]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netpfil/ipfw/ip_fw_dynamic.c
Update elftoolchain to upstream rev 3130
[FreeBSD/FreeBSD.git] / sys / netpfil / ipfw / ip_fw_dynamic.c
1 /*-
2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #define        DEB(x)
30 #define        DDB(x) x
31
32 /*
33  * Dynamic rule support for ipfw
34  */
35
36 #include "opt_ipfw.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error IPFIREWALL requires INET.
40 #endif /* INET */
41 #include "opt_inet6.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/lock.h>
50 #include <sys/rmlock.h>
51 #include <sys/socket.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <net/ethernet.h> /* for ETHERTYPE_IP */
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/vnet.h>
58
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 #include <netinet/ip_var.h>     /* ip_defttl */
62 #include <netinet/ip_fw.h>
63 #include <netinet/tcp_var.h>
64 #include <netinet/udp.h>
65
66 #include <netinet/ip6.h>        /* IN6_ARE_ADDR_EQUAL */
67 #ifdef INET6
68 #include <netinet6/in6_var.h>
69 #include <netinet6/ip6_var.h>
70 #endif
71
72 #include <netpfil/ipfw/ip_fw_private.h>
73
74 #include <machine/in_cksum.h>   /* XXX for in_cksum */
75
76 #ifdef MAC
77 #include <security/mac/mac_framework.h>
78 #endif
79
80 /*
81  * Description of dynamic rules.
82  *
83  * Dynamic rules are stored in lists accessed through a hash table
84  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
85  * be modified through the sysctl variable dyn_buckets which is
86  * updated when the table becomes empty.
87  *
88  * XXX currently there is only one list, ipfw_dyn.
89  *
90  * When a packet is received, its address fields are first masked
91  * with the mask defined for the rule, then hashed, then matched
92  * against the entries in the corresponding list.
93  * Dynamic rules can be used for different purposes:
94  *  + stateful rules;
95  *  + enforcing limits on the number of sessions;
96  *  + in-kernel NAT (not implemented yet)
97  *
98  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
99  * measured in seconds and depending on the flags.
100  *
101  * The total number of dynamic rules is equal to UMA zone items count.
102  * The max number of dynamic rules is dyn_max. When we reach
103  * the maximum number of rules we do not create anymore. This is
104  * done to avoid consuming too much memory, but also too much
105  * time when searching on each packet (ideally, we should try instead
106  * to put a limit on the length of the list on each bucket...).
107  *
108  * Each dynamic rule holds a pointer to the parent ipfw rule so
109  * we know what action to perform. Dynamic rules are removed when
110  * the parent rule is deleted. This can be changed by dyn_keep_states
111  * sysctl.
112  *
113  * There are some limitations with dynamic rules -- we do not
114  * obey the 'randomized match', and we do not do multiple
115  * passes through the firewall. XXX check the latter!!!
116  */
117
118 struct ipfw_dyn_bucket {
119         struct mtx      mtx;            /* Bucket protecting lock */
120         ipfw_dyn_rule   *head;          /* Pointer to first rule */
121 };
122
123 /*
124  * Static variables followed by global ones
125  */
126 static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
127 static VNET_DEFINE(u_int32_t, dyn_buckets_max);
128 static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
129 static VNET_DEFINE(struct callout, ipfw_timeout);
130 #define V_ipfw_dyn_v                    VNET(ipfw_dyn_v)
131 #define V_dyn_buckets_max               VNET(dyn_buckets_max)
132 #define V_curr_dyn_buckets              VNET(curr_dyn_buckets)
133 #define V_ipfw_timeout                  VNET(ipfw_timeout)
134
135 static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
136 #define V_ipfw_dyn_rule_zone            VNET(ipfw_dyn_rule_zone)
137
138 #define IPFW_BUCK_LOCK_INIT(b)  \
139         mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
140 #define IPFW_BUCK_LOCK_DESTROY(b)       \
141         mtx_destroy(&(b)->mtx)
142 #define IPFW_BUCK_LOCK(i)       mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
143 #define IPFW_BUCK_UNLOCK(i)     mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
144 #define IPFW_BUCK_ASSERT(i)     mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
145
146
147 static VNET_DEFINE(int, dyn_keep_states);
148 #define V_dyn_keep_states               VNET(dyn_keep_states)
149
150 /*
151  * Timeouts for various events in handing dynamic rules.
152  */
153 static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
154 static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
155 static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
156 static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
157 static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
158 static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
159
160 #define V_dyn_ack_lifetime              VNET(dyn_ack_lifetime)
161 #define V_dyn_syn_lifetime              VNET(dyn_syn_lifetime)
162 #define V_dyn_fin_lifetime              VNET(dyn_fin_lifetime)
163 #define V_dyn_rst_lifetime              VNET(dyn_rst_lifetime)
164 #define V_dyn_udp_lifetime              VNET(dyn_udp_lifetime)
165 #define V_dyn_short_lifetime            VNET(dyn_short_lifetime)
166
167 /*
168  * Keepalives are sent if dyn_keepalive is set. They are sent every
169  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
170  * seconds of lifetime of a rule.
171  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
172  * than dyn_keepalive_period.
