]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
OCF: Hook up plain RIPEMD160 in cryptosoft and /dev/crypto.
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60
61 #include "opt_compat.h"
62 #include "opt_ddb.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/counter.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/linker.h>
70 #include <sys/lock.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/sdt.h>
78 #include <sys/smp.h>
79 #include <sys/sysctl.h>
80 #include <sys/taskqueue.h>
81 #include <sys/uio.h>
82
83 #include <ddb/ddb.h>
84
85 #include <machine/vmparam.h>
86 #include <vm/uma.h>
87
88 #include <crypto/intake.h>
89 #include <opencrypto/cryptodev.h>
90 #include <opencrypto/xform_auth.h>
91 #include <opencrypto/xform_enc.h>
92
93 #include <sys/kobj.h>
94 #include <sys/bus.h>
95 #include "cryptodev_if.h"
96
97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
98 #include <machine/pcb.h>
99 #endif
100
101 SDT_PROVIDER_DEFINE(opencrypto);
102
103 /*
104  * Crypto drivers register themselves by allocating a slot in the
105  * crypto_drivers table with crypto_get_driverid().
106  */
107 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
108 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
109 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
110 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
111
112 /*
113  * Crypto device/driver capabilities structure.
114  *
115  * Synchronization:
116  * (d) - protected by CRYPTO_DRIVER_LOCK()
117  * (q) - protected by CRYPTO_Q_LOCK()
118  * Not tagged fields are read-only.
119  */
120 struct cryptocap {
121         device_t        cc_dev;
122         uint32_t        cc_hid;
123         uint32_t        cc_sessions;            /* (d) # of sessions */
124
125         int             cc_flags;               /* (d) flags */
126 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
127         int             cc_qblocked;            /* (q) symmetric q blocked */
128         size_t          cc_session_size;
129         volatile int    cc_refs;
130 };
131
132 static  struct cryptocap **crypto_drivers = NULL;
133 static  int crypto_drivers_size = 0;
134
135 struct crypto_session {
136         struct cryptocap *cap;
137         struct crypto_session_params csp;
138         uint64_t id;
139         /* Driver softc follows. */
140 };
141
142 static  int crp_sleep = 0;
143 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
144 static  struct mtx crypto_q_mtx;
145 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
146 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
147
148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
149     "In-kernel cryptography");
150
151 /*
152  * Taskqueue used to dispatch the crypto requests
153  * that have the CRYPTO_F_ASYNC flag
154  */
155 static struct taskqueue *crypto_tq;
156
157 /*
158  * Crypto seq numbers are operated on with modular arithmetic
159  */
160 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
161
162 struct crypto_ret_worker {
163         struct mtx crypto_ret_mtx;
164
165         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
166         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
167
168         uint32_t reorder_ops;           /* total ordered sym jobs received */
169         uint32_t reorder_cur_seq;       /* current sym job dispatched */
170
171         struct thread *td;
172 };
173 static struct crypto_ret_worker *crypto_ret_workers = NULL;
174
175 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
176 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
177 #define FOREACH_CRYPTO_RETW(w) \
178         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
179
180 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
181 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
182
183 static int crypto_workers_num = 0;
184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
185            &crypto_workers_num, 0,
186            "Number of crypto workers used to dispatch crypto jobs");
187 #ifdef COMPAT_FREEBSD12
188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
189            &crypto_workers_num, 0,
190            "Number of crypto workers used to dispatch crypto jobs");
191 #endif
192
193 static  uma_zone_t cryptop_zone;
194
195 int     crypto_devallowsoft = 0;
196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
197            &crypto_devallowsoft, 0,
198            "Enable use of software crypto by /dev/crypto");
199 #ifdef COMPAT_FREEBSD12
200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
201            &crypto_devallowsoft, 0,
202            "Enable/disable use of software crypto by /dev/crypto");
203 #endif
204
205 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
206
207 static  void crypto_dispatch_thread(void *arg);
208 static  struct thread *cryptotd;
209 static  void crypto_ret_thread(void *arg);
210 static  void crypto_destroy(void);
211 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
212 static  void crypto_task_invoke(void *ctx, int pending);
213 static void crypto_batch_enqueue(struct cryptop *crp);
214
215 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
216 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
217     cryptostats, nitems(cryptostats),
218     "Crypto system statistics");
219
220 #define CRYPTOSTAT_INC(stat) do {                                       \
221         counter_u64_add(                                                \
222             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
223             1);                                                         \
224 } while (0)
225
226 static void
227 cryptostats_init(void *arg __unused)
228 {
229         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
230 }
231 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
232
233 static void
234 cryptostats_fini(void *arg __unused)
235 {
236         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
237 }
238 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
239     NULL);
240
241 /* Try to avoid directly exposing the key buffer as a symbol */
242 static struct keybuf *keybuf;
243
244 static struct keybuf empty_keybuf = {
245         .kb_nents = 0
246 };
247
248 /* Obtain the key buffer from boot metadata */
249 static void
250 keybuf_init(void)
251 {
252         caddr_t kmdp;
253
254         kmdp = preload_search_by_type("elf kernel");
255
256         if (kmdp == NULL)
257                 kmdp = preload_search_by_type("elf64 kernel");
258
259         keybuf = (struct keybuf *)preload_search_info(kmdp,
260             MODINFO_METADATA | MODINFOMD_KEYBUF);
261
262         if (keybuf == NULL)
263                 keybuf = &empty_keybuf;
264 }
265
266 /* It'd be nice if we could store these in some kind of secure memory... */
267 struct keybuf *
268 get_keybuf(void)
269 {
270
271         return (keybuf);
272 }
273
274 static struct cryptocap *
275 cap_ref(struct cryptocap *cap)
276 {
277
278         refcount_acquire(&cap->cc_refs);
279         return (cap);
280 }
281
282 static void
283 cap_rele(struct cryptocap *cap)
284 {
285
286         if (refcount_release(&cap->cc_refs) == 0)
287                 return;
288
289         KASSERT(cap->cc_sessions == 0,
290             ("freeing crypto driver with active sessions"));
291
292         free(cap, M_CRYPTO_DATA);
293 }
294
295 static int
296 crypto_init(void)
297 {
298         struct crypto_ret_worker *ret_worker;
299         struct proc *p;
300         int error;
301
302         mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
303
304         TAILQ_INIT(&crp_q);
305         mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
306
307         cryptop_zone = uma_zcreate("cryptop",
308             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
309             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
310
311         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
312         crypto_drivers = malloc(crypto_drivers_size *
313             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
314
315         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
316                 crypto_workers_num = mp_ncpus;
317
318         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
319             taskqueue_thread_enqueue, &crypto_tq);
320
321         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
322             "crypto");
323
324         p = NULL;
325         error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
326             0, 0, "crypto", "crypto");
327         if (error) {
328                 printf("crypto_init: cannot start crypto thread; error %d",
329                         error);
330                 goto bad;
331         }
332
333         crypto_ret_workers = mallocarray(crypto_workers_num,
334             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
335
336         FOREACH_CRYPTO_RETW(ret_worker) {
337                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
338                 TAILQ_INIT(&ret_worker->crp_ret_q);
339
340                 ret_worker->reorder_ops = 0;
341                 ret_worker->reorder_cur_seq = 0;
342
343                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
344                     NULL, MTX_DEF);
345
346                 error = kthread_add(crypto_ret_thread, ret_worker, p,
347                     &ret_worker->td, 0, 0, "crypto returns %td",
348                     CRYPTO_RETW_ID(ret_worker));
349                 if (error) {
350                         printf("crypto_init: cannot start cryptoret thread; error %d",
351                                 error);
352                         goto bad;
353                 }
354         }
355
356         keybuf_init();
357
358         return 0;
359 bad:
360         crypto_destroy();
361         return error;
362 }
363
364 /*
365  * Signal a crypto thread to terminate.  We use the driver
366  * table lock to synchronize the sleep/wakeups so that we
367  * are sure the threads have terminated before we release
368  * the data structures they use.  See crypto_finis below
369  * for the other half of this song-and-dance.
