]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netpfil/ipfw/ip_fw_dynamic.c
Merge from upstream at 4189ef5d from https://github.com/onetrueawk/awk.git
[FreeBSD/FreeBSD.git] / sys / netpfil / ipfw / ip_fw_dynamic.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017-2018 Yandex LLC
5  * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipfw.h"
36 #ifndef INET
37 #error IPFIREWALL requires INET.
38 #endif /* INET */
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/pcpu.h>
47 #include <sys/queue.h>
48 #include <sys/rmlock.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/vnet.h>
57
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/ip_fw.h>
62 #include <netinet/tcp_var.h>
63 #include <netinet/udp.h>
64
65 #include <netinet/ip6.h>        /* IN6_ARE_ADDR_EQUAL */
66 #ifdef INET6
67 #include <netinet6/in6_var.h>
68 #include <netinet6/ip6_var.h>
69 #include <netinet6/scope6_var.h>
70 #endif
71
72 #include <netpfil/ipfw/ip_fw_private.h>
73
74 #include <machine/in_cksum.h>   /* XXX for in_cksum */
75
76 #ifdef MAC
77 #include <security/mac/mac_framework.h>
78 #endif
79
80 /*
81  * Description of dynamic states.
82  *
83  * Dynamic states are stored in lists accessed through a hash tables
84  * whose size is curr_dyn_buckets. This value can be modified through
85  * the sysctl variable dyn_buckets.
86  *
87  * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
88  * and dyn_ipv6_parent.
89  *
90  * When a packet is received, its address fields hashed, then matched
91  * against the entries in the corresponding list by addr_type.
92  * Dynamic states can be used for different purposes:
93  *  + stateful rules;
94  *  + enforcing limits on the number of sessions;
95  *  + in-kernel NAT (not implemented yet)
96  *
97  * The lifetime of dynamic states is regulated by dyn_*_lifetime,
98  * measured in seconds and depending on the flags.
99  *
100  * The total number of dynamic states is equal to UMA zone items count.
101  * The max number of dynamic states is dyn_max. When we reach
102  * the maximum number of rules we do not create anymore. This is
103  * done to avoid consuming too much memory, but also too much
104  * time when searching on each packet (ideally, we should try instead
105  * to put a limit on the length of the list on each bucket...).
106  *
107  * Each state holds a pointer to the parent ipfw rule so we know what
108  * action to perform. Dynamic rules are removed when the parent rule is
109  * deleted.
110  *
111  * There are some limitations with dynamic rules -- we do not
112  * obey the 'randomized match', and we do not do multiple
113  * passes through the firewall. XXX check the latter!!!
114  */
115
116 /* By default use jenkins hash function */
117 #define IPFIREWALL_JENKINSHASH
118
119 #define DYN_COUNTER_INC(d, dir, pktlen) do {    \
120         (d)->pcnt_ ## dir++;                    \
121         (d)->bcnt_ ## dir += pktlen;            \
122         } while (0)
123
124 #define DYN_REFERENCED          0x01
125 /*
126  * DYN_REFERENCED flag is used to show that state keeps reference to named
127  * object, and this reference should be released when state becomes expired.
128  */
129
130 struct dyn_data {
131         void            *parent;        /* pointer to parent rule */
132         uint32_t        chain_id;       /* cached ruleset id */
133         uint32_t        f_pos;          /* cached rule index */
134
135         uint32_t        hashval;        /* hash value used for hash resize */
136         uint16_t        fibnum;         /* fib used to send keepalives */
137         uint8_t         _pad[3];
138         uint8_t         flags;          /* internal flags */
139         uint16_t        rulenum;        /* parent rule number */
140         uint32_t        ruleid;         /* parent rule id */
141
142         uint32_t        state;          /* TCP session state and flags */
143         uint32_t        ack_fwd;        /* most recent ACKs in forward */
144         uint32_t        ack_rev;        /* and reverse direction (used */
145                                         /* to generate keepalives) */
146         uint32_t        sync;           /* synchronization time */
147         uint32_t        expire;         /* expire time */
148
149         uint64_t        pcnt_fwd;       /* bytes counter in forward */
150         uint64_t        bcnt_fwd;       /* packets counter in forward */
151         uint64_t        pcnt_rev;       /* bytes counter in reverse */
152         uint64_t        bcnt_rev;       /* packets counter in reverse */
153 };
154
155 #define DPARENT_COUNT_DEC(p)    do {                    \
156         MPASS(p->count > 0);                            \
157         ck_pr_dec_32(&(p)->count);                      \
158 } while (0)
159 #define DPARENT_COUNT_INC(p)    ck_pr_inc_32(&(p)->count)
160 #define DPARENT_COUNT(p)        ck_pr_load_32(&(p)->count)
161 struct dyn_parent {
162         void            *parent;        /* pointer to parent rule */
163         uint32_t        count;          /* number of linked states */
164         uint8_t         _pad[2];
165         uint16_t        rulenum;        /* parent rule number */
166         uint32_t        ruleid;         /* parent rule id */
167         uint32_t        hashval;        /* hash value used for hash resize */
168         uint32_t        expire;         /* expire time */
169 };
170
171 struct dyn_ipv4_state {
172         uint8_t         type;           /* State type */
173         uint8_t         proto;          /* UL Protocol */
174         uint16_t        kidx;           /* named object index */
175         uint16_t        sport, dport;   /* ULP source and destination ports */
176         in_addr_t       src, dst;       /* IPv4 source and destination */
177
178         union {
179                 struct dyn_data *data;
180                 struct dyn_parent *limit;
181         };
182         CK_SLIST_ENTRY(dyn_ipv4_state)  entry;
183         SLIST_ENTRY(dyn_ipv4_state)     expired;
184 };
185 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
186 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4);
187 VNET_DEFINE_STATIC(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
188
189 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
190 VNET_DEFINE_STATIC(struct dyn_ipv4_slist, dyn_expired_ipv4);
191 #define V_dyn_ipv4                      VNET(dyn_ipv4)
192 #define V_dyn_ipv4_parent               VNET(dyn_ipv4_parent)
193 #define V_dyn_expired_ipv4              VNET(dyn_expired_ipv4)
194
195 #ifdef INET6
196 struct dyn_ipv6_state {
197         uint8_t         type;           /* State type */
198         uint8_t         proto;          /* UL Protocol */
199         uint16_t        kidx;           /* named object index */
200         uint16_t        sport, dport;   /* ULP source and destination ports */
201         struct in6_addr src, dst;       /* IPv6 source and destination */
202         uint32_t        zoneid;         /* IPv6 scope zone id */
203         union {
204                 struct dyn_data *data;
205                 struct dyn_parent *limit;
206         };
207         CK_SLIST_ENTRY(dyn_ipv6_state)  entry;
208         SLIST_ENTRY(dyn_ipv6_state)     expired;
209 };
210 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
211 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6);
212 VNET_DEFINE_STATIC(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
213
214 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
215 VNET_DEFINE_STATIC(struct dyn_ipv6_slist, dyn_expired_ipv6);
216 #define V_dyn_ipv6                      VNET(dyn_ipv6)
217 #define V_dyn_ipv6_parent               VNET(dyn_ipv6_parent)
218 #define V_dyn_expired_ipv6              VNET(dyn_expired_ipv6)
219 #endif /* INET6 */
220
221 /*
222  * Per-CPU pointer indicates that specified state is currently in use
223  * and must not be reclaimed by expiration callout.
224  */
225 static void **dyn_hp_cache;
226 DPCPU_DEFINE_STATIC(void *, dyn_hp);
227 #define DYNSTATE_GET(cpu)       ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
228 #define DYNSTATE_PROTECT(v)     ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
229 #define DYNSTATE_RELEASE()      DYNSTATE_PROTECT(NULL)
230 #define DYNSTATE_CRITICAL_ENTER()       critical_enter()
231 #define DYNSTATE_CRITICAL_EXIT()        do {    \
232         DYNSTATE_RELEASE();                     \
233         critical_exit();                        \
234 } while (0);
235
236 /*
237  * We keep two version numbers, one is updated when new entry added to
238  * the list. Second is updated when an entry deleted from the list.
239  * Versions are updated under bucket lock.
240  *
241  * Bucket "add" version number is used to know, that in the time between
242  * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
243  * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
244  * not install some state in this bucket. Using this info we can avoid
245  * additional state lookup, because we are sure that we will not install
246  * the state twice.
247  *
248  * Also doing the tracking of bucket "del" version during lookup we can
249  * be sure, that state entry was not unlinked and freed in time between
250  * we read the state pointer and protect it with hazard pointer.
251  *
252  * An entry unlinked from CK list keeps unchanged until it is freed.
253  * Unlinked entries are linked into expired lists using "expired" field.
254  */
255
256 /*
257  * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
258  * dyn_bucket_lock is used to get write access to lists in specific bucket.
259  * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
260  * and ipv6_parent lists.
261  */
262 VNET_DEFINE_STATIC(struct mtx, dyn_expire_lock);
263 VNET_DEFINE_STATIC(struct mtx *, dyn_bucket_lock);
264 #define V_dyn_expire_lock               VNET(dyn_expire_lock)
265 #define V_dyn_bucket_lock               VNET(dyn_bucket_lock)
266
267 /*
268  * Bucket's add/delete generation versions.
269  */
270 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_add);
271 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_del);
272 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_add);
273 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv4_parent_del);
274 #define V_dyn_ipv4_add                  VNET(dyn_ipv4_add)
275 #define V_dyn_ipv4_del                  VNET(dyn_ipv4_del)
276 #define V_dyn_ipv4_parent_add           VNET(dyn_ipv4_parent_add)
277 #define V_dyn_ipv4_parent_del           VNET(dyn_ipv4_parent_del)
278
279 #ifdef INET6
280 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_add);
281 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_del);
282 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_add);
283 VNET_DEFINE_STATIC(uint32_t *, dyn_ipv6_parent_del);
284 #define V_dyn_ipv6_add                  VNET(dyn_ipv6_add)
285 #define V_dyn_ipv6_del                  VNET(dyn_ipv6_del)
286 #define V_dyn_ipv6_parent_add           VNET(dyn_ipv6_parent_add)
287 #define V_dyn_ipv6_parent_del           VNET(dyn_ipv6_parent_del)
288 #endif /* INET6 */
289
290 #define DYN_BUCKET(h, b)                ((h) & (b - 1))
291 #define DYN_BUCKET_VERSION(b, v)        ck_pr_load_32(&V_dyn_ ## v[(b)])
292 #define DYN_BUCKET_VERSION_BUMP(b, v)   ck_pr_inc_32(&V_dyn_ ## v[(b)])
293
294 #define DYN_BUCKET_LOCK_INIT(lock, b)           \
295     mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
296 #define DYN_BUCKET_LOCK_DESTROY(lock, b)        mtx_destroy(&lock[(b)])
297 #define DYN_BUCKET_LOCK(b)      mtx_lock(&V_dyn_bucket_lock[(b)])
298 #define DYN_BUCKET_UNLOCK(b)    mtx_unlock(&V_dyn_bucket_lock[(b)])
299 #define DYN_BUCKET_ASSERT(b)    mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
300
301 #define DYN_EXPIRED_LOCK_INIT()         \
302     mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
303 #define DYN_EXPIRED_LOCK_DESTROY()      mtx_destroy(&V_dyn_expire_lock)
304 #define DYN_EXPIRED_LOCK()              mtx_lock(&V_dyn_expire_lock)
305 #define DYN_EXPIRED_UNLOCK()            mtx_unlock(&V_dyn_expire_lock)
306
307 VNET_DEFINE_STATIC(uint32_t, dyn_buckets_max);
308 VNET_DEFINE_STATIC(uint32_t, curr_dyn_buckets);
309 VNET_DEFINE_STATIC(struct callout, dyn_timeout);
310 #define V_dyn_buckets_max               VNET(dyn_buckets_max)
311 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
312 #define V_dyn_timeout                   VNET(dyn_timeout)
313
314 /* Maximum length of states chain in a bucket */
315 VNET_DEFINE_STATIC(uint32_t, curr_max_length);
316 #define V_curr_max_length               VNET(curr_max_length)
317
318 VNET_DEFINE_STATIC(uint32_t, dyn_keep_states);
319 #define V_dyn_keep_states               VNET(dyn_keep_states)
320
321 VNET_DEFINE_STATIC(uma_zone_t, dyn_data_zone);
322 VNET_DEFINE_STATIC(uma_zone_t, dyn_parent_zone);
323 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv4_zone);
324 #ifdef INET6
325 VNET_DEFINE_STATIC(uma_zone_t, dyn_ipv6_zone);
326 #define V_dyn_ipv6_zone                 VNET(dyn_ipv6_zone)
327 #endif /* INET6 */
328 #define V_dyn_data_zone                 VNET(dyn_data_zone)
329 #define V_dyn_parent_zone               VNET(dyn_parent_zone)
330 #define V_dyn_ipv4_zone                 VNET(dyn_ipv4_zone)
331
332 /*
333  * Timeouts for various events in handing dynamic rules.
334  */
335 VNET_DEFINE_STATIC(uint32_t, dyn_ack_lifetime);
336 VNET_DEFINE_STATIC(uint32_t, dyn_syn_lifetime);
337 VNET_DEFINE_STATIC(uint32_t, dyn_fin_lifetime);
338 VNET_DEFINE_STATIC(uint32_t, dyn_rst_lifetime);
339 VNET_DEFINE_STATIC(uint32_t, dyn_udp_lifetime);
340 VNET_DEFINE_STATIC(uint32_t, dyn_short_lifetime);
341
342 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
343 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
344 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
345 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
346 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
347 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
348
349 /*
350  * Keepalives are sent if dyn_keepalive is set. They are sent every
351  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
352  * seconds of lifetime of a rule.