173  */
174
175 static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
176 static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
177 static VNET_DEFINE(u_int32_t, dyn_keepalive);
178 static VNET_DEFINE(time_t, dyn_keepalive_last);
179
180 #define V_dyn_keepalive_interval        VNET(dyn_keepalive_interval)
181 #define V_dyn_keepalive_period          VNET(dyn_keepalive_period)
182 #define V_dyn_keepalive                 VNET(dyn_keepalive)
183 #define V_dyn_keepalive_last            VNET(dyn_keepalive_last)
184
185 static VNET_DEFINE(u_int32_t, dyn_max);         /* max # of dynamic rules */
186
187 #define DYN_COUNT                       uma_zone_get_cur(V_ipfw_dyn_rule_zone)
188 #define V_dyn_max                       VNET(dyn_max)
189
190 /* for userspace, we emulate the uma_zone_counter with ipfw_dyn_count */
191 static int ipfw_dyn_count;      /* number of objects */
192
193 #ifdef USERSPACE /* emulation of UMA object counters for userspace */
194 #define uma_zone_get_cur(x)     ipfw_dyn_count
195 #endif /* USERSPACE */
196
197 static int last_log;    /* Log ratelimiting */
198
199 static void ipfw_dyn_tick(void *vnetx);
200 static void check_dyn_rules(struct ip_fw_chain *, ipfw_range_tlv *, int, int);
201 #ifdef SYSCTL_NODE
202
203 static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
204 static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
205
206 SYSBEGIN(f2)
207
208 SYSCTL_DECL(_net_inet_ip_fw);
209 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
210     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
211     "Max number of dyn. buckets");
212 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
213     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
214     "Current Number of dyn. buckets");
215 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
216     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
217     "Number of dyn. rules");
218 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
219     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
220     "Max number of dyn. rules");
221 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
222     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
223     "Lifetime of dyn. rules for acks");
224 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
225     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
226     "Lifetime of dyn. rules for syn");
227 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
228     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
229     "Lifetime of dyn. rules for fin");
230 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
231     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
232     "Lifetime of dyn. rules for rst");
233 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
234     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
235     "Lifetime of dyn. rules for UDP");
236 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
237     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
238     "Lifetime of dyn. rules for other situations");
239 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
240     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
241     "Enable keepalives for dyn. rules");
242 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keep_states,
243     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dyn_keep_states), 0,
244     "Do not flush dynamic states on rule deletion");
245
246 SYSEND
247
248 #endif /* SYSCTL_NODE */
249
250
251 #ifdef INET6
252 static __inline int
253 hash_packet6(struct ipfw_flow_id *id)
254 {
255         u_int32_t i;
256         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
257             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
258             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
259             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
260             (id->dst_port) ^ (id->src_port);
261         return i;
262 }
263 #endif
264
265 /*
266  * IMPORTANT: the hash function for dynamic rules must be commutative
267  * in source and destination (ip,port), because rules are bidirectional
268  * and we want to find both in the same bucket.
269  */
270 static __inline int
271 hash_packet(struct ipfw_flow_id *id, int buckets)
272 {
273         u_int32_t i;
274
275 #ifdef INET6
276         if (IS_IP6_FLOW_ID(id)) 
277                 i = hash_packet6(id);
278         else
279 #endif /* INET6 */
280         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
281         i &= (buckets - 1);
282         return i;
283 }
284
285 /**
286  * Print customizable flow id description via log(9) facility.
287  */
288 static void
289 print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
290     char *prefix, char *postfix)
291 {
292         struct in_addr da;
293 #ifdef INET6
294         char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
295 #else
296         char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
297 #endif
298
299 #ifdef INET6
300         if (IS_IP6_FLOW_ID(id)) {
301                 ip6_sprintf(src, &id->src_ip6);
302                 ip6_sprintf(dst, &id->dst_ip6);
303         } else
304 #endif
305         {
306                 da.s_addr = htonl(id->src_ip);
307                 inet_ntop(AF_INET, &da, src, sizeof(src));
308                 da.s_addr = htonl(id->dst_ip);
309                 inet_ntop(AF_INET, &da, dst, sizeof(dst));
310         }
311         log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
312             prefix, dyn_type, src, id->src_port, dst,
313             id->dst_port, DYN_COUNT, postfix);
314 }
315
316 #define print_dyn_rule(id, dtype, prefix, postfix)      \
317         print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
318
319 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
320 #define TIME_LE(a,b)       ((int)((a)-(b)) < 0)
321
322 /*
323  * Lookup a dynamic rule, locked version.
324  */
325 static ipfw_dyn_rule *
326 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
327     struct tcphdr *tcp)
328 {
329         /*
330          * Stateful ipfw extensions.
331          * Lookup into dynamic session queue.
332          */
333 #define MATCH_REVERSE   0
334 #define MATCH_FORWARD   1
335 #define MATCH_NONE      2
336 #define MATCH_UNKNOWN   3
337         int dir = MATCH_NONE;
338         ipfw_dyn_rule *prev, *q = NULL;
339
340         IPFW_BUCK_ASSERT(i);
341
342         for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
343                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
344                         continue;
345
346                 if (pkt->proto != q->id.proto || q->dyn_type == O_LIMIT_PARENT)
347                         continue;
348
349                 if (IS_IP6_FLOW_ID(pkt)) {
350                         if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
351                             IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
352                             pkt->src_port == q->id.src_port &&
353                             pkt->dst_port == q->id.dst_port) {
354                                 dir = MATCH_FORWARD;
355                                 break;
356                         }
357                         if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
358                             IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
359                             pkt->src_port == q->id.dst_port &&
360                             pkt->dst_port == q->id.src_port) {
361                                 dir = MATCH_REVERSE;
362                                 break;
363                         }
364                 } else {
365                         if (pkt->src_ip == q->id.src_ip &&
366                             pkt->dst_ip == q->id.dst_ip &&
367                             pkt->src_port == q->id.src_port &&
368                             pkt->dst_port == q->id.dst_port) {
369                                 dir = MATCH_FORWARD;
370                                 break;
371                         }
372                         if (pkt->src_ip == q->id.dst_ip &&
373                             pkt->dst_ip == q->id.src_ip &&
374                             pkt->src_port == q->id.dst_port &&
375                             pkt->dst_port == q->id.src_port) {
376                                 dir = MATCH_REVERSE;
377                                 break;
378                         }
379                 }
380         }
381         if (q == NULL)
382                 goto done;      /* q = NULL, not found */
383
384         if (prev != NULL) {     /* found and not in front */
385                 prev->next = q->next;
386                 q->next = V_ipfw_dyn_v[i].head;
387                 V_ipfw_dyn_v[i].head = q;
388         }
389         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
390                 uint32_t ack;
391                 u_char flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
392
393 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
394 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
395 #define TCP_FLAGS       (TH_FLAGS | (TH_FLAGS << 8))
396 #define ACK_FWD         0x10000                 /* fwd ack seen */
397 #define ACK_REV         0x20000                 /* rev ack seen */
398
399                 q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
400                 switch (q->state & TCP_FLAGS) {
401                 case TH_SYN:                    /* opening */
402                         q->expire = time_uptime + V_dyn_syn_lifetime;
403                         break;
404
405                 case BOTH_SYN:                  /* move to established */
406                 case BOTH_SYN | TH_FIN:         /* one side tries to close */
407                 case BOTH_SYN | (TH_FIN << 8):
408 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
409                         if (tcp == NULL)
410                                 break;
411
412                         ack = ntohl(tcp->th_ack);
413                         if (dir == MATCH_FORWARD) {
414                                 if (q->ack_fwd == 0 ||
415                                     _SEQ_GE(ack, q->ack_fwd)) {
416                                         q->ack_fwd = ack;
417                                         q->state |= ACK_FWD;
418                                 }
419                         } else {
420                                 if (q->ack_rev == 0 ||
421                                     _SEQ_GE(ack, q->ack_rev)) {
422                                         q->ack_rev = ack;
423                                         q->state |= ACK_REV;
424                                 }
425                         }
426                         if ((q->state & (ACK_FWD | ACK_REV)) ==
427                             (ACK_FWD | ACK_REV)) {
428                                 q->expire = time_uptime + V_dyn_ack_lifetime;
429                                 q->state &= ~(ACK_FWD | ACK_REV);
430                         }
431                         break;
432
433                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
434                         if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
435                                 V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
436                         q->expire = time_uptime + V_dyn_fin_lifetime;
437                         break;
438
439                 default:
440 #if 0
441                         /*
442                          * reset or some invalid combination, but can also
443                          * occur if we use keep-state the wrong way.