370  */
371 static void
372 crypto_terminate(struct thread **tdp, void *q)
373 {
374         struct thread *td;
375
376         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
377         td = *tdp;
378         *tdp = NULL;
379         if (td != NULL) {
380                 wakeup_one(q);
381                 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
382         }
383 }
384
385 static void
386 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
387     void *auth_ctx, uint8_t padval)
388 {
389         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
390         u_int i;
391
392         KASSERT(axf->blocksize <= sizeof(hmac_key),
393             ("Invalid HMAC block size %d", axf->blocksize));
394
395         /*
396          * If the key is larger than the block size, use the digest of
397          * the key as the key instead.
398          */
399         memset(hmac_key, 0, sizeof(hmac_key));
400         if (klen > axf->blocksize) {
401                 axf->Init(auth_ctx);
402                 axf->Update(auth_ctx, key, klen);
403                 axf->Final(hmac_key, auth_ctx);
404                 klen = axf->hashsize;
405         } else
406                 memcpy(hmac_key, key, klen);
407
408         for (i = 0; i < axf->blocksize; i++)
409                 hmac_key[i] ^= padval;
410
411         axf->Init(auth_ctx);
412         axf->Update(auth_ctx, hmac_key, axf->blocksize);
413         explicit_bzero(hmac_key, sizeof(hmac_key));
414 }
415
416 void
417 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
418     void *auth_ctx)
419 {
420
421         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
422 }
423
424 void
425 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
426     void *auth_ctx)
427 {
428
429         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
430 }
431
432 static void
433 crypto_destroy(void)
434 {
435         struct crypto_ret_worker *ret_worker;
436         int i;
437
438         /*
439          * Terminate any crypto threads.
440          */
441         if (crypto_tq != NULL)
442                 taskqueue_drain_all(crypto_tq);
443         CRYPTO_DRIVER_LOCK();
444         crypto_terminate(&cryptotd, &crp_q);
445         FOREACH_CRYPTO_RETW(ret_worker)
446                 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
447         CRYPTO_DRIVER_UNLOCK();
448
449         /* XXX flush queues??? */
450
451         /*
452          * Reclaim dynamically allocated resources.
453          */
454         for (i = 0; i < crypto_drivers_size; i++) {
455                 if (crypto_drivers[i] != NULL)
456                         cap_rele(crypto_drivers[i]);
457         }
458         free(crypto_drivers, M_CRYPTO_DATA);
459
460         if (cryptop_zone != NULL)
461                 uma_zdestroy(cryptop_zone);
462         mtx_destroy(&crypto_q_mtx);
463         FOREACH_CRYPTO_RETW(ret_worker)
464                 mtx_destroy(&ret_worker->crypto_ret_mtx);
465         free(crypto_ret_workers, M_CRYPTO_DATA);
466         if (crypto_tq != NULL)
467                 taskqueue_free(crypto_tq);
468         mtx_destroy(&crypto_drivers_mtx);
469 }
470
471 uint32_t
472 crypto_ses2hid(crypto_session_t crypto_session)
473 {
474         return (crypto_session->cap->cc_hid);
475 }
476
477 uint32_t
478 crypto_ses2caps(crypto_session_t crypto_session)
479 {
480         return (crypto_session->cap->cc_flags & 0xff000000);
481 }
482
483 void *
484 crypto_get_driver_session(crypto_session_t crypto_session)
485 {
486         return (crypto_session + 1);
487 }
488
489 const struct crypto_session_params *
490 crypto_get_params(crypto_session_t crypto_session)
491 {
492         return (&crypto_session->csp);
493 }
494
495 const struct auth_hash *
496 crypto_auth_hash(const struct crypto_session_params *csp)
497 {
498
499         switch (csp->csp_auth_alg) {
500         case CRYPTO_SHA1_HMAC:
501                 return (&auth_hash_hmac_sha1);
502         case CRYPTO_SHA2_224_HMAC:
503                 return (&auth_hash_hmac_sha2_224);
504         case CRYPTO_SHA2_256_HMAC:
505                 return (&auth_hash_hmac_sha2_256);
506         case CRYPTO_SHA2_384_HMAC:
507                 return (&auth_hash_hmac_sha2_384);
508         case CRYPTO_SHA2_512_HMAC:
509                 return (&auth_hash_hmac_sha2_512);
510         case CRYPTO_NULL_HMAC:
511                 return (&auth_hash_null);
512         case CRYPTO_RIPEMD160_HMAC:
513                 return (&auth_hash_hmac_ripemd_160);
514         case CRYPTO_RIPEMD160:
515                 return (&auth_hash_ripemd_160);
516         case CRYPTO_SHA1:
517                 return (&auth_hash_sha1);
518         case CRYPTO_SHA2_224:
519                 return (&auth_hash_sha2_224);
520         case CRYPTO_SHA2_256:
521                 return (&auth_hash_sha2_256);
522         case CRYPTO_SHA2_384:
523                 return (&auth_hash_sha2_384);
524         case CRYPTO_SHA2_512:
525                 return (&auth_hash_sha2_512);
526         case CRYPTO_AES_NIST_GMAC:
527                 switch (csp->csp_auth_klen) {
528                 case 128 / 8:
529                         return (&auth_hash_nist_gmac_aes_128);
530                 case 192 / 8:
531                         return (&auth_hash_nist_gmac_aes_192);
532                 case 256 / 8:
533                         return (&auth_hash_nist_gmac_aes_256);
534                 default:
535                         return (NULL);
536                 }
537         case CRYPTO_BLAKE2B:
538                 return (&auth_hash_blake2b);
539         case CRYPTO_BLAKE2S:
540                 return (&auth_hash_blake2s);
541         case CRYPTO_POLY1305:
542                 return (&auth_hash_poly1305);
543         case CRYPTO_AES_CCM_CBC_MAC:
544                 switch (csp->csp_auth_klen) {
545                 case 128 / 8:
546                         return (&auth_hash_ccm_cbc_mac_128);
547                 case 192 / 8:
548                         return (&auth_hash_ccm_cbc_mac_192);
549                 case 256 / 8:
550                         return (&auth_hash_ccm_cbc_mac_256);
551                 default:
552                         return (NULL);
553                 }
554         default:
555                 return (NULL);
556         }
557 }
558
559 const struct enc_xform *
560 crypto_cipher(const struct crypto_session_params *csp)
561 {
562
563         switch (csp->csp_cipher_alg) {
564         case CRYPTO_AES_CBC:
565                 return (&enc_xform_aes_cbc);
566         case CRYPTO_AES_XTS:
567                 return (&enc_xform_aes_xts);
568         case CRYPTO_AES_ICM:
569                 return (&enc_xform_aes_icm);
570         case CRYPTO_AES_NIST_GCM_16:
571                 return (&enc_xform_aes_nist_gcm);
572         case CRYPTO_CAMELLIA_CBC:
573                 return (&enc_xform_camellia);
574         case CRYPTO_NULL_CBC:
575                 return (&enc_xform_null);
576         case CRYPTO_CHACHA20:
577                 return (&enc_xform_chacha20);
578         case CRYPTO_AES_CCM_16:
579                 return (&enc_xform_ccm);
580         case CRYPTO_CHACHA20_POLY1305:
581                 return (&enc_xform_chacha20_poly1305);
582         default:
583                 return (NULL);
584         }
585 }
586
587 static struct cryptocap *
588 crypto_checkdriver(uint32_t hid)
589 {
590
591         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
592 }
593
594 /*
595  * Select a driver for a new session that supports the specified
596  * algorithms and, optionally, is constrained according to the flags.
