]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netpfil/ipfw/ip_fw_dynamic.c
net: clean up empty lines in .c and .h files
[FreeBSD/FreeBSD.git] / sys / netpfil / ipfw / ip_fw_dynamic.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017-2018 Yandex LLC
5  * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipfw.h"
36 #ifndef INET
37 #error IPFIREWALL requires INET.
38 #endif /* INET */
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/pcpu.h>
47 #include <sys/queue.h>
48 #include <sys/rmlock.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/vnet.h>
57
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/ip_fw.h>
62 #include <netinet/tcp_var.h>
63 #include <netinet/udp.h>
64
65 #include <netinet/ip6.h>        /* IN6_ARE_ADDR_EQUAL */
66 #ifdef INET6
67 #include <netinet6/in6_var.h>
68 #include <netinet6/ip6_var.h>
69 #include <netinet6/scope6_var.h>
70 #endif
71
72 #include <netpfil/ipfw/ip_fw_private.h>
73
74 #include <machine/in_cksum.h>   /* XXX for in_cksum */
75
76 #ifdef MAC
77 #include <security/mac/mac_framework.h>
78 #endif
79
80 /*
81  * Description of dynamic states.
82  *
83  * Dynamic states are stored in lists accessed through a hash tables
84  * whose size is curr_dyn_buckets. This value can be modified through
85  * the sysctl variable dyn_buckets.
86  *
87  * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
88  * and dyn_ipv6_parent.
89  *
90  * When a packet is received, its address fields hashed, then matched
91  * against the entries in the corresponding list by addr_type.
92  * Dynamic states can be used for different purposes:
93  *  + stateful rules;
94  *  + enforcing limits on the number of sessions;
95  *  + in-kernel NAT (not implemented yet)
96  *
97  * The lifetime of dynamic states is regulated by dyn_*_lifetime,
98  * measured in seconds and depending on the flags.
99  *
100  * The total number of dynamic states is equal to UMA zone items count.
101  * The max number of dynamic states is dyn_max. When we reach
102  * the maximum number of rules we do not create anymore. This is
103  * done to avoid consuming too much memory, but also too much
104  * time when searching on each packet (ideally, we should try instead
105  * to put a limit on the length of the list on each bucket...).
106  *
107  * Each state holds a pointer to the parent ipfw rule so we know what
108  * action to perform. Dynamic rules are removed when the parent rule is
109  * deleted.
110  *
111  * There are some limitations with dynamic rules -- we do not
112  * obey the 'randomized match', and we do not do multiple
113  * passes through the firewall. XXX check the latter!!!
114  */
115
116 /* By default use jenkins hash function */
117 #define IPFIREWALL_JENKINSHASH
118
119 #define DYN_COUNTER_INC(d, dir, pktlen) do {    \
120         (d)->pcnt_ ## dir++;                    \
121         (d)->bcnt_ ## dir += pktlen;            \
122         } while (0)
123
124 #define DYN_REFERENCED          0x01
125 /*
126  * DYN_REFERENCED flag is used to show that state keeps reference to named
127  * object, and this reference should be released when state becomes expired.
128  */
129
130 struct dyn_data {
131         void            *parent;        /* pointer to parent rule */
132         uint32_t        chain_id;       /* cached ruleset id */
133         uint32_t        f_pos;          /* cached rule index */
134
135         uint32_t        hashval;        /* hash value used for hash resize */
136         uint16_t        fibnum;         /* fib used to send keepalives */
137         uint8_t         _pad[3];
138         uint8_t         flags;          /* internal flags */
139         uint16_t        rulenum;        /* parent rule number */
140         uint32_t        ruleid;         /* parent rule id */
141
142         uint32_t        state;          /* TCP session state and flags */
143         uint32_t        ack_fwd;        /* most recent ACKs in forward */
144         uint32_t        ack_rev;        /* and reverse direction (used */
145                                         /* to generate keepalives) */
146         uint32_t        sync;           /* synchronization time */
147         uint32_t        expire;         /* expire time */
148
149         uint64_t        pcnt_fwd;       /* bytes counter in forward */
150         uint64_t        bcnt_fwd;       /* packets counter in forward */
151         uint64_t        pcnt_rev;       /* bytes counter in reverse */
152         uint64_t        bcnt_rev;       /* packets counter in reverse */
153 };
154
155 #define DPARENT_COUNT_DEC(p)    do {                    \
156         MPASS(p->count > 0);                            \
157         ck_pr_dec_32(&(p)->count);                      \
158 } while (0)
159 #define DPARENT_COUNT_INC(p)    ck_pr_inc_32(&(p)->count)
160 #define DPARENT_COUNT(p)        ck_pr_load_32(&(p)->count)
161 struct dyn_parent {
162         void            *parent;        /* pointer to parent rule */
163         uint32_t        count;          /* number of linked states */
164         uint8_t         _pad[2];
165         uint16_t        rulenum;        /* parent rule number */
166         uint32_t        ruleid;         /* parent rule id */
167         uint32_t        hashval;        /* hash value used for hash resize */
168         uint32_t        expire;         /* expire time */
169 };
170
171 struct dyn_ipv4_state {
172         uint8_t         type;           /* State type */
173         uint8_t         proto;          /* UL Protocol */
174         uint16_t        kidx;           /* named object index */
175         uint16_t        sport, dport;   /* ULP source and destination ports */
176         in_addr_t       src, dst;       /* IPv4 source and destination */
177
178         union {
179                 struct dyn_data *data;
180                 struct dyn_parent *limit;
181         };
182         CK_SLIST_ENTRY(dyn_ipv4_state)  entry;
183         SLIST_ENTRY(dyn_ipv4_state)     expired;
184 };
185 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
186 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
187 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
188
189 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
190 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
191 #define V_dyn_ipv4                      VNET(dyn_ipv4)
192 #define V_dyn_ipv4_parent               VNET(dyn_ipv4_parent)
193 #define V_dyn_expired_ipv4              VNET(dyn_expired_ipv4)
194
195 #ifdef INET6
196 struct dyn_ipv6_state {
197         uint8_t         type;           /* State type */
198         uint8_t         proto;          /* UL Protocol */
199         uint16_t        kidx;           /* named object index */
200         uint16_t        sport, dport;   /* ULP source and destination ports */
201         struct in6_addr src, dst;       /* IPv6 source and destination */
202         uint32_t        zoneid;         /* IPv6 scope zone id */
203         union {
204                 struct dyn_data *data;
205                 struct dyn_parent *limit;
206         };
207         CK_SLIST_ENTRY(dyn_ipv6_state)  entry;
208         SLIST_ENTRY(dyn_ipv6_state)     expired;
209 };
210 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
211 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
212 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
213
214 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
215 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
216 #define V_dyn_ipv6                      VNET(dyn_ipv6)
217 #define V_dyn_ipv6_parent               VNET(dyn_ipv6_parent)
218 #define V_dyn_expired_ipv6              VNET(dyn_expired_ipv6)
219 #endif /* INET6 */
220
221 /*
222  * Per-CPU pointer indicates that specified state is currently in use
223  * and must not be reclaimed by expiration callout.
224  */
225 static void **dyn_hp_cache;
226 DPCPU_DEFINE_STATIC(void *, dyn_hp);
227 #define DYNSTATE_GET(cpu)       ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
228 #define DYNSTATE_PROTECT(v)     ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
229 #define DYNSTATE_RELEASE()      DYNSTATE_PROTECT(NULL)
230 #define DYNSTATE_CRITICAL_ENTER()       critical_enter()
231 #define DYNSTATE_CRITICAL_EXIT()        do {    \
232         DYNSTATE_RELEASE();                     \
233         critical_exit();                        \
234 } while (0);
235
236 /*
237  * We keep two version numbers, one is updated when new entry added to
238  * the list. Second is updated when an entry deleted from the list.
239  * Versions are updated under bucket lock.
240  *
241  * Bucket "add" version number is used to know, that in the time between
242  * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
243  * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
244  * not install some state in this bucket. Using this info we can avoid
245  * additional state lookup, because we are sure that we will not install
246  * the state twice.
247  *
248  * Also doing the tracking of bucket "del" version during lookup we can
249  * be sure, that state entry was not unlinked and freed in time between
250  * we read the state pointer and protect it with hazard pointer.
251  *
252  * An entry unlinked from CK list keeps unchanged until it is freed.
253  * Unlinked entries are linked into expired lists using "expired" field.
254  */
255
256 /*
257  * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
258  * dyn_bucket_lock is used to get write access to lists in specific bucket.
259  * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
260  * and ipv6_parent lists.
261  */
262 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
263 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
264 #define V_dyn_expire_lock               VNET(dyn_expire_lock)
265 #define V_dyn_bucket_lock               VNET(dyn_bucket_lock)
266
267 /*
268  * Bucket's add/delete generation versions.
269  */
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
272 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
273 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
274 #define V_dyn_ipv4_add                  VNET(dyn_ipv4_add)
275 #define V_dyn_ipv4_del                  VNET(dyn_ipv4_del)
276 #define V_dyn_ipv4_parent_add           VNET(dyn_ipv4_parent_add)
277 #define V_dyn_ipv4_parent_del           VNET(dyn_ipv4_parent_del)
278
279 #ifdef INET6
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
282 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
283 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
284 #define V_dyn_ipv6_add                  VNET(dyn_ipv6_add)
285 #define V_dyn_ipv6_del                  VNET(dyn_ipv6_del)
286 #define V_dyn_ipv6_parent_add           VNET(dyn_ipv6_parent_add)
287 #define V_dyn_ipv6_parent_del           VNET(dyn_ipv6_parent_del)
288 #endif /* INET6 */
289
290 #define DYN_BUCKET(h, b)                ((h) & (b - 1))
291 #define DYN_BUCKET_VERSION(b, v)        ck_pr_load_32(&V_dyn_ ## v[(b)])
292 #define DYN_BUCKET_VERSION_BUMP(b, v)   ck_pr_inc_32(&V_dyn_ ## v[(b)])
293
294 #define DYN_BUCKET_LOCK_INIT(lock, b)           \
295     mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
296 #define DYN_BUCKET_LOCK_DESTROY(lock, b)        mtx_destroy(&lock[(b)])
297 #define DYN_BUCKET_LOCK(b)      mtx_lock(&V_dyn_bucket_lock[(b)])
298 #define DYN_BUCKET_UNLOCK(b)    mtx_unlock(&V_dyn_bucket_lock[(b)])
299 #define DYN_BUCKET_ASSERT(b)    mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
300
301 #define DYN_EXPIRED_LOCK_INIT()         \
302     mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
303 #define DYN_EXPIRED_LOCK_DESTROY()      mtx_destroy(&V_dyn_expire_lock)
304 #define DYN_EXPIRED_LOCK()              mtx_lock(&V_dyn_expire_lock)
305 #define DYN_EXPIRED_UNLOCK()            mtx_unlock(&V_dyn_expire_lock)
306
307 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
308 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
309 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
310 #define V_dyn_buckets_max               VNET(dyn_buckets_max)
311 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
312 #define V_dyn_timeout                   VNET(dyn_timeout)
313
314 /* Maximum length of states chain in a bucket */
315 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
316 #define V_curr_max_length               VNET(curr_max_length)
317
318 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
319 #define V_dyn_keep_states               VNET(dyn_keep_states)
320
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
322 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
324 #ifdef INET6
325 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
326 #define V_dyn_ipv6_zone                 VNET(dyn_ipv6_zone)
327 #endif /* INET6 */
328 #define V_dyn_data_zone                 VNET(dyn_data_zone)
329 #define V_dyn_parent_zone               VNET(dyn_parent_zone)
330 #define V_dyn_ipv4_zone                 VNET(dyn_ipv4_zone)
331
332 /*
333  * Timeouts for various events in handing dynamic rules.
334  */
335 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
339 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
340 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
341
342 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
343 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
344 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
345 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
346 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
347 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
348
349 /*
350  * Keepalives are sent if dyn_keepalive is set. They are sent every
351  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
352  * seconds of lifetime of a rule.
353  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
354  * than dyn_keepalive_period.
355  */
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
357 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
358 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
359 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
360
361 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
362 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
363 #define V_dyn_keepalive                 VNET(dyn_keepalive)
364 #define V_dyn_keepalive_last            VNET(dyn_keepalive_last)
365
366 VNET_DEFINE_STATIC(uint32_t, dyn_max);          /* max # of dynamic states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_count);        /* number of states */
368 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max);   /* max # of parent states */
369 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
370
371 #define V_dyn_max                       VNET(dyn_max)
372 #define V_dyn_count                     VNET(dyn_count)
373 #define V_dyn_parent_max                VNET(dyn_parent_max)
374 #define V_dyn_parent_count              VNET(dyn_parent_count)
375
376 #define DYN_COUNT_DEC(name)     do {                    \
377         MPASS((V_ ## name) > 0);                        \
378         ck_pr_dec_32(&(V_ ## name));                    \
379 } while (0)
380 #define DYN_COUNT_INC(name)     ck_pr_inc_32(&(V_ ## name))
381 #define DYN_COUNT(name)         ck_pr_load_32(&(V_ ## name))
382
383 static time_t last_log; /* Log ratelimiting */
384
385 /*
386  * Get/set maximum number of dynamic states in given VNET instance.
