]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/netpfil/pf/pf_norm.c
Merge llvm-project release/17.x llvmorg-17.0.1-25-g098e653a5bed
[FreeBSD/FreeBSD.git] / sys / netpfil / pf / pf_norm.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *      $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30
31 #include <sys/cdefs.h>
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/socket.h>
43
44 #include <net/if.h>
45 #include <net/vnet.h>
46 #include <net/pfvar.h>
47 #include <net/if_pflog.h>
48
49 #include <netinet/in.h>
50 #include <netinet/ip.h>
51 #include <netinet/ip_var.h>
52 #include <netinet6/ip6_var.h>
53 #include <netinet6/scope6_var.h>
54 #include <netinet/tcp.h>
55 #include <netinet/tcp_fsm.h>
56 #include <netinet/tcp_seq.h>
57 #include <netinet/sctp_constants.h>
58 #include <netinet/sctp_header.h>
59
60 #ifdef INET6
61 #include <netinet/ip6.h>
62 #endif /* INET6 */
63
64 struct pf_frent {
65         TAILQ_ENTRY(pf_frent)   fr_next;
66         struct mbuf     *fe_m;
67         uint16_t        fe_hdrlen;      /* ipv4 header length with ip options
68                                            ipv6, extension, fragment header */
69         uint16_t        fe_extoff;      /* last extension header offset or 0 */
70         uint16_t        fe_len;         /* fragment length */
71         uint16_t        fe_off;         /* fragment offset */
72         uint16_t        fe_mff;         /* more fragment flag */
73 };
74
75 struct pf_fragment_cmp {
76         struct pf_addr  frc_src;
77         struct pf_addr  frc_dst;
78         uint32_t        frc_id;
79         sa_family_t     frc_af;
80         uint8_t         frc_proto;
81 };
82
83 struct pf_fragment {
84         struct pf_fragment_cmp  fr_key;
85 #define fr_src  fr_key.frc_src
86 #define fr_dst  fr_key.frc_dst
87 #define fr_id   fr_key.frc_id
88 #define fr_af   fr_key.frc_af
89 #define fr_proto        fr_key.frc_proto
90
91         /* pointers to queue element */
92         struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS];
93         /* count entries between pointers */
94         uint8_t fr_entries[PF_FRAG_ENTRY_POINTS];
95         RB_ENTRY(pf_fragment) fr_entry;
96         TAILQ_ENTRY(pf_fragment) frag_next;
97         uint32_t        fr_timeout;
98         uint16_t        fr_maxlen;      /* maximum length of single fragment */
99         u_int16_t       fr_holes;       /* number of holes in the queue */
100         TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
101 };
102
103 struct pf_fragment_tag {
104         uint16_t        ft_hdrlen;      /* header length of reassembled pkt */
105         uint16_t        ft_extoff;      /* last extension header offset or 0 */
106         uint16_t        ft_maxlen;      /* maximum fragment payload length */
107         uint32_t        ft_id;          /* fragment id */
108 };
109
110 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
111 #define V_pf_frag_mtx           VNET(pf_frag_mtx)
112 #define PF_FRAG_LOCK()          mtx_lock(&V_pf_frag_mtx)
113 #define PF_FRAG_UNLOCK()        mtx_unlock(&V_pf_frag_mtx)
114 #define PF_FRAG_ASSERT()        mtx_assert(&V_pf_frag_mtx, MA_OWNED)
115
116 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);      /* XXX: shared with pfsync */
117
118 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
119 #define V_pf_frent_z    VNET(pf_frent_z)
120 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
121 #define V_pf_frag_z     VNET(pf_frag_z)
122
123 TAILQ_HEAD(pf_fragqueue, pf_fragment);
124 TAILQ_HEAD(pf_cachequeue, pf_fragment);
125 VNET_DEFINE_STATIC(struct pf_fragqueue, pf_fragqueue);
126 #define V_pf_fragqueue                  VNET(pf_fragqueue)
127 RB_HEAD(pf_frag_tree, pf_fragment);
128 VNET_DEFINE_STATIC(struct pf_frag_tree, pf_frag_tree);
129 #define V_pf_frag_tree                  VNET(pf_frag_tree)
130 static int               pf_frag_compare(struct pf_fragment *,
131                             struct pf_fragment *);
132 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
133 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
134
135 static void     pf_flush_fragments(void);
136 static void     pf_free_fragment(struct pf_fragment *);
137 static void     pf_remove_fragment(struct pf_fragment *);
138
139 static struct pf_frent *pf_create_fragment(u_short *);
140 static int      pf_frent_holes(struct pf_frent *frent);
141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
142                     struct pf_frag_tree *tree);
143 static inline int       pf_frent_index(struct pf_frent *);
144 static int      pf_frent_insert(struct pf_fragment *,
145                             struct pf_frent *, struct pf_frent *);
146 void                    pf_frent_remove(struct pf_fragment *,
147                             struct pf_frent *);
148 struct pf_frent         *pf_frent_previous(struct pf_fragment *,
149                             struct pf_frent *);
150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
151                     struct pf_frent *, u_short *);
152 static struct mbuf *pf_join_fragment(struct pf_fragment *);
153 #ifdef INET
154 static int      pf_reassemble(struct mbuf **, struct ip *, int, u_short *);
155 #endif  /* INET */
156 #ifdef INET6
157 static int      pf_reassemble6(struct mbuf **, struct ip6_hdr *,
158                     struct ip6_frag *, uint16_t, uint16_t, u_short *);
159 #endif  /* INET6 */
160
161 #define DPFPRINTF(x) do {                               \
162         if (V_pf_status.debug >= PF_DEBUG_MISC) {       \
163                 printf("%s: ", __func__);               \
164                 printf x ;                              \
165         }                                               \
166 } while(0)
167
168 #ifdef INET
169 static void
170 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
171 {
172
173         key->frc_src.v4 = ip->ip_src;
174         key->frc_dst.v4 = ip->ip_dst;
175         key->frc_af = AF_INET;
176         key->frc_proto = ip->ip_p;
177         key->frc_id = ip->ip_id;
178 }
179 #endif  /* INET */
180
181 void
182 pf_normalize_init(void)
183 {
184
185         V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
186             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
187         V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
188             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
189         V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
190             sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
191             UMA_ALIGN_PTR, 0);
192
193         mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
194
195         V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
196         V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
197         uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
198         uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
199
200         TAILQ_INIT(&V_pf_fragqueue);
201 }
202
203 void
204 pf_normalize_cleanup(void)
205 {
206
207         uma_zdestroy(V_pf_state_scrub_z);
208         uma_zdestroy(V_pf_frent_z);
209         uma_zdestroy(V_pf_frag_z);
210
211         mtx_destroy(&V_pf_frag_mtx);
212 }
213
214 static int
215 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
216 {
217         int     diff;
218
219         if ((diff = a->fr_id - b->fr_id) != 0)
220                 return (diff);
221         if ((diff = a->fr_proto - b->fr_proto) != 0)
222                 return (diff);
223         if ((diff = a->fr_af - b->fr_af) != 0)
224                 return (diff);
225         if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
226                 return (diff);
227         if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
228                 return (diff);
229         return (0);
230 }
231
232 void
233 pf_purge_expired_fragments(void)
234 {
235         u_int32_t       expire = time_uptime -
236                             V_pf_default_rule.timeout[PFTM_FRAG];
237
238         pf_purge_fragments(expire);
239 }
240
241 void
242 pf_purge_fragments(uint32_t expire)
243 {
244         struct pf_fragment      *frag;
245
246         PF_FRAG_LOCK();
247         while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
248                 if (frag->fr_timeout > expire)
249                         break;
250
251                 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
252                 pf_free_fragment(frag);
253         }
254
255         PF_FRAG_UNLOCK();
256 }
257
258 /*
259  * Try to flush old fragments to make space for new ones
260  */
261 static void
262 pf_flush_fragments(void)
263 {
264         struct pf_fragment      *frag;
265         int                      goal;
266
267         PF_FRAG_ASSERT();
268
269         goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
270         DPFPRINTF(("trying to free %d frag entriess\n", goal));
271         while (goal < uma_zone_get_cur(V_pf_frent_z)) {
272                 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
273                 if (frag)
274                         pf_free_fragment(frag);
275                 else
276                         break;
277         }
278 }
279
280 /* Frees the fragments and all associated entries */
281 static void
282 pf_free_fragment(struct pf_fragment *frag)
283 {
284         struct pf_frent         *frent;
285
286         PF_FRAG_ASSERT();
287
288         /* Free all fragments */
289         for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
290             frent = TAILQ_FIRST(&frag->fr_queue)) {
291                 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
292
293                 m_freem(frent->fe_m);
294                 uma_zfree(V_pf_frent_z, frent);
295         }
296
297         pf_remove_fragment(frag);
298 }
299
300 static struct pf_fragment *
301 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
302 {
303         struct pf_fragment      *frag;
304
305         PF_FRAG_ASSERT();
306
307         frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
308         if (frag != NULL) {
309                 /* XXX Are we sure we want to update the timeout? */
310                 frag->fr_timeout = time_uptime;
311                 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
312                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
313         }
314
315         return (frag);
316 }
317
318 /* Removes a fragment from the fragment queue and frees the fragment */
319 static void
320 pf_remove_fragment(struct pf_fragment *frag)
321 {
322
323         PF_FRAG_ASSERT();
324         KASSERT(frag, ("frag != NULL"));
325
326         RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
327         TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
328         uma_zfree(V_pf_frag_z, frag);
329 }
330
331 static struct pf_frent *
332 pf_create_fragment(u_short *reason)
333 {
334         struct pf_frent *frent;
335
336         PF_FRAG_ASSERT();
337
338         frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
339         if (frent == NULL) {
340                 pf_flush_fragments();
341                 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
342                 if (frent == NULL) {
343                         REASON_SET(reason, PFRES_MEMORY);
344                         return (NULL);
345                 }
346         }
347
348         return (frent);
349 }
350
351 /*
352  * Calculate the additional holes that were created in the fragment
353  * queue by inserting this fragment.  A fragment in the middle
354  * creates one more hole by splitting.  For each connected side,
355  * it loses one hole.
