]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/ofed/drivers/infiniband/core/ib_verbs.c
MFC r347301:
[FreeBSD/FreeBSD.git] / sys / ofed / drivers / infiniband / core / ib_verbs.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include <linux/errno.h>
45 #include <linux/err.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/in.h>
49 #include <linux/in6.h>
50
51 #include <rdma/ib_verbs.h>
52 #include <rdma/ib_cache.h>
53 #include <rdma/ib_addr.h>
54
55 #include <netinet/ip.h>
56 #include <netinet/ip6.h>
57
58 #include <machine/in_cksum.h>
59
60 #include "core_priv.h"
61
62 static const char * const ib_events[] = {
63         [IB_EVENT_CQ_ERR]               = "CQ error",
64         [IB_EVENT_QP_FATAL]             = "QP fatal error",
65         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
66         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
67         [IB_EVENT_COMM_EST]             = "communication established",
68         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
69         [IB_EVENT_PATH_MIG]             = "path migration successful",
70         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
71         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
72         [IB_EVENT_PORT_ACTIVE]          = "port active",
73         [IB_EVENT_PORT_ERR]             = "port error",
74         [IB_EVENT_LID_CHANGE]           = "LID change",
75         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
76         [IB_EVENT_SM_CHANGE]            = "SM change",
77         [IB_EVENT_SRQ_ERR]              = "SRQ error",
78         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
79         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
80         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
81         [IB_EVENT_GID_CHANGE]           = "GID changed",
82 };
83
84 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
85 {
86         size_t index = event;
87
88         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
89                         ib_events[index] : "unrecognized event";
90 }
91 EXPORT_SYMBOL(ib_event_msg);
92
93 static const char * const wc_statuses[] = {
94         [IB_WC_SUCCESS]                 = "success",
95         [IB_WC_LOC_LEN_ERR]             = "local length error",
96         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
97         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
98         [IB_WC_LOC_PROT_ERR]            = "local protection error",
99         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
100         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
101         [IB_WC_BAD_RESP_ERR]            = "bad response error",
102         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
103         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
104         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
105         [IB_WC_REM_OP_ERR]              = "remote operation error",
106         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
107         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
108         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
109         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
110         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
111         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
112         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
113         [IB_WC_FATAL_ERR]               = "fatal error",
114         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
115         [IB_WC_GENERAL_ERR]             = "general error",
116 };
117
118 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119 {
120         size_t index = status;
121
122         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
123                         wc_statuses[index] : "unrecognized status";
124 }
125 EXPORT_SYMBOL(ib_wc_status_msg);
126
127 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
128 {
129         switch (rate) {
130         case IB_RATE_2_5_GBPS: return  1;
131         case IB_RATE_5_GBPS:   return  2;
132         case IB_RATE_10_GBPS:  return  4;
133         case IB_RATE_20_GBPS:  return  8;
134         case IB_RATE_30_GBPS:  return 12;
135         case IB_RATE_40_GBPS:  return 16;
136         case IB_RATE_60_GBPS:  return 24;
137         case IB_RATE_80_GBPS:  return 32;
138         case IB_RATE_120_GBPS: return 48;
139         case IB_RATE_28_GBPS:  return  11;
140         case IB_RATE_50_GBPS:  return  20;
141         case IB_RATE_400_GBPS: return 160;
142         case IB_RATE_600_GBPS: return 240;
143         default:               return -1;
144         }
145 }
146 EXPORT_SYMBOL(ib_rate_to_mult);
147
148 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
149 {
150         switch (mult) {
151         case 1:  return IB_RATE_2_5_GBPS;
152         case 2:  return IB_RATE_5_GBPS;
153         case 4:  return IB_RATE_10_GBPS;
154         case 8:  return IB_RATE_20_GBPS;
155         case 12: return IB_RATE_30_GBPS;
156         case 16: return IB_RATE_40_GBPS;
157         case 24: return IB_RATE_60_GBPS;
158         case 32: return IB_RATE_80_GBPS;
159         case 48: return IB_RATE_120_GBPS;
160         case 6:   return IB_RATE_14_GBPS;
161         case 22:  return IB_RATE_56_GBPS;
162         case 45:  return IB_RATE_112_GBPS;
163         case 67:  return IB_RATE_168_GBPS;
164         case 10:  return IB_RATE_25_GBPS;
165         case 40:  return IB_RATE_100_GBPS;
166         case 80:  return IB_RATE_200_GBPS;
167         case 120: return IB_RATE_300_GBPS;
168         case 11:  return IB_RATE_28_GBPS;
169         case 20:  return IB_RATE_50_GBPS;
170         case 160: return IB_RATE_400_GBPS;
171         case 240: return IB_RATE_600_GBPS;
172         default: return IB_RATE_PORT_CURRENT;
173         }
174 }
175 EXPORT_SYMBOL(mult_to_ib_rate);
176
177 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
178 {
179         switch (rate) {
180         case IB_RATE_2_5_GBPS: return 2500;
181         case IB_RATE_5_GBPS:   return 5000;
182         case IB_RATE_10_GBPS:  return 10000;
183         case IB_RATE_20_GBPS:  return 20000;
184         case IB_RATE_30_GBPS:  return 30000;
185         case IB_RATE_40_GBPS:  return 40000;
186         case IB_RATE_60_GBPS:  return 60000;
187         case IB_RATE_80_GBPS:  return 80000;
188         case IB_RATE_120_GBPS: return 120000;
189         case IB_RATE_14_GBPS:  return 14062;
190         case IB_RATE_56_GBPS:  return 56250;
191         case IB_RATE_112_GBPS: return 112500;
192         case IB_RATE_168_GBPS: return 168750;
193         case IB_RATE_25_GBPS:  return 25781;
194         case IB_RATE_100_GBPS: return 103125;
195         case IB_RATE_200_GBPS: return 206250;
196         case IB_RATE_300_GBPS: return 309375;
197         case IB_RATE_28_GBPS:  return 28125;
198         case IB_RATE_50_GBPS:  return 53125;
199         case IB_RATE_400_GBPS: return 425000;
200         case IB_RATE_600_GBPS: return 637500;
201         default:               return -1;
202         }
203 }
204 EXPORT_SYMBOL(ib_rate_to_mbps);
205
206 __attribute_const__ enum rdma_transport_type
207 rdma_node_get_transport(enum rdma_node_type node_type)
208 {
209         switch (node_type) {
210         case RDMA_NODE_IB_CA:
211         case RDMA_NODE_IB_SWITCH:
212         case RDMA_NODE_IB_ROUTER:
213                 return RDMA_TRANSPORT_IB;
214         case RDMA_NODE_RNIC:
215                 return RDMA_TRANSPORT_IWARP;
216         case RDMA_NODE_USNIC:
217                 return RDMA_TRANSPORT_USNIC;
218         case RDMA_NODE_USNIC_UDP:
219                 return RDMA_TRANSPORT_USNIC_UDP;
220         default:
221                 BUG();
222                 return 0;
223         }
224 }
225 EXPORT_SYMBOL(rdma_node_get_transport);
226
227 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
228 {
229         if (device->get_link_layer)
230                 return device->get_link_layer(device, port_num);
231
232         switch (rdma_node_get_transport(device->node_type)) {
233         case RDMA_TRANSPORT_IB:
234                 return IB_LINK_LAYER_INFINIBAND;
235         case RDMA_TRANSPORT_IWARP:
236         case RDMA_TRANSPORT_USNIC:
237         case RDMA_TRANSPORT_USNIC_UDP:
238                 return IB_LINK_LAYER_ETHERNET;
239         default:
240                 return IB_LINK_LAYER_UNSPECIFIED;
241         }
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245 /* Protection domains */
246
247 /**
248  * ib_alloc_pd - Allocates an unused protection domain.
249  * @device: The device on which to allocate the protection domain.
250  *
251  * A protection domain object provides an association between QPs, shared
252  * receive queues, address handles, memory regions, and memory windows.
253  *
254  * Every PD has a local_dma_lkey which can be used as the lkey value for local
255  * memory operations.