387  */
388 static int
389 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
390 {
391         uint32_t nstates;
392         int error;
393
394         nstates = V_dyn_max;
395         error = sysctl_handle_32(oidp, &nstates, 0, req);
396         /* Read operation or some error */
397         if ((error != 0) || (req->newptr == NULL))
398                 return (error);
399
400         V_dyn_max = nstates;
401         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
402         return (0);
403 }
404
405 static int
406 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
407 {
408         uint32_t nstates;
409         int error;
410
411         nstates = V_dyn_parent_max;
412         error = sysctl_handle_32(oidp, &nstates, 0, req);
413         /* Read operation or some error */
414         if ((error != 0) || (req->newptr == NULL))
415                 return (error);
416
417         V_dyn_parent_max = nstates;
418         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
419         return (0);
420 }
421
422 static int
423 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
424 {
425         uint32_t nbuckets;
426         int error;
427
428         nbuckets = V_dyn_buckets_max;
429         error = sysctl_handle_32(oidp, &nbuckets, 0, req);
430         /* Read operation or some error */
431         if ((error != 0) || (req->newptr == NULL))
432                 return (error);
433
434         if (nbuckets > 256)
435                 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
436         else
437                 return (EINVAL);
438         return (0);
439 }
440
441 SYSCTL_DECL(_net_inet_ip_fw);
442
443 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
444     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
445     "Current number of dynamic states.");
446 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
447     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
448     "Current number of parent states. ");
449 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
450     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
451     "Current number of buckets for states hash table.");
452 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
453     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
454     "Current maximum length of states chains in hash buckets.");
455 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
456     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
457     0, 0, sysctl_dyn_buckets, "IU",
458     "Max number of buckets for dynamic states hash table.");
459 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
460     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
461     0, 0, sysctl_dyn_max, "IU",
462     "Max number of dynamic states.");
463 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
464     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
465     0, 0, sysctl_dyn_parent_max, "IU",
466     "Max number of parent dynamic states.");
467 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
468     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
469     "Lifetime of dynamic states for TCP ACK.");
470 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
471     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
472     "Lifetime of dynamic states for TCP SYN.");
473 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
474     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
475     "Lifetime of dynamic states for TCP FIN.");
476 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
477     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
478     "Lifetime of dynamic states for TCP RST.");
479 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
480     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
481     "Lifetime of dynamic states for UDP.");
482 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
483     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
484     "Lifetime of dynamic states for other situations.");
485 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
486     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
487     "Enable keepalives for dynamic states.");
488 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
489     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
490     "Do not flush dynamic states on rule deletion");
491
492 #ifdef IPFIREWALL_DYNDEBUG
493 #define DYN_DEBUG(fmt, ...)     do {                    \
494         printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
495 } while (0)
496 #else
497 #define DYN_DEBUG(fmt, ...)
498 #endif /* !IPFIREWALL_DYNDEBUG */
499
500 #ifdef INET6
501 /* Functions to work with IPv6 states */
502 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
503     const struct ipfw_flow_id *, uint32_t, const void *,
504     struct ipfw_dyn_info *, int);
505 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
506     uint32_t, const void *, int, uint32_t, uint16_t);
507 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
508     const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
509 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t,
510     const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
511     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
512 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
513     ipfw_dyn_rule *);
514
515 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
516 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
517     const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
518     uint16_t);
519 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
520     const struct dyn_ipv6_state *);
521 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
522
523 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
524     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
525     uint32_t);
526 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
527     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
528     uint32_t);
529 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
530     const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint16_t);
531 #endif /* INET6 */
532
533 /* Functions to work with limit states */
534 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
535     struct ip_fw *, uint32_t, uint32_t, uint16_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
537     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
538 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
539     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
540 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
541     uint32_t);
542 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
543     const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
544
545 static void dyn_tick(void *);
546 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
547 static void dyn_free_states(struct ip_fw_chain *);
548 static void dyn_export_parent(const struct dyn_parent *, uint16_t, uint8_t,
549     ipfw_dyn_rule *);
550 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
551     uint8_t, ipfw_dyn_rule *);
552 static uint32_t dyn_update_tcp_state(struct dyn_data *,
553     const struct ipfw_flow_id *, const struct tcphdr *, int);
554 static void dyn_update_proto_state(struct dyn_data *,
555     const struct ipfw_flow_id *, const void *, int, int);
556
557 /* Functions to work with IPv4 states */
558 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
559     const void *, struct ipfw_dyn_info *, int);
560 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
561     const void *, int, uint32_t, uint16_t);
562 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
563     const struct ipfw_flow_id *, uint16_t, uint8_t);
564 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t,
565     const struct ipfw_flow_id *, const void *, int, uint32_t,
566     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
567 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
568     ipfw_dyn_rule *);
569
570 /*
571  * Named states support.
572  */
573 static char *default_state_name = "default";
574 struct dyn_state_obj {
575         struct named_object     no;
576         char                    name[64];
577 };
578
579 #define DYN_STATE_OBJ(ch, cmd)  \
580     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
581 /*
582  * Classifier callback.
583  * Return 0 if opcode contains object that should be referenced
584  * or rewritten.
585  */
586 static int
587 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
588 {
589
590         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
591         /* Don't rewrite "check-state any" */
592         if (cmd->arg1 == 0 &&
593             cmd->opcode == O_CHECK_STATE)
594                 return (1);
595
596         *puidx = cmd->arg1;
597         *ptype = 0;
598         return (0);
599 }
600
601 static void
602 dyn_update(ipfw_insn *cmd, uint16_t idx)
603 {
604
605         cmd->arg1 = idx;
606         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
607 }
608
609 static int
610 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
611     struct named_object **pno)
612 {
613         ipfw_obj_ntlv *ntlv;
614         const char *name;
615
616         DYN_DEBUG("uidx %d", ti->uidx);
617         if (ti->uidx != 0) {
618                 if (ti->tlvs == NULL)
619                         return (EINVAL);
620                 /* Search ntlv in the buffer provided by user */
621                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
622                     IPFW_TLV_STATE_NAME);
623                 if (ntlv == NULL)
624                         return (EINVAL);
625                 name = ntlv->name;
626         } else
627                 name = default_state_name;
628         /*
629          * Search named object with corresponding name.
630          * Since states objects are global - ignore the set value
631          * and use zero instead.
632          */
633         *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
634             IPFW_TLV_STATE_NAME, name);
635         /*
636          * We always return success here.
637          * The caller will check *pno and mark object as unresolved,
638          * then it will automatically create "default" object.
639          */
640         return (0);
641 }
642
643 static struct named_object *
644 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
645 {
646
647         DYN_DEBUG("kidx %d", idx);
648         return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
649 }
650
651 static int
652 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
653     uint16_t *pkidx)
654 {
655         struct namedobj_instance *ni;
656         struct dyn_state_obj *obj;
657         struct named_object *no;
658         ipfw_obj_ntlv *ntlv;
659         char *name;
660
661         DYN_DEBUG("uidx %d", ti->uidx);
662         if (ti->uidx != 0) {
663                 if (ti->tlvs == NULL)
664                         return (EINVAL);
665                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
666                     IPFW_TLV_STATE_NAME);
667                 if (ntlv == NULL)
668                         return (EINVAL);
669                 name = ntlv->name;
670         } else
671                 name = default_state_name;
672
673         ni = CHAIN_TO_SRV(ch);
674         obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
675         obj->no.name = obj->name;
676         obj->no.etlv = IPFW_TLV_STATE_NAME;
677         strlcpy(obj->name, name, sizeof(obj->name));
678
679         IPFW_UH_WLOCK(ch);
680         no = ipfw_objhash_lookup_name_type(ni, 0,
681             IPFW_TLV_STATE_NAME, name);
682         if (no != NULL) {
683                 /*
684                  * Object is already created.
685                  * Just return its kidx and bump refcount.
686                  */
687                 *pkidx = no->kidx;
688                 no->refcnt++;
689                 IPFW_UH_WUNLOCK(ch);
690                 free(obj, M_IPFW);
691                 DYN_DEBUG("\tfound kidx %d", *pkidx);
692                 return (0);
693         }
694         if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
695                 DYN_DEBUG("\talloc_idx failed for %s", name);
696                 IPFW_UH_WUNLOCK(ch);
697                 free(obj, M_IPFW);
698                 return (ENOSPC);
699         }
700         ipfw_objhash_add(ni, &obj->no);
701         SRV_OBJECT(ch, obj->no.kidx) = obj;
702         obj->no.refcnt++;
703         *pkidx = obj->no.kidx;
704         IPFW_UH_WUNLOCK(ch);
705         DYN_DEBUG("\tcreated kidx %d", *pkidx);
706         return (0);
707 }
708
709 static void
710 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
711 {
712         struct dyn_state_obj *obj;
713
714         IPFW_UH_WLOCK_ASSERT(ch);
715
716         KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
717             ("%s: wrong object type %u", __func__, no->etlv));
718         KASSERT(no->refcnt == 1,
719             ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
720             no->name, no->etlv, no->kidx, no->refcnt));
721         DYN_DEBUG("kidx %d", no->kidx);
722         obj = SRV_OBJECT(ch, no->kidx);
723         SRV_OBJECT(ch, no->kidx) = NULL;
724         ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
725         ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
726
727         free(obj, M_IPFW);
728 }
729
730 static struct opcode_obj_rewrite dyn_opcodes[] = {
731         {
732                 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
733                 dyn_classify, dyn_update,
734                 dyn_findbyname, dyn_findbykidx,
735                 dyn_create, dyn_destroy
736         },
737         {
738                 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
739                 dyn_classify, dyn_update,
740                 dyn_findbyname, dyn_findbykidx,
741                 dyn_create, dyn_destroy
742         },
743         {
744                 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
745                 dyn_classify, dyn_update,
746                 dyn_findbyname, dyn_findbykidx,
747                 dyn_create, dyn_destroy
748         },
749         {
750                 O_LIMIT, IPFW_TLV_STATE_NAME,
751                 dyn_classify, dyn_update,
752                 dyn_findbyname, dyn_findbykidx,
753                 dyn_create, dyn_destroy
754         },
755 };
756
757 /*
758  * IMPORTANT: the hash function for dynamic rules must be commutative
759  * in source and destination (ip,port), because rules are bidirectional
760  * and we want to find both in the same bucket.
761  */
762 #ifndef IPFIREWALL_JENKINSHASH
763 static __inline uint32_t
764 hash_packet(const struct ipfw_flow_id *id)
765 {
766         uint32_t i;
767
768 #ifdef INET6
769         if (IS_IP6_FLOW_ID(id))
770                 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
771                     (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
772                     (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
773                     (id->src_ip6.__u6_addr.__u6_addr32[3]));
774         else
775 #endif /* INET6 */
776         i = (id->dst_ip) ^ (id->src_ip);
777         i ^= (id->dst_port) ^ (id->src_port);
778         return (i);
779 }
780
781 static __inline uint32_t
782 hash_parent(const struct ipfw_flow_id *id, const void *rule)
783 {
784
785         return (hash_packet(id) ^ ((uintptr_t)rule));
786 }
787
788 #else /* IPFIREWALL_JENKINSHASH */
789
790 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
791 #define V_dyn_hashseed          VNET(dyn_hashseed)
792
793 static __inline int
794 addrcmp4(const struct ipfw_flow_id *id)
795 {
796
797         if (id->src_ip < id->dst_ip)
798                 return (0);
799         if (id->src_ip > id->dst_ip)
800                 return (1);
801         if (id->src_port <= id->dst_port)
802                 return (0);
803         return (1);
804 }
805
806 #ifdef INET6
807 static __inline int
808 addrcmp6(const struct ipfw_flow_id *id)
809 {
810         int ret;
811
812         ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
813         if (ret < 0)
814                 return (0);
815         if (ret > 0)
816                 return (1);
817         if (id->src_port <= id->dst_port)
818                 return (0);
819         return (1);
820 }
821
822 static __inline uint32_t
823 hash_packet6(const struct ipfw_flow_id *id)
824 {
825         struct tuple6 {
826                 struct in6_addr addr[2];
827                 uint16_t        port[2];
828         } t6;
829
830         if (addrcmp6(id) == 0) {
831                 t6.addr[0] = id->src_ip6;
832                 t6.addr[1] = id->dst_ip6;
833                 t6.port[0] = id->src_port;
834                 t6.port[1] = id->dst_port;
835         } else {
836                 t6.addr[0] = id->dst_ip6;
837                 t6.addr[1] = id->src_ip6;
838                 t6.port[0] = id->dst_port;
839                 t6.port[1] = id->src_port;
840         }
841         return (jenkins_hash32((const uint32_t *)&t6,
842             sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
843 }
844 #endif
845
846 static __inline uint32_t
847 hash_packet(const struct ipfw_flow_id *id)
848 {
849         struct tuple4 {
850                 in_addr_t       addr[2];
851                 uint16_t        port[2];
852         } t4;
853
854         if (IS_IP4_FLOW_ID(id)) {
855                 /* All fields are in host byte order */
856                 if (addrcmp4(id) == 0) {
857                         t4.addr[0] = id->src_ip;
858                         t4.addr[1] = id->dst_ip;
859                         t4.port[0] = id->src_port;
860                         t4.port[1] = id->dst_port;
861                 } else {
862                         t4.addr[0] = id->dst_ip;
863                         t4.addr[1] = id->src_ip;
864                         t4.port[0] = id->dst_port;
865                         t4.port[1] = id->src_port;
866                 }
867                 return (jenkins_hash32((const uint32_t *)&t4,
868                     sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
869         } else
870 #ifdef INET6
871         if (IS_IP6_FLOW_ID(id))
872                 return (hash_packet6(id));
873 #endif
874         return (0);
875 }
876
877 static __inline uint32_t
878 hash_parent(const struct ipfw_flow_id *id, const void *rule)
879 {
880
881         return (jenkins_hash32((const uint32_t *)&rule,
882             sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
883 }
884 #endif /* IPFIREWALL_JENKINSHASH */
885
886 /*
887  * Print customizable flow id description via log(9) facility.
