]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/ofed/drivers/infiniband/core/ib_verbs.c
MFC r336374:
[FreeBSD/FreeBSD.git] / sys / ofed / drivers / infiniband / core / ib_verbs.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  *
40  * $FreeBSD$
41  */
42
43 #include <linux/errno.h>
44 #include <linux/err.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/in.h>
48 #include <linux/in6.h>
49
50 #include <rdma/ib_verbs.h>
51 #include <rdma/ib_cache.h>
52 #include <rdma/ib_addr.h>
53
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56
57 #include <machine/in_cksum.h>
58
59 #include "core_priv.h"
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return  1;
130         case IB_RATE_5_GBPS:   return  2;
131         case IB_RATE_10_GBPS:  return  4;
132         case IB_RATE_20_GBPS:  return  8;
133         case IB_RATE_30_GBPS:  return 12;
134         case IB_RATE_40_GBPS:  return 16;
135         case IB_RATE_60_GBPS:  return 24;
136         case IB_RATE_80_GBPS:  return 32;
137         case IB_RATE_120_GBPS: return 48;
138         default:               return -1;
139         }
140 }
141 EXPORT_SYMBOL(ib_rate_to_mult);
142
143 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
144 {
145         switch (mult) {
146         case 1:  return IB_RATE_2_5_GBPS;
147         case 2:  return IB_RATE_5_GBPS;
148         case 4:  return IB_RATE_10_GBPS;
149         case 8:  return IB_RATE_20_GBPS;
150         case 12: return IB_RATE_30_GBPS;
151         case 16: return IB_RATE_40_GBPS;
152         case 24: return IB_RATE_60_GBPS;
153         case 32: return IB_RATE_80_GBPS;
154         case 48: return IB_RATE_120_GBPS;
155         default: return IB_RATE_PORT_CURRENT;
156         }
157 }
158 EXPORT_SYMBOL(mult_to_ib_rate);
159
160 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
161 {
162         switch (rate) {
163         case IB_RATE_2_5_GBPS: return 2500;
164         case IB_RATE_5_GBPS:   return 5000;
165         case IB_RATE_10_GBPS:  return 10000;
166         case IB_RATE_20_GBPS:  return 20000;
167         case IB_RATE_30_GBPS:  return 30000;
168         case IB_RATE_40_GBPS:  return 40000;
169         case IB_RATE_60_GBPS:  return 60000;
170         case IB_RATE_80_GBPS:  return 80000;
171         case IB_RATE_120_GBPS: return 120000;
172         case IB_RATE_14_GBPS:  return 14062;
173         case IB_RATE_56_GBPS:  return 56250;
174         case IB_RATE_112_GBPS: return 112500;
175         case IB_RATE_168_GBPS: return 168750;
176         case IB_RATE_25_GBPS:  return 25781;
177         case IB_RATE_100_GBPS: return 103125;
178         case IB_RATE_200_GBPS: return 206250;
179         case IB_RATE_300_GBPS: return 309375;
180         default:               return -1;
181         }
182 }
183 EXPORT_SYMBOL(ib_rate_to_mbps);
184
185 __attribute_const__ enum rdma_transport_type
186 rdma_node_get_transport(enum rdma_node_type node_type)
187 {
188         switch (node_type) {
189         case RDMA_NODE_IB_CA:
190         case RDMA_NODE_IB_SWITCH:
191         case RDMA_NODE_IB_ROUTER:
192                 return RDMA_TRANSPORT_IB;
193         case RDMA_NODE_RNIC:
194                 return RDMA_TRANSPORT_IWARP;
195         case RDMA_NODE_USNIC:
196                 return RDMA_TRANSPORT_USNIC;
197         case RDMA_NODE_USNIC_UDP:
198                 return RDMA_TRANSPORT_USNIC_UDP;
199         default:
200                 BUG();
201                 return 0;
202         }
203 }
204 EXPORT_SYMBOL(rdma_node_get_transport);
205
206 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
207 {
208         if (device->get_link_layer)
209                 return device->get_link_layer(device, port_num);
210
211         switch (rdma_node_get_transport(device->node_type)) {
212         case RDMA_TRANSPORT_IB:
213                 return IB_LINK_LAYER_INFINIBAND;
214         case RDMA_TRANSPORT_IWARP:
215         case RDMA_TRANSPORT_USNIC:
216         case RDMA_TRANSPORT_USNIC_UDP:
217                 return IB_LINK_LAYER_ETHERNET;
218         default:
219                 return IB_LINK_LAYER_UNSPECIFIED;
220         }
221 }
222 EXPORT_SYMBOL(rdma_port_get_link_layer);
223
224 /* Protection domains */
225
226 /**
227  * ib_alloc_pd - Allocates an unused protection domain.
228  * @device: The device on which to allocate the protection domain.
229  *
230  * A protection domain object provides an association between QPs, shared
231  * receive queues, address handles, memory regions, and memory windows.
232  *
233  * Every PD has a local_dma_lkey which can be used as the lkey value for local
234  * memory operations.
235  */
236 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
237                 const char *caller)
238 {
239         struct ib_pd *pd;
240         int mr_access_flags = 0;
241
242         pd = device->alloc_pd(device, NULL, NULL);
243         if (IS_ERR(pd))
244                 return pd;
245
246         pd->device = device;
247         pd->uobject = NULL;
248         pd->__internal_mr = NULL;
249         atomic_set(&pd->usecnt, 0);
250         pd->flags = flags;
251
252         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
253                 pd->local_dma_lkey = device->local_dma_lkey;
254         else
255                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
256
257         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
258                 pr_warn("%s: enabling unsafe global rkey\n", caller);
259                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
260         }
261
262         if (mr_access_flags) {
263                 struct ib_mr *mr;
264
265                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
266                 if (IS_ERR(mr)) {
267                         ib_dealloc_pd(pd);
268                         return ERR_CAST(mr);
269                 }
270
271                 mr->device      = pd->device;
272                 mr->pd          = pd;
273                 mr->uobject     = NULL;
274                 mr->need_inval  = false;
275
276                 pd->__internal_mr = mr;
277
278                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
279                         pd->local_dma_lkey = pd->__internal_mr->lkey;
280
281                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
282                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
283         }
284
285         return pd;
286 }
287 EXPORT_SYMBOL(__ib_alloc_pd);
288
289 /**
290  * ib_dealloc_pd - Deallocates a protection domain.
291  * @pd: The protection domain to deallocate.
292  *
293  * It is an error to call this function while any resources in the pd still
294  * exist.  The caller is responsible to synchronously destroy them and
295  * guarantee no new allocations will happen.
296  */
297 void ib_dealloc_pd(struct ib_pd *pd)
298 {
299         int ret;
300
301         if (pd->__internal_mr) {
302                 ret = pd->device->dereg_mr(pd->__internal_mr);
303                 WARN_ON(ret);
304                 pd->__internal_mr = NULL;
305         }
306
307         /* uverbs manipulates usecnt with proper locking, while the kabi
308            requires the caller to guarantee we can't race here. */
309         WARN_ON(atomic_read(&pd->usecnt));
310
311         /* Making delalloc_pd a void return is a WIP, no driver should return
312            an error here. */
313         ret = pd->device->dealloc_pd(pd);
314         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
315 }
316 EXPORT_SYMBOL(ib_dealloc_pd);
317
318 /* Address handles */
319
320 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
321 {
322         struct ib_ah *ah;
323
324         ah = pd->device->create_ah(pd, ah_attr, NULL);
325
326         if (!IS_ERR(ah)) {
327                 ah->device  = pd->device;
328                 ah->pd      = pd;
329                 ah->uobject = NULL;
330                 atomic_inc(&pd->usecnt);
331         }
332
333         return ah;
334 }
335 EXPORT_SYMBOL(ib_create_ah);
336
337 static int ib_get_header_version(const union rdma_network_hdr *hdr)
338 {
339         const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
340         struct ip ip4h_checked;
341         const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
342
343         /* If it's IPv6, the version must be 6, otherwise, the first
344          * 20 bytes (before the IPv4 header) are garbled.
