]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/ofed/drivers/infiniband/core/ib_verbs.c
MFC r330507:
[FreeBSD/FreeBSD.git] / sys / ofed / drivers / infiniband / core / ib_verbs.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  *
40  * $FreeBSD$
41  */
42
43 #include <linux/errno.h>
44 #include <linux/err.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/in.h>
48 #include <linux/in6.h>
49
50 #include <rdma/ib_verbs.h>
51 #include <rdma/ib_cache.h>
52 #include <rdma/ib_addr.h>
53
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56
57 #include <machine/in_cksum.h>
58
59 #include "core_priv.h"
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return  1;
130         case IB_RATE_5_GBPS:   return  2;
131         case IB_RATE_10_GBPS:  return  4;
132         case IB_RATE_20_GBPS:  return  8;
133         case IB_RATE_30_GBPS:  return 12;
134         case IB_RATE_40_GBPS:  return 16;
135         case IB_RATE_60_GBPS:  return 24;
136         case IB_RATE_80_GBPS:  return 32;
137         case IB_RATE_120_GBPS: return 48;
138         default:               return -1;
139         }
140 }
141 EXPORT_SYMBOL(ib_rate_to_mult);
142
143 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
144 {
145         switch (mult) {
146         case 1:  return IB_RATE_2_5_GBPS;
147         case 2:  return IB_RATE_5_GBPS;
148         case 4:  return IB_RATE_10_GBPS;
149         case 8:  return IB_RATE_20_GBPS;
150         case 12: return IB_RATE_30_GBPS;
151         case 16: return IB_RATE_40_GBPS;
152         case 24: return IB_RATE_60_GBPS;
153         case 32: return IB_RATE_80_GBPS;
154         case 48: return IB_RATE_120_GBPS;
155         default: return IB_RATE_PORT_CURRENT;
156         }
157 }
158 EXPORT_SYMBOL(mult_to_ib_rate);
159
160 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
161 {
162         switch (rate) {
163         case IB_RATE_2_5_GBPS: return 2500;
164         case IB_RATE_5_GBPS:   return 5000;
165         case IB_RATE_10_GBPS:  return 10000;
166         case IB_RATE_20_GBPS:  return 20000;
167         case IB_RATE_30_GBPS:  return 30000;
168         case IB_RATE_40_GBPS:  return 40000;
169         case IB_RATE_60_GBPS:  return 60000;
170         case IB_RATE_80_GBPS:  return 80000;
171         case IB_RATE_120_GBPS: return 120000;
172         case IB_RATE_14_GBPS:  return 14062;
173         case IB_RATE_56_GBPS:  return 56250;
174         case IB_RATE_112_GBPS: return 112500;
175         case IB_RATE_168_GBPS: return 168750;
176         case IB_RATE_25_GBPS:  return 25781;
177         case IB_RATE_100_GBPS: return 103125;
178         case IB_RATE_200_GBPS: return 206250;
179         case IB_RATE_300_GBPS: return 309375;
180         default:               return -1;
181         }
182 }
183 EXPORT_SYMBOL(ib_rate_to_mbps);
184
185 __attribute_const__ enum rdma_transport_type
186 rdma_node_get_transport(enum rdma_node_type node_type)
187 {
188         switch (node_type) {
189         case RDMA_NODE_IB_CA:
190         case RDMA_NODE_IB_SWITCH:
191         case RDMA_NODE_IB_ROUTER:
192                 return RDMA_TRANSPORT_IB;
193         case RDMA_NODE_RNIC:
194                 return RDMA_TRANSPORT_IWARP;
195         case RDMA_NODE_USNIC:
196                 return RDMA_TRANSPORT_USNIC;
197         case RDMA_NODE_USNIC_UDP:
198                 return RDMA_TRANSPORT_USNIC_UDP;
199         default:
200                 BUG();
201                 return 0;
202         }
203 }
204 EXPORT_SYMBOL(rdma_node_get_transport);
205
206 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
207 {
208         if (device->get_link_layer)
209                 return device->get_link_layer(device, port_num);
210
211         switch (rdma_node_get_transport(device->node_type)) {
212         case RDMA_TRANSPORT_IB:
213                 return IB_LINK_LAYER_INFINIBAND;
214         case RDMA_TRANSPORT_IWARP:
215         case RDMA_TRANSPORT_USNIC:
216         case RDMA_TRANSPORT_USNIC_UDP:
217                 return IB_LINK_LAYER_ETHERNET;
218         default:
219                 return IB_LINK_LAYER_UNSPECIFIED;
220         }
221 }
222 EXPORT_SYMBOL(rdma_port_get_link_layer);
223
224 /* Protection domains */
225
226 /**
227  * ib_alloc_pd - Allocates an unused protection domain.
228  * @device: The device on which to allocate the protection domain.
229  *
230  * A protection domain object provides an association between QPs, shared
231  * receive queues, address handles, memory regions, and memory windows.
232  *
233  * Every PD has a local_dma_lkey which can be used as the lkey value for local
234  * memory operations.
235  */
236 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
237                 const char *caller)
238 {
239         struct ib_pd *pd;
240         int mr_access_flags = 0;
241
242         pd = device->alloc_pd(device, NULL, NULL);
243         if (IS_ERR(pd))
244                 return pd;
245
246         pd->device = device;
247         pd->uobject = NULL;
248         pd->__internal_mr = NULL;
249         atomic_set(&pd->usecnt, 0);
250         pd->flags = flags;
251
252         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
253                 pd->local_dma_lkey = device->local_dma_lkey;
254         else
255                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
256
257         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
258                 pr_warn("%s: enabling unsafe global rkey\n", caller);
259                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
260         }
261
262         if (mr_access_flags) {
263                 struct ib_mr *mr;
264
265                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
266                 if (IS_ERR(mr)) {
267                         ib_dealloc_pd(pd);
268                         return ERR_CAST(mr);
269                 }
270
271                 mr->device      = pd->device;
272                 mr->pd          = pd;
273                 mr->uobject     = NULL;
274                 mr->need_inval  = false;
275
276                 pd->__internal_mr = mr;
277
278                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
279                         pd->local_dma_lkey = pd->__internal_mr->lkey;
280
281                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
282                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
283         }
284
285         return pd;
286 }
287 EXPORT_SYMBOL(__ib_alloc_pd);
288
289 /**
290  * ib_dealloc_pd - Deallocates a protection domain.
291  * @pd: The protection domain to deallocate.
292  *
293  * It is an error to call this function while any resources in the pd still
294  * exist.  The caller is responsible to synchronously destroy them and
295  * guarantee no new allocations will happen.
296  */
297 void ib_dealloc_pd(struct ib_pd *pd)
298 {
299         int ret;
300
301         if (pd->__internal_mr) {
302                 ret = pd->device->dereg_mr(pd->__internal_mr);
303                 WARN_ON(ret);
304                 pd->__internal_mr = NULL;
305         }
306
307         /* uverbs manipulates usecnt with proper locking, while the kabi
308            requires the caller to guarantee we can't race here. */
309         WARN_ON(atomic_read(&pd->usecnt));
310
311         /* Making delalloc_pd a void return is a WIP, no driver should return
312            an error here. */
313         ret = pd->device->dealloc_pd(pd);
314         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
315 }
316 EXPORT_SYMBOL(ib_dealloc_pd);
317
318 /* Address handles */
319
320 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
321 {
322         struct ib_ah *ah;
323
324         ah = pd->device->create_ah(pd, ah_attr);
325
326         if (!IS_ERR(ah)) {
327                 ah->device  = pd->device;
328                 ah->pd      = pd;
329                 ah->uobject = NULL;
330                 atomic_inc(&pd->usecnt);
331         }
332
333         return ah;
334 }
335 EXPORT_SYMBOL(ib_create_ah);
336
337 static int ib_get_header_version(const union rdma_network_hdr *hdr)
338 {
339         const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
340         struct ip ip4h_checked;
341         const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
342
343         /* If it's IPv6, the version must be 6, otherwise, the first
344          * 20 bytes (before the IPv4 header) are garbled.
