]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
sqlite3: Vendor import of sqlite3 3.41.0
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60
61 #include "opt_ddb.h"
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/counter.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/linker.h>
69 #include <sys/lock.h>
70 #include <sys/module.h>
71 #include <sys/mutex.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/proc.h>
75 #include <sys/refcount.h>
76 #include <sys/sdt.h>
77 #include <sys/smp.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 #include <sys/uio.h>
81
82 #include <ddb/ddb.h>
83
84 #include <machine/vmparam.h>
85 #include <vm/uma.h>
86
87 #include <crypto/intake.h>
88 #include <opencrypto/cryptodev.h>
89 #include <opencrypto/xform_auth.h>
90 #include <opencrypto/xform_enc.h>
91
92 #include <sys/kobj.h>
93 #include <sys/bus.h>
94 #include "cryptodev_if.h"
95
96 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
97 #include <machine/pcb.h>
98 #endif
99
100 SDT_PROVIDER_DEFINE(opencrypto);
101
102 /*
103  * Crypto drivers register themselves by allocating a slot in the
104  * crypto_drivers table with crypto_get_driverid().
105  */
106 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
107 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
108 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
109 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
110
111 /*
112  * Crypto device/driver capabilities structure.
113  *
114  * Synchronization:
115  * (d) - protected by CRYPTO_DRIVER_LOCK()
116  * (q) - protected by CRYPTO_Q_LOCK()
117  * Not tagged fields are read-only.
118  */
119 struct cryptocap {
120         device_t        cc_dev;
121         uint32_t        cc_hid;
122         uint32_t        cc_sessions;            /* (d) # of sessions */
123
124         int             cc_flags;               /* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
126         int             cc_qblocked;            /* (q) symmetric q blocked */
127         size_t          cc_session_size;
128         volatile int    cc_refs;
129 };
130
131 static  struct cryptocap **crypto_drivers = NULL;
132 static  int crypto_drivers_size = 0;
133
134 struct crypto_session {
135         struct cryptocap *cap;
136         struct crypto_session_params csp;
137         uint64_t id;
138         /* Driver softc follows. */
139 };
140
141 static  int crp_sleep = 0;
142 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
143 static  struct mtx crypto_q_mtx;
144 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
145 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
146
147 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
148     "In-kernel cryptography");
149
150 /*
151  * Taskqueue used to dispatch the crypto requests submitted with
152  * crypto_dispatch_async .
153  */
154 static struct taskqueue *crypto_tq;
155
156 /*
157  * Crypto seq numbers are operated on with modular arithmetic
158  */
159 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
160
161 struct crypto_ret_worker {
162         struct mtx crypto_ret_mtx;
163
164         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
165         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
166
167         uint32_t reorder_ops;           /* total ordered sym jobs received */
168         uint32_t reorder_cur_seq;       /* current sym job dispatched */
169
170         struct thread *td;
171 };
172 static struct crypto_ret_worker *crypto_ret_workers = NULL;
173
174 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
175 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
176 #define FOREACH_CRYPTO_RETW(w) \
177         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
178
179 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
180 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
181
182 static int crypto_workers_num = 0;
183 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
184            &crypto_workers_num, 0,
185            "Number of crypto workers used to dispatch crypto jobs");
186 #ifdef COMPAT_FREEBSD12
187 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
188            &crypto_workers_num, 0,
189            "Number of crypto workers used to dispatch crypto jobs");
190 #endif
191
192 static  uma_zone_t cryptop_zone;
193
194 int     crypto_devallowsoft = 0;
195 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
196            &crypto_devallowsoft, 0,
197            "Enable use of software crypto by /dev/crypto");
198 #ifdef COMPAT_FREEBSD12
199 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
200            &crypto_devallowsoft, 0,
201            "Enable/disable use of software crypto by /dev/crypto");
202 #endif
203
204 #ifdef DIAGNOSTIC
205 bool crypto_destroyreq_check;
206 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
207            &crypto_destroyreq_check, 0,
208            "Enable checks when destroying a request");
209 #endif
210
211 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
212
213 static  void crypto_dispatch_thread(void *arg);
214 static  struct thread *cryptotd;
215 static  void crypto_ret_thread(void *arg);
216 static  void crypto_destroy(void);
217 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
218 static  void crypto_task_invoke(void *ctx, int pending);
219 static void crypto_batch_enqueue(struct cryptop *crp);
220
221 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
222 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
223     cryptostats, nitems(cryptostats),
224     "Crypto system statistics");
225
226 #define CRYPTOSTAT_INC(stat) do {                                       \
227         counter_u64_add(                                                \
228             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
229             1);                                                         \
230 } while (0)
231
232 static void
233 cryptostats_init(void *arg __unused)
234 {
235         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
236 }
237 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
238
239 static void
240 cryptostats_fini(void *arg __unused)
241 {
242         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
243 }
244 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
245     NULL);
246
247 /* Try to avoid directly exposing the key buffer as a symbol */
248 static struct keybuf *keybuf;
249
250 static struct keybuf empty_keybuf = {
251         .kb_nents = 0
252 };
253
254 /* Obtain the key buffer from boot metadata */
255 static void
256 keybuf_init(void)
257 {
258         caddr_t kmdp;
259
260         kmdp = preload_search_by_type("elf kernel");
261
262         if (kmdp == NULL)
263                 kmdp = preload_search_by_type("elf64 kernel");
264
265         keybuf = (struct keybuf *)preload_search_info(kmdp,
266             MODINFO_METADATA | MODINFOMD_KEYBUF);
267
268         if (keybuf == NULL)
269                 keybuf = &empty_keybuf;
270 }
271
272 /* It'd be nice if we could store these in some kind of secure memory... */
273 struct keybuf *
274 get_keybuf(void)
275 {
276
277         return (keybuf);
278 }
279
280 static struct cryptocap *
281 cap_ref(struct cryptocap *cap)
282 {
283
284         refcount_acquire(&cap->cc_refs);
285         return (cap);
286 }
287
288 static void
289 cap_rele(struct cryptocap *cap)
290 {
291
292         if (refcount_release(&cap->cc_refs) == 0)
293                 return;
294
295         KASSERT(cap->cc_sessions == 0,
296             ("freeing crypto driver with active sessions"));
297
298         free(cap, M_CRYPTO_DATA);
299 }
300
301 static int
302 crypto_init(void)
303 {
304         struct crypto_ret_worker *ret_worker;
305         struct proc *p;
306         int error;
307
308         mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
309
310         TAILQ_INIT(&crp_q);
311         mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
312
313         cryptop_zone = uma_zcreate("cryptop",
314             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
315             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
316
317         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
318         crypto_drivers = malloc(crypto_drivers_size *
319             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
320
321         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
322                 crypto_workers_num = mp_ncpus;
323
324         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
325             taskqueue_thread_enqueue, &crypto_tq);
326
327         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
328             "crypto");
329
330         p = NULL;
331         error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
332             0, 0, "crypto", "crypto");
333         if (error) {
334                 printf("crypto_init: cannot start crypto thread; error %d",
335                         error);
336                 goto bad;
337         }
338
339         crypto_ret_workers = mallocarray(crypto_workers_num,
340             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
341
342         FOREACH_CRYPTO_RETW(ret_worker) {
343                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
344                 TAILQ_INIT(&ret_worker->crp_ret_q);
345
346                 ret_worker->reorder_ops = 0;
347                 ret_worker->reorder_cur_seq = 0;
348
349                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
350                     NULL, MTX_DEF);
351
352                 error = kthread_add(crypto_ret_thread, ret_worker, p,
353                     &ret_worker->td, 0, 0, "crypto returns %td",
354                     CRYPTO_RETW_ID(ret_worker));
355                 if (error) {
356                         printf("crypto_init: cannot start cryptoret thread; error %d",
357                                 error);
358                         goto bad;
359                 }
360         }
361
362         keybuf_init();
363
364         return 0;
365 bad:
366         crypto_destroy();
367         return error;
368 }
369
370 /*
371  * Signal a crypto thread to terminate.  We use the driver
372  * table lock to synchronize the sleep/wakeups so that we
373  * are sure the threads have terminated before we release
374  * the data structures they use.  See crypto_finis below
375  * for the other half of this song-and-dance.