345          */
346         if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
347                 return (ip4h->ip_v == 4) ? 4 : 0;
348         /* version may be 6 or 4 because the first 20 bytes could be garbled */
349
350         /* RoCE v2 requires no options, thus header length
351          * must be 5 words
352          */
353         if (ip4h->ip_hl != 5)
354                 return 6;
355
356         /* Verify checksum.
357          * We can't write on scattered buffers so we need to copy to
358          * temp buffer.
359          */
360         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
361         ip4h_checked.ip_sum = 0;
362 #if defined(INET) || defined(INET6)
363         ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
364 #endif
365         /* if IPv4 header checksum is OK, believe it */
366         if (ip4h->ip_sum == ip4h_checked.ip_sum)
367                 return 4;
368         return 6;
369 }
370
371 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
372                                                      u8 port_num,
373                                                      const struct ib_grh *grh)
374 {
375         int grh_version;
376
377         if (rdma_protocol_ib(device, port_num))
378                 return RDMA_NETWORK_IB;
379
380         grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
381
382         if (grh_version == 4)
383                 return RDMA_NETWORK_IPV4;
384
385         if (grh->next_hdr == IPPROTO_UDP)
386                 return RDMA_NETWORK_IPV6;
387
388         return RDMA_NETWORK_ROCE_V1;
389 }
390
391 struct find_gid_index_context {
392         u16 vlan_id;
393         enum ib_gid_type gid_type;
394 };
395
396 static bool find_gid_index(const union ib_gid *gid,
397                            const struct ib_gid_attr *gid_attr,
398                            void *context)
399 {
400         struct find_gid_index_context *ctx =
401                 (struct find_gid_index_context *)context;
402
403         if (ctx->gid_type != gid_attr->gid_type)
404                 return false;
405         if (rdma_vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)
406                 return false;
407         return true;
408 }
409
410 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
411                                    u16 vlan_id, const union ib_gid *sgid,
412                                    enum ib_gid_type gid_type,
413                                    u16 *gid_index)
414 {
415         struct find_gid_index_context context = {.vlan_id = vlan_id,
416                                                  .gid_type = gid_type};
417
418         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
419                                      &context, gid_index);
420 }
421
422 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
423                                   enum rdma_network_type net_type,
424                                   union ib_gid *sgid, union ib_gid *dgid)
425 {
426         struct sockaddr_in  src_in;
427         struct sockaddr_in  dst_in;
428         __be32 src_saddr, dst_saddr;
429
430         if (!sgid || !dgid)
431                 return -EINVAL;
432
433         if (net_type == RDMA_NETWORK_IPV4) {
434                 memcpy(&src_in.sin_addr.s_addr,
435                        &hdr->roce4grh.ip_src, 4);
436                 memcpy(&dst_in.sin_addr.s_addr,
437                        &hdr->roce4grh.ip_dst, 4);
438                 src_saddr = src_in.sin_addr.s_addr;
439                 dst_saddr = dst_in.sin_addr.s_addr;
440                 ipv6_addr_set_v4mapped(src_saddr,
441                                        (struct in6_addr *)sgid);
442                 ipv6_addr_set_v4mapped(dst_saddr,
443                                        (struct in6_addr *)dgid);
444                 return 0;
445         } else if (net_type == RDMA_NETWORK_IPV6 ||
446                    net_type == RDMA_NETWORK_IB) {
447                 *dgid = hdr->ibgrh.dgid;
448                 *sgid = hdr->ibgrh.sgid;
449                 return 0;
450         } else {
451                 return -EINVAL;
452         }
453 }
454
455 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
456                        const struct ib_wc *wc, const struct ib_grh *grh,
457                        struct ib_ah_attr *ah_attr)
458 {
459         u32 flow_class;
460         u16 gid_index;
461         int ret;
462         enum rdma_network_type net_type = RDMA_NETWORK_IB;
463         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
464         int hoplimit = 0xff;
465         union ib_gid dgid;
466         union ib_gid sgid;
467
468         memset(ah_attr, 0, sizeof *ah_attr);
469         if (rdma_cap_eth_ah(device, port_num)) {
470                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
471                         net_type = wc->network_hdr_type;
472                 else
473                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
474                 gid_type = ib_network_to_gid_type(net_type);
475         }
476         ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
477                                      &sgid, &dgid);
478         if (ret)
479                 return ret;
480
481         if (rdma_protocol_roce(device, port_num)) {
482                 struct ib_gid_attr dgid_attr;
483                 const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
484                                 wc->vlan_id : 0xffff;
485
486                 if (!(wc->wc_flags & IB_WC_GRH))
487                         return -EPROTOTYPE;
488
489                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
490                                               &dgid, gid_type, &gid_index);
491                 if (ret)
492                         return ret;
493
494                 ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
495                 if (ret)
496                         return ret;
497
498                 if (dgid_attr.ndev == NULL)
499                         return -ENODEV;
500
501                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
502                     dgid_attr.ndev, &hoplimit);
503
504                 dev_put(dgid_attr.ndev);
505                 if (ret)
506                         return ret;
507         }
508
509         ah_attr->dlid = wc->slid;
510         ah_attr->sl = wc->sl;
511         ah_attr->src_path_bits = wc->dlid_path_bits;
512         ah_attr->port_num = port_num;
513
514         if (wc->wc_flags & IB_WC_GRH) {
515                 ah_attr->ah_flags = IB_AH_GRH;
516                 ah_attr->grh.dgid = sgid;
517
518                 if (!rdma_cap_eth_ah(device, port_num)) {
519                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
520                                 ret = ib_find_cached_gid_by_port(device, &dgid,
521                                                                  IB_GID_TYPE_IB,
522                                                                  port_num, NULL,
523                                                                  &gid_index);
524                                 if (ret)
525                                         return ret;
526                         } else {
527                                 gid_index = 0;
528                         }
529                 }
530
531                 ah_attr->grh.sgid_index = (u8) gid_index;
532                 flow_class = be32_to_cpu(grh->version_tclass_flow);
533                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
534                 ah_attr->grh.hop_limit = hoplimit;
535                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
536         }
537         return 0;
538 }
539 EXPORT_SYMBOL(ib_init_ah_from_wc);
540
541 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
542                                    const struct ib_grh *grh, u8 port_num)
543 {
544         struct ib_ah_attr ah_attr;
545         int ret;
546
547         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
548         if (ret)
549                 return ERR_PTR(ret);
550
551         return ib_create_ah(pd, &ah_attr);
552 }
553 EXPORT_SYMBOL(ib_create_ah_from_wc);
554
555 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
556 {
557         return ah->device->modify_ah ?
558                 ah->device->modify_ah(ah, ah_attr) :
559                 -ENOSYS;
560 }
561 EXPORT_SYMBOL(ib_modify_ah);
562
563 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
564 {
565         return ah->device->query_ah ?
566                 ah->device->query_ah(ah, ah_attr) :
567                 -ENOSYS;
568 }
569 EXPORT_SYMBOL(ib_query_ah);
570
571 int ib_destroy_ah(struct ib_ah *ah)
572 {
573         struct ib_pd *pd;
574         int ret;
575
576         pd = ah->pd;
577         ret = ah->device->destroy_ah(ah);
578         if (!ret)
579                 atomic_dec(&pd->usecnt);
580
581         return ret;
582 }
583 EXPORT_SYMBOL(ib_destroy_ah);
584
585 /* Shared receive queues */
586
587 struct ib_srq *ib_create_srq(struct ib_pd *pd,
588                              struct ib_srq_init_attr *srq_init_attr)
589 {
590         struct ib_srq *srq;
591
592         if (!pd->device->create_srq)
593                 return ERR_PTR(-ENOSYS);
594
595         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
596
597         if (!IS_ERR(srq)) {
598                 srq->device        = pd->device;
599                 srq->pd            = pd;
600                 srq->uobject       = NULL;
601                 srq->event_handler = srq_init_attr->event_handler;
602                 srq->srq_context   = srq_init_attr->srq_context;
603                 srq->srq_type      = srq_init_attr->srq_type;
604                 if (srq->srq_type == IB_SRQT_XRC) {
605                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
606                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
607                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
608                         atomic_inc(&srq->ext.xrc.cq->usecnt);
609                 }
610                 atomic_inc(&pd->usecnt);
611                 atomic_set(&srq->usecnt, 0);
612         }
613
614         return srq;
615 }
616 EXPORT_SYMBOL(ib_create_srq);
617
618 int ib_modify_srq(struct ib_srq *srq,
619                   struct ib_srq_attr *srq_attr,
620                   enum ib_srq_attr_mask srq_attr_mask)
621 {
622         return srq->device->modify_srq ?