345          */
346         if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
347                 return (ip4h->ip_v == 4) ? 4 : 0;
348         /* version may be 6 or 4 because the first 20 bytes could be garbled */
349
350         /* RoCE v2 requires no options, thus header length
351          * must be 5 words
352          */
353         if (ip4h->ip_hl != 5)
354                 return 6;
355
356         /* Verify checksum.
357          * We can't write on scattered buffers so we need to copy to
358          * temp buffer.
359          */
360         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
361         ip4h_checked.ip_sum = 0;
362 #if defined(INET) || defined(INET6)
363         ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
364 #endif
365         /* if IPv4 header checksum is OK, believe it */
366         if (ip4h->ip_sum == ip4h_checked.ip_sum)
367                 return 4;
368         return 6;
369 }
370
371 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
372                                                      u8 port_num,
373                                                      const struct ib_grh *grh)
374 {
375         int grh_version;
376
377         if (rdma_protocol_ib(device, port_num))
378                 return RDMA_NETWORK_IB;
379
380         grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
381
382         if (grh_version == 4)
383                 return RDMA_NETWORK_IPV4;
384
385         if (grh->next_hdr == IPPROTO_UDP)
386                 return RDMA_NETWORK_IPV6;
387
388         return RDMA_NETWORK_ROCE_V1;
389 }
390
391 struct find_gid_index_context {
392         u16 vlan_id;
393         enum ib_gid_type gid_type;
394 };
395
396 static bool find_gid_index(const union ib_gid *gid,
397                            const struct ib_gid_attr *gid_attr,
398                            void *context)
399 {
400         struct find_gid_index_context *ctx =
401                 (struct find_gid_index_context *)context;
402
403         if (ctx->gid_type != gid_attr->gid_type)
404                 return false;
405
406         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
407             (is_vlan_dev(gid_attr->ndev) &&
408              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
409                 return false;
410
411         return true;
412 }
413
414 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
415                                    u16 vlan_id, const union ib_gid *sgid,
416                                    enum ib_gid_type gid_type,
417                                    u16 *gid_index)
418 {
419         struct find_gid_index_context context = {.vlan_id = vlan_id,
420                                                  .gid_type = gid_type};
421
422         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
423                                      &context, gid_index);
424 }
425
426 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
427                                   enum rdma_network_type net_type,
428                                   union ib_gid *sgid, union ib_gid *dgid)
429 {
430         struct sockaddr_in  src_in;
431         struct sockaddr_in  dst_in;
432         __be32 src_saddr, dst_saddr;
433
434         if (!sgid || !dgid)
435                 return -EINVAL;
436
437         if (net_type == RDMA_NETWORK_IPV4) {
438                 memcpy(&src_in.sin_addr.s_addr,
439                        &hdr->roce4grh.ip_src, 4);
440                 memcpy(&dst_in.sin_addr.s_addr,
441                        &hdr->roce4grh.ip_dst, 4);
442                 src_saddr = src_in.sin_addr.s_addr;
443                 dst_saddr = dst_in.sin_addr.s_addr;
444                 ipv6_addr_set_v4mapped(src_saddr,
445                                        (struct in6_addr *)sgid);
446                 ipv6_addr_set_v4mapped(dst_saddr,
447                                        (struct in6_addr *)dgid);
448                 return 0;
449         } else if (net_type == RDMA_NETWORK_IPV6 ||
450                    net_type == RDMA_NETWORK_IB) {
451                 *dgid = hdr->ibgrh.dgid;
452                 *sgid = hdr->ibgrh.sgid;
453                 return 0;
454         } else {
455                 return -EINVAL;
456         }
457 }
458
459 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
460                        const struct ib_wc *wc, const struct ib_grh *grh,
461                        struct ib_ah_attr *ah_attr)
462 {
463         u32 flow_class;
464         u16 gid_index;
465         int ret;
466         enum rdma_network_type net_type = RDMA_NETWORK_IB;
467         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
468         int hoplimit = 0xff;
469         union ib_gid dgid;
470         union ib_gid sgid;
471
472         memset(ah_attr, 0, sizeof *ah_attr);
473         if (rdma_cap_eth_ah(device, port_num)) {
474                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
475                         net_type = wc->network_hdr_type;
476                 else
477                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
478                 gid_type = ib_network_to_gid_type(net_type);
479         }
480         ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
481                                      &sgid, &dgid);
482         if (ret)
483                 return ret;
484
485         if (rdma_protocol_roce(device, port_num)) {
486                 struct ib_gid_attr dgid_attr;
487                 const u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
488                                 wc->vlan_id : 0xffff;
489
490                 if (!(wc->wc_flags & IB_WC_GRH))
491                         return -EPROTOTYPE;
492
493                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
494                                               &dgid, gid_type, &gid_index);
495                 if (ret)
496                         return ret;
497
498                 ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
499                 if (ret)
500                         return ret;
501
502                 if (dgid_attr.ndev == NULL)
503                         return -ENODEV;
504
505                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
506                     dgid_attr.ndev, &hoplimit);
507
508                 dev_put(dgid_attr.ndev);
509                 if (ret)
510                         return ret;
511         }
512
513         ah_attr->dlid = wc->slid;
514         ah_attr->sl = wc->sl;
515         ah_attr->src_path_bits = wc->dlid_path_bits;
516         ah_attr->port_num = port_num;
517
518         if (wc->wc_flags & IB_WC_GRH) {
519                 ah_attr->ah_flags = IB_AH_GRH;
520                 ah_attr->grh.dgid = sgid;
521
522                 if (!rdma_cap_eth_ah(device, port_num)) {
523                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
524                                 ret = ib_find_cached_gid_by_port(device, &dgid,
525                                                                  IB_GID_TYPE_IB,
526                                                                  port_num, NULL,
527                                                                  &gid_index);
528                                 if (ret)
529                                         return ret;
530                         } else {
531                                 gid_index = 0;
532                         }
533                 }
534
535                 ah_attr->grh.sgid_index = (u8) gid_index;
536                 flow_class = be32_to_cpu(grh->version_tclass_flow);
537                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
538                 ah_attr->grh.hop_limit = hoplimit;
539                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
540         }
541         return 0;
542 }
543 EXPORT_SYMBOL(ib_init_ah_from_wc);
544
545 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
546                                    const struct ib_grh *grh, u8 port_num)
547 {
548         struct ib_ah_attr ah_attr;
549         int ret;
550
551         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
552         if (ret)
553                 return ERR_PTR(ret);
554
555         return ib_create_ah(pd, &ah_attr);
556 }
557 EXPORT_SYMBOL(ib_create_ah_from_wc);
558
559 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
560 {
561         return ah->device->modify_ah ?
562                 ah->device->modify_ah(ah, ah_attr) :
563                 -ENOSYS;
564 }
565 EXPORT_SYMBOL(ib_modify_ah);
566
567 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
568 {
569         return ah->device->query_ah ?
