]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/ofed/drivers/infiniband/core/ib_verbs.c
MFC r330490:
[FreeBSD/FreeBSD.git] / sys / ofed / drivers / infiniband / core / ib_verbs.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  *
40  * $FreeBSD$
41  */
42
43 #include <linux/errno.h>
44 #include <linux/err.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/in.h>
48 #include <linux/in6.h>
49
50 #include <rdma/ib_verbs.h>
51 #include <rdma/ib_cache.h>
52 #include <rdma/ib_addr.h>
53
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56
57 #include <machine/in_cksum.h>
58
59 #include "core_priv.h"
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return  1;
130         case IB_RATE_5_GBPS:   return  2;
131         case IB_RATE_10_GBPS:  return  4;
132         case IB_RATE_20_GBPS:  return  8;
133         case IB_RATE_30_GBPS:  return 12;
134         case IB_RATE_40_GBPS:  return 16;
135         case IB_RATE_60_GBPS:  return 24;
136         case IB_RATE_80_GBPS:  return 32;
137         case IB_RATE_120_GBPS: return 48;
138         default:               return -1;
139         }
140 }
141 EXPORT_SYMBOL(ib_rate_to_mult);
142
143 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
144 {
145         switch (mult) {
146         case 1:  return IB_RATE_2_5_GBPS;
147         case 2:  return IB_RATE_5_GBPS;
148         case 4:  return IB_RATE_10_GBPS;
149         case 8:  return IB_RATE_20_GBPS;
150         case 12: return IB_RATE_30_GBPS;
151         case 16: return IB_RATE_40_GBPS;
152         case 24: return IB_RATE_60_GBPS;
153         case 32: return IB_RATE_80_GBPS;
154         case 48: return IB_RATE_120_GBPS;
155         default: return IB_RATE_PORT_CURRENT;
156         }
157 }
158 EXPORT_SYMBOL(mult_to_ib_rate);
159
160 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
161 {
162         switch (rate) {
163         case IB_RATE_2_5_GBPS: return 2500;
164         case IB_RATE_5_GBPS:   return 5000;
165         case IB_RATE_10_GBPS:  return 10000;
166         case IB_RATE_20_GBPS:  return 20000;
167         case IB_RATE_30_GBPS:  return 30000;
168         case IB_RATE_40_GBPS:  return 40000;
169         case IB_RATE_60_GBPS:  return 60000;
170         case IB_RATE_80_GBPS:  return 80000;
171         case IB_RATE_120_GBPS: return 120000;
172         case IB_RATE_14_GBPS:  return 14062;
173         case IB_RATE_56_GBPS:  return 56250;
174         case IB_RATE_112_GBPS: return 112500;
175         case IB_RATE_168_GBPS: return 168750;
176         case IB_RATE_25_GBPS:  return 25781;
177         case IB_RATE_100_GBPS: return 103125;
178         case IB_RATE_200_GBPS: return 206250;
179         case IB_RATE_300_GBPS: return 309375;
180         default:               return -1;
181         }
182 }
183 EXPORT_SYMBOL(ib_rate_to_mbps);
184
185 __attribute_const__ enum rdma_transport_type
186 rdma_node_get_transport(enum rdma_node_type node_type)
187 {
188         switch (node_type) {
189         case RDMA_NODE_IB_CA:
190         case RDMA_NODE_IB_SWITCH:
191         case RDMA_NODE_IB_ROUTER:
192                 return RDMA_TRANSPORT_IB;
193         case RDMA_NODE_RNIC:
194                 return RDMA_TRANSPORT_IWARP;
195         case RDMA_NODE_USNIC:
196                 return RDMA_TRANSPORT_USNIC;
197         case RDMA_NODE_USNIC_UDP:
198                 return RDMA_TRANSPORT_USNIC_UDP;
199         default:
200                 BUG();
201                 return 0;
202         }
203 }
204 EXPORT_SYMBOL(rdma_node_get_transport);
205
206 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
207 {
208         if (device->get_link_layer)
209                 return device->get_link_layer(device, port_num);
210
211         switch (rdma_node_get_transport(device->node_type)) {
212         case RDMA_TRANSPORT_IB:
213                 return IB_LINK_LAYER_INFINIBAND;
214         case RDMA_TRANSPORT_IWARP:
215         case RDMA_TRANSPORT_USNIC:
216         case RDMA_TRANSPORT_USNIC_UDP:
217                 return IB_LINK_LAYER_ETHERNET;
218         default:
219                 return IB_LINK_LAYER_UNSPECIFIED;
220         }
221 }
222 EXPORT_SYMBOL(rdma_port_get_link_layer);
223
224 /* Protection domains */
225
226 /**
227  * ib_alloc_pd - Allocates an unused protection domain.
228  * @device: The device on which to allocate the protection domain.
229  *
230  * A protection domain object provides an association between QPs, shared
231  * receive queues, address handles, memory regions, and memory windows.
232  *
233  * Every PD has a local_dma_lkey which can be used as the lkey value for local
234  * memory operations.
235  */
236 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
237                 const char *caller)
238 {
239         struct ib_pd *pd;
240         int mr_access_flags = 0;
241
242         pd = device->alloc_pd(device, NULL, NULL);
243         if (IS_ERR(pd))
244                 return pd;
245
246         pd->device = device;
247         pd->uobject = NULL;
248         pd->__internal_mr = NULL;
249         atomic_set(&pd->usecnt, 0);
250         pd->flags = flags;
251
252         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
253                 pd->local_dma_lkey = device->local_dma_lkey;
254         else
255                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
256
257         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
258                 pr_warn("%s: enabling unsafe global rkey\n", caller);
259                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
260         }
261
262         if (mr_access_flags) {
263                 struct ib_mr *mr;
264
265                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
266                 if (IS_ERR(mr)) {
267                         ib_dealloc_pd(pd);
268                         return ERR_CAST(mr);
269                 }
270
271                 mr->device      = pd->device;
272                 mr->pd          = pd;
273                 mr->uobject     = NULL;
274                 mr->need_inval  = false;
275
276                 pd->__internal_mr = mr;
277
278                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
279                         pd->local_dma_lkey = pd->__internal_mr->lkey;
280
281                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
282                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
283         }
284
285         return pd;
286 }
287 EXPORT_SYMBOL(__ib_alloc_pd);
288
289 /**
290  * ib_dealloc_pd - Deallocates a protection domain.
291  * @pd: The protection domain to deallocate.
292  *
293  * It is an error to call this function while any resources in the pd still
294  * exist.  The caller is responsible to synchronously destroy them and
295  * guarantee no new allocations will happen.
296  */
297 void ib_dealloc_pd(struct ib_pd *pd)
298 {
299         int ret;
300
301         if (pd->__internal_mr) {
302                 ret = pd->device->dereg_mr(pd->__internal_mr);
303                 WARN_ON(ret);
304                 pd->__internal_mr = NULL;
305         }
306
307         /* uverbs manipulates usecnt with proper locking, while the kabi
308            requires the caller to guarantee we can't race here. */
309         WARN_ON(atomic_read(&pd->usecnt));
310
311         /* Making delalloc_pd a void return is a WIP, no driver should return
312            an error here. */
313         ret = pd->device->dealloc_pd(pd);
314         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
315 }
316 EXPORT_SYMBOL(ib_dealloc_pd);
317
318 /* Address handles */
319
320 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
321 {
322         struct ib_ah *ah;
323
324         ah = pd->device->create_ah(pd, ah_attr);
325
326         if (!IS_ERR(ah)) {
327                 ah->device  = pd->device;
328                 ah->pd      = pd;
329                 ah->uobject = NULL;
330                 atomic_inc(&pd->usecnt);
331         }
332
333         return ah;
334 }
335 EXPORT_SYMBOL(ib_create_ah);
336
337 static int ib_get_header_version(const union rdma_network_hdr *hdr)
338 {
339         const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
340         struct ip ip4h_checked;
341         const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
342
343         /* If it's IPv6, the version must be 6, otherwise, the first
344          * 20 bytes (before the IPv4 header) are garbled.