356  * Fragment entry must be in the queue when calling this function.
357  */
358 static int
359 pf_frent_holes(struct pf_frent *frent)
360 {
361         struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
362         struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
363         int holes = 1;
364
365         if (prev == NULL) {
366                 if (frent->fe_off == 0)
367                         holes--;
368         } else {
369                 KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
370                 if (frent->fe_off == prev->fe_off + prev->fe_len)
371                         holes--;
372         }
373         if (next == NULL) {
374                 if (!frent->fe_mff)
375                         holes--;
376         } else {
377                 KASSERT(frent->fe_mff, ("frent->fe_mff"));
378                 if (next->fe_off == frent->fe_off + frent->fe_len)
379                         holes--;
380         }
381         return holes;
382 }
383
384 static inline int
385 pf_frent_index(struct pf_frent *frent)
386 {
387         /*
388          * We have an array of 16 entry points to the queue.  A full size
389          * 65535 octet IP packet can have 8192 fragments.  So the queue
390          * traversal length is at most 512 and at most 16 entry points are
391          * checked.  We need 128 additional bytes on a 64 bit architecture.
392          */
393         CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
394             16 - 1);
395         CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
396
397         return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
398 }
399
400 static int
401 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
402     struct pf_frent *prev)
403 {
404         int index;
405
406         CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
407
408         /*
409          * A packet has at most 65536 octets.  With 16 entry points, each one
410          * spawns 4096 octets.  We limit these to 64 fragments each, which
411          * means on average every fragment must have at least 64 octets.
412          */
413         index = pf_frent_index(frent);
414         if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
415                 return ENOBUFS;
416         frag->fr_entries[index]++;
417
418         if (prev == NULL) {
419                 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
420         } else {
421                 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
422                     ("overlapping fragment"));
423                 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
424         }
425
426         if (frag->fr_firstoff[index] == NULL) {
427                 KASSERT(prev == NULL || pf_frent_index(prev) < index,
428                     ("prev == NULL || pf_frent_index(pref) < index"));
429                 frag->fr_firstoff[index] = frent;
430         } else {
431                 if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
432                         KASSERT(prev == NULL || pf_frent_index(prev) < index,
433                             ("prev == NULL || pf_frent_index(pref) < index"));
434                         frag->fr_firstoff[index] = frent;
435                 } else {
436                         KASSERT(prev != NULL, ("prev != NULL"));
437                         KASSERT(pf_frent_index(prev) == index,
438                             ("pf_frent_index(prev) == index"));
439                 }
440         }
441
442         frag->fr_holes += pf_frent_holes(frent);
443
444         return 0;
445 }
446
447 void
448 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
449 {
450 #ifdef INVARIANTS
451         struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
452 #endif
453         struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
454         int index;
455
456         frag->fr_holes -= pf_frent_holes(frent);
457
458         index = pf_frent_index(frent);
459         KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
460         if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
461                 if (next == NULL) {
462                         frag->fr_firstoff[index] = NULL;
463                 } else {
464                         KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
465                             ("overlapping fragment"));
466                         if (pf_frent_index(next) == index) {
467                                 frag->fr_firstoff[index] = next;
468                         } else {
469                                 frag->fr_firstoff[index] = NULL;
470                         }
471                 }
472         } else {
473                 KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
474                     ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
475                 KASSERT(prev != NULL, ("prev != NULL"));
476                 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
477                     ("overlapping fragment"));
478                 KASSERT(pf_frent_index(prev) == index,
479                     ("pf_frent_index(prev) == index"));
480         }
481
482         TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
483
484         KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
485         frag->fr_entries[index]--;
486 }
487
488 struct pf_frent *
489 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
490 {
491         struct pf_frent *prev, *next;
492         int index;
493
494         /*
495          * If there are no fragments after frag, take the final one.  Assume
496          * that the global queue is not empty.
497          */
498         prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
499         KASSERT(prev != NULL, ("prev != NULL"));
500         if (prev->fe_off <= frent->fe_off)
501                 return prev;
502         /*
503          * We want to find a fragment entry that is before frag, but still
504          * close to it.  Find the first fragment entry that is in the same
505          * entry point or in the first entry point after that.  As we have
506          * already checked that there are entries behind frag, this will
507          * succeed.
508          */
509         for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
510             index++) {
511                 prev = frag->fr_firstoff[index];
512                 if (prev != NULL)
513                         break;
514         }
515         KASSERT(prev != NULL, ("prev != NULL"));
516         /*
517          * In prev we may have a fragment from the same entry point that is
518          * before frent, or one that is just one position behind frent.
519          * In the latter case, we go back one step and have the predecessor.
520          * There may be none if the new fragment will be the first one.
521          */
522         if (prev->fe_off > frent->fe_off) {
523                 prev = TAILQ_PREV(prev, pf_fragq, fr_next);
524                 if (prev == NULL)
525                         return NULL;
526                 KASSERT(prev->fe_off <= frent->fe_off,
527                     ("prev->fe_off <= frent->fe_off"));
528                 return prev;
529         }
530         /*
531          * In prev is the first fragment of the entry point.  The offset
532          * of frag is behind it.  Find the closest previous fragment.
533          */
534         for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
535             next = TAILQ_NEXT(next, fr_next)) {
536                 if (next->fe_off > frent->fe_off)
537                         break;
538                 prev = next;
539         }
540         return prev;
541 }
542
543 static struct pf_fragment *
544 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
545     u_short *reason)
546 {
547         struct pf_frent         *after, *next, *prev;
548         struct pf_fragment      *frag;
549         uint16_t                total;
550         int                     old_index, new_index;
551
552         PF_FRAG_ASSERT();
553
554         /* No empty fragments. */
555         if (frent->fe_len == 0) {
556                 DPFPRINTF(("bad fragment: len 0\n"));
557                 goto bad_fragment;
558         }
559
560         /* All fragments are 8 byte aligned. */
561         if (frent->fe_mff && (frent->fe_len & 0x7)) {
562                 DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
563                 goto bad_fragment;
564         }
565
566         /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
567         if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
568                 DPFPRINTF(("bad fragment: max packet %d\n",
569                     frent->fe_off + frent->fe_len));
570                 goto bad_fragment;
571         }
572
573         DPFPRINTF((key->frc_af == AF_INET ?
574             "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
575             key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
576
577         /* Fully buffer all of the fragments in this fragment queue. */
578         frag = pf_find_fragment(key, &V_pf_frag_tree);
579
580         /* Create a new reassembly queue for this packet. */
581         if (frag == NULL) {
582                 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
583                 if (frag == NULL) {
584                         pf_flush_fragments();
585                         frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
586                         if (frag == NULL) {
587                                 REASON_SET(reason, PFRES_MEMORY);
588                                 goto drop_fragment;
589                         }
590                 }
591
592                 *(struct pf_fragment_cmp *)frag = *key;
593                 memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
594                 memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
595                 frag->fr_timeout = time_uptime;
596                 frag->fr_maxlen = frent->fe_len;
597                 frag->fr_holes = 1;
598                 TAILQ_INIT(&frag->fr_queue);
599
600                 RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
601                 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
602
603                 /* We do not have a previous fragment, cannot fail. */
604                 pf_frent_insert(frag, frent, NULL);
605
606                 return (frag);
607         }
608
609         KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
610
611         /* Remember maximum fragment len for refragmentation. */
612         if (frent->fe_len > frag->fr_maxlen)
613                 frag->fr_maxlen = frent->fe_len;
614
615         /* Maximum data we have seen already. */
616         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
617                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
618
619         /* Non terminal fragments must have more fragments flag. */
620         if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
621                 goto bad_fragment;
622
623         /* Check if we saw the last fragment already. */
624         if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
625                 if (frent->fe_off + frent->fe_len > total ||
626                     (frent->fe_off + frent->fe_len == total && frent->fe_mff))
627                         goto bad_fragment;
628         } else {
629                 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
630                         goto bad_fragment;
631         }
632
633         /* Find neighbors for newly inserted fragment */
634         prev = pf_frent_previous(frag, frent);
635         if (prev == NULL) {
636                 after = TAILQ_FIRST(&frag->fr_queue);
637                 KASSERT(after != NULL, ("after != NULL"));
638         } else {
639                 after = TAILQ_NEXT(prev, fr_next);
640         }
641
642         if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
643                 uint16_t precut;
644
645                 precut = prev->fe_off + prev->fe_len - frent->fe_off;
646                 if (precut >= frent->fe_len)
647                         goto bad_fragment;
648                 DPFPRINTF(("overlap -%d\n", precut));
649                 m_adj(frent->fe_m, precut);
650                 frent->fe_off += precut;
651                 frent->fe_len -= precut;
652         }
653
654         for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
655             after = next) {
656                 uint16_t aftercut;
657
658                 aftercut = frent->fe_off + frent->fe_len - after->fe_off;
659                 DPFPRINTF(("adjust overlap %d\n", aftercut));
660                 if (aftercut < after->fe_len) {
661                         m_adj(after->fe_m, aftercut);
662                         old_index = pf_frent_index(after);
663                         after->fe_off += aftercut;
664                         after->fe_len -= aftercut;
