]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netpfil/ipfw/ip_fw_dynamic.c
MFC r341471:
[FreeBSD/FreeBSD.git] / sys / netpfil / ipfw / ip_fw_dynamic.c
1 /*-
2  * Copyright (c) 2017-2018 Yandex LLC
3  * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
4  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ipfw.h"
34 #ifndef INET
35 #error IPFIREWALL requires INET.
36 #endif /* INET */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/hash.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/pcpu.h>
45 #include <sys/queue.h>
46 #include <sys/rmlock.h>
47 #include <sys/smp.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/syslog.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/pfil.h>
55 #include <net/vnet.h>
56
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/ip_var.h>
60 #include <netinet/ip_fw.h>
61 #include <netinet/tcp_var.h>
62 #include <netinet/udp.h>
63
64 #include <netinet/ip6.h>        /* IN6_ARE_ADDR_EQUAL */
65 #ifdef INET6
66 #include <netinet6/in6_var.h>
67 #include <netinet6/ip6_var.h>
68 #include <netinet6/scope6_var.h>
69 #endif
70
71 #include <netpfil/ipfw/ip_fw_private.h>
72
73 #include <machine/in_cksum.h>   /* XXX for in_cksum */
74
75 #ifdef MAC
76 #include <security/mac/mac_framework.h>
77 #endif
78 #include <ck_queue.h>
79
80 /*
81  * Description of dynamic states.
82  *
83  * Dynamic states are stored in lists accessed through a hash tables
84  * whose size is curr_dyn_buckets. This value can be modified through
85  * the sysctl variable dyn_buckets.
86  *
87  * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
88  * and dyn_ipv6_parent.
89  *
90  * When a packet is received, its address fields hashed, then matched
91  * against the entries in the corresponding list by addr_type.
92  * Dynamic states can be used for different purposes:
93  *  + stateful rules;
94  *  + enforcing limits on the number of sessions;
95  *  + in-kernel NAT (not implemented yet)
96  *
97  * The lifetime of dynamic states is regulated by dyn_*_lifetime,
98  * measured in seconds and depending on the flags.
99  *
100  * The total number of dynamic states is equal to UMA zone items count.
101  * The max number of dynamic states is dyn_max. When we reach
102  * the maximum number of rules we do not create anymore. This is
103  * done to avoid consuming too much memory, but also too much
104  * time when searching on each packet (ideally, we should try instead
105  * to put a limit on the length of the list on each bucket...).
106  *
107  * Each state holds a pointer to the parent ipfw rule so we know what
108  * action to perform. Dynamic rules are removed when the parent rule is
109  * deleted.
110  *
111  * There are some limitations with dynamic rules -- we do not
112  * obey the 'randomized match', and we do not do multiple
113  * passes through the firewall. XXX check the latter!!!
114  */
115
116 /* By default use jenkins hash function */
117 #define IPFIREWALL_JENKINSHASH
118
119 #define DYN_COUNTER_INC(d, dir, pktlen) do {    \
120         (d)->pcnt_ ## dir++;                    \
121         (d)->bcnt_ ## dir += pktlen;            \
122         } while (0)
123
124 #define DYN_REFERENCED          0x01
125 /*
126  * DYN_REFERENCED flag is used to show that state keeps reference to named
127  * object, and this reference should be released when state becomes expired.
128  */
129
130 struct dyn_data {
131         void            *parent;        /* pointer to parent rule */
132         uint32_t        chain_id;       /* cached ruleset id */
133         uint32_t        f_pos;          /* cached rule index */
134
135         uint32_t        hashval;        /* hash value used for hash resize */
136         uint16_t        fibnum;         /* fib used to send keepalives */
137         uint8_t         _pad[3];
138         uint8_t         flags;          /* internal flags */
139         uint16_t        rulenum;        /* parent rule number */
140         uint32_t        ruleid;         /* parent rule id */
141
142         uint32_t        state;          /* TCP session state and flags */
143         uint32_t        ack_fwd;        /* most recent ACKs in forward */
144         uint32_t        ack_rev;        /* and reverse direction (used */
145                                         /* to generate keepalives) */
146         uint32_t        sync;           /* synchronization time */
147         uint32_t        expire;         /* expire time */
148
149         uint64_t        pcnt_fwd;       /* bytes counter in forward */
150         uint64_t        bcnt_fwd;       /* packets counter in forward */
151         uint64_t        pcnt_rev;       /* bytes counter in reverse */
152         uint64_t        bcnt_rev;       /* packets counter in reverse */
153 };
154
155 #define DPARENT_COUNT_DEC(p)    do {                    \
156         MPASS(p->count > 0);                            \
157         ck_pr_dec_32(&(p)->count);                      \
158 } while (0)
159 #define DPARENT_COUNT_INC(p)    ck_pr_inc_32(&(p)->count)
160 #define DPARENT_COUNT(p)        ck_pr_load_32(&(p)->count)
161 struct dyn_parent {
162         void            *parent;        /* pointer to parent rule */
163         uint32_t        count;          /* number of linked states */
164         uint8_t         _pad[2];
165         uint16_t        rulenum;        /* parent rule number */
166         uint32_t        ruleid;         /* parent rule id */
167         uint32_t        hashval;        /* hash value used for hash resize */
168         uint32_t        expire;         /* expire time */
169 };
170
171 struct dyn_ipv4_state {
172         uint8_t         type;           /* State type */
173         uint8_t         proto;          /* UL Protocol */
174         uint16_t        kidx;           /* named object index */
175         uint16_t        sport, dport;   /* ULP source and destination ports */
176         in_addr_t       src, dst;       /* IPv4 source and destination */
177
178         union {
179                 struct dyn_data *data;
180                 struct dyn_parent *limit;
181         };
182         CK_SLIST_ENTRY(dyn_ipv4_state)  entry;
183         SLIST_ENTRY(dyn_ipv4_state)     expired;
184 };
185 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
186 static VNET_DEFINE(struct dyn_ipv4ck_slist *, dyn_ipv4);
187 static VNET_DEFINE(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
188
189 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
190 static VNET_DEFINE(struct dyn_ipv4_slist, dyn_expired_ipv4);
191 #define V_dyn_ipv4                      VNET(dyn_ipv4)
192 #define V_dyn_ipv4_parent               VNET(dyn_ipv4_parent)
193 #define V_dyn_expired_ipv4              VNET(dyn_expired_ipv4)
194
195 #ifdef INET6
196 struct dyn_ipv6_state {
197         uint8_t         type;           /* State type */
198         uint8_t         proto;          /* UL Protocol */
199         uint16_t        kidx;           /* named object index */
200         uint16_t        sport, dport;   /* ULP source and destination ports */
201         struct in6_addr src, dst;       /* IPv6 source and destination */
202         uint32_t        zoneid;         /* IPv6 scope zone id */
203         union {
204                 struct dyn_data *data;
205                 struct dyn_parent *limit;
206         };
207         CK_SLIST_ENTRY(dyn_ipv6_state)  entry;
208         SLIST_ENTRY(dyn_ipv6_state)     expired;
209 };
210 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
211 static VNET_DEFINE(struct dyn_ipv6ck_slist *, dyn_ipv6);
212 static VNET_DEFINE(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
213
214 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
215 static VNET_DEFINE(struct dyn_ipv6_slist, dyn_expired_ipv6);
216 #define V_dyn_ipv6                      VNET(dyn_ipv6)
217 #define V_dyn_ipv6_parent               VNET(dyn_ipv6_parent)
218 #define V_dyn_expired_ipv6              VNET(dyn_expired_ipv6)
219 #endif /* INET6 */
220
221 /*
222  * Per-CPU pointer indicates that specified state is currently in use
223  * and must not be reclaimed by expiration callout.
224  */
225 static void **dyn_hp_cache;
226 static DPCPU_DEFINE(void *, dyn_hp);
227 #define DYNSTATE_GET(cpu)       ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
228 #define DYNSTATE_PROTECT(v)     ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
229 #define DYNSTATE_RELEASE()      DYNSTATE_PROTECT(NULL)
230 #define DYNSTATE_CRITICAL_ENTER()       critical_enter()
231 #define DYNSTATE_CRITICAL_EXIT()        do {    \
232         DYNSTATE_RELEASE();                     \
233         critical_exit();                        \
234 } while (0);
235
236 /*
237  * We keep two version numbers, one is updated when new entry added to
238  * the list. Second is updated when an entry deleted from the list.
239  * Versions are updated under bucket lock.
240  *
241  * Bucket "add" version number is used to know, that in the time between
242  * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
243  * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
244  * not install some state in this bucket. Using this info we can avoid
245  * additional state lookup, because we are sure that we will not install
246  * the state twice.
247  *
248  * Also doing the tracking of bucket "del" version during lookup we can
249  * be sure, that state entry was not unlinked and freed in time between
250  * we read the state pointer and protect it with hazard pointer.
251  *
252  * An entry unlinked from CK list keeps unchanged until it is freed.
253  * Unlinked entries are linked into expired lists using "expired" field.
254  */
255
256 /*
257  * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
258  * dyn_bucket_lock is used to get write access to lists in specific bucket.
259  * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
260  * and ipv6_parent lists.
261  */
262 static VNET_DEFINE(struct mtx, dyn_expire_lock);
263 static VNET_DEFINE(struct mtx *, dyn_bucket_lock);
264 #define V_dyn_expire_lock               VNET(dyn_expire_lock)
265 #define V_dyn_bucket_lock               VNET(dyn_bucket_lock)
266
267 /*
268  * Bucket's add/delete generation versions.
269  */
270 static VNET_DEFINE(uint32_t *, dyn_ipv4_add);
271 static VNET_DEFINE(uint32_t *, dyn_ipv4_del);
272 static VNET_DEFINE(uint32_t *, dyn_ipv4_parent_add);
273 static VNET_DEFINE(uint32_t *, dyn_ipv4_parent_del);
274 #define V_dyn_ipv4_add                  VNET(dyn_ipv4_add)
275 #define V_dyn_ipv4_del                  VNET(dyn_ipv4_del)
276 #define V_dyn_ipv4_parent_add           VNET(dyn_ipv4_parent_add)
277 #define V_dyn_ipv4_parent_del           VNET(dyn_ipv4_parent_del)
278
279 #ifdef INET6
280 static VNET_DEFINE(uint32_t *, dyn_ipv6_add);
281 static VNET_DEFINE(uint32_t *, dyn_ipv6_del);
282 static VNET_DEFINE(uint32_t *, dyn_ipv6_parent_add);
283 static VNET_DEFINE(uint32_t *, dyn_ipv6_parent_del);
284 #define V_dyn_ipv6_add                  VNET(dyn_ipv6_add)
285 #define V_dyn_ipv6_del                  VNET(dyn_ipv6_del)
286 #define V_dyn_ipv6_parent_add           VNET(dyn_ipv6_parent_add)
287 #define V_dyn_ipv6_parent_del           VNET(dyn_ipv6_parent_del)
288 #endif /* INET6 */
289
290 #define DYN_BUCKET(h, b)                ((h) & (b - 1))
291 #define DYN_BUCKET_VERSION(b, v)        ck_pr_load_32(&V_dyn_ ## v[(b)])
292 #define DYN_BUCKET_VERSION_BUMP(b, v)   ck_pr_inc_32(&V_dyn_ ## v[(b)])
293
294 #define DYN_BUCKET_LOCK_INIT(lock, b)           \
295     mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
296 #define DYN_BUCKET_LOCK_DESTROY(lock, b)        mtx_destroy(&lock[(b)])
297 #define DYN_BUCKET_LOCK(b)      mtx_lock(&V_dyn_bucket_lock[(b)])
298 #define DYN_BUCKET_UNLOCK(b)    mtx_unlock(&V_dyn_bucket_lock[(b)])
299 #define DYN_BUCKET_ASSERT(b)    mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
300
301 #define DYN_EXPIRED_LOCK_INIT()         \
302     mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
303 #define DYN_EXPIRED_LOCK_DESTROY()      mtx_destroy(&V_dyn_expire_lock)
304 #define DYN_EXPIRED_LOCK()              mtx_lock(&V_dyn_expire_lock)
305 #define DYN_EXPIRED_UNLOCK()            mtx_unlock(&V_dyn_expire_lock)
306
307 static VNET_DEFINE(uint32_t, dyn_buckets_max);
308 static VNET_DEFINE(uint32_t, curr_dyn_buckets);
309 static VNET_DEFINE(struct callout, dyn_timeout);
310 #define V_dyn_buckets_max               VNET(dyn_buckets_max)
311 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
312 #define V_dyn_timeout                   VNET(dyn_timeout)
313
314 /* Maximum length of states chain in a bucket */
315 static VNET_DEFINE(uint32_t, curr_max_length);
316 #define V_curr_max_length               VNET(curr_max_length)
317
318 static VNET_DEFINE(uint32_t, dyn_keep_states);
319 #define V_dyn_keep_states               VNET(dyn_keep_states)
320
321 static VNET_DEFINE(uma_zone_t, dyn_data_zone);
322 static VNET_DEFINE(uma_zone_t, dyn_parent_zone);
323 static VNET_DEFINE(uma_zone_t, dyn_ipv4_zone);
324 #ifdef INET6
325 static VNET_DEFINE(uma_zone_t, dyn_ipv6_zone);
326 #define V_dyn_ipv6_zone                 VNET(dyn_ipv6_zone)
327 #endif /* INET6 */
328 #define V_dyn_data_zone                 VNET(dyn_data_zone)
329 #define V_dyn_parent_zone               VNET(dyn_parent_zone)
330 #define V_dyn_ipv4_zone                 VNET(dyn_ipv4_zone)
331
332 /*
333  * Timeouts for various events in handing dynamic rules.