623                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
624                 -ENOSYS;
625 }
626 EXPORT_SYMBOL(ib_modify_srq);
627
628 int ib_query_srq(struct ib_srq *srq,
629                  struct ib_srq_attr *srq_attr)
630 {
631         return srq->device->query_srq ?
632                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
633 }
634 EXPORT_SYMBOL(ib_query_srq);
635
636 int ib_destroy_srq(struct ib_srq *srq)
637 {
638         struct ib_pd *pd;
639         enum ib_srq_type srq_type;
640         struct ib_xrcd *uninitialized_var(xrcd);
641         struct ib_cq *uninitialized_var(cq);
642         int ret;
643
644         if (atomic_read(&srq->usecnt))
645                 return -EBUSY;
646
647         pd = srq->pd;
648         srq_type = srq->srq_type;
649         if (srq_type == IB_SRQT_XRC) {
650                 xrcd = srq->ext.xrc.xrcd;
651                 cq = srq->ext.xrc.cq;
652         }
653
654         ret = srq->device->destroy_srq(srq);
655         if (!ret) {
656                 atomic_dec(&pd->usecnt);
657                 if (srq_type == IB_SRQT_XRC) {
658                         atomic_dec(&xrcd->usecnt);
659                         atomic_dec(&cq->usecnt);
660                 }
661         }
662
663         return ret;
664 }
665 EXPORT_SYMBOL(ib_destroy_srq);
666
667 /* Queue pairs */
668
669 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
670 {
671         struct ib_qp *qp = context;
672         unsigned long flags;
673
674         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
675         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
676                 if (event->element.qp->event_handler)
677                         event->element.qp->event_handler(event, event->element.qp->qp_context);
678         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
679 }
680
681 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
682 {
683         mutex_lock(&xrcd->tgt_qp_mutex);
684         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
685         mutex_unlock(&xrcd->tgt_qp_mutex);
686 }
687
688 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
689                                   void (*event_handler)(struct ib_event *, void *),
690                                   void *qp_context)
691 {
692         struct ib_qp *qp;
693         unsigned long flags;
694
695         qp = kzalloc(sizeof *qp, GFP_KERNEL);
696         if (!qp)
697                 return ERR_PTR(-ENOMEM);
698
699         qp->real_qp = real_qp;
700         atomic_inc(&real_qp->usecnt);
701         qp->device = real_qp->device;
702         qp->event_handler = event_handler;
703         qp->qp_context = qp_context;
704         qp->qp_num = real_qp->qp_num;
705         qp->qp_type = real_qp->qp_type;
706
707         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
708         list_add(&qp->open_list, &real_qp->open_list);
709         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
710
711         return qp;
712 }
713
714 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
715                          struct ib_qp_open_attr *qp_open_attr)
716 {
717         struct ib_qp *qp, *real_qp;
718
719         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
720                 return ERR_PTR(-EINVAL);
721
722         qp = ERR_PTR(-EINVAL);
723         mutex_lock(&xrcd->tgt_qp_mutex);
724         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
725                 if (real_qp->qp_num == qp_open_attr->qp_num) {
726                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
727                                           qp_open_attr->qp_context);
728                         break;
729                 }
730         }
731         mutex_unlock(&xrcd->tgt_qp_mutex);
732         return qp;
733 }
734 EXPORT_SYMBOL(ib_open_qp);
735
736 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
737                 struct ib_qp_init_attr *qp_init_attr)
738 {
739         struct ib_qp *real_qp = qp;
740
741         qp->event_handler = __ib_shared_qp_event_handler;
742         qp->qp_context = qp;
743         qp->pd = NULL;
744         qp->send_cq = qp->recv_cq = NULL;
745         qp->srq = NULL;
746         qp->xrcd = qp_init_attr->xrcd;
747         atomic_inc(&qp_init_attr->xrcd->usecnt);
748         INIT_LIST_HEAD(&qp->open_list);
749
750         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
751                           qp_init_attr->qp_context);
752         if (!IS_ERR(qp))
753                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
754         else
755                 real_qp->device->destroy_qp(real_qp);
756         return qp;
757 }
758
759 struct ib_qp *ib_create_qp(struct ib_pd *pd,
760                            struct ib_qp_init_attr *qp_init_attr)
761 {
762         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
763         struct ib_qp *qp;
764
765         if (qp_init_attr->rwq_ind_tbl &&
766             (qp_init_attr->recv_cq ||
767             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
768             qp_init_attr->cap.max_recv_sge))
769                 return ERR_PTR(-EINVAL);
770
771         qp = device->create_qp(pd, qp_init_attr, NULL);
772         if (IS_ERR(qp))
773                 return qp;
774
775         qp->device     = device;
776         qp->real_qp    = qp;
777         qp->uobject    = NULL;
778         qp->qp_type    = qp_init_attr->qp_type;
779         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
780
781         atomic_set(&qp->usecnt, 0);
782         spin_lock_init(&qp->mr_lock);
783
784         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
785                 return ib_create_xrc_qp(qp, qp_init_attr);
786
787         qp->event_handler = qp_init_attr->event_handler;
788         qp->qp_context = qp_init_attr->qp_context;
789         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
790                 qp->recv_cq = NULL;
791                 qp->srq = NULL;
792         } else {
793                 qp->recv_cq = qp_init_attr->recv_cq;
794                 if (qp_init_attr->recv_cq)
795                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
796                 qp->srq = qp_init_attr->srq;
797                 if (qp->srq)
798                         atomic_inc(&qp_init_attr->srq->usecnt);
799         }
800
801         qp->pd      = pd;
802         qp->send_cq = qp_init_attr->send_cq;
803         qp->xrcd    = NULL;
804
805         atomic_inc(&pd->usecnt);
806         if (qp_init_attr->send_cq)
807                 atomic_inc(&qp_init_attr->send_cq->usecnt);
808         if (qp_init_attr->rwq_ind_tbl)
809                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
810
811         /*
812          * Note: all hw drivers guarantee that max_send_sge is lower than
813          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
814          * max_send_sge <= max_sge_rd.
