]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netpfil/pf/pf_norm.c
Merge once more from ^/vendor/llvm-project/release-10.x, to get the
[FreeBSD/FreeBSD.git] / sys / netpfil / pf / pf_norm.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *      $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_pf.h"
37
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mbuf.h>
42 #include <sys/mutex.h>
43 #include <sys/refcount.h>
44 #include <sys/socket.h>
45
46 #include <net/if.h>
47 #include <net/vnet.h>
48 #include <net/pfvar.h>
49 #include <net/if_pflog.h>
50
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet6/ip6_var.h>
55 #include <netinet/tcp.h>
56 #include <netinet/tcp_fsm.h>
57 #include <netinet/tcp_seq.h>
58
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #endif /* INET6 */
62
63 struct pf_frent {
64         TAILQ_ENTRY(pf_frent)   fr_next;
65         struct mbuf     *fe_m;
66         uint16_t        fe_hdrlen;      /* ipv4 header length with ip options
67                                            ipv6, extension, fragment header */
68         uint16_t        fe_extoff;      /* last extension header offset or 0 */
69         uint16_t        fe_len;         /* fragment length */
70         uint16_t        fe_off;         /* fragment offset */
71         uint16_t        fe_mff;         /* more fragment flag */
72 };
73
74 struct pf_fragment_cmp {
75         struct pf_addr  frc_src;
76         struct pf_addr  frc_dst;
77         uint32_t        frc_id;
78         sa_family_t     frc_af;
79         uint8_t         frc_proto;
80 };
81
82 struct pf_fragment {
83         struct pf_fragment_cmp  fr_key;
84 #define fr_src  fr_key.frc_src
85 #define fr_dst  fr_key.frc_dst
86 #define fr_id   fr_key.frc_id
87 #define fr_af   fr_key.frc_af
88 #define fr_proto        fr_key.frc_proto
89
90         /* pointers to queue element */
91         struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS];
92         /* count entries between pointers */
93         uint8_t fr_entries[PF_FRAG_ENTRY_POINTS];
94         RB_ENTRY(pf_fragment) fr_entry;
95         TAILQ_ENTRY(pf_fragment) frag_next;
96         uint32_t        fr_timeout;
97         uint16_t        fr_maxlen;      /* maximum length of single fragment */
98         u_int16_t       fr_holes;       /* number of holes in the queue */
99         TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
100 };
101
102 struct pf_fragment_tag {
103         uint16_t        ft_hdrlen;      /* header length of reassembled pkt */
104         uint16_t        ft_extoff;      /* last extension header offset or 0 */
105         uint16_t        ft_maxlen;      /* maximum fragment payload length */
106         uint32_t        ft_id;          /* fragment id */
107 };
108
109 static struct mtx pf_frag_mtx;
110 MTX_SYSINIT(pf_frag_mtx, &pf_frag_mtx, "pf fragments", MTX_DEF);
111 #define PF_FRAG_LOCK()          mtx_lock(&pf_frag_mtx)
112 #define PF_FRAG_UNLOCK()        mtx_unlock(&pf_frag_mtx)
113 #define PF_FRAG_ASSERT()        mtx_assert(&pf_frag_mtx, MA_OWNED)
114
115 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);      /* XXX: shared with pfsync */
116
117 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
118 #define V_pf_frent_z    VNET(pf_frent_z)
119 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
120 #define V_pf_frag_z     VNET(pf_frag_z)
121
122 TAILQ_HEAD(pf_fragqueue, pf_fragment);
123 TAILQ_HEAD(pf_cachequeue, pf_fragment);
124 VNET_DEFINE_STATIC(struct pf_fragqueue, pf_fragqueue);
125 #define V_pf_fragqueue                  VNET(pf_fragqueue)
126 RB_HEAD(pf_frag_tree, pf_fragment);
127 VNET_DEFINE_STATIC(struct pf_frag_tree, pf_frag_tree);
128 #define V_pf_frag_tree                  VNET(pf_frag_tree)
129 static int               pf_frag_compare(struct pf_fragment *,
130                             struct pf_fragment *);
131 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
132 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
133
134 static void     pf_flush_fragments(void);
135 static void     pf_free_fragment(struct pf_fragment *);
136 static void     pf_remove_fragment(struct pf_fragment *);
137 static int      pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
138                     struct tcphdr *, int, sa_family_t);
139 static struct pf_frent *pf_create_fragment(u_short *);
140 static int      pf_frent_holes(struct pf_frent *frent);
141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
142                     struct pf_frag_tree *tree);
143 static inline int       pf_frent_index(struct pf_frent *);
144 static int      pf_frent_insert(struct pf_fragment *,
145                             struct pf_frent *, struct pf_frent *);
146 void                    pf_frent_remove(struct pf_fragment *,
147                             struct pf_frent *);
148 struct pf_frent         *pf_frent_previous(struct pf_fragment *,
149                             struct pf_frent *);
150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
151                     struct pf_frent *, u_short *);
152 static struct mbuf *pf_join_fragment(struct pf_fragment *);
153 #ifdef INET
154 static void     pf_scrub_ip(struct mbuf **, uint32_t, uint8_t, uint8_t);
155 static int      pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
156 #endif  /* INET */
157 #ifdef INET6
158 static int      pf_reassemble6(struct mbuf **, struct ip6_hdr *,
159                     struct ip6_frag *, uint16_t, uint16_t, u_short *);
160 static void     pf_scrub_ip6(struct mbuf **, uint8_t);
161 #endif  /* INET6 */
162
163 #define DPFPRINTF(x) do {                               \
164         if (V_pf_status.debug >= PF_DEBUG_MISC) {       \
165                 printf("%s: ", __func__);               \
166                 printf x ;                              \
167         }                                               \
168 } while(0)
169
170 #ifdef INET
171 static void
172 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
173 {
174
175         key->frc_src.v4 = ip->ip_src;
176         key->frc_dst.v4 = ip->ip_dst;
177         key->frc_af = AF_INET;
178         key->frc_proto = ip->ip_p;
179         key->frc_id = ip->ip_id;
180 }
181 #endif  /* INET */
182
183 void
184 pf_normalize_init(void)
185 {
186
187         V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
188             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
189         V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
190             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
191         V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
192             sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
193             UMA_ALIGN_PTR, 0);
194
195         V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
196         V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
197         uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
198         uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
199
200         TAILQ_INIT(&V_pf_fragqueue);
201 }
202
203 void
204 pf_normalize_cleanup(void)
205 {
206
207         uma_zdestroy(V_pf_state_scrub_z);
208         uma_zdestroy(V_pf_frent_z);
209         uma_zdestroy(V_pf_frag_z);
210 }
211
212 static int
213 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
214 {
215         int     diff;
216
217         if ((diff = a->fr_id - b->fr_id) != 0)
218                 return (diff);
219         if ((diff = a->fr_proto - b->fr_proto) != 0)
220                 return (diff);
221         if ((diff = a->fr_af - b->fr_af) != 0)
222                 return (diff);
223         if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
224                 return (diff);
225         if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
226                 return (diff);
227         return (0);
228 }
229
230 void
231 pf_purge_expired_fragments(void)
232 {
233         u_int32_t       expire = time_uptime -
234                             V_pf_default_rule.timeout[PFTM_FRAG];
235
236         pf_purge_fragments(expire);
237 }
238
239 void
240 pf_purge_fragments(uint32_t expire)
241 {
242         struct pf_fragment      *frag;
243
244         PF_FRAG_LOCK();
245         while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
246                 if (frag->fr_timeout > expire)
247                         break;
248
249                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
250                 pf_free_fragment(frag);
251         }
252
253         PF_FRAG_UNLOCK();
254 }
255
256 /*
257  * Try to flush old fragments to make space for new ones
258  */
259 static void
260 pf_flush_fragments(void)
261 {
262         struct pf_fragment      *frag;
263         int                      goal;
264
265         PF_FRAG_ASSERT();
266
267         goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
268         DPFPRINTF(("trying to free %d frag entriess\n", goal));
269         while (goal < uma_zone_get_cur(V_pf_frent_z)) {
270                 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
271                 if (frag)
272                         pf_free_fragment(frag);
273                 else
274                         break;
275         }
276 }
277
278 /* Frees the fragments and all associated entries */
279 static void
280 pf_free_fragment(struct pf_fragment *frag)
281 {
282         struct pf_frent         *frent;
283
284         PF_FRAG_ASSERT();
285
286         /* Free all fragments */
287         for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
288             frent = TAILQ_FIRST(&frag->fr_queue)) {
289                 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
290
291                 m_freem(frent->fe_m);
292                 uma_zfree(V_pf_frent_z, frent);
293         }
294
295         pf_remove_fragment(frag);
296 }
297
298 static struct pf_fragment *
299 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
300 {
301         struct pf_fragment      *frag;
302
303         PF_FRAG_ASSERT();
304
305         frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
306         if (frag != NULL) {
307                 /* XXX Are we sure we want to update the timeout? */
308                 frag->fr_timeout = time_uptime;
309                 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
310                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
311         }
312
313         return (frag);
314 }
315
316 /* Removes a fragment from the fragment queue and frees the fragment */
317 static void
318 pf_remove_fragment(struct pf_fragment *frag)
319 {
320
321         PF_FRAG_ASSERT();
322         KASSERT(frag, ("frag != NULL"));
323
324         RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
325         TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
326         uma_zfree(V_pf_frag_z, frag);
327 }
328
329 static struct pf_frent *
330 pf_create_fragment(u_short *reason)
331 {
332         struct pf_frent *frent;
333
334         PF_FRAG_ASSERT();
335
336         frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
337         if (frent == NULL) {
338                 pf_flush_fragments();
339                 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
340                 if (frent == NULL) {
341                         REASON_SET(reason, PFRES_MEMORY);
342                         return (NULL);
343                 }
344         }
345
346         return (frent);
347 }
348
349 /*
350  * Calculate the additional holes that were created in the fragment
351  * queue by inserting this fragment.  A fragment in the middle
352  * creates one more hole by splitting.  For each connected side,
353  * it loses one hole.