570                 ah->device->query_ah(ah, ah_attr) :
571                 -ENOSYS;
572 }
573 EXPORT_SYMBOL(ib_query_ah);
574
575 int ib_destroy_ah(struct ib_ah *ah)
576 {
577         struct ib_pd *pd;
578         int ret;
579
580         pd = ah->pd;
581         ret = ah->device->destroy_ah(ah);
582         if (!ret)
583                 atomic_dec(&pd->usecnt);
584
585         return ret;
586 }
587 EXPORT_SYMBOL(ib_destroy_ah);
588
589 /* Shared receive queues */
590
591 struct ib_srq *ib_create_srq(struct ib_pd *pd,
592                              struct ib_srq_init_attr *srq_init_attr)
593 {
594         struct ib_srq *srq;
595
596         if (!pd->device->create_srq)
597                 return ERR_PTR(-ENOSYS);
598
599         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
600
601         if (!IS_ERR(srq)) {
602                 srq->device        = pd->device;
603                 srq->pd            = pd;
604                 srq->uobject       = NULL;
605                 srq->event_handler = srq_init_attr->event_handler;
606                 srq->srq_context   = srq_init_attr->srq_context;
607                 srq->srq_type      = srq_init_attr->srq_type;
608                 if (srq->srq_type == IB_SRQT_XRC) {
609                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
610                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
611                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
612                         atomic_inc(&srq->ext.xrc.cq->usecnt);
613                 }
614                 atomic_inc(&pd->usecnt);
615                 atomic_set(&srq->usecnt, 0);
616         }
617
618         return srq;
619 }
620 EXPORT_SYMBOL(ib_create_srq);
621
622 int ib_modify_srq(struct ib_srq *srq,
623                   struct ib_srq_attr *srq_attr,
624                   enum ib_srq_attr_mask srq_attr_mask)
625 {
626         return srq->device->modify_srq ?
627                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
628                 -ENOSYS;
629 }
630 EXPORT_SYMBOL(ib_modify_srq);
631
632 int ib_query_srq(struct ib_srq *srq,
633                  struct ib_srq_attr *srq_attr)
634 {
635         return srq->device->query_srq ?
636                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
637 }
638 EXPORT_SYMBOL(ib_query_srq);
639
640 int ib_destroy_srq(struct ib_srq *srq)
641 {
642         struct ib_pd *pd;
643         enum ib_srq_type srq_type;
644         struct ib_xrcd *uninitialized_var(xrcd);
645         struct ib_cq *uninitialized_var(cq);
646         int ret;
647
648         if (atomic_read(&srq->usecnt))
649                 return -EBUSY;
650
651         pd = srq->pd;
652         srq_type = srq->srq_type;
653         if (srq_type == IB_SRQT_XRC) {
654                 xrcd = srq->ext.xrc.xrcd;
655                 cq = srq->ext.xrc.cq;
656         }
657
658         ret = srq->device->destroy_srq(srq);
659         if (!ret) {
660                 atomic_dec(&pd->usecnt);
661                 if (srq_type == IB_SRQT_XRC) {
662                         atomic_dec(&xrcd->usecnt);
663                         atomic_dec(&cq->usecnt);
664                 }
665         }
666
667         return ret;
668 }
669 EXPORT_SYMBOL(ib_destroy_srq);
670
671 /* Queue pairs */
672
673 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
674 {
675         struct ib_qp *qp = context;
676         unsigned long flags;
677
678         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
679         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
680                 if (event->element.qp->event_handler)
681                         event->element.qp->event_handler(event, event->element.qp->qp_context);
682         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
683 }
684
685 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
686 {
687         mutex_lock(&xrcd->tgt_qp_mutex);
688         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
689         mutex_unlock(&xrcd->tgt_qp_mutex);
690 }
691
692 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
693                                   void (*event_handler)(struct ib_event *, void *),
694                                   void *qp_context)
695 {
696         struct ib_qp *qp;
697         unsigned long flags;
698
699         qp = kzalloc(sizeof *qp, GFP_KERNEL);
700         if (!qp)
701                 return ERR_PTR(-ENOMEM);
702
703         qp->real_qp = real_qp;
704         atomic_inc(&real_qp->usecnt);
705         qp->device = real_qp->device;
706         qp->event_handler = event_handler;
707         qp->qp_context = qp_context;
708         qp->qp_num = real_qp->qp_num;
709         qp->qp_type = real_qp->qp_type;
710
711         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
712         list_add(&qp->open_list, &real_qp->open_list);
713         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
714
715         return qp;
716 }
717
718 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
719                          struct ib_qp_open_attr *qp_open_attr)
720 {
721         struct ib_qp *qp, *real_qp;
722
723         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
724                 return ERR_PTR(-EINVAL);
725
726         qp = ERR_PTR(-EINVAL);
727         mutex_lock(&xrcd->tgt_qp_mutex);
728         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
729                 if (real_qp->qp_num == qp_open_attr->qp_num) {
730                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
731                                           qp_open_attr->qp_context);
732                         break;
733                 }
734         }
735         mutex_unlock(&xrcd->tgt_qp_mutex);
736         return qp;
737 }
738 EXPORT_SYMBOL(ib_open_qp);
739
740 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
741                 struct ib_qp_init_attr *qp_init_attr)
742 {
743         struct ib_qp *real_qp = qp;
744
745         qp->event_handler = __ib_shared_qp_event_handler;
746         qp->qp_context = qp;
747         qp->pd = NULL;
748         qp->send_cq = qp->recv_cq = NULL;
749         qp->srq = NULL;
750         qp->xrcd = qp_init_attr->xrcd;
751         atomic_inc(&qp_init_attr->xrcd->usecnt);
752         INIT_LIST_HEAD(&qp->open_list);
753
754         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
755                           qp_init_attr->qp_context);
756         if (!IS_ERR(qp))
757                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
758         else
759                 real_qp->device->destroy_qp(real_qp);
760         return qp;
761 }
762
763 struct ib_qp *ib_create_qp(struct ib_pd *pd,
764                            struct ib_qp_init_attr *qp_init_attr)
765 {
766         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
767         struct ib_qp *qp;
768
769         if (qp_init_attr->rwq_ind_tbl &&
770             (qp_init_attr->recv_cq ||
771             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
772             qp_init_attr->cap.max_recv_sge))
773                 return ERR_PTR(-EINVAL);
774
775         qp = device->create_qp(pd, qp_init_attr, NULL);
776         if (IS_ERR(qp))
777                 return qp;
778
779         qp->device     = device;
780         qp->real_qp    = qp;
781         qp->uobject    = NULL;
782         qp->qp_type    = qp_init_attr->qp_type;
783         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
784
785         atomic_set(&qp->usecnt, 0);
786         spin_lock_init(&qp->mr_lock);
787
788         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
789                 return ib_create_xrc_qp(qp, qp_init_attr);
790
791         qp->event_handler = qp_init_attr->event_handler;
792         qp->qp_context = qp_init_attr->qp_context;
793         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
794                 qp->recv_cq = NULL;
795                 qp->srq = NULL;
796         } else {
797                 qp->recv_cq = qp_init_attr->recv_cq;
798                 if (qp_init_attr->recv_cq)
799                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
800                 qp->srq = qp_init_attr->srq;
801                 if (qp->srq)
802                         atomic_inc(&qp_init_attr->srq->usecnt);
803         }
804
805         qp->pd      = pd;
806         qp->send_cq = qp_init_attr->send_cq;
807         qp->xrcd    = NULL;
808
809         atomic_inc(&pd->usecnt);
810         if (qp_init_attr->send_cq)
811                 atomic_inc(&qp_init_attr->send_cq->usecnt);
812         if (qp_init_attr->rwq_ind_tbl)
813                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
814
815         /*
816          * Note: all hw drivers guarantee that max_send_sge is lower than
817          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
818          * max_send_sge <= max_sge_rd.