815          */
816         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
817         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
818                                  device->attrs.max_sge_rd);
819
820         return qp;
821 }
822 EXPORT_SYMBOL(ib_create_qp);
823
824 static const struct {
825         int                     valid;
826         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
827         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
828 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
829         [IB_QPS_RESET] = {
830                 [IB_QPS_RESET] = { .valid = 1 },
831                 [IB_QPS_INIT]  = {
832                         .valid = 1,
833                         .req_param = {
834                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
835                                                 IB_QP_PORT                      |
836                                                 IB_QP_QKEY),
837                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
838                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
839                                                 IB_QP_PORT                      |
840                                                 IB_QP_ACCESS_FLAGS),
841                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
842                                                 IB_QP_PORT                      |
843                                                 IB_QP_ACCESS_FLAGS),
844                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
845                                                 IB_QP_PORT                      |
846                                                 IB_QP_ACCESS_FLAGS),
847                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
848                                                 IB_QP_PORT                      |
849                                                 IB_QP_ACCESS_FLAGS),
850                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
851                                                 IB_QP_QKEY),
852                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
853                                                 IB_QP_QKEY),
854                         }
855                 },
856         },
857         [IB_QPS_INIT]  = {
858                 [IB_QPS_RESET] = { .valid = 1 },
859                 [IB_QPS_ERR] =   { .valid = 1 },
860                 [IB_QPS_INIT]  = {
861                         .valid = 1,
862                         .opt_param = {
863                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
864                                                 IB_QP_PORT                      |
865                                                 IB_QP_QKEY),
866                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
867                                                 IB_QP_PORT                      |
868                                                 IB_QP_ACCESS_FLAGS),
869                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
870                                                 IB_QP_PORT                      |
871                                                 IB_QP_ACCESS_FLAGS),
872                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
873                                                 IB_QP_PORT                      |
874                                                 IB_QP_ACCESS_FLAGS),
875                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
876                                                 IB_QP_PORT                      |
877                                                 IB_QP_ACCESS_FLAGS),
878                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
879                                                 IB_QP_QKEY),
880                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
881                                                 IB_QP_QKEY),
882                         }
883                 },
884                 [IB_QPS_RTR]   = {
885                         .valid = 1,
886                         .req_param = {
887                                 [IB_QPT_UC]  = (IB_QP_AV                        |
888                                                 IB_QP_PATH_MTU                  |
889                                                 IB_QP_DEST_QPN                  |
890                                                 IB_QP_RQ_PSN),
891                                 [IB_QPT_RC]  = (IB_QP_AV                        |
892                                                 IB_QP_PATH_MTU                  |
893                                                 IB_QP_DEST_QPN                  |
894                                                 IB_QP_RQ_PSN                    |
895                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
896                                                 IB_QP_MIN_RNR_TIMER),
897                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
898                                                 IB_QP_PATH_MTU                  |
899                                                 IB_QP_DEST_QPN                  |
900                                                 IB_QP_RQ_PSN),
901                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
902                                                 IB_QP_PATH_MTU                  |
903                                                 IB_QP_DEST_QPN                  |
904                                                 IB_QP_RQ_PSN                    |
905                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
906                                                 IB_QP_MIN_RNR_TIMER),
907                         },
908                         .opt_param = {
909                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
910                                                  IB_QP_QKEY),
911                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
912                                                  IB_QP_ACCESS_FLAGS             |
913                                                  IB_QP_PKEY_INDEX),
914                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
915                                                  IB_QP_ACCESS_FLAGS             |
916                                                  IB_QP_PKEY_INDEX),
917                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
918                                                  IB_QP_ACCESS_FLAGS             |
919                                                  IB_QP_PKEY_INDEX),
920                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
921                                                  IB_QP_ACCESS_FLAGS             |
922                                                  IB_QP_PKEY_INDEX),
923                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
924                                                  IB_QP_QKEY),
925                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
926                                                  IB_QP_QKEY),
927                          },
928                 },
929         },
930         [IB_QPS_RTR]   = {
931                 [IB_QPS_RESET] = { .valid = 1 },
932                 [IB_QPS_ERR] =   { .valid = 1 },
933                 [IB_QPS_RTS]   = {
934                         .valid = 1,
935                         .req_param = {
936                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
937                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
938                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
939                                                 IB_QP_RETRY_CNT                 |
940                                                 IB_QP_RNR_RETRY                 |
941                                                 IB_QP_SQ_PSN                    |
942                                                 IB_QP_MAX_QP_RD_ATOMIC),
943                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
944                                                 IB_QP_RETRY_CNT                 |
945                                                 IB_QP_RNR_RETRY                 |
946                                                 IB_QP_SQ_PSN                    |
947                                                 IB_QP_MAX_QP_RD_ATOMIC),
948                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
949                                                 IB_QP_SQ_PSN),
950                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
951                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
952                         },
953                         .opt_param = {
954                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
955                                                  IB_QP_QKEY),
956                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
957                                                  IB_QP_ALT_PATH                 |
958                                                  IB_QP_ACCESS_FLAGS             |
959                                                  IB_QP_PATH_MIG_STATE),
960                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
961                                                  IB_QP_ALT_PATH                 |
962                                                  IB_QP_ACCESS_FLAGS             |
963                                                  IB_QP_MIN_RNR_TIMER            |
964                                                  IB_QP_PATH_MIG_STATE),
965                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
966                                                  IB_QP_ALT_PATH                 |
967                                                  IB_QP_ACCESS_FLAGS             |
968                                                  IB_QP_PATH_MIG_STATE),
969                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
970                                                  IB_QP_ALT_PATH                 |
971                                                  IB_QP_ACCESS_FLAGS             |
972                                                  IB_QP_MIN_RNR_TIMER            |
973                                                  IB_QP_PATH_MIG_STATE),
974                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
975                                                  IB_QP_QKEY),
976                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
977                                                  IB_QP_QKEY),
978                          }
979                 }
980         },
981         [IB_QPS_RTS]   = {
982                 [IB_QPS_RESET] = { .valid = 1 },
983                 [IB_QPS_ERR] =   { .valid = 1 },
984                 [IB_QPS_RTS]   = {
985                         .valid = 1,
986                         .opt_param = {
987                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
988                                                 IB_QP_QKEY),
989                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
990                                                 IB_QP_ACCESS_FLAGS              |
991                                                 IB_QP_ALT_PATH                  |
992                                                 IB_QP_PATH_MIG_STATE),
993                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
994                                                 IB_QP_ACCESS_FLAGS              |
995                                                 IB_QP_ALT_PATH                  |
996                                                 IB_QP_PATH_MIG_STATE            |
997                                                 IB_QP_MIN_RNR_TIMER),
998                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
999                                                 IB_QP_ACCESS_FLAGS              |
1000                                                 IB_QP_ALT_PATH                  |
1001                                                 IB_QP_PATH_MIG_STATE),
1002                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1003                                                 IB_QP_ACCESS_FLAGS              |
1004                                                 IB_QP_ALT_PATH                  |
1005                                                 IB_QP_PATH_MIG_STATE            |
1006                                                 IB_QP_MIN_RNR_TIMER),
1007                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1008                                                 IB_QP_QKEY),
1009                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1010                                                 IB_QP_QKEY),
1011                         }
1012                 },
1013                 [IB_QPS_SQD]   = {
1014                         .valid = 1,
1015                         .opt_param = {
1016                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1017                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1018                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1019                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1020                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1021                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1022                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1023                         }
1024                 },
1025         },
1026         [IB_QPS_SQD]   = {
1027                 [IB_QPS_RESET] = { .valid = 1 },
1028                 [IB_QPS_ERR] =   { .valid = 1 },
1029                 [IB_QPS_RTS]   = {
1030                         .valid = 1,
1031                         .opt_param = {