256  */
257 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
258                 const char *caller)
259 {
260         struct ib_pd *pd;
261         int mr_access_flags = 0;
262
263         pd = device->alloc_pd(device, NULL, NULL);
264         if (IS_ERR(pd))
265                 return pd;
266
267         pd->device = device;
268         pd->uobject = NULL;
269         pd->__internal_mr = NULL;
270         atomic_set(&pd->usecnt, 0);
271         pd->flags = flags;
272
273         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
274                 pd->local_dma_lkey = device->local_dma_lkey;
275         else
276                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
277
278         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
279                 pr_warn("%s: enabling unsafe global rkey\n", caller);
280                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
281         }
282
283         if (mr_access_flags) {
284                 struct ib_mr *mr;
285
286                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
287                 if (IS_ERR(mr)) {
288                         ib_dealloc_pd(pd);
289                         return ERR_CAST(mr);
290                 }
291
292                 mr->device      = pd->device;
293                 mr->pd          = pd;
294                 mr->uobject     = NULL;
295                 mr->need_inval  = false;
296
297                 pd->__internal_mr = mr;
298
299                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
300                         pd->local_dma_lkey = pd->__internal_mr->lkey;
301
302                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
303                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
304         }
305
306         return pd;
307 }
308 EXPORT_SYMBOL(__ib_alloc_pd);
309
310 /**
311  * ib_dealloc_pd - Deallocates a protection domain.
312  * @pd: The protection domain to deallocate.
313  *
314  * It is an error to call this function while any resources in the pd still
315  * exist.  The caller is responsible to synchronously destroy them and
316  * guarantee no new allocations will happen.
317  */
318 void ib_dealloc_pd(struct ib_pd *pd)
319 {
320         int ret;
321
322         if (pd->__internal_mr) {
323                 ret = pd->device->dereg_mr(pd->__internal_mr);
324                 WARN_ON(ret);
325                 pd->__internal_mr = NULL;
326         }
327
328         /* uverbs manipulates usecnt with proper locking, while the kabi
329            requires the caller to guarantee we can't race here. */
330         WARN_ON(atomic_read(&pd->usecnt));
331
332         /* Making delalloc_pd a void return is a WIP, no driver should return
333            an error here. */
334         ret = pd->device->dealloc_pd(pd);
335         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
336 }
337 EXPORT_SYMBOL(ib_dealloc_pd);
338
339 /* Address handles */
340
341 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
342 {
343         struct ib_ah *ah;
344
345         ah = pd->device->create_ah(pd, ah_attr, NULL);
346
347         if (!IS_ERR(ah)) {
348                 ah->device  = pd->device;
349                 ah->pd      = pd;
350                 ah->uobject = NULL;
351                 atomic_inc(&pd->usecnt);
352         }
353
354         return ah;
355 }
356 EXPORT_SYMBOL(ib_create_ah);
357
358 static int ib_get_header_version(const union rdma_network_hdr *hdr)
359 {
360         const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
361         struct ip ip4h_checked;
362         const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
363
364         /* If it's IPv6, the version must be 6, otherwise, the first
365          * 20 bytes (before the IPv4 header) are garbled.
366          */
367         if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
368                 return (ip4h->ip_v == 4) ? 4 : 0;
369         /* version may be 6 or 4 because the first 20 bytes could be garbled */
370
371         /* RoCE v2 requires no options, thus header length
372          * must be 5 words
373          */
374         if (ip4h->ip_hl != 5)
375                 return 6;
376
377         /* Verify checksum.
378          * We can't write on scattered buffers so we need to copy to
379          * temp buffer.
380          */
381         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
382         ip4h_checked.ip_sum = 0;
383 #if defined(INET) || defined(INET6)
384         ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
385 #endif
386         /* if IPv4 header checksum is OK, believe it */
387         if (ip4h->ip_sum == ip4h_checked.ip_sum)
388                 return 4;
389         return 6;
390 }
391
392 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
393                                                      u8 port_num,
394                                                      const struct ib_grh *grh)
395 {
396         int grh_version;
397
398         if (rdma_protocol_ib(device, port_num))
399                 return RDMA_NETWORK_IB;
400
401         grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
402
403         if (grh_version == 4)
404                 return RDMA_NETWORK_IPV4;
405
406         if (grh->next_hdr == IPPROTO_UDP)
407                 return RDMA_NETWORK_IPV6;
408
409         return RDMA_NETWORK_ROCE_V1;
410 }
411
412 struct find_gid_index_context {
413         u16 vlan_id;
414         enum ib_gid_type gid_type;
415 };
416
417 static bool find_gid_index(const union ib_gid *gid,
418                            const struct ib_gid_attr *gid_attr,
419                            void *context)
420 {
421         struct find_gid_index_context *ctx =
422                 (struct find_gid_index_context *)context;
423
424         if (ctx->gid_type != gid_attr->gid_type)
425                 return false;
426         if (rdma_vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)
427                 return false;
428         return true;
429 }
430
431 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
432                                    u16 vlan_id, const union ib_gid *sgid,
433                                    enum ib_gid_type gid_type,
434                                    u16 *gid_index)
435 {
436         struct find_gid_index_context context = {.vlan_id = vlan_id,
437                                                  .gid_type = gid_type};
438
439         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
440                                      &context, gid_index);
441 }
442
443 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
444                                   enum rdma_network_type net_type,
445                                   union ib_gid *sgid, union ib_gid *dgid)
446 {
447         struct sockaddr_in  src_in;
448         struct sockaddr_in  dst_in;
449         __be32 src_saddr, dst_saddr;
450
451         if (!sgid || !dgid)
452                 return -EINVAL;
453
454         if (net_type == RDMA_NETWORK_IPV4) {
455                 memcpy(&src_in.sin_addr.s_addr,
456                        &hdr->roce4grh.ip_src, 4);
457                 memcpy(&dst_in.sin_addr.s_addr,
458                        &hdr->roce4grh.ip_dst, 4);
459                 src_saddr = src_in.sin_addr.s_addr;
460                 dst_saddr = dst_in.sin_addr.s_addr;
461                 ipv6_addr_set_v4mapped(src_saddr,
462                                        (struct in6_addr *)sgid);
463                 ipv6_addr_set_v4mapped(dst_saddr,
464                                        (struct in6_addr *)dgid);
465                 return 0;
466         } else if (net_type == RDMA_NETWORK_IPV6 ||
467                    net_type == RDMA_NETWORK_IB) {
468                 *dgid = hdr->ibgrh.dgid;
469                 *sgid = hdr->ibgrh.sgid;
470                 return 0;
471         } else {
472                 return -EINVAL;
473         }
474 }
475
476 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
477                        const struct ib_wc *wc, const struct ib_grh *grh,
478                        struct ib_ah_attr *ah_attr)
479 {
480         u32 flow_class;
481         u16 gid_index = 0;
482         int ret;
483         enum rdma_network_type net_type = RDMA_NETWORK_IB;
484         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
485         int hoplimit = 0xff;
486         union ib_gid dgid;
487         union ib_gid sgid;
488
489         memset(ah_attr, 0, sizeof *ah_attr);
490         if (rdma_cap_eth_ah(device, port_num)) {
491                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
492                         net_type = wc->network_hdr_type;
493                 else
494                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
495                 gid_type = ib_network_to_gid_type(net_type);
496         }
497         ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
498                                      &sgid, &dgid);
499         if (ret)
500                 return ret;
501
502         if (rdma_protocol_roce(device, port_num)) {
503                 struct ib_gid_attr dgid_attr;
504                 const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
505                                 wc->vlan_id : 0xffff;
506
507                 if (!(wc->wc_flags & IB_WC_GRH))
508                         return -EPROTOTYPE;
509
510                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
511                                               &dgid, gid_type, &gid_index);
512                 if (ret)
513                         return ret;
514
515                 ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
516                 if (ret)
517                         return ret;
518
519                 if (dgid_attr.ndev == NULL)
520                         return -ENODEV;
521
522                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
523                     dgid_attr.ndev, &hoplimit);
524
525                 dev_put(dgid_attr.ndev);
526                 if (ret)
527                         return ret;
528         }
529
530         ah_attr->dlid = wc->slid;
531         ah_attr->sl = wc->sl;
532         ah_attr->src_path_bits = wc->dlid_path_bits;
533         ah_attr->port_num = port_num;
534
535         if (wc->wc_flags & IB_WC_GRH) {
536                 ah_attr->ah_flags = IB_AH_GRH;
537                 ah_attr->grh.dgid = sgid;
538
539                 if (!rdma_cap_eth_ah(device, port_num)) {
540                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
541                                 ret = ib_find_cached_gid_by_port(device, &dgid,
542                                                                  IB_GID_TYPE_IB,
543                                                                  port_num, NULL,
544                                                                  &gid_index);
545                                 if (ret)
546                                         return ret;
547                         }
548                 }
549
550                 ah_attr->grh.sgid_index = (u8) gid_index;
551                 flow_class = be32_to_cpu(grh->version_tclass_flow);
552                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
553                 ah_attr->grh.hop_limit = hoplimit;
554                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
555         }
556         return 0;
557 }
558 EXPORT_SYMBOL(ib_init_ah_from_wc);
559
560 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
561                                    const struct ib_grh *grh, u8 port_num)
562 {
563         struct ib_ah_attr ah_attr;
564         int ret;
565
566         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
567         if (ret)
568                 return ERR_PTR(ret);
569
570         return ib_create_ah(pd, &ah_attr);
571 }
572 EXPORT_SYMBOL(ib_create_ah_from_wc);
573
574 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
575 {
576         return ah->device->modify_ah ?