345          */
346         if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
347                 return (ip4h->ip_v == 4) ? 4 : 0;
348         /* version may be 6 or 4 because the first 20 bytes could be garbled */
349
350         /* RoCE v2 requires no options, thus header length
351          * must be 5 words
352          */
353         if (ip4h->ip_hl != 5)
354                 return 6;
355
356         /* Verify checksum.
357          * We can't write on scattered buffers so we need to copy to
358          * temp buffer.
359          */
360         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
361         ip4h_checked.ip_sum = 0;
362 #if defined(INET) || defined(INET6)
363         ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
364 #endif
365         /* if IPv4 header checksum is OK, believe it */
366         if (ip4h->ip_sum == ip4h_checked.ip_sum)
367                 return 4;
368         return 6;
369 }
370
371 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
372                                                      u8 port_num,
373                                                      const struct ib_grh *grh)
374 {
375         int grh_version;
376
377         if (rdma_protocol_ib(device, port_num))
378                 return RDMA_NETWORK_IB;
379
380         grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
381
382         if (grh_version == 4)
383                 return RDMA_NETWORK_IPV4;
384
385         if (grh->next_hdr == IPPROTO_UDP)
386                 return RDMA_NETWORK_IPV6;
387
388         return RDMA_NETWORK_ROCE_V1;
389 }
390
391 struct find_gid_index_context {
392         u16 vlan_id;
393         enum ib_gid_type gid_type;
394 };
395
396 static bool find_gid_index(const union ib_gid *gid,
397                            const struct ib_gid_attr *gid_attr,
398                            void *context)
399 {
400         struct find_gid_index_context *ctx =
401                 (struct find_gid_index_context *)context;
402
403         if (ctx->gid_type != gid_attr->gid_type)
404                 return false;
405
406         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
407             (is_vlan_dev(gid_attr->ndev) &&
408              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
409                 return false;
410
411         return true;
412 }
413
414 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
415                                    u16 vlan_id, const union ib_gid *sgid,
416                                    enum ib_gid_type gid_type,
417                                    u16 *gid_index)
418 {
419         struct find_gid_index_context context = {.vlan_id = vlan_id,
420                                                  .gid_type = gid_type};
421
422         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
423                                      &context, gid_index);
424 }
425
426 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
427                                   enum rdma_network_type net_type,
428                                   union ib_gid *sgid, union ib_gid *dgid)
429 {
430         struct sockaddr_in  src_in;
431         struct sockaddr_in  dst_in;
432         __be32 src_saddr, dst_saddr;
433
434         if (!sgid || !dgid)
435                 return -EINVAL;
436
437         if (net_type == RDMA_NETWORK_IPV4) {
438                 memcpy(&src_in.sin_addr.s_addr,
439                        &hdr->roce4grh.ip_src, 4);
440                 memcpy(&dst_in.sin_addr.s_addr,
441                        &hdr->roce4grh.ip_dst, 4);
442                 src_saddr = src_in.sin_addr.s_addr;
443                 dst_saddr = dst_in.sin_addr.s_addr;
444                 ipv6_addr_set_v4mapped(src_saddr,
445                                        (struct in6_addr *)sgid);
446                 ipv6_addr_set_v4mapped(dst_saddr,
447                                        (struct in6_addr *)dgid);
448                 return 0;
449         } else if (net_type == RDMA_NETWORK_IPV6 ||
450                    net_type == RDMA_NETWORK_IB) {
451                 *dgid = hdr->ibgrh.dgid;
452                 *sgid = hdr->ibgrh.sgid;
453                 return 0;
454         } else {
455                 return -EINVAL;
456         }
457 }
458
459 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
460                        const struct ib_wc *wc, const struct ib_grh *grh,
461                        struct ib_ah_attr *ah_attr)
462 {
463         u32 flow_class;
464         u16 gid_index;
465         int ret;
466         enum rdma_network_type net_type = RDMA_NETWORK_IB;
467         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
468         int hoplimit = 0xff;
469         union ib_gid dgid;
470         union ib_gid sgid;
471
472         memset(ah_attr, 0, sizeof *ah_attr);
473         if (rdma_cap_eth_ah(device, port_num)) {
474                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
475                         net_type = wc->network_hdr_type;
476                 else
477                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
478                 gid_type = ib_network_to_gid_type(net_type);
479         }
480         ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
481                                      &sgid, &dgid);
482         if (ret)
483                 return ret;
484
485         if (rdma_protocol_roce(device, port_num)) {
486                 int if_index = 0;
487                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
488                                 wc->vlan_id : 0xffff;
489                 struct net_device *idev;
490                 struct net_device *resolved_dev;
491
492                 if (!(wc->wc_flags & IB_WC_GRH))
493                         return -EPROTOTYPE;
494
495                 if (!device->get_netdev)
496                         return -EOPNOTSUPP;
497
498                 idev = device->get_netdev(device, port_num);
499                 if (!idev)
500                         return -ENODEV;
501
502                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
503                                                    ah_attr->dmac,
504                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
505                                                    NULL : &vlan_id,
506                                                    &if_index, &hoplimit);
507                 if (ret) {
508                         dev_put(idev);
509                         return ret;
510                 }
511
512                 resolved_dev = dev_get_by_index(&init_net, if_index);
513                 if (resolved_dev->if_flags & IFF_LOOPBACK) {
514                         dev_put(resolved_dev);
515                         resolved_dev = idev;
516                         dev_hold(resolved_dev);
517                 }
518                 rcu_read_lock();
519                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
520                                                                    resolved_dev))
521                         ret = -EHOSTUNREACH;
522                 rcu_read_unlock();
523                 dev_put(idev);
524                 dev_put(resolved_dev);
525                 if (ret)
526                         return ret;
527
528                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
529                                               &dgid, gid_type, &gid_index);
530                 if (ret)
531                         return ret;
532         }
533
534         ah_attr->dlid = wc->slid;
535         ah_attr->sl = wc->sl;
536         ah_attr->src_path_bits = wc->dlid_path_bits;
537         ah_attr->port_num = port_num;
538
539         if (wc->wc_flags & IB_WC_GRH) {
540                 ah_attr->ah_flags = IB_AH_GRH;
541                 ah_attr->grh.dgid = sgid;
542
543                 if (!rdma_cap_eth_ah(device, port_num)) {
544                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
545                                 ret = ib_find_cached_gid_by_port(device, &dgid,
546                                                                  IB_GID_TYPE_IB,
547                                                                  port_num, NULL,
548                                                                  &gid_index);
549                                 if (ret)
550                                         return ret;
551                         } else {
552                                 gid_index = 0;
553                         }
554                 }
555
556                 ah_attr->grh.sgid_index = (u8) gid_index;
557                 flow_class = be32_to_cpu(grh->version_tclass_flow);
558                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
559                 ah_attr->grh.hop_limit = hoplimit;
560                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
561         }
562         return 0;
563 }
564 EXPORT_SYMBOL(ib_init_ah_from_wc);
565
566 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
567                                    const struct ib_grh *grh, u8 port_num)
568 {
569         struct ib_ah_attr ah_attr;
570         int ret;
571
572         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
573         if (ret)
574                 return ERR_PTR(ret);
575
576         return ib_create_ah(pd, &ah_attr);
577 }
578 EXPORT_SYMBOL(ib_create_ah_from_wc);
579
580 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
581 {
582         return ah->device->modify_ah ?
583                 ah->device->modify_ah(ah, ah_attr) :
584                 -ENOSYS;
585 }
586 EXPORT_SYMBOL(ib_modify_ah);
587
588 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
589 {
590         return ah->device->query_ah ?
