]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
bsddialog: import snapshot 2021-12-05
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60
61 #include "opt_compat.h"
62 #include "opt_ddb.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/counter.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/linker.h>
70 #include <sys/lock.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/sdt.h>
78 #include <sys/smp.h>
79 #include <sys/sysctl.h>
80 #include <sys/taskqueue.h>
81 #include <sys/uio.h>
82
83 #include <ddb/ddb.h>
84
85 #include <machine/vmparam.h>
86 #include <vm/uma.h>
87
88 #include <crypto/intake.h>
89 #include <opencrypto/cryptodev.h>
90 #include <opencrypto/xform_auth.h>
91 #include <opencrypto/xform_enc.h>
92
93 #include <sys/kobj.h>
94 #include <sys/bus.h>
95 #include "cryptodev_if.h"
96
97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
98 #include <machine/pcb.h>
99 #endif
100
101 SDT_PROVIDER_DEFINE(opencrypto);
102
103 /*
104  * Crypto drivers register themselves by allocating a slot in the
105  * crypto_drivers table with crypto_get_driverid().
106  */
107 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
108 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
109 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
110 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
111
112 /*
113  * Crypto device/driver capabilities structure.
114  *
115  * Synchronization:
116  * (d) - protected by CRYPTO_DRIVER_LOCK()
117  * (q) - protected by CRYPTO_Q_LOCK()
118  * Not tagged fields are read-only.
119  */
120 struct cryptocap {
121         device_t        cc_dev;
122         uint32_t        cc_hid;
123         uint32_t        cc_sessions;            /* (d) # of sessions */
124
125         int             cc_flags;               /* (d) flags */
126 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
127         int             cc_qblocked;            /* (q) symmetric q blocked */
128         size_t          cc_session_size;
129         volatile int    cc_refs;
130 };
131
132 static  struct cryptocap **crypto_drivers = NULL;
133 static  int crypto_drivers_size = 0;
134
135 struct crypto_session {
136         struct cryptocap *cap;
137         struct crypto_session_params csp;
138         uint64_t id;
139         /* Driver softc follows. */
140 };
141
142 static  int crp_sleep = 0;
143 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
144 static  struct mtx crypto_q_mtx;
145 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
146 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
147
148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
149     "In-kernel cryptography");
150
151 /*
152  * Taskqueue used to dispatch the crypto requests
153  * that have the CRYPTO_F_ASYNC flag
154  */
155 static struct taskqueue *crypto_tq;
156
157 /*
158  * Crypto seq numbers are operated on with modular arithmetic
159  */
160 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
161
162 struct crypto_ret_worker {
163         struct mtx crypto_ret_mtx;
164
165         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
166         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
167
168         uint32_t reorder_ops;           /* total ordered sym jobs received */
169         uint32_t reorder_cur_seq;       /* current sym job dispatched */
170
171         struct thread *td;
172 };
173 static struct crypto_ret_worker *crypto_ret_workers = NULL;
174
175 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
176 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
177 #define FOREACH_CRYPTO_RETW(w) \
178         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
179
180 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
181 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
182
183 static int crypto_workers_num = 0;
184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
185            &crypto_workers_num, 0,
186            "Number of crypto workers used to dispatch crypto jobs");
187 #ifdef COMPAT_FREEBSD12
188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
189            &crypto_workers_num, 0,
190            "Number of crypto workers used to dispatch crypto jobs");
191 #endif
192
193 static  uma_zone_t cryptop_zone;
194
195 int     crypto_devallowsoft = 0;
196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
197            &crypto_devallowsoft, 0,
198            "Enable use of software crypto by /dev/crypto");
199 #ifdef COMPAT_FREEBSD12
200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
201            &crypto_devallowsoft, 0,
202            "Enable/disable use of software crypto by /dev/crypto");
203 #endif
204
205 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
206
207 static  void crypto_dispatch_thread(void *arg);
208 static  struct thread *cryptotd;
209 static  void crypto_ret_thread(void *arg);
210 static  void crypto_destroy(void);
211 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
212 static  void crypto_task_invoke(void *ctx, int pending);
213 static void crypto_batch_enqueue(struct cryptop *crp);