577                 ah->device->modify_ah(ah, ah_attr) :
578                 -ENOSYS;
579 }
580 EXPORT_SYMBOL(ib_modify_ah);
581
582 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
583 {
584         return ah->device->query_ah ?
585                 ah->device->query_ah(ah, ah_attr) :
586                 -ENOSYS;
587 }
588 EXPORT_SYMBOL(ib_query_ah);
589
590 int ib_destroy_ah(struct ib_ah *ah)
591 {
592         struct ib_pd *pd;
593         int ret;
594
595         pd = ah->pd;
596         ret = ah->device->destroy_ah(ah);
597         if (!ret)
598                 atomic_dec(&pd->usecnt);
599
600         return ret;
601 }
602 EXPORT_SYMBOL(ib_destroy_ah);
603
604 /* Shared receive queues */
605
606 struct ib_srq *ib_create_srq(struct ib_pd *pd,
607                              struct ib_srq_init_attr *srq_init_attr)
608 {
609         struct ib_srq *srq;
610
611         if (!pd->device->create_srq)
612                 return ERR_PTR(-ENOSYS);
613
614         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
615
616         if (!IS_ERR(srq)) {
617                 srq->device        = pd->device;
618                 srq->pd            = pd;
619                 srq->uobject       = NULL;
620                 srq->event_handler = srq_init_attr->event_handler;
621                 srq->srq_context   = srq_init_attr->srq_context;
622                 srq->srq_type      = srq_init_attr->srq_type;
623                 if (srq->srq_type == IB_SRQT_XRC) {
624                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
625                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
626                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
627                         atomic_inc(&srq->ext.xrc.cq->usecnt);
628                 }
629                 atomic_inc(&pd->usecnt);
630                 atomic_set(&srq->usecnt, 0);
631         }
632
633         return srq;
634 }
635 EXPORT_SYMBOL(ib_create_srq);
636
637 int ib_modify_srq(struct ib_srq *srq,
638                   struct ib_srq_attr *srq_attr,
639                   enum ib_srq_attr_mask srq_attr_mask)
640 {
641         return srq->device->modify_srq ?
642                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
643                 -ENOSYS;
644 }
645 EXPORT_SYMBOL(ib_modify_srq);
646
647 int ib_query_srq(struct ib_srq *srq,
648                  struct ib_srq_attr *srq_attr)
649 {
650         return srq->device->query_srq ?
651                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
652 }
653 EXPORT_SYMBOL(ib_query_srq);
654
655 int ib_destroy_srq(struct ib_srq *srq)
656 {
657         struct ib_pd *pd;
658         enum ib_srq_type srq_type;
659         struct ib_xrcd *uninitialized_var(xrcd);
660         struct ib_cq *uninitialized_var(cq);
661         int ret;
662
663         if (atomic_read(&srq->usecnt))
664                 return -EBUSY;
665
666         pd = srq->pd;
667         srq_type = srq->srq_type;
668         if (srq_type == IB_SRQT_XRC) {
669                 xrcd = srq->ext.xrc.xrcd;
670                 cq = srq->ext.xrc.cq;
671         }
672
673         ret = srq->device->destroy_srq(srq);
674         if (!ret) {
675                 atomic_dec(&pd->usecnt);
676                 if (srq_type == IB_SRQT_XRC) {
677                         atomic_dec(&xrcd->usecnt);
678                         atomic_dec(&cq->usecnt);
679                 }
680         }
681
682         return ret;
683 }
684 EXPORT_SYMBOL(ib_destroy_srq);
685
686 /* Queue pairs */
687
688 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
689 {
690         struct ib_qp *qp = context;
691         unsigned long flags;
692
693         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
694         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
695                 if (event->element.qp->event_handler)
696                         event->element.qp->event_handler(event, event->element.qp->qp_context);
697         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
698 }
699
700 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
701 {
702         mutex_lock(&xrcd->tgt_qp_mutex);
703         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
704         mutex_unlock(&xrcd->tgt_qp_mutex);
705 }
706
707 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
708                                   void (*event_handler)(struct ib_event *, void *),
709                                   void *qp_context)
710 {
711         struct ib_qp *qp;
712         unsigned long flags;
713
714         qp = kzalloc(sizeof *qp, GFP_KERNEL);
715         if (!qp)
716                 return ERR_PTR(-ENOMEM);
717
718         qp->real_qp = real_qp;
719         atomic_inc(&real_qp->usecnt);
720         qp->device = real_qp->device;
721         qp->event_handler = event_handler;
722         qp->qp_context = qp_context;
723         qp->qp_num = real_qp->qp_num;
724         qp->qp_type = real_qp->qp_type;
725
726         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
727         list_add(&qp->open_list, &real_qp->open_list);
728         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
729
730         return qp;
731 }
732
733 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
734                          struct ib_qp_open_attr *qp_open_attr)
735 {
736         struct ib_qp *qp, *real_qp;
737
738         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
739                 return ERR_PTR(-EINVAL);
740
741         qp = ERR_PTR(-EINVAL);
742         mutex_lock(&xrcd->tgt_qp_mutex);
743         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
744                 if (real_qp->qp_num == qp_open_attr->qp_num) {
745                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
746                                           qp_open_attr->qp_context);
747                         break;
748                 }
749         }
750         mutex_unlock(&xrcd->tgt_qp_mutex);
751         return qp;
752 }
753 EXPORT_SYMBOL(ib_open_qp);
754
755 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
756                 struct ib_qp_init_attr *qp_init_attr)
757 {
758         struct ib_qp *real_qp = qp;
759
760         qp->event_handler = __ib_shared_qp_event_handler;
761         qp->qp_context = qp;
762         qp->pd = NULL;
763         qp->send_cq = qp->recv_cq = NULL;
764         qp->srq = NULL;
765         qp->xrcd = qp_init_attr->xrcd;
766         atomic_inc(&qp_init_attr->xrcd->usecnt);
767         INIT_LIST_HEAD(&qp->open_list);
768
769         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
770                           qp_init_attr->qp_context);
771         if (!IS_ERR(qp))
772                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
773         else
774                 real_qp->device->destroy_qp(real_qp);
775         return qp;
776 }
777
778 struct ib_qp *ib_create_qp(struct ib_pd *pd,
779                            struct ib_qp_init_attr *qp_init_attr)
780 {
781         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
782         struct ib_qp *qp;
783
784         if (qp_init_attr->rwq_ind_tbl &&
785             (qp_init_attr->recv_cq ||
786             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
787             qp_init_attr->cap.max_recv_sge))
788                 return ERR_PTR(-EINVAL);
789
790         qp = device->create_qp(pd, qp_init_attr, NULL);
791         if (IS_ERR(qp))
792                 return qp;
793
794         qp->device     = device;
795         qp->real_qp    = qp;
796         qp->uobject    = NULL;
797         qp->qp_type    = qp_init_attr->qp_type;
798         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
799
800         atomic_set(&qp->usecnt, 0);
801         spin_lock_init(&qp->mr_lock);
802
803         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
804                 return ib_create_xrc_qp(qp, qp_init_attr);
805
806         qp->event_handler = qp_init_attr->event_handler;
807         qp->qp_context = qp_init_attr->qp_context;
808         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
809                 qp->recv_cq = NULL;
810                 qp->srq = NULL;
811         } else {
812                 qp->recv_cq = qp_init_attr->recv_cq;
813                 if (qp_init_attr->recv_cq)
814                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
815                 qp->srq = qp_init_attr->srq;
816                 if (qp->srq)
817                         atomic_inc(&qp_init_attr->srq->usecnt);
818         }
819
820         qp->pd      = pd;
821         qp->send_cq = qp_init_attr->send_cq;
822         qp->xrcd    = NULL;
823
824         atomic_inc(&pd->usecnt);
825         if (qp_init_attr->send_cq)
826                 atomic_inc(&qp_init_attr->send_cq->usecnt);
827         if (qp_init_attr->rwq_ind_tbl)
828                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
829
830         /*
831          * Note: all hw drivers guarantee that max_send_sge is lower than
832          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
833          * max_send_sge <= max_sge_rd.