591                 ah->device->query_ah(ah, ah_attr) :
592                 -ENOSYS;
593 }
594 EXPORT_SYMBOL(ib_query_ah);
595
596 int ib_destroy_ah(struct ib_ah *ah)
597 {
598         struct ib_pd *pd;
599         int ret;
600
601         pd = ah->pd;
602         ret = ah->device->destroy_ah(ah);
603         if (!ret)
604                 atomic_dec(&pd->usecnt);
605
606         return ret;
607 }
608 EXPORT_SYMBOL(ib_destroy_ah);
609
610 /* Shared receive queues */
611
612 struct ib_srq *ib_create_srq(struct ib_pd *pd,
613                              struct ib_srq_init_attr *srq_init_attr)
614 {
615         struct ib_srq *srq;
616
617         if (!pd->device->create_srq)
618                 return ERR_PTR(-ENOSYS);
619
620         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
621
622         if (!IS_ERR(srq)) {
623                 srq->device        = pd->device;
624                 srq->pd            = pd;
625                 srq->uobject       = NULL;
626                 srq->event_handler = srq_init_attr->event_handler;
627                 srq->srq_context   = srq_init_attr->srq_context;
628                 srq->srq_type      = srq_init_attr->srq_type;
629                 if (srq->srq_type == IB_SRQT_XRC) {
630                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
631                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
632                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
633                         atomic_inc(&srq->ext.xrc.cq->usecnt);
634                 }
635                 atomic_inc(&pd->usecnt);
636                 atomic_set(&srq->usecnt, 0);
637         }
638
639         return srq;
640 }
641 EXPORT_SYMBOL(ib_create_srq);
642
643 int ib_modify_srq(struct ib_srq *srq,
644                   struct ib_srq_attr *srq_attr,
645                   enum ib_srq_attr_mask srq_attr_mask)
646 {
647         return srq->device->modify_srq ?
648                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
649                 -ENOSYS;
650 }
651 EXPORT_SYMBOL(ib_modify_srq);
652
653 int ib_query_srq(struct ib_srq *srq,
654                  struct ib_srq_attr *srq_attr)
655 {
656         return srq->device->query_srq ?
657                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
658 }
659 EXPORT_SYMBOL(ib_query_srq);
660
661 int ib_destroy_srq(struct ib_srq *srq)
662 {
663         struct ib_pd *pd;
664         enum ib_srq_type srq_type;
665         struct ib_xrcd *uninitialized_var(xrcd);
666         struct ib_cq *uninitialized_var(cq);
667         int ret;
668
669         if (atomic_read(&srq->usecnt))
670                 return -EBUSY;
671
672         pd = srq->pd;
673         srq_type = srq->srq_type;
674         if (srq_type == IB_SRQT_XRC) {
675                 xrcd = srq->ext.xrc.xrcd;
676                 cq = srq->ext.xrc.cq;
677         }
678
679         ret = srq->device->destroy_srq(srq);
680         if (!ret) {
681                 atomic_dec(&pd->usecnt);
682                 if (srq_type == IB_SRQT_XRC) {
683                         atomic_dec(&xrcd->usecnt);
684                         atomic_dec(&cq->usecnt);
685                 }
686         }
687
688         return ret;
689 }
690 EXPORT_SYMBOL(ib_destroy_srq);
691
692 /* Queue pairs */
693
694 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
695 {
696         struct ib_qp *qp = context;
697         unsigned long flags;
698
699         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
700         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
701                 if (event->element.qp->event_handler)
702                         event->element.qp->event_handler(event, event->element.qp->qp_context);
703         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
704 }
705
706 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
707 {
708         mutex_lock(&xrcd->tgt_qp_mutex);
709         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
710         mutex_unlock(&xrcd->tgt_qp_mutex);
711 }
712
713 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
714                                   void (*event_handler)(struct ib_event *, void *),
715                                   void *qp_context)
716 {
717         struct ib_qp *qp;
718         unsigned long flags;
719
720         qp = kzalloc(sizeof *qp, GFP_KERNEL);
721         if (!qp)
722                 return ERR_PTR(-ENOMEM);
723
724         qp->real_qp = real_qp;
725         atomic_inc(&real_qp->usecnt);
726         qp->device = real_qp->device;
727         qp->event_handler = event_handler;
728         qp->qp_context = qp_context;
729         qp->qp_num = real_qp->qp_num;
730         qp->qp_type = real_qp->qp_type;
731
732         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
733         list_add(&qp->open_list, &real_qp->open_list);
734         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
735
736         return qp;
737 }
738
739 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
740                          struct ib_qp_open_attr *qp_open_attr)
741 {
742         struct ib_qp *qp, *real_qp;
743
744         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
745                 return ERR_PTR(-EINVAL);
746
747         qp = ERR_PTR(-EINVAL);
748         mutex_lock(&xrcd->tgt_qp_mutex);
749         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
750                 if (real_qp->qp_num == qp_open_attr->qp_num) {
751                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
752                                           qp_open_attr->qp_context);
753                         break;
754                 }
755         }
756         mutex_unlock(&xrcd->tgt_qp_mutex);
757         return qp;
758 }
759 EXPORT_SYMBOL(ib_open_qp);
760
761 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
762                 struct ib_qp_init_attr *qp_init_attr)
763 {
764         struct ib_qp *real_qp = qp;
765
766         qp->event_handler = __ib_shared_qp_event_handler;
767         qp->qp_context = qp;
768         qp->pd = NULL;
769         qp->send_cq = qp->recv_cq = NULL;
770         qp->srq = NULL;
771         qp->xrcd = qp_init_attr->xrcd;
772         atomic_inc(&qp_init_attr->xrcd->usecnt);
773         INIT_LIST_HEAD(&qp->open_list);
774
775         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
776                           qp_init_attr->qp_context);
777         if (!IS_ERR(qp))
778                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
779         else
780                 real_qp->device->destroy_qp(real_qp);
781         return qp;
782 }
783
784 struct ib_qp *ib_create_qp(struct ib_pd *pd,
785                            struct ib_qp_init_attr *qp_init_attr)
786 {
787         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
788         struct ib_qp *qp;
789
790         if (qp_init_attr->rwq_ind_tbl &&
791             (qp_init_attr->recv_cq ||
792             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
793             qp_init_attr->cap.max_recv_sge))
794                 return ERR_PTR(-EINVAL);
795
796         qp = device->create_qp(pd, qp_init_attr, NULL);
797         if (IS_ERR(qp))
798                 return qp;
799
800         qp->device     = device;
801         qp->real_qp    = qp;
802         qp->uobject    = NULL;
803         qp->qp_type    = qp_init_attr->qp_type;
804         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
805
806         atomic_set(&qp->usecnt, 0);
807         spin_lock_init(&qp->mr_lock);
808
809         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
810                 return ib_create_xrc_qp(qp, qp_init_attr);
811
812         qp->event_handler = qp_init_attr->event_handler;
813         qp->qp_context = qp_init_attr->qp_context;
814         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
815                 qp->recv_cq = NULL;
816                 qp->srq = NULL;
817         } else {
818                 qp->recv_cq = qp_init_attr->recv_cq;
819                 if (qp_init_attr->recv_cq)
820                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
821                 qp->srq = qp_init_attr->srq;
822                 if (qp->srq)
823                         atomic_inc(&qp_init_attr->srq->usecnt);
824         }
825
826         qp->pd      = pd;
827         qp->send_cq = qp_init_attr->send_cq;
828         qp->xrcd    = NULL;
829
830         atomic_inc(&pd->usecnt);
831         if (qp_init_attr->send_cq)
832                 atomic_inc(&qp_init_attr->send_cq->usecnt);
833         if (qp_init_attr->rwq_ind_tbl)
834                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
835
836         /*
837          * Note: all hw drivers guarantee that max_send_sge is lower than
838          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
839          * max_send_sge <= max_sge_rd.