214
215 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
216 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
217     cryptostats, nitems(cryptostats),
218     "Crypto system statistics");
219
220 #define CRYPTOSTAT_INC(stat) do {                                       \
221         counter_u64_add(                                                \
222             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
223             1);                                                         \
224 } while (0)
225
226 static void
227 cryptostats_init(void *arg __unused)
228 {
229         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
230 }
231 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
232
233 static void
234 cryptostats_fini(void *arg __unused)
235 {
236         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
237 }
238 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
239     NULL);
240
241 /* Try to avoid directly exposing the key buffer as a symbol */
242 static struct keybuf *keybuf;
243
244 static struct keybuf empty_keybuf = {
245         .kb_nents = 0
246 };
247
248 /* Obtain the key buffer from boot metadata */
249 static void
250 keybuf_init(void)
251 {
252         caddr_t kmdp;
253
254         kmdp = preload_search_by_type("elf kernel");
255
256         if (kmdp == NULL)
257                 kmdp = preload_search_by_type("elf64 kernel");
258
259         keybuf = (struct keybuf *)preload_search_info(kmdp,
260             MODINFO_METADATA | MODINFOMD_KEYBUF);
261
262         if (keybuf == NULL)
263                 keybuf = &empty_keybuf;
264 }
265
266 /* It'd be nice if we could store these in some kind of secure memory... */
267 struct keybuf *
268 get_keybuf(void)
269 {
270
271         return (keybuf);
272 }
273
274 static struct cryptocap *
275 cap_ref(struct cryptocap *cap)
276 {
277
278         refcount_acquire(&cap->cc_refs);
279         return (cap);
280 }
281
282 static void
283 cap_rele(struct cryptocap *cap)
284 {
285
286         if (refcount_release(&cap->cc_refs) == 0)
287                 return;
288
289         KASSERT(cap->cc_sessions == 0,
290             ("freeing crypto driver with active sessions"));
291
292         free(cap, M_CRYPTO_DATA);
293 }
294
295 static int
296 crypto_init(void)
297 {
298         struct crypto_ret_worker *ret_worker;
299         struct proc *p;
300         int error;
301
302         mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
303
304         TAILQ_INIT(&crp_q);
305         mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
306
307         cryptop_zone = uma_zcreate("cryptop",
308             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
309             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
310
311         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
312         crypto_drivers = malloc(crypto_drivers_size *
313             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
314
315         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
316                 crypto_workers_num = mp_ncpus;
317
318         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
319             taskqueue_thread_enqueue, &crypto_tq);
320
321         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
322             "crypto");
323
324         p = NULL;
325         error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
326             0, 0, "crypto", "crypto");
327         if (error) {
328                 printf("crypto_init: cannot start crypto thread; error %d",
329                         error);
330                 goto bad;
331         }
332
333         crypto_ret_workers = mallocarray(crypto_workers_num,
334             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
335
336         FOREACH_CRYPTO_RETW(ret_worker) {
337                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
338                 TAILQ_INIT(&ret_worker->crp_ret_q);
339
340                 ret_worker->reorder_ops = 0;
341                 ret_worker->reorder_cur_seq = 0;
342
343                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
344                     NULL, MTX_DEF);
345
346                 error = kthread_add(crypto_ret_thread, ret_worker, p,
347                     &ret_worker->td, 0, 0, "crypto returns %td",
348                     CRYPTO_RETW_ID(ret_worker));
349                 if (error) {
350                         printf("crypto_init: cannot start cryptoret thread; error %d",
351                                 error);
352                         goto bad;
353                 }
354         }
355
356         keybuf_init();
357
358         return 0;
359 bad:
360         crypto_destroy();
361         return error;
362 }
363
364 /*
365  * Signal a crypto thread to terminate.  We use the driver
366  * table lock to synchronize the sleep/wakeups so that we
367  * are sure the threads have terminated before we release
368  * the data structures they use.  See crypto_finis below
369  * for the other half of this song-and-dance.