444                          */
445                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
446                                 printf("invalid state: 0x%x\n", q->state);
447 #endif
448                         if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
449                                 V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
450                         q->expire = time_uptime + V_dyn_rst_lifetime;
451                         break;
452                 }
453         } else if (pkt->proto == IPPROTO_UDP) {
454                 q->expire = time_uptime + V_dyn_udp_lifetime;
455         } else {
456                 /* other protocols */
457                 q->expire = time_uptime + V_dyn_short_lifetime;
458         }
459 done:
460         if (match_direction != NULL)
461                 *match_direction = dir;
462         return (q);
463 }
464
465 ipfw_dyn_rule *
466 ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
467     struct tcphdr *tcp)
468 {
469         ipfw_dyn_rule *q;
470         int i;
471
472         i = hash_packet(pkt, V_curr_dyn_buckets);
473
474         IPFW_BUCK_LOCK(i);
475         q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp);
476         if (q == NULL)
477                 IPFW_BUCK_UNLOCK(i);
478         /* NB: return table locked when q is not NULL */
479         return q;
480 }
481
482 /*
483  * Unlock bucket mtx
484  * @p - pointer to dynamic rule
485  */
486 void
487 ipfw_dyn_unlock(ipfw_dyn_rule *q)
488 {
489
490         IPFW_BUCK_UNLOCK(q->bucket);
491 }
492
493 static int
494 resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
495 {
496         int i, k, nbuckets_old;
497         ipfw_dyn_rule *q;
498         struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
499
500         /* Check if given number is power of 2 and less than 64k */
501         if ((nbuckets > 65536) || (!powerof2(nbuckets)))
502                 return 1;
503
504         CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
505             V_curr_dyn_buckets, nbuckets);
506
507         /* Allocate and initialize new hash */
508         dyn_v = malloc(nbuckets * sizeof(ipfw_dyn_rule), M_IPFW,
509             M_WAITOK | M_ZERO);
510
511         for (i = 0 ; i < nbuckets; i++)
512                 IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
513
514         /*
515          * Call upper half lock, as get_map() do to ease
516          * read-only access to dynamic rules hash from sysctl
517          */
518         IPFW_UH_WLOCK(chain);
519
520         /*
521          * Acquire chain write lock to permit hash access
522          * for main traffic path without additional locks
523          */
524         IPFW_WLOCK(chain);
525
526         /* Save old values */
527         nbuckets_old = V_curr_dyn_buckets;
528         dyn_v_old = V_ipfw_dyn_v;
529
530         /* Skip relinking if array is not set up */
531         if (V_ipfw_dyn_v == NULL)
532                 V_curr_dyn_buckets = 0;
533
534         /* Re-link all dynamic states */
535         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
536                 while (V_ipfw_dyn_v[i].head != NULL) {
537                         /* Remove from current chain */
538                         q = V_ipfw_dyn_v[i].head;
539                         V_ipfw_dyn_v[i].head = q->next;
540
541                         /* Get new hash value */
542                         k = hash_packet(&q->id, nbuckets);
543                         q->bucket = k;
544                         /* Add to the new head */
545                         q->next = dyn_v[k].head;
546                         dyn_v[k].head = q;
547              }
548         }
549
550         /* Update current pointers/buckets values */
551         V_curr_dyn_buckets = nbuckets;
552         V_ipfw_dyn_v = dyn_v;
553
554         IPFW_WUNLOCK(chain);
555
556         IPFW_UH_WUNLOCK(chain);
557
558         /* Start periodic callout on initial creation */
559         if (dyn_v_old == NULL) {
560                 callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
561                 return (0);
562         }
563
564         /* Destroy all mutexes */
565         for (i = 0 ; i < nbuckets_old ; i++)
566                 IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
567
568         /* Free old hash */
569         free(dyn_v_old, M_IPFW);
570
571         return 0;
572 }
573
574 /**
575  * Install state of type 'type' for a dynamic session.
576  * The hash table contains two type of rules:
577  * - regular rules (O_KEEP_STATE)
578  * - rules for sessions with limited number of sess per user
579  *   (O_LIMIT). When they are created, the parent is
580  *   increased by 1, and decreased on delete. In this case,
581  *   the third parameter is the parent rule and not the chain.
582  * - "parent" rules for the above (O_LIMIT_PARENT).
583  */
584 static ipfw_dyn_rule *
585 add_dyn_rule(struct ipfw_flow_id *id, int i, u_int8_t dyn_type, struct ip_fw *rule)
586 {
587         ipfw_dyn_rule *r;
588
589         IPFW_BUCK_ASSERT(i);
590
591         r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
592         if (r == NULL) {
593                 if (last_log != time_uptime) {
594                         last_log = time_uptime;
595                         log(LOG_DEBUG,
596                             "ipfw: Cannot allocate dynamic state, "
597                             "consider increasing net.inet.ip.fw.dyn_max\n");
598                 }
599                 return NULL;
600         }
601         ipfw_dyn_count++;
602
603         /*
604          * refcount on parent is already incremented, so
605          * it is safe to use parent unlocked.
606          */
607         if (dyn_type == O_LIMIT) {
608                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
609                 if ( parent->dyn_type != O_LIMIT_PARENT)
610                         panic("invalid parent");
611                 r->parent = parent;
612                 rule = parent->rule;
613         }
614
615         r->id = *id;
616         r->expire = time_uptime + V_dyn_syn_lifetime;
617         r->rule = rule;
618         r->dyn_type = dyn_type;
619         IPFW_ZERO_DYN_COUNTER(r);
620         r->count = 0;
621
622         r->bucket = i;
623         r->next = V_ipfw_dyn_v[i].head;
624         V_ipfw_dyn_v[i].head = r;
625         DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
626         return r;
627 }
628
629 /**
630  * lookup dynamic parent rule using pkt and rule as search keys.