334  */
335 static VNET_DEFINE(uint32_t, dyn_ack_lifetime);
336 static VNET_DEFINE(uint32_t, dyn_syn_lifetime);
337 static VNET_DEFINE(uint32_t, dyn_fin_lifetime);
338 static VNET_DEFINE(uint32_t, dyn_rst_lifetime);
339 static VNET_DEFINE(uint32_t, dyn_udp_lifetime);
340 static VNET_DEFINE(uint32_t, dyn_short_lifetime);
341
342 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
343 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
344 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
345 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
346 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
347 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
348
349 /*
350  * Keepalives are sent if dyn_keepalive is set. They are sent every
351  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
352  * seconds of lifetime of a rule.
353  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
354  * than dyn_keepalive_period.
355  */
356 static VNET_DEFINE(uint32_t, dyn_keepalive_interval);
357 static VNET_DEFINE(uint32_t, dyn_keepalive_period);
358 static VNET_DEFINE(uint32_t, dyn_keepalive);
359 static VNET_DEFINE(time_t, dyn_keepalive_last);
360
361 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
362 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
363 #define V_dyn_keepalive                 VNET(dyn_keepalive)
364 #define V_dyn_keepalive_last            VNET(dyn_keepalive_last)
365
366 static VNET_DEFINE(uint32_t, dyn_max);          /* max # of dynamic states */
367 static VNET_DEFINE(uint32_t, dyn_count);        /* number of states */
368 static VNET_DEFINE(uint32_t, dyn_parent_max);   /* max # of parent states */
369 static VNET_DEFINE(uint32_t, dyn_parent_count); /* number of parent states */
370
371 #define V_dyn_max                       VNET(dyn_max)
372 #define V_dyn_count                     VNET(dyn_count)
373 #define V_dyn_parent_max                VNET(dyn_parent_max)
374 #define V_dyn_parent_count              VNET(dyn_parent_count)
375
376 #define DYN_COUNT_DEC(name)     do {                    \
377         MPASS((V_ ## name) > 0);                        \
378         ck_pr_dec_32(&(V_ ## name));                    \
379 } while (0)
380 #define DYN_COUNT_INC(name)     ck_pr_inc_32(&(V_ ## name))
381 #define DYN_COUNT(name)         ck_pr_load_32(&(V_ ## name))
382
383 static time_t last_log; /* Log ratelimiting */
384
385 /*
386  * Get/set maximum number of dynamic states in given VNET instance.
387  */
388 static int
389 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
390 {
391         uint32_t nstates;
392         int error;
393
394         nstates = V_dyn_max;
395         error = sysctl_handle_32(oidp, &nstates, 0, req);
396         /* Read operation or some error */
397         if ((error != 0) || (req->newptr == NULL))
398                 return (error);
399
400         V_dyn_max = nstates;
401         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
402         return (0);
403 }
404
405 static int
406 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
407 {
408         uint32_t nstates;
409         int error;
410
411         nstates = V_dyn_parent_max;
412         error = sysctl_handle_32(oidp, &nstates, 0, req);
413         /* Read operation or some error */
414         if ((error != 0) || (req->newptr == NULL))
415                 return (error);
416
417         V_dyn_parent_max = nstates;
418         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
419         return (0);
420 }
421
422 static int
423 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
424 {
425         uint32_t nbuckets;
426         int error;
427
428         nbuckets = V_dyn_buckets_max;
429         error = sysctl_handle_32(oidp, &nbuckets, 0, req);
430         /* Read operation or some error */
431         if ((error != 0) || (req->newptr == NULL))
432                 return (error);
433
434         if (nbuckets > 256)
435                 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
436         else
437                 return (EINVAL);
438         return (0);
439 }
440
441 SYSCTL_DECL(_net_inet_ip_fw);
442
443 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
444     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
445     "Current number of dynamic states.");
446 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
447     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
448     "Current number of parent states. ");
449 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
450     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
451     "Current number of buckets for states hash table.");
452 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
453     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
454     "Current maximum length of states chains in hash buckets.");
455 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
456     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_buckets,
457     "IU", "Max number of buckets for dynamic states hash table.");
458 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
459     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_max,
460     "IU", "Max number of dynamic states.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_parent_max,
463     "IU", "Max number of parent dynamic states.");
464 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
465     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
466     "Lifetime of dynamic states for TCP ACK.");
467 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
468     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
469     "Lifetime of dynamic states for TCP SYN.");
470 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
471     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
472     "Lifetime of dynamic states for TCP FIN.");
473 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
474     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
475     "Lifetime of dynamic states for TCP RST.");
476 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
477     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
478     "Lifetime of dynamic states for UDP.");
479 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
480     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
481     "Lifetime of dynamic states for other situations.");
482 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
483     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
484     "Enable keepalives for dynamic states.");
485 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
486     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
487     "Do not flush dynamic states on rule deletion");
488
489
490 #ifdef IPFIREWALL_DYNDEBUG
491 #define DYN_DEBUG(fmt, ...)     do {                    \
492         printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493 } while (0)
494 #else
495 #define DYN_DEBUG(fmt, ...)
496 #endif /* !IPFIREWALL_DYNDEBUG */
497
498 #ifdef INET6
499 /* Functions to work with IPv6 states */
500 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501     const struct ipfw_flow_id *, uint32_t, const void *,
502     struct ipfw_dyn_info *, int);
503 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504     uint32_t, const void *, int, uint32_t, uint16_t);
505 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506     const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
507 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t,
508     const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
510 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511     ipfw_dyn_rule *);
512
513 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515     const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516     uint16_t);
517 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518     const struct dyn_ipv6_state *);
519 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
523     uint32_t);
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
526     uint32_t);
527 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
528     const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint16_t);
529 #endif /* INET6 */
530
531 /* Functions to work with limit states */
532 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533     struct ip_fw *, uint32_t, uint32_t, uint16_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
538 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
539     uint32_t);
540 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
541     const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
542
543 static void dyn_tick(void *);
544 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545 static void dyn_free_states(struct ip_fw_chain *);
546 static void dyn_export_parent(const struct dyn_parent *, uint16_t, uint8_t,
547     ipfw_dyn_rule *);
548 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
549     uint8_t, ipfw_dyn_rule *);
550 static uint32_t dyn_update_tcp_state(struct dyn_data *,
551     const struct ipfw_flow_id *, const struct tcphdr *, int);
552 static void dyn_update_proto_state(struct dyn_data *,
553     const struct ipfw_flow_id *, const void *, int, int);
554
555 /* Functions to work with IPv4 states */
556 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557     const void *, struct ipfw_dyn_info *, int);
558 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559     const void *, int, uint32_t, uint16_t);
560 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561     const struct ipfw_flow_id *, uint16_t, uint8_t);
562 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t,
563     const struct ipfw_flow_id *, const void *, int, uint32_t,
564     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
565 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566     ipfw_dyn_rule *);
567
568 /*
569  * Named states support.
570  */
571 static char *default_state_name = "default";
572 struct dyn_state_obj {
573         struct named_object     no;
574         char                    name[64];
575 };
576
577 #define DYN_STATE_OBJ(ch, cmd)  \
578     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
579 /*
580  * Classifier callback.
581  * Return 0 if opcode contains object that should be referenced
582  * or rewritten.
583  */
584 static int
585 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
586 {
587
588         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
589         /* Don't rewrite "check-state any" */
590         if (cmd->arg1 == 0 &&
591             cmd->opcode == O_CHECK_STATE)
592                 return (1);
593
594         *puidx = cmd->arg1;
595         *ptype = 0;
596         return (0);
597 }
598
599 static void
600 dyn_update(ipfw_insn *cmd, uint16_t idx)
601 {
602
603         cmd->arg1 = idx;
604         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
605 }
606
607 static int
608 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
609     struct named_object **pno)
610 {
611         ipfw_obj_ntlv *ntlv;
612         const char *name;
613
614         DYN_DEBUG("uidx %d", ti->uidx);
615         if (ti->uidx != 0) {
616                 if (ti->tlvs == NULL)
617                         return (EINVAL);
618                 /* Search ntlv in the buffer provided by user */
619                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
620                     IPFW_TLV_STATE_NAME);
621                 if (ntlv == NULL)
622                         return (EINVAL);
623                 name = ntlv->name;
624         } else
625                 name = default_state_name;
626         /*
627          * Search named object with corresponding name.
628          * Since states objects are global - ignore the set value
629          * and use zero instead.
630          */
631         *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
632             IPFW_TLV_STATE_NAME, name);
633         /*
634          * We always return success here.
635          * The caller will check *pno and mark object as unresolved,
636          * then it will automatically create "default" object.
637          */
638         return (0);
639 }
640
641 static struct named_object *
642 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
643 {
644
645         DYN_DEBUG("kidx %d", idx);
646         return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
647 }
648
649 static int
650 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
651     uint16_t *pkidx)
652 {
653         struct namedobj_instance *ni;
654         struct dyn_state_obj *obj;
655         struct named_object *no;
656         ipfw_obj_ntlv *ntlv;
657         char *name;
658
659         DYN_DEBUG("uidx %d", ti->uidx);
660         if (ti->uidx != 0) {
661                 if (ti->tlvs == NULL)
662                         return (EINVAL);
663                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
664                     IPFW_TLV_STATE_NAME);
665                 if (ntlv == NULL)
666                         return (EINVAL);
667                 name = ntlv->name;
668         } else
669                 name = default_state_name;
670
671         ni = CHAIN_TO_SRV(ch);
672         obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
673         obj->no.name = obj->name;
674         obj->no.etlv = IPFW_TLV_STATE_NAME;
675         strlcpy(obj->name, name, sizeof(obj->name));
676
677         IPFW_UH_WLOCK(ch);
678         no = ipfw_objhash_lookup_name_type(ni, 0,
679             IPFW_TLV_STATE_NAME, name);
680         if (no != NULL) {
681                 /*
682                  * Object is already created.
683                  * Just return its kidx and bump refcount.
684                  */
685                 *pkidx = no->kidx;
686                 no->refcnt++;
687                 IPFW_UH_WUNLOCK(ch);
688                 free(obj, M_IPFW);
689                 DYN_DEBUG("\tfound kidx %d", *pkidx);
690                 return (0);
691         }
692         if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
693                 DYN_DEBUG("\talloc_idx failed for %s", name);
694                 IPFW_UH_WUNLOCK(ch);
695                 free(obj, M_IPFW);
696                 return (ENOSPC);
697         }
698         ipfw_objhash_add(ni, &obj->no);
699         SRV_OBJECT(ch, obj->no.kidx) = obj;
700         obj->no.refcnt++;
701         *pkidx = obj->no.kidx;
702         IPFW_UH_WUNLOCK(ch);
703         DYN_DEBUG("\tcreated kidx %d", *pkidx);
704         return (0);
705 }
706
707 static void
708 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
709 {
710         struct dyn_state_obj *obj;
711
712         IPFW_UH_WLOCK_ASSERT(ch);
713
714         KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
715             ("%s: wrong object type %u", __func__, no->etlv));
716         KASSERT(no->refcnt == 1,
717             ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
718             no->name, no->etlv, no->kidx, no->refcnt));
719         DYN_DEBUG("kidx %d", no->kidx);
720         obj = SRV_OBJECT(ch, no->kidx);
721         SRV_OBJECT(ch, no->kidx) = NULL;
722         ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
723         ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
724
725         free(obj, M_IPFW);
726 }
727
728 static struct opcode_obj_rewrite dyn_opcodes[] = {
729         {
730                 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
731                 dyn_classify, dyn_update,
732                 dyn_findbyname, dyn_findbykidx,
733                 dyn_create, dyn_destroy
734         },
735         {
736                 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
737                 dyn_classify, dyn_update,
738                 dyn_findbyname, dyn_findbykidx,
739                 dyn_create, dyn_destroy
740         },
741         {
742                 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
743                 dyn_classify, dyn_update,
744                 dyn_findbyname, dyn_findbykidx,
745                 dyn_create, dyn_destroy
746         },
747         {
748                 O_LIMIT, IPFW_TLV_STATE_NAME,
749                 dyn_classify, dyn_update,
750                 dyn_findbyname, dyn_findbykidx,
751                 dyn_create, dyn_destroy
752         },
753 };
754
755 /*
756  * IMPORTANT: the hash function for dynamic rules must be commutative
757  * in source and destination (ip,port), because rules are bidirectional
758  * and we want to find both in the same bucket.