834          */
835         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
836         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
837                                  device->attrs.max_sge_rd);
838
839         return qp;
840 }
841 EXPORT_SYMBOL(ib_create_qp);
842
843 static const struct {
844         int                     valid;
845         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
846         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
847 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
848         [IB_QPS_RESET] = {
849                 [IB_QPS_RESET] = { .valid = 1 },
850                 [IB_QPS_INIT]  = {
851                         .valid = 1,
852                         .req_param = {
853                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
854                                                 IB_QP_PORT                      |
855                                                 IB_QP_QKEY),
856                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
857                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
858                                                 IB_QP_PORT                      |
859                                                 IB_QP_ACCESS_FLAGS),
860                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
861                                                 IB_QP_PORT                      |
862                                                 IB_QP_ACCESS_FLAGS),
863                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
864                                                 IB_QP_PORT                      |
865                                                 IB_QP_ACCESS_FLAGS),
866                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
867                                                 IB_QP_PORT                      |
868                                                 IB_QP_ACCESS_FLAGS),
869                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
870                                                 IB_QP_QKEY),
871                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
872                                                 IB_QP_QKEY),
873                         }
874                 },
875         },
876         [IB_QPS_INIT]  = {
877                 [IB_QPS_RESET] = { .valid = 1 },
878                 [IB_QPS_ERR] =   { .valid = 1 },
879                 [IB_QPS_INIT]  = {
880                         .valid = 1,
881                         .opt_param = {
882                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
883                                                 IB_QP_PORT                      |
884                                                 IB_QP_QKEY),
885                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
886                                                 IB_QP_PORT                      |
887                                                 IB_QP_ACCESS_FLAGS),
888                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
889                                                 IB_QP_PORT                      |
890                                                 IB_QP_ACCESS_FLAGS),
891                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
892                                                 IB_QP_PORT                      |
893                                                 IB_QP_ACCESS_FLAGS),
894                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
895                                                 IB_QP_PORT                      |
896                                                 IB_QP_ACCESS_FLAGS),
897                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
898                                                 IB_QP_QKEY),
899                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
900                                                 IB_QP_QKEY),
901                         }
902                 },
903                 [IB_QPS_RTR]   = {
904                         .valid = 1,
905                         .req_param = {
906                                 [IB_QPT_UC]  = (IB_QP_AV                        |
907                                                 IB_QP_PATH_MTU                  |
908                                                 IB_QP_DEST_QPN                  |
909                                                 IB_QP_RQ_PSN),
910                                 [IB_QPT_RC]  = (IB_QP_AV                        |
911                                                 IB_QP_PATH_MTU                  |
912                                                 IB_QP_DEST_QPN                  |
913                                                 IB_QP_RQ_PSN                    |
914                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
915                                                 IB_QP_MIN_RNR_TIMER),
916                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
917                                                 IB_QP_PATH_MTU                  |
918                                                 IB_QP_DEST_QPN                  |
919                                                 IB_QP_RQ_PSN),
920                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
921                                                 IB_QP_PATH_MTU                  |
922                                                 IB_QP_DEST_QPN                  |
923                                                 IB_QP_RQ_PSN                    |
924                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
925                                                 IB_QP_MIN_RNR_TIMER),
926                         },
927                         .opt_param = {
928                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
929                                                  IB_QP_QKEY),
930                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
931                                                  IB_QP_ACCESS_FLAGS             |
932                                                  IB_QP_PKEY_INDEX),
933                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
934                                                  IB_QP_ACCESS_FLAGS             |
935                                                  IB_QP_PKEY_INDEX),
936                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
937                                                  IB_QP_ACCESS_FLAGS             |
938                                                  IB_QP_PKEY_INDEX),
939                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
940                                                  IB_QP_ACCESS_FLAGS             |
941                                                  IB_QP_PKEY_INDEX),
942                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
943                                                  IB_QP_QKEY),
944                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
945                                                  IB_QP_QKEY),
946                          },
947                 },
948         },
949         [IB_QPS_RTR]   = {
950                 [IB_QPS_RESET] = { .valid = 1 },
951                 [IB_QPS_ERR] =   { .valid = 1 },
952                 [IB_QPS_RTS]   = {
953                         .valid = 1,
954                         .req_param = {
955                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
956                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
957                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
958                                                 IB_QP_RETRY_CNT                 |
959                                                 IB_QP_RNR_RETRY                 |
960                                                 IB_QP_SQ_PSN                    |
961                                                 IB_QP_MAX_QP_RD_ATOMIC),
962                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
963                                                 IB_QP_RETRY_CNT                 |
964                                                 IB_QP_RNR_RETRY                 |
965                                                 IB_QP_SQ_PSN                    |
966                                                 IB_QP_MAX_QP_RD_ATOMIC),
967                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
968                                                 IB_QP_SQ_PSN),
969                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
970                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
971                         },
972                         .opt_param = {
973                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
974                                                  IB_QP_QKEY),
975                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
976                                                  IB_QP_ALT_PATH                 |
977                                                  IB_QP_ACCESS_FLAGS             |
978                                                  IB_QP_PATH_MIG_STATE),
979                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
980                                                  IB_QP_ALT_PATH                 |
981                                                  IB_QP_ACCESS_FLAGS             |
982                                                  IB_QP_MIN_RNR_TIMER            |
983                                                  IB_QP_PATH_MIG_STATE),
984                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
985                                                  IB_QP_ALT_PATH                 |
986                                                  IB_QP_ACCESS_FLAGS             |
987                                                  IB_QP_PATH_MIG_STATE),
988                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
989                                                  IB_QP_ALT_PATH                 |
990                                                  IB_QP_ACCESS_FLAGS             |
991                                                  IB_QP_MIN_RNR_TIMER            |
992                                                  IB_QP_PATH_MIG_STATE),
993                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
994                                                  IB_QP_QKEY),
995                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
996                                                  IB_QP_QKEY),
997                          }
998                 }
999         },
1000         [IB_QPS_RTS]   = {
1001                 [IB_QPS_RESET] = { .valid = 1 },
1002                 [IB_QPS_ERR] =   { .valid = 1 },
1003                 [IB_QPS_RTS]   = {
1004                         .valid = 1,
1005                         .opt_param = {
1006                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1007                                                 IB_QP_QKEY),
1008                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1009                                                 IB_QP_ACCESS_FLAGS              |
1010                                                 IB_QP_ALT_PATH                  |
1011                                                 IB_QP_PATH_MIG_STATE),
1012                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1013                                                 IB_QP_ACCESS_FLAGS              |
1014                                                 IB_QP_ALT_PATH                  |
1015                                                 IB_QP_PATH_MIG_STATE            |
1016                                                 IB_QP_MIN_RNR_TIMER),
1017                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1018                                                 IB_QP_ACCESS_FLAGS              |
1019                                                 IB_QP_ALT_PATH                  |