631  * If the lookup fails, then install one.
632  */
633 static ipfw_dyn_rule *
634 lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule)
635 {
636         ipfw_dyn_rule *q;
637         int i, is_v6;
638
639         is_v6 = IS_IP6_FLOW_ID(pkt);
640         i = hash_packet( pkt, V_curr_dyn_buckets );
641         *pindex = i;
642         IPFW_BUCK_LOCK(i);
643         for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
644                 if (q->dyn_type == O_LIMIT_PARENT &&
645                     rule== q->rule &&
646                     pkt->proto == q->id.proto &&
647                     pkt->src_port == q->id.src_port &&
648                     pkt->dst_port == q->id.dst_port &&
649                     (
650                         (is_v6 &&
651                          IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
652                                 &(q->id.src_ip6)) &&
653                          IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
654                                 &(q->id.dst_ip6))) ||
655                         (!is_v6 &&
656                          pkt->src_ip == q->id.src_ip &&
657                          pkt->dst_ip == q->id.dst_ip)
658                     )
659                 ) {
660                         q->expire = time_uptime + V_dyn_short_lifetime;
661                         DEB(print_dyn_rule(pkt, q->dyn_type,
662                             "lookup_dyn_parent found", "");)
663                         return q;
664                 }
665
666         /* Add virtual limiting rule */
667         return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule);
668 }
669
670 /**
671  * Install dynamic state for rule type cmd->o.opcode
672  *
673  * Returns 1 (failure) if state is not installed because of errors or because
674  * session limitations are enforced.
675  */
676 int
677 ipfw_install_state(struct ip_fw_chain *chain, struct ip_fw *rule,
678     ipfw_insn_limit *cmd, struct ip_fw_args *args, uint32_t tablearg)
679 {
680         ipfw_dyn_rule *q;
681         int i;
682
683         DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state", "");)
684         
685         i = hash_packet(&args->f_id, V_curr_dyn_buckets);
686
687         IPFW_BUCK_LOCK(i);
688
689         q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
690
691         if (q != NULL) {        /* should never occur */
692                 DEB(
693                 if (last_log != time_uptime) {
694                         last_log = time_uptime;
695                         printf("ipfw: %s: entry already present, done\n",
696                             __func__);
697                 })
698                 IPFW_BUCK_UNLOCK(i);
699                 return (0);
700         }
701
702         /*
703          * State limiting is done via uma(9) zone limiting.
704          * Save pointer to newly-installed rule and reject
705          * packet if add_dyn_rule() returned NULL.
706          * Note q is currently set to NULL.
707          */
708
709         switch (cmd->o.opcode) {
710         case O_KEEP_STATE:      /* bidir rule */
711                 q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule);
712                 break;
713
714         case O_LIMIT: {         /* limit number of sessions */
715                 struct ipfw_flow_id id;
716                 ipfw_dyn_rule *parent;
717                 uint32_t conn_limit;
718                 uint16_t limit_mask = cmd->limit_mask;
719                 int pindex;
720
721                 conn_limit = IP_FW_ARG_TABLEARG(chain, cmd->conn_limit, limit);
722                   
723                 DEB(
724                 if (cmd->conn_limit == IP_FW_TARG)
725                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
726                             "(tablearg)\n", __func__, conn_limit);
727                 else
728                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
729                             __func__, conn_limit);
730                 )
731
732                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
733                 id.proto = args->f_id.proto;
734                 id.addr_type = args->f_id.addr_type;
735                 id.fib = M_GETFIB(args->m);
736
737                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
738                         if (limit_mask & DYN_SRC_ADDR)
739                                 id.src_ip6 = args->f_id.src_ip6;
740                         if (limit_mask & DYN_DST_ADDR)
741                                 id.dst_ip6 = args->f_id.dst_ip6;
742                 } else {
743                         if (limit_mask & DYN_SRC_ADDR)
744                                 id.src_ip = args->f_id.src_ip;
745                         if (limit_mask & DYN_DST_ADDR)
746                                 id.dst_ip = args->f_id.dst_ip;
747                 }
748                 if (limit_mask & DYN_SRC_PORT)
749                         id.src_port = args->f_id.src_port;
750                 if (limit_mask & DYN_DST_PORT)
751                         id.dst_port = args->f_id.dst_port;
752
753                 /*
754                  * We have to release lock for previous bucket to
755                  * avoid possible deadlock
756                  */
757                 IPFW_BUCK_UNLOCK(i);
758
759                 if ((parent = lookup_dyn_parent(&id, &pindex, rule)) == NULL) {
760                         printf("ipfw: %s: add parent failed\n", __func__);
761                         IPFW_BUCK_UNLOCK(pindex);
762                         return (1);
763                 }
764
765                 if (parent->count >= conn_limit) {
766                         if (V_fw_verbose && last_log != time_uptime) {
767                                 last_log = time_uptime;
768                                 char sbuf[24];
769                                 last_log = time_uptime;
770                                 snprintf(sbuf, sizeof(sbuf),
771                                     "%d drop session",
772                                     parent->rule->rulenum);
773                                 print_dyn_rule_flags(&args->f_id,
774                                     cmd->o.opcode,
775                                     LOG_SECURITY | LOG_DEBUG,
776                                     sbuf, "too many entries");
777                         }
778                         IPFW_BUCK_UNLOCK(pindex);
779                         return (1);
780                 }
781                 /* Increment counter on parent */
782                 parent->count++;
783                 IPFW_BUCK_UNLOCK(pindex);
784
785                 IPFW_BUCK_LOCK(i);
786                 q = add_dyn_rule(&args->f_id, i, O_LIMIT, (struct ip_fw *)parent);
787                 if (q == NULL) {
788                         /* Decrement index and notify caller */
789                         IPFW_BUCK_UNLOCK(i);
790                         IPFW_BUCK_LOCK(pindex);
791                         parent->count--;
792                         IPFW_BUCK_UNLOCK(pindex);
793                         return (1);
794                 }
795                 break;
796         }
797         default:
798                 printf("ipfw: %s: unknown dynamic rule type %u\n",
799                     __func__, cmd->o.opcode);
800         }
801
802         if (q == NULL) {
803                 IPFW_BUCK_UNLOCK(i);
804                 return (1);     /* Notify caller about failure */
805         }
806
807         /* XXX just set lifetime */
808         lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
809
810         IPFW_BUCK_UNLOCK(i);
811         return (0);
812 }
813
814 /*
815  * Generate a TCP packet, containing either a RST or a keepalive.