354  * Fragment entry must be in the queue when calling this function.
355  */
356 static int
357 pf_frent_holes(struct pf_frent *frent)
358 {
359         struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
360         struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
361         int holes = 1;
362
363         if (prev == NULL) {
364                 if (frent->fe_off == 0)
365                         holes--;
366         } else {
367                 KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
368                 if (frent->fe_off == prev->fe_off + prev->fe_len)
369                         holes--;
370         }
371         if (next == NULL) {
372                 if (!frent->fe_mff)
373                         holes--;
374         } else {
375                 KASSERT(frent->fe_mff, ("frent->fe_mff"));
376                 if (next->fe_off == frent->fe_off + frent->fe_len)
377                         holes--;
378         }
379         return holes;
380 }
381
382 static inline int
383 pf_frent_index(struct pf_frent *frent)
384 {
385         /*
386          * We have an array of 16 entry points to the queue.  A full size
387          * 65535 octet IP packet can have 8192 fragments.  So the queue
388          * traversal length is at most 512 and at most 16 entry points are
389          * checked.  We need 128 additional bytes on a 64 bit architecture.
390          */
391         CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
392             16 - 1);
393         CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
394
395         return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
396 }
397
398 static int
399 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
400     struct pf_frent *prev)
401 {
402         int index;
403
404         CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
405
406         /*
407          * A packet has at most 65536 octets.  With 16 entry points, each one
408          * spawns 4096 octets.  We limit these to 64 fragments each, which
409          * means on average every fragment must have at least 64 octets.
410          */
411         index = pf_frent_index(frent);
412         if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
413                 return ENOBUFS;
414         frag->fr_entries[index]++;
415
416         if (prev == NULL) {
417                 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
418         } else {
419                 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
420                     ("overlapping fragment"));
421                 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
422         }
423
424         if (frag->fr_firstoff[index] == NULL) {
425                 KASSERT(prev == NULL || pf_frent_index(prev) < index,
426                     ("prev == NULL || pf_frent_index(pref) < index"));
427                 frag->fr_firstoff[index] = frent;
428         } else {
429                 if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
430                         KASSERT(prev == NULL || pf_frent_index(prev) < index,
431                             ("prev == NULL || pf_frent_index(pref) < index"));
432                         frag->fr_firstoff[index] = frent;
433                 } else {
434                         KASSERT(prev != NULL, ("prev != NULL"));
435                         KASSERT(pf_frent_index(prev) == index,
436                             ("pf_frent_index(prev) == index"));
437                 }
438         }
439
440         frag->fr_holes += pf_frent_holes(frent);
441
442         return 0;
443 }
444
445 void
446 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
447 {
448 #ifdef INVARIANTS
449         struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
450 #endif
451         struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
452         int index;
453
454         frag->fr_holes -= pf_frent_holes(frent);
455
456         index = pf_frent_index(frent);
457         KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
458         if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
459                 if (next == NULL) {
460                         frag->fr_firstoff[index] = NULL;
461                 } else {
462                         KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
463                             ("overlapping fragment"));
464                         if (pf_frent_index(next) == index) {
465                                 frag->fr_firstoff[index] = next;
466                         } else {
467                                 frag->fr_firstoff[index] = NULL;
468                         }
469                 }
470         } else {
471                 KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
472                     ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
473                 KASSERT(prev != NULL, ("prev != NULL"));
474                 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
475                     ("overlapping fragment"));
476                 KASSERT(pf_frent_index(prev) == index,
477                     ("pf_frent_index(prev) == index"));
478         }
479
480         TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
481
482         KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
483         frag->fr_entries[index]--;
484 }
485
486 struct pf_frent *
487 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
488 {
489         struct pf_frent *prev, *next;
490         int index;
491
492         /*
493          * If there are no fragments after frag, take the final one.  Assume
494          * that the global queue is not empty.
495          */
496         prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
497         KASSERT(prev != NULL, ("prev != NULL"));
498         if (prev->fe_off <= frent->fe_off)
499                 return prev;
500         /*
501          * We want to find a fragment entry that is before frag, but still
502          * close to it.  Find the first fragment entry that is in the same
503          * entry point or in the first entry point after that.  As we have
504          * already checked that there are entries behind frag, this will
505          * succeed.
506          */
507         for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
508             index++) {
509                 prev = frag->fr_firstoff[index];
510                 if (prev != NULL)
511                         break;
512         }
513         KASSERT(prev != NULL, ("prev != NULL"));
514         /*
515          * In prev we may have a fragment from the same entry point that is
516          * before frent, or one that is just one position behind frent.
517          * In the latter case, we go back one step and have the predecessor.
518          * There may be none if the new fragment will be the first one.
519          */
520         if (prev->fe_off > frent->fe_off) {
521                 prev = TAILQ_PREV(prev, pf_fragq, fr_next);
522                 if (prev == NULL)
523                         return NULL;
524                 KASSERT(prev->fe_off <= frent->fe_off,
525                     ("prev->fe_off <= frent->fe_off"));
526                 return prev;
527         }
528         /*
529          * In prev is the first fragment of the entry point.  The offset
530          * of frag is behind it.  Find the closest previous fragment.
