphdr);
1623         udphdr = (struct udphdr *)(data + iphlen);
1624         ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1625         ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1626         m_tag_prepend(m, tag);
1627
1628         /*
1629          * Remove the UDP header (and possibly the non ESP marker)
1630          * IP header length is iphlen
1631          * Before:
1632          *   <--- off --->
1633          *   +----+------+-----+
1634          *   | IP |  UDP | ESP |
1635          *   +----+------+-----+
1636          *        <-skip->
1637          * After:
1638          *          +----+-----+
1639          *          | IP | ESP |
1640          *          +----+-----+
1641          *   <-skip->
1642          */
1643         ovbcopy(data, data + skip, iphlen);
1644         m_adj(m, skip);
1645
1646         ip = mtod(m, struct ip *);
1647         ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1648         ip->ip_p = IPPROTO_ESP;
1649
1650         /*
1651          * We cannot yet update the cksums so clear any
1652          * h/w cksum flags as they are no longer valid.
1653          */
1654         if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1655                 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1656
1657         (void) ipsec4_common_input(m, iphlen, ip->ip_p);
1658         return (NULL);                  /* NB: consumed, bypass processing. */
1659 }
1660 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1661
1662 static void
1663 udp_abort(struct socket *so)
1664 {
1665         struct inpcb *inp;
1666         struct inpcbinfo *pcbinfo;
1667
1668         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1669         inp = sotoinpcb(so);
1670         KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1671         INP_WLOCK(inp);
1672         if (inp->inp_faddr.s_addr != INADDR_ANY) {
1673                 INP_HASH_WLOCK(pcbinfo);
1674                 in_pcbdisconnect(inp);
1675                 inp->inp_laddr.s_addr = INADDR_ANY;
1676                 INP_HASH_WUNLOCK(pcbinfo);
1677                 soisdisconnected(so);
1678         }
1679         INP_WUNLOCK(inp);
1680 }
1681
1682 static int
1683 udp_attach(struct socket *so, int proto, struct thread *td)
1684 {
1685         struct inpcb *inp;
1686         struct inpcbinfo *pcbinfo;
1687         int error;
1688
1689         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1690         inp = sotoinpcb(so);
1691         KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1692         error = soreserve(so, udp_sendspace, udp_recvspace);
1693         if (error)
1694                 return (error);
1695         INP_INFO_WLOCK(pcbinfo);
1696         error = in_pcballoc(so, pcbinfo);
1697         if (error) {
1698                 INP_INFO_WUNLOCK(pcbinfo);
1699                 return (error);
1700         }
1701
1702         inp = sotoinpcb(so);
1703         inp->inp_vflag |= INP_IPV4;
1704         inp->inp_ip_ttl = V_ip_defttl;
1705
1706         error = udp_newudpcb(inp);
1707         if (error) {
1708                 in_pcbdetach(inp);
1709                 in_pcbfree(inp);
1710                 INP_INFO_WUNLOCK(pcbinfo);
1711                 return (error);
1712         }
1713
1714         INP_WUNLOCK(inp);
1715         INP_INFO_WUNLOCK(pcbinfo);
1716         return (0);
1717 }
1718 #endif /* INET */
1719
1720 int
1721 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, void *ctx)
1722 {
1723         struct inpcb *inp;
1724         struct udpcb *up;
1725
1726         KASSERT(so->so_type == SOCK_DGRAM,
1727             ("udp_set_kernel_tunneling: !dgram"));
1728         inp = sotoinpcb(so);
1729         KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1730         INP_WLOCK(inp);
1731         up = intoudpcb(inp);
1732         if (up->u_tun_func != NULL) {
1733                 INP_WUNLOCK(inp);
1734                 return (EBUSY);
1735         }
1736         up->u_tun_func = f;
1737         up->u_tun_ctx = ctx;
1738         INP_WUNLOCK(inp);
1739         return (0);
1740 }
1741
1742 #ifdef INET
1743 static int
1744 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1745 {
1746         struct inpcb *inp;
1747         struct inpcbinfo *pcbinfo;
1748         int error;
1749
1750         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1751         inp = sotoinpcb(so);
1752         KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1753         INP_WLOCK(inp);
1754         INP_HASH_WLOCK(pcbinfo);
1755         error = in_pcbbind(inp, nam, td->td_ucred);
1756         INP_HASH_WUNLOCK(pcbinfo);
1757         INP_WUNLOCK(inp);
1758         return (error);
1759 }
1760
1761 static void
1762 udp_close(struct socket *so)
1763 {
1764         struct inpcb *inp;
1765         struct inpcbinfo *pcbinfo;