665                         new_index = pf_frent_index(after);
666                         if (old_index != new_index) {
667                                 DPFPRINTF(("frag index %d, new %d",
668                                     old_index, new_index));
669                                 /* Fragment switched queue as fe_off changed */
670                                 after->fe_off -= aftercut;
671                                 after->fe_len += aftercut;
672                                 /* Remove restored fragment from old queue */
673                                 pf_frent_remove(frag, after);
674                                 after->fe_off += aftercut;
675                                 after->fe_len -= aftercut;
676                                 /* Insert into correct queue */
677                                 if (pf_frent_insert(frag, after, prev)) {
678                                         DPFPRINTF(
679                                             ("fragment requeue limit exceeded"));
680                                         m_freem(after->fe_m);
681                                         uma_zfree(V_pf_frent_z, after);
682                                         /* There is not way to recover */
683                                         goto bad_fragment;
684                                 }
685                         }
686                         break;
687                 }
688
689                 /* This fragment is completely overlapped, lose it. */
690                 next = TAILQ_NEXT(after, fr_next);
691                 pf_frent_remove(frag, after);
692                 m_freem(after->fe_m);
693                 uma_zfree(V_pf_frent_z, after);
694         }
695
696         /* If part of the queue gets too long, there is not way to recover. */
697         if (pf_frent_insert(frag, frent, prev)) {
698                 DPFPRINTF(("fragment queue limit exceeded\n"));
699                 goto bad_fragment;
700         }
701
702         return (frag);
703
704 bad_fragment:
705         REASON_SET(reason, PFRES_FRAG);
706 drop_fragment:
707         uma_zfree(V_pf_frent_z, frent);
708         return (NULL);
709 }
710
711 static struct mbuf *
712 pf_join_fragment(struct pf_fragment *frag)
713 {
714         struct mbuf *m, *m2;
715         struct pf_frent *frent, *next;
716
717         frent = TAILQ_FIRST(&frag->fr_queue);
718         next = TAILQ_NEXT(frent, fr_next);
719
720         m = frent->fe_m;
721         m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
722         uma_zfree(V_pf_frent_z, frent);
723         for (frent = next; frent != NULL; frent = next) {
724                 next = TAILQ_NEXT(frent, fr_next);
725
726                 m2 = frent->fe_m;
727                 /* Strip off ip header. */
728                 m_adj(m2, frent->fe_hdrlen);
729                 /* Strip off any trailing bytes. */
730                 m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
731
732                 uma_zfree(V_pf_frent_z, frent);
733                 m_cat(m, m2);
734         }
735
736         /* Remove from fragment queue. */
737         pf_remove_fragment(frag);
738
739         return (m);
740 }
741
742 #ifdef INET
743 static int
744 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
745 {
746         struct mbuf             *m = *m0;
747         struct pf_frent         *frent;
748         struct pf_fragment      *frag;
749         struct pf_fragment_cmp  key;
750         uint16_t                total, hdrlen;
751
752         /* Get an entry for the fragment queue */
753         if ((frent = pf_create_fragment(reason)) == NULL)
754                 return (PF_DROP);
755
756         frent->fe_m = m;
757         frent->fe_hdrlen = ip->ip_hl << 2;
758         frent->fe_extoff = 0;
759         frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
760         frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
761         frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
762
763         pf_ip2key(ip, dir, &key);
764
765         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
766                 return (PF_DROP);
767
768         /* The mbuf is part of the fragment entry, no direct free or access */
769         m = *m0 = NULL;
770
771         if (frag->fr_holes) {
772                 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
773                 return (PF_PASS);  /* drop because *m0 is NULL, no error */
774         }
775
776         /* We have all the data */
777         frent = TAILQ_FIRST(&frag->fr_queue);
778         KASSERT(frent != NULL, ("frent != NULL"));
779         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
780                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
781         hdrlen = frent->fe_hdrlen;
782
783         m = *m0 = pf_join_fragment(frag);
784         frag = NULL;
785
786         if (m->m_flags & M_PKTHDR) {
787                 int plen = 0;
788                 for (m = *m0; m; m = m->m_next)
789                         plen += m->m_len;
790                 m = *m0;
791                 m->m_pkthdr.len = plen;
792         }
793
794         ip = mtod(m, struct ip *);
795         ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
796             htons(hdrlen + total), 0);
797         ip->ip_len = htons(hdrlen + total);
798         ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
799             ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
800         ip->ip_off &= ~(IP_MF|IP_OFFMASK);
801
802         if (hdrlen + total > IP_MAXPACKET) {
803                 DPFPRINTF(("drop: too big: %d\n", total));
804                 ip->ip_len = 0;
805                 REASON_SET(reason, PFRES_SHORT);
806                 /* PF_DROP requires a valid mbuf *m0 in pf_test() */
807                 return (PF_DROP);
808         }
809
810         DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
811         return (PF_PASS);
812 }
813 #endif  /* INET */
814
815 #ifdef INET6
816 static int
817 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
818     uint16_t hdrlen, uint16_t extoff, u_short *reason)
819 {
820         struct mbuf             *m = *m0;
821         struct pf_frent         *frent;
822         struct pf_fragment      *frag;
823         struct pf_fragment_cmp   key;
824         struct m_tag            *mtag;
825         struct pf_fragment_tag  *ftag;
826         int                      off;
827         uint32_t                 frag_id;
828         uint16_t                 total, maxlen;
829         uint8_t                  proto;
830
831         PF_FRAG_LOCK();
832
833         /* Get an entry for the fragment queue. */
834         if ((frent = pf_create_fragment(reason)) == NULL) {
835                 PF_FRAG_UNLOCK();
836                 return (PF_DROP);
837         }
838
839         frent->fe_m = m;
840         frent->fe_hdrlen = hdrlen;
841         frent->fe_extoff = extoff;
842         frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
843         frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
844         frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
845
846         key.frc_src.v6 = ip6->ip6_src;
847         key.frc_dst.v6 = ip6->ip6_dst;
848         key.frc_af = AF_INET6;
849         /* Only the first fragment's protocol is relevant. */
850         key.frc_proto = 0;
851         key.frc_id = fraghdr->ip6f_ident;
852
853         if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
854                 PF_FRAG_UNLOCK();
855                 return (PF_DROP);
856         }
857
858         /* The mbuf is part of the fragment entry, no direct free or access. */
859         m = *m0 = NULL;
860
861         if (frag->fr_holes) {
862                 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
863                     frag->fr_holes));
864                 PF_FRAG_UNLOCK();
865                 return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
866         }
867
868         /* We have all the data. */
869         frent = TAILQ_FIRST(&frag->fr_queue);
870         KASSERT(frent != NULL, ("frent != NULL"));
871         extoff = frent->fe_extoff;
872         maxlen = frag->fr_maxlen;
873         frag_id = frag->fr_id;
874         total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
875                 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
876         hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
877
878         m = *m0 = pf_join_fragment(frag);
879         frag = NULL;
880
881         PF_FRAG_UNLOCK();
882
883         /* Take protocol from first fragment header. */
884         m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
885         KASSERT(m, ("%s: short mbuf chain", __func__));
886         proto = *(mtod(m, uint8_t *) + off);
887         m = *m0;
888
889         /* Delete frag6 header */
890         if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
891                 goto fail;
892
893         if (m->m_flags & M_PKTHDR) {
894                 int plen = 0;
895                 for (m = *m0; m; m = m->m_next)
896                         plen += m->m_len;
897                 m = *m0;
898                 m->m_pkthdr.len = plen;
899         }
900
901         if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
902             sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
903                 goto fail;
904         ftag = (struct pf_fragment_tag *)(mtag + 1);
905         ftag->ft_hdrlen = hdrlen;
906         ftag->ft_extoff = extoff;
907         ftag->ft_maxlen = maxlen;
908         ftag->ft_id = frag_id;
909         m_tag_prepend(m, mtag);
910
911         ip6 = mtod(m, struct ip6_hdr *);
912         ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
913         if (extoff) {
914                 /* Write protocol into next field of last extension header. */
915                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
916                     &off);
917                 KASSERT(m, ("%s: short mbuf chain", __func__));
918                 *(mtod(m, char *) + off) = proto;
919                 m = *m0;
920         } else
921                 ip6->ip6_nxt = proto;
922
923         if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
924                 DPFPRINTF(("drop: too big: %d\n", total));
925                 ip6->ip6_plen = 0;
926                 REASON_SET(reason, PFRES_SHORT);
927                 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
928                 return (PF_DROP);
929         }
930
931         DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
932         return (PF_PASS);
933
934 fail:
935         REASON_SET(reason, PFRES_MEMORY);
936         /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
937         return (PF_DROP);
938 }
939 #endif  /* INET6 */
940
941 #ifdef INET6
942 int
943 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
944     bool forward)
945 {
946         struct mbuf             *m = *m0, *t;
947         struct ip6_hdr          *hdr;
948         struct pf_fragment_tag  *ftag = (struct pf_fragment_tag *)(mtag + 1);
949         struct pf_pdesc          pd;
950         uint32_t                 frag_id;
951         uint16_t                 hdrlen, extoff, maxlen;
952         uint8_t                  proto;
953         int                      error, action;
954
955         hdrlen = ftag->ft_hdrlen;
956         extoff = ftag->ft_extoff;
957         maxlen = ftag->ft_maxlen;
958         frag_id = ftag->ft_id;
959         m_tag_delete(m, mtag);
960         mtag = NULL;
961         ftag = NULL;
962
963         if (extoff) {
964                 int off;
965
966                 /* Use protocol from next field of last extension header */
967                 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
968                     &off);
969                 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
970                 proto = *(mtod(m, uint8_t *) + off);
971                 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
972                 m = *m0;
973         } else {
974                 hdr = mtod(m, struct ip6_hdr *);
975                 proto = hdr->ip6_nxt;
976                 hdr->ip6_nxt = IPPROTO_FRAGMENT;
977         }
978
979         /* In case of link-local traffic we'll need a scope set. */
980         hdr = mtod(m, struct ip6_hdr *);
981
982         in6_setscope(&hdr->ip6_src, ifp, NULL);
983         in6_setscope(&hdr->ip6_dst, ifp, NULL);
984
985         /* The MTU must be a multiple of 8 bytes, or we risk doing the
986          * fragmentation wrong. */
987         maxlen = maxlen & ~7;
988
989         /*
990          * Maxlen may be less than 8 if there was only a single
991          * fragment.  As it was fragmented before, add a fragment
992          * header also for a single fragment.  If total or maxlen
993          * is less than 8, ip6_fragment() will return EMSGSIZE and
994          * we drop the packet.