531          */
532         for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
533             next = TAILQ_NEXT(next, fr_next)) {
534                 if (next->fe_off > frent->fe_off)
535                         break;
536                 prev = next;
537         }
538         return prev;
539 }
540
541 static struct pf_fragment *
542 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
543     u_short *reason)
544 {
545         struct pf_frent         *after, *next, *prev;
546         struct pf_fragment      *frag;
547         uint16_t                total;
548
549         PF_FRAG_ASSERT();
550
551         /* No empty fragments. */
552         if (frent->fe_len == 0) {
553                 DPFPRINTF(("bad fragment: len 0\n"));
554                 goto bad_fragment;
555         }
556
557         /* All fragments are 8 byte aligned. */
558         if (frent->fe_mff && (frent->fe_len & 0x7)) {
559                 DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
560                 goto bad_fragment;
561         }
562
563         /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
564         if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
565                 DPFPRINTF(("bad fragment: max packet %d\n",
566                     frent->fe_off + frent->fe_len));
567                 goto bad_fragment;
568         }
569
570         DPFPRINTF((key->frc_af == AF_INET ?
571             "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
572             key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
573
574         /* Fully buffer all of the fragments in this fragment queue. */
575         frag = pf_find_fragment(key, &V_pf_frag_tree);
576
577         /* Create a new reassembly queue for this packet. */
578         if (frag == NULL) {
579                 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
580                 if (frag == NULL) {
581                         pf_flush_fragments();
582                         frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
583                         if (frag == NULL) {
584                                 REASON_SET(reason, PFRES_MEMORY);
585                                 goto drop_fragment;
586                         }
587                 }
588
589                 *(struct pf_fragment_cmp *)frag = *key;
590                 memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
591                 memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
592                 frag->fr_timeout = time_uptime;
593                 frag->fr_maxlen = frent->fe_len;
594                 frag->fr_holes = 1;
595                 TAILQ_INIT(&frag->fr_queue);
596
597                 RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
598                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
599
600                 /* We do not have a previous fragment, cannot fail. */
601                 pf_frent_insert(frag, frent, NULL);
602
603                 return (frag);
604         }
605
606         KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
607
608         /* Remember maximum fragment len for refragmentation. */
609         if (frent->fe_len > frag->fr_maxlen)
610                 frag->fr_maxlen = frent->fe_len;
611
612         /* Maximum data we have seen already. */
613         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
614                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
615
616         /* Non terminal fragments must have more fragments flag. */
617         if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
618                 goto bad_fragment;
619
620         /* Check if we saw the last fragment already. */
621         if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
622                 if (frent->fe_off + frent->fe_len > total ||
623                     (frent->fe_off + frent->fe_len == total && frent->fe_mff))
624                         goto bad_fragment;
625         } else {
626                 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
627                         goto bad_fragment;
628         }
629
630         /* Find neighbors for newly inserted fragment */
631         prev = pf_frent_previous(frag, frent);
632         if (prev == NULL) {
633                 after = TAILQ_FIRST(&frag->fr_queue);
634                 KASSERT(after != NULL, ("after != NULL"));
635         } else {
636                 after = TAILQ_NEXT(prev, fr_next);
637         }
638
639         if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
640                 uint16_t precut;
641
642                 precut = prev->fe_off + prev->fe_len - frent->fe_off;
643                 if (precut >= frent->fe_len)
644                         goto bad_fragment;
645                 DPFPRINTF(("overlap -%d\n", precut));
646                 m_adj(frent->fe_m, precut);
647                 frent->fe_off += precut;
648                 frent->fe_len -= precut;
649         }
650
651         for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
652             after = next) {
653                 uint16_t aftercut;
654
655                 aftercut = frent->fe_off + frent->fe_len - after->fe_off;
656                 DPFPRINTF(("adjust overlap %d\n", aftercut));
657                 if (aftercut < after->fe_len) {
658                         m_adj(after->fe_m, aftercut);
659                         after->fe_off += aftercut;
660                         after->fe_len -= aftercut;
661                         break;
662                 }
663
664                 /* This fragment is completely overlapped, lose it. */
665                 next = TAILQ_NEXT(after, fr_next);
666                 pf_frent_remove(frag, after);
667                 m_freem(after->fe_m);
668                 uma_zfree(V_pf_frent_z, after);
669         }
670
671         /* If part of the queue gets too long, there is not way to recover. */
672         if (pf_frent_insert(frag, frent, prev)) {
673                 DPFPRINTF(("fragment queue limit exceeded\n"));
674                 goto bad_fragment;
675         }
676
677         return (frag);
678
679 bad_fragment:
680         REASON_SET(reason, PFRES_FRAG);
681 drop_fragment:
682         uma_zfree(V_pf_frent_z, frent);
683         return (NULL);
684 }
685
686 static struct mbuf *
687 pf_join_fragment(struct pf_fragment *frag)
688 {
689         struct mbuf *m, *m2;
690         struct pf_frent *frent, *next;
691
692         frent = TAILQ_FIRST(&frag->fr_queue);
693         next = TAILQ_NEXT(frent, fr_next);
694
695         m = frent->fe_m;
696         m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
697         uma_zfree(V_pf_frent_z, frent);
698         for (frent = next; frent != NULL; frent = next) {
699                 next = TAILQ_NEXT(frent, fr_next);
700
701                 m2 = frent->fe_m;
702                 /* Strip off ip header. */
703                 m_adj(m2, frent->fe_hdrlen);
704                 /* Strip off any trailing bytes. */
705                 m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
706
707                 uma_zfree(V_pf_frent_z, frent);
708                 m_cat(m, m2);
709         }
710
711         /* Remove from fragment queue. */
712         pf_remove_fragment(frag);
713
714         return (m);
715 }
716
717 #ifdef INET
718 static int
719 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
720 {
721         struct mbuf             *m = *m0;
722         struct pf_frent         *frent;
723         struct pf_fragment      *frag;
724         struct pf_fragment_cmp  key;
725         uint16_t                total, hdrlen;
726
727         /* Get an entry for the fragment queue */
728         if ((frent = pf_create_fragment(reason)) == NULL)
729                 return (PF_DROP);
730
731         frent->fe_m = m;
732         frent->fe_hdrlen = ip->ip_hl << 2;
733         frent->fe_extoff = 0;
734         frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
735         frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
736         frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
737
738         pf_ip2key(ip, dir, &key);
739
740         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
741                 return (PF_DROP);
742
743         /* The mbuf is part of the fragment entry, no direct free or access */
744         m = *m0 = NULL;
745
746         if (frag->fr_holes) {
747                 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
748                 return (PF_PASS);  /* drop because *m0 is NULL, no error */
749         }
750
751         /* We have all the data */
752         frent = TAILQ_FIRST(&frag->fr_queue);
753         KASSERT(frent != NULL, ("frent != NULL"));
754         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
755                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
756         hdrlen = frent->fe_hdrlen;
757
758         m = *m0 = pf_join_fragment(frag);
759         frag = NULL;
760
761         if (m->m_flags & M_PKTHDR) {
762                 int plen = 0;
763                 for (m = *m0; m; m = m->m_next)
764                         plen += m->m_len;
765                 m = *m0;
766                 m->m_pkthdr.len = plen;
767         }
768
769         ip = mtod(m, struct ip *);
770         ip->ip_len = htons(hdrlen + total);
771         ip->ip_off &= ~(IP_MF|IP_OFFMASK);
772
773         if (hdrlen + total > IP_MAXPACKET) {
774                 DPFPRINTF(("drop: too big: %d\n", total));
775                 ip->ip_len = 0;
776                 REASON_SET(reason, PFRES_SHORT);
777                 /* PF_DROP requires a valid mbuf *m0 in pf_test() */
778                 return (PF_DROP);
779         }
780
781         DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
782         return (PF_PASS);
783 }
784 #endif  /* INET */
785
786 #ifdef INET6
787 static int
788 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
789     uint16_t hdrlen, uint16_t extoff, u_short *reason)
790 {
791         struct mbuf             *m = *m0;
792         struct pf_frent         *frent;
793         struct pf_fragment      *frag;
794         struct pf_fragment_cmp   key;
795         struct m_tag            *mtag;
796         struct pf_fragment_tag  *ftag;
797         int                      off;
798         uint32_t                 frag_id;
799         uint16_t                 total, maxlen;
800         uint8_t                  proto;
801
802         PF_FRAG_LOCK();
803
804         /* Get an entry for the fragment queue. */