819          */
820         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
821         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
822                                  device->attrs.max_sge_rd);
823
824         return qp;
825 }
826 EXPORT_SYMBOL(ib_create_qp);
827
828 static const struct {
829         int                     valid;
830         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
831         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
832 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
833         [IB_QPS_RESET] = {
834                 [IB_QPS_RESET] = { .valid = 1 },
835                 [IB_QPS_INIT]  = {
836                         .valid = 1,
837                         .req_param = {
838                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
839                                                 IB_QP_PORT                      |
840                                                 IB_QP_QKEY),
841                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
842                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
843                                                 IB_QP_PORT                      |
844                                                 IB_QP_ACCESS_FLAGS),
845                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
846                                                 IB_QP_PORT                      |
847                                                 IB_QP_ACCESS_FLAGS),
848                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
849                                                 IB_QP_PORT                      |
850                                                 IB_QP_ACCESS_FLAGS),
851                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
852                                                 IB_QP_PORT                      |
853                                                 IB_QP_ACCESS_FLAGS),
854                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
855                                                 IB_QP_QKEY),
856                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
857                                                 IB_QP_QKEY),
858                         }
859                 },
860         },
861         [IB_QPS_INIT]  = {
862                 [IB_QPS_RESET] = { .valid = 1 },
863                 [IB_QPS_ERR] =   { .valid = 1 },
864                 [IB_QPS_INIT]  = {
865                         .valid = 1,
866                         .opt_param = {
867                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
868                                                 IB_QP_PORT                      |
869                                                 IB_QP_QKEY),
870                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
871                                                 IB_QP_PORT                      |
872                                                 IB_QP_ACCESS_FLAGS),
873                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
874                                                 IB_QP_PORT                      |
875                                                 IB_QP_ACCESS_FLAGS),
876                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
877                                                 IB_QP_PORT                      |
878                                                 IB_QP_ACCESS_FLAGS),
879                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
880                                                 IB_QP_PORT                      |
881                                                 IB_QP_ACCESS_FLAGS),
882                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
883                                                 IB_QP_QKEY),
884                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
885                                                 IB_QP_QKEY),
886                         }
887                 },
888                 [IB_QPS_RTR]   = {
889                         .valid = 1,
890                         .req_param = {
891                                 [IB_QPT_UC]  = (IB_QP_AV                        |
892                                                 IB_QP_PATH_MTU                  |
893                                                 IB_QP_DEST_QPN                  |
894                                                 IB_QP_RQ_PSN),
895                                 [IB_QPT_RC]  = (IB_QP_AV                        |
896                                                 IB_QP_PATH_MTU                  |
897                                                 IB_QP_DEST_QPN                  |
898                                                 IB_QP_RQ_PSN                    |
899                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
900                                                 IB_QP_MIN_RNR_TIMER),
901                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
902                                                 IB_QP_PATH_MTU                  |
903                                                 IB_QP_DEST_QPN                  |
904                                                 IB_QP_RQ_PSN),
905                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
906                                                 IB_QP_PATH_MTU                  |
907                                                 IB_QP_DEST_QPN                  |
908                                                 IB_QP_RQ_PSN                    |
909                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
910                                                 IB_QP_MIN_RNR_TIMER),
911                         },
912                         .opt_param = {
913                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
914                                                  IB_QP_QKEY),
915                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
916                                                  IB_QP_ACCESS_FLAGS             |
917                                                  IB_QP_PKEY_INDEX),
918                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
919                                                  IB_QP_ACCESS_FLAGS             |
920                                                  IB_QP_PKEY_INDEX),
921                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
922                                                  IB_QP_ACCESS_FLAGS             |
923                                                  IB_QP_PKEY_INDEX),
924                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
925                                                  IB_QP_ACCESS_FLAGS             |
926                                                  IB_QP_PKEY_INDEX),
927                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
928                                                  IB_QP_QKEY),
929                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
930                                                  IB_QP_QKEY),
931                          },
932                 },
933         },
934         [IB_QPS_RTR]   = {
935                 [IB_QPS_RESET] = { .valid = 1 },
936                 [IB_QPS_ERR] =   { .valid = 1 },
937                 [IB_QPS_RTS]   = {
938                         .valid = 1,
939                         .req_param = {
940                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
941                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
942                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
943                                                 IB_QP_RETRY_CNT                 |
944                                                 IB_QP_RNR_RETRY                 |
945                                                 IB_QP_SQ_PSN                    |
946                                                 IB_QP_MAX_QP_RD_ATOMIC),
947                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
948                                                 IB_QP_RETRY_CNT                 |
949                                                 IB_QP_RNR_RETRY                 |
950                                                 IB_QP_SQ_PSN                    |
951                                                 IB_QP_MAX_QP_RD_ATOMIC),
952                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
953                                                 IB_QP_SQ_PSN),
954                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
955                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
956                         },
957                         .opt_param = {
958                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
959                                                  IB_QP_QKEY),
960                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
961                                                  IB_QP_ALT_PATH                 |
962                                                  IB_QP_ACCESS_FLAGS             |
963                                                  IB_QP_PATH_MIG_STATE),
964                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
965                                                  IB_QP_ALT_PATH                 |
966                                                  IB_QP_ACCESS_FLAGS             |
967                                                  IB_QP_MIN_RNR_TIMER            |
968                                                  IB_QP_PATH_MIG_STATE),
969                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
970                                                  IB_QP_ALT_PATH                 |
971                                                  IB_QP_ACCESS_FLAGS             |
972                                                  IB_QP_PATH_MIG_STATE),
973                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
974                                                  IB_QP_ALT_PATH                 |
975                                                  IB_QP_ACCESS_FLAGS             |
976                                                  IB_QP_MIN_RNR_TIMER            |
977                                                  IB_QP_PATH_MIG_STATE),
978                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
979                                                  IB_QP_QKEY),
980                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
981                                                  IB_QP_QKEY),
982                          }
983                 }
984         },
985         [IB_QPS_RTS]   = {
986                 [IB_QPS_RESET] = { .valid = 1 },
987                 [IB_QPS_ERR] =   { .valid = 1 },
988                 [IB_QPS_RTS]   = {
989                         .valid = 1,
990                         .opt_param = {
991                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
992                                                 IB_QP_QKEY),
993                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
994                                                 IB_QP_ACCESS_FLAGS              |
995                                                 IB_QP_ALT_PATH                  |
996                                                 IB_QP_PATH_MIG_STATE),
997                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
998                                                 IB_QP_ACCESS_FLAGS              |
999                                                 IB_QP_ALT_PATH                  |
1000                                                 IB_QP_PATH_MIG_STATE            |
1001                                                 IB_QP_MIN_RNR_TIMER),
1002                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1003                                                 IB_QP_ACCESS_FLAGS              |
1004                                                 IB_QP_ALT_PATH                  |
1005                                                 IB_QP_PATH_MIG_STATE),