888  */
889 static void
890 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
891     int log_flags, char *prefix, char *postfix)
892 {
893         struct in_addr da;
894 #ifdef INET6
895         char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
896 #else
897         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
898 #endif
899
900 #ifdef INET6
901         if (IS_IP6_FLOW_ID(id)) {
902                 ip6_sprintf(src, &id->src_ip6);
903                 ip6_sprintf(dst, &id->dst_ip6);
904         } else
905 #endif
906         {
907                 da.s_addr = htonl(id->src_ip);
908                 inet_ntop(AF_INET, &da, src, sizeof(src));
909                 da.s_addr = htonl(id->dst_ip);
910                 inet_ntop(AF_INET, &da, dst, sizeof(dst));
911         }
912         log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
913             prefix, dyn_type, src, id->src_port, dst,
914             id->dst_port, V_dyn_count, postfix);
915 }
916
917 #define print_dyn_rule(id, dtype, prefix, postfix)      \
918         print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
919
920 #define TIME_LEQ(a,b)   ((int)((a)-(b)) <= 0)
921 #define TIME_LE(a,b)    ((int)((a)-(b)) < 0)
922 #define _SEQ_GE(a,b)    ((int)((a)-(b)) >= 0)
923 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
924 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
925 #define TCP_FLAGS       (TH_FLAGS | (TH_FLAGS << 8))
926 #define ACK_FWD         0x00010000      /* fwd ack seen */
927 #define ACK_REV         0x00020000      /* rev ack seen */
928 #define ACK_BOTH        (ACK_FWD | ACK_REV)
929
930 static uint32_t
931 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
932     const struct tcphdr *tcp, int dir)
933 {
934         uint32_t ack, expire;
935         uint32_t state, old;
936         uint8_t th_flags;
937
938         expire = data->expire;
939         old = state = data->state;
940         th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
941         state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
942         switch (state & TCP_FLAGS) {
943         case TH_SYN:                    /* opening */
944                 expire = time_uptime + V_dyn_syn_lifetime;
945                 break;
946
947         case BOTH_SYN:                  /* move to established */
948         case BOTH_SYN | TH_FIN:         /* one side tries to close */
949         case BOTH_SYN | (TH_FIN << 8):
950                 if (tcp == NULL)
951                         break;
952                 ack = ntohl(tcp->th_ack);
953                 if (dir == MATCH_FORWARD) {
954                         if (data->ack_fwd == 0 ||
955                             _SEQ_GE(ack, data->ack_fwd)) {
956                                 state |= ACK_FWD;
957                                 if (data->ack_fwd != ack)
958                                         ck_pr_store_32(&data->ack_fwd, ack);
959                         }
960                 } else {
961                         if (data->ack_rev == 0 ||
962                             _SEQ_GE(ack, data->ack_rev)) {
963                                 state |= ACK_REV;
964                                 if (data->ack_rev != ack)
965                                         ck_pr_store_32(&data->ack_rev, ack);
966                         }
967                 }
968                 if ((state & ACK_BOTH) == ACK_BOTH) {
969                         /*
970                          * Set expire time to V_dyn_ack_lifetime only if
971                          * we got ACKs for both directions.
972                          * We use XOR here to avoid possible state
973                          * overwriting in concurrent thread.
974                          */
975                         expire = time_uptime + V_dyn_ack_lifetime;
976                         ck_pr_xor_32(&data->state, ACK_BOTH);
977                 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
978                         ck_pr_or_32(&data->state, state & ACK_BOTH);
979                 break;
980
981         case BOTH_SYN | BOTH_FIN:       /* both sides closed */
982                 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
983                         V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
984                 expire = time_uptime + V_dyn_fin_lifetime;
985                 break;
986
987         default:
988                 if (V_dyn_keepalive != 0 &&
989                     V_dyn_rst_lifetime >= V_dyn_keepalive_period)
990                         V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
991                 expire = time_uptime + V_dyn_rst_lifetime;
992         }
993         /* Save TCP state if it was changed */
994         if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
995                 ck_pr_or_32(&data->state, state & TCP_FLAGS);
996         return (expire);
997 }
998
999 /*
1000  * Update ULP specific state.
1001  * For TCP we keep sequence numbers and flags. For other protocols
1002  * currently we update only expire time. Packets and bytes counters
1003  * are also updated here.
1004  */
1005 static void
1006 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1007     const void *ulp, int pktlen, int dir)
1008 {
1009         uint32_t expire;
1010
1011         /* NOTE: we are in critical section here. */
1012         switch (pkt->proto) {
1013         case IPPROTO_UDP:
1014         case IPPROTO_UDPLITE:
1015                 expire = time_uptime + V_dyn_udp_lifetime;
1016                 break;
1017         case IPPROTO_TCP:
1018                 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1019                 break;
1020         default:
1021                 expire = time_uptime + V_dyn_short_lifetime;
1022         }
1023         /*
1024          * Expiration timer has the per-second granularity, no need to update
1025          * it every time when state is matched.
1026          */
1027         if (data->expire != expire)
1028                 ck_pr_store_32(&data->expire, expire);
1029
1030         if (dir == MATCH_FORWARD)
1031                 DYN_COUNTER_INC(data, fwd, pktlen);
1032         else
1033                 DYN_COUNTER_INC(data, rev, pktlen);
1034 }
1035
1036 /*
1037  * Lookup IPv4 state.
1038  * Must be called in critical section.
1039  */
1040 struct dyn_ipv4_state *
1041 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1042     struct ipfw_dyn_info *info, int pktlen)
1043 {
1044         struct dyn_ipv4_state *s;
1045         uint32_t version, bucket;
1046
1047         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1048         info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1049 restart:
1050         version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1051         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1052                 DYNSTATE_PROTECT(s);
1053                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1054                         goto restart;
1055                 if (s->proto != pkt->proto)
1056                         continue;
1057                 if (info->kidx != 0 && s->kidx != info->kidx)
1058                         continue;
1059                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1060                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1061                         info->direction = MATCH_FORWARD;
1062                         break;
1063                 }
1064                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1065                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1066                         info->direction = MATCH_REVERSE;
1067                         break;
1068                 }
1069         }
1070
1071         if (s != NULL)
1072                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1073                     info->direction);
1074         return (s);
1075 }
1076
1077 /*
1078  * Lookup IPv4 state.
1079  * Simplifed version is used to check that matching state doesn't exist.
1080  */
1081 static int
1082 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1083     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1084 {
1085         struct dyn_ipv4_state *s;
1086         int dir;
1087
1088         dir = MATCH_NONE;
1089         DYN_BUCKET_ASSERT(bucket);
1090         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1091                 if (s->proto != pkt->proto ||
1092                     s->kidx != kidx)
1093                         continue;
1094                 if (s->sport == pkt->src_port &&
1095                     s->dport == pkt->dst_port &&
1096                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1097                         dir = MATCH_FORWARD;
1098                         break;
1099                 }
1100                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1101                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1102                         dir = MATCH_REVERSE;
1103                         break;
1104                 }
1105         }
1106         if (s != NULL)
1107                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1108         return (s != NULL);
1109 }
1110
1111 struct dyn_ipv4_state *
1112 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1113     uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1114 {
1115         struct dyn_ipv4_state *s;
1116         uint32_t version, bucket;
1117
1118         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1119 restart:
1120         version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1121         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1122                 DYNSTATE_PROTECT(s);
1123                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1124                         goto restart;
1125                 /*
1126                  * NOTE: we do not need to check kidx, because parent rule
1127                  * can not create states with different kidx.
1128                  * And parent rule always created for forward direction.
1129                  */
1130                 if (s->limit->parent == rule &&
1131                     s->limit->ruleid == ruleid &&
1132                     s->limit->rulenum == rulenum &&
1133                     s->proto == pkt->proto &&
1134                     s->sport == pkt->src_port &&
1135                     s->dport == pkt->dst_port &&
1136                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1137                         if (s->limit->expire != time_uptime +
1138                             V_dyn_short_lifetime)
1139                                 ck_pr_store_32(&s->limit->expire,
1140                                     time_uptime + V_dyn_short_lifetime);
1141                         break;
1142                 }
1143         }
1144         return (s);
1145 }
1146
1147 static struct dyn_ipv4_state *
1148 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1149     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1150 {
1151         struct dyn_ipv4_state *s;
1152
1153         DYN_BUCKET_ASSERT(bucket);
1154         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1155                 if (s->limit->parent == rule &&
1156                     s->limit->ruleid == ruleid &&
1157                     s->limit->rulenum == rulenum &&
1158                     s->proto == pkt->proto &&
1159                     s->sport == pkt->src_port &&
1160                     s->dport == pkt->dst_port &&
1161                     s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1162                         break;
1163         }
1164         return (s);
1165 }
1166
1167 #ifdef INET6
1168 static uint32_t
1169 dyn_getscopeid(const struct ip_fw_args *args)
1170 {
1171
1172         /*
1173          * If source or destination address is an scopeid address, we need
1174          * determine the scope zone id to resolve address scope ambiguity.
1175          */
1176         if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1177             IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1178                 return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1179
1180         return (0);
1181 }
1182
1183 /*
1184  * Lookup IPv6 state.
1185  * Must be called in critical section.
1186  */
1187 static struct dyn_ipv6_state *
1188 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1189     const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1190 {
1191         struct dyn_ipv6_state *s;
1192         uint32_t version, bucket;
1193
1194         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1195         info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1196 restart:
1197         version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1198         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1199                 DYNSTATE_PROTECT(s);
1200                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1201                         goto restart;
1202                 if (s->proto != pkt->proto || s->zoneid != zoneid)
1203                         continue;
1204                 if (info->kidx != 0 && s->kidx != info->kidx)
1205                         continue;
1206                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1207                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1208                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1209                         info->direction = MATCH_FORWARD;
1210                         break;
1211                 }
1212                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1213                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1214                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1215                         info->direction = MATCH_REVERSE;
1216                         break;
1217                 }
1218         }
1219         if (s != NULL)
1220                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1221                     info->direction);
1222         return (s);
1223 }
1224
1225 /*
1226  * Lookup IPv6 state.
1227  * Simplifed version is used to check that matching state doesn't exist.
1228  */
1229 static int
1230 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1231     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1232 {
1233         struct dyn_ipv6_state *s;
1234         int dir;
1235
1236         dir = MATCH_NONE;
1237         DYN_BUCKET_ASSERT(bucket);
1238         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1239                 if (s->proto != pkt->proto || s->kidx != kidx ||
1240                     s->zoneid != zoneid)
1241                         continue;
1242                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1243                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1244                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1245                         dir = MATCH_FORWARD;
1246                         break;
1247                 }
1248                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1249                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1250                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1251                         dir = MATCH_REVERSE;
1252                         break;
1253                 }
1254         }
1255         if (s != NULL)
1256                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1257         return (s != NULL);
1258 }
1259
1260 static struct dyn_ipv6_state *
1261 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1262     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1263 {
1264         struct dyn_ipv6_state *s;
1265         uint32_t version, bucket;
1266
1267         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1268 restart:
1269         version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1270         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1271                 DYNSTATE_PROTECT(s);
1272                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1273                         goto restart;
1274                 /*
1275                  * NOTE: we do not need to check kidx, because parent rule
1276                  * can not create states with different kidx.
1277                  * Also parent rule always created for forward direction.