597  */
598 static struct cryptocap *
599 crypto_select_driver(const struct crypto_session_params *csp, int flags)
600 {
601         struct cryptocap *cap, *best;
602         int best_match, error, hid;
603
604         CRYPTO_DRIVER_ASSERT();
605
606         best = NULL;
607         for (hid = 0; hid < crypto_drivers_size; hid++) {
608                 /*
609                  * If there is no driver for this slot, or the driver
610                  * is not appropriate (hardware or software based on
611                  * match), then skip.
612                  */
613                 cap = crypto_drivers[hid];
614                 if (cap == NULL ||
615                     (cap->cc_flags & flags) == 0)
616                         continue;
617
618                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
619                 if (error >= 0)
620                         continue;
621
622                 /*
623                  * Use the driver with the highest probe value.
624                  * Hardware drivers use a higher probe value than
625                  * software.  In case of a tie, prefer the driver with
626                  * the fewest active sessions.
627                  */
628                 if (best == NULL || error > best_match ||
629                     (error == best_match &&
630                     cap->cc_sessions < best->cc_sessions)) {
631                         best = cap;
632                         best_match = error;
633                 }
634         }
635         return best;
636 }
637
638 static enum alg_type {
639         ALG_NONE = 0,
640         ALG_CIPHER,
641         ALG_DIGEST,
642         ALG_KEYED_DIGEST,
643         ALG_COMPRESSION,
644         ALG_AEAD
645 } alg_types[] = {
646         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
647         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
648         [CRYPTO_AES_CBC] = ALG_CIPHER,
649         [CRYPTO_SHA1] = ALG_DIGEST,
650         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
651         [CRYPTO_NULL_CBC] = ALG_CIPHER,
652         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
653         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
654         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
655         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
656         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
657         [CRYPTO_AES_XTS] = ALG_CIPHER,
658         [CRYPTO_AES_ICM] = ALG_CIPHER,
659         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
660         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
661         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
662         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
663         [CRYPTO_CHACHA20] = ALG_CIPHER,
664         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
665         [CRYPTO_RIPEMD160] = ALG_DIGEST,
666         [CRYPTO_SHA2_224] = ALG_DIGEST,
667         [CRYPTO_SHA2_256] = ALG_DIGEST,
668         [CRYPTO_SHA2_384] = ALG_DIGEST,
669         [CRYPTO_SHA2_512] = ALG_DIGEST,
670         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
671         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
672         [CRYPTO_AES_CCM_16] = ALG_AEAD,
673         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
674 };
675
676 static enum alg_type
677 alg_type(int alg)
678 {
679
680         if (alg < nitems(alg_types))
681                 return (alg_types[alg]);
682         return (ALG_NONE);
683 }
684
685 static bool
686 alg_is_compression(int alg)
687 {
688
689         return (alg_type(alg) == ALG_COMPRESSION);
690 }
691
692 static bool
693 alg_is_cipher(int alg)
694 {
695
696         return (alg_type(alg) == ALG_CIPHER);
697 }
698
699 static bool
700 alg_is_digest(int alg)
701 {
702
703         return (alg_type(alg) == ALG_DIGEST ||
704             alg_type(alg) == ALG_KEYED_DIGEST);
705 }
706
707 static bool
708 alg_is_keyed_digest(int alg)
709 {
710
711         return (alg_type(alg) == ALG_KEYED_DIGEST);
712 }
713
714 static bool
715 alg_is_aead(int alg)
716 {
717
718         return (alg_type(alg) == ALG_AEAD);
719 }
720
721 static bool
722 ccm_tag_length_valid(int len)
723 {
724         /* RFC 3610 */
725         switch (len) {
726         case 4:
727         case 6:
728         case 8:
729         case 10:
730         case 12:
731         case 14:
732         case 16:
733                 return (true);
734         default:
735                 return (false);
736         }
737 }
738
739 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
740
741 /* Various sanity checks on crypto session parameters. */
742 static bool
743 check_csp(const struct crypto_session_params *csp)
744 {
745         const struct auth_hash *axf;
746
747         /* Mode-independent checks. */
748         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
749                 return (false);
750         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
751             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
752                 return (false);
753         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
754                 return (false);
755         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
756                 return (false);
757
758         switch (csp->csp_mode) {
759         case CSP_MODE_COMPRESS:
760                 if (!alg_is_compression(csp->csp_cipher_alg))
761                         return (false);
762                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
763                         return (false);
764                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
765                         return (false);
766                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
767                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
768                     csp->csp_auth_mlen != 0)
769                         return (false);
770                 break;
771         case CSP_MODE_CIPHER:
772                 if (!alg_is_cipher(csp->csp_cipher_alg))
773                         return (false);
774                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
775                         return (false);
776                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
777                         if (csp->csp_cipher_klen == 0)
778                                 return (false);
779                         if (csp->csp_ivlen == 0)
780                                 return (false);
781                 }
782                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
783                         return (false);
784                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
785                     csp->csp_auth_mlen != 0)
786                         return (false);
787                 break;
788         case CSP_MODE_DIGEST:
789                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
790                         return (false);
791
792                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
793                         return (false);
794
795                 /* IV is optional for digests (e.g. GMAC). */
796                 switch (csp->csp_auth_alg) {
797                 case CRYPTO_AES_CCM_CBC_MAC:
798                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
799                                 return (false);
800                         break;
801                 case CRYPTO_AES_NIST_GMAC:
802                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
803                                 return (false);
804                         break;
805                 default:
806                         if (csp->csp_ivlen != 0)
807                                 return (false);
808                         break;
809                 }
810
811                 if (!alg_is_digest(csp->csp_auth_alg))
812                         return (false);
813
814                 /* Key is optional for BLAKE2 digests. */
815                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
816                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
817                         ;
818                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
819                         if (csp->csp_auth_klen == 0)
820                                 return (false);
821                 } else {
822                         if (csp->csp_auth_klen != 0)
823                                 return (false);
824                 }
825                 if (csp->csp_auth_mlen != 0) {
826                         axf = crypto_auth_hash(csp);
827                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
828                                 return (false);
829
830                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
831                             !ccm_tag_length_valid(csp->csp_auth_mlen))
832                                 return (false);
833                 }
834                 break;
835         case CSP_MODE_AEAD:
836                 if (!alg_is_aead(csp->csp_cipher_alg))
837                         return (false);
838                 if (csp->csp_cipher_klen == 0)
839                         return (false);
840                 if (csp->csp_ivlen == 0 ||
841                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
842                         return (false);
843                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
844                         return (false);
845
846                 switch (csp->csp_cipher_alg) {
847                 case CRYPTO_AES_CCM_16:
848                         if (csp->csp_auth_mlen != 0 &&
849                             !ccm_tag_length_valid(csp->csp_auth_mlen))
850                                 return (false);
851
852                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
853                                 return (false);
854                         break;
855                 case CRYPTO_AES_NIST_GCM_16:
856                         if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
857                                 return (false);
858
859                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
860                                 return (false);
861                         break;
862                 case CRYPTO_CHACHA20_POLY1305:
863                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
864                                 return (false);
865                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
866                                 return (false);
867                         break;
868                 }
869                 break;
870         case CSP_MODE_ETA:
871                 if (!alg_is_cipher(csp->csp_cipher_alg))
872                         return (false);
873                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
874                         if (csp->csp_cipher_klen == 0)
875                                 return (false);
876                         if (csp->csp_ivlen == 0)
877                                 return (false);
878                 }
879                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
880                         return (false);
881                 if (!alg_is_digest(csp->csp_auth_alg))
882                         return (false);
883
884                 /* Key is optional for BLAKE2 digests. */
885                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
886                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
887                         ;
888                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
889                         if (csp->csp_auth_klen == 0)
890                                 return (false);
891                 } else {
892                         if (csp->csp_auth_klen != 0)
893                                 return (false);
894                 }
895                 if (csp->csp_auth_mlen != 0) {
896                         axf = crypto_auth_hash(csp);
897                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
898                                 return (false);
899                 }
900                 break;
901         default:
902                 return (false);
903         }
904
905         return (true);
906 }
907
908 /*
909  * Delete a session after it has been detached from its driver.
910  */
911 static void
912 crypto_deletesession(crypto_session_t cses)
913 {
914         struct cryptocap *cap;
915
916         cap = cses->cap;
917
918         zfree(cses, M_CRYPTO_DATA);
919
920         CRYPTO_DRIVER_LOCK();
921         cap->cc_sessions--;
922         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
923                 wakeup(cap);
924         CRYPTO_DRIVER_UNLOCK();
925         cap_rele(cap);
926 }
927
928 /*
929  * Create a new session.  The crid argument specifies a crypto
930  * driver to use or constraints on a driver to select (hardware
931  * only, software only, either).  Whatever driver is selected
932  * must be capable of the requested crypto algorithms.
933  */
934 int
935 crypto_newsession(crypto_session_t *cses,
936     const struct crypto_session_params *csp, int crid)
937 {
938         static uint64_t sessid = 0;
939         crypto_session_t res;
940         struct cryptocap *cap;
941         int err;
942
943         if (!check_csp(csp))
944                 return (EINVAL);
945
946         res = NULL;
947
948         CRYPTO_DRIVER_LOCK();
949         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
950                 /*
951                  * Use specified driver; verify it is capable.
952                  */
953                 cap = crypto_checkdriver(crid);
954                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
955                         cap = NULL;
956         } else {
957                 /*
958                  * No requested driver; select based on crid flags.
959                  */
960                 cap = crypto_select_driver(csp, crid);
961         }
962         if (cap == NULL) {
963                 CRYPTO_DRIVER_UNLOCK();
964                 CRYPTDEB("no driver");
965                 return (EOPNOTSUPP);
966         }
967         cap_ref(cap);
968         cap->cc_sessions++;
969         CRYPTO_DRIVER_UNLOCK();
970
971         /* Allocate a single block for the generic session and driver softc. */
972         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
973             M_WAITOK | M_ZERO);
974         res->cap = cap;
975         res->csp = *csp;
976         res->id = atomic_fetchadd_64(&sessid, 1);
977
978         /* Call the driver initialization routine. */
979         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
980         if (err != 0) {
981                 CRYPTDEB("dev newsession failed: %d", err);
982                 crypto_deletesession(res);
983                 return (err);
984         }
985
986         *cses = res;
987         return (0);
988 }
989
990 /*
991  * Delete an existing session (or a reserved session on an unregistered
992  * driver).
993  */
994 void
995 crypto_freesession(crypto_session_t cses)
996 {
997         struct cryptocap *cap;
998
999         if (cses == NULL)
1000                 return;
1001
1002         cap = cses->cap;
1003
1004         /* Call the driver cleanup routine, if available. */
1005         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1006
1007         crypto_deletesession(cses);
1008 }
1009
1010 /*
1011  * Return a new driver id.  Registers a driver with the system so that
1012  * it can be probed by subsequent sessions.
1013  */
1014 int32_t
1015 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1016 {
1017         struct cryptocap *cap, **newdrv;
1018         int i;
1019
1020         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1021                 device_printf(dev,
1022                     "no flags specified when registering driver\n");
1023                 return -1;
1024         }
1025
1026         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1027         cap->cc_dev = dev;
1028         cap->cc_session_size = sessionsize;
1029         cap->cc_flags = flags;
1030         refcount_init(&cap->cc_refs, 1);
1031
1032         CRYPTO_DRIVER_LOCK();
1033         for (;;) {
1034                 for (i = 0; i < crypto_drivers_size; i++) {
1035                         if (crypto_drivers[i] == NULL)
1036                                 break;
1037                 }
1038
1039                 if (i < crypto_drivers_size)
1040                         break;
1041
1042                 /* Out of entries, allocate some more. */
1043
1044                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1045                         CRYPTO_DRIVER_UNLOCK();
1046                         printf("crypto: driver count wraparound!\n");
1047                         cap_rele(cap);
1048                         return (-1);
1049                 }
1050                 CRYPTO_DRIVER_UNLOCK();
1051
1052                 newdrv = malloc(2 * crypto_drivers_size *
1053                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1054
1055                 CRYPTO_DRIVER_LOCK();
1056                 memcpy(newdrv, crypto_drivers,
1057                     crypto_drivers_size * sizeof(*crypto_drivers));
1058
1059                 crypto_drivers_size *= 2;
1060
1061                 free(crypto_drivers, M_CRYPTO_DATA);
1062                 crypto_drivers = newdrv;
1063         }
1064
1065         cap->cc_hid = i;
1066         crypto_drivers[i] = cap;
1067         CRYPTO_DRIVER_UNLOCK();
1068
1069         if (bootverbose)
1070                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1071                     device_get_nameunit(dev), i, flags);
1072
1073         return i;
1074 }
1075
1076 /*
1077  * Lookup a driver by name.  We match against the full device
1078  * name and unit, and against just the name.  The latter gives
1079  * us a simple widlcarding by device name.  On success return the
1080  * driver/hardware identifier; otherwise return -1.