995          */
996         error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
997         m = (*m0)->m_nextpkt;
998         (*m0)->m_nextpkt = NULL;
999         if (error == 0) {
1000                 /* The first mbuf contains the unfragmented packet. */
1001                 m_freem(*m0);
1002                 *m0 = NULL;
1003                 action = PF_PASS;
1004         } else {
1005                 /* Drop expects an mbuf to free. */
1006                 DPFPRINTF(("refragment error %d\n", error));
1007                 action = PF_DROP;
1008         }
1009         for (; m; m = t) {
1010                 t = m->m_nextpkt;
1011                 m->m_nextpkt = NULL;
1012                 m->m_flags |= M_SKIP_FIREWALL;
1013                 memset(&pd, 0, sizeof(pd));
1014                 pd.pf_mtag = pf_find_mtag(m);
1015                 if (error == 0)
1016                         if (forward) {
1017                                 MPASS(m->m_pkthdr.rcvif != NULL);
1018                                 ip6_forward(m, 0);
1019                         } else {
1020                                 (void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1021                                     NULL);
1022                         }
1023                 else
1024                         m_freem(m);
1025         }
1026
1027         return (action);
1028 }
1029 #endif /* INET6 */
1030
1031 #ifdef INET
1032 int
1033 pf_normalize_ip(struct mbuf **m0, struct pfi_kkif *kif, u_short *reason,
1034     struct pf_pdesc *pd)
1035 {
1036         struct mbuf             *m = *m0;
1037         struct pf_krule         *r;
1038         struct ip               *h = mtod(m, struct ip *);
1039         int                      mff = (ntohs(h->ip_off) & IP_MF);
1040         int                      hlen = h->ip_hl << 2;
1041         u_int16_t                fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1042         u_int16_t                max;
1043         int                      ip_len;
1044         int                      tag = -1;
1045         int                      verdict;
1046         bool                     scrub_compat;
1047
1048         PF_RULES_RASSERT();
1049
1050         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1051         /*
1052          * Check if there are any scrub rules, matching or not.
1053          * Lack of scrub rules means:
1054          *  - enforced packet normalization operation just like in OpenBSD
1055          *  - fragment reassembly depends on V_pf_status.reass
1056          * With scrub rules:
1057          *  - packet normalization is performed if there is a matching scrub rule
1058          *  - fragment reassembly is performed if the matching rule has no
1059          *    PFRULE_FRAGMENT_NOREASS flag
1060          */
1061         scrub_compat = (r != NULL);
1062         while (r != NULL) {
1063                 pf_counter_u64_add(&r->evaluations, 1);
1064                 if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1065                         r = r->skip[PF_SKIP_IFP].ptr;
1066                 else if (r->direction && r->direction != pd->dir)
1067                         r = r->skip[PF_SKIP_DIR].ptr;
1068                 else if (r->af && r->af != AF_INET)
1069                         r = r->skip[PF_SKIP_AF].ptr;
1070                 else if (r->proto && r->proto != h->ip_p)
1071                         r = r->skip[PF_SKIP_PROTO].ptr;
1072                 else if (PF_MISMATCHAW(&r->src.addr,
1073                     (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1074                     r->src.neg, kif, M_GETFIB(m)))
1075                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1076                 else if (PF_MISMATCHAW(&r->dst.addr,
1077                     (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1078                     r->dst.neg, NULL, M_GETFIB(m)))
1079                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1080                 else if (r->match_tag && !pf_match_tag(m, r, &tag,
1081                     pd->pf_mtag ? pd->pf_mtag->tag : 0))
1082                         r = TAILQ_NEXT(r, entries);
1083                 else
1084                         break;
1085         }
1086
1087         if (scrub_compat) {
1088                 /* With scrub rules present IPv4 normalization happens only
1089                  * if one of rules has matched and it's not a "no scrub" rule */
1090                 if (r == NULL || r->action == PF_NOSCRUB)
1091                         return (PF_PASS);
1092
1093                 pf_counter_u64_critical_enter();
1094                 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1095                 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1096                 pf_counter_u64_critical_exit();
1097                 pf_rule_to_actions(r, &pd->act);
1098         }
1099
1100         /* Check for illegal packets */
1101         if (hlen < (int)sizeof(struct ip)) {
1102                 REASON_SET(reason, PFRES_NORM);
1103                 goto drop;
1104         }
1105
1106         if (hlen > ntohs(h->ip_len)) {
1107                 REASON_SET(reason, PFRES_NORM);
1108                 goto drop;
1109         }
1110
1111         /* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1112         if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) ||
1113             (r != NULL && r->rule_flag & PFRULE_NODF)) &&
1114             (h->ip_off & htons(IP_DF))
1115         ) {
1116                 u_int16_t ip_off = h->ip_off;
1117
1118                 h->ip_off &= htons(~IP_DF);
1119                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1120         }
1121
1122         /* We will need other tests here */
1123         if (!fragoff && !mff)
1124                 goto no_fragment;
1125
1126         /* We're dealing with a fragment now. Don't allow fragments
1127          * with IP_DF to enter the cache. If the flag was cleared by
1128          * no-df above, fine. Otherwise drop it.
1129          */
1130         if (h->ip_off & htons(IP_DF)) {
1131                 DPFPRINTF(("IP_DF\n"));
1132                 goto bad;
1133         }
1134
1135         ip_len = ntohs(h->ip_len) - hlen;
1136
1137         /* All fragments are 8 byte aligned */
1138         if (mff && (ip_len & 0x7)) {
1139                 DPFPRINTF(("mff and %d\n", ip_len));
1140                 goto bad;
1141         }
1142
1143         /* Respect maximum length */
1144         if (fragoff + ip_len > IP_MAXPACKET) {
1145                 DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1146                 goto bad;
1147         }
1148
1149         if ((!scrub_compat && V_pf_status.reass) ||
1150             (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS))
1151         ) {
1152                 max = fragoff + ip_len;
1153
1154                 /* Fully buffer all of the fragments
1155                  * Might return a completely reassembled mbuf, or NULL */
1156                 PF_FRAG_LOCK();
1157                 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1158                 verdict = pf_reassemble(m0, h, pd->dir, reason);
1159                 PF_FRAG_UNLOCK();
1160
1161                 if (verdict != PF_PASS)
1162                         return (PF_DROP);
1163
1164                 m = *m0;
1165                 if (m == NULL)
1166                         return (PF_DROP);
1167
1168                 h = mtod(m, struct ip *);
1169
1170  no_fragment:
1171                 /* At this point, only IP_DF is allowed in ip_off */
1172                 if (h->ip_off & ~htons(IP_DF)) {
1173                         u_int16_t ip_off = h->ip_off;
1174
1175                         h->ip_off &= htons(IP_DF);
1176                         h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1177                 }
1178         }
1179
1180         return (PF_PASS);
1181
1182  bad:
1183         DPFPRINTF(("dropping bad fragment\n"));
1184         REASON_SET(reason, PFRES_FRAG);
1185  drop:
1186         if (r != NULL && r->log)
1187                 PFLOG_PACKET(kif, m, AF_INET, *reason, r, NULL, NULL, pd, 1);
1188
1189         return (PF_DROP);
1190 }
1191 #endif
1192
1193 #ifdef INET6
1194 int
1195 pf_normalize_ip6(struct mbuf **m0, struct pfi_kkif *kif,
1196     u_short *reason, struct pf_pdesc *pd)
1197 {
1198         struct mbuf             *m = *m0;
1199         struct pf_krule         *r;
1200         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
1201         int                      extoff;
1202         int                      off;
1203         struct ip6_ext           ext;
1204         struct ip6_opt           opt;
1205         struct ip6_frag          frag;
1206         u_int32_t                plen;
1207         int                      optend;
1208         int                      ooff;
1209         u_int8_t                 proto;
1210         int                      terminal;
1211         bool                     scrub_compat;
1212
1213         PF_RULES_RASSERT();
1214
1215         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1216         /*
1217          * Check if there are any scrub rules, matching or not.
1218          * Lack of scrub rules means:
1219          *  - enforced packet normalization operation just like in OpenBSD
1220          * With scrub rules:
1221          *  - packet normalization is performed if there is a matching scrub rule
1222          * XXX: Fragment reassembly always performed for IPv6!