353  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
354  * than dyn_keepalive_period.
355  */
356 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_interval);
357 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive_period);
358 VNET_DEFINE_STATIC(uint32_t, dyn_keepalive);
359 VNET_DEFINE_STATIC(time_t, dyn_keepalive_last);
360
361 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
362 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
363 #define V_dyn_keepalive                 VNET(dyn_keepalive)
364 #define V_dyn_keepalive_last            VNET(dyn_keepalive_last)
365
366 VNET_DEFINE_STATIC(uint32_t, dyn_max);          /* max # of dynamic states */
367 VNET_DEFINE_STATIC(uint32_t, dyn_count);        /* number of states */
368 VNET_DEFINE_STATIC(uint32_t, dyn_parent_max);   /* max # of parent states */
369 VNET_DEFINE_STATIC(uint32_t, dyn_parent_count); /* number of parent states */
370
371 #define V_dyn_max                       VNET(dyn_max)
372 #define V_dyn_count                     VNET(dyn_count)
373 #define V_dyn_parent_max                VNET(dyn_parent_max)
374 #define V_dyn_parent_count              VNET(dyn_parent_count)
375
376 #define DYN_COUNT_DEC(name)     do {                    \
377         MPASS((V_ ## name) > 0);                        \
378         ck_pr_dec_32(&(V_ ## name));                    \
379 } while (0)
380 #define DYN_COUNT_INC(name)     ck_pr_inc_32(&(V_ ## name))
381 #define DYN_COUNT(name)         ck_pr_load_32(&(V_ ## name))
382
383 static time_t last_log; /* Log ratelimiting */
384
385 /*
386  * Get/set maximum number of dynamic states in given VNET instance.
387  */
388 static int
389 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
390 {
391         uint32_t nstates;
392         int error;
393
394         nstates = V_dyn_max;
395         error = sysctl_handle_32(oidp, &nstates, 0, req);
396         /* Read operation or some error */
397         if ((error != 0) || (req->newptr == NULL))
398                 return (error);
399
400         V_dyn_max = nstates;
401         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
402         return (0);
403 }
404
405 static int
406 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
407 {
408         uint32_t nstates;
409         int error;
410
411         nstates = V_dyn_parent_max;
412         error = sysctl_handle_32(oidp, &nstates, 0, req);
413         /* Read operation or some error */
414         if ((error != 0) || (req->newptr == NULL))
415                 return (error);
416
417         V_dyn_parent_max = nstates;
418         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
419         return (0);
420 }
421
422 static int
423 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
424 {
425         uint32_t nbuckets;
426         int error;
427
428         nbuckets = V_dyn_buckets_max;
429         error = sysctl_handle_32(oidp, &nbuckets, 0, req);
430         /* Read operation or some error */
431         if ((error != 0) || (req->newptr == NULL))
432                 return (error);
433
434         if (nbuckets > 256)
435                 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
436         else
437                 return (EINVAL);
438         return (0);
439 }
440
441 SYSCTL_DECL(_net_inet_ip_fw);
442
443 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
444     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
445     "Current number of dynamic states.");
446 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
447     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
448     "Current number of parent states. ");
449 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
450     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
451     "Current number of buckets for states hash table.");
452 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
453     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
454     "Current maximum length of states chains in hash buckets.");
455 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
456     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_buckets,
457     "IU", "Max number of buckets for dynamic states hash table.");
458 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
459     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_max,
460     "IU", "Max number of dynamic states.");
461 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
462     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_parent_max,
463     "IU", "Max number of parent dynamic states.");
464 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
465     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
466     "Lifetime of dynamic states for TCP ACK.");
467 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
468     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
469     "Lifetime of dynamic states for TCP SYN.");
470 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
471     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
472     "Lifetime of dynamic states for TCP FIN.");
473 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
474     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
475     "Lifetime of dynamic states for TCP RST.");
476 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
477     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
478     "Lifetime of dynamic states for UDP.");
479 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
480     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
481     "Lifetime of dynamic states for other situations.");
482 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
483     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
484     "Enable keepalives for dynamic states.");
485 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
486     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
487     "Do not flush dynamic states on rule deletion");
488
489
490 #ifdef IPFIREWALL_DYNDEBUG
491 #define DYN_DEBUG(fmt, ...)     do {                    \
492         printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
493 } while (0)
494 #else
495 #define DYN_DEBUG(fmt, ...)
496 #endif /* !IPFIREWALL_DYNDEBUG */
497
498 #ifdef INET6
499 /* Functions to work with IPv6 states */
500 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
501     const struct ipfw_flow_id *, uint32_t, const void *,
502     struct ipfw_dyn_info *, int);
503 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
504     uint32_t, const void *, int, uint32_t, uint16_t);
505 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
506     const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
507 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t,
508     const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
509     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
510 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
511     ipfw_dyn_rule *);
512
513 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
514 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
515     const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
516     uint16_t);
517 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
518     const struct dyn_ipv6_state *);
519 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
520
521 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
522     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
523     uint32_t);
524 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
525     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
526     uint32_t);
527 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
528     const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t, uint16_t);
529 #endif /* INET6 */
530
531 /* Functions to work with limit states */
532 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
533     struct ip_fw *, uint32_t, uint32_t, uint16_t);
534 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
535     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
536 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
537     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
538 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
539     uint32_t);
540 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
541     const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
542
543 static void dyn_tick(void *);
544 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
545 static void dyn_free_states(struct ip_fw_chain *);
546 static void dyn_export_parent(const struct dyn_parent *, uint16_t, uint8_t,
547     ipfw_dyn_rule *);
548 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
549     uint8_t, ipfw_dyn_rule *);
550 static uint32_t dyn_update_tcp_state(struct dyn_data *,
551     const struct ipfw_flow_id *, const struct tcphdr *, int);
552 static void dyn_update_proto_state(struct dyn_data *,
553     const struct ipfw_flow_id *, const void *, int, int);
554
555 /* Functions to work with IPv4 states */
556 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
557     const void *, struct ipfw_dyn_info *, int);
558 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
559     const void *, int, uint32_t, uint16_t);
560 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
561     const struct ipfw_flow_id *, uint16_t, uint8_t);
562 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t,
563     const struct ipfw_flow_id *, const void *, int, uint32_t,
564     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
565 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
566     ipfw_dyn_rule *);
567
568 /*
569  * Named states support.
570  */
571 static char *default_state_name = "default";
572 struct dyn_state_obj {
573         struct named_object     no;
574         char                    name[64];
575 };
576
577 #define DYN_STATE_OBJ(ch, cmd)  \
578     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
579 /*
580  * Classifier callback.
581  * Return 0 if opcode contains object that should be referenced
582  * or rewritten.
583  */
584 static int
585 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
586 {
587
588         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
589         /* Don't rewrite "check-state any" */
590         if (cmd->arg1 == 0 &&
591             cmd->opcode == O_CHECK_STATE)
592                 return (1);
593
594         *puidx = cmd->arg1;
595         *ptype = 0;
596         return (0);
597 }
598
599 static void
600 dyn_update(ipfw_insn *cmd, uint16_t idx)
601 {
602
603         cmd->arg1 = idx;
604         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
605 }
606
607 static int
608 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
609     struct named_object **pno)
610 {
611         ipfw_obj_ntlv *ntlv;
612         const char *name;
613
614         DYN_DEBUG("uidx %d", ti->uidx);
615         if (ti->uidx != 0) {
616                 if (ti->tlvs == NULL)
617                         return (EINVAL);
618                 /* Search ntlv in the buffer provided by user */
619                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
620                     IPFW_TLV_STATE_NAME);
621                 if (ntlv == NULL)
622                         return (EINVAL);
623                 name = ntlv->name;
624         } else
625                 name = default_state_name;
626         /*
627          * Search named object with corresponding name.
628          * Since states objects are global - ignore the set value
629          * and use zero instead.
630          */
631         *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
632             IPFW_TLV_STATE_NAME, name);
633         /*
634          * We always return success here.
635          * The caller will check *pno and mark object as unresolved,
636          * then it will automatically create "default" object.
637          */
638         return (0);
639 }
640
641 static struct named_object *
642 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
643 {
644
645         DYN_DEBUG("kidx %d", idx);
646         return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
647 }
648
649 static int
650 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
651     uint16_t *pkidx)
652 {
653         struct namedobj_instance *ni;
654         struct dyn_state_obj *obj;
655         struct named_object *no;
656         ipfw_obj_ntlv *ntlv;
657         char *name;
658
659         DYN_DEBUG("uidx %d", ti->uidx);
660         if (ti->uidx != 0) {
661                 if (ti->tlvs == NULL)
662                         return (EINVAL);
663                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
664                     IPFW_TLV_STATE_NAME);
665                 if (ntlv == NULL)
666                         return (EINVAL);
667                 name = ntlv->name;
668         } else
669                 name = default_state_name;
670
671         ni = CHAIN_TO_SRV(ch);
672         obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
673         obj->no.name = obj->name;
674         obj->no.etlv = IPFW_TLV_STATE_NAME;
675         strlcpy(obj->name, name, sizeof(obj->name));
676
677         IPFW_UH_WLOCK(ch);
678         no = ipfw_objhash_lookup_name_type(ni, 0,
679             IPFW_TLV_STATE_NAME, name);
680         if (no != NULL) {
681                 /*
682                  * Object is already created.
683                  * Just return its kidx and bump refcount.
684                  */
685                 *pkidx = no->kidx;
686                 no->refcnt++;
687                 IPFW_UH_WUNLOCK(ch);
688                 free(obj, M_IPFW);
689                 DYN_DEBUG("\tfound kidx %d", *pkidx);
690                 return (0);
691         }
692         if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
693                 DYN_DEBUG("\talloc_idx failed for %s", name);
694                 IPFW_UH_WUNLOCK(ch);
695                 free(obj, M_IPFW);
696                 return (ENOSPC);
697         }
698         ipfw_objhash_add(ni, &obj->no);
699         SRV_OBJECT(ch, obj->no.kidx) = obj;
700         obj->no.refcnt++;
701         *pkidx = obj->no.kidx;
702         IPFW_UH_WUNLOCK(ch);
703         DYN_DEBUG("\tcreated kidx %d", *pkidx);
704         return (0);
705 }
706
707 static void
708 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
709 {
710         struct dyn_state_obj *obj;
711
712         IPFW_UH_WLOCK_ASSERT(ch);
713
714         KASSERT(no->etlv == IPFW_TLV_STATE_NAME,
715             ("%s: wrong object type %u", __func__, no->etlv));
716         KASSERT(no->refcnt == 1,
717             ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
718             no->name, no->etlv, no->kidx, no->refcnt));
719         DYN_DEBUG("kidx %d", no->kidx);
720         obj = SRV_OBJECT(ch, no->kidx);
721         SRV_OBJECT(ch, no->kidx) = NULL;
722         ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
723         ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
724
725         free(obj, M_IPFW);
726 }
727
728 static struct opcode_obj_rewrite dyn_opcodes[] = {
729         {
730                 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
731                 dyn_classify, dyn_update,
732                 dyn_findbyname, dyn_findbykidx,
733                 dyn_create, dyn_destroy
734         },
735         {
736                 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
737                 dyn_classify, dyn_update,
738                 dyn_findbyname, dyn_findbykidx,
739                 dyn_create, dyn_destroy
740         },
741         {
742                 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
743                 dyn_classify, dyn_update,
744                 dyn_findbyname, dyn_findbykidx,
745                 dyn_create, dyn_destroy
746         },
747         {
748                 O_LIMIT, IPFW_TLV_STATE_NAME,
749                 dyn_classify, dyn_update,
750                 dyn_findbyname, dyn_findbykidx,
751                 dyn_create, dyn_destroy
752         },
753 };
754
755 /*
756  * IMPORTANT: the hash function for dynamic rules must be commutative
757  * in source and destination (ip,port), because rules are bidirectional
758  * and we want to find both in the same bucket.