376  */
377 static void
378 crypto_terminate(struct thread **tdp, void *q)
379 {
380         struct thread *td;
381
382         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
383         td = *tdp;
384         *tdp = NULL;
385         if (td != NULL) {
386                 wakeup_one(q);
387                 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
388         }
389 }
390
391 static void
392 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
393     void *auth_ctx, uint8_t padval)
394 {
395         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
396         u_int i;
397
398         KASSERT(axf->blocksize <= sizeof(hmac_key),
399             ("Invalid HMAC block size %d", axf->blocksize));
400
401         /*
402          * If the key is larger than the block size, use the digest of
403          * the key as the key instead.
404          */
405         memset(hmac_key, 0, sizeof(hmac_key));
406         if (klen > axf->blocksize) {
407                 axf->Init(auth_ctx);
408                 axf->Update(auth_ctx, key, klen);
409                 axf->Final(hmac_key, auth_ctx);
410                 klen = axf->hashsize;
411         } else
412                 memcpy(hmac_key, key, klen);
413
414         for (i = 0; i < axf->blocksize; i++)
415                 hmac_key[i] ^= padval;
416
417         axf->Init(auth_ctx);
418         axf->Update(auth_ctx, hmac_key, axf->blocksize);
419         explicit_bzero(hmac_key, sizeof(hmac_key));
420 }
421
422 void
423 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
424     void *auth_ctx)
425 {
426
427         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
428 }
429
430 void
431 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
432     void *auth_ctx)
433 {
434
435         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
436 }
437
438 static void
439 crypto_destroy(void)
440 {
441         struct crypto_ret_worker *ret_worker;
442         int i;
443
444         /*
445          * Terminate any crypto threads.
446          */
447         if (crypto_tq != NULL)
448                 taskqueue_drain_all(crypto_tq);
449         CRYPTO_DRIVER_LOCK();
450         crypto_terminate(&cryptotd, &crp_q);
451         FOREACH_CRYPTO_RETW(ret_worker)
452                 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
453         CRYPTO_DRIVER_UNLOCK();
454
455         /* XXX flush queues??? */
456
457         /*
458          * Reclaim dynamically allocated resources.
459          */
460         for (i = 0; i < crypto_drivers_size; i++) {
461                 if (crypto_drivers[i] != NULL)
462                         cap_rele(crypto_drivers[i]);
463         }
464         free(crypto_drivers, M_CRYPTO_DATA);
465
466         if (cryptop_zone != NULL)
467                 uma_zdestroy(cryptop_zone);
468         mtx_destroy(&crypto_q_mtx);
469         FOREACH_CRYPTO_RETW(ret_worker)
470                 mtx_destroy(&ret_worker->crypto_ret_mtx);
471         free(crypto_ret_workers, M_CRYPTO_DATA);
472         if (crypto_tq != NULL)
473                 taskqueue_free(crypto_tq);
474         mtx_destroy(&crypto_drivers_mtx);
475 }
476
477 uint32_t
478 crypto_ses2hid(crypto_session_t crypto_session)
479 {
480         return (crypto_session->cap->cc_hid);
481 }
482
483 uint32_t
484 crypto_ses2caps(crypto_session_t crypto_session)
485 {
486         return (crypto_session->cap->cc_flags & 0xff000000);
487 }
488
489 void *
490 crypto_get_driver_session(crypto_session_t crypto_session)
491 {
492         return (crypto_session + 1);
493 }
494
495 const struct crypto_session_params *
496 crypto_get_params(crypto_session_t crypto_session)
497 {
498         return (&crypto_session->csp);
499 }
500
501 const struct auth_hash *
502 crypto_auth_hash(const struct crypto_session_params *csp)
503 {
504
505         switch (csp->csp_auth_alg) {
506         case CRYPTO_SHA1_HMAC:
507                 return (&auth_hash_hmac_sha1);
508         case CRYPTO_SHA2_224_HMAC:
509                 return (&auth_hash_hmac_sha2_224);
510         case CRYPTO_SHA2_256_HMAC:
511                 return (&auth_hash_hmac_sha2_256);
512         case CRYPTO_SHA2_384_HMAC:
513                 return (&auth_hash_hmac_sha2_384);
514         case CRYPTO_SHA2_512_HMAC:
515                 return (&auth_hash_hmac_sha2_512);
516         case CRYPTO_NULL_HMAC:
517                 return (&auth_hash_null);
518         case CRYPTO_RIPEMD160_HMAC:
519                 return (&auth_hash_hmac_ripemd_160);
520         case CRYPTO_RIPEMD160:
521                 return (&auth_hash_ripemd_160);
522         case CRYPTO_SHA1:
523                 return (&auth_hash_sha1);
524         case CRYPTO_SHA2_224:
525                 return (&auth_hash_sha2_224);
526         case CRYPTO_SHA2_256:
527                 return (&auth_hash_sha2_256);
528         case CRYPTO_SHA2_384:
529                 return (&auth_hash_sha2_384);
530         case CRYPTO_SHA2_512:
531                 return (&auth_hash_sha2_512);
532         case CRYPTO_AES_NIST_GMAC:
533                 switch (csp->csp_auth_klen) {
534                 case 128 / 8:
535                         return (&auth_hash_nist_gmac_aes_128);
536                 case 192 / 8:
537                         return (&auth_hash_nist_gmac_aes_192);
538                 case 256 / 8:
539                         return (&auth_hash_nist_gmac_aes_256);
540                 default:
541                         return (NULL);
542                 }
543         case CRYPTO_BLAKE2B:
544                 return (&auth_hash_blake2b);
545         case CRYPTO_BLAKE2S:
546                 return (&auth_hash_blake2s);
547         case CRYPTO_POLY1305:
548                 return (&auth_hash_poly1305);
549         case CRYPTO_AES_CCM_CBC_MAC:
550                 switch (csp->csp_auth_klen) {
551                 case 128 / 8:
552                         return (&auth_hash_ccm_cbc_mac_128);
553                 case 192 / 8:
554                         return (&auth_hash_ccm_cbc_mac_192);
555                 case 256 / 8:
556                         return (&auth_hash_ccm_cbc_mac_256);
557                 default:
558                         return (NULL);
559                 }
560         default:
561                 return (NULL);
562         }
563 }
564
565 const struct enc_xform *
566 crypto_cipher(const struct crypto_session_params *csp)
567 {
568
569         switch (csp->csp_cipher_alg) {
570         case CRYPTO_AES_CBC:
571                 return (&enc_xform_aes_cbc);
572         case CRYPTO_AES_XTS:
573                 return (&enc_xform_aes_xts);
574         case CRYPTO_AES_ICM:
575                 return (&enc_xform_aes_icm);
576         case CRYPTO_AES_NIST_GCM_16:
577                 return (&enc_xform_aes_nist_gcm);
578         case CRYPTO_CAMELLIA_CBC:
579                 return (&enc_xform_camellia);
580         case CRYPTO_NULL_CBC:
581                 return (&enc_xform_null);
582         case CRYPTO_CHACHA20:
583                 return (&enc_xform_chacha20);
584         case CRYPTO_AES_CCM_16:
585                 return (&enc_xform_ccm);
586         case CRYPTO_CHACHA20_POLY1305:
587                 return (&enc_xform_chacha20_poly1305);
588         case CRYPTO_XCHACHA20_POLY1305:
589                 return (&enc_xform_xchacha20_poly1305);
590         default:
591                 return (NULL);
592         }
593 }
594
595 static struct cryptocap *
596 crypto_checkdriver(uint32_t hid)
597 {
598
599         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
600 }
601
602 /*
603  * Select a driver for a new session that supports the specified
604  * algorithms and, optionally, is constrained according to the flags.