1223          */
1224         scrub_compat = (r != NULL);
1225         while (r != NULL) {
1226                 pf_counter_u64_add(&r->evaluations, 1);
1227                 if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1228                         r = r->skip[PF_SKIP_IFP].ptr;
1229                 else if (r->direction && r->direction != pd->dir)
1230                         r = r->skip[PF_SKIP_DIR].ptr;
1231                 else if (r->af && r->af != AF_INET6)
1232                         r = r->skip[PF_SKIP_AF].ptr;
1233 #if 0 /* header chain! */
1234                 else if (r->proto && r->proto != h->ip6_nxt)
1235                         r = r->skip[PF_SKIP_PROTO].ptr;
1236 #endif
1237                 else if (PF_MISMATCHAW(&r->src.addr,
1238                     (struct pf_addr *)&h->ip6_src, AF_INET6,
1239                     r->src.neg, kif, M_GETFIB(m)))
1240                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1241                 else if (PF_MISMATCHAW(&r->dst.addr,
1242                     (struct pf_addr *)&h->ip6_dst, AF_INET6,
1243                     r->dst.neg, NULL, M_GETFIB(m)))
1244                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1245                 else
1246                         break;
1247         }
1248
1249         if (scrub_compat) {
1250                 /* With scrub rules present IPv6 normalization happens only
1251                  * if one of rules has matched and it's not a "no scrub" rule */
1252                 if (r == NULL || r->action == PF_NOSCRUB)
1253                         return (PF_PASS);
1254
1255                 pf_counter_u64_critical_enter();
1256                 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1257                 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1258                 pf_counter_u64_critical_exit();
1259                 pf_rule_to_actions(r, &pd->act);
1260         }
1261
1262         /* Check for illegal packets */
1263         if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1264                 goto drop;
1265
1266 again:
1267         h = mtod(m, struct ip6_hdr *);
1268         plen = ntohs(h->ip6_plen);
1269         /* jumbo payload option not supported */
1270         if (plen == 0)
1271                 goto drop;
1272
1273         extoff = 0;
1274         off = sizeof(struct ip6_hdr);
1275         proto = h->ip6_nxt;
1276         terminal = 0;
1277         do {
1278                 switch (proto) {
1279                 case IPPROTO_FRAGMENT:
1280                         goto fragment;
1281                         break;
1282                 case IPPROTO_AH:
1283                 case IPPROTO_ROUTING:
1284                 case IPPROTO_DSTOPTS:
1285                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1286                             NULL, AF_INET6))
1287                                 goto shortpkt;
1288                         extoff = off;
1289                         if (proto == IPPROTO_AH)
1290                                 off += (ext.ip6e_len + 2) * 4;
1291                         else
1292                                 off += (ext.ip6e_len + 1) * 8;
1293                         proto = ext.ip6e_nxt;
1294                         break;
1295                 case IPPROTO_HOPOPTS:
1296                         if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1297                             NULL, AF_INET6))
1298                                 goto shortpkt;
1299                         extoff = off;
1300                         optend = off + (ext.ip6e_len + 1) * 8;
1301                         ooff = off + sizeof(ext);
1302                         do {
1303                                 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1304                                     sizeof(opt.ip6o_type), NULL, NULL,
1305                                     AF_INET6))
1306                                         goto shortpkt;
1307                                 if (opt.ip6o_type == IP6OPT_PAD1) {
1308                                         ooff++;
1309                                         continue;
1310                                 }
1311                                 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1312                                     NULL, NULL, AF_INET6))
1313                                         goto shortpkt;
1314                                 if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1315                                         goto drop;
1316                                 if (opt.ip6o_type == IP6OPT_JUMBO)
1317                                         goto drop;
1318                                 ooff += sizeof(opt) + opt.ip6o_len;
1319                         } while (ooff < optend);
1320
1321                         off = optend;
1322                         proto = ext.ip6e_nxt;
1323                         break;
1324                 default:
1325                         terminal = 1;
1326                         break;
1327                 }
1328         } while (!terminal);
1329
1330         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1331                 goto shortpkt;
1332
1333         return (PF_PASS);
1334
1335  fragment:
1336         if (pd->flags & PFDESC_IP_REAS)
1337                 return (PF_DROP);
1338         if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1339                 goto shortpkt;
1340
1341         if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1342                 goto shortpkt;
1343
1344         /* Offset now points to data portion. */
1345         off += sizeof(frag);
1346
1347         /* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1348         if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS)
1349                 return (PF_DROP);
1350         m = *m0;
1351         if (m == NULL)
1352                 return (PF_DROP);
1353
1354         pd->flags |= PFDESC_IP_REAS;
1355         goto again;
1356
1357  shortpkt:
1358         REASON_SET(reason, PFRES_SHORT);
1359         if (r != NULL && r->log)
1360                 PFLOG_PACKET(kif, m, AF_INET6, *reason, r, NULL, NULL, pd, 1);
1361         return (PF_DROP);
1362
1363  drop:
1364         REASON_SET(reason, PFRES_NORM);
1365         if (r != NULL && r->log)
1366                 PFLOG_PACKET(kif, m, AF_INET6, *reason, r, NULL, NULL, pd, 1);
1367         return (PF_DROP);
1368 }
1369 #endif /* INET6 */
1370
1371 int
1372 pf_normalize_tcp(struct pfi_kkif *kif, struct mbuf *m, int ipoff,
1373     int off, void *h, struct pf_pdesc *pd)
1374 {
1375         struct pf_krule *r, *rm = NULL;
1376         struct tcphdr   *th = &pd->hdr.tcp;
1377         int              rewrite = 0;
1378         u_short          reason;
1379         u_int8_t         flags;
1380         sa_family_t      af = pd->af;
1381         int              srs;
1382
1383         PF_RULES_RASSERT();
1384
1385         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1386         /* Check if there any scrub rules. Lack of scrub rules means enforced
1387          * packet normalization operation just like in OpenBSD. */
1388         srs = (r != NULL);
1389         while (r != NULL) {
1390                 pf_counter_u64_add(&r->evaluations, 1);
1391                 if (pfi_kkif_match(r->kif, kif) == r->ifnot)
1392                         r = r->skip[PF_SKIP_IFP].ptr;
1393                 else if (r->direction && r->direction != pd->dir)
1394                         r = r->skip[PF_SKIP_DIR].ptr;
1395                 else if (r->af && r->af != af)
1396                         r = r->skip[PF_SKIP_AF].ptr;
1397                 else if (r->proto && r->proto != pd->proto)
1398                         r = r->skip[PF_SKIP_PROTO].ptr;
1399                 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1400                     r->src.neg, kif, M_GETFIB(m)))
1401                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1402                 else if (r->src.port_op && !pf_match_port(r->src.port_op,
1403                             r->src.port[0], r->src.port[1], th->th_sport))
1404                         r = r->skip[PF_SKIP_SRC_PORT].ptr;
1405                 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1406                     r->dst.neg, NULL, M_GETFIB(m)))
1407                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
1408                 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1409                             r->dst.port[0], r->dst.port[1], th->th_dport))
1410                         r = r->skip[PF_SKIP_DST_PORT].ptr;
1411                 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1412                             pf_osfp_fingerprint(pd, m, off, th),
1413                             r->os_fingerprint))
1414                         r = TAILQ_NEXT(r, entries);
1415                 else {
1416                         rm = r;
1417                         break;
1418                 }
1419         }
1420
1421         if (srs) {
1422                 /* With scrub rules present TCP normalization happens only
1423                  * if one of rules has matched and it's not a "no scrub" rule */
1424                 if (rm == NULL || rm->action == PF_NOSCRUB)
1425                         return (PF_PASS);
1426
1427                 pf_counter_u64_critical_enter();
1428                 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1429                 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1430                 pf_counter_u64_critical_exit();
1431                 pf_rule_to_actions(rm, &pd->act);
1432         }
1433
1434         if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1435                 pd->flags |= PFDESC_TCP_NORM;
1436
1437         flags = th->th_flags;
1438         if (flags & TH_SYN) {
1439                 /* Illegal packet */
1440                 if (flags & TH_RST)
1441                         goto tcp_drop;
1442
1443                 if (flags & TH_FIN)
1444                         goto tcp_drop;
1445         } else {
1446                 /* Illegal packet */
1447                 if (!(flags & (TH_ACK|TH_RST)))
1448                         goto tcp_drop;
1449         }
1450
1451         if (!(flags & TH_ACK)) {
1452                 /* These flags are only valid if ACK is set */
1453                 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1454                         goto tcp_drop;
1455         }
1456
1457         /* Check for illegal header length */
1458         if (th->th_off < (sizeof(struct tcphdr) >> 2))
1459                 goto tcp_drop;
1460
1461         /* If flags changed, or reserved data set, then adjust */
1462         if (flags != th->th_flags || th->th_x2 != 0) {
1463                 u_int16_t       ov, nv;
1464
1465                 ov = *(u_int16_t *)(&th->th_ack + 1);
1466                 th->th_flags = flags;
1467                 th->th_x2 = 0;
1468                 nv = *(u_int16_t *)(&th->th_ack + 1);
1469
1470                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0);
1471                 rewrite = 1;
1472         }
1473
1474         /* Remove urgent pointer, if TH_URG is not set */
1475         if (!(flags & TH_URG) && th->th_urp) {
1476                 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp,
1477                     0, 0);
1478                 th->th_urp = 0;
1479                 rewrite = 1;
1480         }
1481
1482         /* copy back packet headers if we sanitized */
1483         if (rewrite)
1484                 m_copyback(m, off, sizeof(*th), (caddr_t)th);
1485
1486         return (PF_PASS);
1487
1488  tcp_drop:
1489         REASON_SET(&reason, PFRES_NORM);
1490         if (rm != NULL && r->log)
1491                 PFLOG_PACKET(kif, m, AF_INET, reason, r, NULL, NULL, pd, 1);
1492         return (PF_DROP);
1493 }
1494
1495 int
1496 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1497     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1498 {
1499         u_int32_t tsval, tsecr;
1500         u_int8_t hdr[60];
1501         u_int8_t *opt;
1502
1503         KASSERT((src->scrub == NULL),
1504             ("pf_normalize_tcp_init: src->scrub != NULL"));
1505
1506         src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1507         if (src->scrub == NULL)
1508                 return (1);
1509
1510         switch (pd->af) {
1511 #ifdef INET
1512         case AF_INET: {
1513                 struct ip *h = mtod(m, struct ip *);
1514                 src->scrub->pfss_ttl = h->ip_ttl;
1515                 break;
1516         }
1517 #endif /* INET */
1518 #ifdef INET6
1519         case AF_INET6: {
1520                 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1521                 src->scrub->pfss_ttl = h->ip6_hlim;
1522                 break;
1523         }
1524 #endif /* INET6 */
1525         }
1526
1527         /*
1528          * All normalizations below are only begun if we see the start of
1529          * the connections.  They must all set an enabled bit in pfss_flags
1530          */
1531         if ((th->th_flags & TH_SYN) == 0)
1532                 return (0);
1533
1534         if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1535             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1536                 /* Diddle with TCP options */
1537                 int hlen;
1538                 opt = hdr + sizeof(struct tcphdr);
1539                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1540                 while (hlen >= TCPOLEN_TIMESTAMP) {
1541                         switch (*opt) {
1542                         case TCPOPT_EOL:        /* FALLTHROUGH */
1543                         case TCPOPT_NOP:
1544                                 opt++;
1545                                 hlen--;
1546                                 break;
1547                         case TCPOPT_TIMESTAMP:
1548                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1549                                         src->scrub->pfss_flags |=
1550                                             PFSS_TIMESTAMP;
1551                                         src->scrub->pfss_ts_mod =
1552                                             htonl(arc4random());
1553
1554                                         /* note PFSS_PAWS not set yet */
1555                                         memcpy(&tsval, &opt[2],
1556                                             sizeof(u_int32_t));
1557                                         memcpy(&tsecr, &opt[6],
1558                                             sizeof(u_int32_t));
1559                                         src->scrub->pfss_tsval0 = ntohl(tsval);
1560                                         src->scrub->pfss_tsval = ntohl(tsval);
1561                                         src->scrub->pfss_tsecr = ntohl(tsecr);
1562                                         getmicrouptime(&src->scrub->pfss_last);
1563                                 }
1564                                 /* FALLTHROUGH */
1565                         default:
1566                                 hlen -= MAX(opt[1], 2);
1567                                 opt += MAX(opt[1], 2);
1568                                 break;
1569                         }
1570                 }
1571         }
1572
1573         return (0);
1574 }
1575
1576 void
1577 pf_normalize_tcp_cleanup(struct pf_kstate *state)
1578 {
1579         /* XXX Note: this also cleans up SCTP. */
1580         uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1581         uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1582
1583         /* Someday... flush the TCP segment reassembly descriptors. */
1584 }
1585 int
1586 pf_normalize_sctp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1587             struct pf_state_peer *src, struct pf_state_peer *dst)
1588 {
1589         src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1590         if (src->scrub == NULL)
1591                 return (1);
1592
1593         dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1594         if (dst->scrub == NULL) {
1595                 uma_zfree(V_pf_state_scrub_z, src);
1596                 return (1);
1597         }
1598
1599         dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
1600
1601         return (0);
1602 }
1603
1604 int
1605 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1606     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1607     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1608 {
1609         struct timeval uptime;
1610         u_int32_t tsval, tsecr;
1611         u_int tsval_from_last;
1612         u_int8_t hdr[60];
1613         u_int8_t *opt;
1614         int copyback = 0;
1615         int got_ts = 0;
1616         size_t startoff;
1617
1618         KASSERT((src->scrub || dst->scrub),
1619             ("%s: src->scrub && dst->scrub!", __func__));
1620
1621         /*
1622          * Enforce the minimum TTL seen for this connection.  Negate a common
1623          * technique to evade an intrusion detection system and confuse
1624          * firewall state code.