816  * When flags & TH_RST, we are sending a RST packet, because of a
817  * "reset" action matched the packet.
818  * Otherwise we are sending a keepalive, and flags & TH_
819  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
820  * so that MAC can label the reply appropriately.
821  */
822 struct mbuf *
823 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
824     u_int32_t ack, int flags)
825 {
826         struct mbuf *m = NULL;          /* stupid compiler */
827         int len, dir;
828         struct ip *h = NULL;            /* stupid compiler */
829 #ifdef INET6
830         struct ip6_hdr *h6 = NULL;
831 #endif
832         struct tcphdr *th = NULL;
833
834         MGETHDR(m, M_NOWAIT, MT_DATA);
835         if (m == NULL)
836                 return (NULL);
837
838         M_SETFIB(m, id->fib);
839 #ifdef MAC
840         if (replyto != NULL)
841                 mac_netinet_firewall_reply(replyto, m);
842         else
843                 mac_netinet_firewall_send(m);
844 #else
845         (void)replyto;          /* don't warn about unused arg */
846 #endif
847
848         switch (id->addr_type) {
849         case 4:
850                 len = sizeof(struct ip) + sizeof(struct tcphdr);
851                 break;
852 #ifdef INET6
853         case 6:
854                 len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
855                 break;
856 #endif
857         default:
858                 /* XXX: log me?!? */
859                 FREE_PKT(m);
860                 return (NULL);
861         }
862         dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
863
864         m->m_data += max_linkhdr;
865         m->m_flags |= M_SKIP_FIREWALL;
866         m->m_pkthdr.len = m->m_len = len;
867         m->m_pkthdr.rcvif = NULL;
868         bzero(m->m_data, len);
869
870         switch (id->addr_type) {
871         case 4:
872                 h = mtod(m, struct ip *);
873
874                 /* prepare for checksum */
875                 h->ip_p = IPPROTO_TCP;
876                 h->ip_len = htons(sizeof(struct tcphdr));
877                 if (dir) {
878                         h->ip_src.s_addr = htonl(id->src_ip);
879                         h->ip_dst.s_addr = htonl(id->dst_ip);
880                 } else {
881                         h->ip_src.s_addr = htonl(id->dst_ip);
882                         h->ip_dst.s_addr = htonl(id->src_ip);
883                 }
884
885                 th = (struct tcphdr *)(h + 1);
886                 break;
887 #ifdef INET6
888         case 6:
889                 h6 = mtod(m, struct ip6_hdr *);
890
891                 /* prepare for checksum */
892                 h6->ip6_nxt = IPPROTO_TCP;
893                 h6->ip6_plen = htons(sizeof(struct tcphdr));
894                 if (dir) {
895                         h6->ip6_src = id->src_ip6;
896                         h6->ip6_dst = id->dst_ip6;
897                 } else {
898                         h6->ip6_src = id->dst_ip6;
899                         h6->ip6_dst = id->src_ip6;
900                 }
901
902                 th = (struct tcphdr *)(h6 + 1);
903                 break;
904 #endif
905         }
906
907         if (dir) {
908                 th->th_sport = htons(id->src_port);
909                 th->th_dport = htons(id->dst_port);
910         } else {
911                 th->th_sport = htons(id->dst_port);
912                 th->th_dport = htons(id->src_port);
913         }
914         th->th_off = sizeof(struct tcphdr) >> 2;
915
916         if (flags & TH_RST) {
917                 if (flags & TH_ACK) {
918                         th->th_seq = htonl(ack);
919                         th->th_flags = TH_RST;
920                 } else {
921                         if (flags & TH_SYN)
922                                 seq++;
923                         th->th_ack = htonl(seq);
924                         th->th_flags = TH_RST | TH_ACK;
925                 }
926         } else {
927                 /*
928                  * Keepalive - use caller provided sequence numbers
929                  */
930                 th->th_seq = htonl(seq);
931                 th->th_ack = htonl(ack);
932                 th->th_flags = TH_ACK;
933         }
934
935         switch (id->addr_type) {
936         case 4:
937                 th->th_sum = in_cksum(m, len);
938
939                 /* finish the ip header */
940                 h->ip_v = 4;
941                 h->ip_hl = sizeof(*h) >> 2;
942                 h->ip_tos = IPTOS_LOWDELAY;
943                 h->ip_off = htons(0);
944                 h->ip_len = htons(len);
945                 h->ip_ttl = V_ip_defttl;
946                 h->ip_sum = 0;
947                 break;
948 #ifdef INET6
949         case 6:
950                 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
951                     sizeof(struct tcphdr));
952
953                 /* finish the ip6 header */
954                 h6->ip6_vfc |= IPV6_VERSION;
955                 h6->ip6_hlim = IPV6_DEFHLIM;
956                 break;
957 #endif
958         }
959
960         return (m);
961 }
962
963 /*
964  * Queue keepalive packets for given dynamic rule
965  */
966 static struct mbuf **
967 ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
968 {
969         struct mbuf *m_rev, *m_fwd;
970
971         m_rev = (q->state & ACK_REV) ? NULL :
972             ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
973         m_fwd = (q->state & ACK_FWD) ? NULL :
974             ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
975
976         if (m_rev != NULL) {
977                 *mtailp = m_rev;
978                 mtailp = &(*mtailp)->m_nextpkt;
979         }
980         if (m_fwd != NULL) {
981                 *mtailp = m_fwd;
982                 mtailp = &(*mtailp)->m_nextpkt;
983         }
984
985         return (mtailp);
986 }
987
988 /*
989  * This procedure is used to perform various maintance
990  * on dynamic hash list. Currently it is called every second.
991  */
992 static void
993 ipfw_dyn_tick(void * vnetx) 
994 {
995         struct ip_fw_chain *chain;
996         int check_ka = 0;
997 #ifdef VIMAGE
998         struct vnet *vp = vnetx;
999 #endif
1000
1001         CURVNET_SET(vp);
1002
1003         chain = &V_layer3_chain;
1004
1005         /* Run keepalive checks every keepalive_period iff ka is enabled */
1006         if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
1007             (V_dyn_keepalive != 0)) {
1008                 V_dyn_keepalive_last = time_uptime;
1009                 check_ka = 1;
1010         }
1011
1012         check_dyn_rules(chain, NULL, check_ka, 1);
1013
1014         callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
1015
1016         CURVNET_RESTORE();
1017 }
1018
1019
1020 /*
1021  * Walk thru all dynamic states doing generic maintance:
1022  * 1) free expired states
1023  * 2) free all states based on deleted rule / set
1024  * 3) send keepalives for states if needed
1025  *
1026  * @chain - pointer to current ipfw rules chain
1027  * @rule - delete all states originated by given rule if != NULL
1028  * @set - delete all states originated by any rule in set @set if != RESVD_SET
1029  * @check_ka - perform checking/sending keepalives
1030  * @timer - indicate call from timer routine.