1081  */
1082 int
1083 crypto_find_driver(const char *match)
1084 {
1085         struct cryptocap *cap;
1086         int i, len = strlen(match);
1087
1088         CRYPTO_DRIVER_LOCK();
1089         for (i = 0; i < crypto_drivers_size; i++) {
1090                 if (crypto_drivers[i] == NULL)
1091                         continue;
1092                 cap = crypto_drivers[i];
1093                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1094                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1095                         CRYPTO_DRIVER_UNLOCK();
1096                         return (i);
1097                 }
1098         }
1099         CRYPTO_DRIVER_UNLOCK();
1100         return (-1);
1101 }
1102
1103 /*
1104  * Return the device_t for the specified driver or NULL
1105  * if the driver identifier is invalid.
1106  */
1107 device_t
1108 crypto_find_device_byhid(int hid)
1109 {
1110         struct cryptocap *cap;
1111         device_t dev;
1112
1113         dev = NULL;
1114         CRYPTO_DRIVER_LOCK();
1115         cap = crypto_checkdriver(hid);
1116         if (cap != NULL)
1117                 dev = cap->cc_dev;
1118         CRYPTO_DRIVER_UNLOCK();
1119         return (dev);
1120 }
1121
1122 /*
1123  * Return the device/driver capabilities.
1124  */
1125 int
1126 crypto_getcaps(int hid)
1127 {
1128         struct cryptocap *cap;
1129         int flags;
1130
1131         flags = 0;
1132         CRYPTO_DRIVER_LOCK();
1133         cap = crypto_checkdriver(hid);
1134         if (cap != NULL)
1135                 flags = cap->cc_flags;
1136         CRYPTO_DRIVER_UNLOCK();
1137         return (flags);
1138 }
1139
1140 /*
1141  * Unregister all algorithms associated with a crypto driver.
1142  * If there are pending sessions using it, leave enough information
1143  * around so that subsequent calls using those sessions will
1144  * correctly detect the driver has been unregistered and reroute
1145  * requests.
1146  */
1147 int
1148 crypto_unregister_all(uint32_t driverid)
1149 {
1150         struct cryptocap *cap;
1151
1152         CRYPTO_DRIVER_LOCK();
1153         cap = crypto_checkdriver(driverid);
1154         if (cap == NULL) {
1155                 CRYPTO_DRIVER_UNLOCK();
1156                 return (EINVAL);
1157         }
1158
1159         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1160         crypto_drivers[driverid] = NULL;
1161
1162         /*
1163          * XXX: This doesn't do anything to kick sessions that
1164          * have no pending operations.
1165          */
1166         while (cap->cc_sessions != 0)
1167                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1168         CRYPTO_DRIVER_UNLOCK();
1169         cap_rele(cap);
1170
1171         return (0);
1172 }
1173
1174 /*
1175  * Clear blockage on a driver.  The what parameter indicates whether
1176  * the driver is now ready for cryptop's and/or cryptokop's.
1177  */
1178 int
1179 crypto_unblock(uint32_t driverid, int what)
1180 {
1181         struct cryptocap *cap;
1182         int err;
1183
1184         CRYPTO_Q_LOCK();
1185         cap = crypto_checkdriver(driverid);
1186         if (cap != NULL) {
1187                 if (what & CRYPTO_SYMQ)
1188                         cap->cc_qblocked = 0;
1189                 if (crp_sleep)
1190                         wakeup_one(&crp_q);
1191                 err = 0;
1192         } else
1193                 err = EINVAL;
1194         CRYPTO_Q_UNLOCK();
1195
1196         return err;
1197 }
1198
1199 size_t
1200 crypto_buffer_len(struct crypto_buffer *cb)
1201 {
1202         switch (cb->cb_type) {
1203         case CRYPTO_BUF_CONTIG:
1204                 return (cb->cb_buf_len);
1205         case CRYPTO_BUF_MBUF:
1206                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1207                         return (cb->cb_mbuf->m_pkthdr.len);
1208                 return (m_length(cb->cb_mbuf, NULL));
1209         case CRYPTO_BUF_SINGLE_MBUF:
1210                 return (cb->cb_mbuf->m_len);
1211         case CRYPTO_BUF_VMPAGE:
1212                 return (cb->cb_vm_page_len);
1213         case CRYPTO_BUF_UIO:
1214                 return (cb->cb_uio->uio_resid);
1215         default:
1216                 return (0);
1217         }
1218 }
1219
1220 #ifdef INVARIANTS
1221 /* Various sanity checks on crypto requests. */
1222 static void
1223 cb_sanity(struct crypto_buffer *cb, const char *name)
1224 {
1225         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1226             ("incoming crp with invalid %s buffer type", name));
1227         switch (cb->cb_type) {
1228         case CRYPTO_BUF_CONTIG:
1229                 KASSERT(cb->cb_buf_len >= 0,
1230                     ("incoming crp with -ve %s buffer length", name));
1231                 break;
1232         case CRYPTO_BUF_VMPAGE:
1233                 KASSERT(CRYPTO_HAS_VMPAGE,
1234                     ("incoming crp uses dmap on supported arch"));
1235                 KASSERT(cb->cb_vm_page_len >= 0,
1236                     ("incoming crp with -ve %s buffer length", name));
1237                 KASSERT(cb->cb_vm_page_offset >= 0,
1238                     ("incoming crp with -ve %s buffer offset", name));
1239                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1240                     ("incoming crp with %s buffer offset greater than page size"
1241                      , name));
1242                 break;
1243         default:
1244                 break;
1245         }
1246 }
1247
1248 static void
1249 crp_sanity(struct cryptop *crp)
1250 {
1251         struct crypto_session_params *csp;
1252         struct crypto_buffer *out;
1253         size_t ilen, len, olen;
1254
1255         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1256         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1257             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1258             ("incoming crp with invalid output buffer type"));
1259         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1260         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1261             ("incoming crp already done"));
1262
1263         csp = &crp->crp_session->csp;
1264         cb_sanity(&crp->crp_buf, "input");
1265         ilen = crypto_buffer_len(&crp->crp_buf);
1266         olen = ilen;
1267         out = NULL;
1268         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1269                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1270                         cb_sanity(&crp->crp_obuf, "output");
1271                         out = &crp->crp_obuf;
1272                         olen = crypto_buffer_len(out);
1273                 }
1274         } else
1275                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1276                     ("incoming crp with separate output buffer "
1277                     "but no session support"));
1278
1279         switch (csp->csp_mode) {
1280         case CSP_MODE_COMPRESS:
1281                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1282                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1283                     ("invalid compression op %x", crp->crp_op));
1284                 break;
1285         case CSP_MODE_CIPHER:
1286                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1287                     crp->crp_op == CRYPTO_OP_DECRYPT,
1288                     ("invalid cipher op %x", crp->crp_op));
1289                 break;
1290         case CSP_MODE_DIGEST:
1291                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1292                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1293                     ("invalid digest op %x", crp->crp_op));
1294                 break;
1295         case CSP_MODE_AEAD:
1296                 KASSERT(crp->crp_op ==
1297                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1298                     crp->crp_op ==
1299                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1300                     ("invalid AEAD op %x", crp->crp_op));
1301                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1302                     ("AEAD without a separate IV"));
1303                 break;
1304         case CSP_MODE_ETA:
1305                 KASSERT(crp->crp_op ==
1306                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1307                     crp->crp_op ==
1308                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1309                     ("invalid ETA op %x", crp->crp_op));
1310                 break;
1311         }
1312         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1313                 if (crp->crp_aad == NULL) {