1006                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1007                                                 IB_QP_ACCESS_FLAGS              |
1008                                                 IB_QP_ALT_PATH                  |
1009                                                 IB_QP_PATH_MIG_STATE            |
1010                                                 IB_QP_MIN_RNR_TIMER),
1011                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1012                                                 IB_QP_QKEY),
1013                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1014                                                 IB_QP_QKEY),
1015                         }
1016                 },
1017                 [IB_QPS_SQD]   = {
1018                         .valid = 1,
1019                         .opt_param = {
1020                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1021                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1022                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1023                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1024                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1025                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1026                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1027                         }
1028                 },
1029         },
1030         [IB_QPS_SQD]   = {
1031                 [IB_QPS_RESET] = { .valid = 1 },
1032                 [IB_QPS_ERR] =   { .valid = 1 },
1033                 [IB_QPS_RTS]   = {
1034                         .valid = 1,
1035                         .opt_param = {
1036                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1037                                                 IB_QP_QKEY),
1038                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1039                                                 IB_QP_ALT_PATH                  |
1040                                                 IB_QP_ACCESS_FLAGS              |
1041                                                 IB_QP_PATH_MIG_STATE),
1042                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1043                                                 IB_QP_ALT_PATH                  |
1044                                                 IB_QP_ACCESS_FLAGS              |
1045                                                 IB_QP_MIN_RNR_TIMER             |
1046                                                 IB_QP_PATH_MIG_STATE),
1047                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1048                                                 IB_QP_ALT_PATH                  |
1049                                                 IB_QP_ACCESS_FLAGS              |
1050                                                 IB_QP_PATH_MIG_STATE),
1051                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1052                                                 IB_QP_ALT_PATH                  |
1053                                                 IB_QP_ACCESS_FLAGS              |
1054                                                 IB_QP_MIN_RNR_TIMER             |
1055                                                 IB_QP_PATH_MIG_STATE),
1056                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1057                                                 IB_QP_QKEY),
1058                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1059                                                 IB_QP_QKEY),
1060                         }
1061                 },
1062                 [IB_QPS_SQD]   = {
1063                         .valid = 1,
1064                         .opt_param = {
1065                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1066                                                 IB_QP_QKEY),
1067                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1068                                                 IB_QP_ALT_PATH                  |
1069                                                 IB_QP_ACCESS_FLAGS              |
1070                                                 IB_QP_PKEY_INDEX                |
1071                                                 IB_QP_PATH_MIG_STATE),
1072                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1073                                                 IB_QP_AV                        |
1074                                                 IB_QP_TIMEOUT                   |
1075                                                 IB_QP_RETRY_CNT                 |
1076                                                 IB_QP_RNR_RETRY                 |
1077                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1078                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1079                                                 IB_QP_ALT_PATH                  |
1080                                                 IB_QP_ACCESS_FLAGS              |
1081                                                 IB_QP_PKEY_INDEX                |
1082                                                 IB_QP_MIN_RNR_TIMER             |
1083                                                 IB_QP_PATH_MIG_STATE),
1084                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1085                                                 IB_QP_AV                        |
1086                                                 IB_QP_TIMEOUT                   |
1087                                                 IB_QP_RETRY_CNT                 |
1088                                                 IB_QP_RNR_RETRY                 |
1089                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1090                                                 IB_QP_ALT_PATH                  |
1091                                                 IB_QP_ACCESS_FLAGS              |
1092                                                 IB_QP_PKEY_INDEX                |
1093                                                 IB_QP_PATH_MIG_STATE),
1094                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1095                                                 IB_QP_AV                        |
1096                                                 IB_QP_TIMEOUT                   |
1097                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1098                                                 IB_QP_ALT_PATH                  |
1099                                                 IB_QP_ACCESS_FLAGS              |
1100                                                 IB_QP_PKEY_INDEX                |
1101                                                 IB_QP_MIN_RNR_TIMER             |
1102                                                 IB_QP_PATH_MIG_STATE),
1103                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1104                                                 IB_QP_QKEY),
1105                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1106                                                 IB_QP_QKEY),
1107                         }
1108                 }
1109         },
1110         [IB_QPS_SQE]   = {
1111                 [IB_QPS_RESET] = { .valid = 1 },
1112                 [IB_QPS_ERR] =   { .valid = 1 },
1113                 [IB_QPS_RTS]   = {
1114                         .valid = 1,
1115                         .opt_param = {
1116                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1117                                                 IB_QP_QKEY),
1118                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1119                                                 IB_QP_ACCESS_FLAGS),
1120                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1121                                                 IB_QP_QKEY),
1122                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1123                                                 IB_QP_QKEY),
1124                         }
1125                 }
1126         },
1127         [IB_QPS_ERR] = {
1128                 [IB_QPS_RESET] = { .valid = 1 },
1129                 [IB_QPS_ERR] =   { .valid = 1 }
1130         }
1131 };
1132
1133 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1134                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1135                        enum rdma_link_layer ll)
1136 {
1137         enum ib_qp_attr_mask req_param, opt_param;
1138
1139         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1140             next_state < 0 || next_state > IB_QPS_ERR)
1141                 return 0;
1142
1143         if (mask & IB_QP_CUR_STATE  &&
1144             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1145             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1146                 return 0;
1147
1148         if (!qp_state_table[cur_state][next_state].valid)
1149                 return 0;
1150
1151         req_param = qp_state_table[cur_state][next_state].req_param[type];
1152         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1153
1154         if ((mask & req_param) != req_param)
1155                 return 0;
1156
1157         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1158                 return 0;
1159
1160         return 1;
1161 }
1162 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1163
1164 int ib_resolve_eth_dmac(struct ib_qp *qp,
1165                         struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1166 {
1167         int           ret = 0;
1168
1169         if (*qp_attr_mask & IB_QP_AV) {
1170                 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1171                     qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1172                         return -EINVAL;
1173
1174                 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1175                         return 0;
1176
1177                 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1178                         rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1179                                         qp_attr->ah_attr.dmac);
1180                 } else {
1181                         union ib_gid            sgid;
1182                         struct ib_gid_attr      sgid_attr;
1183                         int                     hop_limit;
1184
1185                         ret = ib_query_gid(qp->device,
1186                                            qp_attr->ah_attr.port_num,
1187                                            qp_attr->ah_attr.grh.sgid_index,
1188                                            &sgid, &sgid_attr);
1189
1190                         if (ret || !sgid_attr.ndev) {
1191                                 if (!ret)
1192                                         ret = -ENXIO;
1193                                 goto out;
1194                         }
1195
1196                         ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1197                                                            &qp_attr->ah_attr.grh.dgid,
1198                                                            qp_attr->ah_attr.dmac,
1199                                                            sgid_attr.ndev, &hop_limit);
1200
1201                         dev_put(sgid_attr.ndev);
1202
1203                         qp_attr->ah_attr.grh.hop_limit = hop_limit;
1204                 }
1205         }
1206 out:
1207         return ret;
1208 }
1209 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1210
1211
1212 int ib_modify_qp(struct ib_qp *qp,
1213                  struct ib_qp_attr *qp_attr,
1214                  int qp_attr_mask)
1215 {
1216         int ret;
1217
1218         ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1219         if (ret)
1220                 return ret;
1221
1222         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1223 }
1224 EXPORT_SYMBOL(ib_modify_qp);
1225
1226 int ib_query_qp(struct ib_qp *qp,
1227                 struct ib_qp_attr *qp_attr,
1228                 int qp_attr_mask,
1229                 struct ib_qp_init_attr *qp_init_attr)
1230 {
1231         return qp->device->query_qp ?