805         if ((frent = pf_create_fragment(reason)) == NULL) {
806                 PF_FRAG_UNLOCK();
807                 return (PF_DROP);
808         }
809
810         frent->fe_m = m;
811         frent->fe_hdrlen = hdrlen;
812         frent->fe_extoff = extoff;
813         frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
814         frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
815         frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
816
817         key.frc_src.v6 = ip6->ip6_src;
818         key.frc_dst.v6 = ip6->ip6_dst;
819         key.frc_af = AF_INET6;
820         /* Only the first fragment's protocol is relevant. */
821         key.frc_proto = 0;
822         key.frc_id = fraghdr->ip6f_ident;
823
824         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
825                 PF_FRAG_UNLOCK();
826                 return (PF_DROP);
827         }
828
829         /* The mbuf is part of the fragment entry, no direct free or access. */
830         m = *m0 = NULL;
831
832         if (frag->fr_holes) {
833                 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
834                     frag->fr_holes));
835                 PF_FRAG_UNLOCK();
836                 return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
837         }
838
839         /* We have all the data. */
840         frent = TAILQ_FIRST(&frag->fr_queue);
841         KASSERT(frent != NULL, ("frent != NULL"));
842         extoff = frent->fe_extoff;
843         maxlen = frag->fr_maxlen;
844         frag_id = frag->fr_id;
845         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
846                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
847         hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
848
849         m = *m0 = pf_join_fragment(frag);
850         frag = NULL;
851
852         PF_FRAG_UNLOCK();
853
854         /* Take protocol from first fragment header. */
855         m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
856         KASSERT(m, ("%s: short mbuf chain", __func__));
857         proto = *(mtod(m, caddr_t) + off);
858         m = *m0;
859
860         /* Delete frag6 header */
861         if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
862                 goto fail;
863
864         if (m->m_flags & M_PKTHDR) {
865                 int plen = 0;
866                 for (m = *m0; m; m = m->m_next)
867                         plen += m->m_len;
868                 m = *m0;
869                 m->m_pkthdr.len = plen;
870         }
871
872         if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
873             M_NOWAIT)) == NULL)
874                 goto fail;
875         ftag = (struct pf_fragment_tag *)(mtag + 1);
876         ftag->ft_hdrlen = hdrlen;
877         ftag->ft_extoff = extoff;
878         ftag->ft_maxlen = maxlen;
879         ftag->ft_id = frag_id;
880         m_tag_prepend(m, mtag);
881
882         ip6 = mtod(m, struct ip6_hdr *);
883         ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
884         if (extoff) {
885                 /* Write protocol into next field of last extension header. */
886                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
887                     &off);
888                 KASSERT(m, ("%s: short mbuf chain", __func__));
889                 *(mtod(m, char *) + off) = proto;
890                 m = *m0;
891         } else
892                 ip6->ip6_nxt = proto;
893
894         if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
895                 DPFPRINTF(("drop: too big: %d\n", total));
896                 ip6->ip6_plen = 0;
897                 REASON_SET(reason, PFRES_SHORT);
898                 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
899                 return (PF_DROP);
900         }
901
902         DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
903         return (PF_PASS);
904
905 fail:
906         REASON_SET(reason, PFRES_MEMORY);
907         /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
908         return (PF_DROP);
909 }
910 #endif  /* INET6 */
911
912 #ifdef INET6
913 int
914 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
915 {
916         struct mbuf             *m = *m0, *t;
917         struct pf_fragment_tag  *ftag = (struct pf_fragment_tag *)(mtag + 1);
918         struct pf_pdesc          pd;
919         uint32_t                 frag_id;
920         uint16_t                 hdrlen, extoff, maxlen;
921         uint8_t                  proto;
922         int                      error, action;
923
924         hdrlen = ftag->ft_hdrlen;
925         extoff = ftag->ft_extoff;
926         maxlen = ftag->ft_maxlen;
927         frag_id = ftag->ft_id;
928         m_tag_delete(m, mtag);
929         mtag = NULL;
930         ftag = NULL;
931
932         if (extoff) {
933                 int off;
934
935                 /* Use protocol from next field of last extension header */
936                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
937                     &off);
938                 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
939                 proto = *(mtod(m, caddr_t) + off);
940                 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
941                 m = *m0;
942         } else {
943                 struct ip6_hdr *hdr;
944
945                 hdr = mtod(m, struct ip6_hdr *);
946                 proto = hdr->ip6_nxt;
947                 hdr->ip6_nxt = IPPROTO_FRAGMENT;
948         }
949
950         /* The MTU must be a multiple of 8 bytes, or we risk doing the
951          * fragmentation wrong. */
952         maxlen = maxlen & ~7;
953
954         /*
955          * Maxlen may be less than 8 if there was only a single
956          * fragment.  As it was fragmented before, add a fragment
957          * header also for a single fragment.  If total or maxlen
958          * is less than 8, ip6_fragment() will return EMSGSIZE and
959          * we drop the packet.
960          */
961         error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
962         m = (*m0)->m_nextpkt;
963         (*m0)->m_nextpkt = NULL;
964         if (error == 0) {
965                 /* The first mbuf contains the unfragmented packet. */
966                 m_freem(*m0);
967                 *m0 = NULL;
968                 action = PF_PASS;
969         } else {
970                 /* Drop expects an mbuf to free. */
971                 DPFPRINTF(("refragment error %d\n", error));
972                 action = PF_DROP;
973         }
974         for (t = m; m; m = t) {
975                 t = m->m_nextpkt;
976                 m->m_nextpkt = NULL;
977                 m->m_flags |= M_SKIP_FIREWALL;
978                 memset(&pd, 0, sizeof(pd));
979                 pd.pf_mtag = pf_find_mtag(m);
980                 if (error == 0)
981                         ip6_forward(m, 0);
982                 else
983                         m_freem(m);
984         }
985
986         return (action);
987 }
988 #endif /* INET6 */
989
990 #ifdef INET
991 int
992 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
993     struct pf_pdesc *pd)
994 {
995         struct mbuf             *m = *m0;
996         struct pf_rule          *r;
997         struct ip               *h = mtod(m, struct ip *);
998         int                      mff = (ntohs(h->ip_off) & IP_MF);
999         int                      hlen = h->ip_hl << 2;
1000         u_int16_t                fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1001         u_int16_t                max;
1002         int                      ip_len;
1003         int                      ip_off;
1004         int                      tag = -1;
1005         int                      verdict;
1006
1007         PF_RULES_RASSERT();
1008
1009         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1010         while (r != NULL) {
1011                 r->evaluations++;
1012                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
1013                         r = r->skip[PF_SKIP_IFP].ptr;
1014                 else if (r->direction && r->direction != dir)
1015                         r = r->skip[PF_SKIP_DIR].ptr;
1016                 else if (r->af && r->af != AF_INET)
1017                         r = r->skip[PF_SKIP_AF].ptr;
1018                 else if (r->proto && r->proto != h->ip_p)
1019                         r = r->skip[PF_SKIP_PROTO].ptr;
1020                 else if (PF_MISMATCHAW(&r->src.addr,
1021                     (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1022                     r->src.neg, kif, M_GETFIB(m)))
1023                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1024                 else if (PF_MISMATCHAW(&r->dst.addr,
1025                     (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1026                     r->dst.neg, NULL, M_GETFIB(m)))
1027                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1028                 else if (r->match_tag && !pf_match_tag(m, r, &tag,
1029                     pd->pf_mtag ? pd->pf_mtag->tag : 0))
1030                         r = TAILQ_NEXT(r, entries);
1031                 else
1032                         break;
1033         }
1034
1035         if (r == NULL || r->action == PF_NOSCRUB)
1036                 return (PF_PASS);
1037         else {
1038                 r->packets[dir == PF_OUT]++;
1039                 r->bytes[dir == PF_OUT] += pd->tot_len;
1040         }
1041
1042         /* Check for illegal packets */
1043         if (hlen < (int)sizeof(struct ip)) {
1044                 REASON_SET(reason, PFRES_NORM);
1045                 goto drop;
1046         }
1047
1048         if (hlen > ntohs(h->ip_len)) {
1049                 REASON_SET(reason, PFRES_NORM);
1050                 goto drop;
1051         }
1052
1053         /* Clear IP_DF if the rule uses the no-df option */
1054         if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1055                 u_int16_t ip_off = h->ip_off;
1056
1057                 h->ip_off &= htons(~IP_DF);
1058                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1059         }
1060
1061         /* We will need other tests here */
1062         if (!fragoff && !mff)
1063                 goto no_fragment;
1064
1065         /* We're dealing with a fragment now. Don't allow fragments
1066          * with IP_DF to enter the cache. If the flag was cleared by
1067          * no-df above, fine. Otherwise drop it.