1031  *
1032  * Timer routine must call this function unlocked to permit
1033  * sending keepalives/resizing table.
1034  *
1035  * Others has to call function with IPFW_UH_WLOCK held.
1036  * Additionally, function assume that dynamic rule/set is
1037  * ALREADY deleted so no new states can be generated by
1038  * 'deleted' rules.
1039  *
1040  * Write lock is needed to ensure that unused parent rules
1041  * are not freed by other instance (see stage 2, 3)
1042  */
1043 static void
1044 check_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt,
1045     int check_ka, int timer)
1046 {
1047         struct mbuf *m0, *m, *mnext, **mtailp;
1048         struct ip *h;
1049         int i, dyn_count, new_buckets = 0, max_buckets;
1050         int expired = 0, expired_limits = 0, parents = 0, total = 0;
1051         ipfw_dyn_rule *q, *q_prev, *q_next;
1052         ipfw_dyn_rule *exp_head, **exptailp;
1053         ipfw_dyn_rule *exp_lhead, **expltailp;
1054
1055         KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1056             __func__));
1057
1058         /* Avoid possible LOR */
1059         KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1060             __func__));
1061
1062         /*
1063          * Do not perform any checks if we currently have no dynamic states
1064          */
1065         if (DYN_COUNT == 0)
1066                 return;
1067
1068         /* Expired states */
1069         exp_head = NULL;
1070         exptailp = &exp_head;
1071
1072         /* Expired limit states */
1073         exp_lhead = NULL;
1074         expltailp = &exp_lhead;
1075
1076         /*
1077          * We make a chain of packets to go out here -- not deferring
1078          * until after we drop the IPFW dynamic rule lock would result
1079          * in a lock order reversal with the normal packet input -> ipfw
1080          * call stack.
1081          */
1082         m0 = NULL;
1083         mtailp = &m0;
1084
1085         /* Protect from hash resizing */
1086         if (timer != 0)
1087                 IPFW_UH_WLOCK(chain);
1088         else
1089                 IPFW_UH_WLOCK_ASSERT(chain);
1090
1091 #define NEXT_RULE()     { q_prev = q; q = q->next ; continue; }
1092
1093         /* Stage 1: perform requested deletion */
1094         for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1095                 IPFW_BUCK_LOCK(i);
1096                 for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1097                         /* account every rule */
1098                         total++;
1099
1100                         /* Skip parent rules at all */
1101                         if (q->dyn_type == O_LIMIT_PARENT) {
1102                                 parents++;
1103                                 NEXT_RULE();
1104                         }
1105
1106                         /*
1107                          * Remove rules which are:
1108                          * 1) expired
1109                          * 2) matches deletion range
1110                          */
1111                         if ((TIME_LEQ(q->expire, time_uptime)) ||
1112                             (rt != NULL && ipfw_match_range(q->rule, rt))) {
1113                                 if (TIME_LE(time_uptime, q->expire) &&
1114                                     q->dyn_type == O_KEEP_STATE &&
1115                                     V_dyn_keep_states != 0) {
1116                                         /*
1117                                          * Do not delete state if
1118                                          * it is not expired and
1119                                          * dyn_keep_states is ON.
1120                                          * However we need to re-link it
1121                                          * to any other stable rule
1122                                          */
1123                                         q->rule = chain->default_rule;
1124                                         NEXT_RULE();
1125                                 }
1126
1127                                 /* Unlink q from current list */
1128                                 q_next = q->next;
1129                                 if (q == V_ipfw_dyn_v[i].head)
1130                                         V_ipfw_dyn_v[i].head = q_next;
1131                                 else
1132                                         q_prev->next = q_next;
1133
1134                                 q->next = NULL;
1135
1136                                 /* queue q to expire list */
1137                                 if (q->dyn_type != O_LIMIT) {
1138                                         *exptailp = q;
1139                                         exptailp = &(*exptailp)->next;
1140                                         DEB(print_dyn_rule(&q->id, q->dyn_type,
1141                                             "unlink entry", "left");
1142                                         )
1143                                 } else {
1144                                         /* Separate list for limit rules */
1145                                         *expltailp = q;
1146                                         expltailp = &(*expltailp)->next;
1147                                         expired_limits++;
1148                                         DEB(print_dyn_rule(&q->id, q->dyn_type,
1149                                             "unlink limit entry", "left");
1150                                         )
1151                                 }
1152
1153                                 q = q_next;
1154                                 expired++;
1155                                 continue;
1156                         }
1157
1158                         /*
1159                          * Check if we need to send keepalive:
1160                          * we need to ensure if is time to do KA,
1161                          * this is established TCP session, and
1162                          * expire time is within keepalive interval
1163                          */
1164                         if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1165                             ((q->state & BOTH_SYN) == BOTH_SYN) &&
1166                             (TIME_LEQ(q->expire, time_uptime +
1167                               V_dyn_keepalive_interval)))
1168                                 mtailp = ipfw_dyn_send_ka(mtailp, q);
1169
1170                         NEXT_RULE();
1171                 }
1172                 IPFW_BUCK_UNLOCK(i);
1173         }
1174
1175         /* Stage 2: decrement counters from O_LIMIT parents */
1176         if (expired_limits != 0) {
1177                 /*
1178                  * XXX: Note that deleting set with more than one
1179                  * heavily-used LIMIT rules can result in overwhelming
1180                  * locking due to lack of per-hash value sorting
1181                  *
1182                  * We should probably think about:
1183                  * 1) pre-allocating hash of size, say,
1184                  * MAX(16, V_curr_dyn_buckets / 1024)
1185                  * 2) checking if expired_limits is large enough
1186                  * 3) If yes, init hash (or its part), re-link
1187                  * current list and start decrementing procedure in
1188                  * each bucket separately
1189                  */
1190
1191                 /*
1192                  * Small optimization: do not unlock bucket until
1193                  * we see the next item resides in different bucket
1194                  */
1195                 if (exp_lhead != NULL) {
1196                         i = exp_lhead->parent->bucket;
1197                         IPFW_BUCK_LOCK(i);
1198                 }
1199                 for (q = exp_lhead; q != NULL; q = q->next) {
1200                         if (i != q->parent->bucket) {
1201                                 IPFW_BUCK_UNLOCK(i);
1202                                 i = q->parent->bucket;
1203                                 IPFW_BUCK_LOCK(i);
1204                         }
1205
1206                         /* Decrease parent refcount */
1207                         q->parent->count--;
1208                 }
1209                 if (exp_lhead != NULL)
1210                         IPFW_BUCK_UNLOCK(i);
1211         }
1212
1213         /*
1214          * We protectet ourselves from unused parent deletion
1215          * (from the timer function) by holding UH write lock.