840          */
841         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
842         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
843                                  device->attrs.max_sge_rd);
844
845         return qp;
846 }
847 EXPORT_SYMBOL(ib_create_qp);
848
849 static const struct {
850         int                     valid;
851         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
852         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
853 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
854         [IB_QPS_RESET] = {
855                 [IB_QPS_RESET] = { .valid = 1 },
856                 [IB_QPS_INIT]  = {
857                         .valid = 1,
858                         .req_param = {
859                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
860                                                 IB_QP_PORT                      |
861                                                 IB_QP_QKEY),
862                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
863                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
864                                                 IB_QP_PORT                      |
865                                                 IB_QP_ACCESS_FLAGS),
866                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
867                                                 IB_QP_PORT                      |
868                                                 IB_QP_ACCESS_FLAGS),
869                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
870                                                 IB_QP_PORT                      |
871                                                 IB_QP_ACCESS_FLAGS),
872                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
873                                                 IB_QP_PORT                      |
874                                                 IB_QP_ACCESS_FLAGS),
875                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
876                                                 IB_QP_QKEY),
877                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
878                                                 IB_QP_QKEY),
879                         }
880                 },
881         },
882         [IB_QPS_INIT]  = {
883                 [IB_QPS_RESET] = { .valid = 1 },
884                 [IB_QPS_ERR] =   { .valid = 1 },
885                 [IB_QPS_INIT]  = {
886                         .valid = 1,
887                         .opt_param = {
888                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
889                                                 IB_QP_PORT                      |
890                                                 IB_QP_QKEY),
891                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
892                                                 IB_QP_PORT                      |
893                                                 IB_QP_ACCESS_FLAGS),
894                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
895                                                 IB_QP_PORT                      |
896                                                 IB_QP_ACCESS_FLAGS),
897                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
898                                                 IB_QP_PORT                      |
899                                                 IB_QP_ACCESS_FLAGS),
900                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
901                                                 IB_QP_PORT                      |
902                                                 IB_QP_ACCESS_FLAGS),
903                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
904                                                 IB_QP_QKEY),
905                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
906                                                 IB_QP_QKEY),
907                         }
908                 },
909                 [IB_QPS_RTR]   = {
910                         .valid = 1,
911                         .req_param = {
912                                 [IB_QPT_UC]  = (IB_QP_AV                        |
913                                                 IB_QP_PATH_MTU                  |
914                                                 IB_QP_DEST_QPN                  |
915                                                 IB_QP_RQ_PSN),
916                                 [IB_QPT_RC]  = (IB_QP_AV                        |
917                                                 IB_QP_PATH_MTU                  |
918                                                 IB_QP_DEST_QPN                  |
919                                                 IB_QP_RQ_PSN                    |
920                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
921                                                 IB_QP_MIN_RNR_TIMER),
922                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
923                                                 IB_QP_PATH_MTU                  |
924                                                 IB_QP_DEST_QPN                  |
925                                                 IB_QP_RQ_PSN),
926                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
927                                                 IB_QP_PATH_MTU                  |
928                                                 IB_QP_DEST_QPN                  |
929                                                 IB_QP_RQ_PSN                    |
930                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
931                                                 IB_QP_MIN_RNR_TIMER),
932                         },
933                         .opt_param = {
934                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
935                                                  IB_QP_QKEY),
936                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
937                                                  IB_QP_ACCESS_FLAGS             |
938                                                  IB_QP_PKEY_INDEX),
939                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
940                                                  IB_QP_ACCESS_FLAGS             |
941                                                  IB_QP_PKEY_INDEX),
942                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
943                                                  IB_QP_ACCESS_FLAGS             |
944                                                  IB_QP_PKEY_INDEX),
945                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
946                                                  IB_QP_ACCESS_FLAGS             |
947                                                  IB_QP_PKEY_INDEX),
948                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
949                                                  IB_QP_QKEY),
950                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
951                                                  IB_QP_QKEY),
952                          },
953                 },
954         },
955         [IB_QPS_RTR]   = {
956                 [IB_QPS_RESET] = { .valid = 1 },
957                 [IB_QPS_ERR] =   { .valid = 1 },
958                 [IB_QPS_RTS]   = {
959                         .valid = 1,
960                         .req_param = {
961                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
962                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
963                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
964                                                 IB_QP_RETRY_CNT                 |
965                                                 IB_QP_RNR_RETRY                 |
966                                                 IB_QP_SQ_PSN                    |
967                                                 IB_QP_MAX_QP_RD_ATOMIC),
968                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
969                                                 IB_QP_RETRY_CNT                 |
970                                                 IB_QP_RNR_RETRY                 |
971                                                 IB_QP_SQ_PSN                    |
972                                                 IB_QP_MAX_QP_RD_ATOMIC),
973                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
974                                                 IB_QP_SQ_PSN),
975                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
976                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
977                         },
978                         .opt_param = {
979                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
980                                                  IB_QP_QKEY),
981                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
982                                                  IB_QP_ALT_PATH                 |
983                                                  IB_QP_ACCESS_FLAGS             |
984                                                  IB_QP_PATH_MIG_STATE),
985                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
986                                                  IB_QP_ALT_PATH                 |
987                                                  IB_QP_ACCESS_FLAGS             |
988                                                  IB_QP_MIN_RNR_TIMER            |
989                                                  IB_QP_PATH_MIG_STATE),
990                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
991                                                  IB_QP_ALT_PATH                 |
992                                                  IB_QP_ACCESS_FLAGS             |
993                                                  IB_QP_PATH_MIG_STATE),
994                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
995                                                  IB_QP_ALT_PATH                 |
996                                                  IB_QP_ACCESS_FLAGS             |
997                                                  IB_QP_MIN_RNR_TIMER            |
998                                                  IB_QP_PATH_MIG_STATE),
999                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1000                                                  IB_QP_QKEY),
1001                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1002                                                  IB_QP_QKEY),
1003                          }
1004                 }
1005         },
1006         [IB_QPS_RTS]   = {
1007                 [IB_QPS_RESET] = { .valid = 1 },
1008                 [IB_QPS_ERR] =   { .valid = 1 },
1009                 [IB_QPS_RTS]   = {
1010                         .valid = 1,
1011                         .opt_param = {
1012                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1013                                                 IB_QP_QKEY),
1014                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1015                                                 IB_QP_ACCESS_FLAGS              |
1016                                                 IB_QP_ALT_PATH                  |
1017                                                 IB_QP_PATH_MIG_STATE),
1018                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1019                                                 IB_QP_ACCESS_FLAGS              |
1020                                                 IB_QP_ALT_PATH                  |
1021                                                 IB_QP_PATH_MIG_STATE            |
1022                                                 IB_QP_MIN_RNR_TIMER),
1023                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1024                                                 IB_QP_ACCESS_FLAGS              |
1025                                                 IB_QP_ALT_PATH                  |
1026                                                 IB_QP_PATH_MIG_STATE),