1068          */
1069         if (h->ip_off & htons(IP_DF)) {
1070                 DPFPRINTF(("IP_DF\n"));
1071                 goto bad;
1072         }
1073
1074         ip_len = ntohs(h->ip_len) - hlen;
1075         ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1076
1077         /* All fragments are 8 byte aligned */
1078         if (mff && (ip_len & 0x7)) {
1079                 DPFPRINTF(("mff and %d\n", ip_len));
1080                 goto bad;
1081         }
1082
1083         /* Respect maximum length */
1084         if (fragoff + ip_len > IP_MAXPACKET) {
1085                 DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1086                 goto bad;
1087         }
1088         max = fragoff + ip_len;
1089
1090         /* Fully buffer all of the fragments
1091          * Might return a completely reassembled mbuf, or NULL */
1092         PF_FRAG_LOCK();
1093         DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1094         verdict = pf_reassemble(m0, h, dir, reason);
1095         PF_FRAG_UNLOCK();
1096
1097         if (verdict != PF_PASS)
1098                 return (PF_DROP);
1099
1100         m = *m0;
1101         if (m == NULL)
1102                 return (PF_DROP);
1103
1104         h = mtod(m, struct ip *);
1105
1106  no_fragment:
1107         /* At this point, only IP_DF is allowed in ip_off */
1108         if (h->ip_off & ~htons(IP_DF)) {
1109                 u_int16_t ip_off = h->ip_off;
1110
1111                 h->ip_off &= htons(IP_DF);
1112                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1113         }
1114
1115         pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
1116
1117         return (PF_PASS);
1118
1119  bad:
1120         DPFPRINTF(("dropping bad fragment\n"));
1121         REASON_SET(reason, PFRES_FRAG);
1122  drop:
1123         if (r != NULL && r->log)
1124                 PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1125                     1);
1126
1127         return (PF_DROP);
1128 }
1129 #endif
1130
1131 #ifdef INET6
1132 int
1133 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1134     u_short *reason, struct pf_pdesc *pd)
1135 {
1136         struct mbuf             *m = *m0;
1137         struct pf_rule          *r;
1138         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
1139         int                      extoff;
1140         int                      off;
1141         struct ip6_ext           ext;
1142         struct ip6_opt           opt;
1143         struct ip6_frag          frag;
1144         u_int32_t                plen;
1145         int                      optend;
1146         int                      ooff;
1147         u_int8_t                 proto;
1148         int                      terminal;
1149
1150         PF_RULES_RASSERT();
1151
1152         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1153         while (r != NULL) {
1154                 r->evaluations++;
1155                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
1156                         r = r->skip[PF_SKIP_IFP].ptr;
1157                 else if (r->direction && r->direction != dir)
1158                         r = r->skip[PF_SKIP_DIR].ptr;
1159                 else if (r->af && r->af != AF_INET6)
1160                         r = r->skip[PF_SKIP_AF].ptr;
1161 #if 0 /* header chain! */
1162                 else if (r->proto && r->proto != h->ip6_nxt)
1163                         r = r->skip[PF_SKIP_PROTO].ptr;
1164 #endif
1165                 else if (PF_MISMATCHAW(&r->src.addr,
1166                     (struct pf_addr *)&h->ip6_src, AF_INET6,
1167                     r->src.neg, kif, M_GETFIB(m)))
1168                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1169                 else if (PF_MISMATCHAW(&r->dst.addr,
1170                     (struct pf_addr *)&h->ip6_dst, AF_INET6,
1171                     r->dst.neg, NULL, M_GETFIB(m)))
1172                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1173                 else
1174                         break;
1175         }
1176
1177         if (r == NULL || r->action == PF_NOSCRUB)
1178                 return (PF_PASS);
1179         else {
1180                 r->packets[dir == PF_OUT]++;
1181                 r->bytes[dir == PF_OUT] += pd->tot_len;
1182         }
1183
1184         /* Check for illegal packets */
1185         if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1186                 goto drop;
1187
1188         plen = ntohs(h->ip6_plen);
1189         /* jumbo payload option not supported */
1190         if (plen == 0)
1191                 goto drop;
1192
1193         extoff = 0;
1194         off = sizeof(struct ip6_hdr);
1195         proto = h->ip6_nxt;
1196         terminal = 0;
1197         do {
1198                 switch (proto) {
1199                 case IPPROTO_FRAGMENT:
1200                         goto fragment;
1201                         break;
1202                 case IPPROTO_AH:
1203                 case IPPROTO_ROUTING:
1204                 case IPPROTO_DSTOPTS:
1205                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1206                             NULL, AF_INET6))
1207                                 goto shortpkt;
1208                         extoff = off;
1209                         if (proto == IPPROTO_AH)
1210                                 off += (ext.ip6e_len + 2) * 4;
1211                         else
1212                                 off += (ext.ip6e_len + 1) * 8;
1213                         proto = ext.ip6e_nxt;
1214                         break;
1215                 case IPPROTO_HOPOPTS:
1216                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1217                             NULL, AF_INET6))
1218                                 goto shortpkt;
1219                         extoff = off;
1220                         optend = off + (ext.ip6e_len + 1) * 8;
1221                         ooff = off + sizeof(ext);
1222                         do {
1223                                 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1224                                     sizeof(opt.ip6o_type), NULL, NULL,
1225                                     AF_INET6))
1226                                         goto shortpkt;
1227                                 if (opt.ip6o_type == IP6OPT_PAD1) {
1228                                         ooff++;
1229                                         continue;
1230                                 }
1231                                 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1232                                     NULL, NULL, AF_INET6))
1233                                         goto shortpkt;
1234                                 if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1235                                         goto drop;
1236                                 if (opt.ip6o_type == IP6OPT_JUMBO)
1237                                         goto drop;
1238                                 ooff += sizeof(opt) + opt.ip6o_len;
1239                         } while (ooff < optend);
1240
1241                         off = optend;
1242                         proto = ext.ip6e_nxt;
1243                         break;
1244                 default:
1245                         terminal = 1;
1246                         break;
1247                 }
1248         } while (!terminal);
1249
1250         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1251                 goto shortpkt;
1252
1253         pf_scrub_ip6(&m, r->min_ttl);
1254
1255         return (PF_PASS);
1256
1257  fragment:
1258         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1259                 goto shortpkt;
1260
1261         if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1262                 goto shortpkt;
1263
1264         /* Offset now points to data portion. */
1265         off += sizeof(frag);
1266
1267         /* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1268         if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1269                 return (PF_DROP);
1270         m = *m0;
1271         if (m == NULL)
1272                 return (PF_DROP);
1273
1274         pd->flags |= PFDESC_IP_REAS;
1275         return (PF_PASS);
1276
1277  shortpkt:
1278         REASON_SET(reason, PFRES_SHORT);
1279         if (r != NULL && r->log)
1280                 PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1281                     1);
1282         return (PF_DROP);
1283
1284  drop:
1285         REASON_SET(reason, PFRES_NORM);
1286         if (r != NULL && r->log)
1287                 PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1288                     1);
1289         return (PF_DROP);
1290 }
1291 #endif /* INET6 */
1292
1293 int
1294 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1295     int off, void *h, struct pf_pdesc *pd)
1296 {
1297         struct pf_rule  *r, *rm = NULL;
1298         struct tcphdr   *th = pd->hdr.tcp;
1299         int              rewrite = 0;
1300         u_short          reason;
1301         u_int8_t         flags;
1302         sa_family_t      af = pd->af;
1303
1304         PF_RULES_RASSERT();
1305
1306         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1307         while (r != NULL) {
1308                 r->evaluations++;
1309                 if (pfi_kif_match(r->kif, kif) == r->ifnot)
1310                         r = r->skip[PF_SKIP_IFP].ptr;
1311                 else if (r->direction && r->direction != dir)
1312                         r = r->skip[PF_SKIP_DIR].ptr;
1313                 else if (r->af && r->af != af)
1314                         r = r->skip[PF_SKIP_AF].ptr;
1315                 else if (r->proto && r->proto != pd->proto)
1316                         r = r->skip[PF_SKIP_PROTO].ptr;
1317                 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1318                     r->src.neg, kif, M_GETFIB(m)))
1319                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1320                 else if (r->src.port_op && !pf_match_port(r->src.port_op,
1321                             r->src.port[0], r->src.port[1], th->th_sport))
1322                         r = r->skip[PF_SKIP_SRC_PORT].ptr;