759  */
760 #ifndef IPFIREWALL_JENKINSHASH
761 static __inline uint32_t
762 hash_packet(const struct ipfw_flow_id *id)
763 {
764         uint32_t i;
765
766 #ifdef INET6
767         if (IS_IP6_FLOW_ID(id))
768                 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
769                     (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
770                     (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
771                     (id->src_ip6.__u6_addr.__u6_addr32[3]));
772         else
773 #endif /* INET6 */
774         i = (id->dst_ip) ^ (id->src_ip);
775         i ^= (id->dst_port) ^ (id->src_port);
776         return (i);
777 }
778
779 static __inline uint32_t
780 hash_parent(const struct ipfw_flow_id *id, const void *rule)
781 {
782
783         return (hash_packet(id) ^ ((uintptr_t)rule));
784 }
785
786 #else /* IPFIREWALL_JENKINSHASH */
787
788 VNET_DEFINE_STATIC(uint32_t, dyn_hashseed);
789 #define V_dyn_hashseed          VNET(dyn_hashseed)
790
791 static __inline int
792 addrcmp4(const struct ipfw_flow_id *id)
793 {
794
795         if (id->src_ip < id->dst_ip)
796                 return (0);
797         if (id->src_ip > id->dst_ip)
798                 return (1);
799         if (id->src_port <= id->dst_port)
800                 return (0);
801         return (1);
802 }
803
804 #ifdef INET6
805 static __inline int
806 addrcmp6(const struct ipfw_flow_id *id)
807 {
808         int ret;
809
810         ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
811         if (ret < 0)
812                 return (0);
813         if (ret > 0)
814                 return (1);
815         if (id->src_port <= id->dst_port)
816                 return (0);
817         return (1);
818 }
819
820 static __inline uint32_t
821 hash_packet6(const struct ipfw_flow_id *id)
822 {
823         struct tuple6 {
824                 struct in6_addr addr[2];
825                 uint16_t        port[2];
826         } t6;
827
828         if (addrcmp6(id) == 0) {
829                 t6.addr[0] = id->src_ip6;
830                 t6.addr[1] = id->dst_ip6;
831                 t6.port[0] = id->src_port;
832                 t6.port[1] = id->dst_port;
833         } else {
834                 t6.addr[0] = id->dst_ip6;
835                 t6.addr[1] = id->src_ip6;
836                 t6.port[0] = id->dst_port;
837                 t6.port[1] = id->src_port;
838         }
839         return (jenkins_hash32((const uint32_t *)&t6,
840             sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
841 }
842 #endif
843
844 static __inline uint32_t
845 hash_packet(const struct ipfw_flow_id *id)
846 {
847         struct tuple4 {
848                 in_addr_t       addr[2];
849                 uint16_t        port[2];
850         } t4;
851
852         if (IS_IP4_FLOW_ID(id)) {
853                 /* All fields are in host byte order */
854                 if (addrcmp4(id) == 0) {
855                         t4.addr[0] = id->src_ip;
856                         t4.addr[1] = id->dst_ip;
857                         t4.port[0] = id->src_port;
858                         t4.port[1] = id->dst_port;
859                 } else {
860                         t4.addr[0] = id->dst_ip;
861                         t4.addr[1] = id->src_ip;
862                         t4.port[0] = id->dst_port;
863                         t4.port[1] = id->src_port;
864                 }
865                 return (jenkins_hash32((const uint32_t *)&t4,
866                     sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
867         } else
868 #ifdef INET6
869         if (IS_IP6_FLOW_ID(id))
870                 return (hash_packet6(id));
871 #endif
872         return (0);
873 }
874
875 static __inline uint32_t
876 hash_parent(const struct ipfw_flow_id *id, const void *rule)
877 {
878
879         return (jenkins_hash32((const uint32_t *)&rule,
880             sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
881 }
882 #endif /* IPFIREWALL_JENKINSHASH */
883
884 /*
885  * Print customizable flow id description via log(9) facility.
886  */
887 static void
888 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
889     int log_flags, char *prefix, char *postfix)
890 {
891         struct in_addr da;
892 #ifdef INET6
893         char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
894 #else
895         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
896 #endif
897
898 #ifdef INET6
899         if (IS_IP6_FLOW_ID(id)) {
900                 ip6_sprintf(src, &id->src_ip6);
901                 ip6_sprintf(dst, &id->dst_ip6);
902         } else
903 #endif
904         {
905                 da.s_addr = htonl(id->src_ip);
906                 inet_ntop(AF_INET, &da, src, sizeof(src));
907                 da.s_addr = htonl(id->dst_ip);
908                 inet_ntop(AF_INET, &da, dst, sizeof(dst));
909         }
910         log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
911             prefix, dyn_type, src, id->src_port, dst,
912             id->dst_port, V_dyn_count, postfix);
913 }
914
915 #define print_dyn_rule(id, dtype, prefix, postfix)      \
916         print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
917
918 #define TIME_LEQ(a,b)   ((int)((a)-(b)) <= 0)
919 #define TIME_LE(a,b)    ((int)((a)-(b)) < 0)
920 #define _SEQ_GE(a,b)    ((int)((a)-(b)) >= 0)
921 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
922 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
923 #define TCP_FLAGS       (TH_FLAGS | (TH_FLAGS << 8))
924 #define ACK_FWD         0x00010000      /* fwd ack seen */
925 #define ACK_REV         0x00020000      /* rev ack seen */
926 #define ACK_BOTH        (ACK_FWD | ACK_REV)
927
928 static uint32_t
929 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
930     const struct tcphdr *tcp, int dir)
931 {
932         uint32_t ack, expire;
933         uint32_t state, old;
934         uint8_t th_flags;
935
936         expire = data->expire;
937         old = state = data->state;
938         th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
939         state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
940         switch (state & TCP_FLAGS) {
941         case TH_SYN:                    /* opening */
942                 expire = time_uptime + V_dyn_syn_lifetime;
943                 break;
944
945         case BOTH_SYN:                  /* move to established */
946         case BOTH_SYN | TH_FIN:         /* one side tries to close */
947         case BOTH_SYN | (TH_FIN << 8):
948                 if (tcp == NULL)
949                         break;
950                 ack = ntohl(tcp->th_ack);
951                 if (dir == MATCH_FORWARD) {
952                         if (data->ack_fwd == 0 ||
953                             _SEQ_GE(ack, data->ack_fwd)) {
954                                 state |= ACK_FWD;
955                                 if (data->ack_fwd != ack)
956                                         ck_pr_store_32(&data->ack_fwd, ack);
957                         }
958                 } else {
959                         if (data->ack_rev == 0 ||
960                             _SEQ_GE(ack, data->ack_rev)) {
961                                 state |= ACK_REV;
962                                 if (data->ack_rev != ack)
963                                         ck_pr_store_32(&data->ack_rev, ack);
964                         }
965                 }
966                 if ((state & ACK_BOTH) == ACK_BOTH) {
967                         /*
968                          * Set expire time to V_dyn_ack_lifetime only if
969                          * we got ACKs for both directions.
970                          * We use XOR here to avoid possible state
971                          * overwriting in concurrent thread.
972                          */
973                         expire = time_uptime + V_dyn_ack_lifetime;
974                         ck_pr_xor_32(&data->state, ACK_BOTH);
975                 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
976                         ck_pr_or_32(&data->state, state & ACK_BOTH);
977                 break;
978
979         case BOTH_SYN | BOTH_FIN:       /* both sides closed */
980                 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
981                         V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
982                 expire = time_uptime + V_dyn_fin_lifetime;
983                 break;
984
985         default:
986                 if (V_dyn_keepalive != 0 &&
987                     V_dyn_rst_lifetime >= V_dyn_keepalive_period)
988                         V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
989                 expire = time_uptime + V_dyn_rst_lifetime;
990         }
991         /* Save TCP state if it was changed */
992         if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
993                 ck_pr_or_32(&data->state, state & TCP_FLAGS);
994         return (expire);
995 }
996
997 /*
998  * Update ULP specific state.
999  * For TCP we keep sequence numbers and flags. For other protocols
1000  * currently we update only expire time. Packets and bytes counters
1001  * are also updated here.
1002  */
1003 static void
1004 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
1005     const void *ulp, int pktlen, int dir)
1006 {
1007         uint32_t expire;
1008
1009         /* NOTE: we are in critical section here. */
1010         switch (pkt->proto) {
1011         case IPPROTO_UDP:
1012         case IPPROTO_UDPLITE:
1013                 expire = time_uptime + V_dyn_udp_lifetime;
1014                 break;
1015         case IPPROTO_TCP:
1016                 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1017                 break;
1018         default:
1019                 expire = time_uptime + V_dyn_short_lifetime;
1020         }
1021         /*
1022          * Expiration timer has the per-second granularity, no need to update
1023          * it every time when state is matched.
1024          */
1025         if (data->expire != expire)
1026                 ck_pr_store_32(&data->expire, expire);
1027
1028         if (dir == MATCH_FORWARD)
1029                 DYN_COUNTER_INC(data, fwd, pktlen);
1030         else
1031                 DYN_COUNTER_INC(data, rev, pktlen);
1032 }
1033
1034 /*
1035  * Lookup IPv4 state.
1036  * Must be called in critical section.
1037  */
1038 struct dyn_ipv4_state *
1039 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1040     struct ipfw_dyn_info *info, int pktlen)
1041 {
1042         struct dyn_ipv4_state *s;
1043         uint32_t version, bucket;
1044
1045         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1046         info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1047 restart:
1048         version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1049         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1050                 DYNSTATE_PROTECT(s);
1051                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1052                         goto restart;
1053                 if (s->proto != pkt->proto)
1054                         continue;
1055                 if (info->kidx != 0 && s->kidx != info->kidx)
1056                         continue;
1057                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1058                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1059                         info->direction = MATCH_FORWARD;
1060                         break;
1061                 }
1062                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1063                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1064                         info->direction = MATCH_REVERSE;
1065                         break;
1066                 }
1067         }
1068
1069         if (s != NULL)
1070                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1071                     info->direction);
1072         return (s);
1073 }
1074
1075 /*
1076  * Lookup IPv4 state.
1077  * Simplifed version is used to check that matching state doesn't exist.
1078  */
1079 static int
1080 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1081     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1082 {
1083         struct dyn_ipv4_state *s;
1084         int dir;
1085
1086         dir = MATCH_NONE;
1087         DYN_BUCKET_ASSERT(bucket);
1088         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1089                 if (s->proto != pkt->proto ||
1090                     s->kidx != kidx)
1091                         continue;
1092                 if (s->sport == pkt->src_port &&
1093                     s->dport == pkt->dst_port &&
1094                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1095                         dir = MATCH_FORWARD;
1096                         break;
1097                 }
1098                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1099                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1100                         dir = MATCH_REVERSE;
1101                         break;
1102                 }
1103         }
1104         if (s != NULL)
1105                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1106         return (s != NULL);
1107 }
1108
1109 struct dyn_ipv4_state *
1110 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1111     uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1112 {
1113         struct dyn_ipv4_state *s;
1114         uint32_t version, bucket;
1115
1116         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1117 restart:
1118         version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1119         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1120                 DYNSTATE_PROTECT(s);
1121                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1122                         goto restart;
1123                 /*
1124                  * NOTE: we do not need to check kidx, because parent rule
1125                  * can not create states with different kidx.
1126                  * And parent rule always created for forward direction.
1127                  */
1128                 if (s->limit->parent == rule &&
1129                     s->limit->ruleid == ruleid &&
1130                     s->limit->rulenum == rulenum &&
1131                     s->proto == pkt->proto &&
1132                     s->sport == pkt->src_port &&
1133                     s->dport == pkt->dst_port &&
1134                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1135                         if (s->limit->expire != time_uptime +
1136                             V_dyn_short_lifetime)
1137                                 ck_pr_store_32(&s->limit->expire,
1138                                     time_uptime + V_dyn_short_lifetime);
1139                         break;
1140                 }
1141         }
1142         return (s);
1143 }
1144
1145 static struct dyn_ipv4_state *
1146 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1147     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1148 {
1149         struct dyn_ipv4_state *s;
1150
1151         DYN_BUCKET_ASSERT(bucket);
1152         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1153                 if (s->limit->parent == rule &&
1154                     s->limit->ruleid == ruleid &&
1155                     s->limit->rulenum == rulenum &&
1156                     s->proto == pkt->proto &&
1157                     s->sport == pkt->src_port &&
1158                     s->dport == pkt->dst_port &&
1159                     s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1160                         break;
1161         }
1162         return (s);
1163 }
1164
1165
1166 #ifdef INET6
1167 static uint32_t
1168 dyn_getscopeid(const struct ip_fw_args *args)
1169 {
1170
1171         /*
1172          * If source or destination address is an scopeid address, we need
1173          * determine the scope zone id to resolve address scope ambiguity.
1174          */
1175         if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1176             IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6))
1177                 return (in6_getscopezone(args->ifp, IPV6_ADDR_SCOPE_LINKLOCAL));
1178
1179         return (0);
1180 }
1181
1182 /*
1183  * Lookup IPv6 state.
1184  * Must be called in critical section.
1185  */
1186 static struct dyn_ipv6_state *
1187 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1188     const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1189 {
1190         struct dyn_ipv6_state *s;
1191         uint32_t version, bucket;
1192
1193         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1194         info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1195 restart:
1196         version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1197         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1198                 DYNSTATE_PROTECT(s);
1199                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1200                         goto restart;
1201                 if (s->proto != pkt->proto || s->zoneid != zoneid)
1202                         continue;
1203                 if (info->kidx != 0 && s->kidx != info->kidx)
1204                         continue;
1205                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1206                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1207                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1208                         info->direction = MATCH_FORWARD;
1209                         break;
1210                 }
1211                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1212                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1213                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1214                         info->direction = MATCH_REVERSE;
1215                         break;
1216                 }
1217         }
1218         if (s != NULL)
1219                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1220                     info->direction);
1221         return (s);
1222 }
1223
1224 /*
1225  * Lookup IPv6 state.
1226  * Simplifed version is used to check that matching state doesn't exist.