1020                                                 IB_QP_PATH_MIG_STATE),
1021                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1022                                                 IB_QP_ACCESS_FLAGS              |
1023                                                 IB_QP_ALT_PATH                  |
1024                                                 IB_QP_PATH_MIG_STATE            |
1025                                                 IB_QP_MIN_RNR_TIMER),
1026                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1027                                                 IB_QP_QKEY),
1028                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1029                                                 IB_QP_QKEY),
1030                         }
1031                 },
1032                 [IB_QPS_SQD]   = {
1033                         .valid = 1,
1034                         .opt_param = {
1035                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1036                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1037                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1038                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1039                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1040                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1041                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1042                         }
1043                 },
1044         },
1045         [IB_QPS_SQD]   = {
1046                 [IB_QPS_RESET] = { .valid = 1 },
1047                 [IB_QPS_ERR] =   { .valid = 1 },
1048                 [IB_QPS_RTS]   = {
1049                         .valid = 1,
1050                         .opt_param = {
1051                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1052                                                 IB_QP_QKEY),
1053                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1054                                                 IB_QP_ALT_PATH                  |
1055                                                 IB_QP_ACCESS_FLAGS              |
1056                                                 IB_QP_PATH_MIG_STATE),
1057                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1058                                                 IB_QP_ALT_PATH                  |
1059                                                 IB_QP_ACCESS_FLAGS              |
1060                                                 IB_QP_MIN_RNR_TIMER             |
1061                                                 IB_QP_PATH_MIG_STATE),
1062                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1063                                                 IB_QP_ALT_PATH                  |
1064                                                 IB_QP_ACCESS_FLAGS              |
1065                                                 IB_QP_PATH_MIG_STATE),
1066                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1067                                                 IB_QP_ALT_PATH                  |
1068                                                 IB_QP_ACCESS_FLAGS              |
1069                                                 IB_QP_MIN_RNR_TIMER             |
1070                                                 IB_QP_PATH_MIG_STATE),
1071                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1072                                                 IB_QP_QKEY),
1073                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1074                                                 IB_QP_QKEY),
1075                         }
1076                 },
1077                 [IB_QPS_SQD]   = {
1078                         .valid = 1,
1079                         .opt_param = {
1080                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1081                                                 IB_QP_QKEY),
1082                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1083                                                 IB_QP_ALT_PATH                  |
1084                                                 IB_QP_ACCESS_FLAGS              |
1085                                                 IB_QP_PKEY_INDEX                |
1086                                                 IB_QP_PATH_MIG_STATE),
1087                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1088                                                 IB_QP_AV                        |
1089                                                 IB_QP_TIMEOUT                   |
1090                                                 IB_QP_RETRY_CNT                 |
1091                                                 IB_QP_RNR_RETRY                 |
1092                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1093                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1094                                                 IB_QP_ALT_PATH                  |
1095                                                 IB_QP_ACCESS_FLAGS              |
1096                                                 IB_QP_PKEY_INDEX                |
1097                                                 IB_QP_MIN_RNR_TIMER             |
1098                                                 IB_QP_PATH_MIG_STATE),
1099                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1100                                                 IB_QP_AV                        |
1101                                                 IB_QP_TIMEOUT                   |
1102                                                 IB_QP_RETRY_CNT                 |
1103                                                 IB_QP_RNR_RETRY                 |
1104                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1105                                                 IB_QP_ALT_PATH                  |
1106                                                 IB_QP_ACCESS_FLAGS              |
1107                                                 IB_QP_PKEY_INDEX                |
1108                                                 IB_QP_PATH_MIG_STATE),
1109                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1110                                                 IB_QP_AV                        |
1111                                                 IB_QP_TIMEOUT                   |
1112                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1113                                                 IB_QP_ALT_PATH                  |
1114                                                 IB_QP_ACCESS_FLAGS              |
1115                                                 IB_QP_PKEY_INDEX                |
1116                                                 IB_QP_MIN_RNR_TIMER             |
1117                                                 IB_QP_PATH_MIG_STATE),
1118                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1119                                                 IB_QP_QKEY),
1120                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1121                                                 IB_QP_QKEY),
1122                         }
1123                 }
1124         },
1125         [IB_QPS_SQE]   = {
1126                 [IB_QPS_RESET] = { .valid = 1 },
1127                 [IB_QPS_ERR] =   { .valid = 1 },
1128                 [IB_QPS_RTS]   = {
1129                         .valid = 1,
1130                         .opt_param = {
1131                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1132                                                 IB_QP_QKEY),
1133                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1134                                                 IB_QP_ACCESS_FLAGS),
1135                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1136                                                 IB_QP_QKEY),
1137                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1138                                                 IB_QP_QKEY),
1139                         }
1140                 }
1141         },
1142         [IB_QPS_ERR] = {
1143                 [IB_QPS_RESET] = { .valid = 1 },
1144                 [IB_QPS_ERR] =   { .valid = 1 }
1145         }
1146 };
1147
1148 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1149                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1150                        enum rdma_link_layer ll)
1151 {
1152         enum ib_qp_attr_mask req_param, opt_param;
1153
1154         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1155             next_state < 0 || next_state > IB_QPS_ERR)
1156                 return 0;
1157
1158         if (mask & IB_QP_CUR_STATE  &&
1159             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1160             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1161                 return 0;
1162
1163         if (!qp_state_table[cur_state][next_state].valid)
1164                 return 0;
1165
1166         req_param = qp_state_table[cur_state][next_state].req_param[type];
1167         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1168
1169         if ((mask & req_param) != req_param)
1170                 return 0;
1171
1172         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1173                 return 0;
1174
1175         return 1;
1176 }
1177 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1178
1179 int ib_resolve_eth_dmac(struct ib_device *device,
1180                         struct ib_ah_attr *ah_attr)
1181 {
1182         struct ib_gid_attr sgid_attr;
1183         union ib_gid sgid;
1184         int hop_limit;
1185         int ret;
1186
1187         if (ah_attr->port_num < rdma_start_port(device) ||
1188             ah_attr->port_num > rdma_end_port(device))
1189                 return -EINVAL;
1190
1191         if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1192                 return 0;
1193
1194         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1195                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1196                         __be32 addr = 0;
1197
1198                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1199                         ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1200                 } else {
1201                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1202                                         (char *)ah_attr->dmac);
1203                 }
1204                 return 0;
1205         }
1206
1207         ret = ib_query_gid(device,
1208                            ah_attr->port_num,
1209                            ah_attr->grh.sgid_index,
1210                            &sgid, &sgid_attr);
1211         if (ret != 0)
1212                 return (ret);
1213         if (!sgid_attr.ndev)
1214                 return -ENXIO;
1215
1216         ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1217                                            &ah_attr->grh.dgid,
1218                                            ah_attr->dmac,
1219                                            sgid_attr.ndev, &hop_limit);
1220         dev_put(sgid_attr.ndev);
1221
1222         ah_attr->grh.hop_limit = hop_limit;
1223         return ret;
1224 }
1225 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1226
1227
1228 int ib_modify_qp(struct ib_qp *qp,
1229                  struct ib_qp_attr *qp_attr,
1230                  int qp_attr_mask)
1231 {
1232         if (qp_attr_mask & IB_QP_AV) {
1233                 int ret;
1234
1235                 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1236                 if (ret)
1237                         return ret;
1238         }
1239
1240         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1241 }
1242 EXPORT_SYMBOL(ib_modify_qp);
1243
1244 int ib_query_qp(struct ib_qp *qp,
1245                 struct ib_qp_attr *qp_attr,
1246                 int qp_attr_mask,
1247                 struct ib_qp_init_attr *qp_init_attr)
1248 {
1249         return qp->device->query_qp ?