1323                 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1324                     r->dst.neg, NULL, M_GETFIB(m)))
1325                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1326                 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1327                             r->dst.port[0], r->dst.port[1], th->th_dport))
1328                         r = r->skip[PF_SKIP_DST_PORT].ptr;
1329                 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1330                             pf_osfp_fingerprint(pd, m, off, th),
1331                             r->os_fingerprint))
1332                         r = TAILQ_NEXT(r, entries);
1333                 else {
1334                         rm = r;
1335                         break;
1336                 }
1337         }
1338
1339         if (rm == NULL || rm->action == PF_NOSCRUB)
1340                 return (PF_PASS);
1341         else {
1342                 r->packets[dir == PF_OUT]++;
1343                 r->bytes[dir == PF_OUT] += pd->tot_len;
1344         }
1345
1346         if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1347                 pd->flags |= PFDESC_TCP_NORM;
1348
1349         flags = th->th_flags;
1350         if (flags & TH_SYN) {
1351                 /* Illegal packet */
1352                 if (flags & TH_RST)
1353                         goto tcp_drop;
1354
1355                 if (flags & TH_FIN)
1356                         goto tcp_drop;
1357         } else {
1358                 /* Illegal packet */
1359                 if (!(flags & (TH_ACK|TH_RST)))
1360                         goto tcp_drop;
1361         }
1362
1363         if (!(flags & TH_ACK)) {
1364                 /* These flags are only valid if ACK is set */
1365                 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1366                         goto tcp_drop;
1367         }
1368
1369         /* Check for illegal header length */
1370         if (th->th_off < (sizeof(struct tcphdr) >> 2))
1371                 goto tcp_drop;
1372
1373         /* If flags changed, or reserved data set, then adjust */
1374         if (flags != th->th_flags || th->th_x2 != 0) {
1375                 u_int16_t       ov, nv;
1376
1377                 ov = *(u_int16_t *)(&th->th_ack + 1);
1378                 th->th_flags = flags;
1379                 th->th_x2 = 0;
1380                 nv = *(u_int16_t *)(&th->th_ack + 1);
1381
1382                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1383                 rewrite = 1;
1384         }
1385
1386         /* Remove urgent pointer, if TH_URG is not set */
1387         if (!(flags & TH_URG) && th->th_urp) {
1388                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1389                     0, 0);
1390                 th->th_urp = 0;
1391                 rewrite = 1;
1392         }
1393
1394         /* Process options */
1395         if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1396                 rewrite = 1;
1397
1398         /* copy back packet headers if we sanitized */
1399         if (rewrite)
1400                 m_copyback(m, off, sizeof(*th), (caddr_t)th);
1401
1402         return (PF_PASS);
1403
1404  tcp_drop:
1405         REASON_SET(&reason, PFRES_NORM);
1406         if (rm != NULL && r->log)
1407                 PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1408                     1);
1409         return (PF_DROP);
1410 }
1411
1412 int
1413 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1414     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1415 {
1416         u_int32_t tsval, tsecr;
1417         u_int8_t hdr[60];
1418         u_int8_t *opt;
1419
1420         KASSERT((src->scrub == NULL),
1421             ("pf_normalize_tcp_init: src->scrub != NULL"));
1422
1423         src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1424         if (src->scrub == NULL)
1425                 return (1);
1426
1427         switch (pd->af) {
1428 #ifdef INET
1429         case AF_INET: {
1430                 struct ip *h = mtod(m, struct ip *);
1431                 src->scrub->pfss_ttl = h->ip_ttl;
1432                 break;
1433         }
1434 #endif /* INET */
1435 #ifdef INET6
1436         case AF_INET6: {
1437                 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1438                 src->scrub->pfss_ttl = h->ip6_hlim;
1439                 break;
1440         }
1441 #endif /* INET6 */
1442         }
1443
1444
1445         /*
1446          * All normalizations below are only begun if we see the start of
1447          * the connections.  They must all set an enabled bit in pfss_flags
1448          */
1449         if ((th->th_flags & TH_SYN) == 0)
1450                 return (0);
1451
1452
1453         if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1454             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1455                 /* Diddle with TCP options */
1456                 int hlen;
1457                 opt = hdr + sizeof(struct tcphdr);
1458                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1459                 while (hlen >= TCPOLEN_TIMESTAMP) {
1460                         switch (*opt) {
1461                         case TCPOPT_EOL:        /* FALLTHROUGH */
1462                         case TCPOPT_NOP:
1463                                 opt++;
1464                                 hlen--;
1465                                 break;
1466                         case TCPOPT_TIMESTAMP:
1467                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1468                                         src->scrub->pfss_flags |=
1469                                             PFSS_TIMESTAMP;
1470                                         src->scrub->pfss_ts_mod =
1471                                             htonl(arc4random());
1472
1473                                         /* note PFSS_PAWS not set yet */
1474                                         memcpy(&tsval, &opt[2],
1475                                             sizeof(u_int32_t));
1476                                         memcpy(&tsecr, &opt[6],
1477                                             sizeof(u_int32_t));
1478                                         src->scrub->pfss_tsval0 = ntohl(tsval);
1479                                         src->scrub->pfss_tsval = ntohl(tsval);
1480                                         src->scrub->pfss_tsecr = ntohl(tsecr);
1481                                         getmicrouptime(&src->scrub->pfss_last);
1482                                 }
1483                                 /* FALLTHROUGH */
1484                         default:
1485                                 hlen -= MAX(opt[1], 2);
1486                                 opt += MAX(opt[1], 2);
1487                                 break;
1488                         }
1489                 }
1490         }
1491
1492         return (0);
1493 }
1494
1495 void
1496 pf_normalize_tcp_cleanup(struct pf_state *state)
1497 {
1498         if (state->src.scrub)
1499                 uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1500         if (state->dst.scrub)
1501                 uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1502
1503         /* Someday... flush the TCP segment reassembly descriptors. */
1504 }
1505
1506 int
1507 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1508     u_short *reason, struct tcphdr *th, struct pf_state *state,
1509     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1510 {
1511         struct timeval uptime;
1512         u_int32_t tsval, tsecr;
1513         u_int tsval_from_last;
1514         u_int8_t hdr[60];
1515         u_int8_t *opt;
1516         int copyback = 0;
1517         int got_ts = 0;
1518
1519         KASSERT((src->scrub || dst->scrub),
1520             ("%s: src->scrub && dst->scrub!", __func__));
1521
1522         /*
1523          * Enforce the minimum TTL seen for this connection.  Negate a common
1524          * technique to evade an intrusion detection system and confuse
1525          * firewall state code.
1526          */
1527         switch (pd->af) {
1528 #ifdef INET
1529         case AF_INET: {
1530                 if (src->scrub) {
1531                         struct ip *h = mtod(m, struct ip *);
1532                         if (h->ip_ttl > src->scrub->pfss_ttl)
1533                                 src->scrub->pfss_ttl = h->ip_ttl;
1534                         h->ip_ttl = src->scrub->pfss_ttl;
1535                 }
1536                 break;
1537         }
1538 #endif /* INET */
1539 #ifdef INET6
1540         case AF_INET6: {
1541                 if (src->scrub) {
1542                         struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1543                         if (h->ip6_hlim > src->scrub->pfss_ttl)
1544                                 src->scrub->pfss_ttl = h->ip6_hlim;
1545                         h->ip6_hlim = src->scrub->pfss_ttl;
1546                 }
1547                 break;
1548         }
1549 #endif /* INET6 */
1550         }
1551
1552         if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1553             ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1554             (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1555             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1556                 /* Diddle with TCP options */
1557                 int hlen;
1558                 opt = hdr + sizeof(struct tcphdr);
1559                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1560                 while (hlen >= TCPOLEN_TIMESTAMP) {
1561                         switch (*opt) {
1562                         case TCPOPT_EOL:        /* FALLTHROUGH */
1563                         case TCPOPT_NOP:
1564                                 opt++;
1565                                 hlen--;
1566                                 break;
1567                         case TCPOPT_TIMESTAMP:
1568                                 /* Modulate the timestamps.  Can be used for
1569                                  * NAT detection, OS uptime determination or
1570                                  * reboot detection.