1032                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1033                                                 IB_QP_QKEY),
1034                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1035                                                 IB_QP_ALT_PATH                  |
1036                                                 IB_QP_ACCESS_FLAGS              |
1037                                                 IB_QP_PATH_MIG_STATE),
1038                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1039                                                 IB_QP_ALT_PATH                  |
1040                                                 IB_QP_ACCESS_FLAGS              |
1041                                                 IB_QP_MIN_RNR_TIMER             |
1042                                                 IB_QP_PATH_MIG_STATE),
1043                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1044                                                 IB_QP_ALT_PATH                  |
1045                                                 IB_QP_ACCESS_FLAGS              |
1046                                                 IB_QP_PATH_MIG_STATE),
1047                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1048                                                 IB_QP_ALT_PATH                  |
1049                                                 IB_QP_ACCESS_FLAGS              |
1050                                                 IB_QP_MIN_RNR_TIMER             |
1051                                                 IB_QP_PATH_MIG_STATE),
1052                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1053                                                 IB_QP_QKEY),
1054                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1055                                                 IB_QP_QKEY),
1056                         }
1057                 },
1058                 [IB_QPS_SQD]   = {
1059                         .valid = 1,
1060                         .opt_param = {
1061                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1062                                                 IB_QP_QKEY),
1063                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1064                                                 IB_QP_ALT_PATH                  |
1065                                                 IB_QP_ACCESS_FLAGS              |
1066                                                 IB_QP_PKEY_INDEX                |
1067                                                 IB_QP_PATH_MIG_STATE),
1068                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1069                                                 IB_QP_AV                        |
1070                                                 IB_QP_TIMEOUT                   |
1071                                                 IB_QP_RETRY_CNT                 |
1072                                                 IB_QP_RNR_RETRY                 |
1073                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1074                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1075                                                 IB_QP_ALT_PATH                  |
1076                                                 IB_QP_ACCESS_FLAGS              |
1077                                                 IB_QP_PKEY_INDEX                |
1078                                                 IB_QP_MIN_RNR_TIMER             |
1079                                                 IB_QP_PATH_MIG_STATE),
1080                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1081                                                 IB_QP_AV                        |
1082                                                 IB_QP_TIMEOUT                   |
1083                                                 IB_QP_RETRY_CNT                 |
1084                                                 IB_QP_RNR_RETRY                 |
1085                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1086                                                 IB_QP_ALT_PATH                  |
1087                                                 IB_QP_ACCESS_FLAGS              |
1088                                                 IB_QP_PKEY_INDEX                |
1089                                                 IB_QP_PATH_MIG_STATE),
1090                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1091                                                 IB_QP_AV                        |
1092                                                 IB_QP_TIMEOUT                   |
1093                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1094                                                 IB_QP_ALT_PATH                  |
1095                                                 IB_QP_ACCESS_FLAGS              |
1096                                                 IB_QP_PKEY_INDEX                |
1097                                                 IB_QP_MIN_RNR_TIMER             |
1098                                                 IB_QP_PATH_MIG_STATE),
1099                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1100                                                 IB_QP_QKEY),
1101                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1102                                                 IB_QP_QKEY),
1103                         }
1104                 }
1105         },
1106         [IB_QPS_SQE]   = {
1107                 [IB_QPS_RESET] = { .valid = 1 },
1108                 [IB_QPS_ERR] =   { .valid = 1 },
1109                 [IB_QPS_RTS]   = {
1110                         .valid = 1,
1111                         .opt_param = {
1112                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1113                                                 IB_QP_QKEY),
1114                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1115                                                 IB_QP_ACCESS_FLAGS),
1116                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1117                                                 IB_QP_QKEY),
1118                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1119                                                 IB_QP_QKEY),
1120                         }
1121                 }
1122         },
1123         [IB_QPS_ERR] = {
1124                 [IB_QPS_RESET] = { .valid = 1 },
1125                 [IB_QPS_ERR] =   { .valid = 1 }
1126         }
1127 };
1128
1129 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1130                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1131                        enum rdma_link_layer ll)
1132 {
1133         enum ib_qp_attr_mask req_param, opt_param;
1134
1135         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1136             next_state < 0 || next_state > IB_QPS_ERR)
1137                 return 0;
1138
1139         if (mask & IB_QP_CUR_STATE  &&
1140             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1141             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1142                 return 0;
1143
1144         if (!qp_state_table[cur_state][next_state].valid)
1145                 return 0;
1146
1147         req_param = qp_state_table[cur_state][next_state].req_param[type];
1148         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1149
1150         if ((mask & req_param) != req_param)
1151                 return 0;
1152
1153         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1154                 return 0;
1155
1156         return 1;
1157 }
1158 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1159
1160 int ib_resolve_eth_dmac(struct ib_device *device,
1161                         struct ib_ah_attr *ah_attr)
1162 {
1163         int           ret = 0;
1164
1165         if (ah_attr->port_num < rdma_start_port(device) ||
1166             ah_attr->port_num > rdma_end_port(device))
1167                 return -EINVAL;
1168
1169         if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1170                 return 0;
1171
1172         if (rdma_link_local_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1173                 rdma_get_ll_mac((struct in6_addr *)ah_attr->grh.dgid.raw,
1174                                 ah_attr->dmac);
1175         } else {
1176                 union ib_gid            sgid;
1177                 struct ib_gid_attr      sgid_attr;
1178                 int                     hop_limit;
1179
1180                 ret = ib_query_gid(device,
1181                                    ah_attr->port_num,
1182                                    ah_attr->grh.sgid_index,
1183                                    &sgid, &sgid_attr);
1184
1185                 if (ret || !sgid_attr.ndev) {
1186                         if (!ret)
1187                                 ret = -ENXIO;
1188                         goto out;
1189                 }
1190
1191                 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1192                                                    &ah_attr->grh.dgid,
1193                                                    ah_attr->dmac,
1194                                                    sgid_attr.ndev, &hop_limit);
1195
1196                 dev_put(sgid_attr.ndev);
1197
1198                 ah_attr->grh.hop_limit = hop_limit;
1199         }
1200 out:
1201         return ret;
1202 }
1203 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1204
1205
1206 int ib_modify_qp(struct ib_qp *qp,
1207                  struct ib_qp_attr *qp_attr,
1208                  int qp_attr_mask)
1209 {
1210         if (qp_attr_mask & IB_QP_AV) {
1211                 int ret;
1212
1213                 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1214                 if (ret)
1215                         return ret;
1216         }
1217
1218         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1219 }
1220 EXPORT_SYMBOL(ib_modify_qp);
1221
1222 int ib_query_qp(struct ib_qp *qp,
1223                 struct ib_qp_attr *qp_attr,
1224                 int qp_attr_mask,
1225                 struct ib_qp_init_attr *qp_init_attr)
1226 {
1227         return qp->device->query_qp ?
1228                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1229                 -ENOSYS;
1230 }
1231 EXPORT_SYMBOL(ib_query_qp);
1232
1233 int ib_close_qp(struct ib_qp *qp)
1234 {
1235         struct ib_qp *real_qp;
1236         unsigned long flags;
1237
1238         real_qp = qp->real_qp;
1239         if (real_qp == qp)
1240                 return -EINVAL;
1241
1242         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1243         list_del(&qp->open_list);
1244         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1245
1246         atomic_dec(&real_qp->usecnt);
1247         kfree(qp);
1248
1249         return 0;
1250 }
1251 EXPORT_SYMBOL(ib_close_qp);
1252
1253 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1254 {
1255         struct ib_xrcd *xrcd;
1256         struct ib_qp *real_qp;
1257         int ret;
1258
1259         real_qp = qp->real_qp;
1260         xrcd = real_qp->xrcd;
1261
1262         mutex_lock(&xrcd->tgt_qp_mutex);
1263         ib_close_qp(qp);
1264         if (atomic_read(&real_qp->usecnt) == 0)
1265                 list_del(&real_qp->xrcd_list);
1266         else
1267                 real_qp = NULL;
1268         mutex_unlock(&xrcd->tgt_qp_mutex);
1269
1270         if (real_qp) {
1271                 ret = ib_destroy_qp(real_qp);
1272                 if (!ret)
1273                         atomic_dec(&xrcd->usecnt);
1274                 else
1275                         __ib_insert_xrcd_qp(xrcd, real_qp);
1276         }
1277
1278         return 0;
1279 }
1280
1281 int ib_destroy_qp(struct ib_qp *qp)
1282 {
1283         struct ib_pd *pd;
1284         struct ib_cq *scq, *rcq;
1285         struct ib_srq *srq;
1286         struct ib_rwq_ind_table *ind_tbl;
1287         int ret;
1288
1289         if (atomic_read(&qp->usecnt))
1290                 return -EBUSY;
1291
1292         if (qp->real_qp != qp)
1293                 return __ib_destroy_shared_qp(qp);
1294
1295         pd   = qp->pd;
1296         scq  = qp->send_cq;
1297         rcq  = qp->recv_cq;
1298         srq  = qp->srq;
1299         ind_tbl = qp->rwq_ind_tbl;
1300
1301         ret = qp->device->destroy_qp(qp);
1302         if (!ret) {
1303                 if (pd)
1304                         atomic_dec(&pd->usecnt);
1305                 if (scq)
1306                         atomic_dec(&scq->usecnt);
1307                 if (rcq)
1308                         atomic_dec(&rcq->usecnt);
1309                 if (srq)
1310                         atomic_dec(&srq->usecnt);
1311                 if (ind_tbl)
1312                         atomic_dec(&ind_tbl->usecnt);
1313         }
1314
1315         return ret;
1316 }
1317 EXPORT_SYMBOL(ib_destroy_qp);
1318
1319 /* Completion queues */
1320
1321 struct ib_cq *ib_create_cq(struct ib_device *device,
1322                            ib_comp_handler comp_handler,
1323                            void (*event_handler)(struct ib_event *, void *),
1324                            void *cq_context,
1325                            const struct ib_cq_init_attr *cq_attr)
1326 {
1327         struct ib_cq *cq;
1328
1329         cq = device->create_cq(device, cq_attr, NULL, NULL);
1330
1331         if (!IS_ERR(cq)) {
1332                 cq->device        = device;
1333                 cq->uobject       = NULL;
1334                 cq->comp_handler  = comp_handler;
1335                 cq->event_handler = event_handler;
1336                 cq->cq_context    = cq_context;
1337                 atomic_set(&cq->usecnt, 0);
1338         }
1339
1340         return cq;
1341 }
1342 EXPORT_SYMBOL(ib_create_cq);
1343
1344 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1345 {
1346         return cq->device->modify_cq ?