1314                         KASSERT(crp->crp_aad_start == 0 ||
1315                             crp->crp_aad_start < ilen,
1316                             ("invalid AAD start"));
1317                         KASSERT(crp->crp_aad_length != 0 ||
1318                             crp->crp_aad_start == 0,
1319                             ("AAD with zero length and non-zero start"));
1320                         KASSERT(crp->crp_aad_length == 0 ||
1321                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1322                             ("AAD outside input length"));
1323                 } else {
1324                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1325                             ("session doesn't support separate AAD buffer"));
1326                         KASSERT(crp->crp_aad_start == 0,
1327                             ("separate AAD buffer with non-zero AAD start"));
1328                         KASSERT(crp->crp_aad_length != 0,
1329                             ("separate AAD buffer with zero length"));
1330                 }
1331         } else {
1332                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1333                     crp->crp_aad_length == 0,
1334                     ("AAD region in request not supporting AAD"));
1335         }
1336         if (csp->csp_ivlen == 0) {
1337                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1338                     ("IV_SEPARATE set when IV isn't used"));
1339                 KASSERT(crp->crp_iv_start == 0,
1340                     ("crp_iv_start set when IV isn't used"));
1341         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1342                 KASSERT(crp->crp_iv_start == 0,
1343                     ("IV_SEPARATE used with non-zero IV start"));
1344         } else {
1345                 KASSERT(crp->crp_iv_start < ilen,
1346                     ("invalid IV start"));
1347                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1348                     ("IV outside buffer length"));
1349         }
1350         /* XXX: payload_start of 0 should always be < ilen? */
1351         KASSERT(crp->crp_payload_start == 0 ||
1352             crp->crp_payload_start < ilen,
1353             ("invalid payload start"));
1354         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1355             ilen, ("payload outside input buffer"));
1356         if (out == NULL) {
1357                 KASSERT(crp->crp_payload_output_start == 0,
1358                     ("payload output start non-zero without output buffer"));
1359         } else {
1360                 KASSERT(crp->crp_payload_output_start == 0 ||
1361                     crp->crp_payload_output_start < olen,
1362                     ("invalid payload output start"));
1363                 KASSERT(crp->crp_payload_output_start +
1364                     crp->crp_payload_length <= olen,
1365                     ("payload outside output buffer"));
1366         }
1367         if (csp->csp_mode == CSP_MODE_DIGEST ||
1368             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1369                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1370                         len = ilen;
1371                 else
1372                         len = olen;
1373                 KASSERT(crp->crp_digest_start == 0 ||
1374                     crp->crp_digest_start < len,
1375                     ("invalid digest start"));
1376                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1377                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1378                     ("digest outside buffer"));
1379         } else {
1380                 KASSERT(crp->crp_digest_start == 0,
1381                     ("non-zero digest start for request without a digest"));
1382         }
1383         if (csp->csp_cipher_klen != 0)
1384                 KASSERT(csp->csp_cipher_key != NULL ||
1385                     crp->crp_cipher_key != NULL,
1386                     ("cipher request without a key"));
1387         if (csp->csp_auth_klen != 0)
1388                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1389                     ("auth request without a key"));
1390         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1391 }
1392 #endif
1393
1394 static int
1395 crypto_dispatch_one(struct cryptop *crp, int hint)
1396 {
1397         struct cryptocap *cap;
1398         int result;
1399
1400 #ifdef INVARIANTS
1401         crp_sanity(crp);
1402 #endif
1403         CRYPTOSTAT_INC(cs_ops);
1404
1405         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1406
1407         /*
1408          * Caller marked the request to be processed immediately; dispatch it
1409          * directly to the driver unless the driver is currently blocked, in
1410          * which case it is queued for deferred dispatch.
1411          */
1412         cap = crp->crp_session->cap;
1413         if (!atomic_load_int(&cap->cc_qblocked)) {
1414                 result = crypto_invoke(cap, crp, hint);
1415                 if (result != ERESTART)
1416                         return (result);
1417
1418                 /*
1419                  * The driver ran out of resources, put the request on the
1420                  * queue.
1421                  */
1422         }
1423         crypto_batch_enqueue(crp);
1424         return (0);
1425 }
1426
1427 int
1428 crypto_dispatch(struct cryptop *crp)
1429 {
1430         return (crypto_dispatch_one(crp, 0));
1431 }
1432
1433 int
1434 crypto_dispatch_async(struct cryptop *crp, int flags)
1435 {
1436         struct crypto_ret_worker *ret_worker;
1437
1438         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1439                 /*
1440                  * The driver issues completions asynchonously, don't bother
1441                  * deferring dispatch to a worker thread.
1442                  */
1443                 return (crypto_dispatch(crp));
1444         }
1445
1446 #ifdef INVARIANTS
1447         crp_sanity(crp);
1448 #endif
1449         CRYPTOSTAT_INC(cs_ops);
1450
1451         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1452         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1453                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1454                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1455                 CRYPTO_RETW_LOCK(ret_worker);
1456                 crp->crp_seq = ret_worker->reorder_ops++;
1457                 CRYPTO_RETW_UNLOCK(ret_worker);
1458         }
1459         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1460         taskqueue_enqueue(crypto_tq, &crp->crp_task);
1461         return (0);
1462 }
1463
1464 void
1465 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1466 {
1467         struct cryptop *crp;
1468         int hint;
1469
1470         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1471                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1472                 TAILQ_REMOVE(crpq, crp, crp_next);
1473                 if (crypto_dispatch_one(crp, hint) != 0)
1474                         crypto_batch_enqueue(crp);
1475         }
1476 }
1477
1478 static void
1479 crypto_batch_enqueue(struct cryptop *crp)
1480 {
1481
1482         CRYPTO_Q_LOCK();
1483         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1484         if (crp_sleep)
1485                 wakeup_one(&crp_q);
1486         CRYPTO_Q_UNLOCK();
1487 }
1488
1489 static void
1490 crypto_task_invoke(void *ctx, int pending)
1491 {
1492         struct cryptocap *cap;
1493         struct cryptop *crp;
1494         int result;
1495
1496         crp = (struct cryptop *)ctx;
1497         cap = crp->crp_session->cap;
1498         result = crypto_invoke(cap, crp, 0);
1499         if (result == ERESTART)
1500                 crypto_batch_enqueue(crp);
1501 }
1502
1503 /*
1504  * Dispatch a crypto request to the appropriate crypto devices.
1505  */
1506 static int
1507 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1508 {
1509
1510         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1511         KASSERT(crp->crp_callback != NULL,
1512             ("%s: crp->crp_callback == NULL", __func__));
1513         KASSERT(crp->crp_session != NULL,
1514             ("%s: crp->crp_session == NULL", __func__));
1515
1516         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1517                 struct crypto_session_params csp;
1518                 crypto_session_t nses;
1519
1520                 /*
1521                  * Driver has unregistered; migrate the session and return
1522                  * an error to the caller so they'll resubmit the op.