1027                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1028                                                 IB_QP_ACCESS_FLAGS              |
1029                                                 IB_QP_ALT_PATH                  |
1030                                                 IB_QP_PATH_MIG_STATE            |
1031                                                 IB_QP_MIN_RNR_TIMER),
1032                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1033                                                 IB_QP_QKEY),
1034                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1035                                                 IB_QP_QKEY),
1036                         }
1037                 },
1038                 [IB_QPS_SQD]   = {
1039                         .valid = 1,
1040                         .opt_param = {
1041                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1042                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1043                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1044                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1045                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1046                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1047                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1048                         }
1049                 },
1050         },
1051         [IB_QPS_SQD]   = {
1052                 [IB_QPS_RESET] = { .valid = 1 },
1053                 [IB_QPS_ERR] =   { .valid = 1 },
1054                 [IB_QPS_RTS]   = {
1055                         .valid = 1,
1056                         .opt_param = {
1057                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1058                                                 IB_QP_QKEY),
1059                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1060                                                 IB_QP_ALT_PATH                  |
1061                                                 IB_QP_ACCESS_FLAGS              |
1062                                                 IB_QP_PATH_MIG_STATE),
1063                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1064                                                 IB_QP_ALT_PATH                  |
1065                                                 IB_QP_ACCESS_FLAGS              |
1066                                                 IB_QP_MIN_RNR_TIMER             |
1067                                                 IB_QP_PATH_MIG_STATE),
1068                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1069                                                 IB_QP_ALT_PATH                  |
1070                                                 IB_QP_ACCESS_FLAGS              |
1071                                                 IB_QP_PATH_MIG_STATE),
1072                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1073                                                 IB_QP_ALT_PATH                  |
1074                                                 IB_QP_ACCESS_FLAGS              |
1075                                                 IB_QP_MIN_RNR_TIMER             |
1076                                                 IB_QP_PATH_MIG_STATE),
1077                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1078                                                 IB_QP_QKEY),
1079                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1080                                                 IB_QP_QKEY),
1081                         }
1082                 },
1083                 [IB_QPS_SQD]   = {
1084                         .valid = 1,
1085                         .opt_param = {
1086                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1087                                                 IB_QP_QKEY),
1088                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1089                                                 IB_QP_ALT_PATH                  |
1090                                                 IB_QP_ACCESS_FLAGS              |
1091                                                 IB_QP_PKEY_INDEX                |
1092                                                 IB_QP_PATH_MIG_STATE),
1093                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1094                                                 IB_QP_AV                        |
1095                                                 IB_QP_TIMEOUT                   |
1096                                                 IB_QP_RETRY_CNT                 |
1097                                                 IB_QP_RNR_RETRY                 |
1098                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1099                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1100                                                 IB_QP_ALT_PATH                  |
1101                                                 IB_QP_ACCESS_FLAGS              |
1102                                                 IB_QP_PKEY_INDEX                |
1103                                                 IB_QP_MIN_RNR_TIMER             |
1104                                                 IB_QP_PATH_MIG_STATE),
1105                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1106                                                 IB_QP_AV                        |
1107                                                 IB_QP_TIMEOUT                   |
1108                                                 IB_QP_RETRY_CNT                 |
1109                                                 IB_QP_RNR_RETRY                 |
1110                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1111                                                 IB_QP_ALT_PATH                  |
1112                                                 IB_QP_ACCESS_FLAGS              |
1113                                                 IB_QP_PKEY_INDEX                |
1114                                                 IB_QP_PATH_MIG_STATE),
1115                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1116                                                 IB_QP_AV                        |
1117                                                 IB_QP_TIMEOUT                   |
1118                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1119                                                 IB_QP_ALT_PATH                  |
1120                                                 IB_QP_ACCESS_FLAGS              |
1121                                                 IB_QP_PKEY_INDEX                |
1122                                                 IB_QP_MIN_RNR_TIMER             |
1123                                                 IB_QP_PATH_MIG_STATE),
1124                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1125                                                 IB_QP_QKEY),
1126                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1127                                                 IB_QP_QKEY),
1128                         }
1129                 }
1130         },
1131         [IB_QPS_SQE]   = {
1132                 [IB_QPS_RESET] = { .valid = 1 },
1133                 [IB_QPS_ERR] =   { .valid = 1 },
1134                 [IB_QPS_RTS]   = {
1135                         .valid = 1,
1136                         .opt_param = {
1137                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1138                                                 IB_QP_QKEY),
1139                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1140                                                 IB_QP_ACCESS_FLAGS),
1141                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1142                                                 IB_QP_QKEY),
1143                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1144                                                 IB_QP_QKEY),
1145                         }
1146                 }
1147         },
1148         [IB_QPS_ERR] = {
1149                 [IB_QPS_RESET] = { .valid = 1 },
1150                 [IB_QPS_ERR] =   { .valid = 1 }
1151         }
1152 };
1153
1154 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1155                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1156                        enum rdma_link_layer ll)
1157 {
1158         enum ib_qp_attr_mask req_param, opt_param;
1159
1160         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1161             next_state < 0 || next_state > IB_QPS_ERR)
1162                 return 0;
1163
1164         if (mask & IB_QP_CUR_STATE  &&
1165             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1166             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1167                 return 0;
1168
1169         if (!qp_state_table[cur_state][next_state].valid)
1170                 return 0;
1171
1172         req_param = qp_state_table[cur_state][next_state].req_param[type];
1173         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1174
1175         if ((mask & req_param) != req_param)
1176                 return 0;
1177
1178         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1179                 return 0;
1180
1181         return 1;
1182 }
1183 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1184
1185 int ib_resolve_eth_dmac(struct ib_qp *qp,
1186                         struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1187 {
1188         int           ret = 0;
1189
1190         if (*qp_attr_mask & IB_QP_AV) {
1191                 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1192                     qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1193                         return -EINVAL;
1194
1195                 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1196                         return 0;
1197
1198                 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1199                         rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1200                                         qp_attr->ah_attr.dmac);
1201                 } else {
1202                         union ib_gid            sgid;
1203                         struct ib_gid_attr      sgid_attr;
1204                         int                     ifindex;
1205                         int                     hop_limit;
1206
1207                         ret = ib_query_gid(qp->device,
1208                                            qp_attr->ah_attr.port_num,
1209                                            qp_attr->ah_attr.grh.sgid_index,
1210                                            &sgid, &sgid_attr);
1211
1212                         if (ret || !sgid_attr.ndev) {
1213                                 if (!ret)
1214                                         ret = -ENXIO;
1215                                 goto out;
1216                         }
1217
1218                         ifindex = sgid_attr.ndev->if_index;
1219
1220                         ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1221                                                            &qp_attr->ah_attr.grh.dgid,
1222                                                            qp_attr->ah_attr.dmac,
1223                                                            NULL, &ifindex, &hop_limit);
1224
1225                         dev_put(sgid_attr.ndev);
1226
1227                         qp_attr->ah_attr.grh.hop_limit = hop_limit;
1228                 }
1229         }
1230 out:
1231         return ret;
1232 }
1233 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1234
1235
1236 int ib_modify_qp(struct ib_qp *qp,
1237                  struct ib_qp_attr *qp_attr,
1238                  int qp_attr_mask)
1239 {
1240         int ret;
1241
1242         ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1243         if (ret)
1244                 return ret;
1245
1246         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1247 }
1248 EXPORT_SYMBOL(ib_modify_qp);
1249
1250 int ib_query_qp(struct ib_qp *qp,
1251                 struct ib_qp_attr *qp_attr,
1252                 int qp_attr_mask,
1253                 struct ib_qp_init_attr *qp_init_attr)
1254 {
1255         return qp->device->query_qp ?