1625          */
1626         switch (pd->af) {
1627 #ifdef INET
1628         case AF_INET: {
1629                 if (src->scrub) {
1630                         struct ip *h = mtod(m, struct ip *);
1631                         if (h->ip_ttl > src->scrub->pfss_ttl)
1632                                 src->scrub->pfss_ttl = h->ip_ttl;
1633                         h->ip_ttl = src->scrub->pfss_ttl;
1634                 }
1635                 break;
1636         }
1637 #endif /* INET */
1638 #ifdef INET6
1639         case AF_INET6: {
1640                 if (src->scrub) {
1641                         struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1642                         if (h->ip6_hlim > src->scrub->pfss_ttl)
1643                                 src->scrub->pfss_ttl = h->ip6_hlim;
1644                         h->ip6_hlim = src->scrub->pfss_ttl;
1645                 }
1646                 break;
1647         }
1648 #endif /* INET6 */
1649         }
1650
1651         if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1652             ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1653             (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1654             pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1655                 /* Diddle with TCP options */
1656                 int hlen;
1657                 opt = hdr + sizeof(struct tcphdr);
1658                 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1659                 while (hlen >= TCPOLEN_TIMESTAMP) {
1660                         startoff = opt - (hdr + sizeof(struct tcphdr));
1661                         switch (*opt) {
1662                         case TCPOPT_EOL:        /* FALLTHROUGH */
1663                         case TCPOPT_NOP:
1664                                 opt++;
1665                                 hlen--;
1666                                 break;
1667                         case TCPOPT_TIMESTAMP:
1668                                 /* Modulate the timestamps.  Can be used for
1669                                  * NAT detection, OS uptime determination or
1670                                  * reboot detection.
1671                                  */
1672
1673                                 if (got_ts) {
1674                                         /* Huh?  Multiple timestamps!? */
1675                                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
1676                                                 DPFPRINTF(("multiple TS??\n"));
1677                                                 pf_print_state(state);
1678                                                 printf("\n");
1679                                         }
1680                                         REASON_SET(reason, PFRES_TS);
1681                                         return (PF_DROP);
1682                                 }
1683                                 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1684                                         memcpy(&tsval, &opt[2],
1685                                             sizeof(u_int32_t));
1686                                         if (tsval && src->scrub &&
1687                                             (src->scrub->pfss_flags &
1688                                             PFSS_TIMESTAMP)) {
1689                                                 tsval = ntohl(tsval);
1690                                                 pf_patch_32_unaligned(m,
1691                                                     &th->th_sum,
1692                                                     &opt[2],
1693                                                     htonl(tsval +
1694                                                     src->scrub->pfss_ts_mod),
1695                                                     PF_ALGNMNT(startoff),
1696                                                     0);
1697                                                 copyback = 1;
1698                                         }
1699
1700                                         /* Modulate TS reply iff valid (!0) */
1701                                         memcpy(&tsecr, &opt[6],
1702                                             sizeof(u_int32_t));
1703                                         if (tsecr && dst->scrub &&
1704                                             (dst->scrub->pfss_flags &
1705                                             PFSS_TIMESTAMP)) {
1706                                                 tsecr = ntohl(tsecr)
1707                                                     - dst->scrub->pfss_ts_mod;
1708                                                 pf_patch_32_unaligned(m,
1709                                                     &th->th_sum,
1710                                                     &opt[6],
1711                                                     htonl(tsecr),
1712                                                     PF_ALGNMNT(startoff),
1713                                                     0);
1714                                                 copyback = 1;
1715                                         }
1716                                         got_ts = 1;
1717                                 }
1718                                 /* FALLTHROUGH */
1719                         default:
1720                                 hlen -= MAX(opt[1], 2);
1721                                 opt += MAX(opt[1], 2);
1722                                 break;
1723                         }
1724                 }
1725                 if (copyback) {
1726                         /* Copyback the options, caller copys back header */
1727                         *writeback = 1;
1728                         m_copyback(m, off + sizeof(struct tcphdr),
1729                             (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1730                             sizeof(struct tcphdr));
1731                 }
1732         }
1733
1734         /*
1735          * Must invalidate PAWS checks on connections idle for too long.
1736          * The fastest allowed timestamp clock is 1ms.  That turns out to
1737          * be about 24 days before it wraps.  XXX Right now our lowerbound
1738          * TS echo check only works for the first 12 days of a connection
1739          * when the TS has exhausted half its 32bit space
1740          */
1741 #define TS_MAX_IDLE     (24*24*60*60)
1742 #define TS_MAX_CONN     (12*24*60*60)   /* XXX remove when better tsecr check */
1743
1744         getmicrouptime(&uptime);
1745         if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1746             (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1747             time_uptime - state->creation > TS_MAX_CONN))  {
1748                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1749                         DPFPRINTF(("src idled out of PAWS\n"));
1750                         pf_print_state(state);
1751                         printf("\n");
1752                 }
1753                 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1754                     | PFSS_PAWS_IDLED;
1755         }
1756         if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1757             uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1758                 if (V_pf_status.debug >= PF_DEBUG_MISC) {
1759                         DPFPRINTF(("dst idled out of PAWS\n"));
1760                         pf_print_state(state);
1761                         printf("\n");
1762                 }
1763                 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1764                     | PFSS_PAWS_IDLED;
1765         }
1766
1767         if (got_ts && src->scrub && dst->scrub &&
1768             (src->scrub->pfss_flags & PFSS_PAWS) &&
1769             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1770                 /* Validate that the timestamps are "in-window".
1771                  * RFC1323 describes TCP Timestamp options that allow
1772                  * measurement of RTT (round trip time) and PAWS
1773                  * (protection against wrapped sequence numbers).  PAWS
1774                  * gives us a set of rules for rejecting packets on
1775                  * long fat pipes (packets that were somehow delayed
1776                  * in transit longer than the time it took to send the
1777                  * full TCP sequence space of 4Gb).  We can use these
1778                  * rules and infer a few others that will let us treat
1779                  * the 32bit timestamp and the 32bit echoed timestamp
1780                  * as sequence numbers to prevent a blind attacker from
1781                  * inserting packets into a connection.
1782                  *
1783                  * RFC1323 tells us:
1784                  *  - The timestamp on this packet must be greater than
1785                  *    or equal to the last value echoed by the other
1786                  *    endpoint.  The RFC says those will be discarded
1787                  *    since it is a dup that has already been acked.
1788                  *    This gives us a lowerbound on the timestamp.
1789                  *        timestamp >= other last echoed timestamp
1790                  *  - The timestamp will be less than or equal to
1791                  *    the last timestamp plus the time between the
1792                  *    last packet and now.  The RFC defines the max
1793                  *    clock rate as 1ms.  We will allow clocks to be
1794                  *    up to 10% fast and will allow a total difference
1795                  *    or 30 seconds due to a route change.  And this
1796                  *    gives us an upperbound on the timestamp.
1797                  *        timestamp <= last timestamp + max ticks
1798                  *    We have to be careful here.  Windows will send an
1799                  *    initial timestamp of zero and then initialize it
1800                  *    to a random value after the 3whs; presumably to
1801                  *    avoid a DoS by having to call an expensive RNG
1802                  *    during a SYN flood.  Proof MS has at least one
1803                  *    good security geek.