1216          */
1217
1218         /* Stage 3: remove unused parent rules */
1219         if ((parents != 0) && (expired != 0)) {
1220                 for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1221                         IPFW_BUCK_LOCK(i);
1222                         for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1223                                 if (q->dyn_type != O_LIMIT_PARENT)
1224                                         NEXT_RULE();
1225
1226                                 if (q->count != 0)
1227                                         NEXT_RULE();
1228
1229                                 /* Parent rule without consumers */
1230
1231                                 /* Unlink q from current list */
1232                                 q_next = q->next;
1233                                 if (q == V_ipfw_dyn_v[i].head)
1234                                         V_ipfw_dyn_v[i].head = q_next;
1235                                 else
1236                                         q_prev->next = q_next;
1237
1238                                 q->next = NULL;
1239
1240                                 /* Add to expired list */
1241                                 *exptailp = q;
1242                                 exptailp = &(*exptailp)->next;
1243
1244                                 DEB(print_dyn_rule(&q->id, q->dyn_type,
1245                                     "unlink parent entry", "left");
1246                                 )
1247
1248                                 expired++;
1249
1250                                 q = q_next;
1251                         }
1252                         IPFW_BUCK_UNLOCK(i);
1253                 }
1254         }
1255
1256 #undef NEXT_RULE
1257
1258         if (timer != 0) {
1259                 /*
1260                  * Check if we need to resize hash:
1261                  * if current number of states exceeds number of buckes in hash,
1262                  * grow hash size to the minimum power of 2 which is bigger than
1263                  * current states count. Limit hash size by 64k.
1264                  */
1265                 max_buckets = (V_dyn_buckets_max > 65536) ?
1266                     65536 : V_dyn_buckets_max;
1267         
1268                 dyn_count = DYN_COUNT;
1269         
1270                 if ((dyn_count > V_curr_dyn_buckets * 2) &&
1271                     (dyn_count < max_buckets)) {
1272                         new_buckets = V_curr_dyn_buckets;
1273                         while (new_buckets < dyn_count) {
1274                                 new_buckets *= 2;
1275         
1276                                 if (new_buckets >= max_buckets)
1277                                         break;
1278                         }
1279                 }
1280
1281                 IPFW_UH_WUNLOCK(chain);
1282         }
1283
1284         /* Finally delete old states ad limits if any */
1285         for (q = exp_head; q != NULL; q = q_next) {
1286                 q_next = q->next;
1287                 uma_zfree(V_ipfw_dyn_rule_zone, q);
1288                 ipfw_dyn_count--;
1289         }
1290
1291         for (q = exp_lhead; q != NULL; q = q_next) {
1292                 q_next = q->next;
1293                 uma_zfree(V_ipfw_dyn_rule_zone, q);
1294                 ipfw_dyn_count--;
1295         }
1296
1297         /*
1298          * The rest code MUST be called from timer routine only
1299          * without holding any locks
1300          */
1301         if (timer == 0)
1302                 return;
1303
1304         /* Send keepalive packets if any */
1305         for (m = m0; m != NULL; m = mnext) {
1306                 mnext = m->m_nextpkt;
1307                 m->m_nextpkt = NULL;
1308                 h = mtod(m, struct ip *);
1309                 if (h->ip_v == 4)
1310                         ip_output(m, NULL, NULL, 0, NULL, NULL);
1311 #ifdef INET6
1312                 else
1313                         ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1314 #endif
1315         }
1316
1317         /* Run table resize without holding any locks */
1318         if (new_buckets != 0)
1319                 resize_dynamic_table(chain, new_buckets);
1320 }
1321
1322 /*
1323  * Deletes all dynamic rules originated by given rule or all rules in
1324  * given set. Specify RESVD_SET to indicate set should not be used.
1325  * @chain - pointer to current ipfw rules chain
1326  * @rr - delete all states originated by rules in matched range.
1327  *
1328  * Function has to be called with IPFW_UH_WLOCK held.
1329  * Additionally, function assume that dynamic rule/set is
1330  * ALREADY deleted so no new states can be generated by
1331  * 'deleted' rules.
1332  */
1333 void
1334 ipfw_expire_dyn_rules(struct ip_fw_chain *chain, ipfw_range_tlv *rt)
1335 {
1336
1337         check_dyn_rules(chain, rt, 0, 0);
1338 }
1339
1340 /*
1341  * Check if rule contains at least one dynamic opcode.
1342  *
1343  * Returns 1 if such opcode is found, 0 otherwise.
1344  */
1345 int
1346 ipfw_is_dyn_rule(struct ip_fw *rule)
1347 {
1348         int cmdlen, l;
1349         ipfw_insn *cmd;
1350
1351         l = rule->cmd_len;
1352         cmd = rule->cmd;
1353         cmdlen = 0;
1354         for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) {
1355                 cmdlen = F_LEN(cmd);
1356
1357                 switch (cmd->opcode) {
1358                 case O_LIMIT:
1359                 case O_KEEP_STATE:
1360                 case O_PROBE_STATE:
1361                 case O_CHECK_STATE:
1362                         return (1);
1363                 }
1364         }
1365
1366         return (0);
1367 }
1368
1369 void
1370 ipfw_dyn_init(struct ip_fw_chain *chain)
1371 {
1372
1373         V_ipfw_dyn_v = NULL;
1374         V_dyn_buckets_max = 256; /* must be power of 2 */
1375         V_curr_dyn_buckets = 256; /* must be power of 2 */
1376  
1377         V_dyn_ack_lifetime = 300;
1378         V_dyn_syn_lifetime = 20;
1379         V_dyn_fin_lifetime = 1;
1380         V_dyn_rst_lifetime = 1;
1381         V_dyn_udp_lifetime = 10;
1382         V_dyn_short_lifetime = 5;
1383
1384         V_dyn_keepalive_interval = 20;
1385         V_dyn_keepalive_period = 5;
1386         V_dyn_keepalive = 1;    /* do send keepalives */
1387         V_dyn_keepalive_last = time_uptime;
1388         
1389         V_dyn_max = 16384; /* max # of dynamic rules */
1390
1391         V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1392             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1393             UMA_ALIGN_PTR, 0);
1394
1395         /* Enforce limit on dynamic rules */
1396         uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1397
1398         callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
1399
1400         /*
1401          * This can potentially be done on first dynamic rule
1402          * being added to chain.