759  */
760 #ifndef IPFIREWALL_JENKINSHASH
761 static __inline uint32_t
762 hash_packet(const struct ipfw_flow_id *id)
763 {
764         uint32_t i;
765
766 #ifdef INET6
767         if (IS_IP6_FLOW_ID(id))
768                 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
769                     (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
770                     (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
771                     (id->src_ip6.__u6_addr.__u6_addr32[3]));
772         else
773 #endif /* INET6 */
774         i = (id->dst_ip) ^ (id->src_ip);
775         i ^= (id->dst_port) ^ (id->src_port);
776         return (i);
777 }
778
779 static __inline uint32_t
780 hash_parent(const struct ipfw_flow_id *id, const void *rule)
781 {
782
783         return (hash_packet(id) ^ ((uintptr_t)rule));
784 }
785
786 #else /* IPFIREWALL_JENKINSHASH */
787
788 static VNET_DEFINE(uint32_t, dyn_hashseed);
789 #define V_dyn_hashseed          VNET(dyn_hashseed)
790
791 static __inline int
792 addrcmp4(const struct ipfw_flow_id *id)
793 {
794
795         if (id->src_ip < id->dst_ip)
796                 return (0);
797         if (id->src_ip > id->dst_ip)
798                 return (1);
799         if (id->src_port <= id->dst_port)
800                 return (0);
801         return (1);
802 }
803
804 #ifdef INET6
805 static __inline int
806 addrcmp6(const struct ipfw_flow_id *id)
807 {
808         int ret;
809
810         ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
811         if (ret < 0)
812                 return (0);
813         if (ret > 0)
814                 return (1);
815         if (id->src_port <= id->dst_port)
816                 return (0);
817         return (1);
818 }
819
820 static __inline uint32_t
821 hash_packet6(const struct ipfw_flow_id *id)
822 {
823         struct tuple6 {
824                 struct in6_addr addr[2];
825                 uint16_t        port[2];
826         } t6;
827
828         if (addrcmp6(id) == 0) {
829                 t6.addr[0] = id->src_ip6;
830                 t6.addr[1] = id->dst_ip6;
831                 t6.port[0] = id->src_port;
832                 t6.port[1] = id->dst_port;
833         } else {
834                 t6.addr[0] = id->dst_ip6;
835                 t6.addr[1] = id->src_ip6;
836                 t6.port[0] = id->dst_port;
837                 t6.port[1] = id->src_port;
838         }
839         return (jenkins_hash32((const uint32_t *)&t6,
840             sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
841 }
842 #endif
843
844 static __inline uint32_t
845 hash_packet(const struct ipfw_flow_id *id)
846 {
847         struct tuple4 {
848                 in_addr_t       addr[2];
849                 uint16_t        port[2];
850         } t4;
851
852         if (IS_IP4_FLOW_ID(id)) {
853                 /* All fields are in host byte order */
854                 if (addrcmp4(id) == 0) {
855                         t4.addr[0] = id->src_ip;
856                         t4.addr[1] = id->dst_ip;
857                         t4.port[0] = id->src_port;
858                         t4.port[1] = id->dst_port;
859                 } else {
860                         t4.addr[0] = id->dst_ip;
861                         t4.addr[1] = id->src_ip;
862                         t4.port[0] = id->dst_port;
863                         t4.port[1] = id->src_port;
864                 }
865                 return (jenkins_hash32((const uint32_t *)&t4,
866                     sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
867         } else
868 #ifdef INET6
869         if (IS_IP6_FLOW_ID(id))
870                 return (hash_packet6(id));
871 #endif
872         return (0);
873 }
874
875 static __inline uint32_t
876 hash_parent(const struct ipfw_flow_id *id, const void *rule)
877 {
878
879         return (jenkins_hash32((const uint32_t *)&rule,
880             sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
881 }
882 #endif /* IPFIREWALL_JENKINSHASH */
883
884 /*
885  * Print customizable flow id description via log(9) facility.
886  */
887 static void
888 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
889     int log_flags, char *prefix, char *postfix)
890 {
891         struct in_addr da;
892 #ifdef INET6
893         char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
894 #else
895         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
896 #endif
897
898 #ifdef INET6
899         if (IS_IP6_FLOW_ID(id)) {
900                 ip6_sprintf(src, &id->src_ip6);
901                 ip6_sprintf(dst, &id->dst_ip6);
902         } else
903 #endif
904         {
905                 da.s_addr = htonl(id->src_ip);
906                 inet_ntop(AF_INET, &da, src, sizeof(src));
907                 da.s_addr = htonl(id->dst_ip);
908                 inet_ntop(AF_INET, &da, dst, sizeof(dst));
909         }
910         log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
911             prefix, dyn_type, src, id->src_port, dst,
912             id->dst_port, V_dyn_count, postfix);
913 }
914
915 #define print_dyn_rule(id, dtype, prefix, postfix)      \
916         print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
917
918 #define TIME_LEQ(a,b)   ((int)((a)-(b)) <= 0)
919 #define TIME_LE(a,b)    ((int)((a)-(b)) < 0)
920 #define _SEQ_GE(a,b)    ((int)((a)-(b)) >= 0)
921 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
922 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
923 #define TCP_FLAGS       (TH_FLAGS | (TH_FLAGS << 8))
924 #define ACK_FWD         0x00010000      /* fwd ack seen */
925 #define ACK_REV         0x00020000      /* rev ack seen */
926 #define ACK_BOTH        (ACK_FWD | ACK_REV)
927
928 static uint32_t
929 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
930     const struct tcphdr *tcp, int dir)
931 {
932         uint32_t ack, expire;
933         uint32_t state, old;
934         uint8_t th_flags;
935
936         expire = data->expire;
937         old = state = data->state;
938         th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
939         state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
940         switch (state & TCP_FLAGS) {
941         case TH_SYN:                    /* opening */
942                 expire = time_uptime + V_dyn_syn_lifetime;
943                 break;
944
945         case BOTH_SYN:                  /* move to established */
946         case BOTH_SYN | TH_FIN:         /* one side tries to close */
947         case BOTH_SYN | (TH_FIN << 8):
948                 if (tcp == NULL)
949                         break;
950                 ack = ntohl(tcp->th_ack);
951                 if (dir == MATCH_FORWARD) {
952                         if (data->ack_fwd == 0 ||
953                             _SEQ_GE(ack, data->ack_fwd)) {
954                                 state |= ACK_FWD;
955                                 if (data->ack_fwd != ack)
956                                         ck_pr_store_32(&data->ack_fwd, ack);
957                         }
958                 } else {
959                         if (data->ack_rev == 0 ||
960                             _SEQ_GE(ack, data->ack_rev)) {
961                                 state |= ACK_REV;
962                                 if (data->ack_rev != ack)
963                                         ck_pr_store_32(&data->ack_rev, ack);
964                         }
965                 }
966                 if ((state & ACK_BOTH) == ACK_BOTH) {
967                         /*
968                          * Set expire time to V_dyn_ack_lifetime only if
969                          * we got ACKs for both directions.
970                          * We use XOR here to avoid possible state
971                          * overwriting in concurrent thread.
972                          */
973                         expire = time_uptime + V_dyn_ack_lifetime;
974                         ck_pr_xor_32(&data->state, ACK_BOTH);
975                 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
976                         ck_pr_or_32(&data->state, state & ACK_BOTH);
977                 break;
978
979         case BOTH_SYN | BOTH_FIN:       /* both sides closed */
980                 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
981                         V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
982                 expire = time_uptime + V_dyn_fin_lifetime;
983                 break;
984
985         default:
986                 if (V_dyn_keepalive != 0 &&
987                     V_dyn_rst_lifetime >= V_dyn_keepalive_period)
988                         V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
989                 expire = time_uptime + V_dyn_rst_lifetime;
990         }
991         /* Save TCP state if it was changed */
992         if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
993                 ck_pr_or_32(&data->state, state & TCP_FLAGS);
994         return (expire);
995 }
996
997 /*
998  * Update ULP specific state.
999  * For TCP we keep sequence numbers and flags. For other protocols
1000  * currently we update only expire time. Packets and bytes counters
1001  * are also updated here.
1002  */
1003 static void
1004 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1005     const void *ulp, int pktlen, int dir)
1006 {
1007         uint32_t expire;
1008
1009         /* NOTE: we are in critical section here. */
1010         switch (pkt->proto) {
1011         case IPPROTO_UDP:
1012         case IPPROTO_UDPLITE:
1013                 expire = time_uptime + V_dyn_udp_lifetime;
1014                 break;
1015         case IPPROTO_TCP:
1016                 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1017                 break;
1018         default:
1019                 expire = time_uptime + V_dyn_short_lifetime;
1020         }
1021         /*
1022          * Expiration timer has the per-second granularity, no need to update
1023          * it every time when state is matched.
1024          */
1025         if (data->expire != expire)
1026                 ck_pr_store_32(&data->expire, expire);
1027
1028         if (dir == MATCH_FORWARD)
1029                 DYN_COUNTER_INC(data, fwd, pktlen);
1030         else
1031                 DYN_COUNTER_INC(data, rev, pktlen);
1032 }
1033
1034 /*
1035  * Lookup IPv4 state.
1036  * Must be called in critical section.
1037  */
1038 struct dyn_ipv4_state *
1039 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1040     struct ipfw_dyn_info *info, int pktlen)
1041 {
1042         struct dyn_ipv4_state *s;
1043         uint32_t version, bucket;
1044
1045         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1046         info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1047 restart:
1048         version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1049         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1050                 DYNSTATE_PROTECT(s);
1051                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1052                         goto restart;
1053                 if (s->proto != pkt->proto)
1054                         continue;
1055                 if (info->kidx != 0 && s->kidx != info->kidx)
1056                         continue;
1057                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1058                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1059                         info->direction = MATCH_FORWARD;
1060                         break;
1061                 }
1062                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1063                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1064                         info->direction = MATCH_REVERSE;
1065                         break;
1066                 }
1067         }
1068
1069         if (s != NULL)
1070                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1071                     info->direction);
1072         return (s);
1073 }
1074
1075 /*
1076  * Lookup IPv4 state.
1077  * Simplifed version is used to check that matching state doesn't exist.
1078  */
1079 static int
1080 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1081     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1082 {
1083         struct dyn_ipv4_state *s;
1084         int dir;
1085
1086         dir = MATCH_NONE;
1087         DYN_BUCKET_ASSERT(bucket);
1088         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1089                 if (s->proto != pkt->proto ||
1090                     s->kidx != kidx)
1091                         continue;
1092                 if (s->sport == pkt->src_port &&
1093                     s->dport == pkt->dst_port &&
1094                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1095                         dir = MATCH_FORWARD;
1096                         break;
1097                 }
1098                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1099                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1100                         dir = MATCH_REVERSE;
1101                         break;
1102                 }
1103         }
1104         if (s != NULL)
1105                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1106         return (s != NULL);
1107 }
1108
1109 struct dyn_ipv4_state *
1110 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1111     uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1112 {
1113         struct dyn_ipv4_state *s;
1114         uint32_t version, bucket;
1115
1116         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1117 restart:
1118         version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1119         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1120                 DYNSTATE_PROTECT(s);
1121                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1122                         goto restart;
1123                 /*
1124                  * NOTE: we do not need to check kidx, because parent rule
1125                  * can not create states with different kidx.
1126                  * And parent rule always created for forward direction.
1127                  */
1128                 if (s->limit->parent == rule &&
1129                     s->limit->ruleid == ruleid &&
1130                     s->limit->rulenum == rulenum &&
1131                     s->proto == pkt->proto &&
1132                     s->sport == pkt->src_port &&
1133                     s->dport == pkt->dst_port &&
1134                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1135                         if (s->limit->expire != time_uptime +
1136                             V_dyn_short_lifetime)
1137                                 ck_pr_store_32(&s->limit->expire,
1138                                     time_uptime + V_dyn_short_lifetime);
1139                         break;
1140                 }
1141         }
1142         return (s);
1143 }
1144
1145 static struct dyn_ipv4_state *
1146 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1147     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1148 {
1149         struct dyn_ipv4_state *s;
1150
1151         DYN_BUCKET_ASSERT(bucket);
1152         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1153                 if (s->limit->parent == rule &&
1154                     s->limit->ruleid == ruleid &&
1155                     s->limit->rulenum == rulenum &&
1156                     s->proto == pkt->proto &&
1157                     s->sport == pkt->src_port &&
1158                     s->dport == pkt->dst_port &&
1159                     s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1160                         break;
1161         }
1162         return (s);
1163 }
1164
1165
1166 #ifdef INET6
1167 static uint32_t
1168 dyn_getscopeid(const struct ip_fw_args *args)
1169 {
1170
1171         /*
1172          * If source or destination address is an scopeid address, we need
1173          * determine the scope zone id to resolve address scope ambiguity.
1174          */
1175         if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1176             IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6)) {
1177                 MPASS(args->oif != NULL ||
1178                     args->m->m_pkthdr.rcvif != NULL);
1179                 return (in6_getscopezone(args->oif != NULL ? args->oif:
1180                     args->m->m_pkthdr.rcvif, IPV6_ADDR_SCOPE_LINKLOCAL));
1181         }
1182         return (0);
1183 }
1184
1185 /*
1186  * Lookup IPv6 state.
1187  * Must be called in critical section.