1347                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1348 }
1349 EXPORT_SYMBOL(ib_modify_cq);
1350
1351 int ib_destroy_cq(struct ib_cq *cq)
1352 {
1353         if (atomic_read(&cq->usecnt))
1354                 return -EBUSY;
1355
1356         return cq->device->destroy_cq(cq);
1357 }
1358 EXPORT_SYMBOL(ib_destroy_cq);
1359
1360 int ib_resize_cq(struct ib_cq *cq, int cqe)
1361 {
1362         return cq->device->resize_cq ?
1363                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1364 }
1365 EXPORT_SYMBOL(ib_resize_cq);
1366
1367 /* Memory regions */
1368
1369 int ib_dereg_mr(struct ib_mr *mr)
1370 {
1371         struct ib_pd *pd = mr->pd;
1372         int ret;
1373
1374         ret = mr->device->dereg_mr(mr);
1375         if (!ret)
1376                 atomic_dec(&pd->usecnt);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(ib_dereg_mr);
1381
1382 /**
1383  * ib_alloc_mr() - Allocates a memory region
1384  * @pd:            protection domain associated with the region
1385  * @mr_type:       memory region type
1386  * @max_num_sg:    maximum sg entries available for registration.
1387  *
1388  * Notes:
1389  * Memory registeration page/sg lists must not exceed max_num_sg.
1390  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1391  * max_num_sg * used_page_size.
1392  *
1393  */
1394 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1395                           enum ib_mr_type mr_type,
1396                           u32 max_num_sg)
1397 {
1398         struct ib_mr *mr;
1399
1400         if (!pd->device->alloc_mr)
1401                 return ERR_PTR(-ENOSYS);
1402
1403         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1404         if (!IS_ERR(mr)) {
1405                 mr->device  = pd->device;
1406                 mr->pd      = pd;
1407                 mr->uobject = NULL;
1408                 atomic_inc(&pd->usecnt);
1409                 mr->need_inval = false;
1410         }
1411
1412         return mr;
1413 }
1414 EXPORT_SYMBOL(ib_alloc_mr);
1415
1416 /* "Fast" memory regions */
1417
1418 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1419                             int mr_access_flags,
1420                             struct ib_fmr_attr *fmr_attr)
1421 {
1422         struct ib_fmr *fmr;
1423
1424         if (!pd->device->alloc_fmr)
1425                 return ERR_PTR(-ENOSYS);
1426
1427         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1428         if (!IS_ERR(fmr)) {
1429                 fmr->device = pd->device;
1430                 fmr->pd     = pd;
1431                 atomic_inc(&pd->usecnt);
1432         }
1433
1434         return fmr;
1435 }
1436 EXPORT_SYMBOL(ib_alloc_fmr);
1437
1438 int ib_unmap_fmr(struct list_head *fmr_list)
1439 {
1440         struct ib_fmr *fmr;
1441
1442         if (list_empty(fmr_list))
1443                 return 0;
1444
1445         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1446         return fmr->device->unmap_fmr(fmr_list);
1447 }
1448 EXPORT_SYMBOL(ib_unmap_fmr);
1449
1450 int ib_dealloc_fmr(struct ib_fmr *fmr)
1451 {
1452         struct ib_pd *pd;
1453         int ret;
1454
1455         pd = fmr->pd;
1456         ret = fmr->device->dealloc_fmr(fmr);
1457         if (!ret)
1458                 atomic_dec(&pd->usecnt);
1459
1460         return ret;
1461 }
1462 EXPORT_SYMBOL(ib_dealloc_fmr);
1463
1464 /* Multicast groups */
1465
1466 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1467 {
1468         struct ib_qp_init_attr init_attr = {};
1469         struct ib_qp_attr attr = {};
1470         int num_eth_ports = 0;
1471         int port;
1472
1473         /* If QP state >= init, it is assigned to a port and we can check this
1474          * port only.
1475          */
1476         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1477                 if (attr.qp_state >= IB_QPS_INIT) {
1478                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1479                             IB_LINK_LAYER_INFINIBAND)
1480                                 return true;
1481                         goto lid_check;
1482                 }
1483         }
1484
1485         /* Can't get a quick answer, iterate over all ports */
1486         for (port = 0; port < qp->device->phys_port_cnt; port++)
1487                 if (rdma_port_get_link_layer(qp->device, port) !=
1488                     IB_LINK_LAYER_INFINIBAND)
1489                         num_eth_ports++;
1490
1491         /* If we have at lease one Ethernet port, RoCE annex declares that
1492          * multicast LID should be ignored. We can't tell at this step if the
1493          * QP belongs to an IB or Ethernet port.
1494          */
1495         if (num_eth_ports)
1496                 return true;
1497
1498         /* If all the ports are IB, we can check according to IB spec. */
1499 lid_check:
1500         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1501                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
1502 }
1503
1504 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1505 {
1506         int ret;
1507
1508         if (!qp->device->attach_mcast)
1509                 return -ENOSYS;
1510
1511         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1512             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1513                 return -EINVAL;
1514
1515         ret = qp->device->attach_mcast(qp, gid, lid);
1516         if (!ret)
1517                 atomic_inc(&qp->usecnt);
1518         return ret;
1519 }
1520 EXPORT_SYMBOL(ib_attach_mcast);
1521
1522 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1523 {
1524         int ret;
1525
1526         if (!qp->device->detach_mcast)
1527                 return -ENOSYS;
1528
1529         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1530             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1531                 return -EINVAL;
1532
1533         ret = qp->device->detach_mcast(qp, gid, lid);
1534         if (!ret)
1535                 atomic_dec(&qp->usecnt);
1536         return ret;
1537 }
1538 EXPORT_SYMBOL(ib_detach_mcast);
1539
1540 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1541 {
1542         struct ib_xrcd *xrcd;
1543
1544         if (!device->alloc_xrcd)
1545                 return ERR_PTR(-ENOSYS);
1546
1547         xrcd = device->alloc_xrcd(device, NULL, NULL);
1548         if (!IS_ERR(xrcd)) {
1549                 xrcd->device = device;
1550                 xrcd->inode = NULL;
1551                 atomic_set(&xrcd->usecnt, 0);
1552                 mutex_init(&xrcd->tgt_qp_mutex);
1553                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1554         }
1555
1556         return xrcd;
1557 }
1558 EXPORT_SYMBOL(ib_alloc_xrcd);
1559
1560 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1561 {
1562         struct ib_qp *qp;
1563         int ret;
1564
1565         if (atomic_read(&xrcd->usecnt))
1566                 return -EBUSY;
1567
1568         while (!list_empty(&xrcd->tgt_qp_list)) {
1569                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1570                 ret = ib_destroy_qp(qp);
1571                 if (ret)
1572                         return ret;
1573         }
1574
1575         return xrcd->device->dealloc_xrcd(xrcd);
1576 }
1577 EXPORT_SYMBOL(ib_dealloc_xrcd);
1578
1579 /**
1580  * ib_create_wq - Creates a WQ associated with the specified protection
1581  * domain.