1250                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1251                 -ENOSYS;
1252 }
1253 EXPORT_SYMBOL(ib_query_qp);
1254
1255 int ib_close_qp(struct ib_qp *qp)
1256 {
1257         struct ib_qp *real_qp;
1258         unsigned long flags;
1259
1260         real_qp = qp->real_qp;
1261         if (real_qp == qp)
1262                 return -EINVAL;
1263
1264         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1265         list_del(&qp->open_list);
1266         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1267
1268         atomic_dec(&real_qp->usecnt);
1269         kfree(qp);
1270
1271         return 0;
1272 }
1273 EXPORT_SYMBOL(ib_close_qp);
1274
1275 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1276 {
1277         struct ib_xrcd *xrcd;
1278         struct ib_qp *real_qp;
1279         int ret;
1280
1281         real_qp = qp->real_qp;
1282         xrcd = real_qp->xrcd;
1283
1284         mutex_lock(&xrcd->tgt_qp_mutex);
1285         ib_close_qp(qp);
1286         if (atomic_read(&real_qp->usecnt) == 0)
1287                 list_del(&real_qp->xrcd_list);
1288         else
1289                 real_qp = NULL;
1290         mutex_unlock(&xrcd->tgt_qp_mutex);
1291
1292         if (real_qp) {
1293                 ret = ib_destroy_qp(real_qp);
1294                 if (!ret)
1295                         atomic_dec(&xrcd->usecnt);
1296                 else
1297                         __ib_insert_xrcd_qp(xrcd, real_qp);
1298         }
1299
1300         return 0;
1301 }
1302
1303 int ib_destroy_qp(struct ib_qp *qp)
1304 {
1305         struct ib_pd *pd;
1306         struct ib_cq *scq, *rcq;
1307         struct ib_srq *srq;
1308         struct ib_rwq_ind_table *ind_tbl;
1309         int ret;
1310
1311         if (atomic_read(&qp->usecnt))
1312                 return -EBUSY;
1313
1314         if (qp->real_qp != qp)
1315                 return __ib_destroy_shared_qp(qp);
1316
1317         pd   = qp->pd;
1318         scq  = qp->send_cq;
1319         rcq  = qp->recv_cq;
1320         srq  = qp->srq;
1321         ind_tbl = qp->rwq_ind_tbl;
1322
1323         ret = qp->device->destroy_qp(qp);
1324         if (!ret) {
1325                 if (pd)
1326                         atomic_dec(&pd->usecnt);
1327                 if (scq)
1328                         atomic_dec(&scq->usecnt);
1329                 if (rcq)
1330                         atomic_dec(&rcq->usecnt);
1331                 if (srq)
1332                         atomic_dec(&srq->usecnt);
1333                 if (ind_tbl)
1334                         atomic_dec(&ind_tbl->usecnt);
1335         }
1336
1337         return ret;
1338 }
1339 EXPORT_SYMBOL(ib_destroy_qp);
1340
1341 /* Completion queues */
1342
1343 struct ib_cq *ib_create_cq(struct ib_device *device,
1344                            ib_comp_handler comp_handler,
1345                            void (*event_handler)(struct ib_event *, void *),
1346                            void *cq_context,
1347                            const struct ib_cq_init_attr *cq_attr)
1348 {
1349         struct ib_cq *cq;
1350
1351         cq = device->create_cq(device, cq_attr, NULL, NULL);
1352
1353         if (!IS_ERR(cq)) {
1354                 cq->device        = device;
1355                 cq->uobject       = NULL;
1356                 cq->comp_handler  = comp_handler;
1357                 cq->event_handler = event_handler;
1358                 cq->cq_context    = cq_context;
1359                 atomic_set(&cq->usecnt, 0);
1360         }
1361
1362         return cq;
1363 }
1364 EXPORT_SYMBOL(ib_create_cq);
1365
1366 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1367 {
1368         return cq->device->modify_cq ?
1369                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1370 }
1371 EXPORT_SYMBOL(ib_modify_cq);
1372
1373 int ib_destroy_cq(struct ib_cq *cq)
1374 {
1375         if (atomic_read(&cq->usecnt))
1376                 return -EBUSY;
1377
1378         return cq->device->destroy_cq(cq);
1379 }
1380 EXPORT_SYMBOL(ib_destroy_cq);
1381
1382 int ib_resize_cq(struct ib_cq *cq, int cqe)
1383 {
1384         return cq->device->resize_cq ?
1385                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1386 }
1387 EXPORT_SYMBOL(ib_resize_cq);
1388
1389 /* Memory regions */
1390
1391 int ib_dereg_mr(struct ib_mr *mr)
1392 {
1393         struct ib_pd *pd = mr->pd;
1394         int ret;
1395
1396         ret = mr->device->dereg_mr(mr);
1397         if (!ret)
1398                 atomic_dec(&pd->usecnt);
1399
1400         return ret;
1401 }
1402 EXPORT_SYMBOL(ib_dereg_mr);
1403
1404 /**
1405  * ib_alloc_mr() - Allocates a memory region
1406  * @pd:            protection domain associated with the region
1407  * @mr_type:       memory region type
1408  * @max_num_sg:    maximum sg entries available for registration.
1409  *
1410  * Notes:
1411  * Memory registeration page/sg lists must not exceed max_num_sg.
1412  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1413  * max_num_sg * used_page_size.
1414  *
1415  */
1416 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1417                           enum ib_mr_type mr_type,
1418                           u32 max_num_sg)
1419 {
1420         struct ib_mr *mr;
1421
1422         if (!pd->device->alloc_mr)
1423                 return ERR_PTR(-ENOSYS);
1424
1425         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1426         if (!IS_ERR(mr)) {
1427                 mr->device  = pd->device;
1428                 mr->pd      = pd;
1429                 mr->uobject = NULL;
1430                 atomic_inc(&pd->usecnt);
1431                 mr->need_inval = false;
1432         }
1433
1434         return mr;
1435 }
1436 EXPORT_SYMBOL(ib_alloc_mr);
1437
1438 /* "Fast" memory regions */
1439
1440 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1441                             int mr_access_flags,
1442                             struct ib_fmr_attr *fmr_attr)
1443 {
1444         struct ib_fmr *fmr;
1445
1446         if (!pd->device->alloc_fmr)
1447                 return ERR_PTR(-ENOSYS);
1448
1449         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1450         if (!IS_ERR(fmr)) {
1451                 fmr->device = pd->device;
1452                 fmr->pd     = pd;
1453                 atomic_inc(&pd->usecnt);
1454         }
1455
1456         return fmr;
1457 }
1458 EXPORT_SYMBOL(ib_alloc_fmr);
1459
1460 int ib_unmap_fmr(struct list_head *fmr_list)
1461 {
1462         struct ib_fmr *fmr;
1463
1464         if (list_empty(fmr_list))
1465                 return 0;
1466
1467         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1468         return fmr->device->unmap_fmr(fmr_list);
1469 }
1470 EXPORT_SYMBOL(ib_unmap_fmr);
1471
1472 int ib_dealloc_fmr(struct ib_fmr *fmr)
1473 {
1474         struct ib_pd *pd;
1475         int ret;
1476
1477         pd = fmr->pd;
1478         ret = fmr->device->dealloc_fmr(fmr);
1479         if (!ret)
1480                 atomic_dec(&pd->usecnt);
1481
1482         return ret;
1483 }
1484 EXPORT_SYMBOL(ib_dealloc_fmr);
1485
1486 /* Multicast groups */
1487
1488 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1489 {
1490         struct ib_qp_init_attr init_attr = {};
1491         struct ib_qp_attr attr = {};
1492         int num_eth_ports = 0;
1493         int port;
1494
1495         /* If QP state >= init, it is assigned to a port and we can check this
1496          * port only.
1497          */
1498         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1499                 if (attr.qp_state >= IB_QPS_INIT) {
1500                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1501                             IB_LINK_LAYER_INFINIBAND)
1502                                 return true;
1503                         goto lid_check;
1504                 }
1505         }
1506
1507         /* Can't get a quick answer, iterate over all ports */
1508         for (port = 0; port < qp->device->phys_port_cnt; port++)
1509                 if (rdma_port_get_link_layer(qp->device, port) !=
1510                     IB_LINK_LAYER_INFINIBAND)
1511                         num_eth_ports++;
1512
1513         /* If we have at lease one Ethernet port, RoCE annex declares that
1514          * multicast LID should be ignored. We can't tell at this step if the
1515          * QP belongs to an IB or Ethernet port.