370  */
371 static void
372 crypto_terminate(struct thread **tdp, void *q)
373 {
374         struct thread *td;
375
376         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
377         td = *tdp;
378         *tdp = NULL;
379         if (td != NULL) {
380                 wakeup_one(q);
381                 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
382         }
383 }
384
385 static void
386 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
387     void *auth_ctx, uint8_t padval)
388 {
389         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
390         u_int i;
391
392         KASSERT(axf->blocksize <= sizeof(hmac_key),
393             ("Invalid HMAC block size %d", axf->blocksize));
394
395         /*
396          * If the key is larger than the block size, use the digest of
397          * the key as the key instead.
398          */
399         memset(hmac_key, 0, sizeof(hmac_key));
400         if (klen > axf->blocksize) {
401                 axf->Init(auth_ctx);
402                 axf->Update(auth_ctx, key, klen);
403                 axf->Final(hmac_key, auth_ctx);
404                 klen = axf->hashsize;
405         } else
406                 memcpy(hmac_key, key, klen);
407
408         for (i = 0; i < axf->blocksize; i++)
409                 hmac_key[i] ^= padval;
410
411         axf->Init(auth_ctx);
412         axf->Update(auth_ctx, hmac_key, axf->blocksize);
413         explicit_bzero(hmac_key, sizeof(hmac_key));
414 }
415
416 void
417 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
418     void *auth_ctx)
419 {
420
421         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
422 }
423
424 void
425 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
426     void *auth_ctx)
427 {
428
429         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
430 }
431
432 static void
433 crypto_destroy(void)
434 {
435         struct crypto_ret_worker *ret_worker;
436         int i;
437
438         /*
439          * Terminate any crypto threads.
440          */
441         if (crypto_tq != NULL)
442                 taskqueue_drain_all(crypto_tq);
443         CRYPTO_DRIVER_LOCK();
444         crypto_terminate(&cryptotd, &crp_q);
445         FOREACH_CRYPTO_RETW(ret_worker)
446                 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
447         CRYPTO_DRIVER_UNLOCK();
448
449         /* XXX flush queues??? */
450
451         /*
452          * Reclaim dynamically allocated resources.
453          */
454         for (i = 0; i < crypto_drivers_size; i++) {
455                 if (crypto_drivers[i] != NULL)
456                         cap_rele(crypto_drivers[i]);
457         }
458         free(crypto_drivers, M_CRYPTO_DATA);
459
460         if (cryptop_zone != NULL)
461                 uma_zdestroy(cryptop_zone);
462         mtx_destroy(&crypto_q_mtx);
463         FOREACH_CRYPTO_RETW(ret_worker)
464                 mtx_destroy(&ret_worker->crypto_ret_mtx);
465         free(crypto_ret_workers, M_CRYPTO_DATA);
466         if (crypto_tq != NULL)
467                 taskqueue_free(crypto_tq);
468         mtx_destroy(&crypto_drivers_mtx);
469 }
470
471 uint32_t
472 crypto_ses2hid(crypto_session_t crypto_session)
473 {
474         return (crypto_session->cap->cc_hid);
475 }
476
477 uint32_t
478 crypto_ses2caps(crypto_session_t crypto_session)
479 {
480         return (crypto_session->cap->cc_flags & 0xff000000);
481 }
482
483 void *
484 crypto_get_driver_session(crypto_session_t crypto_session)
485 {
486         return (crypto_session + 1);
487 }
488
489 const struct crypto_session_params *
490 crypto_get_params(crypto_session_t crypto_session)
491 {
492         return (&crypto_session->csp);
493 }
494
495 const struct auth_hash *
496 crypto_auth_hash(const struct crypto_session_params *csp)
497 {
498
499         switch (csp->csp_auth_alg) {
500         case CRYPTO_SHA1_HMAC:
501                 return (&auth_hash_hmac_sha1);
502         case CRYPTO_SHA2_224_HMAC:
503                 return (&auth_hash_hmac_sha2_224);
504         case CRYPTO_SHA2_256_HMAC:
505                 return (&auth_hash_hmac_sha2_256);
506         case CRYPTO_SHA2_384_HMAC:
507                 return (&auth_hash_hmac_sha2_384);
508         case CRYPTO_SHA2_512_HMAC:
509                 return (&auth_hash_hmac_sha2_512);
510         case CRYPTO_NULL_HMAC:
511                 return (&auth_hash_null);
512         case CRYPTO_RIPEMD160_HMAC:
513                 return (&auth_hash_hmac_ripemd_160);
514         case CRYPTO_SHA1:
515                 return (&auth_hash_sha1);
516         case CRYPTO_SHA2_224:
517                 return (&auth_hash_sha2_224);
518         case CRYPTO_SHA2_256:
519                 return (&auth_hash_sha2_256);
520         case CRYPTO_SHA2_384:
521                 return (&auth_hash_sha2_384);
522         case CRYPTO_SHA2_512:
523                 return (&auth_hash_sha2_512);
524         case CRYPTO_AES_NIST_GMAC:
525                 switch (csp->csp_auth_klen) {
526                 case 128 / 8:
527                         return (&auth_hash_nist_gmac_aes_128);
528                 case 192 / 8:
529                         return (&auth_hash_nist_gmac_aes_192);
530                 case 256 / 8:
531                         return (&auth_hash_nist_gmac_aes_256);
532                 default:
533                         return (NULL);
534                 }
535         case CRYPTO_BLAKE2B:
536                 return (&auth_hash_blake2b);
537         case CRYPTO_BLAKE2S:
538                 return (&auth_hash_blake2s);
539         case CRYPTO_POLY1305:
540                 return (&auth_hash_poly1305);
541         case CRYPTO_AES_CCM_CBC_MAC:
542                 switch (csp->csp_auth_klen) {
543                 case 128 / 8:
544                         return (&auth_hash_ccm_cbc_mac_128);
545                 case 192 / 8:
546                         return (&auth_hash_ccm_cbc_mac_192);
547                 case 256 / 8:
548                         return (&auth_hash_ccm_cbc_mac_256);
549                 default:
550                         return (NULL);
551                 }
552         default:
553                 return (NULL);
554         }
555 }
556
557 const struct enc_xform *
558 crypto_cipher(const struct crypto_session_params *csp)
559 {
560
561         switch (csp->csp_cipher_alg) {
562         case CRYPTO_RIJNDAEL128_CBC:
563                 return (&enc_xform_rijndael128);
564         case CRYPTO_AES_XTS:
565                 return (&enc_xform_aes_xts);
566         case CRYPTO_AES_ICM:
567                 return (&enc_xform_aes_icm);
568         case CRYPTO_AES_NIST_GCM_16:
569                 return (&enc_xform_aes_nist_gcm);
570         case CRYPTO_CAMELLIA_CBC:
571                 return (&enc_xform_camellia);
572         case CRYPTO_NULL_CBC:
573                 return (&enc_xform_null);
574         case CRYPTO_CHACHA20:
575                 return (&enc_xform_chacha20);
576         case CRYPTO_AES_CCM_16:
577                 return (&enc_xform_ccm);
578         case CRYPTO_CHACHA20_POLY1305:
579                 return (&enc_xform_chacha20_poly1305);
580         default:
581                 return (NULL);
582         }
583 }
584
585 static struct cryptocap *
586 crypto_checkdriver(uint32_t hid)
587 {
588
589         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
590 }
591
592 /*
593  * Select a driver for a new session that supports the specified
594  * algorithms and, optionally, is constrained according to the flags.
595  */
596 static struct cryptocap *
597 crypto_select_driver(const struct crypto_session_params *csp, int flags)
598 {
599         struct cryptocap *cap, *best;
600         int best_match, error, hid;
601
602         CRYPTO_DRIVER_ASSERT();
603
604         best = NULL;
605         for (hid = 0; hid < crypto_drivers_size; hid++) {
606                 /*
607                  * If there is no driver for this slot, or the driver
608                  * is not appropriate (hardware or software based on
609                  * match), then skip.
610                  */
611                 cap = crypto_drivers[hid];
612                 if (cap == NULL ||
613                     (cap->cc_flags & flags) == 0)
614                         continue;
615
616                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
617                 if (error >= 0)
618                         continue;
619
620                 /*
621                  * Use the driver with the highest probe value.