1227  */
1228 static int
1229 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1230     const void *ulp, int pktlen, uint32_t bucket, uint16_t kidx)
1231 {
1232         struct dyn_ipv6_state *s;
1233         int dir;
1234
1235         dir = MATCH_NONE;
1236         DYN_BUCKET_ASSERT(bucket);
1237         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1238                 if (s->proto != pkt->proto || s->kidx != kidx ||
1239                     s->zoneid != zoneid)
1240                         continue;
1241                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1242                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1243                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1244                         dir = MATCH_FORWARD;
1245                         break;
1246                 }
1247                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1248                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1249                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1250                         dir = MATCH_REVERSE;
1251                         break;
1252                 }
1253         }
1254         if (s != NULL)
1255                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1256         return (s != NULL);
1257 }
1258
1259 static struct dyn_ipv6_state *
1260 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1261     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1262 {
1263         struct dyn_ipv6_state *s;
1264         uint32_t version, bucket;
1265
1266         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1267 restart:
1268         version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1269         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1270                 DYNSTATE_PROTECT(s);
1271                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1272                         goto restart;
1273                 /*
1274                  * NOTE: we do not need to check kidx, because parent rule
1275                  * can not create states with different kidx.
1276                  * Also parent rule always created for forward direction.
1277                  */
1278                 if (s->limit->parent == rule &&
1279                     s->limit->ruleid == ruleid &&
1280                     s->limit->rulenum == rulenum &&
1281                     s->proto == pkt->proto &&
1282                     s->sport == pkt->src_port &&
1283                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1284                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1285                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1286                         if (s->limit->expire != time_uptime +
1287                             V_dyn_short_lifetime)
1288                                 ck_pr_store_32(&s->limit->expire,
1289                                     time_uptime + V_dyn_short_lifetime);
1290                         break;
1291                 }
1292         }
1293         return (s);
1294 }
1295
1296 static struct dyn_ipv6_state *
1297 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1298     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1299 {
1300         struct dyn_ipv6_state *s;
1301
1302         DYN_BUCKET_ASSERT(bucket);
1303         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1304                 if (s->limit->parent == rule &&
1305                     s->limit->ruleid == ruleid &&
1306                     s->limit->rulenum == rulenum &&
1307                     s->proto == pkt->proto &&
1308                     s->sport == pkt->src_port &&
1309                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1310                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1311                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1312                         break;
1313         }
1314         return (s);
1315 }
1316
1317 #endif /* INET6 */
1318
1319 /*
1320  * Lookup dynamic state.
1321  *  pkt - filled by ipfw_chk() ipfw_flow_id;
1322  *  ulp - determined by ipfw_chk() upper level protocol header;
1323  *  dyn_info - info about matched state to return back;
1324  * Returns pointer to state's parent rule and dyn_info. If there is
1325  * no state, NULL is returned.
1326  * On match ipfw_dyn_lookup() updates state's counters.
1327  */
1328 struct ip_fw *
1329 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1330     int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1331 {
1332         struct dyn_data *data;
1333         struct ip_fw *rule;
1334
1335         IPFW_RLOCK_ASSERT(&V_layer3_chain);
1336
1337         data = NULL;
1338         rule = NULL;
1339         info->kidx = cmd->arg1;
1340         info->direction = MATCH_NONE;
1341         info->hashval = hash_packet(&args->f_id);
1342
1343         DYNSTATE_CRITICAL_ENTER();
1344         if (IS_IP4_FLOW_ID(&args->f_id)) {
1345                 struct dyn_ipv4_state *s;
1346
1347                 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1348                 if (s != NULL) {
1349                         /*
1350                          * Dynamic states are created using the same 5-tuple,
1351                          * so it is assumed, that parent rule for O_LIMIT
1352                          * state has the same address family.
1353                          */
1354                         data = s->data;
1355                         if (s->type == O_LIMIT) {
1356                                 s = data->parent;
1357                                 rule = s->limit->parent;
1358                         } else
1359                                 rule = data->parent;
1360                 }
1361         }
1362 #ifdef INET6
1363         else if (IS_IP6_FLOW_ID(&args->f_id)) {
1364                 struct dyn_ipv6_state *s;
1365
1366                 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1367                     ulp, info, pktlen);
1368                 if (s != NULL) {
1369                         data = s->data;
1370                         if (s->type == O_LIMIT) {
1371                                 s = data->parent;
1372                                 rule = s->limit->parent;
1373                         } else
1374                                 rule = data->parent;
1375                 }
1376         }
1377 #endif
1378         if (data != NULL) {
1379                 /*
1380                  * If cached chain id is the same, we can avoid rule index
1381                  * lookup. Otherwise do lookup and update chain_id and f_pos.
1382                  * It is safe even if there is concurrent thread that want
1383                  * update the same state, because chain->id can be changed
1384                  * only under IPFW_WLOCK().
1385                  */
1386                 if (data->chain_id != V_layer3_chain.id) {
1387                         data->f_pos = ipfw_find_rule(&V_layer3_chain,
1388                             data->rulenum, data->ruleid);
1389                         /*
1390                          * Check that found state has not orphaned.
1391                          * When chain->id being changed the parent
1392                          * rule can be deleted. If found rule doesn't
1393                          * match the parent pointer, consider this
1394                          * result as MATCH_NONE and return NULL.
1395                          *
1396                          * This will lead to creation of new similar state
1397                          * that will be added into head of this bucket.
1398                          * And the state that we currently have matched
1399                          * should be deleted by dyn_expire_states().
1400                          *
1401                          * In case when dyn_keep_states is enabled, return
1402                          * pointer to deleted rule and f_pos value
1403                          * corresponding to penultimate rule.
1404                          * When we have enabled V_dyn_keep_states, states
1405                          * that become orphaned will get the DYN_REFERENCED
1406                          * flag and rule will keep around. So we can return
1407                          * it. But since it is not in the rules map, we need
1408                          * return such f_pos value, so after the state
1409                          * handling if the search will continue, the next rule
1410                          * will be the last one - the default rule.
1411                          */
1412                         if (V_layer3_chain.map[data->f_pos] == rule) {
1413                                 data->chain_id = V_layer3_chain.id;
1414                                 info->f_pos = data->f_pos;
1415                         } else if (V_dyn_keep_states != 0) {
1416                                 /*
1417                                  * The original rule pointer is still usable.
1418                                  * So, we return it, but f_pos need to be
1419                                  * changed to point to the penultimate rule.
1420                                  */
1421                                 MPASS(V_layer3_chain.n_rules > 1);
1422                                 data->chain_id = V_layer3_chain.id;
1423                                 data->f_pos = V_layer3_chain.n_rules - 2;
1424                                 info->f_pos = data->f_pos;
1425                         } else {
1426                                 rule = NULL;
1427                                 info->direction = MATCH_NONE;
1428                                 DYN_DEBUG("rule %p  [%u, %u] is considered "
1429                                     "invalid in data %p", rule, data->ruleid,
1430                                     data->rulenum, data);
1431                                 /* info->f_pos doesn't matter here. */
1432                         }
1433                 } else
1434                         info->f_pos = data->f_pos;
1435         }
1436         DYNSTATE_CRITICAL_EXIT();
1437 #if 0
1438         /*
1439          * Return MATCH_NONE if parent rule is in disabled set.
1440          * This will lead to creation of new similar state that
1441          * will be added into head of this bucket.
1442          *
1443          * XXXAE: we need to be able update state's set when parent
1444          *        rule set is changed.
1445          */
1446         if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1447                 rule = NULL;
1448                 info->direction = MATCH_NONE;
1449         }
1450 #endif
1451         return (rule);
1452 }
1453
1454 static struct dyn_parent *
1455 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1456     uint32_t hashval)
1457 {
1458         struct dyn_parent *limit;
1459
1460         limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1461         if (limit == NULL) {
1462                 if (last_log != time_uptime) {
1463                         last_log = time_uptime;
1464                         log(LOG_DEBUG,
1465                             "ipfw: Cannot allocate parent dynamic state, "
1466                             "consider increasing "
1467                             "net.inet.ip.fw.dyn_parent_max\n");
1468                 }
1469                 return (NULL);
1470         }
1471
1472         limit->parent = parent;
1473         limit->ruleid = ruleid;
1474         limit->rulenum = rulenum;
1475         limit->hashval = hashval;
1476         limit->expire = time_uptime + V_dyn_short_lifetime;
1477         return (limit);
1478 }
1479
1480 static struct dyn_data *
1481 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1482     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1483     uint32_t hashval, uint16_t fibnum)
1484 {
1485         struct dyn_data *data;
1486
1487         data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1488         if (data == NULL) {
1489                 if (last_log != time_uptime) {
1490                         last_log = time_uptime;
1491                         log(LOG_DEBUG,
1492                             "ipfw: Cannot allocate dynamic state, "
1493                             "consider increasing net.inet.ip.fw.dyn_max\n");
1494                 }
1495                 return (NULL);
1496         }
1497
1498         data->parent = parent;
1499         data->ruleid = ruleid;
1500         data->rulenum = rulenum;
1501         data->fibnum = fibnum;
1502         data->hashval = hashval;
1503         data->expire = time_uptime + V_dyn_syn_lifetime;
1504         dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1505         return (data);
1506 }
1507
1508 static struct dyn_ipv4_state *
1509 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1510     uint8_t type)
1511 {
1512         struct dyn_ipv4_state *s;
1513
1514         s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1515         if (s == NULL)
1516                 return (NULL);
1517
1518         s->type = type;
1519         s->kidx = kidx;
1520         s->proto = pkt->proto;
1521         s->sport = pkt->src_port;
1522         s->dport = pkt->dst_port;
1523         s->src = pkt->src_ip;
1524         s->dst = pkt->dst_ip;
1525         return (s);
1526 }
1527
1528 /*
1529  * Add IPv4 parent state.
1530  * Returns pointer to parent state. When it is not NULL we are in
1531  * critical section and pointer protected by hazard pointer.
1532  * When some error occurs, it returns NULL and exit from critical section
1533  * is not needed.
1534  */
1535 static struct dyn_ipv4_state *
1536 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1537     const struct ipfw_flow_id *pkt, uint32_t hashval, uint32_t version,
1538     uint16_t kidx)
1539 {
1540         struct dyn_ipv4_state *s;
1541         struct dyn_parent *limit;
1542         uint32_t bucket;
1543
1544         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1545         DYN_BUCKET_LOCK(bucket);
1546         if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1547                 /*
1548                  * Bucket version has been changed since last lookup,
1549                  * do lookup again to be sure that state does not exist.
1550                  */
1551                 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1552                     rulenum, bucket);
1553                 if (s != NULL) {
1554                         /*
1555                          * Simultaneous thread has already created this
1556                          * state. Just return it.
1557                          */
1558                         DYNSTATE_CRITICAL_ENTER();
1559                         DYNSTATE_PROTECT(s);
1560                         DYN_BUCKET_UNLOCK(bucket);
1561                         return (s);
1562                 }
1563         }
1564
1565         limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1566         if (limit == NULL) {
1567                 DYN_BUCKET_UNLOCK(bucket);
1568                 return (NULL);
1569         }
1570
1571         s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1572         if (s == NULL) {
1573                 DYN_BUCKET_UNLOCK(bucket);
1574                 uma_zfree(V_dyn_parent_zone, limit);
1575                 return (NULL);
1576         }
1577
1578         s->limit = limit;
1579         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1580         DYN_COUNT_INC(dyn_parent_count);
1581         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1582         DYNSTATE_CRITICAL_ENTER();
1583         DYNSTATE_PROTECT(s);
1584         DYN_BUCKET_UNLOCK(bucket);
1585         return (s);
1586 }
1587
1588 static int
1589 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1590     const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1591     uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1592     uint16_t kidx, uint8_t type)
1593 {
1594         struct dyn_ipv4_state *s;
1595         void *data;
1596         uint32_t bucket;
1597
1598         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1599         DYN_BUCKET_LOCK(bucket);
1600         if (info->direction == MATCH_UNKNOWN ||
1601             info->kidx != kidx ||
1602             info->hashval != hashval ||
1603             info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1604                 /*
1605                  * Bucket version has been changed since last lookup,
1606                  * do lookup again to be sure that state does not exist.
1607                  */
1608                 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen,
1609                     bucket, kidx) != 0) {
1610                         DYN_BUCKET_UNLOCK(bucket);
1611                         return (EEXIST);
1612                 }
1613         }
1614
1615         data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1616             pktlen, hashval, fibnum);
1617         if (data == NULL) {
1618                 DYN_BUCKET_UNLOCK(bucket);
1619                 return (ENOMEM);
1620         }
1621
1622         s = dyn_alloc_ipv4_state(pkt, kidx, type);
1623         if (s == NULL) {
1624                 DYN_BUCKET_UNLOCK(bucket);
1625                 uma_zfree(V_dyn_data_zone, data);
1626                 return (ENOMEM);
1627         }
1628
1629         s->data = data;
1630         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1631         DYN_COUNT_INC(dyn_count);
1632         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1633         DYN_BUCKET_UNLOCK(bucket);
1634         return (0);
1635 }
1636
1637 #ifdef INET6
1638 static struct dyn_ipv6_state *
1639 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1640     uint16_t kidx, uint8_t type)
1641 {
1642         struct dyn_ipv6_state *s;
1643
1644         s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1645         if (s == NULL)
1646                 return (NULL);
1647
1648         s->type = type;
1649         s->kidx = kidx;
1650         s->zoneid = zoneid;
1651         s->proto = pkt->proto;
1652         s->sport = pkt->src_port;
1653         s->dport = pkt->dst_port;
1654         s->src = pkt->src_ip6;
1655         s->dst = pkt->dst_ip6;
1656         return (s);
1657 }
1658
1659 /*
1660  * Add IPv6 parent state.
1661  * Returns pointer to parent state. When it is not NULL we are in
1662  * critical section and pointer protected by hazard pointer.
1663  * When some error occurs, it return NULL and exit from critical section
1664  * is not needed.