1256                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1257                 -ENOSYS;
1258 }
1259 EXPORT_SYMBOL(ib_query_qp);
1260
1261 int ib_close_qp(struct ib_qp *qp)
1262 {
1263         struct ib_qp *real_qp;
1264         unsigned long flags;
1265
1266         real_qp = qp->real_qp;
1267         if (real_qp == qp)
1268                 return -EINVAL;
1269
1270         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1271         list_del(&qp->open_list);
1272         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1273
1274         atomic_dec(&real_qp->usecnt);
1275         kfree(qp);
1276
1277         return 0;
1278 }
1279 EXPORT_SYMBOL(ib_close_qp);
1280
1281 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1282 {
1283         struct ib_xrcd *xrcd;
1284         struct ib_qp *real_qp;
1285         int ret;
1286
1287         real_qp = qp->real_qp;
1288         xrcd = real_qp->xrcd;
1289
1290         mutex_lock(&xrcd->tgt_qp_mutex);
1291         ib_close_qp(qp);
1292         if (atomic_read(&real_qp->usecnt) == 0)
1293                 list_del(&real_qp->xrcd_list);
1294         else
1295                 real_qp = NULL;
1296         mutex_unlock(&xrcd->tgt_qp_mutex);
1297
1298         if (real_qp) {
1299                 ret = ib_destroy_qp(real_qp);
1300                 if (!ret)
1301                         atomic_dec(&xrcd->usecnt);
1302                 else
1303                         __ib_insert_xrcd_qp(xrcd, real_qp);
1304         }
1305
1306         return 0;
1307 }
1308
1309 int ib_destroy_qp(struct ib_qp *qp)
1310 {
1311         struct ib_pd *pd;
1312         struct ib_cq *scq, *rcq;
1313         struct ib_srq *srq;
1314         struct ib_rwq_ind_table *ind_tbl;
1315         int ret;
1316
1317         if (atomic_read(&qp->usecnt))
1318                 return -EBUSY;
1319
1320         if (qp->real_qp != qp)
1321                 return __ib_destroy_shared_qp(qp);
1322
1323         pd   = qp->pd;
1324         scq  = qp->send_cq;
1325         rcq  = qp->recv_cq;
1326         srq  = qp->srq;
1327         ind_tbl = qp->rwq_ind_tbl;
1328
1329         ret = qp->device->destroy_qp(qp);
1330         if (!ret) {
1331                 if (pd)
1332                         atomic_dec(&pd->usecnt);
1333                 if (scq)
1334                         atomic_dec(&scq->usecnt);
1335                 if (rcq)
1336                         atomic_dec(&rcq->usecnt);
1337                 if (srq)
1338                         atomic_dec(&srq->usecnt);
1339                 if (ind_tbl)
1340                         atomic_dec(&ind_tbl->usecnt);
1341         }
1342
1343         return ret;
1344 }
1345 EXPORT_SYMBOL(ib_destroy_qp);
1346
1347 /* Completion queues */
1348
1349 struct ib_cq *ib_create_cq(struct ib_device *device,
1350                            ib_comp_handler comp_handler,
1351                            void (*event_handler)(struct ib_event *, void *),
1352                            void *cq_context,
1353                            const struct ib_cq_init_attr *cq_attr)
1354 {
1355         struct ib_cq *cq;
1356
1357         cq = device->create_cq(device, cq_attr, NULL, NULL);
1358
1359         if (!IS_ERR(cq)) {
1360                 cq->device        = device;
1361                 cq->uobject       = NULL;
1362                 cq->comp_handler  = comp_handler;
1363                 cq->event_handler = event_handler;
1364                 cq->cq_context    = cq_context;
1365                 atomic_set(&cq->usecnt, 0);
1366         }
1367
1368         return cq;
1369 }
1370 EXPORT_SYMBOL(ib_create_cq);
1371
1372 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1373 {
1374         return cq->device->modify_cq ?
1375                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1376 }
1377 EXPORT_SYMBOL(ib_modify_cq);
1378
1379 int ib_destroy_cq(struct ib_cq *cq)
1380 {
1381         if (atomic_read(&cq->usecnt))
1382                 return -EBUSY;
1383
1384         return cq->device->destroy_cq(cq);
1385 }
1386 EXPORT_SYMBOL(ib_destroy_cq);
1387
1388 int ib_resize_cq(struct ib_cq *cq, int cqe)
1389 {
1390         return cq->device->resize_cq ?
1391                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1392 }
1393 EXPORT_SYMBOL(ib_resize_cq);
1394
1395 /* Memory regions */
1396
1397 int ib_dereg_mr(struct ib_mr *mr)
1398 {
1399         struct ib_pd *pd = mr->pd;
1400         int ret;
1401
1402         ret = mr->device->dereg_mr(mr);
1403         if (!ret)
1404                 atomic_dec(&pd->usecnt);
1405
1406         return ret;
1407 }
1408 EXPORT_SYMBOL(ib_dereg_mr);
1409
1410 /**
1411  * ib_alloc_mr() - Allocates a memory region
1412  * @pd:            protection domain associated with the region
1413  * @mr_type:       memory region type
1414  * @max_num_sg:    maximum sg entries available for registration.
1415  *
1416  * Notes:
1417  * Memory registeration page/sg lists must not exceed max_num_sg.
1418  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1419  * max_num_sg * used_page_size.
1420  *
1421  */
1422 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1423                           enum ib_mr_type mr_type,
1424                           u32 max_num_sg)
1425 {
1426         struct ib_mr *mr;
1427
1428         if (!pd->device->alloc_mr)
1429                 return ERR_PTR(-ENOSYS);
1430
1431         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1432         if (!IS_ERR(mr)) {
1433                 mr->device  = pd->device;
1434                 mr->pd      = pd;
1435                 mr->uobject = NULL;
1436                 atomic_inc(&pd->usecnt);
1437                 mr->need_inval = false;
1438         }
1439
1440         return mr;
1441 }
1442 EXPORT_SYMBOL(ib_alloc_mr);
1443
1444 /* "Fast" memory regions */
1445
1446 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1447                             int mr_access_flags,
1448                             struct ib_fmr_attr *fmr_attr)
1449 {
1450         struct ib_fmr *fmr;
1451
1452         if (!pd->device->alloc_fmr)
1453                 return ERR_PTR(-ENOSYS);
1454
1455         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1456         if (!IS_ERR(fmr)) {
1457                 fmr->device = pd->device;
1458                 fmr->pd     = pd;
1459                 atomic_inc(&pd->usecnt);
1460         }
1461
1462         return fmr;
1463 }
1464 EXPORT_SYMBOL(ib_alloc_fmr);
1465
1466 int ib_unmap_fmr(struct list_head *fmr_list)
1467 {
1468         struct ib_fmr *fmr;
1469
1470         if (list_empty(fmr_list))
1471                 return 0;
1472
1473         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1474         return fmr->device->unmap_fmr(fmr_list);
1475 }
1476 EXPORT_SYMBOL(ib_unmap_fmr);
1477
1478 int ib_dealloc_fmr(struct ib_fmr *fmr)
1479 {
1480         struct ib_pd *pd;
1481         int ret;
1482
1483         pd = fmr->pd;
1484         ret = fmr->device->dealloc_fmr(fmr);
1485         if (!ret)
1486                 atomic_dec(&pd->usecnt);
1487
1488         return ret;
1489 }
1490 EXPORT_SYMBOL(ib_dealloc_fmr);
1491
1492 /* Multicast groups */
1493
1494 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1495 {
1496         int ret;
1497
1498         if (!qp->device->attach_mcast)
1499                 return -ENOSYS;
1500         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1501                 return -EINVAL;
1502
1503         ret = qp->device->attach_mcast(qp, gid, lid);
1504         if (!ret)
1505                 atomic_inc(&qp->usecnt);
1506         return ret;
1507 }
1508 EXPORT_SYMBOL(ib_attach_mcast);
1509
1510 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1511 {
1512         int ret;
1513
1514         if (!qp->device->detach_mcast)
1515                 return -ENOSYS;
1516         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1517                 return -EINVAL;
1518
1519         ret = qp->device->detach_mcast(qp, gid, lid);
1520         if (!ret)
1521                 atomic_dec(&qp->usecnt);
1522         return ret;
1523 }
1524 EXPORT_SYMBOL(ib_detach_mcast);
1525
1526 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1527 {
1528         struct ib_xrcd *xrcd;
1529
1530         if (!device->alloc_xrcd)
1531                 return ERR_PTR(-ENOSYS);
1532
1533         xrcd = device->alloc_xrcd(device, NULL, NULL);
1534         if (!IS_ERR(xrcd)) {
1535                 xrcd->device = device;
1536                 xrcd->inode = NULL;
1537                 atomic_set(&xrcd->usecnt, 0);
1538                 mutex_init(&xrcd->tgt_qp_mutex);
1539                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1540         }
1541
1542         return xrcd;
1543 }
1544 EXPORT_SYMBOL(ib_alloc_xrcd);
1545
1546 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1547 {
1548         struct ib_qp *qp;
1549         int ret;
1550
1551         if (atomic_read(&xrcd->usecnt))
1552                 return -EBUSY;
1553
1554         while (!list_empty(&xrcd->tgt_qp_list)) {
1555                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1556                 ret = ib_destroy_qp(qp);
1557                 if (ret)
1558                         return ret;
1559         }
1560
1561         return xrcd->device->dealloc_xrcd(xrcd);
1562 }
1563 EXPORT_SYMBOL(ib_dealloc_xrcd);
1564
1565 /**
1566  * ib_create_wq - Creates a WQ associated with the specified protection
1567  * domain.