605  */
606 static struct cryptocap *
607 crypto_select_driver(const struct crypto_session_params *csp, int flags)
608 {
609         struct cryptocap *cap, *best;
610         int best_match, error, hid;
611
612         CRYPTO_DRIVER_ASSERT();
613
614         best = NULL;
615         for (hid = 0; hid < crypto_drivers_size; hid++) {
616                 /*
617                  * If there is no driver for this slot, or the driver
618                  * is not appropriate (hardware or software based on
619                  * match), then skip.
620                  */
621                 cap = crypto_drivers[hid];
622                 if (cap == NULL ||
623                     (cap->cc_flags & flags) == 0)
624                         continue;
625
626                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
627                 if (error >= 0)
628                         continue;
629
630                 /*
631                  * Use the driver with the highest probe value.
632                  * Hardware drivers use a higher probe value than
633                  * software.  In case of a tie, prefer the driver with
634                  * the fewest active sessions.
635                  */
636                 if (best == NULL || error > best_match ||
637                     (error == best_match &&
638                     cap->cc_sessions < best->cc_sessions)) {
639                         best = cap;
640                         best_match = error;
641                 }
642         }
643         return best;
644 }
645
646 static enum alg_type {
647         ALG_NONE = 0,
648         ALG_CIPHER,
649         ALG_DIGEST,
650         ALG_KEYED_DIGEST,
651         ALG_COMPRESSION,
652         ALG_AEAD
653 } alg_types[] = {
654         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
655         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
656         [CRYPTO_AES_CBC] = ALG_CIPHER,
657         [CRYPTO_SHA1] = ALG_DIGEST,
658         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
659         [CRYPTO_NULL_CBC] = ALG_CIPHER,
660         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
661         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
662         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
663         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
664         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
665         [CRYPTO_AES_XTS] = ALG_CIPHER,
666         [CRYPTO_AES_ICM] = ALG_CIPHER,
667         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
668         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
669         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
670         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
671         [CRYPTO_CHACHA20] = ALG_CIPHER,
672         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
673         [CRYPTO_RIPEMD160] = ALG_DIGEST,
674         [CRYPTO_SHA2_224] = ALG_DIGEST,
675         [CRYPTO_SHA2_256] = ALG_DIGEST,
676         [CRYPTO_SHA2_384] = ALG_DIGEST,
677         [CRYPTO_SHA2_512] = ALG_DIGEST,
678         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
679         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
680         [CRYPTO_AES_CCM_16] = ALG_AEAD,
681         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
682         [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
683 };
684
685 static enum alg_type
686 alg_type(int alg)
687 {
688
689         if (alg < nitems(alg_types))
690                 return (alg_types[alg]);
691         return (ALG_NONE);
692 }
693
694 static bool
695 alg_is_compression(int alg)
696 {
697
698         return (alg_type(alg) == ALG_COMPRESSION);
699 }
700
701 static bool
702 alg_is_cipher(int alg)
703 {
704
705         return (alg_type(alg) == ALG_CIPHER);
706 }
707
708 static bool
709 alg_is_digest(int alg)
710 {
711
712         return (alg_type(alg) == ALG_DIGEST ||
713             alg_type(alg) == ALG_KEYED_DIGEST);
714 }
715
716 static bool
717 alg_is_keyed_digest(int alg)
718 {
719
720         return (alg_type(alg) == ALG_KEYED_DIGEST);
721 }
722
723 static bool
724 alg_is_aead(int alg)
725 {
726
727         return (alg_type(alg) == ALG_AEAD);
728 }
729
730 static bool
731 ccm_tag_length_valid(int len)
732 {
733         /* RFC 3610 */
734         switch (len) {
735         case 4:
736         case 6:
737         case 8:
738         case 10:
739         case 12:
740         case 14:
741         case 16:
742                 return (true);
743         default:
744                 return (false);
745         }
746 }
747
748 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
749
750 /* Various sanity checks on crypto session parameters. */
751 static bool
752 check_csp(const struct crypto_session_params *csp)
753 {
754         const struct auth_hash *axf;
755
756         /* Mode-independent checks. */
757         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
758                 return (false);
759         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
760             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
761                 return (false);
762         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
763                 return (false);
764         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
765                 return (false);
766
767         switch (csp->csp_mode) {
768         case CSP_MODE_COMPRESS:
769                 if (!alg_is_compression(csp->csp_cipher_alg))
770                         return (false);
771                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
772                         return (false);
773                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
774                         return (false);
775                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
776                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
777                     csp->csp_auth_mlen != 0)
778                         return (false);
779                 break;
780         case CSP_MODE_CIPHER:
781                 if (!alg_is_cipher(csp->csp_cipher_alg))
782                         return (false);
783                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
784                         return (false);
785                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
786                         if (csp->csp_cipher_klen == 0)
787                                 return (false);
788                         if (csp->csp_ivlen == 0)
789                                 return (false);
790                 }
791                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
792                         return (false);
793                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
794                     csp->csp_auth_mlen != 0)
795                         return (false);
796                 break;
797         case CSP_MODE_DIGEST:
798                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
799                         return (false);
800
801                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
802                         return (false);
803
804                 /* IV is optional for digests (e.g. GMAC). */
805                 switch (csp->csp_auth_alg) {
806                 case CRYPTO_AES_CCM_CBC_MAC:
807                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
808                                 return (false);
809                         break;
810                 case CRYPTO_AES_NIST_GMAC:
811                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
812                                 return (false);
813                         break;
814                 default:
815                         if (csp->csp_ivlen != 0)
816                                 return (false);
817                         break;
818                 }
819
820                 if (!alg_is_digest(csp->csp_auth_alg))
821                         return (false);
822
823                 /* Key is optional for BLAKE2 digests. */
824                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
825                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
826                         ;
827                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
828                         if (csp->csp_auth_klen == 0)
829                                 return (false);
830                 } else {
831                         if (csp->csp_auth_klen != 0)
832                                 return (false);
833                 }
834                 if (csp->csp_auth_mlen != 0) {
835                         axf = crypto_auth_hash(csp);
836                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
837                                 return (false);
838
839                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
840                             !ccm_tag_length_valid(csp->csp_auth_mlen))
841                                 return (false);
842                 }
843                 break;
844         case CSP_MODE_AEAD:
845                 if (!alg_is_aead(csp->csp_cipher_alg))
846                         return (false);
847                 if (csp->csp_cipher_klen == 0)
848                         return (false);
849                 if (csp->csp_ivlen == 0 ||
850                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
851                         return (false);
852                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
853                         return (false);
854
855                 switch (csp->csp_cipher_alg) {
856                 case CRYPTO_AES_CCM_16:
857                         if (csp->csp_auth_mlen != 0 &&
858                             !ccm_tag_length_valid(csp->csp_auth_mlen))
859                                 return (false);
860
861                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
862                                 return (false);
863                         break;
864                 case CRYPTO_AES_NIST_GCM_16:
865                         if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
866                                 return (false);
867
868                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
869                                 return (false);
870                         break;
871                 case CRYPTO_CHACHA20_POLY1305:
872                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
873                                 return (false);
874                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
875                                 return (false);
876                         break;
877                 case CRYPTO_XCHACHA20_POLY1305:
878                         if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
879                                 return (false);
880                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
881                                 return (false);
882                         break;
883                 }
884                 break;
885         case CSP_MODE_ETA:
886                 if (!alg_is_cipher(csp->csp_cipher_alg))
887                         return (false);
888                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
889                         if (csp->csp_cipher_klen == 0)
890                                 return (false);
891                         if (csp->csp_ivlen == 0)
892                                 return (false);
893                 }
894                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
895                         return (false);
896                 if (!alg_is_digest(csp->csp_auth_alg))
897                         return (false);
898
899                 /* Key is optional for BLAKE2 digests. */
900                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
901                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
902                         ;
903                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
904                         if (csp->csp_auth_klen == 0)
905                                 return (false);
906                 } else {
907                         if (csp->csp_auth_klen != 0)
908                                 return (false);
909                 }
910                 if (csp->csp_auth_mlen != 0) {
911                         axf = crypto_auth_hash(csp);
912                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
913                                 return (false);
914                 }
915                 break;
916         default:
917                 return (false);
918         }
919
920         return (true);
921 }
922
923 /*
924  * Delete a session after it has been detached from its driver.