1188  */
1189 static struct dyn_ipv6_state *
1190 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1191     const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1192 {
1193         struct dyn_ipv6_state *s;
1194         uint32_t version, bucket;
1195
1196         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1197         info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1198 restart:
1199         version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1200         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1201                 DYNSTATE_PROTECT(s);
1202                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1203                         goto restart;
1204                 if (s->proto != pkt->proto || s->zoneid != zoneid)
1205                         continue;
1206                 if (info->kidx != 0 && s->kidx != info->kidx)
1207                         continue;
1208                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1209                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1210                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1211                         info->direction = MATCH_FORWARD;
1212                         break;
1213                 }
1214                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1215                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1216                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1217                         info->direction = MATCH_REVERSE;
1218                         break;
1219                 }
1220         }
1221         if (s != NULL)
1222                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1223                     info->direction);
1224         return (s);
1225 }
1226
1227 /*
1228  * Lookup IPv6 state.
1229  * Simplifed version is used to check that matching state doesn't exist.
1230  */
1231 static int
1232 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1233     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1234 {
1235         struct dyn_ipv6_state *s;
1236         int dir;
1237
1238         dir = MATCH_NONE;
1239         DYN_BUCKET_ASSERT(bucket);
1240         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1241                 if (s->proto != pkt->proto || s->kidx != kidx ||
1242                     s->zoneid != zoneid)
1243                         continue;
1244                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1245                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1246                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1247                         dir = MATCH_FORWARD;
1248                         break;
1249                 }
1250                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1251                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1252                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1253                         dir = MATCH_REVERSE;
1254                         break;
1255                 }
1256         }
1257         if (s != NULL)
1258                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1259         return (s != NULL);
1260 }
1261
1262 static struct dyn_ipv6_state *
1263 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1264     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1265 {
1266         struct dyn_ipv6_state *s;
1267         uint32_t version, bucket;
1268
1269         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1270 restart:
1271         version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1272         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1273                 DYNSTATE_PROTECT(s);
1274                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1275                         goto restart;
1276                 /*
1277                  * NOTE: we do not need to check kidx, because parent rule
1278                  * can not create states with different kidx.
1279                  * Also parent rule always created for forward direction.
1280                  */
1281                 if (s->limit->parent == rule &&
1282                     s->limit->ruleid == ruleid &&
1283                     s->limit->rulenum == rulenum &&
1284                     s->proto == pkt->proto &&
1285                     s->sport == pkt->src_port &&
1286                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1287                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1288                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1289                         if (s->limit->expire != time_uptime +
1290                             V_dyn_short_lifetime)
1291                                 ck_pr_store_32(&s->limit->expire,
1292                                     time_uptime + V_dyn_short_lifetime);
1293                         break;
1294                 }
1295         }
1296         return (s);
1297 }
1298
1299 static struct dyn_ipv6_state *
1300 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1301     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1302 {
1303         struct dyn_ipv6_state *s;
1304
1305         DYN_BUCKET_ASSERT(bucket);
1306         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1307                 if (s->limit->parent == rule &&
1308                     s->limit->ruleid == ruleid &&
1309                     s->limit->rulenum == rulenum &&
1310                     s->proto == pkt->proto &&
1311                     s->sport == pkt->src_port &&
1312                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1313                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1314                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1315                         break;
1316         }
1317         return (s);
1318 }
1319
1320 #endif /* INET6 */
1321
1322 /*
1323  * Lookup dynamic state.
1324  *  pkt - filled by ipfw_chk() ipfw_flow_id;
1325  *  ulp - determined by ipfw_chk() upper level protocol header;
1326  *  dyn_info - info about matched state to return back;
1327  * Returns pointer to state's parent rule and dyn_info. If there is
1328  * no state, NULL is returned.
1329  * On match ipfw_dyn_lookup() updates state's counters.
1330  */
1331 struct ip_fw *
1332 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1333     int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1334 {
1335         struct dyn_data *data;
1336         struct ip_fw *rule;
1337
1338         IPFW_RLOCK_ASSERT(&V_layer3_chain);
1339
1340         data = NULL;
1341         rule = NULL;
1342         info->kidx = cmd->arg1;
1343         info->direction = MATCH_NONE;
1344         info->hashval = hash_packet(&args->f_id);
1345
1346         DYNSTATE_CRITICAL_ENTER();
1347         if (IS_IP4_FLOW_ID(&args->f_id)) {
1348                 struct dyn_ipv4_state *s;
1349
1350                 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1351                 if (s != NULL) {
1352                         /*
1353                          * Dynamic states are created using the same 5-tuple,
1354                          * so it is assumed, that parent rule for O_LIMIT
1355                          * state has the same address family.
1356                          */
1357                         data = s->data;
1358                         if (s->type == O_LIMIT) {
1359                                 s = data->parent;
1360                                 rule = s->limit->parent;
1361                         } else
1362                                 rule = data->parent;
1363                 }
1364         }
1365 #ifdef INET6
1366         else if (IS_IP6_FLOW_ID(&args->f_id)) {
1367                 struct dyn_ipv6_state *s;
1368
1369                 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1370                     ulp, info, pktlen);
1371                 if (s != NULL) {
1372                         data = s->data;
1373                         if (s->type == O_LIMIT) {
1374                                 s = data->parent;
1375                                 rule = s->limit->parent;
1376                         } else
1377                                 rule = data->parent;
1378                 }
1379         }
1380 #endif
1381         if (data != NULL) {
1382                 /*
1383                  * If cached chain id is the same, we can avoid rule index
1384                  * lookup. Otherwise do lookup and update chain_id and f_pos.
1385                  * It is safe even if there is concurrent thread that want
1386                  * update the same state, because chain->id can be changed
1387                  * only under IPFW_WLOCK().
1388                  */
1389                 if (data->chain_id != V_layer3_chain.id) {
1390                         data->f_pos = ipfw_find_rule(&V_layer3_chain,
1391                             data->rulenum, data->ruleid);
1392                         /*
1393                          * Check that found state has not orphaned.
1394                          * When chain->id being changed the parent
1395                          * rule can be deleted. If found rule doesn't
1396                          * match the parent pointer, consider this
1397                          * result as MATCH_NONE and return NULL.
1398                          *
1399                          * This will lead to creation of new similar state
1400                          * that will be added into head of this bucket.
1401                          * And the state that we currently have matched
1402                          * should be deleted by dyn_expire_states().
1403                          *
1404                          * In case when dyn_keep_states is enabled, return
1405                          * pointer to deleted rule and f_pos value
1406                          * corresponding to penultimate rule.
1407                          * When we have enabled V_dyn_keep_states, states
1408                          * that become orphaned will get the DYN_REFERENCED
1409                          * flag and rule will keep around. So we can return
1410                          * it. But since it is not in the rules map, we need
1411                          * return such f_pos value, so after the state
1412                          * handling if the search will continue, the next rule
1413                          * will be the last one - the default rule.
1414                          */
1415                         if (V_layer3_chain.map[data->f_pos] == rule) {
1416                                 data->chain_id = V_layer3_chain.id;
1417                                 info->f_pos = data->f_pos;
1418                         } else if (V_dyn_keep_states != 0) {
1419                                 /*
1420                                  * The original rule pointer is still usable.
1421                                  * So, we return it, but f_pos need to be
1422                                  * changed to point to the penultimate rule.
1423                                  */
1424                                 MPASS(V_layer3_chain.n_rules > 1);
1425                                 data->chain_id = V_layer3_chain.id;
1426                                 data->f_pos = V_layer3_chain.n_rules - 2;
1427                                 info->f_pos = data->f_pos;
1428                         } else {
1429                                 rule = NULL;
1430                                 info->direction = MATCH_NONE;
1431                                 DYN_DEBUG("rule %p  [%u, %u] is considered "
1432                                     "invalid in data %p", rule, data->ruleid,
1433                                     data->rulenum, data);
1434                                 /* info->f_pos doesn't matter here. */
1435                         }
1436                 } else
1437                         info->f_pos = data->f_pos;
1438         }
1439         DYNSTATE_CRITICAL_EXIT();
1440 #if 0
1441         /*
1442          * Return MATCH_NONE if parent rule is in disabled set.
1443          * This will lead to creation of new similar state that
1444          * will be added into head of this bucket.
1445          *
1446          * XXXAE: we need to be able update state's set when parent
1447          *        rule set is changed.
1448          */
1449         if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1450                 rule = NULL;
1451                 info->direction = MATCH_NONE;
1452         }
1453 #endif
1454         return (rule);
1455 }
1456
1457 static struct dyn_parent *
1458 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1459     uint32_t hashval)
1460 {
1461         struct dyn_parent *limit;
1462
1463         limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1464         if (limit == NULL) {
1465                 if (last_log != time_uptime) {
1466                         last_log = time_uptime;
1467                         log(LOG_DEBUG,
1468                             "ipfw: Cannot allocate parent dynamic state, "
1469                             "consider increasing "
1470                             "net.inet.ip.fw.dyn_parent_max\n");
1471                 }
1472                 return (NULL);
1473         }
1474
1475         limit->parent = parent;
1476         limit->ruleid = ruleid;
1477         limit->rulenum = rulenum;
1478         limit->hashval = hashval;
1479         limit->expire = time_uptime + V_dyn_short_lifetime;
1480         return (limit);
1481 }
1482
1483 static struct dyn_data *
1484 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1485     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1486     uint32_t hashval, uint16_t fibnum)
1487 {
1488         struct dyn_data *data;
1489
1490         data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1491         if (data == NULL) {
1492                 if (last_log != time_uptime) {
1493                         last_log = time_uptime;
1494                         log(LOG_DEBUG,
1495                             "ipfw: Cannot allocate dynamic state, "
1496                             "consider increasing net.inet.ip.fw.dyn_max\n");
1497                 }
1498                 return (NULL);
1499         }
1500
1501         data->parent = parent;
1502         data->ruleid = ruleid;
1503         data->rulenum = rulenum;
1504         data->fibnum = fibnum;
1505         data->hashval = hashval;
1506         data->expire = time_uptime + V_dyn_syn_lifetime;
1507         dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1508         return (data);
1509 }
1510
1511 static struct dyn_ipv4_state *
1512 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1513     uint8_t type)
1514 {
1515         struct dyn_ipv4_state *s;
1516
1517         s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1518         if (s == NULL)
1519                 return (NULL);
1520
1521         s->type = type;
1522         s->kidx = kidx;
1523         s->proto = pkt->proto;
1524         s->sport = pkt->src_port;
1525         s->dport = pkt->dst_port;
1526         s->src = pkt->src_ip;
1527         s->dst = pkt->dst_ip;
1528         return (s);
1529 }
1530
1531 /*
1532  * Add IPv4 parent state.
1533  * Returns pointer to parent state. When it is not NULL we are in
1534  * critical section and pointer protected by hazard pointer.
1535  * When some error occurs, it returns NULL and exit from critical section
1536  * is not needed.
1537  */
1538 static struct dyn_ipv4_state *
1539 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1540     const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1541     uint16_t kidx)
1542 {
1543         struct dyn_ipv4_state *s;
1544         struct dyn_parent *limit;
1545         uint32_t bucket;
1546
1547         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1548         DYN_BUCKET_LOCK(bucket);
1549         if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1550                 /*
1551                  * Bucket version has been changed since last lookup,
1552                  * do lookup again to be sure that state does not exist.
1553                  */
1554                 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1555                     rulenum, bucket);
1556                 if (s != NULL) {
1557                         /*
1558                          * Simultaneous thread has already created this
1559                          * state. Just return it.
1560                          */
1561                         DYNSTATE_CRITICAL_ENTER();
1562                         DYNSTATE_PROTECT(s);
1563                         DYN_BUCKET_UNLOCK(bucket);
1564                         return (s);
1565                 }
1566         }
1567
1568         limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1569         if (limit == NULL) {
1570                 DYN_BUCKET_UNLOCK(bucket);
1571                 return (NULL);
1572         }
1573
1574         s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1575         if (s == NULL) {
1576                 DYN_BUCKET_UNLOCK(bucket);
1577                 uma_zfree(V_dyn_parent_zone, limit);
1578                 return (NULL);
1579         }
1580
1581         s->limit = limit;
1582         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1583         DYN_COUNT_INC(dyn_parent_count);
1584         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1585         DYNSTATE_CRITICAL_ENTER();
1586         DYNSTATE_PROTECT(s);
1587         DYN_BUCKET_UNLOCK(bucket);
1588         return (s);
1589 }
1590
1591 static int
1592 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1593     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1594     uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1595     uint16_t kidx, uint8_t type)
1596 {
1597         struct dyn_ipv4_state *s;
1598         void *data;
1599         uint32_t bucket;
1600
1601         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1602         DYN_BUCKET_LOCK(bucket);
1603         if (info->direction == MATCH_UNKNOWN ||
1604             info->kidx != kidx ||
1605             info->hashval != hashval ||
1606             info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1607                 /*
1608                  * Bucket version has been changed since last lookup,
1609                  * do lookup again to be sure that state does not exist.
