]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netpfil/ipfw/ip_fw_dynamic.c
Upgrade Unbound to 1.6.1. More to follow.
[FreeBSD/FreeBSD.git] / sys / netpfil / ipfw / ip_fw_dynamic.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2017-2018 Yandex LLC
5  * Copyright (c) 2017-2018 Andrey V. Elsukov <ae@FreeBSD.org>
6  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_ipfw.h"
36 #ifndef INET
37 #error IPFIREWALL requires INET.
38 #endif /* INET */
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/pcpu.h>
47 #include <sys/queue.h>
48 #include <sys/rmlock.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <net/ethernet.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/pfil.h>
57 #include <net/vnet.h>
58
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/ip_fw.h>
63 #include <netinet/tcp_var.h>
64 #include <netinet/udp.h>
65
66 #include <netinet/ip6.h>        /* IN6_ARE_ADDR_EQUAL */
67 #ifdef INET6
68 #include <netinet6/in6_var.h>
69 #include <netinet6/ip6_var.h>
70 #include <netinet6/scope6_var.h>
71 #endif
72
73 #include <netpfil/ipfw/ip_fw_private.h>
74
75 #include <machine/in_cksum.h>   /* XXX for in_cksum */
76
77 #ifdef MAC
78 #include <security/mac/mac_framework.h>
79 #endif
80 #include <ck_queue.h>
81
82 /*
83  * Description of dynamic states.
84  *
85  * Dynamic states are stored in lists accessed through a hash tables
86  * whose size is curr_dyn_buckets. This value can be modified through
87  * the sysctl variable dyn_buckets.
88  *
89  * Currently there are four tables: dyn_ipv4, dyn_ipv6, dyn_ipv4_parent,
90  * and dyn_ipv6_parent.
91  *
92  * When a packet is received, its address fields hashed, then matched
93  * against the entries in the corresponding list by addr_type.
94  * Dynamic states can be used for different purposes:
95  *  + stateful rules;
96  *  + enforcing limits on the number of sessions;
97  *  + in-kernel NAT (not implemented yet)
98  *
99  * The lifetime of dynamic states is regulated by dyn_*_lifetime,
100  * measured in seconds and depending on the flags.
101  *
102  * The total number of dynamic states is equal to UMA zone items count.
103  * The max number of dynamic states is dyn_max. When we reach
104  * the maximum number of rules we do not create anymore. This is
105  * done to avoid consuming too much memory, but also too much
106  * time when searching on each packet (ideally, we should try instead
107  * to put a limit on the length of the list on each bucket...).
108  *
109  * Each state holds a pointer to the parent ipfw rule so we know what
110  * action to perform. Dynamic rules are removed when the parent rule is
111  * deleted.
112  *
113  * There are some limitations with dynamic rules -- we do not
114  * obey the 'randomized match', and we do not do multiple
115  * passes through the firewall. XXX check the latter!!!
116  */
117
118 /* By default use jenkins hash function */
119 #define IPFIREWALL_JENKINSHASH
120
121 #define DYN_COUNTER_INC(d, dir, pktlen) do {    \
122         (d)->pcnt_ ## dir++;                    \
123         (d)->bcnt_ ## dir += pktlen;            \
124         } while (0)
125
126 struct dyn_data {
127         void            *parent;        /* pointer to parent rule */
128         uint32_t        chain_id;       /* cached ruleset id */
129         uint32_t        f_pos;          /* cached rule index */
130
131         uint32_t        hashval;        /* hash value used for hash resize */
132         uint16_t        fibnum;         /* fib used to send keepalives */
133         uint8_t         _pad[3];
134         uint8_t         set;            /* parent rule set number */
135         uint16_t        rulenum;        /* parent rule number */
136         uint32_t        ruleid;         /* parent rule id */
137
138         uint32_t        state;          /* TCP session state and flags */
139         uint32_t        ack_fwd;        /* most recent ACKs in forward */
140         uint32_t        ack_rev;        /* and reverse direction (used */
141                                         /* to generate keepalives) */
142         uint32_t        sync;           /* synchronization time */
143         uint32_t        expire;         /* expire time */
144
145         uint64_t        pcnt_fwd;       /* bytes counter in forward */
146         uint64_t        bcnt_fwd;       /* packets counter in forward */
147         uint64_t        pcnt_rev;       /* bytes counter in reverse */
148         uint64_t        bcnt_rev;       /* packets counter in reverse */
149 };
150
151 #define DPARENT_COUNT_DEC(p)    do {                    \
152         MPASS(p->count > 0);                            \
153         ck_pr_dec_32(&(p)->count);                      \
154 } while (0)
155 #define DPARENT_COUNT_INC(p)    ck_pr_inc_32(&(p)->count)
156 #define DPARENT_COUNT(p)        ck_pr_load_32(&(p)->count)
157 struct dyn_parent {
158         void            *parent;        /* pointer to parent rule */
159         uint32_t        count;          /* number of linked states */
160         uint8_t         _pad;
161         uint8_t         set;            /* parent rule set number */
162         uint16_t        rulenum;        /* parent rule number */
163         uint32_t        ruleid;         /* parent rule id */
164         uint32_t        hashval;        /* hash value used for hash resize */
165         uint32_t        expire;         /* expire time */
166 };
167
168 struct dyn_ipv4_state {
169         uint8_t         type;           /* State type */
170         uint8_t         proto;          /* UL Protocol */
171         uint16_t        kidx;           /* named object index */
172         uint16_t        sport, dport;   /* ULP source and destination ports */
173         in_addr_t       src, dst;       /* IPv4 source and destination */
174
175         union {
176                 struct dyn_data *data;
177                 struct dyn_parent *limit;
178         };
179         CK_SLIST_ENTRY(dyn_ipv4_state)  entry;
180         SLIST_ENTRY(dyn_ipv4_state)     expired;
181 };
182 CK_SLIST_HEAD(dyn_ipv4ck_slist, dyn_ipv4_state);
183 static VNET_DEFINE(struct dyn_ipv4ck_slist *, dyn_ipv4);
184 static VNET_DEFINE(struct dyn_ipv4ck_slist *, dyn_ipv4_parent);
185
186 SLIST_HEAD(dyn_ipv4_slist, dyn_ipv4_state);
187 static VNET_DEFINE(struct dyn_ipv4_slist, dyn_expired_ipv4);
188 #define V_dyn_ipv4                      VNET(dyn_ipv4)
189 #define V_dyn_ipv4_parent               VNET(dyn_ipv4_parent)
190 #define V_dyn_expired_ipv4              VNET(dyn_expired_ipv4)
191
192 #ifdef INET6
193 struct dyn_ipv6_state {
194         uint8_t         type;           /* State type */
195         uint8_t         proto;          /* UL Protocol */
196         uint16_t        kidx;           /* named object index */
197         uint16_t        sport, dport;   /* ULP source and destination ports */
198         struct in6_addr src, dst;       /* IPv6 source and destination */
199         uint32_t        zoneid;         /* IPv6 scope zone id */
200         union {
201                 struct dyn_data *data;
202                 struct dyn_parent *limit;
203         };
204         CK_SLIST_ENTRY(dyn_ipv6_state)  entry;
205         SLIST_ENTRY(dyn_ipv6_state)     expired;
206 };
207 CK_SLIST_HEAD(dyn_ipv6ck_slist, dyn_ipv6_state);
208 static VNET_DEFINE(struct dyn_ipv6ck_slist *, dyn_ipv6);
209 static VNET_DEFINE(struct dyn_ipv6ck_slist *, dyn_ipv6_parent);
210
211 SLIST_HEAD(dyn_ipv6_slist, dyn_ipv6_state);
212 static VNET_DEFINE(struct dyn_ipv6_slist, dyn_expired_ipv6);
213 #define V_dyn_ipv6                      VNET(dyn_ipv6)
214 #define V_dyn_ipv6_parent               VNET(dyn_ipv6_parent)
215 #define V_dyn_expired_ipv6              VNET(dyn_expired_ipv6)
216 #endif /* INET6 */
217
218 /*
219  * Per-CPU pointer indicates that specified state is currently in use
220  * and must not be reclaimed by expiration callout.
221  */
222 static void **dyn_hp_cache;
223 static DPCPU_DEFINE(void *, dyn_hp);
224 #define DYNSTATE_GET(cpu)       ck_pr_load_ptr(DPCPU_ID_PTR((cpu), dyn_hp))
225 #define DYNSTATE_PROTECT(v)     ck_pr_store_ptr(DPCPU_PTR(dyn_hp), (v))
226 #define DYNSTATE_RELEASE()      DYNSTATE_PROTECT(NULL)
227 #define DYNSTATE_CRITICAL_ENTER()       critical_enter()
228 #define DYNSTATE_CRITICAL_EXIT()        do {    \
229         DYNSTATE_RELEASE();                     \
230         critical_exit();                        \
231 } while (0);
232
233 /*
234  * We keep two version numbers, one is updated when new entry added to
235  * the list. Second is updated when an entry deleted from the list.
236  * Versions are updated under bucket lock.
237  *
238  * Bucket "add" version number is used to know, that in the time between
239  * state lookup (i.e. ipfw_dyn_lookup_state()) and the followed state
240  * creation (i.e. ipfw_dyn_install_state()) another concurrent thread did
241  * not install some state in this bucket. Using this info we can avoid
242  * additional state lookup, because we are sure that we will not install
243  * the state twice.
244  *
245  * Also doing the tracking of bucket "del" version during lookup we can
246  * be sure, that state entry was not unlinked and freed in time between
247  * we read the state pointer and protect it with hazard pointer.
248  *
249  * An entry unlinked from CK list keeps unchanged until it is freed.
250  * Unlinked entries are linked into expired lists using "expired" field.
251  */
252
253 /*
254  * dyn_expire_lock is used to protect access to dyn_expired_xxx lists.
255  * dyn_bucket_lock is used to get write access to lists in specific bucket.
256  * Currently one dyn_bucket_lock is used for all ipv4, ipv4_parent, ipv6,
257  * and ipv6_parent lists.
258  */
259 static VNET_DEFINE(struct mtx, dyn_expire_lock);
260 static VNET_DEFINE(struct mtx *, dyn_bucket_lock);
261 #define V_dyn_expire_lock               VNET(dyn_expire_lock)
262 #define V_dyn_bucket_lock               VNET(dyn_bucket_lock)
263
264 /*
265  * Bucket's add/delete generation versions.
266  */
267 static VNET_DEFINE(uint32_t *, dyn_ipv4_add);
268 static VNET_DEFINE(uint32_t *, dyn_ipv4_del);
269 static VNET_DEFINE(uint32_t *, dyn_ipv4_parent_add);
270 static VNET_DEFINE(uint32_t *, dyn_ipv4_parent_del);
271 #define V_dyn_ipv4_add                  VNET(dyn_ipv4_add)
272 #define V_dyn_ipv4_del                  VNET(dyn_ipv4_del)
273 #define V_dyn_ipv4_parent_add           VNET(dyn_ipv4_parent_add)
274 #define V_dyn_ipv4_parent_del           VNET(dyn_ipv4_parent_del)
275
276 #ifdef INET6
277 static VNET_DEFINE(uint32_t *, dyn_ipv6_add);
278 static VNET_DEFINE(uint32_t *, dyn_ipv6_del);
279 static VNET_DEFINE(uint32_t *, dyn_ipv6_parent_add);
280 static VNET_DEFINE(uint32_t *, dyn_ipv6_parent_del);
281 #define V_dyn_ipv6_add                  VNET(dyn_ipv6_add)
282 #define V_dyn_ipv6_del                  VNET(dyn_ipv6_del)
283 #define V_dyn_ipv6_parent_add           VNET(dyn_ipv6_parent_add)
284 #define V_dyn_ipv6_parent_del           VNET(dyn_ipv6_parent_del)
285 #endif /* INET6 */
286
287 #define DYN_BUCKET(h, b)                ((h) & (b - 1))
288 #define DYN_BUCKET_VERSION(b, v)        ck_pr_load_32(&V_dyn_ ## v[(b)])
289 #define DYN_BUCKET_VERSION_BUMP(b, v)   ck_pr_inc_32(&V_dyn_ ## v[(b)])
290
291 #define DYN_BUCKET_LOCK_INIT(lock, b)           \
292     mtx_init(&lock[(b)], "IPFW dynamic bucket", NULL, MTX_DEF)
293 #define DYN_BUCKET_LOCK_DESTROY(lock, b)        mtx_destroy(&lock[(b)])
294 #define DYN_BUCKET_LOCK(b)      mtx_lock(&V_dyn_bucket_lock[(b)])
295 #define DYN_BUCKET_UNLOCK(b)    mtx_unlock(&V_dyn_bucket_lock[(b)])
296 #define DYN_BUCKET_ASSERT(b)    mtx_assert(&V_dyn_bucket_lock[(b)], MA_OWNED)
297
298 #define DYN_EXPIRED_LOCK_INIT()         \
299     mtx_init(&V_dyn_expire_lock, "IPFW expired states list", NULL, MTX_DEF)
300 #define DYN_EXPIRED_LOCK_DESTROY()      mtx_destroy(&V_dyn_expire_lock)
301 #define DYN_EXPIRED_LOCK()              mtx_lock(&V_dyn_expire_lock)
302 #define DYN_EXPIRED_UNLOCK()            mtx_unlock(&V_dyn_expire_lock)
303
304 static VNET_DEFINE(uint32_t, dyn_buckets_max);
305 static VNET_DEFINE(uint32_t, curr_dyn_buckets);
306 static VNET_DEFINE(struct callout, dyn_timeout);
307 #define V_dyn_buckets_max               VNET(dyn_buckets_max)
308 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
309 #define V_dyn_timeout                   VNET(dyn_timeout)
310
311 /* Maximum length of states chain in a bucket */
312 static VNET_DEFINE(uint32_t, curr_max_length);
313 #define V_curr_max_length               VNET(curr_max_length)
314
315 static VNET_DEFINE(uma_zone_t, dyn_data_zone);
316 static VNET_DEFINE(uma_zone_t, dyn_parent_zone);
317 static VNET_DEFINE(uma_zone_t, dyn_ipv4_zone);
318 #ifdef INET6
319 static VNET_DEFINE(uma_zone_t, dyn_ipv6_zone);
320 #define V_dyn_ipv6_zone                 VNET(dyn_ipv6_zone)
321 #endif /* INET6 */
322 #define V_dyn_data_zone                 VNET(dyn_data_zone)
323 #define V_dyn_parent_zone               VNET(dyn_parent_zone)
324 #define V_dyn_ipv4_zone                 VNET(dyn_ipv4_zone)
325
326 /*
327  * Timeouts for various events in handing dynamic rules.
328  */
329 static VNET_DEFINE(uint32_t, dyn_ack_lifetime);
330 static VNET_DEFINE(uint32_t, dyn_syn_lifetime);
331 static VNET_DEFINE(uint32_t, dyn_fin_lifetime);
332 static VNET_DEFINE(uint32_t, dyn_rst_lifetime);
333 static VNET_DEFINE(uint32_t, dyn_udp_lifetime);
334 static VNET_DEFINE(uint32_t, dyn_short_lifetime);
335
336 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
337 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
338 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
339 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
340 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
341 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
342
343 /*
344  * Keepalives are sent if dyn_keepalive is set. They are sent every
345  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
346  * seconds of lifetime of a rule.
347  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
348  * than dyn_keepalive_period.