925  */
926 static void
927 crypto_deletesession(crypto_session_t cses)
928 {
929         struct cryptocap *cap;
930
931         cap = cses->cap;
932
933         zfree(cses, M_CRYPTO_DATA);
934
935         CRYPTO_DRIVER_LOCK();
936         cap->cc_sessions--;
937         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
938                 wakeup(cap);
939         CRYPTO_DRIVER_UNLOCK();
940         cap_rele(cap);
941 }
942
943 /*
944  * Create a new session.  The crid argument specifies a crypto
945  * driver to use or constraints on a driver to select (hardware
946  * only, software only, either).  Whatever driver is selected
947  * must be capable of the requested crypto algorithms.
948  */
949 int
950 crypto_newsession(crypto_session_t *cses,
951     const struct crypto_session_params *csp, int crid)
952 {
953         static uint64_t sessid = 0;
954         crypto_session_t res;
955         struct cryptocap *cap;
956         int err;
957
958         if (!check_csp(csp))
959                 return (EINVAL);
960
961         res = NULL;
962
963         CRYPTO_DRIVER_LOCK();
964         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
965                 /*
966                  * Use specified driver; verify it is capable.
967                  */
968                 cap = crypto_checkdriver(crid);
969                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
970                         cap = NULL;
971         } else {
972                 /*
973                  * No requested driver; select based on crid flags.
974                  */
975                 cap = crypto_select_driver(csp, crid);
976         }
977         if (cap == NULL) {
978                 CRYPTO_DRIVER_UNLOCK();
979                 CRYPTDEB("no driver");
980                 return (EOPNOTSUPP);
981         }
982         cap_ref(cap);
983         cap->cc_sessions++;
984         CRYPTO_DRIVER_UNLOCK();
985
986         /* Allocate a single block for the generic session and driver softc. */
987         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
988             M_WAITOK | M_ZERO);
989         res->cap = cap;
990         res->csp = *csp;
991         res->id = atomic_fetchadd_64(&sessid, 1);
992
993         /* Call the driver initialization routine. */
994         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
995         if (err != 0) {
996                 CRYPTDEB("dev newsession failed: %d", err);
997                 crypto_deletesession(res);
998                 return (err);
999         }
1000
1001         *cses = res;
1002         return (0);
1003 }
1004
1005 /*
1006  * Delete an existing session (or a reserved session on an unregistered
1007  * driver).
1008  */
1009 void
1010 crypto_freesession(crypto_session_t cses)
1011 {
1012         struct cryptocap *cap;
1013
1014         if (cses == NULL)
1015                 return;
1016
1017         cap = cses->cap;
1018
1019         /* Call the driver cleanup routine, if available. */
1020         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1021
1022         crypto_deletesession(cses);
1023 }
1024
1025 /*
1026  * Return a new driver id.  Registers a driver with the system so that
1027  * it can be probed by subsequent sessions.
1028  */
1029 int32_t
1030 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1031 {
1032         struct cryptocap *cap, **newdrv;
1033         int i;
1034
1035         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1036                 device_printf(dev,
1037                     "no flags specified when registering driver\n");
1038                 return -1;
1039         }
1040
1041         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1042         cap->cc_dev = dev;
1043         cap->cc_session_size = sessionsize;
1044         cap->cc_flags = flags;
1045         refcount_init(&cap->cc_refs, 1);
1046
1047         CRYPTO_DRIVER_LOCK();
1048         for (;;) {
1049                 for (i = 0; i < crypto_drivers_size; i++) {
1050                         if (crypto_drivers[i] == NULL)
1051                                 break;
1052                 }
1053
1054                 if (i < crypto_drivers_size)
1055                         break;
1056
1057                 /* Out of entries, allocate some more. */
1058
1059                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1060                         CRYPTO_DRIVER_UNLOCK();
1061                         printf("crypto: driver count wraparound!\n");
1062                         cap_rele(cap);
1063                         return (-1);
1064                 }
1065                 CRYPTO_DRIVER_UNLOCK();
1066
1067                 newdrv = malloc(2 * crypto_drivers_size *
1068                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1069
1070                 CRYPTO_DRIVER_LOCK();
1071                 memcpy(newdrv, crypto_drivers,
1072                     crypto_drivers_size * sizeof(*crypto_drivers));
1073
1074                 crypto_drivers_size *= 2;
1075
1076                 free(crypto_drivers, M_CRYPTO_DATA);
1077                 crypto_drivers = newdrv;
1078         }
1079
1080         cap->cc_hid = i;
1081         crypto_drivers[i] = cap;
1082         CRYPTO_DRIVER_UNLOCK();
1083
1084         if (bootverbose)
1085                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1086                     device_get_nameunit(dev), i, flags);
1087
1088         return i;
1089 }
1090
1091 /*
1092  * Lookup a driver by name.  We match against the full device
1093  * name and unit, and against just the name.  The latter gives
1094  * us a simple widlcarding by device name.  On success return the
1095  * driver/hardware identifier; otherwise return -1.
1096  */
1097 int
1098 crypto_find_driver(const char *match)
1099 {
1100         struct cryptocap *cap;
1101         int i, len = strlen(match);
1102
1103         CRYPTO_DRIVER_LOCK();
1104         for (i = 0; i < crypto_drivers_size; i++) {
1105                 if (crypto_drivers[i] == NULL)
1106                         continue;
1107                 cap = crypto_drivers[i];
1108                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1109                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1110                         CRYPTO_DRIVER_UNLOCK();
1111                         return (i);
1112                 }
1113         }
1114         CRYPTO_DRIVER_UNLOCK();
1115         return (-1);
1116 }
1117
1118 /*
1119  * Return the device_t for the specified driver or NULL
1120  * if the driver identifier is invalid.