622                  * Hardware drivers use a higher probe value than
623                  * software.  In case of a tie, prefer the driver with
624                  * the fewest active sessions.
625                  */
626                 if (best == NULL || error > best_match ||
627                     (error == best_match &&
628                     cap->cc_sessions < best->cc_sessions)) {
629                         best = cap;
630                         best_match = error;
631                 }
632         }
633         return best;
634 }
635
636 static enum alg_type {
637         ALG_NONE = 0,
638         ALG_CIPHER,
639         ALG_DIGEST,
640         ALG_KEYED_DIGEST,
641         ALG_COMPRESSION,
642         ALG_AEAD
643 } alg_types[] = {
644         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
645         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
646         [CRYPTO_AES_CBC] = ALG_CIPHER,
647         [CRYPTO_SHA1] = ALG_DIGEST,
648         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
649         [CRYPTO_NULL_CBC] = ALG_CIPHER,
650         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
651         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
652         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
653         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
654         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
655         [CRYPTO_AES_XTS] = ALG_CIPHER,
656         [CRYPTO_AES_ICM] = ALG_CIPHER,
657         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
658         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
659         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
660         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
661         [CRYPTO_CHACHA20] = ALG_CIPHER,
662         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
663         [CRYPTO_RIPEMD160] = ALG_DIGEST,
664         [CRYPTO_SHA2_224] = ALG_DIGEST,
665         [CRYPTO_SHA2_256] = ALG_DIGEST,
666         [CRYPTO_SHA2_384] = ALG_DIGEST,
667         [CRYPTO_SHA2_512] = ALG_DIGEST,
668         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
669         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
670         [CRYPTO_AES_CCM_16] = ALG_AEAD,
671         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
672 };
673
674 static enum alg_type
675 alg_type(int alg)
676 {
677
678         if (alg < nitems(alg_types))
679                 return (alg_types[alg]);
680         return (ALG_NONE);
681 }
682
683 static bool
684 alg_is_compression(int alg)
685 {
686
687         return (alg_type(alg) == ALG_COMPRESSION);
688 }
689
690 static bool
691 alg_is_cipher(int alg)
692 {
693
694         return (alg_type(alg) == ALG_CIPHER);
695 }
696
697 static bool
698 alg_is_digest(int alg)
699 {
700
701         return (alg_type(alg) == ALG_DIGEST ||
702             alg_type(alg) == ALG_KEYED_DIGEST);
703 }
704
705 static bool
706 alg_is_keyed_digest(int alg)
707 {
708
709         return (alg_type(alg) == ALG_KEYED_DIGEST);
710 }
711
712 static bool
713 alg_is_aead(int alg)
714 {
715
716         return (alg_type(alg) == ALG_AEAD);
717 }
718
719 static bool
720 ccm_tag_length_valid(int len)
721 {
722         /* RFC 3610 */
723         switch (len) {
724         case 4:
725         case 6:
726         case 8:
727         case 10:
728         case 12:
729         case 14:
730         case 16:
731                 return (true);
732         default:
733                 return (false);
734         }
735 }
736
737 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
738
739 /* Various sanity checks on crypto session parameters. */
740 static bool
741 check_csp(const struct crypto_session_params *csp)
742 {
743         const struct auth_hash *axf;
744
745         /* Mode-independent checks. */
746         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
747                 return (false);
748         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
749             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
750                 return (false);
751         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
752                 return (false);
753         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
754                 return (false);
755
756         switch (csp->csp_mode) {
757         case CSP_MODE_COMPRESS:
758                 if (!alg_is_compression(csp->csp_cipher_alg))
759                         return (false);
760                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
761                         return (false);
762                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
763                         return (false);
764                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
765                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
766                     csp->csp_auth_mlen != 0)
767                         return (false);
768                 break;
769         case CSP_MODE_CIPHER:
770                 if (!alg_is_cipher(csp->csp_cipher_alg))
771                         return (false);
772                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
773                         return (false);
774                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
775                         if (csp->csp_cipher_klen == 0)
776                                 return (false);
777                         if (csp->csp_ivlen == 0)
778                                 return (false);
779                 }
780                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
781                         return (false);
782                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
783                     csp->csp_auth_mlen != 0)
784                         return (false);
785                 break;
786         case CSP_MODE_DIGEST:
787                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
788                         return (false);