1278                  */
1279                 if (s->limit->parent == rule &&
1280                     s->limit->ruleid == ruleid &&
1281                     s->limit->rulenum == rulenum &&
1282                     s->proto == pkt->proto &&
1283                     s->sport == pkt->src_port &&
1284                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1285                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1286                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1287                         if (s->limit->expire != time_uptime +
1288                             V_dyn_short_lifetime)
1289                                 ck_pr_store_32(&s->limit->expire,
1290                                     time_uptime + V_dyn_short_lifetime);
1291                         break;
1292                 }
1293         }
1294         return (s);
1295 }
1296
1297 static struct dyn_ipv6_state *
1298 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1299     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1300 {
1301         struct dyn_ipv6_state *s;
1302
1303         DYN_BUCKET_ASSERT(bucket);
1304         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1305                 if (s->limit->parent == rule &&
1306                     s->limit->ruleid == ruleid &&
1307                     s->limit->rulenum == rulenum &&
1308                     s->proto == pkt->proto &&
1309                     s->sport == pkt->src_port &&
1310                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1311                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1312                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1313                         break;
1314         }
1315         return (s);
1316 }
1317
1318 #endif /* INET6 */
1319
1320 /*
1321  * Lookup dynamic state.
1322  *  pkt - filled by ipfw_chk() ipfw_flow_id;
1323  *  ulp - determined by ipfw_chk() upper level protocol header;
1324  *  dyn_info - info about matched state to return back;
1325  * Returns pointer to state's parent rule and dyn_info. If there is
1326  * no state, NULL is returned.
1327  * On match ipfw_dyn_lookup() updates state's counters.
1328  */
1329 struct ip_fw *
1330 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1331     int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1332 {
1333         struct dyn_data *data;
1334         struct ip_fw *rule;
1335
1336         IPFW_RLOCK_ASSERT(&V_layer3_chain);
1337
1338         data = NULL;
1339         rule = NULL;
1340         info->kidx = cmd->arg1;
1341         info->direction = MATCH_NONE;
1342         info->hashval = hash_packet(&args->f_id);
1343
1344         DYNSTATE_CRITICAL_ENTER();
1345         if (IS_IP4_FLOW_ID(&args->f_id)) {
1346                 struct dyn_ipv4_state *s;
1347
1348                 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1349                 if (s != NULL) {
1350                         /*
1351                          * Dynamic states are created using the same 5-tuple,
1352                          * so it is assumed, that parent rule for O_LIMIT
1353                          * state has the same address family.
1354                          */
1355                         data = s->data;
1356                         if (s->type == O_LIMIT) {
1357                                 s = data->parent;
1358                                 rule = s->limit->parent;
1359                         } else
1360                                 rule = data->parent;
1361                 }
1362         }
1363 #ifdef INET6
1364         else if (IS_IP6_FLOW_ID(&args->f_id)) {
1365                 struct dyn_ipv6_state *s;
1366
1367                 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1368                     ulp, info, pktlen);
1369                 if (s != NULL) {
1370                         data = s->data;
1371                         if (s->type == O_LIMIT) {
1372                                 s = data->parent;
1373                                 rule = s->limit->parent;
1374                         } else
1375                                 rule = data->parent;
1376                 }
1377         }
1378 #endif
1379         if (data != NULL) {
1380                 /*
1381                  * If cached chain id is the same, we can avoid rule index
1382                  * lookup. Otherwise do lookup and update chain_id and f_pos.
1383                  * It is safe even if there is concurrent thread that want
1384                  * update the same state, because chain->id can be changed
1385                  * only under IPFW_WLOCK().
1386                  */
1387                 if (data->chain_id != V_layer3_chain.id) {
1388                         data->f_pos = ipfw_find_rule(&V_layer3_chain,
1389                             data->rulenum, data->ruleid);
1390                         /*
1391                          * Check that found state has not orphaned.
1392                          * When chain->id being changed the parent
1393                          * rule can be deleted. If found rule doesn't
1394                          * match the parent pointer, consider this
1395                          * result as MATCH_NONE and return NULL.
1396                          *
1397                          * This will lead to creation of new similar state
1398                          * that will be added into head of this bucket.
1399                          * And the state that we currently have matched
1400                          * should be deleted by dyn_expire_states().
1401                          *
1402                          * In case when dyn_keep_states is enabled, return
1403                          * pointer to deleted rule and f_pos value
1404                          * corresponding to penultimate rule.
1405                          * When we have enabled V_dyn_keep_states, states
1406                          * that become orphaned will get the DYN_REFERENCED
1407                          * flag and rule will keep around. So we can return
1408                          * it. But since it is not in the rules map, we need
1409                          * return such f_pos value, so after the state
1410                          * handling if the search will continue, the next rule
1411                          * will be the last one - the default rule.
1412                          */
1413                         if (V_layer3_chain.map[data->f_pos] == rule) {
1414                                 data->chain_id = V_layer3_chain.id;
1415                                 info->f_pos = data->f_pos;
1416                         } else if (V_dyn_keep_states != 0) {
1417                                 /*
1418                                  * The original rule pointer is still usable.
1419                                  * So, we return it, but f_pos need to be
1420                                  * changed to point to the penultimate rule.
1421                                  */
1422                                 MPASS(V_layer3_chain.n_rules > 1);
1423                                 data->chain_id = V_layer3_chain.id;
1424                                 data->f_pos = V_layer3_chain.n_rules - 2;
1425                                 info->f_pos = data->f_pos;
1426                         } else {
1427                                 rule = NULL;
1428                                 info->direction = MATCH_NONE;
1429                                 DYN_DEBUG("rule %p  [%u, %u] is considered "
1430                                     "invalid in data %p", rule, data->ruleid,
1431                                     data->rulenum, data);
1432                                 /* info->f_pos doesn't matter here. */
1433                         }
1434                 } else
1435                         info->f_pos = data->f_pos;
1436         }
1437         DYNSTATE_CRITICAL_EXIT();
1438 #if 0
1439         /*
1440          * Return MATCH_NONE if parent rule is in disabled set.
1441          * This will lead to creation of new similar state that
1442          * will be added into head of this bucket.
1443          *
1444          * XXXAE: we need to be able update state's set when parent
1445          *        rule set is changed.
1446          */
1447         if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1448                 rule = NULL;
1449                 info->direction = MATCH_NONE;
1450         }
1451 #endif
1452         return (rule);
1453 }
1454
1455 static struct dyn_parent *
1456 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1457     uint32_t hashval)
1458 {
1459         struct dyn_parent *limit;
1460
1461         limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1462         if (limit == NULL) {
1463                 if (last_log != time_uptime) {
1464                         last_log = time_uptime;
1465                         log(LOG_DEBUG,
1466                             "ipfw: Cannot allocate parent dynamic state, "
1467                             "consider increasing "
1468                             "net.inet.ip.fw.dyn_parent_max\n");
1469                 }
1470                 return (NULL);
1471         }
1472
1473         limit->parent = parent;
1474         limit->ruleid = ruleid;
1475         limit->rulenum = rulenum;
1476         limit->hashval = hashval;
1477         limit->expire = time_uptime + V_dyn_short_lifetime;
1478         return (limit);
1479 }
1480
1481 static struct dyn_data *
1482 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1483     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1484     uint32_t hashval, uint16_t fibnum)
1485 {
1486         struct dyn_data *data;
1487
1488         data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1489         if (data == NULL) {
1490                 if (last_log != time_uptime) {
1491                         last_log = time_uptime;
1492                         log(LOG_DEBUG,
1493                             "ipfw: Cannot allocate dynamic state, "
1494                             "consider increasing net.inet.ip.fw.dyn_max\n");
1495                 }
1496                 return (NULL);
1497         }
1498
1499         data->parent = parent;
1500         data->ruleid = ruleid;
1501         data->rulenum = rulenum;
1502         data->fibnum = fibnum;
1503         data->hashval = hashval;
1504         data->expire = time_uptime + V_dyn_syn_lifetime;
1505         dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1506         return (data);
1507 }
1508
1509 static struct dyn_ipv4_state *
1510 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1511     uint8_t type)
1512 {
1513         struct dyn_ipv4_state *s;
1514
1515         s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1516         if (s == NULL)
1517                 return (NULL);
1518
1519         s->type = type;
1520         s->kidx = kidx;
1521         s->proto = pkt->proto;
1522         s->sport = pkt->src_port;
1523         s->dport = pkt->dst_port;
1524         s->src = pkt->src_ip;
1525         s->dst = pkt->dst_ip;
1526         return (s);
1527 }
1528
1529 /*
1530  * Add IPv4 parent state.
1531  * Returns pointer to parent state. When it is not NULL we are in
1532  * critical section and pointer protected by hazard pointer.
1533  * When some error occurs, it returns NULL and exit from critical section
1534  * is not needed.
1535  */
1536 static struct dyn_ipv4_state *
1537 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1538     const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1539     uint16_t kidx)
1540 {
1541         struct dyn_ipv4_state *s;
1542         struct dyn_parent *limit;
1543         uint32_t bucket;
1544
1545         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1546         DYN_BUCKET_LOCK(bucket);
1547         if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1548                 /*
1549                  * Bucket version has been changed since last lookup,
1550                  * do lookup again to be sure that state does not exist.
1551                  */
1552                 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1553                     rulenum, bucket);
1554                 if (s != NULL) {
1555                         /*
1556                          * Simultaneous thread has already created this
1557                          * state. Just return it.
1558                          */
1559                         DYNSTATE_CRITICAL_ENTER();
1560                         DYNSTATE_PROTECT(s);
1561                         DYN_BUCKET_UNLOCK(bucket);
1562                         return (s);
1563                 }
1564         }
1565
1566         limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1567         if (limit == NULL) {
1568                 DYN_BUCKET_UNLOCK(bucket);
1569                 return (NULL);
1570         }
1571
1572         s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1573         if (s == NULL) {
1574                 DYN_BUCKET_UNLOCK(bucket);
1575                 uma_zfree(V_dyn_parent_zone, limit);
1576                 return (NULL);
1577         }
1578
1579         s->limit = limit;
1580         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1581         DYN_COUNT_INC(dyn_parent_count);
1582         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1583         DYNSTATE_CRITICAL_ENTER();
1584         DYNSTATE_PROTECT(s);
1585         DYN_BUCKET_UNLOCK(bucket);
1586         return (s);
1587 }
1588
1589 static int
1590 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1591     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1592     uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1593     uint16_t kidx, uint8_t type)
1594 {
1595         struct dyn_ipv4_state *s;
1596         void *data;
1597         uint32_t bucket;
1598
1599         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1600         DYN_BUCKET_LOCK(bucket);
1601         if (info->direction == MATCH_UNKNOWN ||
1602             info->kidx != kidx ||
1603             info->hashval != hashval ||
1604             info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1605                 /*
1606                  * Bucket version has been changed since last lookup,
1607                  * do lookup again to be sure that state does not exist.
1608                  */
1609                 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1610                     bucket, kidx) != 0) {
1611                         DYN_BUCKET_UNLOCK(bucket);
1612                         return (EEXIST);
1613                 }
1614         }
1615
1616         data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1617             pktlen, hashval, fibnum);
1618         if (data == NULL) {
1619                 DYN_BUCKET_UNLOCK(bucket);
1620                 return (ENOMEM);
1621         }
1622
1623         s = dyn_alloc_ipv4_state(pkt, kidx, type);
1624         if (s == NULL) {
1625                 DYN_BUCKET_UNLOCK(bucket);
1626                 uma_zfree(V_dyn_data_zone, data);
1627                 return (ENOMEM);
1628         }
1629
1630         s->data = data;
1631         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1632         DYN_COUNT_INC(dyn_count);
1633         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1634         DYN_BUCKET_UNLOCK(bucket);
1635         return (0);
1636 }
1637
1638 #ifdef INET6
1639 static struct dyn_ipv6_state *
1640 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1641     uint16_t kidx, uint8_t type)
1642 {
1643         struct dyn_ipv6_state *s;
1644
1645         s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1646         if (s == NULL)
1647                 return (NULL);
1648
1649         s->type = type;
1650         s->kidx = kidx;
1651         s->zoneid = zoneid;
1652         s->proto = pkt->proto;
1653         s->sport = pkt->src_port;
1654         s->dport = pkt->dst_port;
1655         s->src = pkt->src_ip6;
1656         s->dst = pkt->dst_ip6;
1657         return (s);
1658 }
1659
1660 /*
1661  * Add IPv6 parent state.
1662  * Returns pointer to parent state. When it is not NULL we are in
1663  * critical section and pointer protected by hazard pointer.
1664  * When some error occurs, it return NULL and exit from critical section
1665  * is not needed.
1666  */
1667 static struct dyn_ipv6_state *
1668 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1669     const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1670     uint32_t version, uint16_t kidx)
1671 {
1672         struct dyn_ipv6_state *s;
1673         struct dyn_parent *limit;
1674         uint32_t bucket;
1675
1676         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1677         DYN_BUCKET_LOCK(bucket);
1678         if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1679                 /*
1680                  * Bucket version has been changed since last lookup,
1681                  * do lookup again to be sure that state does not exist.