1766
1767         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1768         inp = sotoinpcb(so);
1769         KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1770         INP_WLOCK(inp);
1771         if (inp->inp_faddr.s_addr != INADDR_ANY) {
1772                 INP_HASH_WLOCK(pcbinfo);
1773                 in_pcbdisconnect(inp);
1774                 inp->inp_laddr.s_addr = INADDR_ANY;
1775                 INP_HASH_WUNLOCK(pcbinfo);
1776                 soisdisconnected(so);
1777         }
1778         INP_WUNLOCK(inp);
1779 }
1780
1781 static int
1782 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1783 {
1784         struct inpcb *inp;
1785         struct inpcbinfo *pcbinfo;
1786         struct sockaddr_in *sin;
1787         int error;
1788
1789         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1790         inp = sotoinpcb(so);
1791         KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1792         INP_WLOCK(inp);
1793         if (inp->inp_faddr.s_addr != INADDR_ANY) {
1794                 INP_WUNLOCK(inp);
1795                 return (EISCONN);
1796         }
1797         sin = (struct sockaddr_in *)nam;
1798         error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1799         if (error != 0) {
1800                 INP_WUNLOCK(inp);
1801                 return (error);
1802         }
1803         INP_HASH_WLOCK(pcbinfo);
1804         error = in_pcbconnect(inp, nam, td->td_ucred);
1805         INP_HASH_WUNLOCK(pcbinfo);
1806         if (error == 0)
1807                 soisconnected(so);
1808         INP_WUNLOCK(inp);
1809         return (error);
1810 }
1811
1812 static void
1813 udp_detach(struct socket *so)
1814 {
1815         struct inpcb *inp;
1816         struct inpcbinfo *pcbinfo;
1817         struct udpcb *up;
1818
1819         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1820         inp = sotoinpcb(so);
1821         KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1822         KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1823             ("udp_detach: not disconnected"));
1824         INP_INFO_WLOCK(pcbinfo);
1825         INP_WLOCK(inp);
1826         up = intoudpcb(inp);
1827         KASSERT(up != NULL, ("%s: up == NULL", __func__));
1828         inp->inp_ppcb = NULL;
1829         in_pcbdetach(inp);
1830         in_pcbfree(inp);
1831         INP_INFO_WUNLOCK(pcbinfo);
1832         udp_discardcb(up);
1833 }
1834
1835 static int
1836 udp_disconnect(struct socket *so)
1837 {
1838         struct inpcb *inp;
1839         struct inpcbinfo *pcbinfo;
1840
1841         pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1842         inp = sotoinpcb(so);
1843         KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1844         INP_WLOCK(inp);
1845         if (inp->inp_faddr.s_addr == INADDR_ANY) {
1846                 INP_WUNLOCK(inp);
1847                 return (ENOTCONN);
1848         }
1849         INP_HASH_WLOCK(pcbinfo);
1850         in_pcbdisconnect(inp);
1851         inp->inp_laddr.s_addr = INADDR_ANY;
1852         INP_HASH_WUNLOCK(pcbinfo);
1853         SOCK_LOCK(so);
1854         so->so_state &= ~SS_ISCONNECTED;                /* XXX */
1855         SOCK_UNLOCK(so);
1856         INP_WUNLOCK(inp);
1857         return (0);
1858 }
1859
1860 static int
1861 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1862     struct mbuf *control, struct thread *td)
1863 {
1864         struct inpcb *inp;
1865
1866         inp = sotoinpcb(so);
1867         KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1868         return (udp_output(inp, m, addr, control, td));
1869 }
1870 #endif /* INET */
1871
1872 int
1873 udp_shutdown(struct socket *so)
1874 {
1875         struct inpcb *inp;
1876
1877         inp = sotoinpcb(so);
1878         KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1879         INP_WLOCK(inp);
1880         socantsendmore(so);
1881         INP_WUNLOCK(inp);
1882         return (0);
1883 }
1884
1885 #ifdef INET
1886 struct pr_usrreqs udp_usrreqs = {
1887         .pru_abort =            udp_abort,
1888         .pru_attach =           udp_attach,
1889         .pru_bind =             udp_bind,
1890         .pru_connect =          udp_connect,
1891         .pru_control =          in_control,
1892         .pru_detach =           udp_detach,
1893         .pru_disconnect =       udp_disconnect,
1894         .pru_peeraddr =         in_getpeeraddr,
1895         .pru_send =             udp_send,
1896         .pru_soreceive =        soreceive_dgram,
1897         .pru_sosend =           sosend_dgram,
1898         .pru_shutdown =         udp_shutdown,
1899         .pru_sockaddr =         in_getsockaddr,
1900         .pru_sosetlabel =       in_pcbsosetlabel,
1901         .pru_close =            udp_close,
1902 };
1903 #endif /* INET */