1610                  */
1611                 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1612                     bucket, kidx) != 0) {
1613                         DYN_BUCKET_UNLOCK(bucket);
1614                         return (EEXIST);
1615                 }
1616         }
1617
1618         data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1619             pktlen, hashval, fibnum);
1620         if (data == NULL) {
1621                 DYN_BUCKET_UNLOCK(bucket);
1622                 return (ENOMEM);
1623         }
1624
1625         s = dyn_alloc_ipv4_state(pkt, kidx, type);
1626         if (s == NULL) {
1627                 DYN_BUCKET_UNLOCK(bucket);
1628                 uma_zfree(V_dyn_data_zone, data);
1629                 return (ENOMEM);
1630         }
1631
1632         s->data = data;
1633         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1634         DYN_COUNT_INC(dyn_count);
1635         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1636         DYN_BUCKET_UNLOCK(bucket);
1637         return (0);
1638 }
1639
1640 #ifdef INET6
1641 static struct dyn_ipv6_state *
1642 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1643     uint16_t kidx, uint8_t type)
1644 {
1645         struct dyn_ipv6_state *s;
1646
1647         s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1648         if (s == NULL)
1649                 return (NULL);
1650
1651         s->type = type;
1652         s->kidx = kidx;
1653         s->zoneid = zoneid;
1654         s->proto = pkt->proto;
1655         s->sport = pkt->src_port;
1656         s->dport = pkt->dst_port;
1657         s->src = pkt->src_ip6;
1658         s->dst = pkt->dst_ip6;
1659         return (s);
1660 }
1661
1662 /*
1663  * Add IPv6 parent state.
1664  * Returns pointer to parent state. When it is not NULL we are in
1665  * critical section and pointer protected by hazard pointer.
1666  * When some error occurs, it return NULL and exit from critical section
1667  * is not needed.
1668  */
1669 static struct dyn_ipv6_state *
1670 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1671     const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1672     uint32_t version, uint16_t kidx)
1673 {
1674         struct dyn_ipv6_state *s;
1675         struct dyn_parent *limit;
1676         uint32_t bucket;
1677
1678         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1679         DYN_BUCKET_LOCK(bucket);
1680         if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1681                 /*
1682                  * Bucket version has been changed since last lookup,
1683                  * do lookup again to be sure that state does not exist.
1684                  */
1685                 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1686                     rulenum, bucket);
1687                 if (s != NULL) {
1688                         /*
1689                          * Simultaneous thread has already created this
1690                          * state. Just return it.
1691                          */
1692                         DYNSTATE_CRITICAL_ENTER();
1693                         DYNSTATE_PROTECT(s);
1694                         DYN_BUCKET_UNLOCK(bucket);
1695                         return (s);
1696                 }
1697         }
1698
1699         limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1700         if (limit == NULL) {
1701                 DYN_BUCKET_UNLOCK(bucket);
1702                 return (NULL);
1703         }
1704
1705         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1706         if (s == NULL) {
1707                 DYN_BUCKET_UNLOCK(bucket);
1708                 uma_zfree(V_dyn_parent_zone, limit);
1709                 return (NULL);
1710         }
1711
1712         s->limit = limit;
1713         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1714         DYN_COUNT_INC(dyn_parent_count);
1715         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1716         DYNSTATE_CRITICAL_ENTER();
1717         DYNSTATE_PROTECT(s);
1718         DYN_BUCKET_UNLOCK(bucket);
1719         return (s);
1720 }
1721
1722 static int
1723 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1724     const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1725     int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1726     uint16_t fibnum, uint16_t kidx, uint8_t type)
1727 {
1728         struct dyn_ipv6_state *s;
1729         struct dyn_data *data;
1730         uint32_t bucket;
1731
1732         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1733         DYN_BUCKET_LOCK(bucket);
1734         if (info->direction == MATCH_UNKNOWN ||
1735             info->kidx != kidx ||
1736             info->hashval != hashval ||
1737             info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1738                 /*
1739                  * Bucket version has been changed since last lookup,
1740                  * do lookup again to be sure that state does not exist.
1741                  */
1742                 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1743                     bucket, kidx) != 0) {
1744                         DYN_BUCKET_UNLOCK(bucket);
1745                         return (EEXIST);
1746                 }
1747         }
1748
1749         data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1750             pktlen, hashval, fibnum);
1751         if (data == NULL) {
1752                 DYN_BUCKET_UNLOCK(bucket);
1753                 return (ENOMEM);
1754         }
1755
1756         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1757         if (s == NULL) {
1758                 DYN_BUCKET_UNLOCK(bucket);
1759                 uma_zfree(V_dyn_data_zone, data);
1760                 return (ENOMEM);
1761         }
1762
1763         s->data = data;
1764         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1765         DYN_COUNT_INC(dyn_count);
1766         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1767         DYN_BUCKET_UNLOCK(bucket);
1768         return (0);
1769 }
1770 #endif /* INET6 */
1771
1772 static void *
1773 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1774     struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1775 {
1776         char sbuf[24];
1777         struct dyn_parent *p;
1778         void *ret;
1779         uint32_t bucket, version;
1780
1781         p = NULL;
1782         ret = NULL;
1783         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1784         DYNSTATE_CRITICAL_ENTER();
1785         if (IS_IP4_FLOW_ID(pkt)) {
1786                 struct dyn_ipv4_state *s;
1787
1788                 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1789                 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1790                     rule->rulenum, bucket);
1791                 if (s == NULL) {
1792                         /*
1793                          * Exit from critical section because dyn_add_parent()
1794                          * will acquire bucket lock.
1795                          */
1796                         DYNSTATE_CRITICAL_EXIT();
1797
1798                         s = dyn_add_ipv4_parent(rule, rule->id,
1799                             rule->rulenum, pkt, hashval, version, kidx);
1800                         if (s == NULL)
1801                                 return (NULL);
1802                         /* Now we are in critical section again. */
1803                 }
1804                 ret = s;
1805                 p = s->limit;
1806         }
1807 #ifdef INET6
1808         else if (IS_IP6_FLOW_ID(pkt)) {
1809                 struct dyn_ipv6_state *s;
1810
1811                 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1812                 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1813                     rule->rulenum, bucket);
1814                 if (s == NULL) {
1815                         /*
1816                          * Exit from critical section because dyn_add_parent()
1817                          * can acquire bucket mutex.
1818                          */
1819                         DYNSTATE_CRITICAL_EXIT();
1820
1821                         s = dyn_add_ipv6_parent(rule, rule->id,
1822                             rule->rulenum, pkt, zoneid, hashval, version,
1823                             kidx);
1824                         if (s == NULL)
1825                                 return (NULL);
1826                         /* Now we are in critical section again. */
1827                 }
1828                 ret = s;
1829                 p = s->limit;
1830         }
1831 #endif
1832         else {
1833                 DYNSTATE_CRITICAL_EXIT();
1834                 return (NULL);
1835         }
1836
1837         /* Check the limit */
1838         if (DPARENT_COUNT(p) >= limit) {
1839                 DYNSTATE_CRITICAL_EXIT();
1840                 if (V_fw_verbose && last_log != time_uptime) {
1841                         last_log = time_uptime;
1842                         snprintf(sbuf, sizeof(sbuf), "%u drop session",
1843                             rule->rulenum);
1844                         print_dyn_rule_flags(pkt, O_LIMIT,
1845                             LOG_SECURITY | LOG_DEBUG, sbuf,
1846                             "too many entries");
1847                 }
1848                 return (NULL);
1849         }
1850
1851         /* Take new session into account. */
1852         DPARENT_COUNT_INC(p);
1853         /*
1854          * We must exit from critical section because the following code
1855          * can acquire bucket mutex.
1856          * We rely on the the 'count' field. The state will not expire
1857          * until it has some child states, i.e. 'count' field is not zero.
1858          * Return state pointer, it will be used by child states as parent.
1859          */
1860         DYNSTATE_CRITICAL_EXIT();
1861         return (ret);
1862 }
1863
1864 static int
1865 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1866     uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1867     struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1868     uint16_t kidx, uint8_t type)
1869 {
1870         struct ipfw_flow_id id;
1871         uint32_t hashval, parent_hashval, ruleid, rulenum;
1872         int ret;
1873
1874         MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1875
1876         ruleid = rule->id;
1877         rulenum = rule->rulenum;
1878         if (type == O_LIMIT) {
1879                 /* Create masked flow id and calculate bucket */
1880                 id.addr_type = pkt->addr_type;
1881                 id.proto = pkt->proto;
1882                 id.fib = fibnum; /* unused */
1883                 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1884                     pkt->src_port: 0;
1885                 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1886                     pkt->dst_port: 0;
1887                 if (IS_IP4_FLOW_ID(pkt)) {
1888                         id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1889                             pkt->src_ip: 0;
1890                         id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1891                             pkt->dst_ip: 0;
1892                 }
1893 #ifdef INET6
1894                 else if (IS_IP6_FLOW_ID(pkt)) {
1895                         if (limit_mask & DYN_SRC_ADDR)
1896                                 id.src_ip6 = pkt->src_ip6;
1897                         else
1898                                 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1899                         if (limit_mask & DYN_DST_ADDR)
1900                                 id.dst_ip6 = pkt->dst_ip6;
1901                         else
1902                                 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1903                 }
1904 #endif
1905                 else
1906                         return (EAFNOSUPPORT);
1907
1908                 parent_hashval = hash_parent(&id, rule);
1909                 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1910                     limit, kidx);
1911                 if (rule == NULL) {
1912 #if 0
1913                         if (V_fw_verbose && last_log != time_uptime) {
1914                                 last_log = time_uptime;
1915                                 snprintf(sbuf, sizeof(sbuf),
1916                                     "%u drop session", rule->rulenum);
1917                         print_dyn_rule_flags(pkt, O_LIMIT,
1918                             LOG_SECURITY | LOG_DEBUG, sbuf,
1919                             "too many entries");
1920                         }
1921 #endif
1922                         return (EACCES);
1923                 }
1924                 /*
1925                  * Limit is not reached, create new state.
1926                  * Now rule points to parent state.
1927                  */
1928         }
1929
1930         hashval = hash_packet(pkt);
1931         if (IS_IP4_FLOW_ID(pkt))
1932                 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1933                     ulp, pktlen, hashval, info, fibnum, kidx, type);
1934 #ifdef INET6
1935         else if (IS_IP6_FLOW_ID(pkt))
1936                 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1937                     zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1938 #endif /* INET6 */
1939         else
1940                 ret = EAFNOSUPPORT;
1941
1942         if (type == O_LIMIT) {
1943                 if (ret != 0) {
1944                         /*
1945                          * We failed to create child state for O_LIMIT
1946                          * opcode. Since we already counted it in the parent,
1947                          * we must revert counter back. The 'rule' points to
1948                          * parent state, use it to get dyn_parent.
1949                          *
1950                          * XXXAE: it should be safe to use 'rule' pointer
1951                          * without extra lookup, parent state is referenced
1952                          * and should not be freed.
1953                          */
1954                         if (IS_IP4_FLOW_ID(&id))
1955                                 DPARENT_COUNT_DEC(
1956                                     ((struct dyn_ipv4_state *)rule)->limit);
1957 #ifdef INET6
1958                         else if (IS_IP6_FLOW_ID(&id))
1959                                 DPARENT_COUNT_DEC(
1960                                     ((struct dyn_ipv6_state *)rule)->limit);
1961 #endif
1962                 }
1963         }
1964         /*
1965          * EEXIST means that simultaneous thread has created this
1966          * state. Consider this as success.
1967          *
1968          * XXXAE: should we invalidate 'info' content here?
1969          */
1970         if (ret == EEXIST)
1971                 return (0);
1972         return (ret);
1973 }
1974
1975 /*
1976  * Install dynamic state.
1977  *  chain - ipfw's instance;
1978  *  rule - the parent rule that installs the state;
1979  *  cmd - opcode that installs the state;
1980  *  args - ipfw arguments;
1981  *  ulp - upper level protocol header;
1982  *  pktlen - packet length;
1983  *  info - dynamic state lookup info;
1984  *  tablearg - tablearg id.
1985  *
1986  * Returns non-zero value (failure) if state is not installed because
1987  * of errors or because session limitations are enforced.
1988  */
1989 int
1990 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1991     const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1992     const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1993     uint32_t tablearg)
1994 {
1995         uint32_t limit;
1996         uint16_t limit_mask;
1997
1998         if (cmd->o.opcode == O_LIMIT) {
1999                 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
2000                 limit_mask = cmd->limit_mask;
2001         } else {
2002                 limit = 0;
2003                 limit_mask = 0;
2004         }
2005         return (dyn_install_state(&args->f_id,
2006 #ifdef INET6
2007             IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2008 #endif
2009             0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2010             limit_mask, cmd->o.arg1, cmd->o.opcode));
2011 }
2012
2013 /*
2014  * Free safe to remove state entries from expired lists.
2015  */
2016 static void
2017 dyn_free_states(struct ip_fw_chain *chain)
2018 {
2019         struct dyn_ipv4_state *s4, *s4n;
2020 #ifdef INET6
2021         struct dyn_ipv6_state *s6, *s6n;
2022 #endif
2023         int cached_count, i;
2024
2025         /*
2026          * We keep pointers to objects that are in use on each CPU
2027          * in the per-cpu dyn_hp pointer. When object is going to be
2028          * removed, first of it is unlinked from the corresponding
2029          * list. This leads to changing of dyn_bucket_xxx_delver version.
2030          * Unlinked objects is placed into corresponding dyn_expired_xxx
2031          * list. Reader that is going to dereference object pointer checks
2032          * dyn_bucket_xxx_delver version before and after storing pointer
2033          * into dyn_hp. If version is the same, the object is protected
2034          * from freeing and it is safe to dereference. Othervise reader
2035          * tries to iterate list again from the beginning, but this object
2036          * now unlinked and thus will not be accessible.