1665  */
1666 static struct dyn_ipv6_state *
1667 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1668     const struct ipfw_flow_id *pkt, uint32_t zoneid, uint32_t hashval,
1669     uint32_t version, uint16_t kidx)
1670 {
1671         struct dyn_ipv6_state *s;
1672         struct dyn_parent *limit;
1673         uint32_t bucket;
1674
1675         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1676         DYN_BUCKET_LOCK(bucket);
1677         if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1678                 /*
1679                  * Bucket version has been changed since last lookup,
1680                  * do lookup again to be sure that state does not exist.
1681                  */
1682                 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1683                     rulenum, bucket);
1684                 if (s != NULL) {
1685                         /*
1686                          * Simultaneous thread has already created this
1687                          * state. Just return it.
1688                          */
1689                         DYNSTATE_CRITICAL_ENTER();
1690                         DYNSTATE_PROTECT(s);
1691                         DYN_BUCKET_UNLOCK(bucket);
1692                         return (s);
1693                 }
1694         }
1695
1696         limit = dyn_alloc_parent(rule, ruleid, rulenum, hashval);
1697         if (limit == NULL) {
1698                 DYN_BUCKET_UNLOCK(bucket);
1699                 return (NULL);
1700         }
1701
1702         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1703         if (s == NULL) {
1704                 DYN_BUCKET_UNLOCK(bucket);
1705                 uma_zfree(V_dyn_parent_zone, limit);
1706                 return (NULL);
1707         }
1708
1709         s->limit = limit;
1710         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1711         DYN_COUNT_INC(dyn_parent_count);
1712         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1713         DYNSTATE_CRITICAL_ENTER();
1714         DYNSTATE_PROTECT(s);
1715         DYN_BUCKET_UNLOCK(bucket);
1716         return (s);
1717 }
1718
1719 static int
1720 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1721     const struct ipfw_flow_id *pkt, uint32_t zoneid, const void *ulp,
1722     int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1723     uint16_t fibnum, uint16_t kidx, uint8_t type)
1724 {
1725         struct dyn_ipv6_state *s;
1726         struct dyn_data *data;
1727         uint32_t bucket;
1728
1729         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1730         DYN_BUCKET_LOCK(bucket);
1731         if (info->direction == MATCH_UNKNOWN ||
1732             info->kidx != kidx ||
1733             info->hashval != hashval ||
1734             info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1735                 /*
1736                  * Bucket version has been changed since last lookup,
1737                  * do lookup again to be sure that state does not exist.
1738                  */
1739                 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1740                     bucket, kidx) != 0) {
1741                         DYN_BUCKET_UNLOCK(bucket);
1742                         return (EEXIST);
1743                 }
1744         }
1745
1746         data = dyn_alloc_dyndata(parent, ruleid, rulenum, pkt, ulp,
1747             pktlen, hashval, fibnum);
1748         if (data == NULL) {
1749                 DYN_BUCKET_UNLOCK(bucket);
1750                 return (ENOMEM);
1751         }
1752
1753         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1754         if (s == NULL) {
1755                 DYN_BUCKET_UNLOCK(bucket);
1756                 uma_zfree(V_dyn_data_zone, data);
1757                 return (ENOMEM);
1758         }
1759
1760         s->data = data;
1761         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1762         DYN_COUNT_INC(dyn_count);
1763         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1764         DYN_BUCKET_UNLOCK(bucket);
1765         return (0);
1766 }
1767 #endif /* INET6 */
1768
1769 static void *
1770 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1771     struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1772 {
1773         char sbuf[24];
1774         struct dyn_parent *p;
1775         void *ret;
1776         uint32_t bucket, version;
1777
1778         p = NULL;
1779         ret = NULL;
1780         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1781         DYNSTATE_CRITICAL_ENTER();
1782         if (IS_IP4_FLOW_ID(pkt)) {
1783                 struct dyn_ipv4_state *s;
1784
1785                 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1786                 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1787                     rule->rulenum, bucket);
1788                 if (s == NULL) {
1789                         /*
1790                          * Exit from critical section because dyn_add_parent()
1791                          * will acquire bucket lock.
1792                          */
1793                         DYNSTATE_CRITICAL_EXIT();
1794
1795                         s = dyn_add_ipv4_parent(rule, rule->id,
1796                             rule->rulenum, pkt, hashval, version, kidx);
1797                         if (s == NULL)
1798                                 return (NULL);
1799                         /* Now we are in critical section again. */
1800                 }
1801                 ret = s;
1802                 p = s->limit;
1803         }
1804 #ifdef INET6
1805         else if (IS_IP6_FLOW_ID(pkt)) {
1806                 struct dyn_ipv6_state *s;
1807
1808                 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1809                 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1810                     rule->rulenum, bucket);
1811                 if (s == NULL) {
1812                         /*
1813                          * Exit from critical section because dyn_add_parent()
1814                          * can acquire bucket mutex.
1815                          */
1816                         DYNSTATE_CRITICAL_EXIT();
1817
1818                         s = dyn_add_ipv6_parent(rule, rule->id,
1819                             rule->rulenum, pkt, zoneid, hashval, version,
1820                             kidx);
1821                         if (s == NULL)
1822                                 return (NULL);
1823                         /* Now we are in critical section again. */
1824                 }
1825                 ret = s;
1826                 p = s->limit;
1827         }
1828 #endif
1829         else {
1830                 DYNSTATE_CRITICAL_EXIT();
1831                 return (NULL);
1832         }
1833
1834         /* Check the limit */
1835         if (DPARENT_COUNT(p) >= limit) {
1836                 DYNSTATE_CRITICAL_EXIT();
1837                 if (V_fw_verbose && last_log != time_uptime) {
1838                         last_log = time_uptime;
1839                         snprintf(sbuf, sizeof(sbuf), "%u drop session",
1840                             rule->rulenum);
1841                         print_dyn_rule_flags(pkt, O_LIMIT,
1842                             LOG_SECURITY | LOG_DEBUG, sbuf,
1843                             "too many entries");
1844                 }
1845                 return (NULL);
1846         }
1847
1848         /* Take new session into account. */
1849         DPARENT_COUNT_INC(p);
1850         /*
1851          * We must exit from critical section because the following code
1852          * can acquire bucket mutex.
1853          * We rely on the the 'count' field. The state will not expire
1854          * until it has some child states, i.e. 'count' field is not zero.
1855          * Return state pointer, it will be used by child states as parent.
1856          */
1857         DYNSTATE_CRITICAL_EXIT();
1858         return (ret);
1859 }
1860
1861 static int
1862 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1863     uint16_t fibnum, const void *ulp, int pktlen, struct ip_fw *rule,
1864     struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1865     uint16_t kidx, uint8_t type)
1866 {
1867         struct ipfw_flow_id id;
1868         uint32_t hashval, parent_hashval, ruleid, rulenum;
1869         int ret;
1870
1871         MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1872
1873         ruleid = rule->id;
1874         rulenum = rule->rulenum;
1875         if (type == O_LIMIT) {
1876                 /* Create masked flow id and calculate bucket */
1877                 id.addr_type = pkt->addr_type;
1878                 id.proto = pkt->proto;
1879                 id.fib = fibnum; /* unused */
1880                 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1881                     pkt->src_port: 0;
1882                 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1883                     pkt->dst_port: 0;
1884                 if (IS_IP4_FLOW_ID(pkt)) {
1885                         id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1886                             pkt->src_ip: 0;
1887                         id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1888                             pkt->dst_ip: 0;
1889                 }
1890 #ifdef INET6
1891                 else if (IS_IP6_FLOW_ID(pkt)) {
1892                         if (limit_mask & DYN_SRC_ADDR)
1893                                 id.src_ip6 = pkt->src_ip6;
1894                         else
1895                                 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1896                         if (limit_mask & DYN_DST_ADDR)
1897                                 id.dst_ip6 = pkt->dst_ip6;
1898                         else
1899                                 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1900                 }
1901 #endif
1902                 else
1903                         return (EAFNOSUPPORT);
1904
1905                 parent_hashval = hash_parent(&id, rule);
1906                 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1907                     limit, kidx);
1908                 if (rule == NULL) {
1909 #if 0
1910                         if (V_fw_verbose && last_log != time_uptime) {
1911                                 last_log = time_uptime;
1912                                 snprintf(sbuf, sizeof(sbuf),
1913                                     "%u drop session", rule->rulenum);
1914                         print_dyn_rule_flags(pkt, O_LIMIT,
1915                             LOG_SECURITY | LOG_DEBUG, sbuf,
1916                             "too many entries");
1917                         }
1918 #endif
1919                         return (EACCES);
1920                 }
1921                 /*
1922                  * Limit is not reached, create new state.
1923                  * Now rule points to parent state.
1924                  */
1925         }
1926
1927         hashval = hash_packet(pkt);
1928         if (IS_IP4_FLOW_ID(pkt))
1929                 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, pkt,
1930                     ulp, pktlen, hashval, info, fibnum, kidx, type);
1931 #ifdef INET6
1932         else if (IS_IP6_FLOW_ID(pkt))
1933                 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, pkt,
1934                     zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1935 #endif /* INET6 */
1936         else
1937                 ret = EAFNOSUPPORT;
1938
1939         if (type == O_LIMIT) {
1940                 if (ret != 0) {
1941                         /*
1942                          * We failed to create child state for O_LIMIT
1943                          * opcode. Since we already counted it in the parent,
1944                          * we must revert counter back. The 'rule' points to
1945                          * parent state, use it to get dyn_parent.
1946                          *
1947                          * XXXAE: it should be safe to use 'rule' pointer
1948                          * without extra lookup, parent state is referenced
1949                          * and should not be freed.
1950                          */
1951                         if (IS_IP4_FLOW_ID(&id))
1952                                 DPARENT_COUNT_DEC(
1953                                     ((struct dyn_ipv4_state *)rule)->limit);
1954 #ifdef INET6
1955                         else if (IS_IP6_FLOW_ID(&id))
1956                                 DPARENT_COUNT_DEC(
1957                                     ((struct dyn_ipv6_state *)rule)->limit);
1958 #endif
1959                 }
1960         }
1961         /*
1962          * EEXIST means that simultaneous thread has created this
1963          * state. Consider this as success.
1964          *
1965          * XXXAE: should we invalidate 'info' content here?
1966          */
1967         if (ret == EEXIST)
1968                 return (0);
1969         return (ret);
1970 }
1971
1972 /*
1973  * Install dynamic state.
1974  *  chain - ipfw's instance;
1975  *  rule - the parent rule that installs the state;
1976  *  cmd - opcode that installs the state;
1977  *  args - ipfw arguments;
1978  *  ulp - upper level protocol header;
1979  *  pktlen - packet length;
1980  *  info - dynamic state lookup info;
1981  *  tablearg - tablearg id.
1982  *
1983  * Returns non-zero value (failure) if state is not installed because
1984  * of errors or because session limitations are enforced.
1985  */
1986 int
1987 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1988     const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1989     const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1990     uint32_t tablearg)
1991 {
1992         uint32_t limit;
1993         uint16_t limit_mask;
1994
1995         if (cmd->o.opcode == O_LIMIT) {
1996                 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
1997                 limit_mask = cmd->limit_mask;
1998         } else {
1999                 limit = 0;
2000                 limit_mask = 0;
2001         }
2002         return (dyn_install_state(&args->f_id,
2003 #ifdef INET6
2004             IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
2005 #endif
2006             0, M_GETFIB(args->m), ulp, pktlen, rule, info, limit,
2007             limit_mask, cmd->o.arg1, cmd->o.opcode));
2008 }
2009
2010 /*
2011  * Free safe to remove state entries from expired lists.
2012  */
2013 static void
2014 dyn_free_states(struct ip_fw_chain *chain)
2015 {
2016         struct dyn_ipv4_state *s4, *s4n;
2017 #ifdef INET6
2018         struct dyn_ipv6_state *s6, *s6n;
2019 #endif
2020         int cached_count, i;
2021
2022         /*
2023          * We keep pointers to objects that are in use on each CPU
2024          * in the per-cpu dyn_hp pointer. When object is going to be
2025          * removed, first of it is unlinked from the corresponding
2026          * list. This leads to changing of dyn_bucket_xxx_delver version.
2027          * Unlinked objects is placed into corresponding dyn_expired_xxx
2028          * list. Reader that is going to dereference object pointer checks
2029          * dyn_bucket_xxx_delver version before and after storing pointer
2030          * into dyn_hp. If version is the same, the object is protected
2031          * from freeing and it is safe to dereference. Othervise reader
2032          * tries to iterate list again from the beginning, but this object
2033          * now unlinked and thus will not be accessible.
2034          *
2035          * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2036          * It does not matter that some pointer can be changed in
2037          * time while we are copying. We need to check, that objects
2038          * removed in the previous pass are not in use. And if dyn_hp
2039          * pointer does not contain it in the time when we are copying,
2040          * it will not appear there, because it is already unlinked.
2041          * And for new pointers we will not free objects that will be
2042          * unlinked in this pass.
2043          */
2044         cached_count = 0;
2045         CPU_FOREACH(i) {
2046                 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2047                 if (dyn_hp_cache[cached_count] != NULL)
2048                         cached_count++;
2049         }
2050
2051         /*
2052          * Free expired states that are safe to free.
2053          * Check each entry from previous pass in the dyn_expired_xxx
2054          * list, if pointer to the object is in the dyn_hp_cache array,
2055          * keep it until next pass. Otherwise it is safe to free the
2056          * object.