349  */
350 #define DYN_KEEPALIVE_MAXQ              512
351 static VNET_DEFINE(uint32_t, dyn_keepalive_interval);
352 static VNET_DEFINE(uint32_t, dyn_keepalive_period);
353 static VNET_DEFINE(uint32_t, dyn_keepalive);
354 static VNET_DEFINE(time_t, dyn_keepalive_last);
355
356 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
357 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
358 #define V_dyn_keepalive                 VNET(dyn_keepalive)
359 #define V_dyn_keepalive_last            VNET(dyn_keepalive_last)
360
361 static VNET_DEFINE(uint32_t, dyn_max);          /* max # of dynamic states */
362 static VNET_DEFINE(uint32_t, dyn_count);        /* number of states */
363 static VNET_DEFINE(uint32_t, dyn_parent_max);   /* max # of parent states */
364 static VNET_DEFINE(uint32_t, dyn_parent_count); /* number of parent states */
365 #define V_dyn_max                       VNET(dyn_max)
366 #define V_dyn_count                     VNET(dyn_count)
367 #define V_dyn_parent_max                VNET(dyn_parent_max)
368 #define V_dyn_parent_count              VNET(dyn_parent_count)
369
370 #define DYN_COUNT_DEC(name)     do {                    \
371         MPASS((V_ ## name) > 0);                        \
372         ck_pr_dec_32(&(V_ ## name));                    \
373 } while (0)
374 #define DYN_COUNT_INC(name)     ck_pr_inc_32(&(V_ ## name))
375 #define DYN_COUNT(name)         ck_pr_load_32(&(V_ ## name))
376
377 static time_t last_log; /* Log ratelimiting */
378
379 /*
380  * Get/set maximum number of dynamic states in given VNET instance.
381  */
382 static int
383 sysctl_dyn_max(SYSCTL_HANDLER_ARGS)
384 {
385         uint32_t nstates;
386         int error;
387
388         nstates = V_dyn_max;
389         error = sysctl_handle_32(oidp, &nstates, 0, req);
390         /* Read operation or some error */
391         if ((error != 0) || (req->newptr == NULL))
392                 return (error);
393
394         V_dyn_max = nstates;
395         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
396         return (0);
397 }
398
399 static int
400 sysctl_dyn_parent_max(SYSCTL_HANDLER_ARGS)
401 {
402         uint32_t nstates;
403         int error;
404
405         nstates = V_dyn_parent_max;
406         error = sysctl_handle_32(oidp, &nstates, 0, req);
407         /* Read operation or some error */
408         if ((error != 0) || (req->newptr == NULL))
409                 return (error);
410
411         V_dyn_parent_max = nstates;
412         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
413         return (0);
414 }
415
416 static int
417 sysctl_dyn_buckets(SYSCTL_HANDLER_ARGS)
418 {
419         uint32_t nbuckets;
420         int error;
421
422         nbuckets = V_dyn_buckets_max;
423         error = sysctl_handle_32(oidp, &nbuckets, 0, req);
424         /* Read operation or some error */
425         if ((error != 0) || (req->newptr == NULL))
426                 return (error);
427
428         if (nbuckets > 256)
429                 V_dyn_buckets_max = 1 << fls(nbuckets - 1);
430         else
431                 return (EINVAL);
432         return (0);
433 }
434
435 SYSCTL_DECL(_net_inet_ip_fw);
436
437 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_count,
438     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_count), 0,
439     "Current number of dynamic states.");
440 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_parent_count,
441     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(dyn_parent_count), 0,
442     "Current number of parent states. ");
443 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
444     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
445     "Current number of buckets for states hash table.");
446 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, curr_max_length,
447     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_max_length), 0,
448     "Current maximum length of states chains in hash buckets.");
449 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
450     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_buckets,
451     "IU", "Max number of buckets for dynamic states hash table.");
452 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
453     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_max,
454     "IU", "Max number of dynamic states.");
455 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_parent_max,
456     CTLFLAG_VNET | CTLTYPE_U32 | CTLFLAG_RW, 0, 0, sysctl_dyn_parent_max,
457     "IU", "Max number of parent dynamic states.");
458 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
459     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
460     "Lifetime of dynamic states for TCP ACK.");
461 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
462     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
463     "Lifetime of dynamic states for TCP SYN.");
464 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
465     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
466     "Lifetime of dynamic states for TCP FIN.");
467 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
468     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
469     "Lifetime of dynamic states for TCP RST.");
470 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
471     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
472     "Lifetime of dynamic states for UDP.");
473 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
474     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
475     "Lifetime of dynamic states for other situations.");
476 SYSCTL_U32(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
477     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
478     "Enable keepalives for dynamic states.");
479
480 #ifdef IPFIREWALL_DYNDEBUG
481 #define DYN_DEBUG(fmt, ...)     do {                    \
482         printf("%s: " fmt "\n", __func__, __VA_ARGS__); \
483 } while (0)
484 #else
485 #define DYN_DEBUG(fmt, ...)
486 #endif /* !IPFIREWALL_DYNDEBUG */
487
488 #ifdef INET6
489 /* Functions to work with IPv6 states */
490 static struct dyn_ipv6_state *dyn_lookup_ipv6_state(
491     const struct ipfw_flow_id *, uint32_t, const void *,
492     struct ipfw_dyn_info *, int);
493 static int dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *,
494     uint32_t, const void *, int, const void *, uint32_t, uint16_t, uint32_t,
495     uint16_t);
496 static struct dyn_ipv6_state *dyn_alloc_ipv6_state(
497     const struct ipfw_flow_id *, uint32_t, uint16_t, uint8_t);
498 static int dyn_add_ipv6_state(void *, uint32_t, uint16_t, uint8_t,
499     const struct ipfw_flow_id *, uint32_t, const void *, int, uint32_t,
500     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
501 static void dyn_export_ipv6_state(const struct dyn_ipv6_state *,
502     ipfw_dyn_rule *);
503
504 static uint32_t dyn_getscopeid(const struct ip_fw_args *);
505 static void dyn_make_keepalive_ipv6(struct mbuf *, const struct in6_addr *,
506     const struct in6_addr *, uint32_t, uint32_t, uint32_t, uint16_t,
507     uint16_t);
508 static void dyn_enqueue_keepalive_ipv6(struct mbufq *,
509     const struct dyn_ipv6_state *);
510 static void dyn_send_keepalive_ipv6(struct ip_fw_chain *);
511
512 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent(
513     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
514     uint32_t);
515 static struct dyn_ipv6_state *dyn_lookup_ipv6_parent_locked(
516     const struct ipfw_flow_id *, uint32_t, const void *, uint32_t, uint16_t,
517     uint32_t);
518 static struct dyn_ipv6_state *dyn_add_ipv6_parent(void *, uint32_t, uint16_t,
519     uint8_t, const struct ipfw_flow_id *, uint32_t, uint32_t, uint32_t,
520     uint16_t);
521 #endif /* INET6 */
522
523 /* Functions to work with limit states */
524 static void *dyn_get_parent_state(const struct ipfw_flow_id *, uint32_t,
525     struct ip_fw *, uint32_t, uint32_t, uint16_t);
526 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent(
527     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
528 static struct dyn_ipv4_state *dyn_lookup_ipv4_parent_locked(
529     const struct ipfw_flow_id *, const void *, uint32_t, uint16_t, uint32_t);
530 static struct dyn_parent *dyn_alloc_parent(void *, uint32_t, uint16_t,
531     uint8_t, uint32_t);
532 static struct dyn_ipv4_state *dyn_add_ipv4_parent(void *, uint32_t, uint16_t,
533     uint8_t, const struct ipfw_flow_id *, uint32_t, uint32_t, uint16_t);
534
535 static void dyn_tick(void *);
536 static void dyn_expire_states(struct ip_fw_chain *, ipfw_range_tlv *);
537 static void dyn_free_states(struct ip_fw_chain *);
538 static void dyn_export_parent(const struct dyn_parent *, uint16_t,
539     ipfw_dyn_rule *);
540 static void dyn_export_data(const struct dyn_data *, uint16_t, uint8_t,
541     ipfw_dyn_rule *);
542 static uint32_t dyn_update_tcp_state(struct dyn_data *,
543     const struct ipfw_flow_id *, const struct tcphdr *, int);
544 static void dyn_update_proto_state(struct dyn_data *,
545     const struct ipfw_flow_id *, const void *, int, int);
546
547 /* Functions to work with IPv4 states */
548 struct dyn_ipv4_state *dyn_lookup_ipv4_state(const struct ipfw_flow_id *,
549     const void *, struct ipfw_dyn_info *, int);
550 static int dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *,
551     const void *, int, const void *, uint32_t, uint16_t, uint32_t, uint16_t);
552 static struct dyn_ipv4_state *dyn_alloc_ipv4_state(
553     const struct ipfw_flow_id *, uint16_t, uint8_t);
554 static int dyn_add_ipv4_state(void *, uint32_t, uint16_t, uint8_t,
555     const struct ipfw_flow_id *, const void *, int, uint32_t,
556     struct ipfw_dyn_info *, uint16_t, uint16_t, uint8_t);
557 static void dyn_export_ipv4_state(const struct dyn_ipv4_state *,
558     ipfw_dyn_rule *);
559
560 /*
561  * Named states support.
562  */
563 static char *default_state_name = "default";
564 struct dyn_state_obj {
565         struct named_object     no;
566         char                    name[64];
567 };
568
569 #define DYN_STATE_OBJ(ch, cmd)  \
570     ((struct dyn_state_obj *)SRV_OBJECT(ch, (cmd)->arg1))
571 /*
572  * Classifier callback.
573  * Return 0 if opcode contains object that should be referenced
574  * or rewritten.
575  */
576 static int
577 dyn_classify(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
578 {
579
580         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
581         /* Don't rewrite "check-state any" */
582         if (cmd->arg1 == 0 &&
583             cmd->opcode == O_CHECK_STATE)
584                 return (1);
585
586         *puidx = cmd->arg1;
587         *ptype = 0;
588         return (0);
589 }
590
591 static void
592 dyn_update(ipfw_insn *cmd, uint16_t idx)
593 {
594
595         cmd->arg1 = idx;
596         DYN_DEBUG("opcode %d, arg1 %d", cmd->opcode, cmd->arg1);
597 }
598
599 static int
600 dyn_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
601     struct named_object **pno)
602 {
603         ipfw_obj_ntlv *ntlv;
604         const char *name;
605
606         DYN_DEBUG("uidx %d", ti->uidx);
607         if (ti->uidx != 0) {
608                 if (ti->tlvs == NULL)
609                         return (EINVAL);
610                 /* Search ntlv in the buffer provided by user */
611                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
612                     IPFW_TLV_STATE_NAME);
613                 if (ntlv == NULL)
614                         return (EINVAL);
615                 name = ntlv->name;
616         } else
617                 name = default_state_name;
618         /*
619          * Search named object with corresponding name.
620          * Since states objects are global - ignore the set value
621          * and use zero instead.
622          */
623         *pno = ipfw_objhash_lookup_name_type(CHAIN_TO_SRV(ch), 0,
624             IPFW_TLV_STATE_NAME, name);
625         /*
626          * We always return success here.
627          * The caller will check *pno and mark object as unresolved,
628          * then it will automatically create "default" object.
629          */
630         return (0);
631 }
632
633 static struct named_object *
634 dyn_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
635 {
636
637         DYN_DEBUG("kidx %d", idx);
638         return (ipfw_objhash_lookup_kidx(CHAIN_TO_SRV(ch), idx));
639 }
640
641 static int
642 dyn_create(struct ip_fw_chain *ch, struct tid_info *ti,
643     uint16_t *pkidx)
644 {
645         struct namedobj_instance *ni;
646         struct dyn_state_obj *obj;
647         struct named_object *no;
648         ipfw_obj_ntlv *ntlv;
649         char *name;
650
651         DYN_DEBUG("uidx %d", ti->uidx);
652         if (ti->uidx != 0) {
653                 if (ti->tlvs == NULL)
654                         return (EINVAL);
655                 ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
656                     IPFW_TLV_STATE_NAME);
657                 if (ntlv == NULL)
658                         return (EINVAL);
659                 name = ntlv->name;
660         } else
661                 name = default_state_name;
662
663         ni = CHAIN_TO_SRV(ch);
664         obj = malloc(sizeof(*obj), M_IPFW, M_WAITOK | M_ZERO);
665         obj->no.name = obj->name;
666         obj->no.etlv = IPFW_TLV_STATE_NAME;
667         strlcpy(obj->name, name, sizeof(obj->name));
668
669         IPFW_UH_WLOCK(ch);
670         no = ipfw_objhash_lookup_name_type(ni, 0,
671             IPFW_TLV_STATE_NAME, name);
672         if (no != NULL) {
673                 /*
674                  * Object is already created.
675                  * Just return its kidx and bump refcount.
676                  */
677                 *pkidx = no->kidx;
678                 no->refcnt++;
679                 IPFW_UH_WUNLOCK(ch);
680                 free(obj, M_IPFW);
681                 DYN_DEBUG("\tfound kidx %d", *pkidx);
682                 return (0);
683         }
684         if (ipfw_objhash_alloc_idx(ni, &obj->no.kidx) != 0) {
685                 DYN_DEBUG("\talloc_idx failed for %s", name);
686                 IPFW_UH_WUNLOCK(ch);
687                 free(obj, M_IPFW);
688                 return (ENOSPC);
689         }
690         ipfw_objhash_add(ni, &obj->no);
691         SRV_OBJECT(ch, obj->no.kidx) = obj;
692         obj->no.refcnt++;
693         *pkidx = obj->no.kidx;
694         IPFW_UH_WUNLOCK(ch);
695         DYN_DEBUG("\tcreated kidx %d", *pkidx);
696         return (0);
697 }
698
699 static void
700 dyn_destroy(struct ip_fw_chain *ch, struct named_object *no)
701 {
702         struct dyn_state_obj *obj;
703
704         IPFW_UH_WLOCK_ASSERT(ch);
705
706         KASSERT(no->refcnt == 1,
707             ("Destroying object '%s' (type %u, idx %u) with refcnt %u",
708             no->name, no->etlv, no->kidx, no->refcnt));
709         DYN_DEBUG("kidx %d", no->kidx);
710         obj = SRV_OBJECT(ch, no->kidx);
711         SRV_OBJECT(ch, no->kidx) = NULL;
712         ipfw_objhash_del(CHAIN_TO_SRV(ch), no);
713         ipfw_objhash_free_idx(CHAIN_TO_SRV(ch), no->kidx);
714
715         free(obj, M_IPFW);
716 }
717
718 static struct opcode_obj_rewrite dyn_opcodes[] = {
719         {
720                 O_KEEP_STATE, IPFW_TLV_STATE_NAME,
721                 dyn_classify, dyn_update,
722                 dyn_findbyname, dyn_findbykidx,
723                 dyn_create, dyn_destroy
724         },
725         {
726                 O_CHECK_STATE, IPFW_TLV_STATE_NAME,
727                 dyn_classify, dyn_update,
728                 dyn_findbyname, dyn_findbykidx,
729                 dyn_create, dyn_destroy
730         },
731         {
732                 O_PROBE_STATE, IPFW_TLV_STATE_NAME,
733                 dyn_classify, dyn_update,
734                 dyn_findbyname, dyn_findbykidx,
735                 dyn_create, dyn_destroy
736         },
737         {
738                 O_LIMIT, IPFW_TLV_STATE_NAME,
739                 dyn_classify, dyn_update,
740                 dyn_findbyname, dyn_findbykidx,
741                 dyn_create, dyn_destroy
742         },
743 };
744
745 /*
746  * IMPORTANT: the hash function for dynamic rules must be commutative
747  * in source and destination (ip,port), because rules are bidirectional
748  * and we want to find both in the same bucket.