2037          *
2038          * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2039          * It does not matter that some pointer can be changed in
2040          * time while we are copying. We need to check, that objects
2041          * removed in the previous pass are not in use. And if dyn_hp
2042          * pointer does not contain it in the time when we are copying,
2043          * it will not appear there, because it is already unlinked.
2044          * And for new pointers we will not free objects that will be
2045          * unlinked in this pass.
2046          */
2047         cached_count = 0;
2048         CPU_FOREACH(i) {
2049                 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2050                 if (dyn_hp_cache[cached_count] != NULL)
2051                         cached_count++;
2052         }
2053
2054         /*
2055          * Free expired states that are safe to free.
2056          * Check each entry from previous pass in the dyn_expired_xxx
2057          * list, if pointer to the object is in the dyn_hp_cache array,
2058          * keep it until next pass. Otherwise it is safe to free the
2059          * object.
2060          *
2061          * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2062          */
2063 #define DYN_FREE_STATES(s, next, name)          do {                    \
2064         s = SLIST_FIRST(&V_dyn_expired_ ## name);                       \
2065         while (s != NULL) {                                             \
2066                 next = SLIST_NEXT(s, expired);                          \
2067                 for (i = 0; i < cached_count; i++)                      \
2068                         if (dyn_hp_cache[i] == s)                       \
2069                                 break;                                  \
2070                 if (i == cached_count) {                                \
2071                         if (s->type == O_LIMIT_PARENT &&                \
2072                             s->limit->count != 0) {                     \
2073                                 s = next;                               \
2074                                 continue;                               \
2075                         }                                               \
2076                         SLIST_REMOVE(&V_dyn_expired_ ## name,           \
2077                             s, dyn_ ## name ## _state, expired);        \
2078                         if (s->type == O_LIMIT_PARENT)                  \
2079                                 uma_zfree(V_dyn_parent_zone, s->limit); \
2080                         else                                            \
2081                                 uma_zfree(V_dyn_data_zone, s->data);    \
2082                         uma_zfree(V_dyn_ ## name ## _zone, s);          \
2083                 }                                                       \
2084                 s = next;                                               \
2085         }                                                               \
2086 } while (0)
2087
2088         /*
2089          * Protect access to expired lists with DYN_EXPIRED_LOCK.
2090          * Userland can invoke ipfw_expire_dyn_states() to delete
2091          * specific states, this will lead to modification of expired
2092          * lists.
2093          *
2094          * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2095          *        IPFW_UH_WLOCK to protect access to these lists.
2096          */
2097         DYN_EXPIRED_LOCK();
2098         DYN_FREE_STATES(s4, s4n, ipv4);
2099 #ifdef INET6
2100         DYN_FREE_STATES(s6, s6n, ipv6);
2101 #endif
2102         DYN_EXPIRED_UNLOCK();
2103 #undef DYN_FREE_STATES
2104 }
2105
2106 /*
2107  * Returns:
2108  * 0 when state is not matched by specified range;
2109  * 1 when state is matched by specified range;
2110  * 2 when state is matched by specified range and requested deletion of
2111  *   dynamic states.
2112  */
2113 static int
2114 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2115 {
2116
2117         MPASS(rt != NULL);
2118         /* flush all states */
2119         if (rt->flags & IPFW_RCFLAG_ALL) {
2120                 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2121                         return (2); /* forced */
2122                 return (1);
2123         }
2124         if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2125                 return (0);
2126         if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2127             (rulenum < rt->start_rule || rulenum > rt->end_rule))
2128                 return (0);
2129         if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2130                 return (2);
2131         return (1);
2132 }
2133
2134 static void
2135 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2136     struct ip_fw *rule, uint16_t kidx)
2137 {
2138         struct dyn_state_obj *obj;
2139
2140         /*
2141          * Do not acquire reference twice.
2142          * This can happen when rule deletion executed for
2143          * the same range, but different ruleset id.
2144          */
2145         if (data->flags & DYN_REFERENCED)
2146                 return;
2147
2148         IPFW_UH_WLOCK_ASSERT(ch);
2149         MPASS(kidx != 0);
2150
2151         data->flags |= DYN_REFERENCED;
2152         /* Reference the named object */
2153         obj = SRV_OBJECT(ch, kidx);
2154         obj->no.refcnt++;
2155         MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2156
2157         /* Reference the parent rule */
2158         rule->refcnt++;
2159 }
2160
2161 static void
2162 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2163     struct ip_fw *rule, uint16_t kidx)
2164 {
2165         struct dyn_state_obj *obj;
2166
2167         IPFW_UH_WLOCK_ASSERT(ch);
2168         MPASS(kidx != 0);
2169
2170         obj = SRV_OBJECT(ch, kidx);
2171         if (obj->no.refcnt == 1)
2172                 dyn_destroy(ch, &obj->no);
2173         else
2174                 obj->no.refcnt--;
2175
2176         if (--rule->refcnt == 1)
2177                 ipfw_free_rule(rule);
2178 }
2179
2180 /*
2181  * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2182  * O_LIMIT state is created when new connection is going to be established
2183  * and there is no matching state. So, since the old parent rule was deleted
2184  * we can't create new states with old parent, and thus we can not account
2185  * new connections with already established connections, and can not do
2186  * proper limiting.
2187  */
2188 static int
2189 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2190     const ipfw_range_tlv *rt)
2191 {
2192         struct ip_fw *rule;
2193         int ret;
2194
2195         if (s->type == O_LIMIT_PARENT) {
2196                 rule = s->limit->parent;
2197                 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2198         }
2199
2200         rule = s->data->parent;
2201         if (s->type == O_LIMIT)
2202                 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2203
2204         ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2205         if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2206                 return (ret);
2207
2208         dyn_acquire_rule(ch, s->data, rule, s->kidx);
2209         return (0);
2210 }
2211
2212 #ifdef INET6
2213 static int
2214 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2215     const ipfw_range_tlv *rt)
2216 {
2217         struct ip_fw *rule;
2218         int ret;
2219
2220         if (s->type == O_LIMIT_PARENT) {
2221                 rule = s->limit->parent;
2222                 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2223         }
2224
2225         rule = s->data->parent;
2226         if (s->type == O_LIMIT)
2227                 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2228
2229         ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2230         if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2231                 return (ret);
2232
2233         dyn_acquire_rule(ch, s->data, rule, s->kidx);
2234         return (0);
2235 }
2236 #endif
2237
2238 /*
2239  * Unlink expired entries from states lists.
2240  * @rt can be used to specify the range of states for deletion.
2241  */
2242 static void
2243 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2244 {
2245         struct dyn_ipv4_slist expired_ipv4;
2246 #ifdef INET6
2247         struct dyn_ipv6_slist expired_ipv6;
2248         struct dyn_ipv6_state *s6, *s6n, *s6p;
2249 #endif
2250         struct dyn_ipv4_state *s4, *s4n, *s4p;
2251         void *rule;
2252         int bucket, removed, length, max_length;
2253
2254         IPFW_UH_WLOCK_ASSERT(ch);
2255
2256         /*
2257          * Unlink expired states from each bucket.
2258          * With acquired bucket lock iterate entries of each lists:
2259          * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2260          * and unlink entry from the list, link entry into temporary
2261          * expired_xxx lists then bump "del" bucket version.
2262          *
2263          * When an entry is removed, corresponding states counter is
2264          * decremented. If entry has O_LIMIT type, parent's reference
2265          * counter is decremented.
2266          *
2267          * NOTE: this function can be called from userspace context
2268          * when user deletes rules. In this case all matched states
2269          * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2270          * in the expired lists until reference counter become zero.
2271          */
2272 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra)  do {    \
2273         length = 0;                                                     \
2274         removed = 0;                                                    \
2275         prev = NULL;                                                    \
2276         s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]);                   \
2277         while (s != NULL) {                                             \
2278                 next = CK_SLIST_NEXT(s, entry);                         \
2279                 if ((TIME_LEQ((s)->exp, time_uptime) && extra) ||       \
2280                     (rt != NULL &&                                      \
2281                      dyn_match_ ## af ## _state(ch, s, rt))) {          \
2282                         if (prev != NULL)                               \
2283                                 CK_SLIST_REMOVE_AFTER(prev, entry);     \
2284                         else                                            \
2285                                 CK_SLIST_REMOVE_HEAD(                   \
2286                                     &V_dyn_ ## name [bucket], entry);   \
2287                         removed++;                                      \
2288                         SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2289                         if (s->type == O_LIMIT_PARENT)                  \
2290                                 DYN_COUNT_DEC(dyn_parent_count);        \
2291                         else {                                          \
2292                                 DYN_COUNT_DEC(dyn_count);               \
2293                                 if (s->data->flags & DYN_REFERENCED) {  \
2294                                         rule = s->data->parent;         \
2295                                         if (s->type == O_LIMIT)         \
2296                                                 rule = ((__typeof(s))   \
2297                                                     rule)->limit->parent;\
2298                                         dyn_release_rule(ch, s->data,   \
2299                                             rule, s->kidx);             \
2300                                 }                                       \
2301                                 if (s->type == O_LIMIT) {               \
2302                                         s = s->data->parent;            \
2303                                         DPARENT_COUNT_DEC(s->limit);    \
2304                                 }                                       \
2305                         }                                               \
2306                 } else {                                                \
2307                         prev = s;                                       \
2308                         length++;                                       \
2309                 }                                                       \
2310                 s = next;                                               \
2311         }                                                               \
2312         if (removed != 0)                                               \
2313                 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del);          \
2314         if (length > max_length)                                \
2315                 max_length = length;                            \
2316 } while (0)
2317
2318         SLIST_INIT(&expired_ipv4);
2319 #ifdef INET6
2320         SLIST_INIT(&expired_ipv6);
2321 #endif
2322         max_length = 0;
2323         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2324                 DYN_BUCKET_LOCK(bucket);
2325                 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2326                 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2327                     ipv4_parent, (s4->limit->count == 0));
2328 #ifdef INET6
2329                 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2330                 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2331                     ipv6_parent, (s6->limit->count == 0));
2332 #endif
2333                 DYN_BUCKET_UNLOCK(bucket);
2334         }
2335         /* Update curr_max_length for statistics. */
2336         V_curr_max_length = max_length;
2337         /*
2338          * Concatenate temporary lists with global expired lists.
2339          */
2340         DYN_EXPIRED_LOCK();
2341         SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2342             dyn_ipv4_state, expired);
2343 #ifdef INET6
2344         SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2345             dyn_ipv6_state, expired);
2346 #endif
2347         DYN_EXPIRED_UNLOCK();
2348 #undef DYN_UNLINK_STATES
2349 #undef DYN_UNREF_STATES
2350 }
2351
2352 static struct mbuf *
2353 dyn_mgethdr(int len, uint16_t fibnum)
2354 {
2355         struct mbuf *m;
2356
2357         m = m_gethdr(M_NOWAIT, MT_DATA);
2358         if (m == NULL)
2359                 return (NULL);
2360 #ifdef MAC
2361         mac_netinet_firewall_send(m);
2362 #endif
2363         M_SETFIB(m, fibnum);
2364         m->m_data += max_linkhdr;
2365         m->m_flags |= M_SKIP_FIREWALL;
2366         m->m_len = m->m_pkthdr.len = len;
2367         bzero(m->m_data, len);
2368         return (m);
2369 }
2370
2371 static void
2372 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2373     uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2374 {
2375         struct tcphdr *tcp;
2376         struct ip *ip;
2377
2378         ip = mtod(m, struct ip *);
2379         ip->ip_v = 4;
2380         ip->ip_hl = sizeof(*ip) >> 2;
2381         ip->ip_tos = IPTOS_LOWDELAY;
2382         ip->ip_len = htons(m->m_len);
2383         ip->ip_off |= htons(IP_DF);
2384         ip->ip_ttl = V_ip_defttl;
2385         ip->ip_p = IPPROTO_TCP;
2386         ip->ip_src.s_addr = htonl(src);
2387         ip->ip_dst.s_addr = htonl(dst);
2388
2389         tcp = mtodo(m, sizeof(struct ip));
2390         tcp->th_sport = htons(sport);
2391         tcp->th_dport = htons(dport);
2392         tcp->th_off = sizeof(struct tcphdr) >> 2;
2393         tcp->th_seq = htonl(seq);
2394         tcp->th_ack = htonl(ack);
2395         tcp->th_flags = TH_ACK;
2396         tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2397             htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2398
2399         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2400         m->m_pkthdr.csum_flags = CSUM_TCP;
2401 }
2402
2403 static void
2404 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2405 {
2406         struct mbuf *m;
2407
2408         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2409                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2410                     s->data->fibnum);
2411                 if (m != NULL) {
2412                         dyn_make_keepalive_ipv4(m, s->dst, s->src,
2413                             s->data->ack_fwd - 1, s->data->ack_rev,
2414                             s->dport, s->sport);
2415                         if (mbufq_enqueue(q, m)) {
2416                                 m_freem(m);
2417                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2418                                     "keepalive queue is reached.\n");
2419                                 return;
2420                         }
2421                 }
2422         }
2423
2424         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2425                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2426                     s->data->fibnum);
2427                 if (m != NULL) {
2428                         dyn_make_keepalive_ipv4(m, s->src, s->dst,
2429                             s->data->ack_rev - 1, s->data->ack_fwd,
2430                             s->sport, s->dport);
2431                         if (mbufq_enqueue(q, m)) {
2432                                 m_freem(m);
2433                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2434                                     "keepalive queue is reached.\n");
2435                                 return;
2436                         }
2437                 }
2438         }
2439 }
2440
2441 /*
2442  * Prepare and send keep-alive packets.