1232                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1233                 -ENOSYS;
1234 }
1235 EXPORT_SYMBOL(ib_query_qp);
1236
1237 int ib_close_qp(struct ib_qp *qp)
1238 {
1239         struct ib_qp *real_qp;
1240         unsigned long flags;
1241
1242         real_qp = qp->real_qp;
1243         if (real_qp == qp)
1244                 return -EINVAL;
1245
1246         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1247         list_del(&qp->open_list);
1248         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1249
1250         atomic_dec(&real_qp->usecnt);
1251         kfree(qp);
1252
1253         return 0;
1254 }
1255 EXPORT_SYMBOL(ib_close_qp);
1256
1257 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1258 {
1259         struct ib_xrcd *xrcd;
1260         struct ib_qp *real_qp;
1261         int ret;
1262
1263         real_qp = qp->real_qp;
1264         xrcd = real_qp->xrcd;
1265
1266         mutex_lock(&xrcd->tgt_qp_mutex);
1267         ib_close_qp(qp);
1268         if (atomic_read(&real_qp->usecnt) == 0)
1269                 list_del(&real_qp->xrcd_list);
1270         else
1271                 real_qp = NULL;
1272         mutex_unlock(&xrcd->tgt_qp_mutex);
1273
1274         if (real_qp) {
1275                 ret = ib_destroy_qp(real_qp);
1276                 if (!ret)
1277                         atomic_dec(&xrcd->usecnt);
1278                 else
1279                         __ib_insert_xrcd_qp(xrcd, real_qp);
1280         }
1281
1282         return 0;
1283 }
1284
1285 int ib_destroy_qp(struct ib_qp *qp)
1286 {
1287         struct ib_pd *pd;
1288         struct ib_cq *scq, *rcq;
1289         struct ib_srq *srq;
1290         struct ib_rwq_ind_table *ind_tbl;
1291         int ret;
1292
1293         if (atomic_read(&qp->usecnt))
1294                 return -EBUSY;
1295
1296         if (qp->real_qp != qp)
1297                 return __ib_destroy_shared_qp(qp);
1298
1299         pd   = qp->pd;
1300         scq  = qp->send_cq;
1301         rcq  = qp->recv_cq;
1302         srq  = qp->srq;
1303         ind_tbl = qp->rwq_ind_tbl;
1304
1305         ret = qp->device->destroy_qp(qp);
1306         if (!ret) {
1307                 if (pd)
1308                         atomic_dec(&pd->usecnt);
1309                 if (scq)
1310                         atomic_dec(&scq->usecnt);
1311                 if (rcq)
1312                         atomic_dec(&rcq->usecnt);
1313                 if (srq)
1314                         atomic_dec(&srq->usecnt);
1315                 if (ind_tbl)
1316                         atomic_dec(&ind_tbl->usecnt);
1317         }
1318
1319         return ret;
1320 }
1321 EXPORT_SYMBOL(ib_destroy_qp);
1322
1323 /* Completion queues */
1324
1325 struct ib_cq *ib_create_cq(struct ib_device *device,
1326                            ib_comp_handler comp_handler,
1327                            void (*event_handler)(struct ib_event *, void *),
1328                            void *cq_context,
1329                            const struct ib_cq_init_attr *cq_attr)
1330 {
1331         struct ib_cq *cq;
1332
1333         cq = device->create_cq(device, cq_attr, NULL, NULL);
1334
1335         if (!IS_ERR(cq)) {
1336                 cq->device        = device;
1337                 cq->uobject       = NULL;
1338                 cq->comp_handler  = comp_handler;
1339                 cq->event_handler = event_handler;
1340                 cq->cq_context    = cq_context;
1341                 atomic_set(&cq->usecnt, 0);
1342         }
1343
1344         return cq;
1345 }
1346 EXPORT_SYMBOL(ib_create_cq);
1347
1348 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1349 {
1350         return cq->device->modify_cq ?
1351                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1352 }
1353 EXPORT_SYMBOL(ib_modify_cq);
1354
1355 int ib_destroy_cq(struct ib_cq *cq)
1356 {
1357         if (atomic_read(&cq->usecnt))
1358                 return -EBUSY;
1359
1360         return cq->device->destroy_cq(cq);
1361 }
1362 EXPORT_SYMBOL(ib_destroy_cq);
1363
1364 int ib_resize_cq(struct ib_cq *cq, int cqe)
1365 {
1366         return cq->device->resize_cq ?
1367                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1368 }
1369 EXPORT_SYMBOL(ib_resize_cq);
1370
1371 /* Memory regions */
1372
1373 int ib_dereg_mr(struct ib_mr *mr)
1374 {
1375         struct ib_pd *pd = mr->pd;
1376         int ret;
1377
1378         ret = mr->device->dereg_mr(mr);
1379         if (!ret)
1380                 atomic_dec(&pd->usecnt);
1381
1382         return ret;
1383 }
1384 EXPORT_SYMBOL(ib_dereg_mr);
1385
1386 /**
1387  * ib_alloc_mr() - Allocates a memory region
1388  * @pd:            protection domain associated with the region
1389  * @mr_type:       memory region type
1390  * @max_num_sg:    maximum sg entries available for registration.
1391  *
1392  * Notes:
1393  * Memory registeration page/sg lists must not exceed max_num_sg.
1394  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1395  * max_num_sg * used_page_size.
1396  *
1397  */
1398 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1399                           enum ib_mr_type mr_type,
1400                           u32 max_num_sg)
1401 {
1402         struct ib_mr *mr;
1403
1404         if (!pd->device->alloc_mr)
1405                 return ERR_PTR(-ENOSYS);
1406
1407         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1408         if (!IS_ERR(mr)) {
1409                 mr->device  = pd->device;
1410                 mr->pd      = pd;
1411                 mr->uobject = NULL;
1412                 atomic_inc(&pd->usecnt);
1413                 mr->need_inval = false;
1414         }
1415
1416         return mr;
1417 }
1418 EXPORT_SYMBOL(ib_alloc_mr);
1419
1420 /* "Fast" memory regions */
1421
1422 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1423                             int mr_access_flags,
1424                             struct ib_fmr_attr *fmr_attr)
1425 {
1426         struct ib_fmr *fmr;
1427
1428         if (!pd->device->alloc_fmr)
1429                 return ERR_PTR(-ENOSYS);
1430
1431         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1432         if (!IS_ERR(fmr)) {
1433                 fmr->device = pd->device;
1434                 fmr->pd     = pd;
1435                 atomic_inc(&pd->usecnt);
1436         }
1437
1438         return fmr;
1439 }
1440 EXPORT_SYMBOL(ib_alloc_fmr);
1441
1442 int ib_unmap_fmr(struct list_head *fmr_list)
1443 {
1444         struct ib_fmr *fmr;
1445
1446         if (list_empty(fmr_list))
1447                 return 0;
1448
1449         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1450         return fmr->device->unmap_fmr(fmr_list);
1451 }
1452 EXPORT_SYMBOL(ib_unmap_fmr);
1453
1454 int ib_dealloc_fmr(struct ib_fmr *fmr)
1455 {
1456         struct ib_pd *pd;
1457         int ret;
1458
1459         pd = fmr->pd;
1460         ret = fmr->device->dealloc_fmr(fmr);
1461         if (!ret)
1462                 atomic_dec(&pd->usecnt);
1463
1464         return ret;
1465 }
1466 EXPORT_SYMBOL(ib_dealloc_fmr);
1467
1468 /* Multicast groups */
1469
1470 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1471 {
1472         int ret;
1473
1474         if (!qp->device->attach_mcast)
1475                 return -ENOSYS;
1476         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1477                 return -EINVAL;
1478
1479         ret = qp->device->attach_mcast(qp, gid, lid);
1480         if (!ret)
1481                 atomic_inc(&qp->usecnt);
1482         return ret;
1483 }
1484 EXPORT_SYMBOL(ib_attach_mcast);
1485
1486 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1487 {
1488         int ret;
1489
1490         if (!qp->device->detach_mcast)
1491                 return -ENOSYS;
1492         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1493                 return -EINVAL;
1494
1495         ret = qp->device->detach_mcast(qp, gid, lid);
1496         if (!ret)
1497                 atomic_dec(&qp->usecnt);
1498         return ret;
1499 }
1500 EXPORT_SYMBOL(ib_detach_mcast);
1501
1502 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1503 {
1504         struct ib_xrcd *xrcd;
1505
1506         if (!device->alloc_xrcd)
1507                 return ERR_PTR(-ENOSYS);
1508
1509         xrcd = device->alloc_xrcd(device, NULL, NULL);
1510         if (!IS_ERR(xrcd)) {
1511                 xrcd->device = device;
1512                 xrcd->inode = NULL;
1513                 atomic_set(&xrcd->usecnt, 0);
1514                 mutex_init(&xrcd->tgt_qp_mutex);
1515                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1516         }
1517
1518         return xrcd;
1519 }
1520 EXPORT_SYMBOL(ib_alloc_xrcd);
1521
1522 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1523 {
1524         struct ib_qp *qp;
1525         int ret;
1526
1527         if (atomic_read(&xrcd->usecnt))
1528                 return -EBUSY;
1529
1530         while (!list_empty(&xrcd->tgt_qp_list)) {
1531                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1532                 ret = ib_destroy_qp(qp);
1533                 if (ret)
1534                         return ret;
1535         }
1536
1537         return xrcd->device->dealloc_xrcd(xrcd);
1538 }
1539 EXPORT_SYMBOL(ib_dealloc_xrcd);
1540
1541 /**
1542  * ib_create_wq - Creates a WQ associated with the specified protection
1543  * domain.