2057          *
2058          * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2059          */
2060 #define DYN_FREE_STATES(s, next, name)          do {                    \
2061         s = SLIST_FIRST(&V_dyn_expired_ ## name);                       \
2062         while (s != NULL) {                                             \
2063                 next = SLIST_NEXT(s, expired);                          \
2064                 for (i = 0; i < cached_count; i++)                      \
2065                         if (dyn_hp_cache[i] == s)                       \
2066                                 break;                                  \
2067                 if (i == cached_count) {                                \
2068                         if (s->type == O_LIMIT_PARENT &&                \
2069                             s->limit->count != 0) {                     \
2070                                 s = next;                               \
2071                                 continue;                               \
2072                         }                                               \
2073                         SLIST_REMOVE(&V_dyn_expired_ ## name,           \
2074                             s, dyn_ ## name ## _state, expired);        \
2075                         if (s->type == O_LIMIT_PARENT)                  \
2076                                 uma_zfree(V_dyn_parent_zone, s->limit); \
2077                         else                                            \
2078                                 uma_zfree(V_dyn_data_zone, s->data);    \
2079                         uma_zfree(V_dyn_ ## name ## _zone, s);          \
2080                 }                                                       \
2081                 s = next;                                               \
2082         }                                                               \
2083 } while (0)
2084
2085         /*
2086          * Protect access to expired lists with DYN_EXPIRED_LOCK.
2087          * Userland can invoke ipfw_expire_dyn_states() to delete
2088          * specific states, this will lead to modification of expired
2089          * lists.
2090          *
2091          * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2092          *        IPFW_UH_WLOCK to protect access to these lists.
2093          */
2094         DYN_EXPIRED_LOCK();
2095         DYN_FREE_STATES(s4, s4n, ipv4);
2096 #ifdef INET6
2097         DYN_FREE_STATES(s6, s6n, ipv6);
2098 #endif
2099         DYN_EXPIRED_UNLOCK();
2100 #undef DYN_FREE_STATES
2101 }
2102
2103 /*
2104  * Returns:
2105  * 0 when state is not matched by specified range;
2106  * 1 when state is matched by specified range;
2107  * 2 when state is matched by specified range and requested deletion of
2108  *   dynamic states.
2109  */
2110 static int
2111 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2112 {
2113
2114         MPASS(rt != NULL);
2115         /* flush all states */
2116         if (rt->flags & IPFW_RCFLAG_ALL) {
2117                 if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2118                         return (2); /* forced */
2119                 return (1);
2120         }
2121         if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2122                 return (0);
2123         if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2124             (rulenum < rt->start_rule || rulenum > rt->end_rule))
2125                 return (0);
2126         if (rt->flags & IPFW_RCFLAG_DYNAMIC)
2127                 return (2);
2128         return (1);
2129 }
2130
2131 static void
2132 dyn_acquire_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2133     struct ip_fw *rule, uint16_t kidx)
2134 {
2135         struct dyn_state_obj *obj;
2136
2137         /*
2138          * Do not acquire reference twice.
2139          * This can happen when rule deletion executed for
2140          * the same range, but different ruleset id.
2141          */
2142         if (data->flags & DYN_REFERENCED)
2143                 return;
2144
2145         IPFW_UH_WLOCK_ASSERT(ch);
2146         MPASS(kidx != 0);
2147
2148         data->flags |= DYN_REFERENCED;
2149         /* Reference the named object */
2150         obj = SRV_OBJECT(ch, kidx);
2151         obj->no.refcnt++;
2152         MPASS(obj->no.etlv == IPFW_TLV_STATE_NAME);
2153
2154         /* Reference the parent rule */
2155         rule->refcnt++;
2156 }
2157
2158 static void
2159 dyn_release_rule(struct ip_fw_chain *ch, struct dyn_data *data,
2160     struct ip_fw *rule, uint16_t kidx)
2161 {
2162         struct dyn_state_obj *obj;
2163
2164         IPFW_UH_WLOCK_ASSERT(ch);
2165         MPASS(kidx != 0);
2166
2167         obj = SRV_OBJECT(ch, kidx);
2168         if (obj->no.refcnt == 1)
2169                 dyn_destroy(ch, &obj->no);
2170         else
2171                 obj->no.refcnt--;
2172
2173         if (--rule->refcnt == 1)
2174                 ipfw_free_rule(rule);
2175 }
2176
2177 /*
2178  * We do not keep O_LIMIT_PARENT states when V_dyn_keep_states is enabled.
2179  * O_LIMIT state is created when new connection is going to be established
2180  * and there is no matching state. So, since the old parent rule was deleted
2181  * we can't create new states with old parent, and thus we can not account
2182  * new connections with already established connections, and can not do
2183  * proper limiting.
2184  */
2185 static int
2186 dyn_match_ipv4_state(struct ip_fw_chain *ch, struct dyn_ipv4_state *s,
2187     const ipfw_range_tlv *rt)
2188 {
2189         struct ip_fw *rule;
2190         int ret;
2191
2192         if (s->type == O_LIMIT_PARENT) {
2193                 rule = s->limit->parent;
2194                 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2195         }
2196
2197         rule = s->data->parent;
2198         if (s->type == O_LIMIT)
2199                 rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2200
2201         ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2202         if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2203                 return (ret);
2204
2205         dyn_acquire_rule(ch, s->data, rule, s->kidx);
2206         return (0);
2207 }
2208
2209 #ifdef INET6
2210 static int
2211 dyn_match_ipv6_state(struct ip_fw_chain *ch, struct dyn_ipv6_state *s,
2212     const ipfw_range_tlv *rt)
2213 {
2214         struct ip_fw *rule;
2215         int ret;
2216
2217         if (s->type == O_LIMIT_PARENT) {
2218                 rule = s->limit->parent;
2219                 return (dyn_match_range(s->limit->rulenum, rule->set, rt));
2220         }
2221
2222         rule = s->data->parent;
2223         if (s->type == O_LIMIT)
2224                 rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
2225
2226         ret = dyn_match_range(s->data->rulenum, rule->set, rt);
2227         if (ret == 0 || V_dyn_keep_states == 0 || ret > 1)
2228                 return (ret);
2229
2230         dyn_acquire_rule(ch, s->data, rule, s->kidx);
2231         return (0);
2232 }
2233 #endif
2234
2235 /*
2236  * Unlink expired entries from states lists.
2237  * @rt can be used to specify the range of states for deletion.
2238  */
2239 static void
2240 dyn_expire_states(struct ip_fw_chain *ch, ipfw_range_tlv *rt)
2241 {
2242         struct dyn_ipv4_slist expired_ipv4;
2243 #ifdef INET6
2244         struct dyn_ipv6_slist expired_ipv6;
2245         struct dyn_ipv6_state *s6, *s6n, *s6p;
2246 #endif
2247         struct dyn_ipv4_state *s4, *s4n, *s4p;
2248         void *rule;
2249         int bucket, removed, length, max_length;
2250
2251         IPFW_UH_WLOCK_ASSERT(ch);
2252
2253         /*
2254          * Unlink expired states from each bucket.
2255          * With acquired bucket lock iterate entries of each lists:
2256          * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2257          * and unlink entry from the list, link entry into temporary
2258          * expired_xxx lists then bump "del" bucket version.
2259          *
2260          * When an entry is removed, corresponding states counter is
2261          * decremented. If entry has O_LIMIT type, parent's reference
2262          * counter is decremented.
2263          *
2264          * NOTE: this function can be called from userspace context
2265          * when user deletes rules. In this case all matched states
2266          * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2267          * in the expired lists until reference counter become zero.
2268          */
2269 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra)  do {    \
2270         length = 0;                                                     \
2271         removed = 0;                                                    \
2272         prev = NULL;                                                    \
2273         s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]);                   \
2274         while (s != NULL) {                                             \
2275                 next = CK_SLIST_NEXT(s, entry);                         \
2276                 if ((TIME_LEQ((s)->exp, time_uptime) && extra) ||       \
2277                     (rt != NULL &&                                      \
2278                      dyn_match_ ## af ## _state(ch, s, rt))) {          \
2279                         if (prev != NULL)                               \
2280                                 CK_SLIST_REMOVE_AFTER(prev, entry);     \
2281                         else                                            \
2282                                 CK_SLIST_REMOVE_HEAD(                   \
2283                                     &V_dyn_ ## name [bucket], entry);   \
2284                         removed++;                                      \
2285                         SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2286                         if (s->type == O_LIMIT_PARENT)                  \
2287                                 DYN_COUNT_DEC(dyn_parent_count);        \
2288                         else {                                          \
2289                                 DYN_COUNT_DEC(dyn_count);               \
2290                                 if (s->data->flags & DYN_REFERENCED) {  \
2291                                         rule = s->data->parent;         \
2292                                         if (s->type == O_LIMIT)         \
2293                                                 rule = ((__typeof(s))   \
2294                                                     rule)->limit->parent;\
2295                                         dyn_release_rule(ch, s->data,   \
2296                                             rule, s->kidx);             \
2297                                 }                                       \
2298                                 if (s->type == O_LIMIT) {               \
2299                                         s = s->data->parent;            \
2300                                         DPARENT_COUNT_DEC(s->limit);    \
2301                                 }                                       \
2302                         }                                               \
2303                 } else {                                                \
2304                         prev = s;                                       \
2305                         length++;                                       \
2306                 }                                                       \
2307                 s = next;                                               \
2308         }                                                               \
2309         if (removed != 0)                                               \
2310                 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del);          \
2311         if (length > max_length)                                \
2312                 max_length = length;                            \
2313 } while (0)
2314
2315         SLIST_INIT(&expired_ipv4);
2316 #ifdef INET6
2317         SLIST_INIT(&expired_ipv6);
2318 #endif
2319         max_length = 0;
2320         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2321                 DYN_BUCKET_LOCK(bucket);
2322                 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2323                 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2324                     ipv4_parent, (s4->limit->count == 0));
2325 #ifdef INET6
2326                 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2327                 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2328                     ipv6_parent, (s6->limit->count == 0));
2329 #endif
2330                 DYN_BUCKET_UNLOCK(bucket);
2331         }
2332         /* Update curr_max_length for statistics. */
2333         V_curr_max_length = max_length;
2334         /*
2335          * Concatenate temporary lists with global expired lists.
2336          */
2337         DYN_EXPIRED_LOCK();
2338         SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2339             dyn_ipv4_state, expired);
2340 #ifdef INET6
2341         SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2342             dyn_ipv6_state, expired);
2343 #endif
2344         DYN_EXPIRED_UNLOCK();
2345 #undef DYN_UNLINK_STATES
2346 #undef DYN_UNREF_STATES
2347 }
2348
2349 static struct mbuf *
2350 dyn_mgethdr(int len, uint16_t fibnum)
2351 {
2352         struct mbuf *m;
2353
2354         m = m_gethdr(M_NOWAIT, MT_DATA);
2355         if (m == NULL)
2356                 return (NULL);
2357 #ifdef MAC
2358         mac_netinet_firewall_send(m);
2359 #endif
2360         M_SETFIB(m, fibnum);
2361         m->m_data += max_linkhdr;
2362         m->m_flags |= M_SKIP_FIREWALL;
2363         m->m_len = m->m_pkthdr.len = len;
2364         bzero(m->m_data, len);
2365         return (m);
2366 }
2367
2368 static void
2369 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2370     uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2371 {
2372         struct tcphdr *tcp;
2373         struct ip *ip;
2374
2375         ip = mtod(m, struct ip *);
2376         ip->ip_v = 4;
2377         ip->ip_hl = sizeof(*ip) >> 2;
2378         ip->ip_tos = IPTOS_LOWDELAY;
2379         ip->ip_len = htons(m->m_len);
2380         ip->ip_off |= htons(IP_DF);
2381         ip->ip_ttl = V_ip_defttl;
2382         ip->ip_p = IPPROTO_TCP;
2383         ip->ip_src.s_addr = htonl(src);
2384         ip->ip_dst.s_addr = htonl(dst);
2385
2386         tcp = mtodo(m, sizeof(struct ip));
2387         tcp->th_sport = htons(sport);
2388         tcp->th_dport = htons(dport);
2389         tcp->th_off = sizeof(struct tcphdr) >> 2;
2390         tcp->th_seq = htonl(seq);
2391         tcp->th_ack = htonl(ack);
2392         tcp->th_flags = TH_ACK;
2393         tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2394             htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2395
2396         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2397         m->m_pkthdr.csum_flags = CSUM_TCP;
2398 }
2399
2400 static void
2401 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2402 {
2403         struct mbuf *m;
2404
2405         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2406                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2407                     s->data->fibnum);
2408                 if (m != NULL) {
2409                         dyn_make_keepalive_ipv4(m, s->dst, s->src,
2410                             s->data->ack_fwd - 1, s->data->ack_rev,
2411                             s->dport, s->sport);
2412                         if (mbufq_enqueue(q, m)) {
2413                                 m_freem(m);
2414                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2415                                     "keepalive queue is reached.\n");
2416                                 return;
2417                         }
2418                 }
2419         }
2420
2421         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2422                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2423                     s->data->fibnum);
2424                 if (m != NULL) {
2425                         dyn_make_keepalive_ipv4(m, s->src, s->dst,
2426                             s->data->ack_rev - 1, s->data->ack_fwd,
2427                             s->sport, s->dport);
2428                         if (mbufq_enqueue(q, m)) {
2429                                 m_freem(m);
2430                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2431                                     "keepalive queue is reached.\n");
2432                                 return;
2433                         }
2434                 }
2435         }
2436 }
2437
2438 /*
2439  * Prepare and send keep-alive packets.