2443  */
2444 static void
2445 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2446 {
2447         struct mbufq q;
2448         struct mbuf *m;
2449         struct dyn_ipv4_state *s;
2450         uint32_t bucket;
2451
2452         mbufq_init(&q, INT_MAX);
2453         IPFW_UH_RLOCK(chain);
2454         /*
2455          * It is safe to not use hazard pointer and just do lockless
2456          * access to the lists, because states entries can not be deleted
2457          * while we hold IPFW_UH_RLOCK.
2458          */
2459         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2460                 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2461                         /*
2462                          * Only established TCP connections that will
2463                          * become expired withing dyn_keepalive_interval.
2464                          */
2465                         if (s->proto != IPPROTO_TCP ||
2466                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2467                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2468                                 s->data->expire))
2469                                 continue;
2470                         dyn_enqueue_keepalive_ipv4(&q, s);
2471                 }
2472         }
2473         IPFW_UH_RUNLOCK(chain);
2474         while ((m = mbufq_dequeue(&q)) != NULL)
2475                 ip_output(m, NULL, NULL, 0, NULL, NULL);
2476 }
2477
2478 #ifdef INET6
2479 static void
2480 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2481     const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2482     uint16_t sport, uint16_t dport)
2483 {
2484         struct tcphdr *tcp;
2485         struct ip6_hdr *ip6;
2486
2487         ip6 = mtod(m, struct ip6_hdr *);
2488         ip6->ip6_vfc |= IPV6_VERSION;
2489         ip6->ip6_plen = htons(sizeof(struct tcphdr));
2490         ip6->ip6_nxt = IPPROTO_TCP;
2491         ip6->ip6_hlim = IPV6_DEFHLIM;
2492         ip6->ip6_src = *src;
2493         if (IN6_IS_ADDR_LINKLOCAL(src))
2494                 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2495         ip6->ip6_dst = *dst;
2496         if (IN6_IS_ADDR_LINKLOCAL(dst))
2497                 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2498
2499         tcp = mtodo(m, sizeof(struct ip6_hdr));
2500         tcp->th_sport = htons(sport);
2501         tcp->th_dport = htons(dport);
2502         tcp->th_off = sizeof(struct tcphdr) >> 2;
2503         tcp->th_seq = htonl(seq);
2504         tcp->th_ack = htonl(ack);
2505         tcp->th_flags = TH_ACK;
2506         tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2507             IPPROTO_TCP, 0);
2508
2509         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2510         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2511 }
2512
2513 static void
2514 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2515 {
2516         struct mbuf *m;
2517
2518         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2519                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2520                     sizeof(struct tcphdr), s->data->fibnum);
2521                 if (m != NULL) {
2522                         dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2523                             s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2524                             s->dport, s->sport);
2525                         if (mbufq_enqueue(q, m)) {
2526                                 m_freem(m);
2527                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2528                                     "keepalive queue is reached.\n");
2529                                 return;
2530                         }
2531                 }
2532         }
2533
2534         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2535                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2536                     sizeof(struct tcphdr), s->data->fibnum);
2537                 if (m != NULL) {
2538                         dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2539                             s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2540                             s->sport, s->dport);
2541                         if (mbufq_enqueue(q, m)) {
2542                                 m_freem(m);
2543                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2544                                     "keepalive queue is reached.\n");
2545                                 return;
2546                         }
2547                 }
2548         }
2549 }
2550
2551 static void
2552 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2553 {
2554         struct mbufq q;
2555         struct mbuf *m;
2556         struct dyn_ipv6_state *s;
2557         uint32_t bucket;
2558
2559         mbufq_init(&q, INT_MAX);
2560         IPFW_UH_RLOCK(chain);
2561         /*
2562          * It is safe to not use hazard pointer and just do lockless
2563          * access to the lists, because states entries can not be deleted
2564          * while we hold IPFW_UH_RLOCK.
2565          */
2566         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2567                 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2568                         /*
2569                          * Only established TCP connections that will
2570                          * become expired withing dyn_keepalive_interval.
2571                          */
2572                         if (s->proto != IPPROTO_TCP ||
2573                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2574                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2575                                 s->data->expire))
2576                                 continue;
2577                         dyn_enqueue_keepalive_ipv6(&q, s);
2578                 }
2579         }
2580         IPFW_UH_RUNLOCK(chain);
2581         while ((m = mbufq_dequeue(&q)) != NULL)
2582                 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2583 }
2584 #endif /* INET6 */
2585
2586 static void
2587 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new)
2588 {
2589 #ifdef INET6
2590         struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2591         uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2592         struct dyn_ipv6_state *s6;
2593 #endif
2594         struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2595         uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2596         struct dyn_ipv4_state *s4;
2597         struct mtx *bucket_lock;
2598         void *tmp;
2599         uint32_t bucket;
2600
2601         MPASS(powerof2(new));
2602         DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2603         /*
2604          * Allocate and initialize new lists.
2605          * XXXAE: on memory pressure this can disable callout timer.
2606          */
2607         bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2608             M_WAITOK | M_ZERO);
2609         ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2610             M_WAITOK | M_ZERO);
2611         ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2612             M_WAITOK | M_ZERO);
2613         ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2614         ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2615         ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2616             M_WAITOK | M_ZERO);
2617         ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2618             M_WAITOK | M_ZERO);
2619 #ifdef INET6
2620         ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2621             M_WAITOK | M_ZERO);
2622         ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2623             M_WAITOK | M_ZERO);
2624         ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2625         ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2626         ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2627             M_WAITOK | M_ZERO);
2628         ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2629             M_WAITOK | M_ZERO);
2630 #endif
2631         for (bucket = 0; bucket < new; bucket++) {
2632                 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2633                 CK_SLIST_INIT(&ipv4[bucket]);
2634                 CK_SLIST_INIT(&ipv4_parent[bucket]);
2635 #ifdef INET6
2636                 CK_SLIST_INIT(&ipv6[bucket]);
2637                 CK_SLIST_INIT(&ipv6_parent[bucket]);
2638 #endif
2639         }
2640
2641 #define DYN_RELINK_STATES(s, hval, i, head, ohead)      do {            \
2642         while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) {     \
2643                 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry);       \
2644                 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)],   \
2645                     s, entry);                                          \
2646         }                                                               \
2647 } while (0)
2648         /*
2649          * Prevent rules changing from userland.
2650          */
2651         IPFW_UH_WLOCK(chain);
2652         /*
2653          * Hold traffic processing until we finish resize to
2654          * prevent access to states lists.
2655          */
2656         IPFW_WLOCK(chain);
2657         /* Re-link all dynamic states */
2658         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2659                 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2660                 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2661                     ipv4_parent);
2662 #ifdef INET6
2663                 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2664                 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2665                     ipv6_parent);
2666 #endif
2667         }
2668
2669 #define DYN_SWAP_PTR(old, new, tmp)     do {            \
2670         tmp = old;                                      \
2671         old = new;                                      \
2672         new = tmp;                                      \
2673 } while (0)
2674         /* Swap pointers */
2675         DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2676         DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2677         DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2678         DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2679         DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2680         DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2681         DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2682
2683 #ifdef INET6
2684         DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2685         DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2686         DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2687         DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2688         DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2689         DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2690 #endif
2691         bucket = V_curr_dyn_buckets;
2692         V_curr_dyn_buckets = new;
2693
2694         IPFW_WUNLOCK(chain);
2695         IPFW_UH_WUNLOCK(chain);
2696
2697         /* Release old resources */
2698         while (bucket-- != 0)
2699                 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2700         free(bucket_lock, M_IPFW);
2701         free(ipv4, M_IPFW);
2702         free(ipv4_parent, M_IPFW);
2703         free(ipv4_add, M_IPFW);
2704         free(ipv4_parent_add, M_IPFW);
2705         free(ipv4_del, M_IPFW);
2706         free(ipv4_parent_del, M_IPFW);
2707 #ifdef INET6
2708         free(ipv6, M_IPFW);
2709         free(ipv6_parent, M_IPFW);
2710         free(ipv6_add, M_IPFW);
2711         free(ipv6_parent_add, M_IPFW);
2712         free(ipv6_del, M_IPFW);
2713         free(ipv6_parent_del, M_IPFW);
2714 #endif
2715 }
2716
2717 /*
2718  * This function is used to perform various maintenance
2719  * on dynamic hash lists. Currently it is called every second.
2720  */
2721 static void
2722 dyn_tick(void *vnetx)
2723 {
2724         uint32_t buckets;
2725
2726         CURVNET_SET((struct vnet *)vnetx);
2727         /*
2728          * First free states unlinked in previous passes.
2729          */
2730         dyn_free_states(&V_layer3_chain);
2731         /*
2732          * Now unlink others expired states.
2733          * We use IPFW_UH_WLOCK to avoid concurrent call of
2734          * dyn_expire_states(). It is the only function that does
2735          * deletion of state entries from states lists.
2736          */
2737         IPFW_UH_WLOCK(&V_layer3_chain);
2738         dyn_expire_states(&V_layer3_chain, NULL);
2739         IPFW_UH_WUNLOCK(&V_layer3_chain);
2740         /*
2741          * Send keepalives if they are enabled and the time has come.
2742          */
2743         if (V_dyn_keepalive != 0 &&
2744             V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2745                 V_dyn_keepalive_last = time_uptime;
2746                 dyn_send_keepalive_ipv4(&V_layer3_chain);
2747 #ifdef INET6
2748                 dyn_send_keepalive_ipv6(&V_layer3_chain);
2749 #endif
2750         }
2751         /*
2752          * Check if we need to resize the hash:
2753          * if current number of states exceeds number of buckets in hash,
2754          * and dyn_buckets_max permits to grow the number of buckets, then
2755          * do it. Grow hash size to the minimum power of 2 which is bigger
2756          * than current states count.
2757          */
2758         if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2759             (V_curr_dyn_buckets < V_dyn_count / 2 || (
2760             V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2761                 buckets = 1 << fls(V_dyn_count);
2762                 if (buckets > V_dyn_buckets_max)
2763                         buckets = V_dyn_buckets_max;
2764                 dyn_grow_hashtable(&V_layer3_chain, buckets);
2765         }
2766
2767         callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2768         CURVNET_RESTORE();
2769 }
2770
2771 void
2772 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2773 {
2774         /*
2775          * Do not perform any checks if we currently have no dynamic states
2776          */
2777         if (V_dyn_count == 0)
2778                 return;
2779
2780         IPFW_UH_WLOCK_ASSERT(chain);
2781         dyn_expire_states(chain, rt);
2782 }
2783
2784 /*
2785  * Pass through all states and reset eaction for orphaned rules.
2786  */
2787 void
2788 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id,
2789     uint16_t default_id, uint16_t instance_id)
2790 {
2791 #ifdef INET6
2792         struct dyn_ipv6_state *s6;
2793 #endif
2794         struct dyn_ipv4_state *s4;
2795         struct ip_fw *rule;
2796         uint32_t bucket;
2797
2798 #define DYN_RESET_EACTION(s, h, b)                                      \
2799         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
2800                 if ((s->data->flags & DYN_REFERENCED) == 0)             \
2801                         continue;                                       \
2802                 rule = s->data->parent;                                 \
2803                 if (s->type == O_LIMIT)                                 \
2804                         rule = ((__typeof(s))rule)->limit->parent;      \
2805                 ipfw_reset_eaction(ch, rule, eaction_id,                \
2806                     default_id, instance_id);                           \
2807         }
2808
2809         IPFW_UH_WLOCK_ASSERT(ch);
2810         if (V_dyn_count == 0)
2811                 return;
2812         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2813                 DYN_RESET_EACTION(s4, ipv4, bucket);
2814 #ifdef INET6
2815                 DYN_RESET_EACTION(s6, ipv6, bucket);
2816 #endif
2817         }
2818 }
2819
2820 /*
2821  * Returns size of dynamic states in legacy format
2822  */
2823 int
2824 ipfw_dyn_len(void)
2825 {
2826
2827         return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2828 }
2829
2830 /*
2831  * Returns number of dynamic states.
2832  * Marks every named object index used by dynamic states with bit in @bmask.
2833  * Returns number of named objects accounted in bmask via @nocnt.
2834  * Used by dump format v1 (current).
2835  */
2836 uint32_t
2837 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2838 {
2839 #ifdef INET6
2840         struct dyn_ipv6_state *s6;
2841 #endif
2842         struct dyn_ipv4_state *s4;
2843         uint32_t bucket;
2844
2845 #define DYN_COUNT_OBJECTS(s, h, b)                                      \
2846         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
2847                 MPASS(s->kidx != 0);                                    \
2848                 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME,   \
2849                     s->kidx) != 0)                                      \
2850                         (*nocnt)++;                                     \
2851         }
2852
2853         IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2854
2855         /* No need to pass through all the buckets. */
2856         *nocnt = 0;
2857         if (V_dyn_count + V_dyn_parent_count == 0)
2858                 return (0);
2859
2860         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2861                 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2862 #ifdef INET6
2863                 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2864 #endif
2865         }
2866
2867         return (V_dyn_count + V_dyn_parent_count);
2868 }
2869
2870 /*
2871  * Check if rule contains at least one dynamic opcode.