1121  */
1122 device_t
1123 crypto_find_device_byhid(int hid)
1124 {
1125         struct cryptocap *cap;
1126         device_t dev;
1127
1128         dev = NULL;
1129         CRYPTO_DRIVER_LOCK();
1130         cap = crypto_checkdriver(hid);
1131         if (cap != NULL)
1132                 dev = cap->cc_dev;
1133         CRYPTO_DRIVER_UNLOCK();
1134         return (dev);
1135 }
1136
1137 /*
1138  * Return the device/driver capabilities.
1139  */
1140 int
1141 crypto_getcaps(int hid)
1142 {
1143         struct cryptocap *cap;
1144         int flags;
1145
1146         flags = 0;
1147         CRYPTO_DRIVER_LOCK();
1148         cap = crypto_checkdriver(hid);
1149         if (cap != NULL)
1150                 flags = cap->cc_flags;
1151         CRYPTO_DRIVER_UNLOCK();
1152         return (flags);
1153 }
1154
1155 /*
1156  * Unregister all algorithms associated with a crypto driver.
1157  * If there are pending sessions using it, leave enough information
1158  * around so that subsequent calls using those sessions will
1159  * correctly detect the driver has been unregistered and reroute
1160  * requests.
1161  */
1162 int
1163 crypto_unregister_all(uint32_t driverid)
1164 {
1165         struct cryptocap *cap;
1166
1167         CRYPTO_DRIVER_LOCK();
1168         cap = crypto_checkdriver(driverid);
1169         if (cap == NULL) {
1170                 CRYPTO_DRIVER_UNLOCK();
1171                 return (EINVAL);
1172         }
1173
1174         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1175         crypto_drivers[driverid] = NULL;
1176
1177         /*
1178          * XXX: This doesn't do anything to kick sessions that
1179          * have no pending operations.
1180          */
1181         while (cap->cc_sessions != 0)
1182                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1183         CRYPTO_DRIVER_UNLOCK();
1184         cap_rele(cap);
1185
1186         return (0);
1187 }
1188
1189 /*
1190  * Clear blockage on a driver.  The what parameter indicates whether
1191  * the driver is now ready for cryptop's and/or cryptokop's.
1192  */
1193 int
1194 crypto_unblock(uint32_t driverid, int what)
1195 {
1196         struct cryptocap *cap;
1197         int err;
1198
1199         CRYPTO_Q_LOCK();
1200         cap = crypto_checkdriver(driverid);
1201         if (cap != NULL) {
1202                 if (what & CRYPTO_SYMQ)
1203                         cap->cc_qblocked = 0;
1204                 if (crp_sleep)
1205                         wakeup_one(&crp_q);
1206                 err = 0;
1207         } else
1208                 err = EINVAL;
1209         CRYPTO_Q_UNLOCK();
1210
1211         return err;
1212 }
1213
1214 size_t
1215 crypto_buffer_len(struct crypto_buffer *cb)
1216 {
1217         switch (cb->cb_type) {
1218         case CRYPTO_BUF_CONTIG:
1219                 return (cb->cb_buf_len);
1220         case CRYPTO_BUF_MBUF:
1221                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1222                         return (cb->cb_mbuf->m_pkthdr.len);
1223                 return (m_length(cb->cb_mbuf, NULL));
1224         case CRYPTO_BUF_SINGLE_MBUF:
1225                 return (cb->cb_mbuf->m_len);
1226         case CRYPTO_BUF_VMPAGE:
1227                 return (cb->cb_vm_page_len);
1228         case CRYPTO_BUF_UIO:
1229                 return (cb->cb_uio->uio_resid);
1230         default:
1231                 return (0);
1232         }
1233 }
1234
1235 #ifdef INVARIANTS
1236 /* Various sanity checks on crypto requests. */
1237 static void
1238 cb_sanity(struct crypto_buffer *cb, const char *name)
1239 {
1240         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1241             ("incoming crp with invalid %s buffer type", name));
1242         switch (cb->cb_type) {
1243         case CRYPTO_BUF_CONTIG:
1244                 KASSERT(cb->cb_buf_len >= 0,
1245                     ("incoming crp with -ve %s buffer length", name));
1246                 break;
1247         case CRYPTO_BUF_VMPAGE:
1248                 KASSERT(CRYPTO_HAS_VMPAGE,
1249                     ("incoming crp uses dmap on supported arch"));
1250                 KASSERT(cb->cb_vm_page_len >= 0,
1251                     ("incoming crp with -ve %s buffer length", name));
1252                 KASSERT(cb->cb_vm_page_offset >= 0,
1253                     ("incoming crp with -ve %s buffer offset", name));
1254                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1255                     ("incoming crp with %s buffer offset greater than page size"
1256                      , name));
1257                 break;
1258         default:
1259                 break;
1260         }
1261 }
1262
1263 static void
1264 crp_sanity(struct cryptop *crp)
1265 {
1266         struct crypto_session_params *csp;
1267         struct crypto_buffer *out;
1268         size_t ilen, len, olen;
1269
1270         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1271         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1272             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1273             ("incoming crp with invalid output buffer type"));
1274         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1275         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1276             ("incoming crp already done"));
1277
1278         csp = &crp->crp_session->csp;
1279         cb_sanity(&crp->crp_buf, "input");
1280         ilen = crypto_buffer_len(&crp->crp_buf);
1281         olen = ilen;
1282         out = NULL;
1283         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1284                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1285                         cb_sanity(&crp->crp_obuf, "output");
1286                         out = &crp->crp_obuf;
1287                         olen = crypto_buffer_len(out);
1288                 }
1289         } else
1290                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1291                     ("incoming crp with separate output buffer "
1292                     "but no session support"));
1293
1294         switch (csp->csp_mode) {
1295         case CSP_MODE_COMPRESS:
1296                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1297                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1298                     ("invalid compression op %x", crp->crp_op));
1299                 break;
1300         case CSP_MODE_CIPHER:
1301                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1302                     crp->crp_op == CRYPTO_OP_DECRYPT,
1303                     ("invalid cipher op %x", crp->crp_op));
1304                 break;
1305         case CSP_MODE_DIGEST:
1306                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1307                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1308                     ("invalid digest op %x", crp->crp_op));
1309                 break;
1310         case CSP_MODE_AEAD:
1311                 KASSERT(crp->crp_op ==
1312                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1313                     crp->crp_op ==
1314                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1315                     ("invalid AEAD op %x", crp->crp_op));
1316                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1317                     ("AEAD without a separate IV"));
1318                 break;
1319         case CSP_MODE_ETA:
1320                 KASSERT(crp->crp_op ==
1321                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1322                     crp->crp_op ==
1323                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1324                     ("invalid ETA op %x", crp->crp_op));
1325                 break;
1326         }
1327         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1328                 if (crp->crp_aad == NULL) {
1329                         KASSERT(crp->crp_aad_start == 0 ||
1330                             crp->crp_aad_start < ilen,
1331                             ("invalid AAD start"));
1332                         KASSERT(crp->crp_aad_length != 0 ||
1333                             crp->crp_aad_start == 0,
1334                             ("AAD with zero length and non-zero start"));
1335                         KASSERT(crp->crp_aad_length == 0 ||
1336                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1337                             ("AAD outside input length"));
1338                 } else {
1339                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1340                             ("session doesn't support separate AAD buffer"));
1341                         KASSERT(crp->crp_aad_start == 0,
1342                             ("separate AAD buffer with non-zero AAD start"));