1582  * @pd: The protection domain associated with the WQ.
1583  * @wq_init_attr: A list of initial attributes required to create the
1584  * WQ. If WQ creation succeeds, then the attributes are updated to
1585  * the actual capabilities of the created WQ.
1586  *
1587  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1588  * the requested size of the WQ, and set to the actual values allocated
1589  * on return.
1590  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1591  * at least as large as the requested values.
1592  */
1593 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1594                            struct ib_wq_init_attr *wq_attr)
1595 {
1596         struct ib_wq *wq;
1597
1598         if (!pd->device->create_wq)
1599                 return ERR_PTR(-ENOSYS);
1600
1601         wq = pd->device->create_wq(pd, wq_attr, NULL);
1602         if (!IS_ERR(wq)) {
1603                 wq->event_handler = wq_attr->event_handler;
1604                 wq->wq_context = wq_attr->wq_context;
1605                 wq->wq_type = wq_attr->wq_type;
1606                 wq->cq = wq_attr->cq;
1607                 wq->device = pd->device;
1608                 wq->pd = pd;
1609                 wq->uobject = NULL;
1610                 atomic_inc(&pd->usecnt);
1611                 atomic_inc(&wq_attr->cq->usecnt);
1612                 atomic_set(&wq->usecnt, 0);
1613         }
1614         return wq;
1615 }
1616 EXPORT_SYMBOL(ib_create_wq);
1617
1618 /**
1619  * ib_destroy_wq - Destroys the specified WQ.
1620  * @wq: The WQ to destroy.
1621  */
1622 int ib_destroy_wq(struct ib_wq *wq)
1623 {
1624         int err;
1625         struct ib_cq *cq = wq->cq;
1626         struct ib_pd *pd = wq->pd;
1627
1628         if (atomic_read(&wq->usecnt))
1629                 return -EBUSY;
1630
1631         err = wq->device->destroy_wq(wq);
1632         if (!err) {
1633                 atomic_dec(&pd->usecnt);
1634                 atomic_dec(&cq->usecnt);
1635         }
1636         return err;
1637 }
1638 EXPORT_SYMBOL(ib_destroy_wq);
1639
1640 /**
1641  * ib_modify_wq - Modifies the specified WQ.
1642  * @wq: The WQ to modify.
1643  * @wq_attr: On input, specifies the WQ attributes to modify.
1644  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1645  *   are being modified.
1646  * On output, the current values of selected WQ attributes are returned.
1647  */
1648 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1649                  u32 wq_attr_mask)
1650 {
1651         int err;
1652
1653         if (!wq->device->modify_wq)
1654                 return -ENOSYS;
1655
1656         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1657         return err;
1658 }
1659 EXPORT_SYMBOL(ib_modify_wq);
1660
1661 /*
1662  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1663  * @device: The device on which to create the rwq indirection table.
1664  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1665  * create the Indirection Table.
1666  *
1667  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1668  *      than the created ib_rwq_ind_table object and the caller is responsible
1669  *      for its memory allocation/free.
1670  */
1671 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1672                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1673 {
1674         struct ib_rwq_ind_table *rwq_ind_table;
1675         int i;
1676         u32 table_size;
1677
1678         if (!device->create_rwq_ind_table)
1679                 return ERR_PTR(-ENOSYS);
1680
1681         table_size = (1 << init_attr->log_ind_tbl_size);
1682         rwq_ind_table = device->create_rwq_ind_table(device,
1683                                 init_attr, NULL);
1684         if (IS_ERR(rwq_ind_table))
1685                 return rwq_ind_table;
1686
1687         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1688         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1689         rwq_ind_table->device = device;
1690         rwq_ind_table->uobject = NULL;
1691         atomic_set(&rwq_ind_table->usecnt, 0);
1692
1693         for (i = 0; i < table_size; i++)
1694                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1695
1696         return rwq_ind_table;
1697 }
1698 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1699
1700 /*
1701  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1702  * @wq_ind_table: The Indirection Table to destroy.
1703 */
1704 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1705 {
1706         int err, i;
1707         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1708         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1709
1710         if (atomic_read(&rwq_ind_table->usecnt))
1711                 return -EBUSY;
1712
1713         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1714         if (!err) {
1715                 for (i = 0; i < table_size; i++)
1716                         atomic_dec(&ind_tbl[i]->usecnt);
1717         }
1718
1719         return err;
1720 }
1721 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1722
1723 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1724                                struct ib_flow_attr *flow_attr,
1725                                int domain)
1726 {
1727         struct ib_flow *flow_id;
1728         if (!qp->device->create_flow)
1729                 return ERR_PTR(-ENOSYS);
1730
1731         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1732         if (!IS_ERR(flow_id))
1733                 atomic_inc(&qp->usecnt);
1734         return flow_id;
1735 }
1736 EXPORT_SYMBOL(ib_create_flow);
1737
1738 int ib_destroy_flow(struct ib_flow *flow_id)
1739 {
1740         int err;
1741         struct ib_qp *qp = flow_id->qp;
1742
1743         err = qp->device->destroy_flow(flow_id);
1744         if (!err)
1745                 atomic_dec(&qp->usecnt);
1746         return err;
1747 }
1748 EXPORT_SYMBOL(ib_destroy_flow);
1749
1750 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1751                        struct ib_mr_status *mr_status)
1752 {
1753         return mr->device->check_mr_status ?
1754                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1755 }
1756 EXPORT_SYMBOL(ib_check_mr_status);
1757
1758 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1759                          int state)
1760 {
1761         if (!device->set_vf_link_state)
1762                 return -ENOSYS;
1763
1764         return device->set_vf_link_state(device, vf, port, state);
1765 }
1766 EXPORT_SYMBOL(ib_set_vf_link_state);
1767
1768 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1769                      struct ifla_vf_info *info)
1770 {
1771         if (!device->get_vf_config)
1772                 return -ENOSYS;
1773
1774         return device->get_vf_config(device, vf, port, info);
1775 }
1776 EXPORT_SYMBOL(ib_get_vf_config);
1777
1778 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1779                     struct ifla_vf_stats *stats)
1780 {
1781         if (!device->get_vf_stats)
1782                 return -ENOSYS;
1783
1784         return device->get_vf_stats(device, vf, port, stats);
1785 }
1786 EXPORT_SYMBOL(ib_get_vf_stats);
1787
1788 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1789                    int type)
1790 {
1791         if (!device->set_vf_guid)
1792                 return -ENOSYS;
1793
1794         return device->set_vf_guid(device, vf, port, guid, type);
1795 }
1796 EXPORT_SYMBOL(ib_set_vf_guid);
1797
1798 /**
1799  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1800  *     and set it the memory region.
1801  * @mr:            memory region
1802  * @sg:            dma mapped scatterlist
1803  * @sg_nents:      number of entries in sg
1804  * @sg_offset:     offset in bytes into sg
1805  * @page_size:     page vector desired page size
1806  *
1807  * Constraints:
1808  * - The first sg element is allowed to have an offset.
1809  * - Each sg element must either be aligned to page_size or virtually
1810  *   contiguous to the previous element. In case an sg element has a
1811  *   non-contiguous offset, the mapping prefix will not include it.
1812  * - The last sg element is allowed to have length less than page_size.
1813  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1814  *   then only max_num_sg entries will be mapped.
1815  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1816  *   constraints holds and the page_size argument is ignored.
1817  *
1818  * Returns the number of sg elements that were mapped to the memory region.