1568  * @pd: The protection domain associated with the WQ.
1569  * @wq_init_attr: A list of initial attributes required to create the
1570  * WQ. If WQ creation succeeds, then the attributes are updated to
1571  * the actual capabilities of the created WQ.
1572  *
1573  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1574  * the requested size of the WQ, and set to the actual values allocated
1575  * on return.
1576  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1577  * at least as large as the requested values.
1578  */
1579 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1580                            struct ib_wq_init_attr *wq_attr)
1581 {
1582         struct ib_wq *wq;
1583
1584         if (!pd->device->create_wq)
1585                 return ERR_PTR(-ENOSYS);
1586
1587         wq = pd->device->create_wq(pd, wq_attr, NULL);
1588         if (!IS_ERR(wq)) {
1589                 wq->event_handler = wq_attr->event_handler;
1590                 wq->wq_context = wq_attr->wq_context;
1591                 wq->wq_type = wq_attr->wq_type;
1592                 wq->cq = wq_attr->cq;
1593                 wq->device = pd->device;
1594                 wq->pd = pd;
1595                 wq->uobject = NULL;
1596                 atomic_inc(&pd->usecnt);
1597                 atomic_inc(&wq_attr->cq->usecnt);
1598                 atomic_set(&wq->usecnt, 0);
1599         }
1600         return wq;
1601 }
1602 EXPORT_SYMBOL(ib_create_wq);
1603
1604 /**
1605  * ib_destroy_wq - Destroys the specified WQ.
1606  * @wq: The WQ to destroy.
1607  */
1608 int ib_destroy_wq(struct ib_wq *wq)
1609 {
1610         int err;
1611         struct ib_cq *cq = wq->cq;
1612         struct ib_pd *pd = wq->pd;
1613
1614         if (atomic_read(&wq->usecnt))
1615                 return -EBUSY;
1616
1617         err = wq->device->destroy_wq(wq);
1618         if (!err) {
1619                 atomic_dec(&pd->usecnt);
1620                 atomic_dec(&cq->usecnt);
1621         }
1622         return err;
1623 }
1624 EXPORT_SYMBOL(ib_destroy_wq);
1625
1626 /**
1627  * ib_modify_wq - Modifies the specified WQ.
1628  * @wq: The WQ to modify.
1629  * @wq_attr: On input, specifies the WQ attributes to modify.
1630  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1631  *   are being modified.
1632  * On output, the current values of selected WQ attributes are returned.
1633  */
1634 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1635                  u32 wq_attr_mask)
1636 {
1637         int err;
1638
1639         if (!wq->device->modify_wq)
1640                 return -ENOSYS;
1641
1642         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1643         return err;
1644 }
1645 EXPORT_SYMBOL(ib_modify_wq);
1646
1647 /*
1648  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1649  * @device: The device on which to create the rwq indirection table.
1650  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1651  * create the Indirection Table.
1652  *
1653  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1654  *      than the created ib_rwq_ind_table object and the caller is responsible
1655  *      for its memory allocation/free.
1656  */
1657 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1658                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1659 {
1660         struct ib_rwq_ind_table *rwq_ind_table;
1661         int i;
1662         u32 table_size;
1663
1664         if (!device->create_rwq_ind_table)
1665                 return ERR_PTR(-ENOSYS);
1666
1667         table_size = (1 << init_attr->log_ind_tbl_size);
1668         rwq_ind_table = device->create_rwq_ind_table(device,
1669                                 init_attr, NULL);
1670         if (IS_ERR(rwq_ind_table))
1671                 return rwq_ind_table;
1672
1673         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1674         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1675         rwq_ind_table->device = device;
1676         rwq_ind_table->uobject = NULL;
1677         atomic_set(&rwq_ind_table->usecnt, 0);
1678
1679         for (i = 0; i < table_size; i++)
1680                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1681
1682         return rwq_ind_table;
1683 }
1684 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1685
1686 /*
1687  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1688  * @wq_ind_table: The Indirection Table to destroy.
1689 */
1690 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1691 {
1692         int err, i;
1693         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1694         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1695
1696         if (atomic_read(&rwq_ind_table->usecnt))
1697                 return -EBUSY;
1698
1699         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1700         if (!err) {
1701                 for (i = 0; i < table_size; i++)
1702                         atomic_dec(&ind_tbl[i]->usecnt);
1703         }
1704
1705         return err;
1706 }
1707 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1708
1709 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1710                                struct ib_flow_attr *flow_attr,
1711                                int domain)
1712 {
1713         struct ib_flow *flow_id;
1714         if (!qp->device->create_flow)
1715                 return ERR_PTR(-ENOSYS);
1716
1717         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1718         if (!IS_ERR(flow_id))
1719                 atomic_inc(&qp->usecnt);
1720         return flow_id;
1721 }
1722 EXPORT_SYMBOL(ib_create_flow);
1723
1724 int ib_destroy_flow(struct ib_flow *flow_id)
1725 {
1726         int err;
1727         struct ib_qp *qp = flow_id->qp;
1728
1729         err = qp->device->destroy_flow(flow_id);
1730         if (!err)
1731                 atomic_dec(&qp->usecnt);
1732         return err;
1733 }
1734 EXPORT_SYMBOL(ib_destroy_flow);
1735
1736 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1737                        struct ib_mr_status *mr_status)
1738 {
1739         return mr->device->check_mr_status ?
1740                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1741 }
1742 EXPORT_SYMBOL(ib_check_mr_status);
1743
1744 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1745                          int state)
1746 {
1747         if (!device->set_vf_link_state)
1748                 return -ENOSYS;
1749
1750         return device->set_vf_link_state(device, vf, port, state);
1751 }
1752 EXPORT_SYMBOL(ib_set_vf_link_state);
1753
1754 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1755                      struct ifla_vf_info *info)
1756 {
1757         if (!device->get_vf_config)
1758                 return -ENOSYS;
1759
1760         return device->get_vf_config(device, vf, port, info);
1761 }
1762 EXPORT_SYMBOL(ib_get_vf_config);
1763
1764 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1765                     struct ifla_vf_stats *stats)
1766 {
1767         if (!device->get_vf_stats)
1768                 return -ENOSYS;
1769
1770         return device->get_vf_stats(device, vf, port, stats);
1771 }
1772 EXPORT_SYMBOL(ib_get_vf_stats);
1773
1774 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1775                    int type)
1776 {
1777         if (!device->set_vf_guid)
1778                 return -ENOSYS;
1779
1780         return device->set_vf_guid(device, vf, port, guid, type);
1781 }
1782 EXPORT_SYMBOL(ib_set_vf_guid);
1783
1784 /**
1785  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1786  *     and set it the memory region.
1787  * @mr:            memory region
1788  * @sg:            dma mapped scatterlist
1789  * @sg_nents:      number of entries in sg
1790  * @sg_offset:     offset in bytes into sg
1791  * @page_size:     page vector desired page size
1792  *
1793  * Constraints:
1794  * - The first sg element is allowed to have an offset.
1795  * - Each sg element must either be aligned to page_size or virtually
1796  *   contiguous to the previous element. In case an sg element has a
1797  *   non-contiguous offset, the mapping prefix will not include it.
1798  * - The last sg element is allowed to have length less than page_size.
1799  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1800  *   then only max_num_sg entries will be mapped.
1801  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1802  *   constraints holds and the page_size argument is ignored.
1803  *
1804  * Returns the number of sg elements that were mapped to the memory region.