1804                  *
1805                  *  - The TCP timestamp option must also echo the other
1806                  *    endpoints timestamp.  The timestamp echoed is the
1807                  *    one carried on the earliest unacknowledged segment
1808                  *    on the left edge of the sequence window.  The RFC
1809                  *    states that the host will reject any echoed
1810                  *    timestamps that were larger than any ever sent.
1811                  *    This gives us an upperbound on the TS echo.
1812                  *        tescr <= largest_tsval
1813                  *  - The lowerbound on the TS echo is a little more
1814                  *    tricky to determine.  The other endpoint's echoed
1815                  *    values will not decrease.  But there may be
1816                  *    network conditions that re-order packets and
1817                  *    cause our view of them to decrease.  For now the
1818                  *    only lowerbound we can safely determine is that
1819                  *    the TS echo will never be less than the original
1820                  *    TS.  XXX There is probably a better lowerbound.
1821                  *    Remove TS_MAX_CONN with better lowerbound check.
1822                  *        tescr >= other original TS
1823                  *
1824                  * It is also important to note that the fastest
1825                  * timestamp clock of 1ms will wrap its 32bit space in
1826                  * 24 days.  So we just disable TS checking after 24
1827                  * days of idle time.  We actually must use a 12d
1828                  * connection limit until we can come up with a better
1829                  * lowerbound to the TS echo check.
1830                  */
1831                 struct timeval delta_ts;
1832                 int ts_fudge;
1833
1834                 /*
1835                  * PFTM_TS_DIFF is how many seconds of leeway to allow
1836                  * a host's timestamp.  This can happen if the previous
1837                  * packet got delayed in transit for much longer than
1838                  * this packet.
1839                  */
1840                 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1841                         ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1842
1843                 /* Calculate max ticks since the last timestamp */
1844 #define TS_MAXFREQ      1100            /* RFC max TS freq of 1Khz + 10% skew */
1845 #define TS_MICROSECS    1000000         /* microseconds per second */
1846                 delta_ts = uptime;
1847                 timevalsub(&delta_ts, &src->scrub->pfss_last);
1848                 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1849                 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1850
1851                 if ((src->state >= TCPS_ESTABLISHED &&
1852                     dst->state >= TCPS_ESTABLISHED) &&
1853                     (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1854                     SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1855                     (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1856                     SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1857                         /* Bad RFC1323 implementation or an insertion attack.
1858                          *
1859                          * - Solaris 2.6 and 2.7 are known to send another ACK
1860                          *   after the FIN,FIN|ACK,ACK closing that carries
1861                          *   an old timestamp.
1862                          */
1863
1864                         DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1865                             SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1866                             SEQ_GT(tsval, src->scrub->pfss_tsval +
1867                             tsval_from_last) ? '1' : ' ',
1868                             SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1869                             SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1870                         DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1871                             "idle: %jus %lums\n",
1872                             tsval, tsecr, tsval_from_last,
1873                             (uintmax_t)delta_ts.tv_sec,
1874                             delta_ts.tv_usec / 1000));
1875                         DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1876                             src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1877                         DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1878                             "\n", dst->scrub->pfss_tsval,
1879                             dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1880                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
1881                                 pf_print_state(state);
1882                                 pf_print_flags(th->th_flags);
1883                                 printf("\n");
1884                         }
1885                         REASON_SET(reason, PFRES_TS);
1886                         return (PF_DROP);
1887                 }
1888
1889                 /* XXX I'd really like to require tsecr but it's optional */
1890
1891         } else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1892             ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1893             || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1894             src->scrub && dst->scrub &&
1895             (src->scrub->pfss_flags & PFSS_PAWS) &&
1896             (dst->scrub->pfss_flags & PFSS_PAWS)) {
1897                 /* Didn't send a timestamp.  Timestamps aren't really useful
1898                  * when:
1899                  *  - connection opening or closing (often not even sent).
1900                  *    but we must not let an attacker to put a FIN on a
1901                  *    data packet to sneak it through our ESTABLISHED check.
1902                  *  - on a TCP reset.  RFC suggests not even looking at TS.
1903                  *  - on an empty ACK.  The TS will not be echoed so it will
1904                  *    probably not help keep the RTT calculation in sync and
1905                  *    there isn't as much danger when the sequence numbers
1906                  *    got wrapped.  So some stacks don't include TS on empty
1907                  *    ACKs :-(
1908                  *
1909                  * To minimize the disruption to mostly RFC1323 conformant
1910                  * stacks, we will only require timestamps on data packets.
1911                  *
1912                  * And what do ya know, we cannot require timestamps on data
1913                  * packets.  There appear to be devices that do legitimate
1914                  * TCP connection hijacking.  There are HTTP devices that allow
1915                  * a 3whs (with timestamps) and then buffer the HTTP request.
1916                  * If the intermediate device has the HTTP response cache, it
1917                  * will spoof the response but not bother timestamping its
1918                  * packets.  So we can look for the presence of a timestamp in
1919                  * the first data packet and if there, require it in all future
1920                  * packets.
1921                  */
1922
1923                 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1924                         /*
1925                          * Hey!  Someone tried to sneak a packet in.  Or the
1926                          * stack changed its RFC1323 behavior?!?!
1927                          */
1928                         if (V_pf_status.debug >= PF_DEBUG_MISC) {
1929                                 DPFPRINTF(("Did not receive expected RFC1323 "
1930                                     "timestamp\n"));
1931                                 pf_print_state(state);
1932                                 pf_print_flags(th->th_flags);
1933                                 printf("\n");
1934                         }
1935                         REASON_SET(reason, PFRES_TS);
1936                         return (PF_DROP);
1937                 }
1938         }
1939
1940         /*
1941          * We will note if a host sends his data packets with or without
1942          * timestamps.  And require all data packets to contain a timestamp
1943          * if the first does.  PAWS implicitly requires that all data packets be
1944          * timestamped.  But I think there are middle-man devices that hijack
1945          * TCP streams immediately after the 3whs and don't timestamp their
1946          * packets (seen in a WWW accelerator or cache).
1947          */
1948         if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1949             (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1950                 if (got_ts)
1951                         src->scrub->pfss_flags |= PFSS_DATA_TS;
1952                 else {
1953                         src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1954                         if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1955                             (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1956                                 /* Don't warn if other host rejected RFC1323 */
1957                                 DPFPRINTF(("Broken RFC1323 stack did not "
1958                                     "timestamp data packet. Disabled PAWS "
1959                                     "security.\n"));
1960                                 pf_print_state(state);
1961                                 pf_print_flags(th->th_flags);
1962                                 printf("\n");
1963                         }
1964                 }
1965         }
1966
1967         /*
1968          * Update PAWS values
1969          */
1970         if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1971             (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1972                 getmicrouptime(&src->scrub->pfss_last);
1973                 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1974                     (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1975                         src->scrub->pfss_tsval = tsval;
1976
1977                 if (tsecr) {
1978                         if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1979                             (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1980                                 src->scrub->pfss_tsecr = tsecr;
1981
1982                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1983                             (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1984                             src->scrub->pfss_tsval0 == 0)) {
1985                                 /* tsval0 MUST be the lowest timestamp */
1986                                 src->scrub->pfss_tsval0 = tsval;
1987                         }
1988
1989                         /* Only fully initialized after a TS gets echoed */
1990                         if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1991                                 src->scrub->pfss_flags |= PFSS_PAWS;
1992                 }
1993         }
1994
1995         /* I have a dream....  TCP segment reassembly.... */
1996         return (0);
1997 }
1998
1999 int
2000 pf_normalize_mss(struct mbuf *m, int off, struct pf_pdesc *pd)
2001 {
2002         struct tcphdr   *th = &pd->hdr.tcp;
2003         u_int16_t       *mss;
2004         int              thoff;
2005         int              opt, cnt, optlen = 0;
2006         u_char           opts[TCP_MAXOLEN];
2007         u_char          *optp = opts;
2008         size_t           startoff;
2009
2010         thoff = th->th_off << 2;
2011         cnt = thoff - sizeof(struct tcphdr);
2012
2013         if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
2014             NULL, NULL, pd->af))
2015                 return (0);
2016
2017         for (; cnt > 0; cnt -= optlen, optp += optlen) {
2018                 startoff = optp - opts;
2019                 opt = optp[0];
2020                 if (opt == TCPOPT_EOL)
2021                         break;
2022                 if (opt == TCPOPT_NOP)
2023                         optlen = 1;
2024                 else {
2025                         if (cnt < 2)
2026                                 break;
2027                         optlen = optp[1];
2028                         if (optlen < 2 || optlen > cnt)
2029                                 break;
2030                 }
2031                 switch (opt) {
2032                 case TCPOPT_MAXSEG:
2033                         mss = (u_int16_t *)(optp + 2);
2034                         if ((ntohs(*mss)) > pd->act.max_mss) {
2035                                 pf_patch_16_unaligned(m,
2036                                     &th->th_sum,
2037                                     mss, htons(pd->act.max_mss),
2038                                     PF_ALGNMNT(startoff),
2039                                     0);
2040                                 m_copyback(m, off + sizeof(*th),
2041                                     thoff - sizeof(*th), opts);
2042                                 m_copyback(m, off, sizeof(*th), (caddr_t)th);
2043                         }
2044                         break;
2045                 default:
2046                         break;
2047                 }
2048         }
2049
2050         return (0);
2051 }
2052
2053 static int
2054 pf_scan_sctp(struct mbuf *m, int ipoff, int off, struct pf_pdesc *pd,
2055     struct pfi_kkif *kif)
2056 {
2057         struct sctp_chunkhdr ch = { };
2058         int chunk_off = sizeof(struct sctphdr);
2059         int chunk_start;
2060         int ret;
2061
2062         while (off + chunk_off < pd->tot_len) {
2063                 if (!pf_pull_hdr(m, off + chunk_off, &ch, sizeof(ch), NULL,
2064                     NULL, pd->af))
2065                         return (PF_DROP);
2066
2067                 /* Length includes the header, this must be at least 4. */
2068                 if (ntohs(ch.chunk_length) < 4)
2069                         return (PF_DROP);
2070
2071                 chunk_start = chunk_off;
2072                 chunk_off += roundup(ntohs(ch.chunk_length), 4);
2073
2074                 switch (ch.chunk_type) {
2075                 case SCTP_INITIATION:
2076                 case SCTP_INITIATION_ACK: {
2077                         struct sctp_init_chunk init;
2078
2079                         if (!pf_pull_hdr(m, off + chunk_start, &init,
2080                             sizeof(init), NULL, NULL, pd->af))
2081                                 return (PF_DROP);
2082
2083                         /*
2084                          * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have
2085                          * any value except 0."