789
790                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
791                         return (false);
792
793                 /* IV is optional for digests (e.g. GMAC). */
794                 switch (csp->csp_auth_alg) {
795                 case CRYPTO_AES_CCM_CBC_MAC:
796                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
797                                 return (false);
798                         break;
799                 case CRYPTO_AES_NIST_GMAC:
800                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
801                                 return (false);
802                         break;
803                 default:
804                         if (csp->csp_ivlen != 0)
805                                 return (false);
806                         break;
807                 }
808
809                 if (!alg_is_digest(csp->csp_auth_alg))
810                         return (false);
811
812                 /* Key is optional for BLAKE2 digests. */
813                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
814                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
815                         ;
816                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
817                         if (csp->csp_auth_klen == 0)
818                                 return (false);
819                 } else {
820                         if (csp->csp_auth_klen != 0)
821                                 return (false);
822                 }
823                 if (csp->csp_auth_mlen != 0) {
824                         axf = crypto_auth_hash(csp);
825                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
826                                 return (false);
827
828                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
829                             !ccm_tag_length_valid(csp->csp_auth_mlen))
830                                 return (false);
831                 }
832                 break;
833         case CSP_MODE_AEAD:
834                 if (!alg_is_aead(csp->csp_cipher_alg))
835                         return (false);
836                 if (csp->csp_cipher_klen == 0)
837                         return (false);
838                 if (csp->csp_ivlen == 0 ||
839                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
840                         return (false);
841                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
842                         return (false);
843
844                 switch (csp->csp_cipher_alg) {
845                 case CRYPTO_AES_CCM_16:
846                         if (csp->csp_auth_mlen != 0 &&
847                             !ccm_tag_length_valid(csp->csp_auth_mlen))
848                                 return (false);
849
850                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
851                                 return (false);
852                         break;
853                 case CRYPTO_AES_NIST_GCM_16:
854                         if (csp->csp_auth_mlen > 16)
855                                 return (false);
856                         break;
857                 case CRYPTO_CHACHA20_POLY1305:
858                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
859                                 return (false);
860                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
861                                 return (false);
862                         break;
863                 }
864                 break;
865         case CSP_MODE_ETA:
866                 if (!alg_is_cipher(csp->csp_cipher_alg))
867                         return (false);
868                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
869                         if (csp->csp_cipher_klen == 0)
870                                 return (false);
871                         if (csp->csp_ivlen == 0)
872                                 return (false);
873                 }
874                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
875                         return (false);
876                 if (!alg_is_digest(csp->csp_auth_alg))
877                         return (false);
878
879                 /* Key is optional for BLAKE2 digests. */
880                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
881                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
882                         ;
883                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
884                         if (csp->csp_auth_klen == 0)
885                                 return (false);
886                 } else {
887                         if (csp->csp_auth_klen != 0)
888                                 return (false);
889                 }
890                 if (csp->csp_auth_mlen != 0) {
891                         axf = crypto_auth_hash(csp);
892                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
893                                 return (false);
894                 }
895                 break;
896         default:
897                 return (false);
898         }
899
900         return (true);
901 }
902
903 /*
904  * Delete a session after it has been detached from its driver.
905  */
906 static void
907 crypto_deletesession(crypto_session_t cses)
908 {
909         struct cryptocap *cap;
910
911         cap = cses->cap;
912
913         zfree(cses, M_CRYPTO_DATA);
914
915         CRYPTO_DRIVER_LOCK();
916         cap->cc_sessions--;
917         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
918                 wakeup(cap);
919         CRYPTO_DRIVER_UNLOCK();
920         cap_rele(cap);
921 }
922
923 /*
924  * Create a new session.  The crid argument specifies a crypto
925  * driver to use or constraints on a driver to select (hardware
926  * only, software only, either).  Whatever driver is selected
927  * must be capable of the requested crypto algorithms.