1805  *
1806  * After this completes successfully, the  memory region
1807  * is ready for registration.
1808  */
1809 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1810                  unsigned int *sg_offset, unsigned int page_size)
1811 {
1812         if (unlikely(!mr->device->map_mr_sg))
1813                 return -ENOSYS;
1814
1815         mr->page_size = page_size;
1816
1817         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1818 }
1819 EXPORT_SYMBOL(ib_map_mr_sg);
1820
1821 /**
1822  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1823  *     to a page vector
1824  * @mr:            memory region
1825  * @sgl:           dma mapped scatterlist
1826  * @sg_nents:      number of entries in sg
1827  * @sg_offset_p:   IN:  start offset in bytes into sg
1828  *                 OUT: offset in bytes for element n of the sg of the first
1829  *                      byte that has not been processed where n is the return
1830  *                      value of this function.
1831  * @set_page:      driver page assignment function pointer
1832  *
1833  * Core service helper for drivers to convert the largest
1834  * prefix of given sg list to a page vector. The sg list
1835  * prefix converted is the prefix that meet the requirements
1836  * of ib_map_mr_sg.
1837  *
1838  * Returns the number of sg elements that were assigned to
1839  * a page vector.
1840  */
1841 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1842                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1843 {
1844         struct scatterlist *sg;
1845         u64 last_end_dma_addr = 0;
1846         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1847         unsigned int last_page_off = 0;
1848         u64 page_mask = ~((u64)mr->page_size - 1);
1849         int i, ret;
1850
1851         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1852                 return -EINVAL;
1853
1854         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1855         mr->length = 0;
1856
1857         for_each_sg(sgl, sg, sg_nents, i) {
1858                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1859                 u64 prev_addr = dma_addr;
1860                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1861                 u64 end_dma_addr = dma_addr + dma_len;
1862                 u64 page_addr = dma_addr & page_mask;
1863
1864                 /*
1865                  * For the second and later elements, check whether either the
1866                  * end of element i-1 or the start of element i is not aligned
1867                  * on a page boundary.
1868                  */
1869                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1870                         /* Stop mapping if there is a gap. */
1871                         if (last_end_dma_addr != dma_addr)
1872                                 break;
1873
1874                         /*
1875                          * Coalesce this element with the last. If it is small
1876                          * enough just update mr->length. Otherwise start
1877                          * mapping from the next page.
1878                          */
1879                         goto next_page;
1880                 }
1881
1882                 do {
1883                         ret = set_page(mr, page_addr);
1884                         if (unlikely(ret < 0)) {
1885                                 sg_offset = prev_addr - sg_dma_address(sg);
1886                                 mr->length += prev_addr - dma_addr;
1887                                 if (sg_offset_p)
1888                                         *sg_offset_p = sg_offset;
1889                                 return i || sg_offset ? i : ret;
1890                         }
1891                         prev_addr = page_addr;
1892 next_page:
1893                         page_addr += mr->page_size;
1894                 } while (page_addr < end_dma_addr);
1895
1896                 mr->length += dma_len;
1897                 last_end_dma_addr = end_dma_addr;
1898                 last_page_off = end_dma_addr & ~page_mask;
1899
1900                 sg_offset = 0;
1901         }
1902
1903         if (sg_offset_p)
1904                 *sg_offset_p = 0;
1905         return i;
1906 }
1907 EXPORT_SYMBOL(ib_sg_to_pages);
1908
1909 struct ib_drain_cqe {
1910         struct ib_cqe cqe;
1911         struct completion done;
1912 };
1913
1914 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1915 {
1916         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1917                                                 cqe);
1918
1919         complete(&cqe->done);
1920 }
1921
1922 /*
1923  * Post a WR and block until its completion is reaped for the SQ.
1924  */
1925 static void __ib_drain_sq(struct ib_qp *qp)
1926 {
1927         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1928         struct ib_drain_cqe sdrain;
1929         struct ib_send_wr swr = {}, *bad_swr;
1930         int ret;
1931
1932         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1933                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1934                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1935                 return;
1936         }
1937
1938         swr.wr_cqe = &sdrain.cqe;
1939         sdrain.cqe.done = ib_drain_qp_done;
1940         init_completion(&sdrain.done);
1941
1942         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1943         if (ret) {
1944                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1945                 return;
1946         }
1947
1948         ret = ib_post_send(qp, &swr, &bad_swr);
1949         if (ret) {
1950                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1951                 return;
1952         }
1953
1954         wait_for_completion(&sdrain.done);
1955 }
1956
1957 /*
1958  * Post a WR and block until its completion is reaped for the RQ.
1959  */
1960 static void __ib_drain_rq(struct ib_qp *qp)
1961 {
1962         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1963         struct ib_drain_cqe rdrain;
1964         struct ib_recv_wr rwr = {}, *bad_rwr;
1965         int ret;
1966
1967         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1968                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1969                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1970                 return;
1971         }
1972
1973         rwr.wr_cqe = &rdrain.cqe;
1974         rdrain.cqe.done = ib_drain_qp_done;
1975         init_completion(&rdrain.done);
1976
1977         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1978         if (ret) {
1979                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1980                 return;
1981         }
1982
1983         ret = ib_post_recv(qp, &rwr, &bad_rwr);
1984         if (ret) {
1985                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1986                 return;
1987         }
1988
1989         wait_for_completion(&rdrain.done);
1990 }
1991
1992 /**
1993  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1994  *                 application.
1995  * @qp:            queue pair to drain
1996  *
1997  * If the device has a provider-specific drain function, then
1998  * call that.  Otherwise call the generic drain function
1999  * __ib_drain_sq().
2000  *
2001  * The caller must:
2002  *
2003  * ensure there is room in the CQ and SQ for the drain work request and
2004  * completion.
2005  *
2006  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2007  * IB_POLL_DIRECT.
2008  *
2009  * ensure that there are no other contexts that are posting WRs concurrently.
2010  * Otherwise the drain is not guaranteed.
2011  */
2012 void ib_drain_sq(struct ib_qp *qp)
2013 {
2014         if (qp->device->drain_sq)
2015                 qp->device->drain_sq(qp);
2016         else
2017                 __ib_drain_sq(qp);
2018 }
2019 EXPORT_SYMBOL(ib_drain_sq);
2020
2021 /**
2022  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2023  *                 application.
2024  * @qp:            queue pair to drain
2025  *
2026  * If the device has a provider-specific drain function, then
2027  * call that.  Otherwise call the generic drain function
2028  * __ib_drain_rq().
2029  *
2030  * The caller must:
2031  *
2032  * ensure there is room in the CQ and RQ for the drain work request and
2033  * completion.
2034  *
2035  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2036  * IB_POLL_DIRECT.
2037  *
2038  * ensure that there are no other contexts that are posting WRs concurrently.
2039  * Otherwise the drain is not guaranteed.
2040  */
2041 void ib_drain_rq(struct ib_qp *qp)
2042 {
2043         if (qp->device->drain_rq)
2044                 qp->device->drain_rq(qp);
2045         else
2046                 __ib_drain_rq(qp);
2047 }
2048 EXPORT_SYMBOL(ib_drain_rq);
2049
2050 /**
2051  * ib_drain_qp() - Block until all CQEs have been consumed by the
2052  *                 application on both the RQ and SQ.
2053  * @qp:            queue pair to drain
2054  *
2055  * The caller must:
2056  *
2057  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2058  * and completions.
2059  *
2060  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2061  * IB_POLL_DIRECT.
2062  *
2063  * ensure that there are no other contexts that are posting WRs concurrently.
2064  * Otherwise the drain is not guaranteed.
2065  */
2066 void ib_drain_qp(struct ib_qp *qp)
2067 {
2068         ib_drain_sq(qp);
2069         if (!qp->srq)
2070                 ib_drain_rq(qp);
2071 }
2072 EXPORT_SYMBOL(ib_drain_qp);