1516          */
1517         if (num_eth_ports)
1518                 return true;
1519
1520         /* If all the ports are IB, we can check according to IB spec. */
1521 lid_check:
1522         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1523                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
1524 }
1525
1526 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1527 {
1528         int ret;
1529
1530         if (!qp->device->attach_mcast)
1531                 return -ENOSYS;
1532
1533         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1534             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1535                 return -EINVAL;
1536
1537         ret = qp->device->attach_mcast(qp, gid, lid);
1538         if (!ret)
1539                 atomic_inc(&qp->usecnt);
1540         return ret;
1541 }
1542 EXPORT_SYMBOL(ib_attach_mcast);
1543
1544 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1545 {
1546         int ret;
1547
1548         if (!qp->device->detach_mcast)
1549                 return -ENOSYS;
1550
1551         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1552             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1553                 return -EINVAL;
1554
1555         ret = qp->device->detach_mcast(qp, gid, lid);
1556         if (!ret)
1557                 atomic_dec(&qp->usecnt);
1558         return ret;
1559 }
1560 EXPORT_SYMBOL(ib_detach_mcast);
1561
1562 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1563 {
1564         struct ib_xrcd *xrcd;
1565
1566         if (!device->alloc_xrcd)
1567                 return ERR_PTR(-ENOSYS);
1568
1569         xrcd = device->alloc_xrcd(device, NULL, NULL);
1570         if (!IS_ERR(xrcd)) {
1571                 xrcd->device = device;
1572                 xrcd->inode = NULL;
1573                 atomic_set(&xrcd->usecnt, 0);
1574                 mutex_init(&xrcd->tgt_qp_mutex);
1575                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1576         }
1577
1578         return xrcd;
1579 }
1580 EXPORT_SYMBOL(ib_alloc_xrcd);
1581
1582 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1583 {
1584         struct ib_qp *qp;
1585         int ret;
1586
1587         if (atomic_read(&xrcd->usecnt))
1588                 return -EBUSY;
1589
1590         while (!list_empty(&xrcd->tgt_qp_list)) {
1591                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1592                 ret = ib_destroy_qp(qp);
1593                 if (ret)
1594                         return ret;
1595         }
1596
1597         return xrcd->device->dealloc_xrcd(xrcd);
1598 }
1599 EXPORT_SYMBOL(ib_dealloc_xrcd);
1600
1601 /**
1602  * ib_create_wq - Creates a WQ associated with the specified protection
1603  * domain.
1604  * @pd: The protection domain associated with the WQ.
1605  * @wq_init_attr: A list of initial attributes required to create the
1606  * WQ. If WQ creation succeeds, then the attributes are updated to
1607  * the actual capabilities of the created WQ.
1608  *
1609  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1610  * the requested size of the WQ, and set to the actual values allocated
1611  * on return.
1612  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1613  * at least as large as the requested values.
1614  */
1615 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1616                            struct ib_wq_init_attr *wq_attr)
1617 {
1618         struct ib_wq *wq;
1619
1620         if (!pd->device->create_wq)
1621                 return ERR_PTR(-ENOSYS);
1622
1623         wq = pd->device->create_wq(pd, wq_attr, NULL);
1624         if (!IS_ERR(wq)) {
1625                 wq->event_handler = wq_attr->event_handler;
1626                 wq->wq_context = wq_attr->wq_context;
1627                 wq->wq_type = wq_attr->wq_type;
1628                 wq->cq = wq_attr->cq;
1629                 wq->device = pd->device;
1630                 wq->pd = pd;
1631                 wq->uobject = NULL;
1632                 atomic_inc(&pd->usecnt);
1633                 atomic_inc(&wq_attr->cq->usecnt);
1634                 atomic_set(&wq->usecnt, 0);
1635         }
1636         return wq;
1637 }
1638 EXPORT_SYMBOL(ib_create_wq);
1639
1640 /**
1641  * ib_destroy_wq - Destroys the specified WQ.
1642  * @wq: The WQ to destroy.
1643  */
1644 int ib_destroy_wq(struct ib_wq *wq)
1645 {
1646         int err;
1647         struct ib_cq *cq = wq->cq;
1648         struct ib_pd *pd = wq->pd;
1649
1650         if (atomic_read(&wq->usecnt))
1651                 return -EBUSY;
1652
1653         err = wq->device->destroy_wq(wq);
1654         if (!err) {
1655                 atomic_dec(&pd->usecnt);
1656                 atomic_dec(&cq->usecnt);
1657         }
1658         return err;
1659 }
1660 EXPORT_SYMBOL(ib_destroy_wq);
1661
1662 /**
1663  * ib_modify_wq - Modifies the specified WQ.
1664  * @wq: The WQ to modify.
1665  * @wq_attr: On input, specifies the WQ attributes to modify.
1666  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1667  *   are being modified.
1668  * On output, the current values of selected WQ attributes are returned.
1669  */
1670 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1671                  u32 wq_attr_mask)
1672 {
1673         int err;
1674
1675         if (!wq->device->modify_wq)
1676                 return -ENOSYS;
1677
1678         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1679         return err;
1680 }
1681 EXPORT_SYMBOL(ib_modify_wq);
1682
1683 /*
1684  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1685  * @device: The device on which to create the rwq indirection table.
1686  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1687  * create the Indirection Table.
1688  *
1689  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1690  *      than the created ib_rwq_ind_table object and the caller is responsible
1691  *      for its memory allocation/free.
1692  */
1693 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1694                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1695 {
1696         struct ib_rwq_ind_table *rwq_ind_table;
1697         int i;
1698         u32 table_size;
1699
1700         if (!device->create_rwq_ind_table)
1701                 return ERR_PTR(-ENOSYS);
1702
1703         table_size = (1 << init_attr->log_ind_tbl_size);
1704         rwq_ind_table = device->create_rwq_ind_table(device,
1705                                 init_attr, NULL);
1706         if (IS_ERR(rwq_ind_table))
1707                 return rwq_ind_table;
1708
1709         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1710         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1711         rwq_ind_table->device = device;
1712         rwq_ind_table->uobject = NULL;
1713         atomic_set(&rwq_ind_table->usecnt, 0);
1714
1715         for (i = 0; i < table_size; i++)
1716                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1717
1718         return rwq_ind_table;
1719 }
1720 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1721
1722 /*
1723  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1724  * @wq_ind_table: The Indirection Table to destroy.
1725 */
1726 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1727 {
1728         int err, i;
1729         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1730         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1731
1732         if (atomic_read(&rwq_ind_table->usecnt))
1733                 return -EBUSY;
1734
1735         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1736         if (!err) {
1737                 for (i = 0; i < table_size; i++)
1738                         atomic_dec(&ind_tbl[i]->usecnt);
1739         }
1740
1741         return err;
1742 }
1743 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1744
1745 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1746                                struct ib_flow_attr *flow_attr,
1747                                int domain)
1748 {
1749         struct ib_flow *flow_id;
1750         if (!qp->device->create_flow)
1751                 return ERR_PTR(-ENOSYS);
1752
1753         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1754         if (!IS_ERR(flow_id))
1755                 atomic_inc(&qp->usecnt);
1756         return flow_id;
1757 }
1758 EXPORT_SYMBOL(ib_create_flow);
1759
1760 int ib_destroy_flow(struct ib_flow *flow_id)
1761 {
1762         int err;
1763         struct ib_qp *qp = flow_id->qp;
1764
1765         err = qp->device->destroy_flow(flow_id);
1766         if (!err)
1767                 atomic_dec(&qp->usecnt);
1768         return err;
1769 }
1770 EXPORT_SYMBOL(ib_destroy_flow);
1771
1772 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1773                        struct ib_mr_status *mr_status)
1774 {
1775         return mr->device->check_mr_status ?
1776                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1777 }
1778 EXPORT_SYMBOL(ib_check_mr_status);
1779
1780 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1781                          int state)
1782 {
1783         if (!device->set_vf_link_state)
1784                 return -ENOSYS;
1785
1786         return device->set_vf_link_state(device, vf, port, state);
1787 }
1788 EXPORT_SYMBOL(ib_set_vf_link_state);
1789
1790 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1791                      struct ifla_vf_info *info)
1792 {
1793         if (!device->get_vf_config)
1794                 return -ENOSYS;
1795
1796         return device->get_vf_config(device, vf, port, info);
1797 }
1798 EXPORT_SYMBOL(ib_get_vf_config);
1799
1800 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1801                     struct ifla_vf_stats *stats)
1802 {
1803         if (!device->get_vf_stats)
1804                 return -ENOSYS;
1805
1806         return device->get_vf_stats(device, vf, port, stats);
1807 }
1808 EXPORT_SYMBOL(ib_get_vf_stats);
1809
1810 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1811                    int type)
1812 {
1813         if (!device->set_vf_guid)
1814                 return -ENOSYS;
1815
1816         return device->set_vf_guid(device, vf, port, guid, type);
1817 }
1818 EXPORT_SYMBOL(ib_set_vf_guid);
1819
1820 /**
1821  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1822  *     and set it the memory region.
1823  * @mr:            memory region
1824  * @sg:            dma mapped scatterlist
1825  * @sg_nents:      number of entries in sg
1826  * @sg_offset:     offset in bytes into sg
1827  * @page_size:     page vector desired page size
1828  *
1829  * Constraints:
1830  * - The first sg element is allowed to have an offset.