1523                  *
1524                  * XXX: What if there are more already queued requests for this
1525                  *      session?
1526                  *
1527                  * XXX: Real solution is to make sessions refcounted
1528                  * and force callers to hold a reference when
1529                  * assigning to crp_session.  Could maybe change
1530                  * crypto_getreq to accept a session pointer to make
1531                  * that work.  Alternatively, we could abandon the
1532                  * notion of rewriting crp_session in requests forcing
1533                  * the caller to deal with allocating a new session.
1534                  * Perhaps provide a method to allow a crp's session to
1535                  * be swapped that callers could use.
1536                  */
1537                 csp = crp->crp_session->csp;
1538                 crypto_freesession(crp->crp_session);
1539
1540                 /*
1541                  * XXX: Key pointers may no longer be valid.  If we
1542                  * really want to support this we need to define the
1543                  * KPI such that 'csp' is required to be valid for the
1544                  * duration of a session by the caller perhaps.
1545                  *
1546                  * XXX: If the keys have been changed this will reuse
1547                  * the old keys.  This probably suggests making
1548                  * rekeying more explicit and updating the key
1549                  * pointers in 'csp' when the keys change.
1550                  */
1551                 if (crypto_newsession(&nses, &csp,
1552                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1553                         crp->crp_session = nses;
1554
1555                 crp->crp_etype = EAGAIN;
1556                 crypto_done(crp);
1557                 return 0;
1558         } else {
1559                 /*
1560                  * Invoke the driver to process the request.
1561                  */
1562                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1563         }
1564 }
1565
1566 void
1567 crypto_destroyreq(struct cryptop *crp)
1568 {
1569 #ifdef DIAGNOSTIC
1570         {
1571                 struct cryptop *crp2;
1572                 struct crypto_ret_worker *ret_worker;
1573
1574                 CRYPTO_Q_LOCK();
1575                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1576                         KASSERT(crp2 != crp,
1577                             ("Freeing cryptop from the crypto queue (%p).",
1578                             crp));
1579                 }
1580                 CRYPTO_Q_UNLOCK();
1581
1582                 FOREACH_CRYPTO_RETW(ret_worker) {
1583                         CRYPTO_RETW_LOCK(ret_worker);
1584                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1585                                 KASSERT(crp2 != crp,
1586                                     ("Freeing cryptop from the return queue (%p).",
1587                                     crp));
1588                         }
1589                         CRYPTO_RETW_UNLOCK(ret_worker);
1590                 }
1591         }
1592 #endif
1593 }
1594
1595 void
1596 crypto_freereq(struct cryptop *crp)
1597 {
1598         if (crp == NULL)
1599                 return;
1600
1601         crypto_destroyreq(crp);
1602         uma_zfree(cryptop_zone, crp);
1603 }
1604
1605 static void
1606 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1607 {
1608         crp->crp_session = cses;
1609 }
1610
1611 void
1612 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1613 {
1614         memset(crp, 0, sizeof(*crp));
1615         _crypto_initreq(crp, cses);
1616 }
1617
1618 struct cryptop *
1619 crypto_getreq(crypto_session_t cses, int how)
1620 {
1621         struct cryptop *crp;
1622
1623         MPASS(how == M_WAITOK || how == M_NOWAIT);
1624         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1625         if (crp != NULL)
1626                 _crypto_initreq(crp, cses);
1627         return (crp);
1628 }
1629
1630 /*
1631  * Invoke the callback on behalf of the driver.
1632  */
1633 void
1634 crypto_done(struct cryptop *crp)
1635 {
1636         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1637                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1638         crp->crp_flags |= CRYPTO_F_DONE;
1639         if (crp->crp_etype != 0)
1640                 CRYPTOSTAT_INC(cs_errs);
1641
1642         /*
1643          * CBIMM means unconditionally do the callback immediately;
1644          * CBIFSYNC means do the callback immediately only if the
1645          * operation was done synchronously.  Both are used to avoid
1646          * doing extraneous context switches; the latter is mostly
1647          * used with the software crypto driver.
1648          */
1649         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1650             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1651             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1652             CRYPTO_SESS_SYNC(crp->crp_session)))) {
1653                 /*
1654                  * Do the callback directly.  This is ok when the
1655                  * callback routine does very little (e.g. the
1656                  * /dev/crypto callback method just does a wakeup).
1657                  */
1658                 crp->crp_callback(crp);
1659         } else {
1660                 struct crypto_ret_worker *ret_worker;
1661                 bool wake;
1662
1663                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1664
1665                 /*
1666                  * Normal case; queue the callback for the thread.
1667                  */
1668                 CRYPTO_RETW_LOCK(ret_worker);
1669                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1670                         struct cryptop *tmp;
1671
1672                         TAILQ_FOREACH_REVERSE(tmp,
1673                             &ret_worker->crp_ordered_ret_q, cryptop_q,
1674                             crp_next) {
1675                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1676                                         TAILQ_INSERT_AFTER(
1677                                             &ret_worker->crp_ordered_ret_q, tmp,
1678                                             crp, crp_next);
1679                                         break;
1680                                 }
1681                         }
1682                         if (tmp == NULL) {
1683                                 TAILQ_INSERT_HEAD(
1684                                     &ret_worker->crp_ordered_ret_q, crp,
1685                                     crp_next);
1686                         }
1687
1688                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1689                 } else {
1690                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1691                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1692                             crp_next);
1693                 }
1694
1695                 if (wake)
1696                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1697                 CRYPTO_RETW_UNLOCK(ret_worker);
1698         }
1699 }
1700
1701 /*
1702  * Terminate a thread at module unload.  The process that
1703  * initiated this is waiting for us to signal that we're gone;
1704  * wake it up and exit.  We use the driver table lock to insure
1705  * we don't do the wakeup before they're waiting.  There is no
1706  * race here because the waiter sleeps on the proc lock for the
1707  * thread so it gets notified at the right time because of an
1708  * extra wakeup that's done in exit1().
1709  */
1710 static void
1711 crypto_finis(void *chan)
1712 {
1713         CRYPTO_DRIVER_LOCK();
1714         wakeup_one(chan);
1715         CRYPTO_DRIVER_UNLOCK();
1716         kthread_exit();
1717 }
1718
1719 /*
1720  * Crypto thread, dispatches crypto requests.
1721  */
1722 static void
1723 crypto_dispatch_thread(void *arg __unused)
1724 {
1725         struct cryptop *crp, *submit;
1726         struct cryptocap *cap;
1727         int result, hint;
1728
1729 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1730         fpu_kern_thread(FPU_KERN_NORMAL);
1731 #endif
1732
1733         CRYPTO_Q_LOCK();
1734         for (;;) {
1735                 /*
1736                  * Find the first element in the queue that can be
1737                  * processed and look-ahead to see if multiple ops
1738                  * are ready for the same driver.
1739                  */
1740                 submit = NULL;
1741                 hint = 0;
1742                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1743                         cap = crp->crp_session->cap;
1744                         /*
1745                          * Driver cannot disappeared when there is an active
1746                          * session.