749  */
750 #ifndef IPFIREWALL_JENKINSHASH
751 static __inline uint32_t
752 hash_packet(const struct ipfw_flow_id *id)
753 {
754         uint32_t i;
755
756 #ifdef INET6
757         if (IS_IP6_FLOW_ID(id))
758                 i = ntohl((id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
759                     (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
760                     (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
761                     (id->src_ip6.__u6_addr.__u6_addr32[3]));
762         else
763 #endif /* INET6 */
764         i = (id->dst_ip) ^ (id->src_ip);
765         i ^= (id->dst_port) ^ (id->src_port);
766         return (i);
767 }
768
769 static __inline uint32_t
770 hash_parent(const struct ipfw_flow_id *id, const void *rule)
771 {
772
773         return (hash_packet(id) ^ ((uintptr_t)rule));
774 }
775
776 #else /* IPFIREWALL_JENKINSHASH */
777
778 static VNET_DEFINE(uint32_t, dyn_hashseed);
779 #define V_dyn_hashseed          VNET(dyn_hashseed)
780
781 static __inline int
782 addrcmp4(const struct ipfw_flow_id *id)
783 {
784
785         if (id->src_ip < id->dst_ip)
786                 return (0);
787         if (id->src_ip > id->dst_ip)
788                 return (1);
789         if (id->src_port <= id->dst_port)
790                 return (0);
791         return (1);
792 }
793
794 #ifdef INET6
795 static __inline int
796 addrcmp6(const struct ipfw_flow_id *id)
797 {
798         int ret;
799
800         ret = memcmp(&id->src_ip6, &id->dst_ip6, sizeof(struct in6_addr));
801         if (ret < 0)
802                 return (0);
803         if (ret > 0)
804                 return (1);
805         if (id->src_port <= id->dst_port)
806                 return (0);
807         return (1);
808 }
809
810 static __inline uint32_t
811 hash_packet6(const struct ipfw_flow_id *id)
812 {
813         struct tuple6 {
814                 struct in6_addr addr[2];
815                 uint16_t        port[2];
816         } t6;
817
818         if (addrcmp6(id) == 0) {
819                 t6.addr[0] = id->src_ip6;
820                 t6.addr[1] = id->dst_ip6;
821                 t6.port[0] = id->src_port;
822                 t6.port[1] = id->dst_port;
823         } else {
824                 t6.addr[0] = id->dst_ip6;
825                 t6.addr[1] = id->src_ip6;
826                 t6.port[0] = id->dst_port;
827                 t6.port[1] = id->src_port;
828         }
829         return (jenkins_hash32((const uint32_t *)&t6,
830             sizeof(t6) / sizeof(uint32_t), V_dyn_hashseed));
831 }
832 #endif
833
834 static __inline uint32_t
835 hash_packet(const struct ipfw_flow_id *id)
836 {
837         struct tuple4 {
838                 in_addr_t       addr[2];
839                 uint16_t        port[2];
840         } t4;
841
842         if (IS_IP4_FLOW_ID(id)) {
843                 /* All fields are in host byte order */
844                 if (addrcmp4(id) == 0) {
845                         t4.addr[0] = id->src_ip;
846                         t4.addr[1] = id->dst_ip;
847                         t4.port[0] = id->src_port;
848                         t4.port[1] = id->dst_port;
849                 } else {
850                         t4.addr[0] = id->dst_ip;
851                         t4.addr[1] = id->src_ip;
852                         t4.port[0] = id->dst_port;
853                         t4.port[1] = id->src_port;
854                 }
855                 return (jenkins_hash32((const uint32_t *)&t4,
856                     sizeof(t4) / sizeof(uint32_t), V_dyn_hashseed));
857         } else
858 #ifdef INET6
859         if (IS_IP6_FLOW_ID(id))
860                 return (hash_packet6(id));
861 #endif
862         return (0);
863 }
864
865 static __inline uint32_t
866 hash_parent(const struct ipfw_flow_id *id, const void *rule)
867 {
868
869         return (jenkins_hash32((const uint32_t *)&rule,
870             sizeof(rule) / sizeof(uint32_t), hash_packet(id)));
871 }
872 #endif /* IPFIREWALL_JENKINSHASH */
873
874 /*
875  * Print customizable flow id description via log(9) facility.
876  */
877 static void
878 print_dyn_rule_flags(const struct ipfw_flow_id *id, int dyn_type,
879     int log_flags, char *prefix, char *postfix)
880 {
881         struct in_addr da;
882 #ifdef INET6
883         char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
884 #else
885         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
886 #endif
887
888 #ifdef INET6
889         if (IS_IP6_FLOW_ID(id)) {
890                 ip6_sprintf(src, &id->src_ip6);
891                 ip6_sprintf(dst, &id->dst_ip6);
892         } else
893 #endif
894         {
895                 da.s_addr = htonl(id->src_ip);
896                 inet_ntop(AF_INET, &da, src, sizeof(src));
897                 da.s_addr = htonl(id->dst_ip);
898                 inet_ntop(AF_INET, &da, dst, sizeof(dst));
899         }
900         log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
901             prefix, dyn_type, src, id->src_port, dst,
902             id->dst_port, V_dyn_count, postfix);
903 }
904
905 #define print_dyn_rule(id, dtype, prefix, postfix)      \
906         print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
907
908 #define TIME_LEQ(a,b)   ((int)((a)-(b)) <= 0)
909 #define TIME_LE(a,b)    ((int)((a)-(b)) < 0)
910 #define _SEQ_GE(a,b)    ((int)((a)-(b)) >= 0)
911 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
912 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
913 #define TCP_FLAGS       (TH_FLAGS | (TH_FLAGS << 8))
914 #define ACK_FWD         0x00010000      /* fwd ack seen */
915 #define ACK_REV         0x00020000      /* rev ack seen */
916 #define ACK_BOTH        (ACK_FWD | ACK_REV)
917
918 static uint32_t
919 dyn_update_tcp_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
920     const struct tcphdr *tcp, int dir)
921 {
922         uint32_t ack, expire;
923         uint32_t state, old;
924         uint8_t th_flags;
925
926         expire = data->expire;
927         old = state = data->state;
928         th_flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
929         state |= (dir == MATCH_FORWARD) ? th_flags: (th_flags << 8);
930         switch (state & TCP_FLAGS) {
931         case TH_SYN:                    /* opening */
932                 expire = time_uptime + V_dyn_syn_lifetime;
933                 break;
934
935         case BOTH_SYN:                  /* move to established */
936         case BOTH_SYN | TH_FIN:         /* one side tries to close */
937         case BOTH_SYN | (TH_FIN << 8):
938                 if (tcp == NULL)
939                         break;
940                 ack = ntohl(tcp->th_ack);
941                 if (dir == MATCH_FORWARD) {
942                         if (data->ack_fwd == 0 ||
943                             _SEQ_GE(ack, data->ack_fwd)) {
944                                 state |= ACK_FWD;
945                                 if (data->ack_fwd != ack)
946                                         ck_pr_store_32(&data->ack_fwd, ack);
947                         }
948                 } else {
949                         if (data->ack_rev == 0 ||
950                             _SEQ_GE(ack, data->ack_rev)) {
951                                 state |= ACK_REV;
952                                 if (data->ack_rev != ack)
953                                         ck_pr_store_32(&data->ack_rev, ack);
954                         }
955                 }
956                 if ((state & ACK_BOTH) == ACK_BOTH) {
957                         /*
958                          * Set expire time to V_dyn_ack_lifetime only if
959                          * we got ACKs for both directions.
960                          * We use XOR here to avoid possible state
961                          * overwriting in concurrent thread.
962                          */
963                         expire = time_uptime + V_dyn_ack_lifetime;
964                         ck_pr_xor_32(&data->state, ACK_BOTH);
965                 } else if ((data->state & ACK_BOTH) != (state & ACK_BOTH))
966                         ck_pr_or_32(&data->state, state & ACK_BOTH);
967                 break;
968
969         case BOTH_SYN | BOTH_FIN:       /* both sides closed */
970                 if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
971                         V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
972                 expire = time_uptime + V_dyn_fin_lifetime;
973                 break;
974
975         default:
976                 if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
977                         V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
978                 expire = time_uptime + V_dyn_rst_lifetime;
979         }
980         /* Save TCP state if it was changed */
981         if ((state & TCP_FLAGS) != (old & TCP_FLAGS))
982                 ck_pr_or_32(&data->state, state & TCP_FLAGS);
983         return (expire);
984 }
985
986 /*
987  * Update ULP specific state.
988  * For TCP we keep sequence numbers and flags. For other protocols
989  * currently we update only expire time. Packets and bytes counters
990  * are also updated here.
991  */
992 static void
993 dyn_update_proto_state(struct dyn_data *data, const struct ipfw_flow_id *pkt,
994     const void *ulp, int pktlen, int dir)
995 {
996         uint32_t expire;
997
998         /* NOTE: we are in critical section here. */
999         switch (pkt->proto) {
1000         case IPPROTO_UDP:
1001         case IPPROTO_UDPLITE:
1002                 expire = time_uptime + V_dyn_udp_lifetime;
1003                 break;
1004         case IPPROTO_TCP:
1005                 expire = dyn_update_tcp_state(data, pkt, ulp, dir);
1006                 break;
1007         default:
1008                 expire = time_uptime + V_dyn_short_lifetime;
1009         }
1010         /*
1011          * Expiration timer has the per-second granularity, no need to update
1012          * it every time when state is matched.
1013          */
1014         if (data->expire != expire)
1015                 ck_pr_store_32(&data->expire, expire);
1016
1017         if (dir == MATCH_FORWARD)
1018                 DYN_COUNTER_INC(data, fwd, pktlen);
1019         else
1020                 DYN_COUNTER_INC(data, rev, pktlen);
1021 }
1022
1023 /*
1024  * Lookup IPv4 state.
1025  * Must be called in critical section.
1026  */
1027 struct dyn_ipv4_state *
1028 dyn_lookup_ipv4_state(const struct ipfw_flow_id *pkt, const void *ulp,
1029     struct ipfw_dyn_info *info, int pktlen)
1030 {
1031         struct dyn_ipv4_state *s;
1032         uint32_t version, bucket;
1033
1034         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1035         info->version = DYN_BUCKET_VERSION(bucket, ipv4_add);
1036 restart:
1037         version = DYN_BUCKET_VERSION(bucket, ipv4_del);
1038         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1039                 DYNSTATE_PROTECT(s);
1040                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_del))
1041                         goto restart;
1042                 if (s->proto != pkt->proto)
1043                         continue;
1044                 if (info->kidx != 0 && s->kidx != info->kidx)
1045                         continue;
1046                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1047                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1048                         info->direction = MATCH_FORWARD;
1049                         break;
1050                 }
1051                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1052                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1053                         info->direction = MATCH_REVERSE;
1054                         break;
1055                 }
1056         }
1057
1058         if (s != NULL)
1059                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1060                     info->direction);
1061         return (s);
1062 }
1063
1064 /*
1065  * Lookup IPv4 state.
1066  * Simplifed version is used to check that matching state doesn't exist.
1067  */
1068 static int
1069 dyn_lookup_ipv4_state_locked(const struct ipfw_flow_id *pkt,
1070     const void *ulp, int pktlen, const void *parent, uint32_t ruleid,
1071     uint16_t rulenum, uint32_t bucket, uint16_t kidx)
1072 {
1073         struct dyn_ipv4_state *s;
1074         int dir;
1075
1076         dir = MATCH_NONE;
1077         DYN_BUCKET_ASSERT(bucket);
1078         CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
1079                 if (s->proto != pkt->proto ||
1080                     s->kidx != kidx)
1081                         continue;
1082                 /*
1083                  * XXXAE: Install synchronized state only when there are
1084                  *        no matching states.
1085                  */
1086                 if (pktlen != 0 && (
1087                     s->data->parent != parent ||
1088                     s->data->ruleid != ruleid ||
1089                     s->data->rulenum != rulenum))
1090                         continue;
1091                 if (s->sport == pkt->src_port &&
1092                     s->dport == pkt->dst_port &&
1093                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1094                         dir = MATCH_FORWARD;
1095                         break;
1096                 }
1097                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1098                     s->src == pkt->dst_ip && s->dst == pkt->src_ip) {
1099                         dir = MATCH_REVERSE;
1100                         break;
1101                 }
1102         }
1103         if (s != NULL)
1104                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1105         return (s != NULL);
1106 }
1107
1108 struct dyn_ipv4_state *
1109 dyn_lookup_ipv4_parent(const struct ipfw_flow_id *pkt, const void *rule,
1110     uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1111 {
1112         struct dyn_ipv4_state *s;
1113         uint32_t version, bucket;
1114
1115         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1116 restart:
1117         version = DYN_BUCKET_VERSION(bucket, ipv4_parent_del);
1118         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1119                 DYNSTATE_PROTECT(s);
1120                 if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_del))
1121                         goto restart;
1122                 /*
1123                  * NOTE: we do not need to check kidx, because parent rule
1124                  * can not create states with different kidx.
1125                  * And parent rule always created for forward direction.
1126                  */
1127                 if (s->limit->parent == rule &&
1128                     s->limit->ruleid == ruleid &&
1129                     s->limit->rulenum == rulenum &&
1130                     s->proto == pkt->proto &&
1131                     s->sport == pkt->src_port &&
1132                     s->dport == pkt->dst_port &&
1133                     s->src == pkt->src_ip && s->dst == pkt->dst_ip) {
1134                         if (s->limit->expire != time_uptime +
1135                             V_dyn_short_lifetime)
1136                                 ck_pr_store_32(&s->limit->expire,
1137                                     time_uptime + V_dyn_short_lifetime);
1138                         break;
1139                 }
1140         }
1141         return (s);
1142 }
1143
1144 static struct dyn_ipv4_state *
1145 dyn_lookup_ipv4_parent_locked(const struct ipfw_flow_id *pkt,
1146     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1147 {
1148         struct dyn_ipv4_state *s;
1149
1150         DYN_BUCKET_ASSERT(bucket);
1151         CK_SLIST_FOREACH(s, &V_dyn_ipv4_parent[bucket], entry) {
1152                 if (s->limit->parent == rule &&
1153                     s->limit->ruleid == ruleid &&
1154                     s->limit->rulenum == rulenum &&
1155                     s->proto == pkt->proto &&
1156                     s->sport == pkt->src_port &&
1157                     s->dport == pkt->dst_port &&
1158                     s->src == pkt->src_ip && s->dst == pkt->dst_ip)
1159                         break;
1160         }
1161         return (s);
1162 }
1163
1164
1165 #ifdef INET6
1166 static uint32_t
1167 dyn_getscopeid(const struct ip_fw_args *args)
1168 {
1169
1170         /*
1171          * If source or destination address is an scopeid address, we need
1172          * determine the scope zone id to resolve address scope ambiguity.
1173          */
1174         if (IN6_IS_ADDR_LINKLOCAL(&args->f_id.src_ip6) ||
1175             IN6_IS_ADDR_LINKLOCAL(&args->f_id.dst_ip6)) {
1176                 MPASS(args->oif != NULL ||
1177                     args->m->m_pkthdr.rcvif != NULL);
1178                 return (in6_getscopezone(args->oif != NULL ? args->oif:
1179                     args->m->m_pkthdr.rcvif, IPV6_ADDR_SCOPE_LINKLOCAL));
1180         }
1181         return (0);
1182 }
1183
1184 /*
1185  * Lookup IPv6 state.
1186  * Must be called in critical section.