1682                  */
1683                 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1684                     rulenum, bucket);
1685                 if (s != NULL) {
1686                         /*
1687                          * Simultaneous thread has already created this
1688                          * state. Just return it.
1689                          */
1690                         DYNSTATE_CRITICAL_ENTER();
1691                         DYNSTATE_PROTECT(s);
1692                         DYN_BUCKET_UNLOCK(bucket);
1693                         return (s);
1694                 }
1695         }
1696
1697         limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1698         if (limit == NULL) {
1699                 DYN_BUCKET_UNLOCK(bucket);
1700                 return (NULL);
1701         }
1702
1703         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1704         if (s == NULL) {
1705                 DYN_BUCKET_UNLOCK(bucket);
1706                 uma_zfree(V_dyn_parent_zone, limit);
1707                 return (NULL);
1708         }
1709
1710         s->limit = limit;
1711         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1712         DYN_COUNT_INC(dyn_parent_count);
1713         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1714         DYNSTATE_CRITICAL_ENTER();
1715         DYNSTATE_PROTECT(s);
1716         DYN_BUCKET_UNLOCK(bucket);
1717         return (s);
1718 }
1719
1720 static int
1721 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1722     const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1723     int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1724     uint16_t fibnum, uint16_t kidx, uint8_t type)
1725 {
1726         struct dyn_ipv6_state *s;
1727         struct dyn_data *data;
1728         uint32_t bucket;
1729
1730         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1731         DYN_BUCKET_LOCK(bucket);
1732         if (info->direction == MATCH_UNKNOWN ||
1733             info->kidx != kidx ||
1734             info->hashval != hashval ||
1735             info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1736                 /*
1737                  * Bucket version has been changed since last lookup,
1738                  * do lookup again to be sure that state does not exist.
1739                  */
1740                 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1741                     bucket, kidx) != 0) {
1742                         DYN_BUCKET_UNLOCK(bucket);
1743                         return (EEXIST);
1744                 }
1745         }
1746
1747         data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1748             pktlen, hashval, fibnum);
1749         if (data == NULL) {
1750                 DYN_BUCKET_UNLOCK(bucket);
1751                 return (ENOMEM);
1752         }
1753
1754         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1755         if (s == NULL) {
1756                 DYN_BUCKET_UNLOCK(bucket);
1757                 uma_zfree(V_dyn_data_zone, data);
1758                 return (ENOMEM);
1759         }
1760
1761         s->data = data;
1762         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1763         DYN_COUNT_INC(dyn_count);
1764         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1765         DYN_BUCKET_UNLOCK(bucket);
1766         return (0);
1767 }
1768 #endif /* INET6 */
1769
1770 static void *
1771 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1772     struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1773 {
1774         char sbuf[24];
1775         struct dyn_parent *p;
1776         void *ret;
1777         uint32_t bucket, version;
1778
1779         p = NULL;
1780         ret = NULL;
1781         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1782         DYNSTATE_CRITICAL_ENTER();
1783         if (IS_IP4_FLOW_ID(pkt)) {
1784                 struct dyn_ipv4_state *s;
1785
1786                 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1787                 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1788                     rule->rulenum, bucket);
1789                 if (s == NULL) {
1790                         /*
1791                          * Exit from critical section because dyn_add_parent()
1792                          * will acquire bucket lock.
1793                          */
1794                         DYNSTATE_CRITICAL_EXIT();
1795
1796                         s = dyn_add_ipv4_parent(rule, rule->id,
1797                             rule->rulenum, pkt, hashval, version, kidx);
1798                         if (s == NULL)
1799                                 return (NULL);
1800                         /* Now we are in critical section again. */
1801                 }
1802                 ret = s;
1803                 p = s->limit;
1804         }
1805 #ifdef INET6
1806         else if (IS_IP6_FLOW_ID(pkt)) {
1807                 struct dyn_ipv6_state *s;
1808
1809                 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1810                 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1811                     rule->rulenum, bucket);
1812                 if (s == NULL) {
1813                         /*
1814                          * Exit from critical section because dyn_add_parent()
1815                          * can acquire bucket mutex.
1816                          */
1817                         DYNSTATE_CRITICAL_EXIT();
1818
1819                         s = dyn_add_ipv6_parent(rule, rule->id,
1820                             rule->rulenum, pkt, zoneid, hashval, version,
1821                             kidx);
1822                         if (s == NULL)
1823                                 return (NULL);
1824                         /* Now we are in critical section again. */
1825                 }
1826                 ret = s;
1827                 p = s->limit;
1828         }
1829 #endif
1830         else {
1831                 DYNSTATE_CRITICAL_EXIT();
1832                 return (NULL);
1833         }
1834
1835         /* Check the limit */
1836         if (DPARENT_COUNT(p) >= limit) {
1837                 DYNSTATE_CRITICAL_EXIT();
1838                 if (V_fw_verbose && last_log != time_uptime) {
1839                         last_log = time_uptime;
1840                         snprintf(sbuf, sizeof(sbuf), "%u drop session",
1841                             rule->rulenum);
1842                         print_dyn_rule_flags(pkt, O_LIMIT,
1843                             LOG_SECURITY | LOG_DEBUG, sbuf,
1844                             "too many entries");
1845                 }
1846                 return (NULL);
1847         }
1848
1849         /* Take new session into account. */
1850         DPARENT_COUNT_INC(p);
1851         /*
1852          * We must exit from critical section because the following code
1853          * can acquire bucket mutex.
1854          * We rely on the the 'count' field. The state will not expire
1855          * until it has some child states, i.e. 'count' field is not zero.
1856          * Return state pointer, it will be used by child states as parent.
1857          */
1858         DYNSTATE_CRITICAL_EXIT();
1859         return (ret);
1860 }
1861
1862 static int
1863 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1864     uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1865     struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1866     uint16_t kidx, uint8_t type)
1867 {
1868         struct ipfw_flow_id id;
1869         uint32_t hashval, parent_hashval, ruleid, rulenum;
1870         int ret;
1871
1872         MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1873
1874         ruleid = rule->id;
1875         rulenum = rule->rulenum;
1876         if (type == O_LIMIT) {
1877                 /* Create masked flow id and calculate bucket */
1878                 id.addr_type = pkt->addr_type;
1879                 id.proto = pkt->proto;
1880                 id.fib = fibnum; /* unused */
1881                 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1882                     pkt->src_port: 0;
1883                 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1884                     pkt->dst_port: 0;
1885                 if (IS_IP4_FLOW_ID(pkt)) {
1886                         id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1887                             pkt->src_ip: 0;
1888                         id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1889                             pkt->dst_ip: 0;
1890                 }
1891 #ifdef INET6
1892                 else if (IS_IP6_FLOW_ID(pkt)) {
1893                         if (limit_mask & DYN_SRC_ADDR)
1894                                 id.src_ip6 = pkt->src_ip6;
1895                         else
1896                                 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1897                         if (limit_mask & DYN_DST_ADDR)
1898                                 id.dst_ip6 = pkt->dst_ip6;
1899                         else
1900                                 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1901                 }
1902 #endif
1903                 else
1904                         return (EAFNOSUPPORT);
1905
1906                 parent_hashval = hash_parent(&id, rule);
1907                 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1908                     limit, kidx);
1909                 if (rule == NULL) {
1910 #if 0
1911                         if (V_fw_verbose && last_log != time_uptime) {
1912                                 last_log = time_uptime;
1913                                 snprintf(sbuf, sizeof(sbuf),
1914                                     "%u drop session", rule->rulenum);
1915                         print_dyn_rule_flags(pkt, O_LIMIT,
1916                             LOG_SECURITY | LOG_DEBUG, sbuf,
1917                             "too many entries");
1918                         }
1919 #endif
1920                         return (EACCES);
1921                 }
1922                 /*
1923                  * Limit is not reached, create new state.
1924                  * Now rule points to parent state.
1925                  */
1926         }
1927
1928         hashval = hash_packet(pkt);
1929         if (IS_IP4_FLOW_ID(pkt))
1930                 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1931                     ulp, pktlen, hashval, info, fibnum, kidx, type);
1932 #ifdef INET6
1933         else if (IS_IP6_FLOW_ID(pkt))
1934                 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1935                     zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1936 #endif /* INET6 */
1937         else
1938                 ret = EAFNOSUPPORT;
1939
1940         if (type == O_LIMIT) {
1941                 if (ret != 0) {
1942                         /*
1943                          * We failed to create child state for O_LIMIT
1944                          * opcode. Since we already counted it in the parent,
1945                          * we must revert counter back. The 'rule' points to
1946                          * parent state, use it to get dyn_parent.
1947                          *
1948                          * XXXAE: it should be safe to use 'rule' pointer
1949                          * without extra lookup, parent state is referenced
1950                          * and should not be freed.
1951                          */
1952                         if (IS_IP4_FLOW_ID(&id))
1953                                 DPARENT_COUNT_DEC(
1954                                     ((struct dyn_ipv4_state *)rule)->limit);
1955 #ifdef INET6
1956                         else if (IS_IP6_FLOW_ID(&id))
1957                                 DPARENT_COUNT_DEC(
1958                                     ((struct dyn_ipv6_state *)rule)->limit);
1959 #endif
1960                 }
1961         }
1962         /*
1963          * EEXIST means that simultaneous thread has created this
1964          * state. Consider this as success.
1965          *
1966          * XXXAE: should we invalidate 'info' content here?
1967          */
1968         if (ret == EEXIST)
1969                 return (0);
1970         return (ret);
1971 }
1972
1973 /*
1974  * Install dynamic state.
1975  *  chain - ipfw's instance;
1976  *  rule - the parent rule that installs the state;
1977  *  cmd - opcode that installs the state;
1978  *  args - ipfw arguments;
1979  *  ulp - upper level protocol header;
1980  *  pktlen - packet length;
1981  *  info - dynamic state lookup info;
1982  *  tablearg - tablearg id.
1983  *
1984  * Returns non-zero value (failure) if state is not installed because
1985  * of errors or because session limitations are enforced.
1986  */
1987 int
1988 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1989     const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1990     const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1991     uint32_t tablearg)
1992 {
1993         uint32_t limit;
1994         uint16_t limit_mask;
1995
1996         if (cmd->o.opcode == O_LIMIT) {
1997                 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
1998                 limit_mask = cmd->limit_mask;
1999         } else {
2000                 limit = 0;
2001                 limit_mask = 0;
2002         }
2003         return (dyn_install_state(&args->f_id,
2004 #ifdef INET6
2005             IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2006 #endif
2007             0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2008             limit_mask, cmd->o.arg1, cmd->o.opcode));
2009 }
2010
2011 /*
2012  * Free safe to remove state entries from expired lists.
2013  */
2014 static void
2015 dyn_free_states(struct ip_fw_chain *chain)
2016 {
2017         struct dyn_ipv4_state *s4, *s4n;
2018 #ifdef INET6
2019         struct dyn_ipv6_state *s6, *s6n;
2020 #endif
2021         int cached_count, i;
2022
2023         /*
2024          * We keep pointers to objects that are in use on each CPU
2025          * in the per-cpu dyn_hp pointer. When object is going to be
2026          * removed, first of it is unlinked from the corresponding
2027          * list. This leads to changing of dyn_bucket_xxx_delver version.
2028          * Unlinked objects is placed into corresponding dyn_expired_xxx
2029          * list. Reader that is going to dereference object pointer checks
2030          * dyn_bucket_xxx_delver version before and after storing pointer
2031          * into dyn_hp. If version is the same, the object is protected
2032          * from freeing and it is safe to dereference. Othervise reader
2033          * tries to iterate list again from the beginning, but this object
2034          * now unlinked and thus will not be accessible.
2035          *
2036          * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2037          * It does not matter that some pointer can be changed in
2038          * time while we are copying. We need to check, that objects
2039          * removed in the previous pass are not in use. And if dyn_hp
2040          * pointer does not contain it in the time when we are copying,
2041          * it will not appear there, because it is already unlinked.
2042          * And for new pointers we will not free objects that will be
2043          * unlinked in this pass.
2044          */
2045         cached_count = 0;
2046         CPU_FOREACH(i) {
2047                 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2048                 if (dyn_hp_cache[cached_count] != NULL)
2049                         cached_count++;
2050         }
2051
2052         /*
2053          * Free expired states that are safe to free.
2054          * Check each entry from previous pass in the dyn_expired_xxx
2055          * list, if pointer to the object is in the dyn_hp_cache array,
2056          * keep it until next pass. Otherwise it is safe to free the
2057          * object.