2872  *
2873  * Returns 1 if such opcode is found, 0 otherwise.
2874  */
2875 int
2876 ipfw_is_dyn_rule(struct ip_fw *rule)
2877 {
2878         int cmdlen, l;
2879         ipfw_insn *cmd;
2880
2881         l = rule->cmd_len;
2882         cmd = rule->cmd;
2883         cmdlen = 0;
2884         for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2885                 cmdlen = F_LEN(cmd);
2886
2887                 switch (cmd->opcode) {
2888                 case O_LIMIT:
2889                 case O_KEEP_STATE:
2890                 case O_PROBE_STATE:
2891                 case O_CHECK_STATE:
2892                         return (1);
2893                 }
2894         }
2895
2896         return (0);
2897 }
2898
2899 static void
2900 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx, uint8_t set,
2901     ipfw_dyn_rule *dst)
2902 {
2903
2904         dst->dyn_type = O_LIMIT_PARENT;
2905         dst->kidx = kidx;
2906         dst->count = (uint16_t)DPARENT_COUNT(p);
2907         dst->expire = TIME_LEQ(p->expire, time_uptime) ?  0:
2908             p->expire - time_uptime;
2909
2910         /* 'rule' is used to pass up the rule number and set */
2911         memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2912
2913         /* store set number into high word of dst->rule pointer. */
2914         memcpy((char *)&dst->rule + sizeof(p->rulenum), &set, sizeof(set));
2915
2916         /* unused fields */
2917         dst->pcnt = 0;
2918         dst->bcnt = 0;
2919         dst->parent = NULL;
2920         dst->state = 0;
2921         dst->ack_fwd = 0;
2922         dst->ack_rev = 0;
2923         dst->bucket = p->hashval;
2924         /*
2925          * The legacy userland code will interpret a NULL here as a marker
2926          * for the last dynamic rule.
2927          */
2928         dst->next = (ipfw_dyn_rule *)1;
2929 }
2930
2931 static void
2932 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2933     uint8_t set, ipfw_dyn_rule *dst)
2934 {
2935
2936         dst->dyn_type = type;
2937         dst->kidx = kidx;
2938         dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2939         dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2940         dst->expire = TIME_LEQ(data->expire, time_uptime) ?  0:
2941             data->expire - time_uptime;
2942
2943         /* 'rule' is used to pass up the rule number and set */
2944         memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2945
2946         /* store set number into high word of dst->rule pointer. */
2947         memcpy((char *)&dst->rule + sizeof(data->rulenum), &set, sizeof(set));
2948
2949         dst->state = data->state;
2950         if (data->flags & DYN_REFERENCED)
2951                 dst->state |= IPFW_DYN_ORPHANED;
2952
2953         /* unused fields */
2954         dst->parent = NULL;
2955         dst->ack_fwd = data->ack_fwd;
2956         dst->ack_rev = data->ack_rev;
2957         dst->count = 0;
2958         dst->bucket = data->hashval;
2959         /*
2960          * The legacy userland code will interpret a NULL here as a marker
2961          * for the last dynamic rule.
2962          */
2963         dst->next = (ipfw_dyn_rule *)1;
2964 }
2965
2966 static void
2967 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2968 {
2969         struct ip_fw *rule;
2970
2971         switch (s->type) {
2972         case O_LIMIT_PARENT:
2973                 rule = s->limit->parent;
2974                 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
2975                 break;
2976         default:
2977                 rule = s->data->parent;
2978                 if (s->type == O_LIMIT)
2979                         rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2980                 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
2981         }
2982
2983         dst->id.dst_ip = s->dst;
2984         dst->id.src_ip = s->src;
2985         dst->id.dst_port = s->dport;
2986         dst->id.src_port = s->sport;
2987         dst->id.fib = s->data->fibnum;
2988         dst->id.proto = s->proto;
2989         dst->id._flags = 0;
2990         dst->id.addr_type = 4;
2991
2992         memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
2993         memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
2994         dst->id.flow_id6 = dst->id.extra = 0;
2995 }
2996
2997 #ifdef INET6
2998 static void
2999 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3000 {
3001         struct ip_fw *rule;
3002
3003         switch (s->type) {
3004         case O_LIMIT_PARENT:
3005                 rule = s->limit->parent;
3006                 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3007                 break;
3008         default:
3009                 rule = s->data->parent;
3010                 if (s->type == O_LIMIT)
3011                         rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3012                 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3013         }
3014
3015         dst->id.src_ip6 = s->src;
3016         dst->id.dst_ip6 = s->dst;
3017         dst->id.dst_port = s->dport;
3018         dst->id.src_port = s->sport;
3019         dst->id.fib = s->data->fibnum;
3020         dst->id.proto = s->proto;
3021         dst->id._flags = 0;
3022         dst->id.addr_type = 6;
3023
3024         dst->id.dst_ip = dst->id.src_ip = 0;
3025         dst->id.flow_id6 = dst->id.extra = 0;
3026 }
3027 #endif /* INET6 */
3028
3029 /*
3030  * Fills the buffer given by @sd with dynamic states.
3031  * Used by dump format v1 (current).
3032  *
3033  * Returns 0 on success.
3034  */
3035 int
3036 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3037 {
3038 #ifdef INET6
3039         struct dyn_ipv6_state *s6;
3040 #endif
3041         struct dyn_ipv4_state *s4;
3042         ipfw_obj_dyntlv *dst, *last;
3043         ipfw_obj_ctlv *ctlv;
3044         uint32_t bucket;
3045
3046         if (V_dyn_count == 0)
3047                 return (0);
3048
3049         /*
3050          * IPFW_UH_RLOCK garantees that another userland request
3051          * and callout thread will not delete entries from states
3052          * lists.
3053          */
3054         IPFW_UH_RLOCK_ASSERT(chain);
3055
3056         ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3057         if (ctlv == NULL)
3058                 return (ENOMEM);
3059         ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3060         ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3061         last = NULL;
3062
3063 #define DYN_EXPORT_STATES(s, af, h, b)                          \
3064         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
3065                 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd,        \
3066                     sizeof(ipfw_obj_dyntlv));                           \
3067                 if (dst == NULL)                                        \
3068                         return (ENOMEM);                                \
3069                 dyn_export_ ## af ## _state(s, &dst->state);            \
3070                 dst->head.length = sizeof(ipfw_obj_dyntlv);             \
3071                 dst->head.type = IPFW_TLV_DYN_ENT;                      \
3072                 last = dst;                                             \
3073         }
3074
3075         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3076                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3077                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3078 #ifdef INET6
3079                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3080                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3081 #endif /* INET6 */
3082         }
3083
3084         /* mark last dynamic rule */
3085         if (last != NULL)
3086                 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3087         return (0);
3088 #undef DYN_EXPORT_STATES
3089 }
3090
3091 /*
3092  * Fill given buffer with dynamic states (legacy format).
3093  * IPFW_UH_RLOCK has to be held while calling.
3094  */
3095 void
3096 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
3097 {
3098 #ifdef INET6
3099         struct dyn_ipv6_state *s6;
3100 #endif
3101         struct dyn_ipv4_state *s4;
3102         ipfw_dyn_rule *p, *last = NULL;
3103         char *bp;
3104         uint32_t bucket;
3105
3106         if (V_dyn_count == 0)
3107                 return;
3108         bp = *pbp;
3109
3110         IPFW_UH_RLOCK_ASSERT(chain);
3111
3112 #define DYN_EXPORT_STATES(s, af, head, b)                               \
3113         CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) {                \
3114                 if (bp + sizeof(*p) > ep)                               \
3115                         break;                                          \
3116                 p = (ipfw_dyn_rule *)bp;                                \
3117                 dyn_export_ ## af ## _state(s, p);                      \
3118                 last = p;                                               \
3119                 bp += sizeof(*p);                                       \
3120         }
3121
3122         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3123                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3124                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3125 #ifdef INET6
3126                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3127                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3128 #endif /* INET6 */
3129         }
3130
3131         if (last != NULL) /* mark last dynamic rule */
3132                 last->next = NULL;
3133         *pbp = bp;
3134 #undef DYN_EXPORT_STATES
3135 }
3136
3137 void
3138 ipfw_dyn_init(struct ip_fw_chain *chain)
3139 {
3140
3141 #ifdef IPFIREWALL_JENKINSHASH
3142         V_dyn_hashseed = arc4random();
3143 #endif
3144         V_dyn_max = 16384;              /* max # of states */
3145         V_dyn_parent_max = 4096;        /* max # of parent states */
3146         V_dyn_buckets_max = 8192;       /* must be power of 2 */
3147
3148         V_dyn_ack_lifetime = 300;
3149         V_dyn_syn_lifetime = 20;
3150         V_dyn_fin_lifetime = 1;
3151         V_dyn_rst_lifetime = 1;
3152         V_dyn_udp_lifetime = 10;
3153         V_dyn_short_lifetime = 5;
3154
3155         V_dyn_keepalive_interval = 20;
3156         V_dyn_keepalive_period = 5;
3157         V_dyn_keepalive = 1;            /* send keepalives */
3158         V_dyn_keepalive_last = time_uptime;
3159
3160         V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3161             sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3162             UMA_ALIGN_PTR, 0);
3163         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3164
3165         V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3166             sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3167             UMA_ALIGN_PTR, 0);
3168         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3169
3170         SLIST_INIT(&V_dyn_expired_ipv4);
3171         V_dyn_ipv4 = NULL;
3172         V_dyn_ipv4_parent = NULL;
3173         V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3174             sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3175             UMA_ALIGN_PTR, 0);
3176
3177 #ifdef INET6
3178         SLIST_INIT(&V_dyn_expired_ipv6);
3179         V_dyn_ipv6 = NULL;
3180         V_dyn_ipv6_parent = NULL;
3181         V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3182             sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3183             UMA_ALIGN_PTR, 0);
3184 #endif
3185
3186         /* Initialize buckets. */
3187         V_curr_dyn_buckets = 0;
3188         V_dyn_bucket_lock = NULL;
3189         dyn_grow_hashtable(chain, 256);
3190
3191         if (IS_DEFAULT_VNET(curvnet))
3192                 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3193                     M_WAITOK | M_ZERO);
3194
3195         DYN_EXPIRED_LOCK_INIT();
3196         callout_init(&V_dyn_timeout, 1);
3197         callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3198         IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3199 }
3200
3201 void
3202 ipfw_dyn_uninit(int pass)
3203 {
3204 #ifdef INET6
3205         struct dyn_ipv6_state *s6;
3206 #endif
3207         struct dyn_ipv4_state *s4;
3208         int bucket;
3209
3210         if (pass == 0) {
3211                 callout_drain(&V_dyn_timeout);
3212                 return;
3213         }
3214         IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3215         DYN_EXPIRED_LOCK_DESTROY();
3216
3217 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en)     do {            \
3218         while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) {      \
3219                 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en);   \
3220                 if (s->type == O_LIMIT_PARENT)                          \
3221                         uma_zfree(V_dyn_parent_zone, s->limit);         \
3222                 else                                                    \
3223                         uma_zfree(V_dyn_data_zone, s->data);            \
3224                 uma_zfree(V_dyn_ ## af ## _zone, s);                    \
3225         }                                                               \
3226 } while (0)
3227         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3228                 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3229
3230                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3231                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3232                     entry);
3233 #ifdef INET6
3234                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3235                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3236                     entry);
3237 #endif /* INET6 */
3238         }
3239         DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3240 #ifdef INET6
3241         DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3242 #endif
3243 #undef DYN_FREE_STATES_FORCED
3244
3245         uma_zdestroy(V_dyn_ipv4_zone);
3246         uma_zdestroy(V_dyn_data_zone);
3247         uma_zdestroy(V_dyn_parent_zone);
3248 #ifdef INET6
3249         uma_zdestroy(V_dyn_ipv6_zone);
3250         free(V_dyn_ipv6, M_IPFW);
3251         free(V_dyn_ipv6_parent, M_IPFW);
3252         free(V_dyn_ipv6_add, M_IPFW);
3253         free(V_dyn_ipv6_parent_add, M_IPFW);
3254         free(V_dyn_ipv6_del, M_IPFW);
3255         free(V_dyn_ipv6_parent_del, M_IPFW);
3256 #endif
3257         free(V_dyn_bucket_lock, M_IPFW);
3258         free(V_dyn_ipv4, M_IPFW);
3259         free(V_dyn_ipv4_parent, M_IPFW);
3260         free(V_dyn_ipv4_add, M_IPFW);
3261         free(V_dyn_ipv4_parent_add, M_IPFW);
3262         free(V_dyn_ipv4_del, M_IPFW);
3263         free(V_dyn_ipv4_parent_del, M_IPFW);
3264         if (IS_DEFAULT_VNET(curvnet))
3265                 free(dyn_hp_cache, M_IPFW);
3266 }
3267
3268