1544  * @pd: The protection domain associated with the WQ.
1545  * @wq_init_attr: A list of initial attributes required to create the
1546  * WQ. If WQ creation succeeds, then the attributes are updated to
1547  * the actual capabilities of the created WQ.
1548  *
1549  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1550  * the requested size of the WQ, and set to the actual values allocated
1551  * on return.
1552  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1553  * at least as large as the requested values.
1554  */
1555 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1556                            struct ib_wq_init_attr *wq_attr)
1557 {
1558         struct ib_wq *wq;
1559
1560         if (!pd->device->create_wq)
1561                 return ERR_PTR(-ENOSYS);
1562
1563         wq = pd->device->create_wq(pd, wq_attr, NULL);
1564         if (!IS_ERR(wq)) {
1565                 wq->event_handler = wq_attr->event_handler;
1566                 wq->wq_context = wq_attr->wq_context;
1567                 wq->wq_type = wq_attr->wq_type;
1568                 wq->cq = wq_attr->cq;
1569                 wq->device = pd->device;
1570                 wq->pd = pd;
1571                 wq->uobject = NULL;
1572                 atomic_inc(&pd->usecnt);
1573                 atomic_inc(&wq_attr->cq->usecnt);
1574                 atomic_set(&wq->usecnt, 0);
1575         }
1576         return wq;
1577 }
1578 EXPORT_SYMBOL(ib_create_wq);
1579
1580 /**
1581  * ib_destroy_wq - Destroys the specified WQ.
1582  * @wq: The WQ to destroy.
1583  */
1584 int ib_destroy_wq(struct ib_wq *wq)
1585 {
1586         int err;
1587         struct ib_cq *cq = wq->cq;
1588         struct ib_pd *pd = wq->pd;
1589
1590         if (atomic_read(&wq->usecnt))
1591                 return -EBUSY;
1592
1593         err = wq->device->destroy_wq(wq);
1594         if (!err) {
1595                 atomic_dec(&pd->usecnt);
1596                 atomic_dec(&cq->usecnt);
1597         }
1598         return err;
1599 }
1600 EXPORT_SYMBOL(ib_destroy_wq);
1601
1602 /**
1603  * ib_modify_wq - Modifies the specified WQ.
1604  * @wq: The WQ to modify.
1605  * @wq_attr: On input, specifies the WQ attributes to modify.
1606  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1607  *   are being modified.
1608  * On output, the current values of selected WQ attributes are returned.
1609  */
1610 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1611                  u32 wq_attr_mask)
1612 {
1613         int err;
1614
1615         if (!wq->device->modify_wq)
1616                 return -ENOSYS;
1617
1618         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1619         return err;
1620 }
1621 EXPORT_SYMBOL(ib_modify_wq);
1622
1623 /*
1624  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1625  * @device: The device on which to create the rwq indirection table.
1626  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1627  * create the Indirection Table.
1628  *
1629  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1630  *      than the created ib_rwq_ind_table object and the caller is responsible
1631  *      for its memory allocation/free.
1632  */
1633 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1634                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1635 {
1636         struct ib_rwq_ind_table *rwq_ind_table;
1637         int i;
1638         u32 table_size;
1639
1640         if (!device->create_rwq_ind_table)
1641                 return ERR_PTR(-ENOSYS);
1642
1643         table_size = (1 << init_attr->log_ind_tbl_size);
1644         rwq_ind_table = device->create_rwq_ind_table(device,
1645                                 init_attr, NULL);
1646         if (IS_ERR(rwq_ind_table))
1647                 return rwq_ind_table;
1648
1649         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1650         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1651         rwq_ind_table->device = device;
1652         rwq_ind_table->uobject = NULL;
1653         atomic_set(&rwq_ind_table->usecnt, 0);
1654
1655         for (i = 0; i < table_size; i++)
1656                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1657
1658         return rwq_ind_table;
1659 }
1660 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1661
1662 /*
1663  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1664  * @wq_ind_table: The Indirection Table to destroy.
1665 */
1666 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1667 {
1668         int err, i;
1669         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1670         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1671
1672         if (atomic_read(&rwq_ind_table->usecnt))
1673                 return -EBUSY;
1674
1675         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1676         if (!err) {
1677                 for (i = 0; i < table_size; i++)
1678                         atomic_dec(&ind_tbl[i]->usecnt);
1679         }
1680
1681         return err;
1682 }
1683 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1684
1685 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1686                                struct ib_flow_attr *flow_attr,
1687                                int domain)
1688 {
1689         struct ib_flow *flow_id;
1690         if (!qp->device->create_flow)
1691                 return ERR_PTR(-ENOSYS);
1692
1693         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1694         if (!IS_ERR(flow_id))
1695                 atomic_inc(&qp->usecnt);
1696         return flow_id;
1697 }
1698 EXPORT_SYMBOL(ib_create_flow);
1699
1700 int ib_destroy_flow(struct ib_flow *flow_id)
1701 {
1702         int err;
1703         struct ib_qp *qp = flow_id->qp;
1704
1705         err = qp->device->destroy_flow(flow_id);
1706         if (!err)
1707                 atomic_dec(&qp->usecnt);
1708         return err;
1709 }
1710 EXPORT_SYMBOL(ib_destroy_flow);
1711
1712 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1713                        struct ib_mr_status *mr_status)
1714 {
1715         return mr->device->check_mr_status ?
1716                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1717 }
1718 EXPORT_SYMBOL(ib_check_mr_status);
1719
1720 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1721                          int state)
1722 {
1723         if (!device->set_vf_link_state)
1724                 return -ENOSYS;
1725
1726         return device->set_vf_link_state(device, vf, port, state);
1727 }
1728 EXPORT_SYMBOL(ib_set_vf_link_state);
1729
1730 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1731                      struct ifla_vf_info *info)
1732 {
1733         if (!device->get_vf_config)
1734                 return -ENOSYS;
1735
1736         return device->get_vf_config(device, vf, port, info);
1737 }
1738 EXPORT_SYMBOL(ib_get_vf_config);
1739
1740 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1741                     struct ifla_vf_stats *stats)
1742 {
1743         if (!device->get_vf_stats)
1744                 return -ENOSYS;
1745
1746         return device->get_vf_stats(device, vf, port, stats);
1747 }
1748 EXPORT_SYMBOL(ib_get_vf_stats);
1749
1750 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1751                    int type)
1752 {
1753         if (!device->set_vf_guid)
1754                 return -ENOSYS;
1755
1756         return device->set_vf_guid(device, vf, port, guid, type);
1757 }
1758 EXPORT_SYMBOL(ib_set_vf_guid);
1759
1760 /**
1761  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1762  *     and set it the memory region.
1763  * @mr:            memory region
1764  * @sg:            dma mapped scatterlist
1765  * @sg_nents:      number of entries in sg
1766  * @sg_offset:     offset in bytes into sg
1767  * @page_size:     page vector desired page size
1768  *
1769  * Constraints:
1770  * - The first sg element is allowed to have an offset.
1771  * - Each sg element must either be aligned to page_size or virtually
1772  *   contiguous to the previous element. In case an sg element has a
1773  *   non-contiguous offset, the mapping prefix will not include it.
1774  * - The last sg element is allowed to have length less than page_size.
1775  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1776  *   then only max_num_sg entries will be mapped.
1777  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1778  *   constraints holds and the page_size argument is ignored.
1779  *
1780  * Returns the number of sg elements that were mapped to the memory region.
1781  *
1782  * After this completes successfully, the  memory region
1783  * is ready for registration.