2058          *
2059          * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2060          */
2061 #define DYN_FREE_STATES(s, next, name)          do {                    \
2062         s = SLIST_FIRST(&V_dyn_expired_ ## name);                       \
2063         while (s != NULL) {                                             \
2064                 next = SLIST_NEXT(s, expired);                          \
2065                 for (i = 0; i < cached_count; i++)                      \
2066                         if (dyn_hp_cache[i] == s)                       \
2067                                 break;                                  \
2068                 if (i == cached_count) {                                \
2069                         if (s->type == O_LIMIT_PARENT &&                \
2070                             s->limit->count != 0) {                     \
2071                                 s = next;                               \
2072                                 continue;                               \
2073                         }                                               \
2074                         SLIST_REMOVE(&V_dyn_expired_ ## name,           \
2075                             s, dyn_ ## name ## _state, expired);        \
2076                         if (s->type == O_LIMIT_PARENT)                  \
2077                                 uma_zfree(V_dyn_parent_zone, s->limit); \
2078                         else                                            \
2079                                 uma_zfree(V_dyn_data_zone, s->data);    \
2080                         uma_zfree(V_dyn_ ## name ## _zone, s);          \
2081                 }                                                       \
2082                 s = next;                                               \
2083         }                                                               \
2084 } while (0)
2085
2086         /*
2087          * Protect access to expired lists with DYN_EXPIRED_LOCK.
2088          * Userland can invoke ipfw_expire_dyn_states() to delete
2089          * specific states, this will lead to modification of expired
2090          * lists.
2091          *
2092          * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2093          *        IPFW_UH_WLOCK to protect access to these lists.
2094          */
2095         DYN_EXPIRED_LOCK();
2096         DYN_FREE_STATES(s4, s4n, ipv4);
2097 #ifdef INET6
2098         DYN_FREE_STATES(s6, s6n, ipv6);
2099 #endif
2100         DYN_EXPIRED_UNLOCK();
2101 #undef DYN_FREE_STATES
2102 }
2103
2104 /*
2105  * Returns:
2106  * 0 when state is not matched by specified range;
2107  * 1 when state is matched by specified range;
2108  * 2 when state is matched by specified range and requested deletion of
2109  *   dynamic states.
2110  */
2111 static int
2112 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2113 {
2114
2115         MPASS(rt != NULL);
2116         /* flush all states */
2117         if (rt->flags & IPFW_RCFLAG_ALL) {
2118                 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2119                         return (2); /* forced */
2120                 return (1);
2121         }
2122         if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2123                 return (0);
2124         if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2125             (rulenum < rt->start_rule || rulenum > rt->end_rule))
2126                 return (0);
2127         if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2128                 return (2);
2129         return (1);
2130 }
2131
2132 static void
2133 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2134     struct ip_fw *rule, uint16_t kidx)
2135 {
2136         struct dyn_state_obj *obj;
2137
2138         /*
2139          * Do not acquire reference twice.
2140          * This can happen when rule deletion executed for
2141          * the same range, but different ruleset id.
2142          */
2143         if (data->flags & DYN_REFERENCED)
2144                 return;
2145
2146         IPFW_UH_WLOCK_ASSERT(ch);
2147         MPASS(kidx != 0);
2148
2149         data->flags |= DYN_REFERENCED;
2150         /* Reference the named object */
2151         obj = SRV_OBJECT(ch, kidx);
2152         obj->no.refcnt++;
2153         MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2154
2155         /* Reference the parent rule */
2156         rule->refcnt++;
2157 }
2158
2159 static void
2160 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2161     struct ip_fw *rule, uint16_t kidx)
2162 {
2163         struct dyn_state_obj *obj;
2164
2165         IPFW_UH_WLOCK_ASSERT(ch);
2166         MPASS(kidx != 0);
2167
2168         obj = SRV_OBJECT(ch, kidx);
2169         if (obj->no.refcnt == 1)
2170                 dyn_destroy(ch, &obj->no);
2171         else
2172                 obj->no.refcnt--;
2173
2174         if (--rule->refcnt == 1)
2175                 ipfw_free_rule(rule);
2176 }
2177
2178 /*
2179  * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2180  * O_LIMIT state is created when new connection is going to be established
2181  * and there is no matching state. So, since the old parent rule was deleted
2182  * we can't create new states with old parent, and thus we can not account
2183  * new connections with already established connections, and can not do
2184  * proper limiting.
2185  */
2186 static int
2187 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2188     const ipfw_range_tlv *rt)
2189 {
2190         struct ip_fw *rule;
2191         int ret;
2192
2193         if (s->type == O_LIMIT_PARENT) {
2194                 rule = s->limit->parent;
2195                 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2196         }
2197
2198         rule = s->data->parent;
2199         if (s->type == O_LIMIT)
2200                 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2201
2202         ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2203         if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2204                 return (ret);
2205
2206         dyn_acquire_rule(ch, s->data, rule, s->kidx);
2207         return (0);
2208 }
2209
2210 #ifdef INET6
2211 static int
2212 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2213     const ipfw_range_tlv *rt)
2214 {
2215         struct ip_fw *rule;
2216         int ret;
2217
2218         if (s->type == O_LIMIT_PARENT) {
2219                 rule = s->limit->parent;
2220                 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2221         }
2222
2223         rule = s->data->parent;
2224         if (s->type == O_LIMIT)
2225                 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2226
2227         ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2228         if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2229                 return (ret);
2230
2231         dyn_acquire_rule(ch, s->data, rule, s->kidx);
2232         return (0);
2233 }
2234 #endif
2235
2236 /*
2237  * Unlink expired entries from states lists.
2238  * @rt can be used to specify the range of states for deletion.
2239  */
2240 static void
2241 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2242 {
2243         struct dyn_ipv4_slist expired_ipv4;
2244 #ifdef INET6
2245         struct dyn_ipv6_slist expired_ipv6;
2246         struct dyn_ipv6_state *s6, *s6n, *s6p;
2247 #endif
2248         struct dyn_ipv4_state *s4, *s4n, *s4p;
2249         void *rule;
2250         int bucket, removed, length, max_length;
2251
2252         IPFW_UH_WLOCK_ASSERT(ch);
2253
2254         /*
2255          * Unlink expired states from each bucket.
2256          * With acquired bucket lock iterate entries of each lists:
2257          * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2258          * and unlink entry from the list, link entry into temporary
2259          * expired_xxx lists then bump "del" bucket version.
2260          *
2261          * When an entry is removed, corresponding states counter is
2262          * decremented. If entry has O_LIMIT type, parent's reference
2263          * counter is decremented.
2264          *
2265          * NOTE: this function can be called from userspace context
2266          * when user deletes rules. In this case all matched states
2267          * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2268          * in the expired lists until reference counter become zero.
2269          */
2270 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra)  do {    \
2271         length = 0;                                                     \
2272         removed = 0;                                                    \
2273         prev = NULL;                                                    \
2274         s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]);                   \
2275         while (s != NULL) {                                             \
2276                 next = CK_SLIST_NEXT(s, entry);                         \
2277                 if ((TIME_LEQ((s)->exp, time_uptime) && extra) ||       \
2278                     (rt != NULL &&                                      \
2279                      dyn_match_ ## af ## _state(ch, s, rt))) {          \
2280                         if (prev != NULL)                               \
2281                                 CK_SLIST_REMOVE_AFTER(prev, entry);     \
2282                         else                                            \
2283                                 CK_SLIST_REMOVE_HEAD(                   \
2284                                     &V_dyn_ ## name [bucket], entry);   \
2285                         removed++;                                      \
2286                         SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2287                         if (s->type == O_LIMIT_PARENT)                  \
2288                                 DYN_COUNT_DEC(dyn_parent_count);        \
2289                         else {                                          \
2290                                 DYN_COUNT_DEC(dyn_count);               \
2291                                 if (s->data->flags & DYN_REFERENCED) {  \
2292                                         rule = s->data->parent;         \
2293                                         if (s->type == O_LIMIT)         \
2294                                                 rule = ((__typeof(s))   \
2295                                                     rule)->limit->parent;\
2296                                         dyn_release_rule(ch, s->data,   \
2297                                             rule, s->kidx);             \
2298                                 }                                       \
2299                                 if (s->type == O_LIMIT) {               \
2300                                         s = s->data->parent;            \
2301                                         DPARENT_COUNT_DEC(s->limit);    \
2302                                 }                                       \
2303                         }                                               \
2304                 } else {                                                \
2305                         prev = s;                                       \
2306                         length++;                                       \
2307                 }                                                       \
2308                 s = next;                                               \
2309         }                                                               \
2310         if (removed != 0)                                               \
2311                 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del);          \
2312         if (length > max_length)                                \
2313                 max_length = length;                            \
2314 } while (0)
2315
2316         SLIST_INIT(&expired_ipv4);
2317 #ifdef INET6
2318         SLIST_INIT(&expired_ipv6);
2319 #endif
2320         max_length = 0;
2321         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2322                 DYN_BUCKET_LOCK(bucket);
2323                 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2324                 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2325                     ipv4_parent, (s4->limit->count == 0));
2326 #ifdef INET6
2327                 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2328                 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2329                     ipv6_parent, (s6->limit->count == 0));
2330 #endif
2331                 DYN_BUCKET_UNLOCK(bucket);
2332         }
2333         /* Update curr_max_length for statistics. */
2334         V_curr_max_length = max_length;
2335         /*
2336          * Concatenate temporary lists with global expired lists.
2337          */
2338         DYN_EXPIRED_LOCK();
2339         SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2340             dyn_ipv4_state, expired);
2341 #ifdef INET6
2342         SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2343             dyn_ipv6_state, expired);
2344 #endif
2345         DYN_EXPIRED_UNLOCK();
2346 #undef DYN_UNLINK_STATES
2347 #undef DYN_UNREF_STATES
2348 }
2349
2350 static struct mbuf *
2351 dyn_mgethdr(int len, uint16_t fibnum)
2352 {
2353         struct mbuf *m;
2354
2355         m = m_gethdr(M_NOWAIT, MT_DATA);
2356         if (m == NULL)
2357                 return (NULL);
2358 #ifdef MAC
2359         mac_netinet_firewall_send(m);
2360 #endif
2361         M_SETFIB(m, fibnum);
2362         m->m_data += max_linkhdr;
2363         m->m_flags |= M_SKIP_FIREWALL;
2364         m->m_len = m->m_pkthdr.len = len;
2365         bzero(m->m_data, len);
2366         return (m);
2367 }
2368
2369 static void
2370 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2371     uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2372 {
2373         struct tcphdr *tcp;
2374         struct ip *ip;
2375
2376         ip = mtod(m, struct ip *);
2377         ip->ip_v = 4;
2378         ip->ip_hl = sizeof(*ip) >> 2;
2379         ip->ip_tos = IPTOS_LOWDELAY;
2380         ip->ip_len = htons(m->m_len);
2381         ip->ip_off |= htons(IP_DF);
2382         ip->ip_ttl = V_ip_defttl;
2383         ip->ip_p = IPPROTO_TCP;
2384         ip->ip_src.s_addr = htonl(src);
2385         ip->ip_dst.s_addr = htonl(dst);
2386
2387         tcp = mtodo(m, sizeof(struct ip));
2388         tcp->th_sport = htons(sport);
2389         tcp->th_dport = htons(dport);
2390         tcp->th_off = sizeof(struct tcphdr) >> 2;
2391         tcp->th_seq = htonl(seq);
2392         tcp->th_ack = htonl(ack);
2393         tcp->th_flags = TH_ACK;
2394         tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2395             htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2396
2397         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2398         m->m_pkthdr.csum_flags = CSUM_TCP;
2399 }
2400
2401 static void
2402 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2403 {
2404         struct mbuf *m;
2405
2406         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2407                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2408                     s->data->fibnum);
2409                 if (m != NULL) {
2410                         dyn_make_keepalive_ipv4(m, s->dst, s->src,
2411                             s->data->ack_fwd - 1, s->data->ack_rev,
2412                             s->dport, s->sport);
2413                         if (mbufq_enqueue(q, m)) {
2414                                 m_freem(m);
2415                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2416                                     "keepalive queue is reached.\n");
2417                                 return;
2418                         }
2419                 }
2420         }
2421
2422         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2423                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2424                     s->data->fibnum);
2425                 if (m != NULL) {
2426                         dyn_make_keepalive_ipv4(m, s->src, s->dst,
2427                             s->data->ack_rev - 1, s->data->ack_fwd,
2428                             s->sport, s->dport);
2429                         if (mbufq_enqueue(q, m)) {
2430                                 m_freem(m);
2431                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2432                                     "keepalive queue is reached.\n");
2433                                 return;
2434                         }
2435                 }
2436         }
2437 }
2438
2439 /*
2440  * Prepare and send keep-alive packets.
2441  */
2442 static void
2443 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2444 {
2445         struct mbufq q;
2446         struct mbuf *m;
2447         struct dyn_ipv4_state *s;
2448         uint32_t bucket;
2449
2450         mbufq_init(&q, INT_MAX);
2451         IPFW_UH_RLOCK(chain);
2452         /*
2453          * It is safe to not use hazard pointer and just do lockless
2454          * access to the lists, because states entries can not be deleted
2455          * while we hold IPFW_UH_RLOCK.