1343                         KASSERT(crp->crp_aad_length != 0,
1344                             ("separate AAD buffer with zero length"));
1345                 }
1346         } else {
1347                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1348                     crp->crp_aad_length == 0,
1349                     ("AAD region in request not supporting AAD"));
1350         }
1351         if (csp->csp_ivlen == 0) {
1352                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1353                     ("IV_SEPARATE set when IV isn't used"));
1354                 KASSERT(crp->crp_iv_start == 0,
1355                     ("crp_iv_start set when IV isn't used"));
1356         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1357                 KASSERT(crp->crp_iv_start == 0,
1358                     ("IV_SEPARATE used with non-zero IV start"));
1359         } else {
1360                 KASSERT(crp->crp_iv_start < ilen,
1361                     ("invalid IV start"));
1362                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1363                     ("IV outside buffer length"));
1364         }
1365         /* XXX: payload_start of 0 should always be < ilen? */
1366         KASSERT(crp->crp_payload_start == 0 ||
1367             crp->crp_payload_start < ilen,
1368             ("invalid payload start"));
1369         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1370             ilen, ("payload outside input buffer"));
1371         if (out == NULL) {
1372                 KASSERT(crp->crp_payload_output_start == 0,
1373                     ("payload output start non-zero without output buffer"));
1374         } else if (csp->csp_mode == CSP_MODE_DIGEST) {
1375                 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1376                     ("digest verify with separate output buffer"));
1377                 KASSERT(crp->crp_payload_output_start == 0,
1378                     ("digest operation with non-zero payload output start"));
1379         } else {
1380                 KASSERT(crp->crp_payload_output_start == 0 ||
1381                     crp->crp_payload_output_start < olen,
1382                     ("invalid payload output start"));
1383                 KASSERT(crp->crp_payload_output_start +
1384                     crp->crp_payload_length <= olen,
1385                     ("payload outside output buffer"));
1386         }
1387         if (csp->csp_mode == CSP_MODE_DIGEST ||
1388             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1389                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1390                         len = ilen;
1391                 else
1392                         len = olen;
1393                 KASSERT(crp->crp_digest_start == 0 ||
1394                     crp->crp_digest_start < len,
1395                     ("invalid digest start"));
1396                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1397                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1398                     ("digest outside buffer"));
1399         } else {
1400                 KASSERT(crp->crp_digest_start == 0,
1401                     ("non-zero digest start for request without a digest"));
1402         }
1403         if (csp->csp_cipher_klen != 0)
1404                 KASSERT(csp->csp_cipher_key != NULL ||
1405                     crp->crp_cipher_key != NULL,
1406                     ("cipher request without a key"));
1407         if (csp->csp_auth_klen != 0)
1408                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1409                     ("auth request without a key"));
1410         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1411 }
1412 #endif
1413
1414 static int
1415 crypto_dispatch_one(struct cryptop *crp, int hint)
1416 {
1417         struct cryptocap *cap;
1418         int result;
1419
1420 #ifdef INVARIANTS
1421         crp_sanity(crp);
1422 #endif
1423         CRYPTOSTAT_INC(cs_ops);
1424
1425         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1426
1427         /*
1428          * Caller marked the request to be processed immediately; dispatch it
1429          * directly to the driver unless the driver is currently blocked, in
1430          * which case it is queued for deferred dispatch.
1431          */
1432         cap = crp->crp_session->cap;
1433         if (!atomic_load_int(&cap->cc_qblocked)) {
1434                 result = crypto_invoke(cap, crp, hint);
1435                 if (result != ERESTART)
1436                         return (result);
1437
1438                 /*
1439                  * The driver ran out of resources, put the request on the
1440                  * queue.
1441                  */
1442         }
1443         crypto_batch_enqueue(crp);
1444         return (0);
1445 }
1446
1447 int
1448 crypto_dispatch(struct cryptop *crp)
1449 {
1450         return (crypto_dispatch_one(crp, 0));
1451 }
1452
1453 int
1454 crypto_dispatch_async(struct cryptop *crp, int flags)
1455 {
1456         struct crypto_ret_worker *ret_worker;
1457
1458         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1459                 /*
1460                  * The driver issues completions asynchonously, don't bother
1461                  * deferring dispatch to a worker thread.
1462                  */
1463                 return (crypto_dispatch(crp));
1464         }
1465
1466 #ifdef INVARIANTS
1467         crp_sanity(crp);
1468 #endif
1469         CRYPTOSTAT_INC(cs_ops);
1470
1471         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1472         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1473                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1474                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1475                 CRYPTO_RETW_LOCK(ret_worker);
1476                 crp->crp_seq = ret_worker->reorder_ops++;
1477                 CRYPTO_RETW_UNLOCK(ret_worker);
1478         }
1479         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1480         taskqueue_enqueue(crypto_tq, &crp->crp_task);
1481         return (0);
1482 }
1483
1484 void
1485 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1486 {
1487         struct cryptop *crp;
1488         int hint;
1489
1490         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1491                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1492                 TAILQ_REMOVE(crpq, crp, crp_next);
1493                 if (crypto_dispatch_one(crp, hint) != 0)
1494                         crypto_batch_enqueue(crp);
1495         }
1496 }
1497
1498 static void
1499 crypto_batch_enqueue(struct cryptop *crp)
1500 {
1501
1502         CRYPTO_Q_LOCK();
1503         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1504         if (crp_sleep)
1505                 wakeup_one(&crp_q);
1506         CRYPTO_Q_UNLOCK();
1507 }
1508
1509 static void
1510 crypto_task_invoke(void *ctx, int pending)
1511 {
1512         struct cryptocap *cap;
1513         struct cryptop *crp;
1514         int result;
1515
1516         crp = (struct cryptop *)ctx;
1517         cap = crp->crp_session->cap;
1518         result = crypto_invoke(cap, crp, 0);
1519         if (result == ERESTART)
1520                 crypto_batch_enqueue(crp);
1521 }
1522
1523 /*
1524  * Dispatch a crypto request to the appropriate crypto devices.
1525  */
1526 static int
1527 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1528 {
1529         int error;
1530
1531         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1532         KASSERT(crp->crp_callback != NULL,
1533             ("%s: crp->crp_callback == NULL", __func__));
1534         KASSERT(crp->crp_session != NULL,
1535             ("%s: crp->crp_session == NULL", __func__));
1536
1537         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1538                 struct crypto_session_params csp;
1539                 crypto_session_t nses;
1540
1541                 /*
1542                  * Driver has unregistered; migrate the session and return
1543                  * an error to the caller so they'll resubmit the op.
1544                  *
1545                  * XXX: What if there are more already queued requests for this
1546                  *      session?
1547                  *
1548                  * XXX: Real solution is to make sessions refcounted
1549                  * and force callers to hold a reference when
1550                  * assigning to crp_session.  Could maybe change
1551                  * crypto_getreq to accept a session pointer to make
1552                  * that work.  Alternatively, we could abandon the
1553                  * notion of rewriting crp_session in requests forcing
1554                  * the caller to deal with allocating a new session.