1187  */
1188 static struct dyn_ipv6_state *
1189 dyn_lookup_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1190     const void *ulp, struct ipfw_dyn_info *info, int pktlen)
1191 {
1192         struct dyn_ipv6_state *s;
1193         uint32_t version, bucket;
1194
1195         bucket = DYN_BUCKET(info->hashval, V_curr_dyn_buckets);
1196         info->version = DYN_BUCKET_VERSION(bucket, ipv6_add);
1197 restart:
1198         version = DYN_BUCKET_VERSION(bucket, ipv6_del);
1199         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1200                 DYNSTATE_PROTECT(s);
1201                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_del))
1202                         goto restart;
1203                 if (s->proto != pkt->proto || s->zoneid != zoneid)
1204                         continue;
1205                 if (info->kidx != 0 && s->kidx != info->kidx)
1206                         continue;
1207                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1208                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1209                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1210                         info->direction = MATCH_FORWARD;
1211                         break;
1212                 }
1213                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1214                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1215                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1216                         info->direction = MATCH_REVERSE;
1217                         break;
1218                 }
1219         }
1220         if (s != NULL)
1221                 dyn_update_proto_state(s->data, pkt, ulp, pktlen,
1222                     info->direction);
1223         return (s);
1224 }
1225
1226 /*
1227  * Lookup IPv6 state.
1228  * Simplifed version is used to check that matching state doesn't exist.
1229  */
1230 static int
1231 dyn_lookup_ipv6_state_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1232     const void *ulp, int pktlen, const void *parent, uint32_t ruleid,
1233     uint16_t rulenum, uint32_t bucket, uint16_t kidx)
1234 {
1235         struct dyn_ipv6_state *s;
1236         int dir;
1237
1238         dir = MATCH_NONE;
1239         DYN_BUCKET_ASSERT(bucket);
1240         CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
1241                 if (s->proto != pkt->proto || s->kidx != kidx ||
1242                     s->zoneid != zoneid)
1243                         continue;
1244                 /*
1245                  * XXXAE: Install synchronized state only when there are
1246                  *        no matching states.
1247                  */
1248                 if (pktlen != 0 && (
1249                     s->data->parent != parent ||
1250                     s->data->ruleid != ruleid ||
1251                     s->data->rulenum != rulenum))
1252                         continue;
1253                 if (s->sport == pkt->src_port && s->dport == pkt->dst_port &&
1254                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1255                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1256                         dir = MATCH_FORWARD;
1257                         break;
1258                 }
1259                 if (s->sport == pkt->dst_port && s->dport == pkt->src_port &&
1260                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->dst_ip6) &&
1261                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->src_ip6)) {
1262                         dir = MATCH_REVERSE;
1263                         break;
1264                 }
1265         }
1266         if (s != NULL)
1267                 dyn_update_proto_state(s->data, pkt, ulp, pktlen, dir);
1268         return (s != NULL);
1269 }
1270
1271 static struct dyn_ipv6_state *
1272 dyn_lookup_ipv6_parent(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1273     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t hashval)
1274 {
1275         struct dyn_ipv6_state *s;
1276         uint32_t version, bucket;
1277
1278         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1279 restart:
1280         version = DYN_BUCKET_VERSION(bucket, ipv6_parent_del);
1281         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1282                 DYNSTATE_PROTECT(s);
1283                 if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_del))
1284                         goto restart;
1285                 /*
1286                  * NOTE: we do not need to check kidx, because parent rule
1287                  * can not create states with different kidx.
1288                  * Also parent rule always created for forward direction.
1289                  */
1290                 if (s->limit->parent == rule &&
1291                     s->limit->ruleid == ruleid &&
1292                     s->limit->rulenum == rulenum &&
1293                     s->proto == pkt->proto &&
1294                     s->sport == pkt->src_port &&
1295                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1296                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1297                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6)) {
1298                         if (s->limit->expire != time_uptime +
1299                             V_dyn_short_lifetime)
1300                                 ck_pr_store_32(&s->limit->expire,
1301                                     time_uptime + V_dyn_short_lifetime);
1302                         break;
1303                 }
1304         }
1305         return (s);
1306 }
1307
1308 static struct dyn_ipv6_state *
1309 dyn_lookup_ipv6_parent_locked(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1310     const void *rule, uint32_t ruleid, uint16_t rulenum, uint32_t bucket)
1311 {
1312         struct dyn_ipv6_state *s;
1313
1314         DYN_BUCKET_ASSERT(bucket);
1315         CK_SLIST_FOREACH(s, &V_dyn_ipv6_parent[bucket], entry) {
1316                 if (s->limit->parent == rule &&
1317                     s->limit->ruleid == ruleid &&
1318                     s->limit->rulenum == rulenum &&
1319                     s->proto == pkt->proto &&
1320                     s->sport == pkt->src_port &&
1321                     s->dport == pkt->dst_port && s->zoneid == zoneid &&
1322                     IN6_ARE_ADDR_EQUAL(&s->src, &pkt->src_ip6) &&
1323                     IN6_ARE_ADDR_EQUAL(&s->dst, &pkt->dst_ip6))
1324                         break;
1325         }
1326         return (s);
1327 }
1328
1329 #endif /* INET6 */
1330
1331 /*
1332  * Lookup dynamic state.
1333  *  pkt - filled by ipfw_chk() ipfw_flow_id;
1334  *  ulp - determined by ipfw_chk() upper level protocol header;
1335  *  dyn_info - info about matched state to return back;
1336  * Returns pointer to state's parent rule and dyn_info. If there is
1337  * no state, NULL is returned.
1338  * On match ipfw_dyn_lookup() updates state's counters.
1339  */
1340 struct ip_fw *
1341 ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp,
1342     int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info)
1343 {
1344         struct dyn_data *data;
1345         struct ip_fw *rule;
1346
1347         IPFW_RLOCK_ASSERT(&V_layer3_chain);
1348
1349         data = NULL;
1350         rule = NULL;
1351         info->kidx = cmd->arg1;
1352         info->direction = MATCH_NONE;
1353         info->hashval = hash_packet(&args->f_id);
1354
1355         DYNSTATE_CRITICAL_ENTER();
1356         if (IS_IP4_FLOW_ID(&args->f_id)) {
1357                 struct dyn_ipv4_state *s;
1358
1359                 s = dyn_lookup_ipv4_state(&args->f_id, ulp, info, pktlen);
1360                 if (s != NULL) {
1361                         /*
1362                          * Dynamic states are created using the same 5-tuple,
1363                          * so it is assumed, that parent rule for O_LIMIT
1364                          * state has the same address family.
1365                          */
1366                         data = s->data;
1367                         if (s->type == O_LIMIT) {
1368                                 s = data->parent;
1369                                 rule = s->limit->parent;
1370                         } else
1371                                 rule = data->parent;
1372                 }
1373         }
1374 #ifdef INET6
1375         else if (IS_IP6_FLOW_ID(&args->f_id)) {
1376                 struct dyn_ipv6_state *s;
1377
1378                 s = dyn_lookup_ipv6_state(&args->f_id, dyn_getscopeid(args),
1379                     ulp, info, pktlen);
1380                 if (s != NULL) {
1381                         data = s->data;
1382                         if (s->type == O_LIMIT) {
1383                                 s = data->parent;
1384                                 rule = s->limit->parent;
1385                         } else
1386                                 rule = data->parent;
1387                 }
1388         }
1389 #endif
1390         if (data != NULL) {
1391                 /*
1392                  * If cached chain id is the same, we can avoid rule index
1393                  * lookup. Otherwise do lookup and update chain_id and f_pos.
1394                  * It is safe even if there is concurrent thread that want
1395                  * update the same state, because chain->id can be changed
1396                  * only under IPFW_WLOCK().
1397                  */
1398                 if (data->chain_id != V_layer3_chain.id) {
1399                         data->f_pos = ipfw_find_rule(&V_layer3_chain,
1400                             data->rulenum, data->ruleid);
1401                         /*
1402                          * Check that found state has not orphaned.
1403                          * When chain->id being changed the parent
1404                          * rule can be deleted. If found rule doesn't
1405                          * match the parent pointer, consider this
1406                          * result as MATCH_NONE and return NULL.
1407                          *
1408                          * This will lead to creation of new similar state
1409                          * that will be added into head of this bucket.
1410                          * And the state that we currently have matched
1411                          * should be deleted by dyn_expire_states().
1412                          */
1413                         if (V_layer3_chain.map[data->f_pos] == rule)
1414                                 data->chain_id = V_layer3_chain.id;
1415                         else {
1416                                 rule = NULL;
1417                                 info->direction = MATCH_NONE;
1418                                 DYN_DEBUG("rule %p  [%u, %u] is considered "
1419                                     "invalid in data %p", rule, data->ruleid,
1420                                     data->rulenum, data);
1421                         }
1422                 }
1423                 info->f_pos = data->f_pos;
1424         }
1425         DYNSTATE_CRITICAL_EXIT();
1426 #if 0
1427         /*
1428          * Return MATCH_NONE if parent rule is in disabled set.
1429          * This will lead to creation of new similar state that
1430          * will be added into head of this bucket.
1431          *
1432          * XXXAE: we need to be able update state's set when parent
1433          *        rule set is changed.
1434          */
1435         if (rule != NULL && (V_set_disable & (1 << rule->set))) {
1436                 rule = NULL;
1437                 info->direction = MATCH_NONE;
1438         }
1439 #endif
1440         return (rule);
1441 }
1442
1443 static struct dyn_parent *
1444 dyn_alloc_parent(void *parent, uint32_t ruleid, uint16_t rulenum,
1445     uint8_t set, uint32_t hashval)
1446 {
1447         struct dyn_parent *limit;
1448
1449         limit = uma_zalloc(V_dyn_parent_zone, M_NOWAIT | M_ZERO);
1450         if (limit == NULL) {
1451                 if (last_log != time_uptime) {
1452                         last_log = time_uptime;
1453                         log(LOG_DEBUG,
1454                             "ipfw: Cannot allocate parent dynamic state, "
1455                             "consider increasing "
1456                             "net.inet.ip.fw.dyn_parent_max\n");
1457                 }
1458                 return (NULL);
1459         }
1460
1461         limit->parent = parent;
1462         limit->ruleid = ruleid;
1463         limit->rulenum = rulenum;
1464         limit->set = set;
1465         limit->hashval = hashval;
1466         limit->expire = time_uptime + V_dyn_short_lifetime;
1467         return (limit);
1468 }
1469
1470 static struct dyn_data *
1471 dyn_alloc_dyndata(void *parent, uint32_t ruleid, uint16_t rulenum,
1472     uint8_t set, const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1473     uint32_t hashval, uint16_t fibnum)
1474 {
1475         struct dyn_data *data;
1476
1477         data = uma_zalloc(V_dyn_data_zone, M_NOWAIT | M_ZERO);
1478         if (data == NULL) {
1479                 if (last_log != time_uptime) {
1480                         last_log = time_uptime;
1481                         log(LOG_DEBUG,
1482                             "ipfw: Cannot allocate dynamic state, "
1483                             "consider increasing net.inet.ip.fw.dyn_max\n");
1484                 }
1485                 return (NULL);
1486         }
1487
1488         data->parent = parent;
1489         data->ruleid = ruleid;
1490         data->rulenum = rulenum;
1491         data->set = set;
1492         data->fibnum = fibnum;
1493         data->hashval = hashval;
1494         data->expire = time_uptime + V_dyn_syn_lifetime;
1495         dyn_update_proto_state(data, pkt, ulp, pktlen, MATCH_FORWARD);
1496         return (data);
1497 }
1498
1499 static struct dyn_ipv4_state *
1500 dyn_alloc_ipv4_state(const struct ipfw_flow_id *pkt, uint16_t kidx,
1501     uint8_t type)
1502 {
1503         struct dyn_ipv4_state *s;
1504
1505         s = uma_zalloc(V_dyn_ipv4_zone, M_NOWAIT | M_ZERO);
1506         if (s == NULL)
1507                 return (NULL);
1508
1509         s->type = type;
1510         s->kidx = kidx;
1511         s->proto = pkt->proto;
1512         s->sport = pkt->src_port;
1513         s->dport = pkt->dst_port;
1514         s->src = pkt->src_ip;
1515         s->dst = pkt->dst_ip;
1516         return (s);
1517 }
1518
1519 /*
1520  * Add IPv4 parent state.
1521  * Returns pointer to parent state. When it is not NULL we are in
1522  * critical section and pointer protected by hazard pointer.
1523  * When some error occurs, it returns NULL and exit from critical section
1524  * is not needed.
1525  */
1526 static struct dyn_ipv4_state *
1527 dyn_add_ipv4_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1528     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t hashval,
1529     uint32_t version, uint16_t kidx)
1530 {
1531         struct dyn_ipv4_state *s;
1532         struct dyn_parent *limit;
1533         uint32_t bucket;
1534
1535         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1536         DYN_BUCKET_LOCK(bucket);
1537         if (version != DYN_BUCKET_VERSION(bucket, ipv4_parent_add)) {
1538                 /*
1539                  * Bucket version has been changed since last lookup,
1540                  * do lookup again to be sure that state does not exist.
1541                  */
1542                 s = dyn_lookup_ipv4_parent_locked(pkt, rule, ruleid,
1543                     rulenum, bucket);
1544                 if (s != NULL) {
1545                         /*
1546                          * Simultaneous thread has already created this
1547                          * state. Just return it.
1548                          */
1549                         DYNSTATE_CRITICAL_ENTER();
1550                         DYNSTATE_PROTECT(s);
1551                         DYN_BUCKET_UNLOCK(bucket);
1552                         return (s);
1553                 }
1554         }
1555
1556         limit = dyn_alloc_parent(rule, ruleid, rulenum, set, hashval);
1557         if (limit == NULL) {
1558                 DYN_BUCKET_UNLOCK(bucket);
1559                 return (NULL);
1560         }
1561
1562         s = dyn_alloc_ipv4_state(pkt, kidx, O_LIMIT_PARENT);
1563         if (s == NULL) {
1564                 DYN_BUCKET_UNLOCK(bucket);
1565                 uma_zfree(V_dyn_parent_zone, limit);
1566                 return (NULL);
1567         }
1568
1569         s->limit = limit;
1570         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4_parent[bucket], s, entry);
1571         DYN_COUNT_INC(dyn_parent_count);
1572         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_parent_add);
1573         DYNSTATE_CRITICAL_ENTER();
1574         DYNSTATE_PROTECT(s);
1575         DYN_BUCKET_UNLOCK(bucket);
1576         return (s);
1577 }
1578
1579 static int
1580 dyn_add_ipv4_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1581     uint8_t set, const struct ipfw_flow_id *pkt, const void *ulp, int pktlen,
1582     uint32_t hashval, struct ipfw_dyn_info *info, uint16_t fibnum,
1583     uint16_t kidx, uint8_t type)
1584 {
1585         struct dyn_ipv4_state *s;
1586         void *data;
1587         uint32_t bucket;
1588
1589         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1590         DYN_BUCKET_LOCK(bucket);
1591         if (info->direction == MATCH_UNKNOWN ||
1592             info->kidx != kidx ||
1593             info->hashval != hashval ||
1594             info->version != DYN_BUCKET_VERSION(bucket, ipv4_add)) {
1595                 /*
1596                  * Bucket version has been changed since last lookup,
1597                  * do lookup again to be sure that state does not exist.