2086                          */
2087                         if (init.init.initiate_tag == 0)
2088                                 return (PF_DROP);
2089                         if (init.init.num_inbound_streams == 0)
2090                                 return (PF_DROP);
2091                         if (init.init.num_outbound_streams == 0)
2092                                 return (PF_DROP);
2093                         if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND)
2094                                 return (PF_DROP);
2095
2096                         /*
2097                          * RFC 9260, Section 3.1, INIT chunks MUST have zero
2098                          * verification tag.
2099                          */
2100                         if (ch.chunk_type == SCTP_INITIATION &&
2101                             pd->hdr.sctp.v_tag != 0)
2102                                 return (PF_DROP);
2103
2104                         pd->sctp_initiate_tag = init.init.initiate_tag;
2105
2106                         if (ch.chunk_type == SCTP_INITIATION)
2107                                 pd->sctp_flags |= PFDESC_SCTP_INIT;
2108                         else
2109                                 pd->sctp_flags |= PFDESC_SCTP_INIT_ACK;
2110
2111                         ret = pf_multihome_scan_init(m, off + chunk_start,
2112                             ntohs(init.ch.chunk_length), pd, kif);
2113                         if (ret != PF_PASS)
2114                                 return (ret);
2115
2116                         break;
2117                 }
2118                 case SCTP_ABORT_ASSOCIATION:
2119                         pd->sctp_flags |= PFDESC_SCTP_ABORT;
2120                         break;
2121                 case SCTP_SHUTDOWN:
2122                 case SCTP_SHUTDOWN_ACK:
2123                         pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN;
2124                         break;
2125                 case SCTP_SHUTDOWN_COMPLETE:
2126                         pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE;
2127                         break;
2128                 case SCTP_COOKIE_ECHO:
2129                         pd->sctp_flags |= PFDESC_SCTP_COOKIE;
2130                         break;
2131                 case SCTP_COOKIE_ACK:
2132                         pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK;
2133                         break;
2134                 case SCTP_DATA:
2135                         pd->sctp_flags |= PFDESC_SCTP_DATA;
2136                         break;
2137                 case SCTP_HEARTBEAT_REQUEST:
2138                         pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT;
2139                         break;
2140                 case SCTP_HEARTBEAT_ACK:
2141                         pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK;
2142                         break;
2143                 case SCTP_ASCONF:
2144                         pd->sctp_flags |= PFDESC_SCTP_ASCONF;
2145
2146                         ret = pf_multihome_scan_asconf(m, off + chunk_start,
2147                             ntohs(ch.chunk_length), pd, kif);
2148                         if (ret != PF_PASS)
2149                                 return (ret);
2150                         break;
2151                 default:
2152                         pd->sctp_flags |= PFDESC_SCTP_OTHER;
2153                         break;
2154                 }
2155         }
2156
2157         /* Validate chunk lengths vs. packet length. */
2158         if (off + chunk_off != pd->tot_len)
2159                 return (PF_DROP);
2160
2161         /*
2162          * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only
2163          * one in a packet.
2164          */
2165         if ((pd->sctp_flags & PFDESC_SCTP_INIT) &&
2166             (pd->sctp_flags & ~PFDESC_SCTP_INIT))
2167                 return (PF_DROP);
2168         if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) &&
2169             (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK))
2170                 return (PF_DROP);
2171         if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) &&
2172             (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE))
2173                 return (PF_DROP);
2174
2175         return (PF_PASS);
2176 }
2177
2178 int
2179 pf_normalize_sctp(int dir, struct pfi_kkif *kif, struct mbuf *m, int ipoff,
2180     int off, void *h, struct pf_pdesc *pd)
2181 {
2182         struct pf_krule *r, *rm = NULL;
2183         struct sctphdr  *sh = &pd->hdr.sctp;
2184         u_short          reason;
2185         sa_family_t      af = pd->af;
2186         int              srs;
2187
2188         PF_RULES_RASSERT();
2189
2190         /* Unconditionally scan the SCTP packet, because we need to look for
2191          * things like shutdown and asconf chunks. */
2192         if (pf_scan_sctp(m, ipoff, off, pd, kif) != PF_PASS)
2193                 goto sctp_drop;
2194
2195         r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
2196         /* Check if there any scrub rules. Lack of scrub rules means enforced
2197          * packet normalization operation just like in OpenBSD. */
2198         srs = (r != NULL);
2199         while (r != NULL) {
2200                 pf_counter_u64_add(&r->evaluations, 1);
2201                 if (pfi_kkif_match(r->kif, kif) == r->ifnot)
2202                         r = r->skip[PF_SKIP_IFP].ptr;
2203                 else if (r->direction && r->direction != dir)
2204                         r = r->skip[PF_SKIP_DIR].ptr;
2205                 else if (r->af && r->af != af)
2206                         r = r->skip[PF_SKIP_AF].ptr;
2207                 else if (r->proto && r->proto != pd->proto)
2208                         r = r->skip[PF_SKIP_PROTO].ptr;
2209                 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
2210                     r->src.neg, kif, M_GETFIB(m)))
2211                         r = r->skip[PF_SKIP_SRC_ADDR].ptr;
2212                 else if (r->src.port_op && !pf_match_port(r->src.port_op,
2213                             r->src.port[0], r->src.port[1], sh->src_port))
2214                         r = r->skip[PF_SKIP_SRC_PORT].ptr;
2215                 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
2216                     r->dst.neg, NULL, M_GETFIB(m)))
2217                         r = r->skip[PF_SKIP_DST_ADDR].ptr;
2218                 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
2219                             r->dst.port[0], r->dst.port[1], sh->dest_port))
2220                         r = r->skip[PF_SKIP_DST_PORT].ptr;
2221                 else {
2222                         rm = r;
2223                         break;
2224                 }
2225         }
2226
2227         if (srs) {
2228                 /* With scrub rules present SCTP normalization happens only
2229                  * if one of rules has matched and it's not a "no scrub" rule */
2230                 if (rm == NULL || rm->action == PF_NOSCRUB)
2231                         return (PF_PASS);
2232
2233                 pf_counter_u64_critical_enter();
2234                 pf_counter_u64_add_protected(&r->packets[dir == PF_OUT], 1);
2235                 pf_counter_u64_add_protected(&r->bytes[dir == PF_OUT], pd->tot_len);
2236                 pf_counter_u64_critical_exit();
2237         }
2238
2239         /* Verify we're a multiple of 4 bytes long */
2240         if ((pd->tot_len - off - sizeof(struct sctphdr)) % 4)
2241                 goto sctp_drop;
2242
2243         /* INIT chunk needs to be the only chunk */
2244         if (pd->sctp_flags & PFDESC_SCTP_INIT)
2245                 if (pd->sctp_flags & ~PFDESC_SCTP_INIT)
2246                         goto sctp_drop;
2247
2248         return (PF_PASS);
2249
2250 sctp_drop:
2251         REASON_SET(&reason, PFRES_NORM);
2252         if (rm != NULL && r->log)
2253                 PFLOG_PACKET(kif, m, AF_INET, reason, r, NULL, NULL, pd,
2254                     1);
2255
2256         return (PF_DROP);
2257 }
2258
2259 #ifdef INET
2260 void
2261 pf_scrub_ip(struct mbuf **m0, struct pf_pdesc *pd)
2262 {
2263         struct mbuf             *m = *m0;
2264         struct ip               *h = mtod(m, struct ip *);
2265
2266         /* Clear IP_DF if no-df was requested */
2267         if (pd->act.flags & PFSTATE_NODF && h->ip_off & htons(IP_DF)) {
2268                 u_int16_t ip_off = h->ip_off;
2269
2270                 h->ip_off &= htons(~IP_DF);
2271                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2272         }
2273
2274         /* Enforce a minimum ttl, may cause endless packet loops */
2275         if (pd->act.min_ttl && h->ip_ttl < pd->act.min_ttl) {
2276                 u_int16_t ip_ttl = h->ip_ttl;
2277
2278                 h->ip_ttl = pd->act.min_ttl;
2279                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2280         }
2281
2282         /* Enforce tos */
2283         if (pd->act.flags & PFSTATE_SETTOS) {
2284                 u_int16_t       ov, nv;
2285
2286                 ov = *(u_int16_t *)h;
2287                 h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2288                 nv = *(u_int16_t *)h;
2289
2290                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2291         }
2292
2293         /* random-id, but not for fragments */
2294         if (pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2295                 uint16_t ip_id = h->ip_id;
2296
2297                 ip_fillid(h);
2298                 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2299         }
2300 }
2301 #endif /* INET */
2302
2303 #ifdef INET6
2304 void
2305 pf_scrub_ip6(struct mbuf **m0, struct pf_pdesc *pd)
2306 {
2307         struct mbuf             *m = *m0;
2308         struct ip6_hdr          *h = mtod(m, struct ip6_hdr *);
2309
2310         /* Enforce a minimum ttl, may cause endless packet loops */
2311         if (pd->act.min_ttl && h->ip6_hlim < pd->act.min_ttl)
2312                 h->ip6_hlim = pd->act.min_ttl;
2313
2314         /* Enforce tos. Set traffic class bits */
2315         if (pd->act.flags & PFSTATE_SETTOS) {
2316                 h->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2317                 h->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h)) << 20);
2318         }
2319 }
2320 #endif