1571                                  */
1572
1573                                 if (got_ts) {
1574                                         /* Huh?  Multiple timestamps!? */
1575                                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
1576                                                 DPFPRINTF(("multiple TS??\n"));
1577                                                 pf_print_state(state);
1578                                                 printf("\n");
1579                                         }
1580                                         REASON_SET(reason, PFRES_TS);
1581                                         return (PF_DROP);
1582                                 }
1583                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1584                                         memcpy(&tsval, &opt[2],
1585                                             sizeof(u_int32_t));
1586                                         if (tsval && src->scrub &&
1587                                             (src->scrub->pfss_flags &
1588                                             PFSS_TIMESTAMP)) {
1589                                                 tsval = ntohl(tsval);
1590                                                 pf_change_proto_a(m, &opt[2],
1591                                                     &th->th_sum,
1592                                                     htonl(tsval +
1593                                                     src->scrub->pfss_ts_mod),
1594                                                     0);
1595                                                 copyback = 1;
1596                                         }
1597
1598                                         /* Modulate TS reply iff valid (!0) */
1599                                         memcpy(&tsecr, &opt[6],
1600                                             sizeof(u_int32_t));
1601                                         if (tsecr && dst->scrub &&
1602                                             (dst->scrub->pfss_flags &
1603                                             PFSS_TIMESTAMP)) {
1604                                                 tsecr = ntohl(tsecr)
1605                                                     - dst->scrub->pfss_ts_mod;
1606                                                 pf_change_proto_a(m, &opt[6],
1607                                                     &th->th_sum, htonl(tsecr),
1608                                                     0);
1609                                                 copyback = 1;
1610                                         }
1611                                         got_ts = 1;
1612                                 }
1613                                 /* FALLTHROUGH */
1614                         default:
1615                                 hlen -= MAX(opt[1], 2);
1616                                 opt += MAX(opt[1], 2);
1617                                 break;
1618                         }
1619                 }
1620                 if (copyback) {
1621                         /* Copyback the options, caller copys back header */
1622                         *writeback = 1;
1623                         m_copyback(m, off + sizeof(struct tcphdr),
1624                             (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1625                             sizeof(struct tcphdr));
1626                 }
1627         }
1628
1629
1630         /*
1631          * Must invalidate PAWS checks on connections idle for too long.
1632          * The fastest allowed timestamp clock is 1ms.  That turns out to
1633          * be about 24 days before it wraps.  XXX Right now our lowerbound
1634          * TS echo check only works for the first 12 days of a connection
1635          * when the TS has exhausted half its 32bit space
1636          */
1637 #define TS_MAX_IDLE     (24*24*60*60)
1638 #define TS_MAX_CONN     (12*24*60*60)   /* XXX remove when better tsecr check */
1639
1640         getmicrouptime(&uptime);
1641         if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1642             (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1643             time_uptime - state->creation > TS_MAX_CONN))  {
1644                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1645                         DPFPRINTF(("src idled out of PAWS\n"));
1646                         pf_print_state(state);
1647                         printf("\n");
1648                 }
1649                 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1650                     | PFSS_PAWS_IDLED;
1651         }
1652         if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1653             uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1654                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1655                         DPFPRINTF(("dst idled out of PAWS\n"));
1656                         pf_print_state(state);
1657                         printf("\n");
1658                 }
1659                 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1660                     | PFSS_PAWS_IDLED;
1661         }
1662
1663         if (got_ts && src->scrub && dst->scrub &&
1664             (src->scrub->pfss_flags & PFSS_PAWS) &&
1665             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1666                 /* Validate that the timestamps are "in-window".
1667                  * RFC1323 describes TCP Timestamp options that allow
1668                  * measurement of RTT (round trip time) and PAWS
1669                  * (protection against wrapped sequence numbers).  PAWS
1670                  * gives us a set of rules for rejecting packets on
1671                  * long fat pipes (packets that were somehow delayed
1672                  * in transit longer than the time it took to send the
1673                  * full TCP sequence space of 4Gb).  We can use these
1674                  * rules and infer a few others that will let us treat
1675                  * the 32bit timestamp and the 32bit echoed timestamp
1676                  * as sequence numbers to prevent a blind attacker from
1677                  * inserting packets into a connection.
1678                  *
1679                  * RFC1323 tells us:
1680                  *  - The timestamp on this packet must be greater than
1681                  *    or equal to the last value echoed by the other
1682                  *    endpoint.  The RFC says those will be discarded
1683                  *    since it is a dup that has already been acked.
1684                  *    This gives us a lowerbound on the timestamp.
1685                  *        timestamp >= other last echoed timestamp
1686                  *  - The timestamp will be less than or equal to
1687                  *    the last timestamp plus the time between the
1688                  *    last packet and now.  The RFC defines the max
1689                  *    clock rate as 1ms.  We will allow clocks to be
1690                  *    up to 10% fast and will allow a total difference
1691                  *    or 30 seconds due to a route change.  And this
1692                  *    gives us an upperbound on the timestamp.
1693                  *        timestamp <= last timestamp + max ticks
1694                  *    We have to be careful here.  Windows will send an
1695                  *    initial timestamp of zero and then initialize it
1696                  *    to a random value after the 3whs; presumably to
1697                  *    avoid a DoS by having to call an expensive RNG
1698                  *    during a SYN flood.  Proof MS has at least one
1699                  *    good security geek.
1700                  *
1701                  *  - The TCP timestamp option must also echo the other
1702                  *    endpoints timestamp.  The timestamp echoed is the
1703                  *    one carried on the earliest unacknowledged segment
1704                  *    on the left edge of the sequence window.  The RFC
1705                  *    states that the host will reject any echoed
1706                  *    timestamps that were larger than any ever sent.
1707                  *    This gives us an upperbound on the TS echo.
1708                  *        tescr <= largest_tsval
1709                  *  - The lowerbound on the TS echo is a little more
1710                  *    tricky to determine.  The other endpoint's echoed
1711                  *    values will not decrease.  But there may be
1712                  *    network conditions that re-order packets and
1713                  *    cause our view of them to decrease.  For now the
1714                  *    only lowerbound we can safely determine is that
1715                  *    the TS echo will never be less than the original
1716                  *    TS.  XXX There is probably a better lowerbound.
1717                  *    Remove TS_MAX_CONN with better lowerbound check.
1718                  *        tescr >= other original TS
1719                  *
1720                  * It is also important to note that the fastest
1721                  * timestamp clock of 1ms will wrap its 32bit space in
1722                  * 24 days.  So we just disable TS checking after 24
1723                  * days of idle time.  We actually must use a 12d
1724                  * connection limit until we can come up with a better
1725                  * lowerbound to the TS echo check.
1726                  */
1727                 struct timeval delta_ts;
1728                 int ts_fudge;
1729
1730
1731                 /*
1732                  * PFTM_TS_DIFF is how many seconds of leeway to allow
1733                  * a host's timestamp.  This can happen if the previous
1734                  * packet got delayed in transit for much longer than
1735                  * this packet.
1736                  */
1737                 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1738                         ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1739
1740                 /* Calculate max ticks since the last timestamp */
1741 #define TS_MAXFREQ      1100            /* RFC max TS freq of 1Khz + 10% skew */
1742 #define TS_MICROSECS    1000000         /* microseconds per second */
1743                 delta_ts = uptime;
1744                 timevalsub(&delta_ts, &src->scrub->pfss_last);
1745                 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1746                 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1747
1748                 if ((src->state >= TCPS_ESTABLISHED &&
1749                     dst->state >= TCPS_ESTABLISHED) &&
1750                     (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1751                     SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1752                     (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1753                     SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1754                         /* Bad RFC1323 implementation or an insertion attack.
1755                          *
1756                          * - Solaris 2.6 and 2.7 are known to send another ACK
1757                          *   after the FIN,FIN|ACK,ACK closing that carries
1758                          *   an old timestamp.