1598                  */
1599                 if (dyn_lookup_ipv4_state_locked(pkt, ulp, pktlen, parent,
1600                     ruleid, rulenum, bucket, kidx) != 0) {
1601                         DYN_BUCKET_UNLOCK(bucket);
1602                         return (EEXIST);
1603                 }
1604         }
1605
1606         data = dyn_alloc_dyndata(parent, ruleid, rulenum, set, pkt, ulp,
1607             pktlen, hashval, fibnum);
1608         if (data == NULL) {
1609                 DYN_BUCKET_UNLOCK(bucket);
1610                 return (ENOMEM);
1611         }
1612
1613         s = dyn_alloc_ipv4_state(pkt, kidx, type);
1614         if (s == NULL) {
1615                 DYN_BUCKET_UNLOCK(bucket);
1616                 uma_zfree(V_dyn_data_zone, data);
1617                 return (ENOMEM);
1618         }
1619
1620         s->data = data;
1621         CK_SLIST_INSERT_HEAD(&V_dyn_ipv4[bucket], s, entry);
1622         DYN_COUNT_INC(dyn_count);
1623         DYN_BUCKET_VERSION_BUMP(bucket, ipv4_add);
1624         DYN_BUCKET_UNLOCK(bucket);
1625         return (0);
1626 }
1627
1628 #ifdef INET6
1629 static struct dyn_ipv6_state *
1630 dyn_alloc_ipv6_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1631     uint16_t kidx, uint8_t type)
1632 {
1633         struct dyn_ipv6_state *s;
1634
1635         s = uma_zalloc(V_dyn_ipv6_zone, M_NOWAIT | M_ZERO);
1636         if (s == NULL)
1637                 return (NULL);
1638
1639         s->type = type;
1640         s->kidx = kidx;
1641         s->zoneid = zoneid;
1642         s->proto = pkt->proto;
1643         s->sport = pkt->src_port;
1644         s->dport = pkt->dst_port;
1645         s->src = pkt->src_ip6;
1646         s->dst = pkt->dst_ip6;
1647         return (s);
1648 }
1649
1650 /*
1651  * Add IPv6 parent state.
1652  * Returns pointer to parent state. When it is not NULL we are in
1653  * critical section and pointer protected by hazard pointer.
1654  * When some error occurs, it return NULL and exit from critical section
1655  * is not needed.
1656  */
1657 static struct dyn_ipv6_state *
1658 dyn_add_ipv6_parent(void *rule, uint32_t ruleid, uint16_t rulenum,
1659     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t zoneid,
1660     uint32_t hashval, uint32_t version, uint16_t kidx)
1661 {
1662         struct dyn_ipv6_state *s;
1663         struct dyn_parent *limit;
1664         uint32_t bucket;
1665
1666         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1667         DYN_BUCKET_LOCK(bucket);
1668         if (version != DYN_BUCKET_VERSION(bucket, ipv6_parent_add)) {
1669                 /*
1670                  * Bucket version has been changed since last lookup,
1671                  * do lookup again to be sure that state does not exist.
1672                  */
1673                 s = dyn_lookup_ipv6_parent_locked(pkt, zoneid, rule, ruleid,
1674                     rulenum, bucket);
1675                 if (s != NULL) {
1676                         /*
1677                          * Simultaneous thread has already created this
1678                          * state. Just return it.
1679                          */
1680                         DYNSTATE_CRITICAL_ENTER();
1681                         DYNSTATE_PROTECT(s);
1682                         DYN_BUCKET_UNLOCK(bucket);
1683                         return (s);
1684                 }
1685         }
1686
1687         limit = dyn_alloc_parent(rule, ruleid, rulenum, set, hashval);
1688         if (limit == NULL) {
1689                 DYN_BUCKET_UNLOCK(bucket);
1690                 return (NULL);
1691         }
1692
1693         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, O_LIMIT_PARENT);
1694         if (s == NULL) {
1695                 DYN_BUCKET_UNLOCK(bucket);
1696                 uma_zfree(V_dyn_parent_zone, limit);
1697                 return (NULL);
1698         }
1699
1700         s->limit = limit;
1701         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6_parent[bucket], s, entry);
1702         DYN_COUNT_INC(dyn_parent_count);
1703         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_parent_add);
1704         DYNSTATE_CRITICAL_ENTER();
1705         DYNSTATE_PROTECT(s);
1706         DYN_BUCKET_UNLOCK(bucket);
1707         return (s);
1708 }
1709
1710 static int
1711 dyn_add_ipv6_state(void *parent, uint32_t ruleid, uint16_t rulenum,
1712     uint8_t set, const struct ipfw_flow_id *pkt, uint32_t zoneid,
1713     const void *ulp, int pktlen, uint32_t hashval, struct ipfw_dyn_info *info,
1714     uint16_t fibnum, uint16_t kidx, uint8_t type)
1715 {
1716         struct dyn_ipv6_state *s;
1717         struct dyn_data *data;
1718         uint32_t bucket;
1719
1720         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1721         DYN_BUCKET_LOCK(bucket);
1722         if (info->direction == MATCH_UNKNOWN ||
1723             info->kidx != kidx ||
1724             info->hashval != hashval ||
1725             info->version != DYN_BUCKET_VERSION(bucket, ipv6_add)) {
1726                 /*
1727                  * Bucket version has been changed since last lookup,
1728                  * do lookup again to be sure that state does not exist.
1729                  */
1730                 if (dyn_lookup_ipv6_state_locked(pkt, zoneid, ulp, pktlen,
1731                     parent, ruleid, rulenum, bucket, kidx) != 0) {
1732                         DYN_BUCKET_UNLOCK(bucket);
1733                         return (EEXIST);
1734                 }
1735         }
1736
1737         data = dyn_alloc_dyndata(parent, ruleid, rulenum, set, pkt, ulp,
1738             pktlen, hashval, fibnum);
1739         if (data == NULL) {
1740                 DYN_BUCKET_UNLOCK(bucket);
1741                 return (ENOMEM);
1742         }
1743
1744         s = dyn_alloc_ipv6_state(pkt, zoneid, kidx, type);
1745         if (s == NULL) {
1746                 DYN_BUCKET_UNLOCK(bucket);
1747                 uma_zfree(V_dyn_data_zone, data);
1748                 return (ENOMEM);
1749         }
1750
1751         s->data = data;
1752         CK_SLIST_INSERT_HEAD(&V_dyn_ipv6[bucket], s, entry);
1753         DYN_COUNT_INC(dyn_count);
1754         DYN_BUCKET_VERSION_BUMP(bucket, ipv6_add);
1755         DYN_BUCKET_UNLOCK(bucket);
1756         return (0);
1757 }
1758 #endif /* INET6 */
1759
1760 static void *
1761 dyn_get_parent_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1762     struct ip_fw *rule, uint32_t hashval, uint32_t limit, uint16_t kidx)
1763 {
1764         char sbuf[24];
1765         struct dyn_parent *p;
1766         void *ret;
1767         uint32_t bucket, version;
1768
1769         p = NULL;
1770         ret = NULL;
1771         bucket = DYN_BUCKET(hashval, V_curr_dyn_buckets);
1772         DYNSTATE_CRITICAL_ENTER();
1773         if (IS_IP4_FLOW_ID(pkt)) {
1774                 struct dyn_ipv4_state *s;
1775
1776                 version = DYN_BUCKET_VERSION(bucket, ipv4_parent_add);
1777                 s = dyn_lookup_ipv4_parent(pkt, rule, rule->id,
1778                     rule->rulenum, bucket);
1779                 if (s == NULL) {
1780                         /*
1781                          * Exit from critical section because dyn_add_parent()
1782                          * will acquire bucket lock.
1783                          */
1784                         DYNSTATE_CRITICAL_EXIT();
1785
1786                         s = dyn_add_ipv4_parent(rule, rule->id,
1787                             rule->rulenum, rule->set, pkt, hashval,
1788                             version, kidx);
1789                         if (s == NULL)
1790                                 return (NULL);
1791                         /* Now we are in critical section again. */
1792                 }
1793                 ret = s;
1794                 p = s->limit;
1795         }
1796 #ifdef INET6
1797         else if (IS_IP6_FLOW_ID(pkt)) {
1798                 struct dyn_ipv6_state *s;
1799
1800                 version = DYN_BUCKET_VERSION(bucket, ipv6_parent_add);
1801                 s = dyn_lookup_ipv6_parent(pkt, zoneid, rule, rule->id,
1802                     rule->rulenum, bucket);
1803                 if (s == NULL) {
1804                         /*
1805                          * Exit from critical section because dyn_add_parent()
1806                          * can acquire bucket mutex.
1807                          */
1808                         DYNSTATE_CRITICAL_EXIT();
1809
1810                         s = dyn_add_ipv6_parent(rule, rule->id,
1811                             rule->rulenum, rule->set, pkt, zoneid, hashval,
1812                             version, kidx);
1813                         if (s == NULL)
1814                                 return (NULL);
1815                         /* Now we are in critical section again. */
1816                 }
1817                 ret = s;
1818                 p = s->limit;
1819         }
1820 #endif
1821         else {
1822                 DYNSTATE_CRITICAL_EXIT();
1823                 return (NULL);
1824         }
1825
1826         /* Check the limit */
1827         if (DPARENT_COUNT(p) >= limit) {
1828                 DYNSTATE_CRITICAL_EXIT();
1829                 if (V_fw_verbose && last_log != time_uptime) {
1830                         last_log = time_uptime;
1831                         snprintf(sbuf, sizeof(sbuf), "%u drop session",
1832                             rule->rulenum);
1833                         print_dyn_rule_flags(pkt, O_LIMIT,
1834                             LOG_SECURITY | LOG_DEBUG, sbuf,
1835                             "too many entries");
1836                 }
1837                 return (NULL);
1838         }
1839
1840         /* Take new session into account. */
1841         DPARENT_COUNT_INC(p);
1842         /*
1843          * We must exit from critical section because the following code
1844          * can acquire bucket mutex.
1845          * We rely on the the 'count' field. The state will not expire
1846          * until it has some child states, i.e. 'count' field is not zero.
1847          * Return state pointer, it will be used by child states as parent.
1848          */
1849         DYNSTATE_CRITICAL_EXIT();
1850         return (ret);
1851 }
1852
1853 static int
1854 dyn_install_state(const struct ipfw_flow_id *pkt, uint32_t zoneid,
1855     uint16_t fibnum, const void *ulp, int pktlen, void *rule,
1856     uint32_t ruleid, uint16_t rulenum, uint8_t set,
1857     struct ipfw_dyn_info *info, uint32_t limit, uint16_t limit_mask,
1858     uint16_t kidx, uint8_t type)
1859 {
1860         struct ipfw_flow_id id;
1861         uint32_t hashval, parent_hashval;
1862         int ret;
1863
1864         MPASS(type == O_LIMIT || type == O_KEEP_STATE);
1865
1866         if (type == O_LIMIT) {
1867                 /* Create masked flow id and calculate bucket */
1868                 id.addr_type = pkt->addr_type;
1869                 id.proto = pkt->proto;
1870                 id.fib = fibnum; /* unused */
1871                 id.src_port = (limit_mask & DYN_SRC_PORT) ?
1872                     pkt->src_port: 0;
1873                 id.dst_port = (limit_mask & DYN_DST_PORT) ?
1874                     pkt->dst_port: 0;
1875                 if (IS_IP4_FLOW_ID(pkt)) {
1876                         id.src_ip = (limit_mask & DYN_SRC_ADDR) ?
1877                             pkt->src_ip: 0;
1878                         id.dst_ip = (limit_mask & DYN_DST_ADDR) ?
1879                             pkt->dst_ip: 0;
1880                 }
1881 #ifdef INET6
1882                 else if (IS_IP6_FLOW_ID(pkt)) {
1883                         if (limit_mask & DYN_SRC_ADDR)
1884                                 id.src_ip6 = pkt->src_ip6;
1885                         else
1886                                 memset(&id.src_ip6, 0, sizeof(id.src_ip6));
1887                         if (limit_mask & DYN_DST_ADDR)
1888                                 id.dst_ip6 = pkt->dst_ip6;
1889                         else
1890                                 memset(&id.dst_ip6, 0, sizeof(id.dst_ip6));
1891                 }
1892 #endif
1893                 else
1894                         return (EAFNOSUPPORT);
1895
1896                 parent_hashval = hash_parent(&id, rule);
1897                 rule = dyn_get_parent_state(&id, zoneid, rule, parent_hashval,
1898                     limit, kidx);
1899                 if (rule == NULL) {
1900 #if 0
1901                         if (V_fw_verbose && last_log != time_uptime) {
1902                                 last_log = time_uptime;
1903                                 snprintf(sbuf, sizeof(sbuf),
1904                                     "%u drop session", rule->rulenum);
1905                         print_dyn_rule_flags(pkt, O_LIMIT,
1906                             LOG_SECURITY | LOG_DEBUG, sbuf,
1907                             "too many entries");
1908                         }
1909 #endif
1910                         return (EACCES);
1911                 }
1912                 /*
1913                  * Limit is not reached, create new state.
1914                  * Now rule points to parent state.
1915                  */
1916         }
1917
1918         hashval = hash_packet(pkt);
1919         if (IS_IP4_FLOW_ID(pkt))
1920                 ret = dyn_add_ipv4_state(rule, ruleid, rulenum, set, pkt,
1921                     ulp, pktlen, hashval, info, fibnum, kidx, type);
1922 #ifdef INET6
1923         else if (IS_IP6_FLOW_ID(pkt))
1924                 ret = dyn_add_ipv6_state(rule, ruleid, rulenum, set, pkt,
1925                     zoneid, ulp, pktlen, hashval, info, fibnum, kidx, type);
1926 #endif /* INET6 */
1927         else
1928                 ret = EAFNOSUPPORT;
1929
1930         if (type == O_LIMIT) {
1931                 if (ret != 0) {
1932                         /*
1933                          * We failed to create child state for O_LIMIT
1934                          * opcode. Since we already counted it in the parent,
1935                          * we must revert counter back. The 'rule' points to
1936                          * parent state, use it to get dyn_parent.
1937                          *
1938                          * XXXAE: it should be safe to use 'rule' pointer
1939                          * without extra lookup, parent state is referenced
1940                          * and should not be freed.
1941                          */
1942                         if (IS_IP4_FLOW_ID(&id))
1943                                 DPARENT_COUNT_DEC(
1944                                     ((struct dyn_ipv4_state *)rule)->limit);
1945 #ifdef INET6
1946                         else if (IS_IP6_FLOW_ID(&id))
1947                                 DPARENT_COUNT_DEC(
1948                                     ((struct dyn_ipv6_state *)rule)->limit);
1949 #endif
1950                 }
1951         }
1952         /*
1953          * EEXIST means that simultaneous thread has created this
1954          * state. Consider this as success.
1955          *
1956          * XXXAE: should we invalidate 'info' content here?
1957          */
1958         if (ret == EEXIST)
1959                 return (0);
1960         return (ret);
1961 }
1962
1963 /*
1964  * Install dynamic state.
1965  *  chain - ipfw's instance;
1966  *  rule - the parent rule that installs the state;
1967  *  cmd - opcode that installs the state;
1968  *  args - ipfw arguments;
1969  *  ulp - upper level protocol header;
1970  *  pktlen - packet length;
1971  *  info - dynamic state lookup info;
1972  *  tablearg - tablearg id.
1973  *
1974  * Returns non-zero value (failure) if state is not installed because
1975  * of errors or because session limitations are enforced.