2456          */
2457         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2458                 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2459                         /*
2460                          * Only established TCP connections that will
2461                          * become expired withing dyn_keepalive_interval.
2462                          */
2463                         if (s->proto != IPPROTO_TCP ||
2464                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2465                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2466                                 s->data->expire))
2467                                 continue;
2468                         dyn_enqueue_keepalive_ipv4(&q, s);
2469                 }
2470         }
2471         IPFW_UH_RUNLOCK(chain);
2472         while ((m = mbufq_dequeue(&q)) != NULL)
2473                 ip_output(m, NULL, NULL, 0, NULL, NULL);
2474 }
2475
2476 #ifdef INET6
2477 static void
2478 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2479     const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2480     uint16_t sport, uint16_t dport)
2481 {
2482         struct tcphdr *tcp;
2483         struct ip6_hdr *ip6;
2484
2485         ip6 = mtod(m, struct ip6_hdr *);
2486         ip6->ip6_vfc |= IPV6_VERSION;
2487         ip6->ip6_plen = htons(sizeof(struct tcphdr));
2488         ip6->ip6_nxt = IPPROTO_TCP;
2489         ip6->ip6_hlim = IPV6_DEFHLIM;
2490         ip6->ip6_src = *src;
2491         if (IN6_IS_ADDR_LINKLOCAL(src))
2492                 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2493         ip6->ip6_dst = *dst;
2494         if (IN6_IS_ADDR_LINKLOCAL(dst))
2495                 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2496
2497         tcp = mtodo(m, sizeof(struct ip6_hdr));
2498         tcp->th_sport = htons(sport);
2499         tcp->th_dport = htons(dport);
2500         tcp->th_off = sizeof(struct tcphdr) >> 2;
2501         tcp->th_seq = htonl(seq);
2502         tcp->th_ack = htonl(ack);
2503         tcp->th_flags = TH_ACK;
2504         tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2505             IPPROTO_TCP, 0);
2506
2507         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2508         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2509 }
2510
2511 static void
2512 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2513 {
2514         struct mbuf *m;
2515
2516         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2517                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2518                     sizeof(struct tcphdr), s->data->fibnum);
2519                 if (m != NULL) {
2520                         dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2521                             s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2522                             s->dport, s->sport);
2523                         if (mbufq_enqueue(q, m)) {
2524                                 m_freem(m);
2525                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2526                                     "keepalive queue is reached.\n");
2527                                 return;
2528                         }
2529                 }
2530         }
2531
2532         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2533                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2534                     sizeof(struct tcphdr), s->data->fibnum);
2535                 if (m != NULL) {
2536                         dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2537                             s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2538                             s->sport, s->dport);
2539                         if (mbufq_enqueue(q, m)) {
2540                                 m_freem(m);
2541                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2542                                     "keepalive queue is reached.\n");
2543                                 return;
2544                         }
2545                 }
2546         }
2547 }
2548
2549 static void
2550 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2551 {
2552         struct mbufq q;
2553         struct mbuf *m;
2554         struct dyn_ipv6_state *s;
2555         uint32_t bucket;
2556
2557         mbufq_init(&q, INT_MAX);
2558         IPFW_UH_RLOCK(chain);
2559         /*
2560          * It is safe to not use hazard pointer and just do lockless
2561          * access to the lists, because states entries can not be deleted
2562          * while we hold IPFW_UH_RLOCK.
2563          */
2564         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2565                 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2566                         /*
2567                          * Only established TCP connections that will
2568                          * become expired withing dyn_keepalive_interval.
2569                          */
2570                         if (s->proto != IPPROTO_TCP ||
2571                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2572                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2573                                 s->data->expire))
2574                                 continue;
2575                         dyn_enqueue_keepalive_ipv6(&q, s);
2576                 }
2577         }
2578         IPFW_UH_RUNLOCK(chain);
2579         while ((m = mbufq_dequeue(&q)) != NULL)
2580                 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2581 }
2582 #endif /* INET6 */
2583
2584 static void
2585 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new)
2586 {
2587 #ifdef INET6
2588         struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2589         uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2590         struct dyn_ipv6_state *s6;
2591 #endif
2592         struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2593         uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2594         struct dyn_ipv4_state *s4;
2595         struct mtx *bucket_lock;
2596         void *tmp;
2597         uint32_t bucket;
2598
2599         MPASS(powerof2(new));
2600         DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2601         /*
2602          * Allocate and initialize new lists.
2603          * XXXAE: on memory pressure this can disable callout timer.
2604          */
2605         bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2606             M_WAITOK | M_ZERO);
2607         ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2608             M_WAITOK | M_ZERO);
2609         ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2610             M_WAITOK | M_ZERO);
2611         ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2612         ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2613         ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2614             M_WAITOK | M_ZERO);
2615         ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2616             M_WAITOK | M_ZERO);
2617 #ifdef INET6
2618         ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2619             M_WAITOK | M_ZERO);
2620         ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2621             M_WAITOK | M_ZERO);
2622         ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2623         ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2624         ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2625             M_WAITOK | M_ZERO);
2626         ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2627             M_WAITOK | M_ZERO);
2628 #endif
2629         for (bucket = 0; bucket < new; bucket++) {
2630                 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2631                 CK_SLIST_INIT(&ipv4[bucket]);
2632                 CK_SLIST_INIT(&ipv4_parent[bucket]);
2633 #ifdef INET6
2634                 CK_SLIST_INIT(&ipv6[bucket]);
2635                 CK_SLIST_INIT(&ipv6_parent[bucket]);
2636 #endif
2637         }
2638
2639 #define DYN_RELINK_STATES(s, hval, i, head, ohead)      do {            \
2640         while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) {     \
2641                 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry);       \
2642                 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)],   \
2643                     s, entry);                                          \
2644         }                                                               \
2645 } while (0)
2646         /*
2647          * Prevent rules changing from userland.
2648          */
2649         IPFW_UH_WLOCK(chain);
2650         /*
2651          * Hold traffic processing until we finish resize to
2652          * prevent access to states lists.
2653          */
2654         IPFW_WLOCK(chain);
2655         /* Re-link all dynamic states */
2656         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2657                 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2658                 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2659                     ipv4_parent);
2660 #ifdef INET6
2661                 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2662                 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2663                     ipv6_parent);
2664 #endif
2665         }
2666
2667 #define DYN_SWAP_PTR(old, new, tmp)     do {            \
2668         tmp = old;                                      \
2669         old = new;                                      \
2670         new = tmp;                                      \
2671 } while (0)
2672         /* Swap pointers */
2673         DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2674         DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2675         DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2676         DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2677         DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2678         DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2679         DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2680
2681 #ifdef INET6
2682         DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2683         DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2684         DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2685         DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2686         DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2687         DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2688 #endif
2689         bucket = V_curr_dyn_buckets;
2690         V_curr_dyn_buckets = new;
2691
2692         IPFW_WUNLOCK(chain);
2693         IPFW_UH_WUNLOCK(chain);
2694
2695         /* Release old resources */
2696         while (bucket-- != 0)
2697                 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2698         free(bucket_lock, M_IPFW);
2699         free(ipv4, M_IPFW);
2700         free(ipv4_parent, M_IPFW);
2701         free(ipv4_add, M_IPFW);
2702         free(ipv4_parent_add, M_IPFW);
2703         free(ipv4_del, M_IPFW);
2704         free(ipv4_parent_del, M_IPFW);
2705 #ifdef INET6
2706         free(ipv6, M_IPFW);
2707         free(ipv6_parent, M_IPFW);
2708         free(ipv6_add, M_IPFW);
2709         free(ipv6_parent_add, M_IPFW);
2710         free(ipv6_del, M_IPFW);
2711         free(ipv6_parent_del, M_IPFW);
2712 #endif
2713 }
2714
2715 /*
2716  * This function is used to perform various maintenance
2717  * on dynamic hash lists. Currently it is called every second.
2718  */
2719 static void
2720 dyn_tick(void *vnetx)
2721 {
2722         struct epoch_tracker et;
2723         uint32_t buckets;
2724
2725         CURVNET_SET((struct vnet *)vnetx);
2726         /*
2727          * First free states unlinked in previous passes.
2728          */
2729         dyn_free_states(&V_layer3_chain);
2730         /*
2731          * Now unlink others expired states.
2732          * We use IPFW_UH_WLOCK to avoid concurrent call of
2733          * dyn_expire_states(). It is the only function that does
2734          * deletion of state entries from states lists.
2735          */
2736         IPFW_UH_WLOCK(&V_layer3_chain);
2737         dyn_expire_states(&V_layer3_chain, NULL);
2738         IPFW_UH_WUNLOCK(&V_layer3_chain);
2739         /*
2740          * Send keepalives if they are enabled and the time has come.
2741          */
2742         if (V_dyn_keepalive != 0 &&
2743             V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2744                 V_dyn_keepalive_last = time_uptime;
2745                 NET_EPOCH_ENTER(et);
2746                 dyn_send_keepalive_ipv4(&V_layer3_chain);
2747 #ifdef INET6
2748                 dyn_send_keepalive_ipv6(&V_layer3_chain);
2749 #endif
2750                 NET_EPOCH_EXIT(et);
2751         }
2752         /*
2753          * Check if we need to resize the hash:
2754          * if current number of states exceeds number of buckets in hash,
2755          * and dyn_buckets_max permits to grow the number of buckets, then
2756          * do it. Grow hash size to the minimum power of 2 which is bigger
2757          * than current states count.
2758          */
2759         if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2760             (V_curr_dyn_buckets < V_dyn_count / 2 || (
2761             V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2762                 buckets = 1 << fls(V_dyn_count);
2763                 if (buckets > V_dyn_buckets_max)
2764                         buckets = V_dyn_buckets_max;
2765                 dyn_grow_hashtable(&V_layer3_chain, buckets);
2766         }
2767
2768         callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2769         CURVNET_RESTORE();
2770 }
2771
2772 void
2773 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2774 {
2775         /*
2776          * Do not perform any checks if we currently have no dynamic states
2777          */
2778         if (V_dyn_count == 0)
2779                 return;
2780
2781         IPFW_UH_WLOCK_ASSERT(chain);
2782         dyn_expire_states(chain, rt);
2783 }
2784
2785 /*
2786  * Pass through all states and reset eaction for orphaned rules.
2787  */
2788 void
2789 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id,
2790     uint16_t default_id, uint16_t instance_id)
2791 {
2792 #ifdef INET6
2793         struct dyn_ipv6_state *s6;
2794 #endif
2795         struct dyn_ipv4_state *s4;
2796         struct ip_fw *rule;
2797         uint32_t bucket;
2798
2799 #define DYN_RESET_EACTION(s, h, b)                                      \
2800         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
2801                 if ((s->data->flags & DYN_REFERENCED) == 0)             \
2802                         continue;                                       \
2803                 rule = s->data->parent;                                 \
2804                 if (s->type == O_LIMIT)                                 \
2805                         rule = ((__typeof(s))rule)->limit->parent;      \
2806                 ipfw_reset_eaction(ch, rule, eaction_id,                \
2807                     default_id, instance_id);                           \
2808         }
2809
2810         IPFW_UH_WLOCK_ASSERT(ch);
2811         if (V_dyn_count == 0)
2812                 return;
2813         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2814                 DYN_RESET_EACTION(s4, ipv4, bucket);
2815 #ifdef INET6
2816                 DYN_RESET_EACTION(s6, ipv6, bucket);
2817 #endif
2818         }
2819 }
2820
2821 /*
2822  * Returns size of dynamic states in legacy format
2823  */
2824 int
2825 ipfw_dyn_len(void)
2826 {
2827
2828         return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2829 }
2830
2831 /*
2832  * Returns number of dynamic states.
2833  * Marks every named object index used by dynamic states with bit in @bmask.
2834  * Returns number of named objects accounted in bmask via @nocnt.
2835  * Used by dump format v1 (current).
2836  */
2837 uint32_t
2838 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2839 {
2840 #ifdef INET6
2841         struct dyn_ipv6_state *s6;
2842 #endif
2843         struct dyn_ipv4_state *s4;
2844         uint32_t bucket;
2845
2846 #define DYN_COUNT_OBJECTS(s, h, b)                                      \
2847         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
2848                 MPASS(s->kidx != 0);                                    \
2849                 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME,   \
2850                     s->kidx) != 0)                                      \
2851                         (*nocnt)++;                                     \
2852         }
2853
2854         IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2855
2856         /* No need to pass through all the buckets. */
2857         *nocnt = 0;
2858         if (V_dyn_count + V_dyn_parent_count == 0)
2859                 return (0);
2860
2861         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2862                 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2863 #ifdef INET6
2864                 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2865 #endif
2866         }
2867
2868         return (V_dyn_count + V_dyn_parent_count);
2869 }
2870
2871 /*
2872  * Check if rule contains at least one dynamic opcode.