2440  */
2441 static void
2442 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2443 {
2444         struct mbufq q;
2445         struct mbuf *m;
2446         struct dyn_ipv4_state *s;
2447         uint32_t bucket;
2448
2449         mbufq_init(&q, INT_MAX);
2450         IPFW_UH_RLOCK(chain);
2451         /*
2452          * It is safe to not use hazard pointer and just do lockless
2453          * access to the lists, because states entries can not be deleted
2454          * while we hold IPFW_UH_RLOCK.
2455          */
2456         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2457                 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2458                         /*
2459                          * Only established TCP connections that will
2460                          * become expired withing dyn_keepalive_interval.
2461                          */
2462                         if (s->proto != IPPROTO_TCP ||
2463                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2464                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2465                                 s->data->expire))
2466                                 continue;
2467                         dyn_enqueue_keepalive_ipv4(&q, s);
2468                 }
2469         }
2470         IPFW_UH_RUNLOCK(chain);
2471         while ((m = mbufq_dequeue(&q)) != NULL)
2472                 ip_output(m, NULL, NULL, 0, NULL, NULL);
2473 }
2474
2475 #ifdef INET6
2476 static void
2477 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2478     const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2479     uint16_t sport, uint16_t dport)
2480 {
2481         struct tcphdr *tcp;
2482         struct ip6_hdr *ip6;
2483
2484         ip6 = mtod(m, struct ip6_hdr *);
2485         ip6->ip6_vfc |= IPV6_VERSION;
2486         ip6->ip6_plen = htons(sizeof(struct tcphdr));
2487         ip6->ip6_nxt = IPPROTO_TCP;
2488         ip6->ip6_hlim = IPV6_DEFHLIM;
2489         ip6->ip6_src = *src;
2490         if (IN6_IS_ADDR_LINKLOCAL(src))
2491                 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2492         ip6->ip6_dst = *dst;
2493         if (IN6_IS_ADDR_LINKLOCAL(dst))
2494                 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2495
2496         tcp = mtodo(m, sizeof(struct ip6_hdr));
2497         tcp->th_sport = htons(sport);
2498         tcp->th_dport = htons(dport);
2499         tcp->th_off = sizeof(struct tcphdr) >> 2;
2500         tcp->th_seq = htonl(seq);
2501         tcp->th_ack = htonl(ack);
2502         tcp->th_flags = TH_ACK;
2503         tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2504             IPPROTO_TCP, 0);
2505
2506         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2507         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2508 }
2509
2510 static void
2511 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2512 {
2513         struct mbuf *m;
2514
2515         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2516                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2517                     sizeof(struct tcphdr), s->data->fibnum);
2518                 if (m != NULL) {
2519                         dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2520                             s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2521                             s->dport, s->sport);
2522                         if (mbufq_enqueue(q, m)) {
2523                                 m_freem(m);
2524                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2525                                     "keepalive queue is reached.\n");
2526                                 return;
2527                         }
2528                 }
2529         }
2530
2531         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2532                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2533                     sizeof(struct tcphdr), s->data->fibnum);
2534                 if (m != NULL) {
2535                         dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2536                             s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2537                             s->sport, s->dport);
2538                         if (mbufq_enqueue(q, m)) {
2539                                 m_freem(m);
2540                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2541                                     "keepalive queue is reached.\n");
2542                                 return;
2543                         }
2544                 }
2545         }
2546 }
2547
2548 static void
2549 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2550 {
2551         struct mbufq q;
2552         struct mbuf *m;
2553         struct dyn_ipv6_state *s;
2554         uint32_t bucket;
2555
2556         mbufq_init(&q, INT_MAX);
2557         IPFW_UH_RLOCK(chain);
2558         /*
2559          * It is safe to not use hazard pointer and just do lockless
2560          * access to the lists, because states entries can not be deleted
2561          * while we hold IPFW_UH_RLOCK.
2562          */
2563         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2564                 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2565                         /*
2566                          * Only established TCP connections that will
2567                          * become expired withing dyn_keepalive_interval.
2568                          */
2569                         if (s->proto != IPPROTO_TCP ||
2570                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2571                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2572                                 s->data->expire))
2573                                 continue;
2574                         dyn_enqueue_keepalive_ipv6(&q, s);
2575                 }
2576         }
2577         IPFW_UH_RUNLOCK(chain);
2578         while ((m = mbufq_dequeue(&q)) != NULL)
2579                 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2580 }
2581 #endif /* INET6 */
2582
2583 static void
2584 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new)
2585 {
2586 #ifdef INET6
2587         struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2588         uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2589         struct dyn_ipv6_state *s6;
2590 #endif
2591         struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2592         uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2593         struct dyn_ipv4_state *s4;
2594         struct mtx *bucket_lock;
2595         void *tmp;
2596         uint32_t bucket;
2597
2598         MPASS(powerof2(new));
2599         DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2600         /*
2601          * Allocate and initialize new lists.
2602          * XXXAE: on memory pressure this can disable callout timer.
2603          */
2604         bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2605             M_WAITOK | M_ZERO);
2606         ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2607             M_WAITOK | M_ZERO);
2608         ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2609             M_WAITOK | M_ZERO);
2610         ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2611         ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2612         ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2613             M_WAITOK | M_ZERO);
2614         ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2615             M_WAITOK | M_ZERO);
2616 #ifdef INET6
2617         ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2618             M_WAITOK | M_ZERO);
2619         ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2620             M_WAITOK | M_ZERO);
2621         ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2622         ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2623         ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2624             M_WAITOK | M_ZERO);
2625         ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2626             M_WAITOK | M_ZERO);
2627 #endif
2628         for (bucket = 0; bucket < new; bucket++) {
2629                 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2630                 CK_SLIST_INIT(&ipv4[bucket]);
2631                 CK_SLIST_INIT(&ipv4_parent[bucket]);
2632 #ifdef INET6
2633                 CK_SLIST_INIT(&ipv6[bucket]);
2634                 CK_SLIST_INIT(&ipv6_parent[bucket]);
2635 #endif
2636         }
2637
2638 #define DYN_RELINK_STATES(s, hval, i, head, ohead)      do {            \
2639         while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) {     \
2640                 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry);       \
2641                 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)],   \
2642                     s, entry);                                          \
2643         }                                                               \
2644 } while (0)
2645         /*
2646          * Prevent rules changing from userland.
2647          */
2648         IPFW_UH_WLOCK(chain);
2649         /*
2650          * Hold traffic processing until we finish resize to
2651          * prevent access to states lists.
2652          */
2653         IPFW_WLOCK(chain);
2654         /* Re-link all dynamic states */
2655         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2656                 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2657                 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2658                     ipv4_parent);
2659 #ifdef INET6
2660                 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2661                 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2662                     ipv6_parent);
2663 #endif
2664         }
2665
2666 #define DYN_SWAP_PTR(old, new, tmp)     do {            \
2667         tmp = old;                                      \
2668         old = new;                                      \
2669         new = tmp;                                      \
2670 } while (0)
2671         /* Swap pointers */
2672         DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2673         DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2674         DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2675         DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2676         DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2677         DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2678         DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2679
2680 #ifdef INET6
2681         DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2682         DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2683         DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2684         DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2685         DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2686         DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2687 #endif
2688         bucket = V_curr_dyn_buckets;
2689         V_curr_dyn_buckets = new;
2690
2691         IPFW_WUNLOCK(chain);
2692         IPFW_UH_WUNLOCK(chain);
2693
2694         /* Release old resources */
2695         while (bucket-- != 0)
2696                 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2697         free(bucket_lock, M_IPFW);
2698         free(ipv4, M_IPFW);
2699         free(ipv4_parent, M_IPFW);
2700         free(ipv4_add, M_IPFW);
2701         free(ipv4_parent_add, M_IPFW);
2702         free(ipv4_del, M_IPFW);
2703         free(ipv4_parent_del, M_IPFW);
2704 #ifdef INET6
2705         free(ipv6, M_IPFW);
2706         free(ipv6_parent, M_IPFW);
2707         free(ipv6_add, M_IPFW);
2708         free(ipv6_parent_add, M_IPFW);
2709         free(ipv6_del, M_IPFW);
2710         free(ipv6_parent_del, M_IPFW);
2711 #endif
2712 }
2713
2714 /*
2715  * This function is used to perform various maintenance
2716  * on dynamic hash lists. Currently it is called every second.
2717  */
2718 static void
2719 dyn_tick(void *vnetx)
2720 {
2721         uint32_t buckets;
2722
2723         CURVNET_SET((struct vnet *)vnetx);
2724         /*
2725          * First free states unlinked in previous passes.
2726          */
2727         dyn_free_states(&V_layer3_chain);
2728         /*
2729          * Now unlink others expired states.
2730          * We use IPFW_UH_WLOCK to avoid concurrent call of
2731          * dyn_expire_states(). It is the only function that does
2732          * deletion of state entries from states lists.
2733          */
2734         IPFW_UH_WLOCK(&V_layer3_chain);
2735         dyn_expire_states(&V_layer3_chain, NULL);
2736         IPFW_UH_WUNLOCK(&V_layer3_chain);
2737         /*
2738          * Send keepalives if they are enabled and the time has come.
2739          */
2740         if (V_dyn_keepalive != 0 &&
2741             V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2742                 V_dyn_keepalive_last = time_uptime;
2743                 dyn_send_keepalive_ipv4(&V_layer3_chain);
2744 #ifdef INET6
2745                 dyn_send_keepalive_ipv6(&V_layer3_chain);
2746 #endif
2747         }
2748         /*
2749          * Check if we need to resize the hash:
2750          * if current number of states exceeds number of buckets in hash,
2751          * and dyn_buckets_max permits to grow the number of buckets, then
2752          * do it. Grow hash size to the minimum power of 2 which is bigger
2753          * than current states count.
2754          */
2755         if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2756             (V_curr_dyn_buckets < V_dyn_count / 2 || (
2757             V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2758                 buckets = 1 << fls(V_dyn_count);
2759                 if (buckets > V_dyn_buckets_max)
2760                         buckets = V_dyn_buckets_max;
2761                 dyn_grow_hashtable(&V_layer3_chain, buckets);
2762         }
2763
2764         callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2765         CURVNET_RESTORE();
2766 }
2767
2768 void
2769 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2770 {
2771         /*
2772          * Do not perform any checks if we currently have no dynamic states
2773          */
2774         if (V_dyn_count == 0)
2775                 return;
2776
2777         IPFW_UH_WLOCK_ASSERT(chain);
2778         dyn_expire_states(chain, rt);
2779 }
2780
2781 /*
2782  * Pass through all states and reset eaction for orphaned rules.
2783  */
2784 void
2785 ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id,
2786     uint16_t default_id, uint16_t instance_id)
2787 {
2788 #ifdef INET6
2789         struct dyn_ipv6_state *s6;
2790 #endif
2791         struct dyn_ipv4_state *s4;
2792         struct ip_fw *rule;
2793         uint32_t bucket;
2794
2795 #define DYN_RESET_EACTION(s, h, b)                                      \
2796         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
2797                 if ((s->data->flags & DYN_REFERENCED) == 0)             \
2798                         continue;                                       \
2799                 rule = s->data->parent;                                 \
2800                 if (s->type == O_LIMIT)                                 \
2801                         rule = ((__typeof(s))rule)->limit->parent;      \
2802                 ipfw_reset_eaction(ch, rule, eaction_id,                \
2803                     default_id, instance_id);                           \
2804         }
2805
2806         IPFW_UH_WLOCK_ASSERT(ch);
2807         if (V_dyn_count == 0)
2808                 return;
2809         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2810                 DYN_RESET_EACTION(s4, ipv4, bucket);
2811 #ifdef INET6
2812                 DYN_RESET_EACTION(s6, ipv6, bucket);
2813 #endif
2814         }
2815 }
2816
2817 /*
2818  * Returns size of dynamic states in legacy format
2819  */
2820 int
2821 ipfw_dyn_len(void)
2822 {
2823
2824         return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2825 }
2826
2827 /*
2828  * Returns number of dynamic states.
2829  * Marks every named object index used by dynamic states with bit in @bmask.
2830  * Returns number of named objects accounted in bmask via @nocnt.
2831  * Used by dump format v1 (current).
2832  */
2833 uint32_t
2834 ipfw_dyn_get_count(uint32_t *bmask, int *nocnt)
2835 {
2836 #ifdef INET6
2837         struct dyn_ipv6_state *s6;
2838 #endif
2839         struct dyn_ipv4_state *s4;
2840         uint32_t bucket;
2841
2842 #define DYN_COUNT_OBJECTS(s, h, b)                                      \
2843         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
2844                 MPASS(s->kidx != 0);                                    \
2845                 if (ipfw_mark_object_kidx(bmask, IPFW_TLV_STATE_NAME,   \
2846                     s->kidx) != 0)                                      \
2847                         (*nocnt)++;                                     \
2848         }
2849
2850         IPFW_UH_RLOCK_ASSERT(&V_layer3_chain);
2851
2852         /* No need to pass through all the buckets. */
2853         *nocnt = 0;
2854         if (V_dyn_count + V_dyn_parent_count == 0)
2855                 return (0);
2856
2857         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2858                 DYN_COUNT_OBJECTS(s4, ipv4, bucket);
2859 #ifdef INET6
2860                 DYN_COUNT_OBJECTS(s6, ipv6, bucket);
2861 #endif
2862         }
2863
2864         return (V_dyn_count + V_dyn_parent_count);
2865 }
2866
2867 /*
2868  * Check if rule contains at least one dynamic opcode.