1976  */
1977 int
1978 ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
1979     const ipfw_insn_limit *cmd, const struct ip_fw_args *args,
1980     const void *ulp, int pktlen, struct ipfw_dyn_info *info,
1981     uint32_t tablearg)
1982 {
1983         uint32_t limit;
1984         uint16_t limit_mask;
1985
1986         if (cmd->o.opcode == O_LIMIT) {
1987                 limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
1988                 limit_mask = cmd->limit_mask;
1989         } else {
1990                 limit = 0;
1991                 limit_mask = 0;
1992         }
1993         return (dyn_install_state(&args->f_id,
1994 #ifdef INET6
1995             IS_IP6_FLOW_ID(&args->f_id) ? dyn_getscopeid(args):
1996 #endif
1997             0, M_GETFIB(args->m), ulp, pktlen, rule, rule->id, rule->rulenum,
1998             rule->set, info, limit, limit_mask, cmd->o.arg1, cmd->o.opcode));
1999 }
2000
2001 /*
2002  * Free safe to remove state entries from expired lists.
2003  */
2004 static void
2005 dyn_free_states(struct ip_fw_chain *chain)
2006 {
2007         struct dyn_ipv4_state *s4, *s4n;
2008 #ifdef INET6
2009         struct dyn_ipv6_state *s6, *s6n;
2010 #endif
2011         int cached_count, i;
2012
2013         /*
2014          * We keep pointers to objects that are in use on each CPU
2015          * in the per-cpu dyn_hp pointer. When object is going to be
2016          * removed, first of it is unlinked from the corresponding
2017          * list. This leads to changing of dyn_bucket_xxx_delver version.
2018          * Unlinked objects is placed into corresponding dyn_expired_xxx
2019          * list. Reader that is going to dereference object pointer checks
2020          * dyn_bucket_xxx_delver version before and after storing pointer
2021          * into dyn_hp. If version is the same, the object is protected
2022          * from freeing and it is safe to dereference. Othervise reader
2023          * tries to iterate list again from the beginning, but this object
2024          * now unlinked and thus will not be accessible.
2025          *
2026          * Copy dyn_hp pointers for each CPU into dyn_hp_cache array.
2027          * It does not matter that some pointer can be changed in
2028          * time while we are copying. We need to check, that objects
2029          * removed in the previous pass are not in use. And if dyn_hp
2030          * pointer does not contain it in the time when we are copying,
2031          * it will not appear there, because it is already unlinked.
2032          * And for new pointers we will not free objects that will be
2033          * unlinked in this pass.
2034          */
2035         cached_count = 0;
2036         CPU_FOREACH(i) {
2037                 dyn_hp_cache[cached_count] = DYNSTATE_GET(i);
2038                 if (dyn_hp_cache[cached_count] != NULL)
2039                         cached_count++;
2040         }
2041
2042         /*
2043          * Free expired states that are safe to free.
2044          * Check each entry from previous pass in the dyn_expired_xxx
2045          * list, if pointer to the object is in the dyn_hp_cache array,
2046          * keep it until next pass. Otherwise it is safe to free the
2047          * object.
2048          *
2049          * XXXAE: optimize this to use SLIST_REMOVE_AFTER.
2050          */
2051 #define DYN_FREE_STATES(s, next, name)          do {                    \
2052         s = SLIST_FIRST(&V_dyn_expired_ ## name);                       \
2053         while (s != NULL) {                                             \
2054                 next = SLIST_NEXT(s, expired);                          \
2055                 for (i = 0; i < cached_count; i++)                      \
2056                         if (dyn_hp_cache[i] == s)                       \
2057                                 break;                                  \
2058                 if (i == cached_count) {                                \
2059                         if (s->type == O_LIMIT_PARENT &&                \
2060                             s->limit->count != 0) {                     \
2061                                 s = next;                               \
2062                                 continue;                               \
2063                         }                                               \
2064                         SLIST_REMOVE(&V_dyn_expired_ ## name,           \
2065                             s, dyn_ ## name ## _state, expired);        \
2066                         if (s->type == O_LIMIT_PARENT)                  \
2067                                 uma_zfree(V_dyn_parent_zone, s->limit); \
2068                         else                                            \
2069                                 uma_zfree(V_dyn_data_zone, s->data);    \
2070                         uma_zfree(V_dyn_ ## name ## _zone, s);          \
2071                 }                                                       \
2072                 s = next;                                               \
2073         }                                                               \
2074 } while (0)
2075
2076         /*
2077          * Protect access to expired lists with DYN_EXPIRED_LOCK.
2078          * Userland can invoke ipfw_expire_dyn_states() to delete
2079          * specific states, this will lead to modification of expired
2080          * lists.
2081          *
2082          * XXXAE: do we need DYN_EXPIRED_LOCK? We can just use
2083          *        IPFW_UH_WLOCK to protect access to these lists.
2084          */
2085         DYN_EXPIRED_LOCK();
2086         DYN_FREE_STATES(s4, s4n, ipv4);
2087 #ifdef INET6
2088         DYN_FREE_STATES(s6, s6n, ipv6);
2089 #endif
2090         DYN_EXPIRED_UNLOCK();
2091 #undef DYN_FREE_STATES
2092 }
2093
2094 /*
2095  * Returns 1 when state is matched by specified range, otherwise returns 0.
2096  */
2097 static int
2098 dyn_match_range(uint16_t rulenum, uint8_t set, const ipfw_range_tlv *rt)
2099 {
2100
2101         MPASS(rt != NULL);
2102         /* flush all states */
2103         if (rt->flags & IPFW_RCFLAG_ALL)
2104                 return (1);
2105         if ((rt->flags & IPFW_RCFLAG_SET) != 0 && set != rt->set)
2106                 return (0);
2107         if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 &&
2108             (rulenum < rt->start_rule || rulenum > rt->end_rule))
2109                 return (0);
2110         return (1);
2111 }
2112
2113 static int
2114 dyn_match_ipv4_state(struct dyn_ipv4_state *s, const ipfw_range_tlv *rt)
2115 {
2116
2117         if (s->type == O_LIMIT_PARENT)
2118                 return (dyn_match_range(s->limit->rulenum,
2119                     s->limit->set, rt));
2120
2121         if (s->type == O_LIMIT)
2122                 return (dyn_match_range(s->data->rulenum, s->data->set, rt));
2123
2124         if (dyn_match_range(s->data->rulenum, s->data->set, rt))
2125                 return (1);
2126
2127         return (0);
2128 }
2129
2130 #ifdef INET6
2131 static int
2132 dyn_match_ipv6_state(struct dyn_ipv6_state *s, const ipfw_range_tlv *rt)
2133 {
2134
2135         if (s->type == O_LIMIT_PARENT)
2136                 return (dyn_match_range(s->limit->rulenum,
2137                     s->limit->set, rt));
2138
2139         if (s->type == O_LIMIT)
2140                 return (dyn_match_range(s->data->rulenum, s->data->set, rt));
2141
2142         if (dyn_match_range(s->data->rulenum, s->data->set, rt))
2143                 return (1);
2144
2145         return (0);
2146 }
2147 #endif
2148
2149 /*
2150  * Unlink expired entries from states lists.
2151  * @rt can be used to specify the range of states for deletion.
2152  */
2153 static void
2154 dyn_expire_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2155 {
2156         struct dyn_ipv4_slist expired_ipv4;
2157 #ifdef INET6
2158         struct dyn_ipv6_slist expired_ipv6;
2159         struct dyn_ipv6_state *s6, *s6n, *s6p;
2160 #endif
2161         struct dyn_ipv4_state *s4, *s4n, *s4p;
2162         int bucket, removed, length, max_length;
2163
2164         /*
2165          * Unlink expired states from each bucket.
2166          * With acquired bucket lock iterate entries of each lists:
2167          * ipv4, ipv4_parent, ipv6, and ipv6_parent. Check expired time
2168          * and unlink entry from the list, link entry into temporary
2169          * expired_xxx lists then bump "del" bucket version.
2170          *
2171          * When an entry is removed, corresponding states counter is
2172          * decremented. If entry has O_LIMIT type, parent's reference
2173          * counter is decremented.
2174          *
2175          * NOTE: this function can be called from userspace context
2176          * when user deletes rules. In this case all matched states
2177          * will be forcedly unlinked. O_LIMIT_PARENT states will be kept
2178          * in the expired lists until reference counter become zero.
2179          */
2180 #define DYN_UNLINK_STATES(s, prev, next, exp, af, name, extra)  do {    \
2181         length = 0;                                                     \
2182         removed = 0;                                                    \
2183         prev = NULL;                                                    \
2184         s = CK_SLIST_FIRST(&V_dyn_ ## name [bucket]);                   \
2185         while (s != NULL) {                                             \
2186                 next = CK_SLIST_NEXT(s, entry);                         \
2187                 if ((TIME_LEQ((s)->exp, time_uptime) && extra) ||       \
2188                     (rt != NULL && dyn_match_ ## af ## _state(s, rt))) {\
2189                         if (prev != NULL)                               \
2190                                 CK_SLIST_REMOVE_AFTER(prev, entry);     \
2191                         else                                            \
2192                                 CK_SLIST_REMOVE_HEAD(                   \
2193                                     &V_dyn_ ## name [bucket], entry);   \
2194                         removed++;                                      \
2195                         SLIST_INSERT_HEAD(&expired_ ## af, s, expired); \
2196                         if (s->type == O_LIMIT_PARENT)                  \
2197                                 DYN_COUNT_DEC(dyn_parent_count);        \
2198                         else {                                          \
2199                                 DYN_COUNT_DEC(dyn_count);               \
2200                                 if (s->type == O_LIMIT) {               \
2201                                         s = s->data->parent;            \
2202                                         DPARENT_COUNT_DEC(s->limit);    \
2203                                 }                                       \
2204                         }                                               \
2205                 } else {                                                \
2206                         prev = s;                                       \
2207                         length++;                                       \
2208                 }                                                       \
2209                 s = next;                                               \
2210         }                                                               \
2211         if (removed != 0)                                               \
2212                 DYN_BUCKET_VERSION_BUMP(bucket, name ## _del);          \
2213         if (length > max_length)                                \
2214                 max_length = length;                            \
2215 } while (0)
2216
2217         SLIST_INIT(&expired_ipv4);
2218 #ifdef INET6
2219         SLIST_INIT(&expired_ipv6);
2220 #endif
2221         max_length = 0;
2222         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2223                 DYN_BUCKET_LOCK(bucket);
2224                 DYN_UNLINK_STATES(s4, s4p, s4n, data->expire, ipv4, ipv4, 1);
2225                 DYN_UNLINK_STATES(s4, s4p, s4n, limit->expire, ipv4,
2226                     ipv4_parent, (s4->limit->count == 0));
2227 #ifdef INET6
2228                 DYN_UNLINK_STATES(s6, s6p, s6n, data->expire, ipv6, ipv6, 1);
2229                 DYN_UNLINK_STATES(s6, s6p, s6n, limit->expire, ipv6,
2230                     ipv6_parent, (s6->limit->count == 0));
2231 #endif
2232                 DYN_BUCKET_UNLOCK(bucket);
2233         }
2234         /* Update curr_max_length for statistics. */
2235         V_curr_max_length = max_length;
2236         /*
2237          * Concatenate temporary lists with global expired lists.
2238          */
2239         DYN_EXPIRED_LOCK();
2240         SLIST_CONCAT(&V_dyn_expired_ipv4, &expired_ipv4,
2241             dyn_ipv4_state, expired);
2242 #ifdef INET6
2243         SLIST_CONCAT(&V_dyn_expired_ipv6, &expired_ipv6,
2244             dyn_ipv6_state, expired);
2245 #endif
2246         DYN_EXPIRED_UNLOCK();
2247 #undef DYN_UNLINK_STATES
2248 #undef DYN_UNREF_STATES
2249 }
2250
2251 static struct mbuf *
2252 dyn_mgethdr(int len, uint16_t fibnum)
2253 {
2254         struct mbuf *m;
2255
2256         m = m_gethdr(M_NOWAIT, MT_DATA);
2257         if (m == NULL)
2258                 return (NULL);
2259 #ifdef MAC
2260         mac_netinet_firewall_send(m);
2261 #endif
2262         M_SETFIB(m, fibnum);
2263         m->m_data += max_linkhdr;
2264         m->m_flags |= M_SKIP_FIREWALL;
2265         m->m_len = m->m_pkthdr.len = len;
2266         bzero(m->m_data, len);
2267         return (m);
2268 }
2269
2270 static void
2271 dyn_make_keepalive_ipv4(struct mbuf *m, in_addr_t src, in_addr_t dst,
2272     uint32_t seq, uint32_t ack, uint16_t sport, uint16_t dport)
2273 {
2274         struct tcphdr *tcp;
2275         struct ip *ip;
2276
2277         ip = mtod(m, struct ip *);
2278         ip->ip_v = 4;
2279         ip->ip_hl = sizeof(*ip) >> 2;
2280         ip->ip_tos = IPTOS_LOWDELAY;
2281         ip->ip_len = htons(m->m_len);
2282         ip->ip_off |= htons(IP_DF);
2283         ip->ip_ttl = V_ip_defttl;
2284         ip->ip_p = IPPROTO_TCP;
2285         ip->ip_src.s_addr = htonl(src);
2286         ip->ip_dst.s_addr = htonl(dst);
2287
2288         tcp = mtodo(m, sizeof(struct ip));
2289         tcp->th_sport = htons(sport);
2290         tcp->th_dport = htons(dport);
2291         tcp->th_off = sizeof(struct tcphdr) >> 2;
2292         tcp->th_seq = htonl(seq);
2293         tcp->th_ack = htonl(ack);
2294         tcp->th_flags = TH_ACK;
2295         tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2296             htons(sizeof(struct tcphdr) + IPPROTO_TCP));
2297
2298         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2299         m->m_pkthdr.csum_flags = CSUM_TCP;
2300 }
2301
2302 static void
2303 dyn_enqueue_keepalive_ipv4(struct mbufq *q, const struct dyn_ipv4_state *s)
2304 {
2305         struct mbuf *m;
2306
2307         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2308                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2309                     s->data->fibnum);
2310                 if (m != NULL) {
2311                         dyn_make_keepalive_ipv4(m, s->dst, s->src,
2312                             s->data->ack_fwd - 1, s->data->ack_rev,
2313                             s->dport, s->sport);
2314                         if (mbufq_enqueue(q, m)) {
2315                                 m_freem(m);
2316                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2317                                     "keepalive queue is reached.\n");
2318                                 return;
2319                         }
2320                 }
2321         }
2322
2323         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2324                 m = dyn_mgethdr(sizeof(struct ip) + sizeof(struct tcphdr),
2325                     s->data->fibnum);
2326                 if (m != NULL) {
2327                         dyn_make_keepalive_ipv4(m, s->src, s->dst,
2328                             s->data->ack_rev - 1, s->data->ack_fwd,
2329                             s->sport, s->dport);
2330                         if (mbufq_enqueue(q, m)) {
2331                                 m_freem(m);
2332                                 log(LOG_DEBUG, "ipfw: limit for IPv4 "
2333                                     "keepalive queue is reached.\n");
2334                                 return;
2335                         }
2336                 }
2337         }
2338 }
2339
2340 /*
2341  * Prepare and send keep-alive packets.
2342  */
2343 static void
2344 dyn_send_keepalive_ipv4(struct ip_fw_chain *chain)
2345 {
2346         struct mbufq q;
2347         struct mbuf *m;
2348         struct dyn_ipv4_state *s;
2349         uint32_t bucket;
2350
2351         mbufq_init(&q, DYN_KEEPALIVE_MAXQ);
2352         IPFW_UH_RLOCK(chain);
2353         /*
2354          * It is safe to not use hazard pointer and just do lockless
2355          * access to the lists, because states entries can not be deleted
2356          * while we hold IPFW_UH_RLOCK.
2357          */
2358         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2359                 CK_SLIST_FOREACH(s, &V_dyn_ipv4[bucket], entry) {
2360                         /*
2361                          * Only established TCP connections that will
2362                          * become expired withing dyn_keepalive_interval.