1759                          */
1760
1761                         DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1762                             SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1763                             SEQ_GT(tsval, src->scrub->pfss_tsval +
1764                             tsval_from_last) ? '1' : ' ',
1765                             SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1766                             SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1767                         DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1768                             "idle: %jus %lums\n",
1769                             tsval, tsecr, tsval_from_last,
1770                             (uintmax_t)delta_ts.tv_sec,
1771                             delta_ts.tv_usec / 1000));
1772                         DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1773                             src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1774                         DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1775                             "\n", dst->scrub->pfss_tsval,
1776                             dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1777                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
1778                                 pf_print_state(state);
1779                                 pf_print_flags(th->th_flags);
1780                                 printf("\n");
1781                         }
1782                         REASON_SET(reason, PFRES_TS);
1783                         return (PF_DROP);
1784                 }
1785
1786                 /* XXX I'd really like to require tsecr but it's optional */
1787
1788         } else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1789             ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1790             || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1791             src->scrub && dst->scrub &&
1792             (src->scrub->pfss_flags & PFSS_PAWS) &&
1793             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1794                 /* Didn't send a timestamp.  Timestamps aren't really useful
1795                  * when:
1796                  *  - connection opening or closing (often not even sent).
1797                  *    but we must not let an attacker to put a FIN on a
1798                  *    data packet to sneak it through our ESTABLISHED check.
1799                  *  - on a TCP reset.  RFC suggests not even looking at TS.
1800                  *  - on an empty ACK.  The TS will not be echoed so it will
1801                  *    probably not help keep the RTT calculation in sync and
1802                  *    there isn't as much danger when the sequence numbers
1803                  *    got wrapped.  So some stacks don't include TS on empty
1804                  *    ACKs :-(
1805                  *
1806                  * To minimize the disruption to mostly RFC1323 conformant
1807                  * stacks, we will only require timestamps on data packets.
1808                  *
1809                  * And what do ya know, we cannot require timestamps on data
1810                  * packets.  There appear to be devices that do legitimate
1811                  * TCP connection hijacking.  There are HTTP devices that allow
1812                  * a 3whs (with timestamps) and then buffer the HTTP request.
1813                  * If the intermediate device has the HTTP response cache, it
1814                  * will spoof the response but not bother timestamping its
1815                  * packets.  So we can look for the presence of a timestamp in
1816                  * the first data packet and if there, require it in all future
1817                  * packets.
1818                  */
1819
1820                 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1821                         /*
1822                          * Hey!  Someone tried to sneak a packet in.  Or the
1823                          * stack changed its RFC1323 behavior?!?!
1824                          */
1825                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
1826                                 DPFPRINTF(("Did not receive expected RFC1323 "
1827                                     "timestamp\n"));
1828                                 pf_print_state(state);
1829                                 pf_print_flags(th->th_flags);
1830                                 printf("\n");
1831                         }
1832                         REASON_SET(reason, PFRES_TS);
1833                         return (PF_DROP);
1834                 }
1835         }
1836
1837
1838         /*
1839          * We will note if a host sends his data packets with or without
1840          * timestamps.  And require all data packets to contain a timestamp
1841          * if the first does.  PAWS implicitly requires that all data packets be
1842          * timestamped.  But I think there are middle-man devices that hijack
1843          * TCP streams immediately after the 3whs and don't timestamp their
1844          * packets (seen in a WWW accelerator or cache).
1845          */
1846         if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1847             (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1848                 if (got_ts)
1849                         src->scrub->pfss_flags |= PFSS_DATA_TS;
1850                 else {
1851                         src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1852                         if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1853                             (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1854                                 /* Don't warn if other host rejected RFC1323 */
1855                                 DPFPRINTF(("Broken RFC1323 stack did not "
1856                                     "timestamp data packet. Disabled PAWS "
1857                                     "security.\n"));
1858                                 pf_print_state(state);
1859                                 pf_print_flags(th->th_flags);
1860                                 printf("\n");
1861                         }
1862                 }
1863         }
1864
1865
1866         /*
1867          * Update PAWS values
1868          */
1869         if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1870             (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1871                 getmicrouptime(&src->scrub->pfss_last);
1872                 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1873                     (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1874                         src->scrub->pfss_tsval = tsval;
1875
1876                 if (tsecr) {
1877                         if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1878                             (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1879                                 src->scrub->pfss_tsecr = tsecr;
1880
1881                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1882                             (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1883                             src->scrub->pfss_tsval0 == 0)) {
1884                                 /* tsval0 MUST be the lowest timestamp */
1885                                 src->scrub->pfss_tsval0 = tsval;
1886                         }
1887
1888                         /* Only fully initialized after a TS gets echoed */
1889                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1890                                 src->scrub->pfss_flags |= PFSS_PAWS;
1891                 }
1892         }
1893
1894         /* I have a dream....  TCP segment reassembly.... */
1895         return (0);
1896 }
1897
1898 static int
1899 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1900     int off, sa_family_t af)
1901 {
1902         u_int16_t       *mss;
1903         int              thoff;
1904         int              opt, cnt, optlen = 0;
1905         int              rewrite = 0;
1906         u_char           opts[TCP_MAXOLEN];
1907         u_char          *optp = opts;
1908
1909         thoff = th->th_off << 2;
1910         cnt = thoff - sizeof(struct tcphdr);
1911
1912         if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1913             NULL, NULL, af))
1914                 return (rewrite);
1915
1916         for (; cnt > 0; cnt -= optlen, optp += optlen) {
1917                 opt = optp[0];
1918                 if (opt == TCPOPT_EOL)
1919                         break;
1920                 if (opt == TCPOPT_NOP)
1921                         optlen = 1;
1922                 else {
1923                         if (cnt < 2)
1924                                 break;
1925                         optlen = optp[1];
1926                         if (optlen < 2 || optlen > cnt)
1927                                 break;
1928                 }
1929                 switch (opt) {
1930                 case TCPOPT_MAXSEG:
1931                         mss = (u_int16_t *)(optp + 2);
1932                         if ((ntohs(*mss)) > r->max_mss) {
1933                                 th->th_sum = pf_proto_cksum_fixup(m,
1934                                     th->th_sum, *mss, htons(r->max_mss), 0);
1935                                 *mss = htons(r->max_mss);
1936                                 rewrite = 1;
1937                         }
1938                         break;
1939                 default:
1940                         break;
1941                 }
1942         }
1943
1944         if (rewrite)
1945                 m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1946
1947         return (rewrite);
1948 }
1949
1950 #ifdef INET
1951 static void
1952 pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1953 {
1954         struct mbuf             *m = *m0;
1955         struct ip               *h = mtod(m, struct ip *);
1956
1957         /* Clear IP_DF if no-df was requested */
1958         if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1959                 u_int16_t ip_off = h->ip_off;
1960
1961                 h->ip_off &= htons(~IP_DF);
1962                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1963         }
1964
1965         /* Enforce a minimum ttl, may cause endless packet loops */
1966         if (min_ttl && h->ip_ttl < min_ttl) {
1967                 u_int16_t ip_ttl = h->ip_ttl;
1968
1969                 h->ip_ttl = min_ttl;
1970                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1971         }
1972
1973         /* Enforce tos */
1974         if (flags & PFRULE_SET_TOS) {
1975                 u_int16_t       ov, nv;
1976
1977                 ov = *(u_int16_t *)h;
1978                 h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK);
1979                 nv = *(u_int16_t *)h;
1980
1981                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1982         }
1983
1984         /* random-id, but not for fragments */
1985         if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
1986                 uint16_t ip_id = h->ip_id;
1987
1988                 ip_fillid(h);
1989                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1990         }
1991 }
1992 #endif /* INET */
1993
1994 #ifdef INET6
1995 static void
1996 pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
1997 {
1998         struct mbuf             *m = *m0;
1999         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
2000
2001         /* Enforce a minimum ttl, may cause endless packet loops */
2002         if (min_ttl && h->ip6_hlim < min_ttl)
2003                 h->ip6_hlim = min_ttl;
2004 }
2005 #endif