1747                          */
1748                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1749                             __func__, __LINE__));
1750                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1751                                 /* Op needs to be migrated, process it. */
1752                                 if (submit == NULL)
1753                                         submit = crp;
1754                                 break;
1755                         }
1756                         if (!cap->cc_qblocked) {
1757                                 if (submit != NULL) {
1758                                         /*
1759                                          * We stop on finding another op,
1760                                          * regardless whether its for the same
1761                                          * driver or not.  We could keep
1762                                          * searching the queue but it might be
1763                                          * better to just use a per-driver
1764                                          * queue instead.
1765                                          */
1766                                         if (submit->crp_session->cap == cap)
1767                                                 hint = CRYPTO_HINT_MORE;
1768                                 } else {
1769                                         submit = crp;
1770                                 }
1771                                 break;
1772                         }
1773                 }
1774                 if (submit != NULL) {
1775                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1776                         cap = submit->crp_session->cap;
1777                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1778                             __func__, __LINE__));
1779                         CRYPTO_Q_UNLOCK();
1780                         result = crypto_invoke(cap, submit, hint);
1781                         CRYPTO_Q_LOCK();
1782                         if (result == ERESTART) {
1783                                 /*
1784                                  * The driver ran out of resources, mark the
1785                                  * driver ``blocked'' for cryptop's and put
1786                                  * the request back in the queue.  It would
1787                                  * best to put the request back where we got
1788                                  * it but that's hard so for now we put it
1789                                  * at the front.  This should be ok; putting
1790                                  * it at the end does not work.
1791                                  */
1792                                 cap->cc_qblocked = 1;
1793                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1794                                 CRYPTOSTAT_INC(cs_blocks);
1795                         }
1796                 } else {
1797                         /*
1798                          * Nothing more to be processed.  Sleep until we're
1799                          * woken because there are more ops to process.
1800                          * This happens either by submission or by a driver
1801                          * becoming unblocked and notifying us through
1802                          * crypto_unblock.  Note that when we wakeup we
1803                          * start processing each queue again from the
1804                          * front. It's not clear that it's important to
1805                          * preserve this ordering since ops may finish
1806                          * out of order if dispatched to different devices
1807                          * and some become blocked while others do not.
1808                          */
1809                         crp_sleep = 1;
1810                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1811                         crp_sleep = 0;
1812                         if (cryptotd == NULL)
1813                                 break;
1814                         CRYPTOSTAT_INC(cs_intrs);
1815                 }
1816         }
1817         CRYPTO_Q_UNLOCK();
1818
1819         crypto_finis(&crp_q);
1820 }
1821
1822 /*
1823  * Crypto returns thread, does callbacks for processed crypto requests.
1824  * Callbacks are done here, rather than in the crypto drivers, because
1825  * callbacks typically are expensive and would slow interrupt handling.
1826  */
1827 static void
1828 crypto_ret_thread(void *arg)
1829 {
1830         struct crypto_ret_worker *ret_worker = arg;
1831         struct cryptop *crpt;
1832
1833         CRYPTO_RETW_LOCK(ret_worker);
1834         for (;;) {
1835                 /* Harvest return q's for completed ops */
1836                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1837                 if (crpt != NULL) {
1838                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1839                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1840                                 ret_worker->reorder_cur_seq++;
1841                         } else {
1842                                 crpt = NULL;
1843                         }
1844                 }
1845
1846                 if (crpt == NULL) {
1847                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1848                         if (crpt != NULL)
1849                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1850                 }
1851
1852                 if (crpt != NULL) {
1853                         CRYPTO_RETW_UNLOCK(ret_worker);
1854                         /*
1855                          * Run callbacks unlocked.
1856                          */
1857                         if (crpt != NULL)
1858                                 crpt->crp_callback(crpt);
1859                         CRYPTO_RETW_LOCK(ret_worker);
1860                 } else {
1861                         /*
1862                          * Nothing more to be processed.  Sleep until we're
1863                          * woken because there are more returns to process.
1864                          */
1865                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1866                                 "crypto_ret_wait", 0);
1867                         if (ret_worker->td == NULL)
1868                                 break;
1869                         CRYPTOSTAT_INC(cs_rets);
1870                 }
1871         }
1872         CRYPTO_RETW_UNLOCK(ret_worker);
1873
1874         crypto_finis(&ret_worker->crp_ret_q);
1875 }
1876
1877 #ifdef DDB
1878 static void
1879 db_show_drivers(void)
1880 {
1881         int hid;
1882
1883         db_printf("%12s %4s %8s %2s\n"
1884                 , "Device"
1885                 , "Ses"
1886                 , "Flags"
1887                 , "QB"
1888         );
1889         for (hid = 0; hid < crypto_drivers_size; hid++) {
1890                 const struct cryptocap *cap = crypto_drivers[hid];
1891                 if (cap == NULL)
1892                         continue;
1893                 db_printf("%-12s %4u %08x %2u\n"
1894                     , device_get_nameunit(cap->cc_dev)
1895                     , cap->cc_sessions
1896                     , cap->cc_flags
1897                     , cap->cc_qblocked
1898                 );
1899         }
1900 }
1901
1902 DB_SHOW_COMMAND(crypto, db_show_crypto)
1903 {
1904         struct cryptop *crp;
1905         struct crypto_ret_worker *ret_worker;
1906
1907         db_show_drivers();
1908         db_printf("\n");
1909
1910         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1911             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1912             "Device", "Callback");
1913         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1914                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1915                     , crp->crp_session->cap->cc_hid
1916                     , (int) crypto_ses2caps(crp->crp_session)
1917                     , crp->crp_olen
1918                     , crp->crp_etype
1919                     , crp->crp_flags
1920                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
1921                     , crp->crp_callback
1922                 );
1923         }
1924         FOREACH_CRYPTO_RETW(ret_worker) {
1925                 db_printf("\n%8s %4s %4s %4s %8s\n",
1926                     "ret_worker", "HID", "Etype", "Flags", "Callback");
1927                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1928                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1929                                 db_printf("%8td %4u %4u %04x %8p\n"
1930                                     , CRYPTO_RETW_ID(ret_worker)
1931                                     , crp->crp_session->cap->cc_hid
1932                                     , crp->crp_etype
1933                                     , crp->crp_flags
1934                                     , crp->crp_callback
1935                                 );
1936                         }
1937                 }
1938         }
1939 }
1940 #endif
1941
1942 int crypto_modevent(module_t mod, int type, void *unused);
1943
1944 /*
1945  * Initialization code, both for static and dynamic loading.
1946  * Note this is not invoked with the usual MODULE_DECLARE
1947  * mechanism but instead is listed as a dependency by the
1948  * cryptosoft driver.  This guarantees proper ordering of
1949  * calls on module load/unload.
1950  */
1951 int
1952 crypto_modevent(module_t mod, int type, void *unused)
1953 {
1954         int error = EINVAL;
1955
1956         switch (type) {
1957         case MOD_LOAD:
1958                 error = crypto_init();
1959                 if (error == 0 && bootverbose)
1960                         printf("crypto: <crypto core>\n");
1961                 break;
1962         case MOD_UNLOAD:
1963                 /*XXX disallow if active sessions */
1964                 error = 0;
1965                 crypto_destroy();
1966                 return 0;
1967         }
1968         return error;
1969 }
1970 MODULE_VERSION(crypto, 1);
1971 MODULE_DEPEND(crypto, zlib, 1, 1, 1);