2363                          */
2364                         if (s->proto != IPPROTO_TCP ||
2365                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2366                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2367                                 s->data->expire))
2368                                 continue;
2369                         dyn_enqueue_keepalive_ipv4(&q, s);
2370                 }
2371         }
2372         IPFW_UH_RUNLOCK(chain);
2373         while ((m = mbufq_dequeue(&q)) != NULL)
2374                 ip_output(m, NULL, NULL, 0, NULL, NULL);
2375 }
2376
2377 #ifdef INET6
2378 static void
2379 dyn_make_keepalive_ipv6(struct mbuf *m, const struct in6_addr *src,
2380     const struct in6_addr *dst, uint32_t zoneid, uint32_t seq, uint32_t ack,
2381     uint16_t sport, uint16_t dport)
2382 {
2383         struct tcphdr *tcp;
2384         struct ip6_hdr *ip6;
2385
2386         ip6 = mtod(m, struct ip6_hdr *);
2387         ip6->ip6_vfc |= IPV6_VERSION;
2388         ip6->ip6_plen = htons(sizeof(struct tcphdr));
2389         ip6->ip6_nxt = IPPROTO_TCP;
2390         ip6->ip6_hlim = IPV6_DEFHLIM;
2391         ip6->ip6_src = *src;
2392         if (IN6_IS_ADDR_LINKLOCAL(src))
2393                 ip6->ip6_src.s6_addr16[1] = htons(zoneid & 0xffff);
2394         ip6->ip6_dst = *dst;
2395         if (IN6_IS_ADDR_LINKLOCAL(dst))
2396                 ip6->ip6_dst.s6_addr16[1] = htons(zoneid & 0xffff);
2397
2398         tcp = mtodo(m, sizeof(struct ip6_hdr));
2399         tcp->th_sport = htons(sport);
2400         tcp->th_dport = htons(dport);
2401         tcp->th_off = sizeof(struct tcphdr) >> 2;
2402         tcp->th_seq = htonl(seq);
2403         tcp->th_ack = htonl(ack);
2404         tcp->th_flags = TH_ACK;
2405         tcp->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr),
2406             IPPROTO_TCP, 0);
2407
2408         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2409         m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2410 }
2411
2412 static void
2413 dyn_enqueue_keepalive_ipv6(struct mbufq *q, const struct dyn_ipv6_state *s)
2414 {
2415         struct mbuf *m;
2416
2417         if ((s->data->state & ACK_FWD) == 0 && s->data->ack_fwd > 0) {
2418                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2419                     sizeof(struct tcphdr), s->data->fibnum);
2420                 if (m != NULL) {
2421                         dyn_make_keepalive_ipv6(m, &s->dst, &s->src,
2422                             s->zoneid, s->data->ack_fwd - 1, s->data->ack_rev,
2423                             s->dport, s->sport);
2424                         if (mbufq_enqueue(q, m)) {
2425                                 m_freem(m);
2426                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2427                                     "keepalive queue is reached.\n");
2428                                 return;
2429                         }
2430                 }
2431         }
2432
2433         if ((s->data->state & ACK_REV) == 0 && s->data->ack_rev > 0) {
2434                 m = dyn_mgethdr(sizeof(struct ip6_hdr) +
2435                     sizeof(struct tcphdr), s->data->fibnum);
2436                 if (m != NULL) {
2437                         dyn_make_keepalive_ipv6(m, &s->src, &s->dst,
2438                             s->zoneid, s->data->ack_rev - 1, s->data->ack_fwd,
2439                             s->sport, s->dport);
2440                         if (mbufq_enqueue(q, m)) {
2441                                 m_freem(m);
2442                                 log(LOG_DEBUG, "ipfw: limit for IPv6 "
2443                                     "keepalive queue is reached.\n");
2444                                 return;
2445                         }
2446                 }
2447         }
2448 }
2449
2450 static void
2451 dyn_send_keepalive_ipv6(struct ip_fw_chain *chain)
2452 {
2453         struct mbufq q;
2454         struct mbuf *m;
2455         struct dyn_ipv6_state *s;
2456         uint32_t bucket;
2457
2458         mbufq_init(&q, DYN_KEEPALIVE_MAXQ);
2459         IPFW_UH_RLOCK(chain);
2460         /*
2461          * It is safe to not use hazard pointer and just do lockless
2462          * access to the lists, because states entries can not be deleted
2463          * while we hold IPFW_UH_RLOCK.
2464          */
2465         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2466                 CK_SLIST_FOREACH(s, &V_dyn_ipv6[bucket], entry) {
2467                         /*
2468                          * Only established TCP connections that will
2469                          * become expired withing dyn_keepalive_interval.
2470                          */
2471                         if (s->proto != IPPROTO_TCP ||
2472                             (s->data->state & BOTH_SYN) != BOTH_SYN ||
2473                             TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
2474                                 s->data->expire))
2475                                 continue;
2476                         dyn_enqueue_keepalive_ipv6(&q, s);
2477                 }
2478         }
2479         IPFW_UH_RUNLOCK(chain);
2480         while ((m = mbufq_dequeue(&q)) != NULL)
2481                 ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2482 }
2483 #endif /* INET6 */
2484
2485 static void
2486 dyn_grow_hashtable(struct ip_fw_chain *chain, uint32_t new)
2487 {
2488 #ifdef INET6
2489         struct dyn_ipv6ck_slist *ipv6, *ipv6_parent;
2490         uint32_t *ipv6_add, *ipv6_del, *ipv6_parent_add, *ipv6_parent_del;
2491         struct dyn_ipv6_state *s6;
2492 #endif
2493         struct dyn_ipv4ck_slist *ipv4, *ipv4_parent;
2494         uint32_t *ipv4_add, *ipv4_del, *ipv4_parent_add, *ipv4_parent_del;
2495         struct dyn_ipv4_state *s4;
2496         struct mtx *bucket_lock;
2497         void *tmp;
2498         uint32_t bucket;
2499
2500         MPASS(powerof2(new));
2501         DYN_DEBUG("grow hash size %u -> %u", V_curr_dyn_buckets, new);
2502         /*
2503          * Allocate and initialize new lists.
2504          * XXXAE: on memory pressure this can disable callout timer.
2505          */
2506         bucket_lock = malloc(new * sizeof(struct mtx), M_IPFW,
2507             M_WAITOK | M_ZERO);
2508         ipv4 = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2509             M_WAITOK | M_ZERO);
2510         ipv4_parent = malloc(new * sizeof(struct dyn_ipv4ck_slist), M_IPFW,
2511             M_WAITOK | M_ZERO);
2512         ipv4_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2513         ipv4_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2514         ipv4_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2515             M_WAITOK | M_ZERO);
2516         ipv4_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2517             M_WAITOK | M_ZERO);
2518 #ifdef INET6
2519         ipv6 = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2520             M_WAITOK | M_ZERO);
2521         ipv6_parent = malloc(new * sizeof(struct dyn_ipv6ck_slist), M_IPFW,
2522             M_WAITOK | M_ZERO);
2523         ipv6_add = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2524         ipv6_del = malloc(new * sizeof(uint32_t), M_IPFW, M_WAITOK | M_ZERO);
2525         ipv6_parent_add = malloc(new * sizeof(uint32_t), M_IPFW,
2526             M_WAITOK | M_ZERO);
2527         ipv6_parent_del = malloc(new * sizeof(uint32_t), M_IPFW,
2528             M_WAITOK | M_ZERO);
2529 #endif
2530         for (bucket = 0; bucket < new; bucket++) {
2531                 DYN_BUCKET_LOCK_INIT(bucket_lock, bucket);
2532                 CK_SLIST_INIT(&ipv4[bucket]);
2533                 CK_SLIST_INIT(&ipv4_parent[bucket]);
2534 #ifdef INET6
2535                 CK_SLIST_INIT(&ipv6[bucket]);
2536                 CK_SLIST_INIT(&ipv6_parent[bucket]);
2537 #endif
2538         }
2539
2540 #define DYN_RELINK_STATES(s, hval, i, head, ohead)      do {            \
2541         while ((s = CK_SLIST_FIRST(&V_dyn_ ## ohead[i])) != NULL) {     \
2542                 CK_SLIST_REMOVE_HEAD(&V_dyn_ ## ohead[i], entry);       \
2543                 CK_SLIST_INSERT_HEAD(&head[DYN_BUCKET(s->hval, new)],   \
2544                     s, entry);                                          \
2545         }                                                               \
2546 } while (0)
2547         /*
2548          * Prevent rules changing from userland.
2549          */
2550         IPFW_UH_WLOCK(chain);
2551         /*
2552          * Hold traffic processing until we finish resize to
2553          * prevent access to states lists.
2554          */
2555         IPFW_WLOCK(chain);
2556         /* Re-link all dynamic states */
2557         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2558                 DYN_RELINK_STATES(s4, data->hashval, bucket, ipv4, ipv4);
2559                 DYN_RELINK_STATES(s4, limit->hashval, bucket, ipv4_parent,
2560                     ipv4_parent);
2561 #ifdef INET6
2562                 DYN_RELINK_STATES(s6, data->hashval, bucket, ipv6, ipv6);
2563                 DYN_RELINK_STATES(s6, limit->hashval, bucket, ipv6_parent,
2564                     ipv6_parent);
2565 #endif
2566         }
2567
2568 #define DYN_SWAP_PTR(old, new, tmp)     do {            \
2569         tmp = old;                                      \
2570         old = new;                                      \
2571         new = tmp;                                      \
2572 } while (0)
2573         /* Swap pointers */
2574         DYN_SWAP_PTR(V_dyn_bucket_lock, bucket_lock, tmp);
2575         DYN_SWAP_PTR(V_dyn_ipv4, ipv4, tmp);
2576         DYN_SWAP_PTR(V_dyn_ipv4_parent, ipv4_parent, tmp);
2577         DYN_SWAP_PTR(V_dyn_ipv4_add, ipv4_add, tmp);
2578         DYN_SWAP_PTR(V_dyn_ipv4_parent_add, ipv4_parent_add, tmp);
2579         DYN_SWAP_PTR(V_dyn_ipv4_del, ipv4_del, tmp);
2580         DYN_SWAP_PTR(V_dyn_ipv4_parent_del, ipv4_parent_del, tmp);
2581
2582 #ifdef INET6
2583         DYN_SWAP_PTR(V_dyn_ipv6, ipv6, tmp);
2584         DYN_SWAP_PTR(V_dyn_ipv6_parent, ipv6_parent, tmp);
2585         DYN_SWAP_PTR(V_dyn_ipv6_add, ipv6_add, tmp);
2586         DYN_SWAP_PTR(V_dyn_ipv6_parent_add, ipv6_parent_add, tmp);
2587         DYN_SWAP_PTR(V_dyn_ipv6_del, ipv6_del, tmp);
2588         DYN_SWAP_PTR(V_dyn_ipv6_parent_del, ipv6_parent_del, tmp);
2589 #endif
2590         bucket = V_curr_dyn_buckets;
2591         V_curr_dyn_buckets = new;
2592
2593         IPFW_WUNLOCK(chain);
2594         IPFW_UH_WUNLOCK(chain);
2595
2596         /* Release old resources */
2597         while (bucket-- != 0)
2598                 DYN_BUCKET_LOCK_DESTROY(bucket_lock, bucket);
2599         free(bucket_lock, M_IPFW);
2600         free(ipv4, M_IPFW);
2601         free(ipv4_parent, M_IPFW);
2602         free(ipv4_add, M_IPFW);
2603         free(ipv4_parent_add, M_IPFW);
2604         free(ipv4_del, M_IPFW);
2605         free(ipv4_parent_del, M_IPFW);
2606 #ifdef INET6
2607         free(ipv6, M_IPFW);
2608         free(ipv6_parent, M_IPFW);
2609         free(ipv6_add, M_IPFW);
2610         free(ipv6_parent_add, M_IPFW);
2611         free(ipv6_del, M_IPFW);
2612         free(ipv6_parent_del, M_IPFW);
2613 #endif
2614 }
2615
2616 /*
2617  * This function is used to perform various maintenance
2618  * on dynamic hash lists. Currently it is called every second.
2619  */
2620 static void
2621 dyn_tick(void *vnetx)
2622 {
2623         uint32_t buckets;
2624
2625         CURVNET_SET((struct vnet *)vnetx);
2626         /*
2627          * First free states unlinked in previous passes.
2628          */
2629         dyn_free_states(&V_layer3_chain);
2630         /*
2631          * Now unlink others expired states.
2632          * We use IPFW_UH_WLOCK to avoid concurrent call of
2633          * dyn_expire_states(). It is the only function that does
2634          * deletion of state entries from states lists.
2635          */
2636         IPFW_UH_WLOCK(&V_layer3_chain);
2637         dyn_expire_states(&V_layer3_chain, NULL);
2638         IPFW_UH_WUNLOCK(&V_layer3_chain);
2639         /*
2640          * Send keepalives if they are enabled and the time has come.
2641          */
2642         if (V_dyn_keepalive != 0 &&
2643             V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) {
2644                 V_dyn_keepalive_last = time_uptime;
2645                 dyn_send_keepalive_ipv4(&V_layer3_chain);
2646 #ifdef INET6
2647                 dyn_send_keepalive_ipv6(&V_layer3_chain);
2648 #endif
2649         }
2650         /*
2651          * Check if we need to resize the hash:
2652          * if current number of states exceeds number of buckets in hash,
2653          * and dyn_buckets_max permits to grow the number of buckets, then
2654          * do it. Grow hash size to the minimum power of 2 which is bigger
2655          * than current states count.
2656          */
2657         if (V_curr_dyn_buckets < V_dyn_buckets_max &&
2658             (V_curr_dyn_buckets < V_dyn_count / 2 || (
2659             V_curr_dyn_buckets < V_dyn_count && V_curr_max_length > 8))) {
2660                 buckets = 1 << fls(V_dyn_count);
2661                 if (buckets > V_dyn_buckets_max)
2662                         buckets = V_dyn_buckets_max;
2663                 dyn_grow_hashtable(&V_layer3_chain, buckets);
2664         }
2665
2666         callout_reset_on(&V_dyn_timeout, hz, dyn_tick, vnetx, 0);
2667         CURVNET_RESTORE();
2668 }
2669
2670 void
2671 ipfw_expire_dyn_states(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
2672 {
2673         /*
2674          * Do not perform any checks if we currently have no dynamic states
2675          */
2676         if (V_dyn_count == 0)
2677                 return;
2678
2679         IPFW_UH_WLOCK_ASSERT(chain);
2680         dyn_expire_states(chain, rt);
2681 }
2682
2683 /*
2684  * Returns size of dynamic states in legacy format
2685  */
2686 int
2687 ipfw_dyn_len(void)
2688 {
2689
2690         return ((V_dyn_count + V_dyn_parent_count) * sizeof(ipfw_dyn_rule));
2691 }
2692
2693 /*
2694  * Returns number of dynamic states.
2695  * Used by dump format v1 (current).
2696  */
2697 uint32_t
2698 ipfw_dyn_get_count(void)
2699 {
2700
2701         return (V_dyn_count + V_dyn_parent_count);
2702 }
2703
2704 /*
2705  * Check if rule contains at least one dynamic opcode.
2706  *
2707  * Returns 1 if such opcode is found, 0 otherwise.