1555                  * Perhaps provide a method to allow a crp's session to
1556                  * be swapped that callers could use.
1557                  */
1558                 csp = crp->crp_session->csp;
1559                 crypto_freesession(crp->crp_session);
1560
1561                 /*
1562                  * XXX: Key pointers may no longer be valid.  If we
1563                  * really want to support this we need to define the
1564                  * KPI such that 'csp' is required to be valid for the
1565                  * duration of a session by the caller perhaps.
1566                  *
1567                  * XXX: If the keys have been changed this will reuse
1568                  * the old keys.  This probably suggests making
1569                  * rekeying more explicit and updating the key
1570                  * pointers in 'csp' when the keys change.
1571                  */
1572                 if (crypto_newsession(&nses, &csp,
1573                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1574                         crp->crp_session = nses;
1575
1576                 crp->crp_etype = EAGAIN;
1577                 crypto_done(crp);
1578                 error = 0;
1579         } else {
1580                 /*
1581                  * Invoke the driver to process the request.  Errors are
1582                  * signaled by setting crp_etype before invoking the completion
1583                  * callback.
1584                  */
1585                 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1586                 KASSERT(error == 0 || error == ERESTART,
1587                     ("%s: invalid error %d from CRYPTODEV_PROCESS",
1588                     __func__, error));
1589         }
1590         return (error);
1591 }
1592
1593 void
1594 crypto_destroyreq(struct cryptop *crp)
1595 {
1596 #ifdef DIAGNOSTIC
1597         {
1598                 struct cryptop *crp2;
1599                 struct crypto_ret_worker *ret_worker;
1600
1601                 if (!crypto_destroyreq_check)
1602                         return;
1603
1604                 CRYPTO_Q_LOCK();
1605                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1606                         KASSERT(crp2 != crp,
1607                             ("Freeing cryptop from the crypto queue (%p).",
1608                             crp));
1609                 }
1610                 CRYPTO_Q_UNLOCK();
1611
1612                 FOREACH_CRYPTO_RETW(ret_worker) {
1613                         CRYPTO_RETW_LOCK(ret_worker);
1614                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1615                                 KASSERT(crp2 != crp,
1616                                     ("Freeing cryptop from the return queue (%p).",
1617                                     crp));
1618                         }
1619                         CRYPTO_RETW_UNLOCK(ret_worker);
1620                 }
1621         }
1622 #endif
1623 }
1624
1625 void
1626 crypto_freereq(struct cryptop *crp)
1627 {
1628         if (crp == NULL)
1629                 return;
1630
1631         crypto_destroyreq(crp);
1632         uma_zfree(cryptop_zone, crp);
1633 }
1634
1635 void
1636 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1637 {
1638         memset(crp, 0, sizeof(*crp));
1639         crp->crp_session = cses;
1640 }
1641
1642 struct cryptop *
1643 crypto_getreq(crypto_session_t cses, int how)
1644 {
1645         struct cryptop *crp;
1646
1647         MPASS(how == M_WAITOK || how == M_NOWAIT);
1648         crp = uma_zalloc(cryptop_zone, how);
1649         if (crp != NULL)
1650                 crypto_initreq(crp, cses);
1651         return (crp);
1652 }
1653
1654 /*
1655  * Clone a crypto request, but associate it with the specified session
1656  * rather than inheriting the session from the original request.  The
1657  * fields describing the request buffers are copied, but not the
1658  * opaque field or callback function.
1659  */
1660 struct cryptop *
1661 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1662 {
1663         struct cryptop *new;
1664
1665         MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1666         new = crypto_getreq(cses, how);
1667         if (new == NULL)
1668                 return (NULL);
1669
1670         memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1671             __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1672         return (new);
1673 }
1674
1675 /*
1676  * Invoke the callback on behalf of the driver.
1677  */
1678 void
1679 crypto_done(struct cryptop *crp)
1680 {
1681         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1682                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1683         crp->crp_flags |= CRYPTO_F_DONE;
1684         if (crp->crp_etype != 0)
1685                 CRYPTOSTAT_INC(cs_errs);
1686
1687         /*
1688          * CBIMM means unconditionally do the callback immediately;
1689          * CBIFSYNC means do the callback immediately only if the
1690          * operation was done synchronously.  Both are used to avoid
1691          * doing extraneous context switches; the latter is mostly
1692          * used with the software crypto driver.
1693          */
1694         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1695             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1696             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1697             CRYPTO_SESS_SYNC(crp->crp_session)))) {
1698                 /*
1699                  * Do the callback directly.  This is ok when the
1700                  * callback routine does very little (e.g. the
1701                  * /dev/crypto callback method just does a wakeup).
1702                  */
1703                 crp->crp_callback(crp);
1704         } else {
1705                 struct crypto_ret_worker *ret_worker;
1706                 bool wake;
1707
1708                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1709
1710                 /*
1711                  * Normal case; queue the callback for the thread.
1712                  */
1713                 CRYPTO_RETW_LOCK(ret_worker);
1714                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1715                         struct cryptop *tmp;
1716
1717                         TAILQ_FOREACH_REVERSE(tmp,
1718                             &ret_worker->crp_ordered_ret_q, cryptop_q,
1719                             crp_next) {
1720                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1721                                         TAILQ_INSERT_AFTER(
1722                                             &ret_worker->crp_ordered_ret_q, tmp,
1723                                             crp, crp_next);
1724                                         break;
1725                                 }
1726                         }
1727                         if (tmp == NULL) {
1728                                 TAILQ_INSERT_HEAD(
1729                                     &ret_worker->crp_ordered_ret_q, crp,
1730                                     crp_next);
1731                         }
1732
1733                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1734                 } else {
1735                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1736                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1737                             crp_next);
1738                 }
1739
1740                 if (wake)
1741                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1742                 CRYPTO_RETW_UNLOCK(ret_worker);
1743         }
1744 }
1745
1746 /*
1747  * Terminate a thread at module unload.  The process that
1748  * initiated this is waiting for us to signal that we're gone;
1749  * wake it up and exit.  We use the driver table lock to insure
1750  * we don't do the wakeup before they're waiting.  There is no
1751  * race here because the waiter sleeps on the proc lock for the
1752  * thread so it gets notified at the right time because of an
1753  * extra wakeup that's done in exit1().
1754  */
1755 static void
1756 crypto_finis(void *chan)
1757 {
1758         CRYPTO_DRIVER_LOCK();
1759         wakeup_one(chan);
1760         CRYPTO_DRIVER_UNLOCK();
1761         kthread_exit();
1762 }
1763
1764 /*
1765  * Crypto thread, dispatches crypto requests.
1766  */
1767 static void
1768 crypto_dispatch_thread(void *arg __unused)
1769 {
1770         struct cryptop *crp, *submit;
1771         struct cryptocap *cap;
1772         int result, hint;
1773
1774 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1775         fpu_kern_thread(FPU_KERN_NORMAL);
1776 #endif
1777
1778         CRYPTO_Q_LOCK();
1779         for (;;) {
1780                 /*
1781                  * Find the first element in the queue that can be
1782                  * processed and look-ahead to see if multiple ops
1783                  * are ready for the same driver.
1784                  */
1785                 submit = NULL;
1786                 hint = 0;
1787                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1788                         cap = crp->crp_session->cap;
1789                         /*
1790                          * Driver cannot disappeared when there is an active
1791                          * session.