1831  * - Each sg element must either be aligned to page_size or virtually
1832  *   contiguous to the previous element. In case an sg element has a
1833  *   non-contiguous offset, the mapping prefix will not include it.
1834  * - The last sg element is allowed to have length less than page_size.
1835  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1836  *   then only max_num_sg entries will be mapped.
1837  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1838  *   constraints holds and the page_size argument is ignored.
1839  *
1840  * Returns the number of sg elements that were mapped to the memory region.
1841  *
1842  * After this completes successfully, the  memory region
1843  * is ready for registration.
1844  */
1845 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1846                  unsigned int *sg_offset, unsigned int page_size)
1847 {
1848         if (unlikely(!mr->device->map_mr_sg))
1849                 return -ENOSYS;
1850
1851         mr->page_size = page_size;
1852
1853         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1854 }
1855 EXPORT_SYMBOL(ib_map_mr_sg);
1856
1857 /**
1858  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1859  *     to a page vector
1860  * @mr:            memory region
1861  * @sgl:           dma mapped scatterlist
1862  * @sg_nents:      number of entries in sg
1863  * @sg_offset_p:   IN:  start offset in bytes into sg
1864  *                 OUT: offset in bytes for element n of the sg of the first
1865  *                      byte that has not been processed where n is the return
1866  *                      value of this function.
1867  * @set_page:      driver page assignment function pointer
1868  *
1869  * Core service helper for drivers to convert the largest
1870  * prefix of given sg list to a page vector. The sg list
1871  * prefix converted is the prefix that meet the requirements
1872  * of ib_map_mr_sg.
1873  *
1874  * Returns the number of sg elements that were assigned to
1875  * a page vector.
1876  */
1877 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1878                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1879 {
1880         struct scatterlist *sg;
1881         u64 last_end_dma_addr = 0;
1882         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1883         unsigned int last_page_off = 0;
1884         u64 page_mask = ~((u64)mr->page_size - 1);
1885         int i, ret;
1886
1887         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1888                 return -EINVAL;
1889
1890         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1891         mr->length = 0;
1892
1893         for_each_sg(sgl, sg, sg_nents, i) {
1894                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1895                 u64 prev_addr = dma_addr;
1896                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1897                 u64 end_dma_addr = dma_addr + dma_len;
1898                 u64 page_addr = dma_addr & page_mask;
1899
1900                 /*
1901                  * For the second and later elements, check whether either the
1902                  * end of element i-1 or the start of element i is not aligned
1903                  * on a page boundary.
1904                  */
1905                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1906                         /* Stop mapping if there is a gap. */
1907                         if (last_end_dma_addr != dma_addr)
1908                                 break;
1909
1910                         /*
1911                          * Coalesce this element with the last. If it is small
1912                          * enough just update mr->length. Otherwise start
1913                          * mapping from the next page.
1914                          */
1915                         goto next_page;
1916                 }
1917
1918                 do {
1919                         ret = set_page(mr, page_addr);
1920                         if (unlikely(ret < 0)) {
1921                                 sg_offset = prev_addr - sg_dma_address(sg);
1922                                 mr->length += prev_addr - dma_addr;
1923                                 if (sg_offset_p)
1924                                         *sg_offset_p = sg_offset;
1925                                 return i || sg_offset ? i : ret;
1926                         }
1927                         prev_addr = page_addr;
1928 next_page:
1929                         page_addr += mr->page_size;
1930                 } while (page_addr < end_dma_addr);
1931
1932                 mr->length += dma_len;
1933                 last_end_dma_addr = end_dma_addr;
1934                 last_page_off = end_dma_addr & ~page_mask;
1935
1936                 sg_offset = 0;
1937         }
1938
1939         if (sg_offset_p)
1940                 *sg_offset_p = 0;
1941         return i;
1942 }
1943 EXPORT_SYMBOL(ib_sg_to_pages);
1944
1945 struct ib_drain_cqe {
1946         struct ib_cqe cqe;
1947         struct completion done;
1948 };
1949
1950 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1951 {
1952         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1953                                                 cqe);
1954
1955         complete(&cqe->done);
1956 }
1957
1958 /*
1959  * Post a WR and block until its completion is reaped for the SQ.
1960  */
1961 static void __ib_drain_sq(struct ib_qp *qp)
1962 {
1963         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1964         struct ib_drain_cqe sdrain;
1965         struct ib_send_wr *bad_swr;
1966         struct ib_rdma_wr swr = {
1967                 .wr = {
1968                         .opcode = IB_WR_RDMA_WRITE,
1969                         .wr_cqe = &sdrain.cqe,
1970                 },
1971         };
1972         int ret;
1973
1974         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1975                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1976                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1977                 return;
1978         }
1979
1980         sdrain.cqe.done = ib_drain_qp_done;
1981         init_completion(&sdrain.done);
1982
1983         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1984         if (ret) {
1985                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1986                 return;
1987         }
1988
1989         ret = ib_post_send(qp, &swr.wr, &bad_swr);
1990         if (ret) {
1991                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1992                 return;
1993         }
1994
1995         wait_for_completion(&sdrain.done);
1996 }
1997
1998 /*
1999  * Post a WR and block until its completion is reaped for the RQ.
2000  */
2001 static void __ib_drain_rq(struct ib_qp *qp)
2002 {
2003         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2004         struct ib_drain_cqe rdrain;
2005         struct ib_recv_wr rwr = {}, *bad_rwr;
2006         int ret;
2007
2008         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2009                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2010                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2011                 return;
2012         }
2013
2014         rwr.wr_cqe = &rdrain.cqe;
2015         rdrain.cqe.done = ib_drain_qp_done;
2016         init_completion(&rdrain.done);
2017
2018         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2019         if (ret) {
2020                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2021                 return;
2022         }
2023
2024         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2025         if (ret) {
2026                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2027                 return;
2028         }
2029
2030         wait_for_completion(&rdrain.done);
2031 }
2032
2033 /**
2034  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2035  *                 application.
2036  * @qp:            queue pair to drain
2037  *
2038  * If the device has a provider-specific drain function, then
2039  * call that.  Otherwise call the generic drain function
2040  * __ib_drain_sq().
2041  *
2042  * The caller must:
2043  *
2044  * ensure there is room in the CQ and SQ for the drain work request and
2045  * completion.
2046  *
2047  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2048  * IB_POLL_DIRECT.
2049  *
2050  * ensure that there are no other contexts that are posting WRs concurrently.
2051  * Otherwise the drain is not guaranteed.
2052  */
2053 void ib_drain_sq(struct ib_qp *qp)
2054 {
2055         if (qp->device->drain_sq)
2056                 qp->device->drain_sq(qp);
2057         else
2058                 __ib_drain_sq(qp);
2059 }
2060 EXPORT_SYMBOL(ib_drain_sq);
2061
2062 /**
2063  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2064  *                 application.
2065  * @qp:            queue pair to drain
2066  *
2067  * If the device has a provider-specific drain function, then
2068  * call that.  Otherwise call the generic drain function
2069  * __ib_drain_rq().
2070  *
2071  * The caller must:
2072  *
2073  * ensure there is room in the CQ and RQ for the drain work request and
2074  * completion.
2075  *
2076  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2077  * IB_POLL_DIRECT.
2078  *
2079  * ensure that there are no other contexts that are posting WRs concurrently.
2080  * Otherwise the drain is not guaranteed.
2081  */
2082 void ib_drain_rq(struct ib_qp *qp)
2083 {
2084         if (qp->device->drain_rq)
2085                 qp->device->drain_rq(qp);
2086         else
2087                 __ib_drain_rq(qp);
2088 }
2089 EXPORT_SYMBOL(ib_drain_rq);
2090
2091 /**
2092  * ib_drain_qp() - Block until all CQEs have been consumed by the
2093  *                 application on both the RQ and SQ.
2094  * @qp:            queue pair to drain
2095  *
2096  * The caller must:
2097  *
2098  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2099  * and completions.
2100  *
2101  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2102  * IB_POLL_DIRECT.
2103  *
2104  * ensure that there are no other contexts that are posting WRs concurrently.
2105  * Otherwise the drain is not guaranteed.
2106  */
2107 void ib_drain_qp(struct ib_qp *qp)
2108 {
2109         ib_drain_sq(qp);
2110         if (!qp->srq)
2111                 ib_drain_rq(qp);
2112 }
2113 EXPORT_SYMBOL(ib_drain_qp);