2708  */
2709 int
2710 ipfw_is_dyn_rule(struct ip_fw *rule)
2711 {
2712         int cmdlen, l;
2713         ipfw_insn *cmd;
2714
2715         l = rule->cmd_len;
2716         cmd = rule->cmd;
2717         cmdlen = 0;
2718         for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
2719                 cmdlen = F_LEN(cmd);
2720
2721                 switch (cmd->opcode) {
2722                 case O_LIMIT:
2723                 case O_KEEP_STATE:
2724                 case O_PROBE_STATE:
2725                 case O_CHECK_STATE:
2726                         return (1);
2727                 }
2728         }
2729
2730         return (0);
2731 }
2732
2733 static void
2734 dyn_export_parent(const struct dyn_parent *p, uint16_t kidx,
2735     ipfw_dyn_rule *dst)
2736 {
2737
2738         dst->dyn_type = O_LIMIT_PARENT;
2739         dst->kidx = kidx;
2740         dst->count = (uint16_t)DPARENT_COUNT(p);
2741         dst->expire = TIME_LEQ(p->expire, time_uptime) ?  0:
2742             p->expire - time_uptime;
2743
2744         /* 'rule' is used to pass up the rule number and set */
2745         memcpy(&dst->rule, &p->rulenum, sizeof(p->rulenum));
2746         /* store set number into high word of dst->rule pointer. */
2747         memcpy((char *)&dst->rule + sizeof(p->rulenum), &p->set,
2748             sizeof(p->set));
2749
2750         /* unused fields */
2751         dst->pcnt = 0;
2752         dst->bcnt = 0;
2753         dst->parent = NULL;
2754         dst->state = 0;
2755         dst->ack_fwd = 0;
2756         dst->ack_rev = 0;
2757         dst->bucket = p->hashval;
2758         /*
2759          * The legacy userland code will interpret a NULL here as a marker
2760          * for the last dynamic rule.
2761          */
2762         dst->next = (ipfw_dyn_rule *)1;
2763 }
2764
2765 static void
2766 dyn_export_data(const struct dyn_data *data, uint16_t kidx, uint8_t type,
2767     ipfw_dyn_rule *dst)
2768 {
2769
2770         dst->dyn_type = type;
2771         dst->kidx = kidx;
2772         dst->pcnt = data->pcnt_fwd + data->pcnt_rev;
2773         dst->bcnt = data->bcnt_fwd + data->bcnt_rev;
2774         dst->expire = TIME_LEQ(data->expire, time_uptime) ?  0:
2775             data->expire - time_uptime;
2776
2777         /* 'rule' is used to pass up the rule number and set */
2778         memcpy(&dst->rule, &data->rulenum, sizeof(data->rulenum));
2779         /* store set number into high word of dst->rule pointer. */
2780         memcpy((char *)&dst->rule + sizeof(data->rulenum), &data->set,
2781             sizeof(data->set));
2782
2783         /* unused fields */
2784         dst->parent = NULL;
2785         dst->state = data->state;
2786         dst->ack_fwd = data->ack_fwd;
2787         dst->ack_rev = data->ack_rev;
2788         dst->count = 0;
2789         dst->bucket = data->hashval;
2790         /*
2791          * The legacy userland code will interpret a NULL here as a marker
2792          * for the last dynamic rule.
2793          */
2794         dst->next = (ipfw_dyn_rule *)1;
2795 }
2796
2797 static void
2798 dyn_export_ipv4_state(const struct dyn_ipv4_state *s, ipfw_dyn_rule *dst)
2799 {
2800
2801         switch (s->type) {
2802         case O_LIMIT_PARENT:
2803                 dyn_export_parent(s->limit, s->kidx, dst);
2804                 break;
2805         default:
2806                 dyn_export_data(s->data, s->kidx, s->type, dst);
2807         }
2808
2809         dst->id.dst_ip = s->dst;
2810         dst->id.src_ip = s->src;
2811         dst->id.dst_port = s->dport;
2812         dst->id.src_port = s->sport;
2813         dst->id.fib = s->data->fibnum;
2814         dst->id.proto = s->proto;
2815         dst->id._flags = 0;
2816         dst->id.addr_type = 4;
2817
2818         memset(&dst->id.dst_ip6, 0, sizeof(dst->id.dst_ip6));
2819         memset(&dst->id.src_ip6, 0, sizeof(dst->id.src_ip6));
2820         dst->id.flow_id6 = dst->id.extra = 0;
2821 }
2822
2823 #ifdef INET6
2824 static void
2825 dyn_export_ipv6_state(const struct dyn_ipv6_state *s, ipfw_dyn_rule *dst)
2826 {
2827
2828         switch (s->type) {
2829         case O_LIMIT_PARENT:
2830                 dyn_export_parent(s->limit, s->kidx, dst);
2831                 break;
2832         default:
2833                 dyn_export_data(s->data, s->kidx, s->type, dst);
2834         }
2835
2836         dst->id.src_ip6 = s->src;
2837         dst->id.dst_ip6 = s->dst;
2838         dst->id.dst_port = s->dport;
2839         dst->id.src_port = s->sport;
2840         dst->id.fib = s->data->fibnum;
2841         dst->id.proto = s->proto;
2842         dst->id._flags = 0;
2843         dst->id.addr_type = 6;
2844
2845         dst->id.dst_ip = dst->id.src_ip = 0;
2846         dst->id.flow_id6 = dst->id.extra = 0;
2847 }
2848 #endif /* INET6 */
2849
2850 /*
2851  * Fills the buffer given by @sd with dynamic states.
2852  * Used by dump format v1 (current).
2853  *
2854  * Returns 0 on success.
2855  */
2856 int
2857 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
2858 {
2859 #ifdef INET6
2860         struct dyn_ipv6_state *s6;
2861 #endif
2862         struct dyn_ipv4_state *s4;
2863         ipfw_obj_dyntlv *dst, *last;
2864         ipfw_obj_ctlv *ctlv;
2865         uint32_t bucket;
2866
2867         if (V_dyn_count == 0)
2868                 return (0);
2869
2870         /*
2871          * IPFW_UH_RLOCK garantees that another userland request
2872          * and callout thread will not delete entries from states
2873          * lists.
2874          */
2875         IPFW_UH_RLOCK_ASSERT(chain);
2876
2877         ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
2878         if (ctlv == NULL)
2879                 return (ENOMEM);
2880         ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
2881         ctlv->objsize = sizeof(ipfw_obj_dyntlv);
2882         last = NULL;
2883
2884 #define DYN_EXPORT_STATES(s, af, h, b)                          \
2885         CK_SLIST_FOREACH(s, &V_dyn_ ## h[b], entry) {                   \
2886                 dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd,        \
2887                     sizeof(ipfw_obj_dyntlv));                           \
2888                 if (dst == NULL)                                        \
2889                         return (ENOMEM);                                \
2890                 dyn_export_ ## af ## _state(s, &dst->state);            \
2891                 dst->head.length = sizeof(ipfw_obj_dyntlv);             \
2892                 dst->head.type = IPFW_TLV_DYN_ENT;                      \
2893                 last = dst;                                             \
2894         }
2895
2896         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2897                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
2898                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
2899 #ifdef INET6
2900                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
2901                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
2902 #endif /* INET6 */
2903         }
2904
2905         /* mark last dynamic rule */
2906         if (last != NULL)
2907                 last->head.flags = IPFW_DF_LAST; /* XXX: unused */
2908         return (0);
2909 #undef DYN_EXPORT_STATES
2910 }
2911
2912 /*
2913  * Fill given buffer with dynamic states (legacy format).
2914  * IPFW_UH_RLOCK has to be held while calling.
2915  */
2916 void
2917 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
2918 {
2919 #ifdef INET6
2920         struct dyn_ipv6_state *s6;
2921 #endif
2922         struct dyn_ipv4_state *s4;
2923         ipfw_dyn_rule *p, *last = NULL;
2924         char *bp;
2925         uint32_t bucket;
2926
2927         if (V_dyn_count == 0)
2928                 return;
2929         bp = *pbp;
2930
2931         IPFW_UH_RLOCK_ASSERT(chain);
2932
2933 #define DYN_EXPORT_STATES(s, af, head, b)                               \
2934         CK_SLIST_FOREACH(s, &V_dyn_ ## head[b], entry) {                \
2935                 if (bp + sizeof(*p) > ep)                               \
2936                         break;                                          \
2937                 p = (ipfw_dyn_rule *)bp;                                \
2938                 dyn_export_ ## af ## _state(s, p);                      \
2939                 last = p;                                               \
2940                 bp += sizeof(*p);                                       \
2941         }
2942
2943         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
2944                 DYN_EXPORT_STATES(s4, ipv4, ipv4_parent, bucket);
2945                 DYN_EXPORT_STATES(s4, ipv4, ipv4, bucket);
2946 #ifdef INET6
2947                 DYN_EXPORT_STATES(s6, ipv6, ipv6_parent, bucket);
2948                 DYN_EXPORT_STATES(s6, ipv6, ipv6, bucket);
2949 #endif /* INET6 */
2950         }
2951
2952         if (last != NULL) /* mark last dynamic rule */
2953                 last->next = NULL;
2954         *pbp = bp;
2955 #undef DYN_EXPORT_STATES
2956 }
2957
2958 void
2959 ipfw_dyn_init(struct ip_fw_chain *chain)
2960 {
2961
2962 #ifdef IPFIREWALL_JENKINSHASH
2963         V_dyn_hashseed = arc4random();
2964 #endif
2965         V_dyn_max = 16384;              /* max # of states */
2966         V_dyn_parent_max = 4096;        /* max # of parent states */
2967         V_dyn_buckets_max = 8192;       /* must be power of 2 */
2968
2969         V_dyn_ack_lifetime = 300;
2970         V_dyn_syn_lifetime = 20;
2971         V_dyn_fin_lifetime = 1;
2972         V_dyn_rst_lifetime = 1;
2973         V_dyn_udp_lifetime = 10;
2974         V_dyn_short_lifetime = 5;
2975
2976         V_dyn_keepalive_interval = 20;
2977         V_dyn_keepalive_period = 5;
2978         V_dyn_keepalive = 1;            /* send keepalives */
2979         V_dyn_keepalive_last = time_uptime;
2980
2981         V_dyn_data_zone = uma_zcreate("IPFW dynamic states data",
2982             sizeof(struct dyn_data), NULL, NULL, NULL, NULL,
2983             UMA_ALIGN_PTR, 0);
2984         uma_zone_set_max(V_dyn_data_zone, V_dyn_max);
2985
2986         V_dyn_parent_zone = uma_zcreate("IPFW parent dynamic states",
2987             sizeof(struct dyn_parent), NULL, NULL, NULL, NULL,
2988             UMA_ALIGN_PTR, 0);
2989         uma_zone_set_max(V_dyn_parent_zone, V_dyn_parent_max);
2990
2991         SLIST_INIT(&V_dyn_expired_ipv4);
2992         V_dyn_ipv4 = NULL;
2993         V_dyn_ipv4_parent = NULL;
2994         V_dyn_ipv4_zone = uma_zcreate("IPFW IPv4 dynamic states",
2995             sizeof(struct dyn_ipv4_state), NULL, NULL, NULL, NULL,
2996             UMA_ALIGN_PTR, 0);
2997
2998 #ifdef INET6
2999         SLIST_INIT(&V_dyn_expired_ipv6);
3000         V_dyn_ipv6 = NULL;
3001         V_dyn_ipv6_parent = NULL;
3002         V_dyn_ipv6_zone = uma_zcreate("IPFW IPv6 dynamic states",
3003             sizeof(struct dyn_ipv6_state), NULL, NULL, NULL, NULL,
3004             UMA_ALIGN_PTR, 0);
3005 #endif
3006
3007         /* Initialize buckets. */
3008         V_curr_dyn_buckets = 0;
3009         V_dyn_bucket_lock = NULL;
3010         dyn_grow_hashtable(chain, 256);
3011
3012         if (IS_DEFAULT_VNET(curvnet))
3013                 dyn_hp_cache = malloc(mp_ncpus * sizeof(void *), M_IPFW,
3014                     M_WAITOK | M_ZERO);
3015
3016         DYN_EXPIRED_LOCK_INIT();
3017         callout_init(&V_dyn_timeout, 1);
3018         callout_reset(&V_dyn_timeout, hz, dyn_tick, curvnet);
3019         IPFW_ADD_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3020 }
3021
3022 void
3023 ipfw_dyn_uninit(int pass)
3024 {
3025 #ifdef INET6
3026         struct dyn_ipv6_state *s6;
3027 #endif
3028         struct dyn_ipv4_state *s4;
3029         int bucket;
3030
3031         if (pass == 0) {
3032                 callout_drain(&V_dyn_timeout);
3033                 return;
3034         }
3035         IPFW_DEL_OBJ_REWRITER(IS_DEFAULT_VNET(curvnet), dyn_opcodes);
3036         DYN_EXPIRED_LOCK_DESTROY();
3037
3038 #define DYN_FREE_STATES_FORCED(CK, s, af, name, en)     do {            \
3039         while ((s = CK ## SLIST_FIRST(&V_dyn_ ## name)) != NULL) {      \
3040                 CK ## SLIST_REMOVE_HEAD(&V_dyn_ ## name, en);   \
3041                 if (s->type == O_LIMIT_PARENT)                          \
3042                         uma_zfree(V_dyn_parent_zone, s->limit);         \
3043                 else                                                    \
3044                         uma_zfree(V_dyn_data_zone, s->data);            \
3045                 uma_zfree(V_dyn_ ## af ## _zone, s);                    \
3046         }                                                               \
3047 } while (0)
3048         for (bucket = 0; bucket < V_curr_dyn_buckets; bucket++) {
3049                 DYN_BUCKET_LOCK_DESTROY(V_dyn_bucket_lock, bucket);
3050
3051                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4[bucket], entry);
3052                 DYN_FREE_STATES_FORCED(CK_, s4, ipv4, ipv4_parent[bucket],
3053                     entry);
3054 #ifdef INET6
3055                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6[bucket], entry);
3056                 DYN_FREE_STATES_FORCED(CK_, s6, ipv6, ipv6_parent[bucket],
3057                     entry);
3058 #endif /* INET6 */
3059         }
3060         DYN_FREE_STATES_FORCED(, s4, ipv4, expired_ipv4, expired);
3061 #ifdef INET6
3062         DYN_FREE_STATES_FORCED(, s6, ipv6, expired_ipv6, expired);
3063 #endif
3064 #undef DYN_FREE_STATES_FORCED
3065
3066         uma_zdestroy(V_dyn_ipv4_zone);
3067         uma_zdestroy(V_dyn_data_zone);
3068         uma_zdestroy(V_dyn_parent_zone);
3069 #ifdef INET6
3070         uma_zdestroy(V_dyn_ipv6_zone);
3071         free(V_dyn_ipv6, M_IPFW);
3072         free(V_dyn_ipv6_parent, M_IPFW);
3073         free(V_dyn_ipv6_add, M_IPFW);
3074         free(V_dyn_ipv6_parent_add, M_IPFW);
3075         free(V_dyn_ipv6_del, M_IPFW);
3076         free(V_dyn_ipv6_parent_del, M_IPFW);
3077 #endif
3078         free(V_dyn_bucket_lock, M_IPFW);
3079         free(V_dyn_ipv4, M_IPFW);
3080         free(V_dyn_ipv4_parent, M_IPFW);
3081         free(V_dyn_ipv4_add, M_IPFW);
3082         free(V_dyn_ipv4_parent_add, M_IPFW);
3083         free(V_dyn_ipv4_del, M_IPFW);
3084         free(V_dyn_ipv4_parent_del, M_IPFW);
3085         if (IS_DEFAULT_VNET(curvnet))
3086                 free(dyn_hp_cache, M_IPFW);
3087 }
3088
3089