1784  */
1785 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1786                  unsigned int *sg_offset, unsigned int page_size)
1787 {
1788         if (unlikely(!mr->device->map_mr_sg))
1789                 return -ENOSYS;
1790
1791         mr->page_size = page_size;
1792
1793         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1794 }
1795 EXPORT_SYMBOL(ib_map_mr_sg);
1796
1797 /**
1798  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1799  *     to a page vector
1800  * @mr:            memory region
1801  * @sgl:           dma mapped scatterlist
1802  * @sg_nents:      number of entries in sg
1803  * @sg_offset_p:   IN:  start offset in bytes into sg
1804  *                 OUT: offset in bytes for element n of the sg of the first
1805  *                      byte that has not been processed where n is the return
1806  *                      value of this function.
1807  * @set_page:      driver page assignment function pointer
1808  *
1809  * Core service helper for drivers to convert the largest
1810  * prefix of given sg list to a page vector. The sg list
1811  * prefix converted is the prefix that meet the requirements
1812  * of ib_map_mr_sg.
1813  *
1814  * Returns the number of sg elements that were assigned to
1815  * a page vector.
1816  */
1817 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1818                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1819 {
1820         struct scatterlist *sg;
1821         u64 last_end_dma_addr = 0;
1822         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1823         unsigned int last_page_off = 0;
1824         u64 page_mask = ~((u64)mr->page_size - 1);
1825         int i, ret;
1826
1827         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1828                 return -EINVAL;
1829
1830         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1831         mr->length = 0;
1832
1833         for_each_sg(sgl, sg, sg_nents, i) {
1834                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1835                 u64 prev_addr = dma_addr;
1836                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1837                 u64 end_dma_addr = dma_addr + dma_len;
1838                 u64 page_addr = dma_addr & page_mask;
1839
1840                 /*
1841                  * For the second and later elements, check whether either the
1842                  * end of element i-1 or the start of element i is not aligned
1843                  * on a page boundary.
1844                  */
1845                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1846                         /* Stop mapping if there is a gap. */
1847                         if (last_end_dma_addr != dma_addr)
1848                                 break;
1849
1850                         /*
1851                          * Coalesce this element with the last. If it is small
1852                          * enough just update mr->length. Otherwise start
1853                          * mapping from the next page.
1854                          */
1855                         goto next_page;
1856                 }
1857
1858                 do {
1859                         ret = set_page(mr, page_addr);
1860                         if (unlikely(ret < 0)) {
1861                                 sg_offset = prev_addr - sg_dma_address(sg);
1862                                 mr->length += prev_addr - dma_addr;
1863                                 if (sg_offset_p)
1864                                         *sg_offset_p = sg_offset;
1865                                 return i || sg_offset ? i : ret;
1866                         }
1867                         prev_addr = page_addr;
1868 next_page:
1869                         page_addr += mr->page_size;
1870                 } while (page_addr < end_dma_addr);
1871
1872                 mr->length += dma_len;
1873                 last_end_dma_addr = end_dma_addr;
1874                 last_page_off = end_dma_addr & ~page_mask;
1875
1876                 sg_offset = 0;
1877         }
1878
1879         if (sg_offset_p)
1880                 *sg_offset_p = 0;
1881         return i;
1882 }
1883 EXPORT_SYMBOL(ib_sg_to_pages);
1884
1885 struct ib_drain_cqe {
1886         struct ib_cqe cqe;
1887         struct completion done;
1888 };
1889
1890 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1891 {
1892         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1893                                                 cqe);
1894
1895         complete(&cqe->done);
1896 }
1897
1898 /*
1899  * Post a WR and block until its completion is reaped for the SQ.
1900  */
1901 static void __ib_drain_sq(struct ib_qp *qp)
1902 {
1903         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1904         struct ib_drain_cqe sdrain;
1905         struct ib_send_wr swr = {}, *bad_swr;
1906         int ret;
1907
1908         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1909                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1910                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1911                 return;
1912         }
1913
1914         swr.wr_cqe = &sdrain.cqe;
1915         sdrain.cqe.done = ib_drain_qp_done;
1916         init_completion(&sdrain.done);
1917
1918         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1919         if (ret) {
1920                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1921                 return;
1922         }
1923
1924         ret = ib_post_send(qp, &swr, &bad_swr);
1925         if (ret) {
1926                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1927                 return;
1928         }
1929
1930         wait_for_completion(&sdrain.done);
1931 }
1932
1933 /*
1934  * Post a WR and block until its completion is reaped for the RQ.
1935  */
1936 static void __ib_drain_rq(struct ib_qp *qp)
1937 {
1938         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1939         struct ib_drain_cqe rdrain;
1940         struct ib_recv_wr rwr = {}, *bad_rwr;
1941         int ret;
1942
1943         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1944                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1945                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1946                 return;
1947         }
1948
1949         rwr.wr_cqe = &rdrain.cqe;
1950         rdrain.cqe.done = ib_drain_qp_done;
1951         init_completion(&rdrain.done);
1952
1953         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1954         if (ret) {
1955                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1956                 return;
1957         }
1958
1959         ret = ib_post_recv(qp, &rwr, &bad_rwr);
1960         if (ret) {
1961                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1962                 return;
1963         }
1964
1965         wait_for_completion(&rdrain.done);
1966 }
1967
1968 /**
1969  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1970  *                 application.
1971  * @qp:            queue pair to drain
1972  *
1973  * If the device has a provider-specific drain function, then
1974  * call that.  Otherwise call the generic drain function
1975  * __ib_drain_sq().
1976  *
1977  * The caller must:
1978  *
1979  * ensure there is room in the CQ and SQ for the drain work request and
1980  * completion.
1981  *
1982  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1983  * IB_POLL_DIRECT.
1984  *
1985  * ensure that there are no other contexts that are posting WRs concurrently.
1986  * Otherwise the drain is not guaranteed.
1987  */
1988 void ib_drain_sq(struct ib_qp *qp)
1989 {
1990         if (qp->device->drain_sq)
1991                 qp->device->drain_sq(qp);
1992         else
1993                 __ib_drain_sq(qp);
1994 }
1995 EXPORT_SYMBOL(ib_drain_sq);
1996
1997 /**
1998  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1999  *                 application.
2000  * @qp:            queue pair to drain
2001  *
2002  * If the device has a provider-specific drain function, then
2003  * call that.  Otherwise call the generic drain function
2004  * __ib_drain_rq().
2005  *
2006  * The caller must:
2007  *
2008  * ensure there is room in the CQ and RQ for the drain work request and
2009  * completion.
2010  *
2011  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2012  * IB_POLL_DIRECT.
2013  *
2014  * ensure that there are no other contexts that are posting WRs concurrently.
2015  * Otherwise the drain is not guaranteed.
2016  */
2017 void ib_drain_rq(struct ib_qp *qp)
2018 {
2019         if (qp->device->drain_rq)
2020                 qp->device->drain_rq(qp);
2021         else
2022                 __ib_drain_rq(qp);
2023 }
2024 EXPORT_SYMBOL(ib_drain_rq);
2025
2026 /**
2027  * ib_drain_qp() - Block until all CQEs have been consumed by the
2028  *                 application on both the RQ and SQ.
2029  * @qp:            queue pair to drain
2030  *
2031  * The caller must:
2032  *
2033  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2034  * and completions.
2035  *
2036  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2037  * IB_POLL_DIRECT.
2038  *
2039  * ensure that there are no other contexts that are posting WRs concurrently.
2040  * Otherwise the drain is not guaranteed.
2041  */
2042 void ib_drain_qp(struct ib_qp *qp)
2043 {
2044         ib_drain_sq(qp);
2045         if (!qp->srq)
2046                 ib_drain_rq(qp);
2047 }
2048 EXPORT_SYMBOL(ib_drain_qp);