1403          */
1404         resize_dynamic_table(chain, V_curr_dyn_buckets);
1405 }
1406
1407 void
1408 ipfw_dyn_uninit(int pass)
1409 {
1410         int i;
1411
1412         if (pass == 0) {
1413                 callout_drain(&V_ipfw_timeout);
1414                 return;
1415         }
1416
1417         if (V_ipfw_dyn_v != NULL) {
1418                 /*
1419                  * Skip deleting all dynamic states -
1420                  * uma_zdestroy() does this more efficiently;
1421                  */
1422
1423                 /* Destroy all mutexes */
1424                 for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1425                         IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1426                 free(V_ipfw_dyn_v, M_IPFW);
1427                 V_ipfw_dyn_v = NULL;
1428         }
1429
1430         uma_zdestroy(V_ipfw_dyn_rule_zone);
1431 }
1432
1433 #ifdef SYSCTL_NODE
1434 /*
1435  * Get/set maximum number of dynamic states in given VNET instance.
1436  */
1437 static int
1438 sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1439 {
1440         int error;
1441         unsigned int nstates;
1442
1443         nstates = V_dyn_max;
1444
1445         error = sysctl_handle_int(oidp, &nstates, 0, req);
1446         /* Read operation or some error */
1447         if ((error != 0) || (req->newptr == NULL))
1448                 return (error);
1449
1450         V_dyn_max = nstates;
1451         uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1452
1453         return (0);
1454 }
1455
1456 /*
1457  * Get current number of dynamic states in given VNET instance.
1458  */
1459 static int
1460 sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1461 {
1462         int error;
1463         unsigned int nstates;
1464
1465         nstates = DYN_COUNT;
1466
1467         error = sysctl_handle_int(oidp, &nstates, 0, req);
1468
1469         return (error);
1470 }
1471 #endif
1472
1473 /*
1474  * Returns size of dynamic states in legacy format
1475  */
1476 int
1477 ipfw_dyn_len(void)
1478 {
1479
1480         return (V_ipfw_dyn_v == NULL) ? 0 :
1481                 (DYN_COUNT * sizeof(ipfw_dyn_rule));
1482 }
1483
1484 /*
1485  * Returns number of dynamic states.
1486  * Used by dump format v1 (current).
1487  */
1488 int
1489 ipfw_dyn_get_count(void)
1490 {
1491
1492         return (V_ipfw_dyn_v == NULL) ? 0 : DYN_COUNT;
1493 }
1494
1495 static void
1496 export_dyn_rule(ipfw_dyn_rule *src, ipfw_dyn_rule *dst)
1497 {
1498
1499         memcpy(dst, src, sizeof(*src));
1500         memcpy(&(dst->rule), &(src->rule->rulenum), sizeof(src->rule->rulenum));
1501         /*
1502          * store set number into high word of
1503          * dst->rule pointer.
1504          */
1505         memcpy((char *)&dst->rule + sizeof(src->rule->rulenum),
1506             &(src->rule->set), sizeof(src->rule->set));
1507         /*
1508          * store a non-null value in "next".
1509          * The userland code will interpret a
1510          * NULL here as a marker
1511          * for the last dynamic rule.
1512          */
1513         memcpy(&dst->next, &dst, sizeof(dst));
1514         dst->expire =
1515             TIME_LEQ(dst->expire, time_uptime) ?  0 : dst->expire - time_uptime;
1516 }
1517
1518 /*
1519  * Fills int buffer given by @sd with dynamic states.
1520  * Used by dump format v1 (current).
1521  *
1522  * Returns 0 on success.
1523  */
1524 int
1525 ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd)
1526 {
1527         ipfw_dyn_rule *p;
1528         ipfw_obj_dyntlv *dst, *last;
1529         ipfw_obj_ctlv *ctlv;
1530         int i;
1531         size_t sz;
1532
1533         if (V_ipfw_dyn_v == NULL)
1534                 return (0);
1535
1536         IPFW_UH_RLOCK_ASSERT(chain);
1537
1538         ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv));
1539         if (ctlv == NULL)
1540                 return (ENOMEM);
1541         sz = sizeof(ipfw_obj_dyntlv);
1542         ctlv->head.type = IPFW_TLV_DYNSTATE_LIST;
1543         ctlv->objsize = sz;
1544         last = NULL;
1545
1546         for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1547                 IPFW_BUCK_LOCK(i);
1548                 for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1549                         dst = (ipfw_obj_dyntlv *)ipfw_get_sopt_space(sd, sz);
1550                         if (dst == NULL) {
1551                                 IPFW_BUCK_UNLOCK(i);
1552                                 return (ENOMEM);
1553                         }
1554
1555                         export_dyn_rule(p, &dst->state);
1556                         dst->head.length = sz;
1557                         dst->head.type = IPFW_TLV_DYN_ENT;
1558                         last = dst;
1559                 }
1560                 IPFW_BUCK_UNLOCK(i);
1561         }
1562
1563         if (last != NULL) /* mark last dynamic rule */
1564                 last->head.flags = IPFW_DF_LAST;
1565
1566         return (0);
1567 }
1568
1569 /*
1570  * Fill given buffer with dynamic states (legacy format).
1571  * IPFW_UH_RLOCK has to be held while calling.
1572  */
1573 void
1574 ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1575 {
1576         ipfw_dyn_rule *p, *last = NULL;
1577         char *bp;
1578         int i;
1579
1580         if (V_ipfw_dyn_v == NULL)
1581                 return;
1582         bp = *pbp;
1583
1584         IPFW_UH_RLOCK_ASSERT(chain);
1585
1586         for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1587                 IPFW_BUCK_LOCK(i);
1588                 for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1589                         if (bp + sizeof *p <= ep) {
1590                                 ipfw_dyn_rule *dst =
1591                                         (ipfw_dyn_rule *)bp;
1592
1593                                 export_dyn_rule(p, dst);
1594                                 last = dst;
1595                                 bp += sizeof(ipfw_dyn_rule);
1596                         }
1597                 }
1598                 IPFW_BUCK_UNLOCK(i);
1599         }
1600
1601         if (last != NULL) /* mark last dynamic rule */
1602                 bzero(&last->next, sizeof(last));
1603         *pbp = bp;
1604 }
1605 /* end of file */