1819  *
1820  * After this completes successfully, the  memory region
1821  * is ready for registration.
1822  */
1823 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1824                  unsigned int *sg_offset, unsigned int page_size)
1825 {
1826         if (unlikely(!mr->device->map_mr_sg))
1827                 return -ENOSYS;
1828
1829         mr->page_size = page_size;
1830
1831         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1832 }
1833 EXPORT_SYMBOL(ib_map_mr_sg);
1834
1835 /**
1836  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1837  *     to a page vector
1838  * @mr:            memory region
1839  * @sgl:           dma mapped scatterlist
1840  * @sg_nents:      number of entries in sg
1841  * @sg_offset_p:   IN:  start offset in bytes into sg
1842  *                 OUT: offset in bytes for element n of the sg of the first
1843  *                      byte that has not been processed where n is the return
1844  *                      value of this function.
1845  * @set_page:      driver page assignment function pointer
1846  *
1847  * Core service helper for drivers to convert the largest
1848  * prefix of given sg list to a page vector. The sg list
1849  * prefix converted is the prefix that meet the requirements
1850  * of ib_map_mr_sg.
1851  *
1852  * Returns the number of sg elements that were assigned to
1853  * a page vector.
1854  */
1855 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1856                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1857 {
1858         struct scatterlist *sg;
1859         u64 last_end_dma_addr = 0;
1860         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1861         unsigned int last_page_off = 0;
1862         u64 page_mask = ~((u64)mr->page_size - 1);
1863         int i, ret;
1864
1865         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1866                 return -EINVAL;
1867
1868         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1869         mr->length = 0;
1870
1871         for_each_sg(sgl, sg, sg_nents, i) {
1872                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1873                 u64 prev_addr = dma_addr;
1874                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1875                 u64 end_dma_addr = dma_addr + dma_len;
1876                 u64 page_addr = dma_addr & page_mask;
1877
1878                 /*
1879                  * For the second and later elements, check whether either the
1880                  * end of element i-1 or the start of element i is not aligned
1881                  * on a page boundary.
1882                  */
1883                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1884                         /* Stop mapping if there is a gap. */
1885                         if (last_end_dma_addr != dma_addr)
1886                                 break;
1887
1888                         /*
1889                          * Coalesce this element with the last. If it is small
1890                          * enough just update mr->length. Otherwise start
1891                          * mapping from the next page.
1892                          */
1893                         goto next_page;
1894                 }
1895
1896                 do {
1897                         ret = set_page(mr, page_addr);
1898                         if (unlikely(ret < 0)) {
1899                                 sg_offset = prev_addr - sg_dma_address(sg);
1900                                 mr->length += prev_addr - dma_addr;
1901                                 if (sg_offset_p)
1902                                         *sg_offset_p = sg_offset;
1903                                 return i || sg_offset ? i : ret;
1904                         }
1905                         prev_addr = page_addr;
1906 next_page:
1907                         page_addr += mr->page_size;
1908                 } while (page_addr < end_dma_addr);
1909
1910                 mr->length += dma_len;
1911                 last_end_dma_addr = end_dma_addr;
1912                 last_page_off = end_dma_addr & ~page_mask;
1913
1914                 sg_offset = 0;
1915         }
1916
1917         if (sg_offset_p)
1918                 *sg_offset_p = 0;
1919         return i;
1920 }
1921 EXPORT_SYMBOL(ib_sg_to_pages);
1922
1923 struct ib_drain_cqe {
1924         struct ib_cqe cqe;
1925         struct completion done;
1926 };
1927
1928 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1929 {
1930         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1931                                                 cqe);
1932
1933         complete(&cqe->done);
1934 }
1935
1936 /*
1937  * Post a WR and block until its completion is reaped for the SQ.
1938  */
1939 static void __ib_drain_sq(struct ib_qp *qp)
1940 {
1941         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1942         struct ib_drain_cqe sdrain;
1943         struct ib_send_wr *bad_swr;
1944         struct ib_rdma_wr swr = {
1945                 .wr = {
1946                         .opcode = IB_WR_RDMA_WRITE,
1947                         .wr_cqe = &sdrain.cqe,
1948                 },
1949         };
1950         int ret;
1951
1952         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1953                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1954                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1955                 return;
1956         }
1957
1958         sdrain.cqe.done = ib_drain_qp_done;
1959         init_completion(&sdrain.done);
1960
1961         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1962         if (ret) {
1963                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1964                 return;
1965         }
1966
1967         ret = ib_post_send(qp, &swr.wr, &bad_swr);
1968         if (ret) {
1969                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1970                 return;
1971         }
1972
1973         wait_for_completion(&sdrain.done);
1974 }
1975
1976 /*
1977  * Post a WR and block until its completion is reaped for the RQ.
1978  */
1979 static void __ib_drain_rq(struct ib_qp *qp)
1980 {
1981         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1982         struct ib_drain_cqe rdrain;
1983         struct ib_recv_wr rwr = {}, *bad_rwr;
1984         int ret;
1985
1986         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1987                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1988                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1989                 return;
1990         }
1991
1992         rwr.wr_cqe = &rdrain.cqe;
1993         rdrain.cqe.done = ib_drain_qp_done;
1994         init_completion(&rdrain.done);
1995
1996         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1997         if (ret) {
1998                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1999                 return;
2000         }
2001
2002         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2003         if (ret) {
2004                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2005                 return;
2006         }
2007
2008         wait_for_completion(&rdrain.done);
2009 }
2010
2011 /**
2012  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2013  *                 application.
2014  * @qp:            queue pair to drain
2015  *
2016  * If the device has a provider-specific drain function, then
2017  * call that.  Otherwise call the generic drain function
2018  * __ib_drain_sq().
2019  *
2020  * The caller must:
2021  *
2022  * ensure there is room in the CQ and SQ for the drain work request and
2023  * completion.
2024  *
2025  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2026  * IB_POLL_DIRECT.
2027  *
2028  * ensure that there are no other contexts that are posting WRs concurrently.
2029  * Otherwise the drain is not guaranteed.
2030  */
2031 void ib_drain_sq(struct ib_qp *qp)
2032 {
2033         if (qp->device->drain_sq)
2034                 qp->device->drain_sq(qp);
2035         else
2036                 __ib_drain_sq(qp);
2037 }
2038 EXPORT_SYMBOL(ib_drain_sq);
2039
2040 /**
2041  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2042  *                 application.
2043  * @qp:            queue pair to drain
2044  *
2045  * If the device has a provider-specific drain function, then
2046  * call that.  Otherwise call the generic drain function
2047  * __ib_drain_rq().
2048  *
2049  * The caller must:
2050  *
2051  * ensure there is room in the CQ and RQ for the drain work request and
2052  * completion.
2053  *
2054  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2055  * IB_POLL_DIRECT.
2056  *
2057  * ensure that there are no other contexts that are posting WRs concurrently.
2058  * Otherwise the drain is not guaranteed.
2059  */
2060 void ib_drain_rq(struct ib_qp *qp)
2061 {
2062         if (qp->device->drain_rq)
2063                 qp->device->drain_rq(qp);
2064         else
2065                 __ib_drain_rq(qp);
2066 }
2067 EXPORT_SYMBOL(ib_drain_rq);
2068
2069 /**
2070  * ib_drain_qp() - Block until all CQEs have been consumed by the
2071  *                 application on both the RQ and SQ.
2072  * @qp:            queue pair to drain
2073  *
2074  * The caller must:
2075  *
2076  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2077  * and completions.
2078  *
2079  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2080  * IB_POLL_DIRECT.
2081  *
2082  * ensure that there are no other contexts that are posting WRs concurrently.
2083  * Otherwise the drain is not guaranteed.
2084  */
2085 void ib_drain_qp(struct ib_qp *qp)
2086 {
2087         ib_drain_sq(qp);
2088         if (!qp->srq)
2089                 ib_drain_rq(qp);
2090 }
2091 EXPORT_SYMBOL(ib_drain_qp);