2873  *
2874  * Returns 1 if such opcode is found, 0 otherwise.
2875  */
2876 int
2877 ipfw_is_dyn_rule(struct ip_fw *rule)
2878 {
2879         int cmdlen, l;
2880         ipfw_insn *cmd;
2881
2882         l = rule->cmd_len;
2883         cmd = rule->cmd;
2884         cmdlen = 0;
2885         for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2886                 cmdlen = F_LEN(cmd);
2887
2888                 switch (cmd->opcode) {
2889                 case O_LIMIT:
2890                 case O_KEEP_STATE:
2891                 case O_PROBE_STATE:
2892                 case O_CHECK_STATE:
2893                         return (1);
2894                 }
2895         }
2896
2897         return (0);
2898 }
2899
2900 static void
2901 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx, uint8_t set,
2902     ipfw_dyn_rule *dst)
2903 {
2904
2905         dst->dyn_type = O_LIMIT_PARENT;
2906         dst->kidx = kidx;
2907         dst->count = (uint16_t)DPARENT_COUNT(p);
2908         dst->expire = TIME_LEQ(p->expire, time_uptime) ?  0:
2909             p->expire - time_uptime;
2910
2911         /* 'rule' is used to pass up the rule number and set */
2912         memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2913
2914         /* store set number into high word of dst->rule pointer. */
2915         memcpy((char *)&dst->rule + sizeof(p->rulenum), &set, sizeof(set));
2916
2917         /* unused fields */
2918         dst->pcnt = 0;
2919         dst->bcnt = 0;
2920         dst->parent = NULL;
2921         dst->state = 0;
2922         dst->ack_fwd = 0;
2923         dst->ack_rev = 0;
2924         dst->bucket = p->hashval;
2925         /*
2926          * The legacy userland code will interpret a NULL here as a marker
2927          * for the last dynamic rule.
2928          */
2929         dst->next = (ipfw_dyn_rule *)1;
2930 }
2931
2932 static void
2933 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2934     uint8_t set, ipfw_dyn_rule *dst)
2935 {
2936
2937         dst->dyn_type = type;
2938         dst->kidx = kidx;
2939         dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2940         dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2941         dst->expire = TIME_LEQ(data->expire, time_uptime) ?  0:
2942             data->expire - time_uptime;
2943
2944         /* 'rule' is used to pass up the rule number and set */
2945         memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2946
2947         /* store set number into high word of dst->rule pointer. */
2948         memcpy((char *)&dst->rule + sizeof(data->rulenum), &set, sizeof(set));
2949
2950         dst->state = data->state;
2951         if (data->flags & DYN_REFERENCED)
2952                 dst->state |= IPFW_DYN_ORPHANED;
2953
2954         /* unused fields */
2955         dst->parent = NULL;
2956         dst->ack_fwd = data->ack_fwd;
2957         dst->ack_rev = data->ack_rev;
2958         dst->count = 0;
2959         dst->bucket = data->hashval;
2960         /*
2961          * The legacy userland code will interpret a NULL here as a marker
2962          * for the last dynamic rule.
2963          */
2964         dst->next = (ipfw_dyn_rule *)1;
2965 }
2966
2967 static void
2968 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2969 {
2970         struct ip_fw *rule;
2971
2972         switch (s->type) {
2973         case O_LIMIT_PARENT:
2974                 rule = s->limit->parent;
2975                 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
2976                 break;
2977         default:
2978                 rule = s->data->parent;
2979                 if (s->type == O_LIMIT)
2980                         rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2981                 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
2982         }
2983
2984         dst->id.dst_ip = s->dst;
2985         dst->id.src_ip = s->src;
2986         dst->id.dst_port = s->dport;
2987         dst->id.src_port = s->sport;
2988         dst->id.fib = s->data->fibnum;
2989         dst->id.proto = s->proto;
2990         dst->id._flags = 0;
2991         dst->id.addr_type = 4;
2992
2993         memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
2994         memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
2995         dst->id.flow_id6 = dst->id.extra = 0;
2996 }
2997
2998 #ifdef INET6
2999 static void
3000 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
3001 {
3002         struct ip_fw *rule;
3003
3004         switch (s->type) {
3005         case O_LIMIT_PARENT:
3006                 rule = s->limit->parent;
3007                 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3008                 break;
3009         default:
3010                 rule = s->data->parent;
3011                 if (s->type == O_LIMIT)
3012                         rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3013                 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3014         }
3015
3016         dst->id.src_ip6 = s->src;
3017         dst->id.dst_ip6 = s->dst;
3018         dst->id.dst_port = s->dport;
3019         dst->id.src_port = s->sport;
3020         dst->id.fib = s->data->fibnum;
3021         dst->id.proto = s->proto;
3022         dst->id._flags = 0;
3023         dst->id.addr_type = 6;
3024
3025         dst->id.dst_ip = dst->id.src_ip = 0;
3026         dst->id.flow_id6 = dst->id.extra = 0;
3027 }
3028 #endif /* INET6 */
3029
3030 /*
3031  * Fills the buffer given by @sd with dynamic states.
3032  * Used by dump format v1 (current).
3033  *
3034  * Returns 0 on success.
3035  */
3036 int
3037 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3038 {
3039 #ifdef INET6
3040         struct dyn_ipv6_state *s6;
3041 #endif
3042         struct dyn_ipv4_state *s4;
3043         ipfw_obj_dyntlv *dst, *last;
3044         ipfw_obj_ctlv *ctlv;
3045         uint32_t bucket;
3046
3047         if (V_dyn_count == 0)
3048                 return (0);
3049
3050         /*
3051          * IPFW_UH_RLOCK garantees that another userland request
3052          * and callout thread will not delete entries from states
3053          * lists.
3054          */
3055         IPFW_UH_RLOCK_ASSERT(chain);
3056
3057         ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3058         if (ctlv == NULL)
3059                 return (ENOMEM);
3060         ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3061         ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3062         last = NULL;
3063
3064 #define DYN_EXPORT_STATES(s, af, h, b)                          \
3065         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
3066                 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd,        \
3067                     sizeof(ipfw_obj_dyntlv));                           \
3068                 if (dst == NULL)                                        \
3069                         return (ENOMEM);                                \
3070                 dyn_export_ ## af ## _state(s, &dst->state);            \
3071                 dst->head.length = sizeof(ipfw_obj_dyntlv);             \
3072                 dst->head.type = IPFW_TLV_DYN_ENT;                      \
3073                 last = dst;                                             \
3074         }
3075
3076         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3077                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3078                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3079 #ifdef INET6
3080                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3081                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3082 #endif /* INET6 */
3083         }
3084
3085         /* mark last dynamic rule */
3086         if (last != NULL)
3087                 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3088         return (0);
3089 #undef DYN_EXPORT_STATES
3090 }
3091
3092 /*
3093  * Fill given buffer with dynamic states (legacy format).
3094  * IPFW_UH_RLOCK has to be held while calling.
3095  */
3096 void
3097 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
3098 {
3099 #ifdef INET6
3100         struct dyn_ipv6_state *s6;
3101 #endif
3102         struct dyn_ipv4_state *s4;
3103         ipfw_dyn_rule *p, *last = NULL;
3104         char *bp;
3105         uint32_t bucket;
3106
3107         if (V_dyn_count == 0)
3108                 return;
3109         bp = *pbp;
3110
3111         IPFW_UH_RLOCK_ASSERT(chain);
3112
3113 #define DYN_EXPORT_STATES(s, af, head, b)                               \
3114         CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) {                \
3115                 if (bp + sizeof(*p) > ep)                               \
3116                         break;                                          \
3117                 p = (ipfw_dyn_rule *)bp;                                \
3118                 dyn_export_ ## af ## _state(s, p);                      \
3119                 last = p;                                               \
3120                 bp += sizeof(*p);                                       \
3121         }
3122
3123         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3124                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3125                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3126 #ifdef INET6
3127                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3128                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3129 #endif /* INET6 */
3130         }
3131
3132         if (last != NULL) /* mark last dynamic rule */
3133                 last->next = NULL;
3134         *pbp = bp;
3135 #undef DYN_EXPORT_STATES
3136 }
3137
3138 void
3139 ipfw_dyn_init(struct ip_fw_chain *chain)
3140 {
3141
3142 #ifdef IPFIREWALL_JENKINSHASH
3143         V_dyn_hashseed = arc4random();
3144 #endif
3145         V_dyn_max = 16384;              /* max # of states */
3146         V_dyn_parent_max = 4096;        /* max # of parent states */
3147         V_dyn_buckets_max = 8192;       /* must be power of 2 */
3148
3149         V_dyn_ack_lifetime = 300;
3150         V_dyn_syn_lifetime = 20;
3151         V_dyn_fin_lifetime = 1;
3152         V_dyn_rst_lifetime = 1;
3153         V_dyn_udp_lifetime = 10;
3154         V_dyn_short_lifetime = 5;
3155
3156         V_dyn_keepalive_interval = 20;
3157         V_dyn_keepalive_period = 5;
3158         V_dyn_keepalive = 1;            /* send keepalives */
3159         V_dyn_keepalive_last = time_uptime;
3160
3161         V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3162             sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3163             UMA_ALIGN_PTR, 0);
3164         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3165
3166         V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3167             sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3168             UMA_ALIGN_PTR, 0);
3169         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3170
3171         SLIST_INIT(&V_dyn_expired_ipv4);
3172         V_dyn_ipv4 = NULL;
3173         V_dyn_ipv4_parent = NULL;
3174         V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3175             sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3176             UMA_ALIGN_PTR, 0);
3177
3178 #ifdef INET6
3179         SLIST_INIT(&V_dyn_expired_ipv6);
3180         V_dyn_ipv6 = NULL;
3181         V_dyn_ipv6_parent = NULL;
3182         V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3183             sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3184             UMA_ALIGN_PTR, 0);
3185 #endif
3186
3187         /* Initialize buckets. */
3188         V_curr_dyn_buckets = 0;
3189         V_dyn_bucket_lock = NULL;
3190         dyn_grow_hashtable(chain, 256);
3191
3192         if (IS_DEFAULT_VNET(curvnet))
3193                 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3194                     M_WAITOK | M_ZERO);
3195
3196         DYN_EXPIRED_LOCK_INIT();
3197         callout_init(&V_dyn_timeout, 1);
3198         callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3199         IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3200 }
3201
3202 void
3203 ipfw_dyn_uninit(int pass)
3204 {
3205 #ifdef INET6
3206         struct dyn_ipv6_state *s6;
3207 #endif
3208         struct dyn_ipv4_state *s4;
3209         int bucket;
3210
3211         if (pass == 0) {
3212                 callout_drain(&V_dyn_timeout);
3213                 return;
3214         }
3215         IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3216         DYN_EXPIRED_LOCK_DESTROY();
3217
3218 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en)     do {            \
3219         while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) {      \
3220                 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en);   \
3221                 if (s->type == O_LIMIT_PARENT)                          \
3222                         uma_zfree(V_dyn_parent_zone, s->limit);         \
3223                 else                                                    \
3224                         uma_zfree(V_dyn_data_zone, s->data);            \
3225                 uma_zfree(V_dyn_ ## af ## _zone, s);                    \
3226         }                                                               \
3227 } while (0)
3228         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3229                 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3230
3231                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3232                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3233                     entry);
3234 #ifdef INET6
3235                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3236                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3237                     entry);
3238 #endif /* INET6 */
3239         }
3240         DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3241 #ifdef INET6
3242         DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3243 #endif
3244 #undef DYN_FREE_STATES_FORCED
3245
3246         uma_zdestroy(V_dyn_ipv4_zone);
3247         uma_zdestroy(V_dyn_data_zone);
3248         uma_zdestroy(V_dyn_parent_zone);
3249 #ifdef INET6
3250         uma_zdestroy(V_dyn_ipv6_zone);
3251         free(V_dyn_ipv6, M_IPFW);
3252         free(V_dyn_ipv6_parent, M_IPFW);
3253         free(V_dyn_ipv6_add, M_IPFW);
3254         free(V_dyn_ipv6_parent_add, M_IPFW);
3255         free(V_dyn_ipv6_del, M_IPFW);
3256         free(V_dyn_ipv6_parent_del, M_IPFW);
3257 #endif
3258         free(V_dyn_bucket_lock, M_IPFW);
3259         free(V_dyn_ipv4, M_IPFW);
3260         free(V_dyn_ipv4_parent, M_IPFW);
3261         free(V_dyn_ipv4_add, M_IPFW);
3262         free(V_dyn_ipv4_parent_add, M_IPFW);
3263         free(V_dyn_ipv4_del, M_IPFW);
3264         free(V_dyn_ipv4_parent_del, M_IPFW);
3265         if (IS_DEFAULT_VNET(curvnet))
3266                 free(dyn_hp_cache, M_IPFW);
3267 }