2869  *
2870  * Returns 1 if such opcode is found, 0 otherwise.
2871  */
2872 int
2873 ipfw_is_dyn_rule(struct ip_fw *rule)
2874 {
2875         int cmdlen, l;
2876         ipfw_insn *cmd;
2877
2878         l = rule->cmd_len;
2879         cmd = rule->cmd;
2880         cmdlen = 0;
2881         for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2882                 cmdlen = F_LEN(cmd);
2883
2884                 switch (cmd->opcode) {
2885                 case O_LIMIT:
2886                 case O_KEEP_STATE:
2887                 case O_PROBE_STATE:
2888                 case O_CHECK_STATE:
2889                         return (1);
2890                 }
2891         }
2892
2893         return (0);
2894 }
2895
2896 static void
2897 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx, uint8_t set,
2898     ipfw_dyn_rule *dst)
2899 {
2900
2901         dst->dyn_type = O_LIMIT_PARENT;
2902         dst->kidx = kidx;
2903         dst->count = (uint16_t)DPARENT_COUNT(p);
2904         dst->expire = TIME_LEQ(p->expire, time_uptime) ?  0:
2905             p->expire - time_uptime;
2906
2907         /* 'rule' is used to pass up the rule number and set */
2908         memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2909
2910         /* store set number into high word of dst->rule pointer. */
2911         memcpy((char *)&dst->rule + sizeof(p->rulenum), &set, sizeof(set));
2912
2913         /* unused fields */
2914         dst->pcnt = 0;
2915         dst->bcnt = 0;
2916         dst->parent = NULL;
2917         dst->state = 0;
2918         dst->ack_fwd = 0;
2919         dst->ack_rev = 0;
2920         dst->bucket = p->hashval;
2921         /*
2922          * The legacy userland code will interpret a NULL here as a marker
2923          * for the last dynamic rule.
2924          */
2925         dst->next = (ipfw_dyn_rule *)1;
2926 }
2927
2928 static void
2929 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2930     uint8_t set, ipfw_dyn_rule *dst)
2931 {
2932
2933         dst->dyn_type = type;
2934         dst->kidx = kidx;
2935         dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2936         dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2937         dst->expire = TIME_LEQ(data->expire, time_uptime) ?  0:
2938             data->expire - time_uptime;
2939
2940         /* 'rule' is used to pass up the rule number and set */
2941         memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2942
2943         /* store set number into high word of dst->rule pointer. */
2944         memcpy((char *)&dst->rule + sizeof(data->rulenum), &set, sizeof(set));
2945
2946         dst->state = data->state;
2947         if (data->flags & DYN_REFERENCED)
2948                 dst->state |= IPFW_DYN_ORPHANED;
2949
2950         /* unused fields */
2951         dst->parent = NULL;
2952         dst->ack_fwd = data->ack_fwd;
2953         dst->ack_rev = data->ack_rev;
2954         dst->count = 0;
2955         dst->bucket = data->hashval;
2956         /*
2957          * The legacy userland code will interpret a NULL here as a marker
2958          * for the last dynamic rule.
2959          */
2960         dst->next = (ipfw_dyn_rule *)1;
2961 }
2962
2963 static void
2964 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2965 {
2966         struct ip_fw *rule;
2967
2968         switch (s->type) {
2969         case O_LIMIT_PARENT:
2970                 rule = s->limit->parent;
2971                 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
2972                 break;
2973         default:
2974                 rule = s->data->parent;
2975                 if (s->type == O_LIMIT)
2976                         rule = ((struct dyn_ipv4_state *)rule)->limit->parent;
2977                 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
2978         }
2979
2980         dst->id.dst_ip = s->dst;
2981         dst->id.src_ip = s->src;
2982         dst->id.dst_port = s->dport;
2983         dst->id.src_port = s->sport;
2984         dst->id.fib = s->data->fibnum;
2985         dst->id.proto = s->proto;
2986         dst->id._flags = 0;
2987         dst->id.addr_type = 4;
2988
2989         memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
2990         memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
2991         dst->id.flow_id6 = dst->id.extra = 0;
2992 }
2993
2994 #ifdef INET6
2995 static void
2996 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
2997 {
2998         struct ip_fw *rule;
2999
3000         switch (s->type) {
3001         case O_LIMIT_PARENT:
3002                 rule = s->limit->parent;
3003                 dyn_export_parent(s->limit, s->kidx, rule->set, dst);
3004                 break;
3005         default:
3006                 rule = s->data->parent;
3007                 if (s->type == O_LIMIT)
3008                         rule = ((struct dyn_ipv6_state *)rule)->limit->parent;
3009                 dyn_export_data(s->data, s->kidx, s->type, rule->set, dst);
3010         }
3011
3012         dst->id.src_ip6 = s->src;
3013         dst->id.dst_ip6 = s->dst;
3014         dst->id.dst_port = s->dport;
3015         dst->id.src_port = s->sport;
3016         dst->id.fib = s->data->fibnum;
3017         dst->id.proto = s->proto;
3018         dst->id._flags = 0;
3019         dst->id.addr_type = 6;
3020
3021         dst->id.dst_ip = dst->id.src_ip = 0;
3022         dst->id.flow_id6 = dst->id.extra = 0;
3023 }
3024 #endif /* INET6 */
3025
3026 /*
3027  * Fills the buffer given by @sd with dynamic states.
3028  * Used by dump format v1 (current).
3029  *
3030  * Returns 0 on success.
3031  */
3032 int
3033 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
3034 {
3035 #ifdef INET6
3036         struct dyn_ipv6_state *s6;
3037 #endif
3038         struct dyn_ipv4_state *s4;
3039         ipfw_obj_dyntlv *dst, *last;
3040         ipfw_obj_ctlv *ctlv;
3041         uint32_t bucket;
3042
3043         if (V_dyn_count == 0)
3044                 return (0);
3045
3046         /*
3047          * IPFW_UH_RLOCK garantees that another userland request
3048          * and callout thread will not delete entries from states
3049          * lists.
3050          */
3051         IPFW_UH_RLOCK_ASSERT(chain);
3052
3053         ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
3054         if (ctlv == NULL)
3055                 return (ENOMEM);
3056         ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
3057         ctlv->objsize = sizeof(ipfw_obj_dyntlv);
3058         last = NULL;
3059
3060 #define DYN_EXPORT_STATES(s, af, h, b)                          \
3061         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
3062                 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd,        \
3063                     sizeof(ipfw_obj_dyntlv));                           \
3064                 if (dst == NULL)                                        \
3065                         return (ENOMEM);                                \
3066                 dyn_export_ ## af ## _state(s, &dst->state);            \
3067                 dst->head.length = sizeof(ipfw_obj_dyntlv);             \
3068                 dst->head.type = IPFW_TLV_DYN_ENT;                      \
3069                 last = dst;                                             \
3070         }
3071
3072         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3073                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3074                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3075 #ifdef INET6
3076                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3077                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3078 #endif /* INET6 */
3079         }
3080
3081         /* mark last dynamic rule */
3082         if (last != NULL)
3083                 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
3084         return (0);
3085 #undef DYN_EXPORT_STATES
3086 }
3087
3088 /*
3089  * Fill given buffer with dynamic states (legacy format).
3090  * IPFW_UH_RLOCK has to be held while calling.
3091  */
3092 void
3093 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
3094 {
3095 #ifdef INET6
3096         struct dyn_ipv6_state *s6;
3097 #endif
3098         struct dyn_ipv4_state *s4;
3099         ipfw_dyn_rule *p, *last = NULL;
3100         char *bp;
3101         uint32_t bucket;
3102
3103         if (V_dyn_count == 0)
3104                 return;
3105         bp = *pbp;
3106
3107         IPFW_UH_RLOCK_ASSERT(chain);
3108
3109 #define DYN_EXPORT_STATES(s, af, head, b)                               \
3110         CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) {                \
3111                 if (bp + sizeof(*p) > ep)                               \
3112                         break;                                          \
3113                 p = (ipfw_dyn_rule *)bp;                                \
3114                 dyn_export_ ## af ## _state(s, p);                      \
3115                 last = p;                                               \
3116                 bp += sizeof(*p);                                       \
3117         }
3118
3119         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3120                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
3121                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
3122 #ifdef INET6
3123                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
3124                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
3125 #endif /* INET6 */
3126         }
3127
3128         if (last != NULL) /* mark last dynamic rule */
3129                 last->next = NULL;
3130         *pbp = bp;
3131 #undef DYN_EXPORT_STATES
3132 }
3133
3134 void
3135 ipfw_dyn_init(struct ip_fw_chain *chain)
3136 {
3137
3138 #ifdef IPFIREWALL_JENKINSHASH
3139         V_dyn_hashseed = arc4random();
3140 #endif
3141         V_dyn_max = 16384;              /* max # of states */
3142         V_dyn_parent_max = 4096;        /* max # of parent states */
3143         V_dyn_buckets_max = 8192;       /* must be power of 2 */
3144
3145         V_dyn_ack_lifetime = 300;
3146         V_dyn_syn_lifetime = 20;
3147         V_dyn_fin_lifetime = 1;
3148         V_dyn_rst_lifetime = 1;
3149         V_dyn_udp_lifetime = 10;
3150         V_dyn_short_lifetime = 5;
3151
3152         V_dyn_keepalive_interval = 20;
3153         V_dyn_keepalive_period = 5;
3154         V_dyn_keepalive = 1;            /* send keepalives */
3155         V_dyn_keepalive_last = time_uptime;
3156
3157         V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
3158             sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
3159             UMA_ALIGN_PTR, 0);
3160         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
3161
3162         V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
3163             sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
3164             UMA_ALIGN_PTR, 0);
3165         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
3166
3167         SLIST_INIT(&V_dyn_expired_ipv4);
3168         V_dyn_ipv4 = NULL;
3169         V_dyn_ipv4_parent = NULL;
3170         V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
3171             sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
3172             UMA_ALIGN_PTR, 0);
3173
3174 #ifdef INET6
3175         SLIST_INIT(&V_dyn_expired_ipv6);
3176         V_dyn_ipv6 = NULL;
3177         V_dyn_ipv6_parent = NULL;
3178         V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3179             sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3180             UMA_ALIGN_PTR, 0);
3181 #endif
3182
3183         /* Initialize buckets. */
3184         V_curr_dyn_buckets = 0;
3185         V_dyn_bucket_lock = NULL;
3186         dyn_grow_hashtable(chain, 256);
3187
3188         if (IS_DEFAULT_VNET(curvnet))
3189                 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3190                     M_WAITOK | M_ZERO);
3191
3192         DYN_EXPIRED_LOCK_INIT();
3193         callout_init(&V_dyn_timeout, 1);
3194         callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3195         IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3196 }
3197
3198 void
3199 ipfw_dyn_uninit(int pass)
3200 {
3201 #ifdef INET6
3202         struct dyn_ipv6_state *s6;
3203 #endif
3204         struct dyn_ipv4_state *s4;
3205         int bucket;
3206
3207         if (pass == 0) {
3208                 callout_drain(&V_dyn_timeout);
3209                 return;
3210         }
3211         IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3212         DYN_EXPIRED_LOCK_DESTROY();
3213
3214 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en)     do {            \
3215         while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) {      \
3216                 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en);   \
3217                 if (s->type == O_LIMIT_PARENT)                          \
3218                         uma_zfree(V_dyn_parent_zone, s->limit);         \
3219                 else                                                    \
3220                         uma_zfree(V_dyn_data_zone, s->data);            \
3221                 uma_zfree(V_dyn_ ## af ## _zone, s);                    \
3222         }                                                               \
3223 } while (0)
3224         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3225                 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3226
3227                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3228                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3229                     entry);
3230 #ifdef INET6
3231                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3232                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3233                     entry);
3234 #endif /* INET6 */
3235         }
3236         DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3237 #ifdef INET6
3238         DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3239 #endif
3240 #undef DYN_FREE_STATES_FORCED
3241
3242         uma_zdestroy(V_dyn_ipv4_zone);
3243         uma_zdestroy(V_dyn_data_zone);
3244         uma_zdestroy(V_dyn_parent_zone);
3245 #ifdef INET6
3246         uma_zdestroy(V_dyn_ipv6_zone);
3247         free(V_dyn_ipv6, M_IPFW);
3248         free(V_dyn_ipv6_parent, M_IPFW);
3249         free(V_dyn_ipv6_add, M_IPFW);
3250         free(V_dyn_ipv6_parent_add, M_IPFW);
3251         free(V_dyn_ipv6_del, M_IPFW);
3252         free(V_dyn_ipv6_parent_del, M_IPFW);
3253 #endif
3254         free(V_dyn_bucket_lock, M_IPFW);
3255         free(V_dyn_ipv4, M_IPFW);
3256         free(V_dyn_ipv4_parent, M_IPFW);
3257         free(V_dyn_ipv4_add, M_IPFW);
3258         free(V_dyn_ipv4_parent_add, M_IPFW);
3259         free(V_dyn_ipv4_del, M_IPFW);
3260         free(V_dyn_ipv4_parent_del, M_IPFW);
3261         if (IS_DEFAULT_VNET(curvnet))
3262                 free(dyn_hp_cache, M_IPFW);
3263 }
3264
3265