1792                          */
1793                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1794                             __func__, __LINE__));
1795                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1796                                 /* Op needs to be migrated, process it. */
1797                                 if (submit == NULL)
1798                                         submit = crp;
1799                                 break;
1800                         }
1801                         if (!cap->cc_qblocked) {
1802                                 if (submit != NULL) {
1803                                         /*
1804                                          * We stop on finding another op,
1805                                          * regardless whether its for the same
1806                                          * driver or not.  We could keep
1807                                          * searching the queue but it might be
1808                                          * better to just use a per-driver
1809                                          * queue instead.
1810                                          */
1811                                         if (submit->crp_session->cap == cap)
1812                                                 hint = CRYPTO_HINT_MORE;
1813                                 } else {
1814                                         submit = crp;
1815                                 }
1816                                 break;
1817                         }
1818                 }
1819                 if (submit != NULL) {
1820                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1821                         cap = submit->crp_session->cap;
1822                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1823                             __func__, __LINE__));
1824                         CRYPTO_Q_UNLOCK();
1825                         result = crypto_invoke(cap, submit, hint);
1826                         CRYPTO_Q_LOCK();
1827                         if (result == ERESTART) {
1828                                 /*
1829                                  * The driver ran out of resources, mark the
1830                                  * driver ``blocked'' for cryptop's and put
1831                                  * the request back in the queue.  It would
1832                                  * best to put the request back where we got
1833                                  * it but that's hard so for now we put it
1834                                  * at the front.  This should be ok; putting
1835                                  * it at the end does not work.
1836                                  */
1837                                 cap->cc_qblocked = 1;
1838                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1839                                 CRYPTOSTAT_INC(cs_blocks);
1840                         }
1841                 } else {
1842                         /*
1843                          * Nothing more to be processed.  Sleep until we're
1844                          * woken because there are more ops to process.
1845                          * This happens either by submission or by a driver
1846                          * becoming unblocked and notifying us through
1847                          * crypto_unblock.  Note that when we wakeup we
1848                          * start processing each queue again from the
1849                          * front. It's not clear that it's important to
1850                          * preserve this ordering since ops may finish
1851                          * out of order if dispatched to different devices
1852                          * and some become blocked while others do not.
1853                          */
1854                         crp_sleep = 1;
1855                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1856                         crp_sleep = 0;
1857                         if (cryptotd == NULL)
1858                                 break;
1859                         CRYPTOSTAT_INC(cs_intrs);
1860                 }
1861         }
1862         CRYPTO_Q_UNLOCK();
1863
1864         crypto_finis(&crp_q);
1865 }
1866
1867 /*
1868  * Crypto returns thread, does callbacks for processed crypto requests.
1869  * Callbacks are done here, rather than in the crypto drivers, because
1870  * callbacks typically are expensive and would slow interrupt handling.
1871  */
1872 static void
1873 crypto_ret_thread(void *arg)
1874 {
1875         struct crypto_ret_worker *ret_worker = arg;
1876         struct cryptop *crpt;
1877
1878         CRYPTO_RETW_LOCK(ret_worker);
1879         for (;;) {
1880                 /* Harvest return q's for completed ops */
1881                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1882                 if (crpt != NULL) {
1883                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1884                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1885                                 ret_worker->reorder_cur_seq++;
1886                         } else {
1887                                 crpt = NULL;
1888                         }
1889                 }
1890
1891                 if (crpt == NULL) {
1892                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1893                         if (crpt != NULL)
1894                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1895                 }
1896
1897                 if (crpt != NULL) {
1898                         CRYPTO_RETW_UNLOCK(ret_worker);
1899                         /*
1900                          * Run callbacks unlocked.
1901                          */
1902                         if (crpt != NULL)
1903                                 crpt->crp_callback(crpt);
1904                         CRYPTO_RETW_LOCK(ret_worker);
1905                 } else {
1906                         /*
1907                          * Nothing more to be processed.  Sleep until we're
1908                          * woken because there are more returns to process.
1909                          */
1910                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1911                                 "crypto_ret_wait", 0);
1912                         if (ret_worker->td == NULL)
1913                                 break;
1914                         CRYPTOSTAT_INC(cs_rets);
1915                 }
1916         }
1917         CRYPTO_RETW_UNLOCK(ret_worker);
1918
1919         crypto_finis(&ret_worker->crp_ret_q);
1920 }
1921
1922 #ifdef DDB
1923 static void
1924 db_show_drivers(void)
1925 {
1926         int hid;
1927
1928         db_printf("%12s %4s %8s %2s\n"
1929                 , "Device"
1930                 , "Ses"
1931                 , "Flags"
1932                 , "QB"
1933         );
1934         for (hid = 0; hid < crypto_drivers_size; hid++) {
1935                 const struct cryptocap *cap = crypto_drivers[hid];
1936                 if (cap == NULL)
1937                         continue;
1938                 db_printf("%-12s %4u %08x %2u\n"
1939                     , device_get_nameunit(cap->cc_dev)
1940                     , cap->cc_sessions
1941                     , cap->cc_flags
1942                     , cap->cc_qblocked
1943                 );
1944         }
1945 }
1946
1947 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1948 {
1949         struct cryptop *crp;
1950         struct crypto_ret_worker *ret_worker;
1951
1952         db_show_drivers();
1953         db_printf("\n");
1954
1955         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1956             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1957             "Device", "Callback");
1958         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1959                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1960                     , crp->crp_session->cap->cc_hid
1961                     , (int) crypto_ses2caps(crp->crp_session)
1962                     , crp->crp_olen
1963                     , crp->crp_etype
1964                     , crp->crp_flags
1965                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
1966                     , crp->crp_callback
1967                 );
1968         }
1969         FOREACH_CRYPTO_RETW(ret_worker) {
1970                 db_printf("\n%8s %4s %4s %4s %8s\n",
1971                     "ret_worker", "HID", "Etype", "Flags", "Callback");
1972                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1973                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1974                                 db_printf("%8td %4u %4u %04x %8p\n"
1975                                     , CRYPTO_RETW_ID(ret_worker)
1976                                     , crp->crp_session->cap->cc_hid
1977                                     , crp->crp_etype
1978                                     , crp->crp_flags
1979                                     , crp->crp_callback
1980                                 );
1981                         }
1982                 }
1983         }
1984 }
1985 #endif
1986
1987 int crypto_modevent(module_t mod, int type, void *unused);
1988
1989 /*
1990  * Initialization code, both for static and dynamic loading.
1991  * Note this is not invoked with the usual MODULE_DECLARE
1992  * mechanism but instead is listed as a dependency by the
1993  * cryptosoft driver.  This guarantees proper ordering of
1994  * calls on module load/unload.
1995  */
1996 int
1997 crypto_modevent(module_t mod, int type, void *unused)
1998 {
1999         int error = EINVAL;
2000
2001         switch (type) {
2002         case MOD_LOAD:
2003                 error = crypto_init();
2004                 if (error == 0 && bootverbose)
2005                         printf("crypto: <crypto core>\n");
2006                 break;
2007         case MOD_UNLOAD:
2008                 /*XXX disallow if active sessions */
2009                 error = 0;
2010                 crypto_destroy();
2011                 return 0;
2012         }
2013         return error;
2014 }
2015 MODULE_VERSION(crypto, 1);
2016 MODULE_DEPEND(crypto, zlib, 1, 1, 1);