928  */
929 int
930 crypto_newsession(crypto_session_t *cses,
931     const struct crypto_session_params *csp, int crid)
932 {
933         static uint64_t sessid = 0;
934         crypto_session_t res;
935         struct cryptocap *cap;
936         int err;
937
938         if (!check_csp(csp))
939                 return (EINVAL);
940
941         res = NULL;
942
943         CRYPTO_DRIVER_LOCK();
944         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
945                 /*
946                  * Use specified driver; verify it is capable.
947                  */
948                 cap = crypto_checkdriver(crid);
949                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
950                         cap = NULL;
951         } else {
952                 /*
953                  * No requested driver; select based on crid flags.
954                  */
955                 cap = crypto_select_driver(csp, crid);
956         }
957         if (cap == NULL) {
958                 CRYPTO_DRIVER_UNLOCK();
959                 CRYPTDEB("no driver");
960                 return (EOPNOTSUPP);
961         }
962         cap_ref(cap);
963         cap->cc_sessions++;
964         CRYPTO_DRIVER_UNLOCK();
965
966         /* Allocate a single block for the generic session and driver softc. */
967         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
968             M_WAITOK | M_ZERO);
969         res->cap = cap;
970         res->csp = *csp;
971         res->id = atomic_fetchadd_64(&sessid, 1);
972
973         /* Call the driver initialization routine. */
974         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
975         if (err != 0) {
976                 CRYPTDEB("dev newsession failed: %d", err);
977                 crypto_deletesession(res);
978                 return (err);
979         }
980
981         *cses = res;
982         return (0);
983 }
984
985 /*
986  * Delete an existing session (or a reserved session on an unregistered
987  * driver).
988  */
989 void
990 crypto_freesession(crypto_session_t cses)
991 {
992         struct cryptocap *cap;
993
994         if (cses == NULL)
995                 return;
996
997         cap = cses->cap;
998
999         /* Call the driver cleanup routine, if available. */
1000         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1001
1002         crypto_deletesession(cses);
1003 }
1004
1005 /*
1006  * Return a new driver id.  Registers a driver with the system so that
1007  * it can be probed by subsequent sessions.
1008  */
1009 int32_t
1010 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1011 {
1012         struct cryptocap *cap, **newdrv;
1013         int i;
1014
1015         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1016                 device_printf(dev,
1017                     "no flags specified when registering driver\n");
1018                 return -1;
1019         }
1020
1021         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1022         cap->cc_dev = dev;
1023         cap->cc_session_size = sessionsize;
1024         cap->cc_flags = flags;
1025         refcount_init(&cap->cc_refs, 1);
1026
1027         CRYPTO_DRIVER_LOCK();
1028         for (;;) {
1029                 for (i = 0; i < crypto_drivers_size; i++) {
1030                         if (crypto_drivers[i] == NULL)
1031                                 break;
1032                 }
1033
1034                 if (i < crypto_drivers_size)
1035                         break;
1036
1037                 /* Out of entries, allocate some more. */
1038
1039                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1040                         CRYPTO_DRIVER_UNLOCK();
1041                         printf("crypto: driver count wraparound!\n");
1042                         cap_rele(cap);
1043                         return (-1);
1044                 }
1045                 CRYPTO_DRIVER_UNLOCK();
1046
1047                 newdrv = malloc(2 * crypto_drivers_size *
1048                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1049
1050                 CRYPTO_DRIVER_LOCK();
1051                 memcpy(newdrv, crypto_drivers,
1052                     crypto_drivers_size * sizeof(*crypto_drivers));
1053
1054                 crypto_drivers_size *= 2;
1055
1056                 free(crypto_drivers, M_CRYPTO_DATA);
1057                 crypto_drivers = newdrv;
1058         }
1059
1060         cap->cc_hid = i;
1061         crypto_drivers[i] = cap;
1062         CRYPTO_DRIVER_UNLOCK();
1063
1064         if (bootverbose)
1065                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1066                     device_get_nameunit(dev), i, flags);
1067
1068         return i;
1069 }
1070
1071 /*
1072  * Lookup a driver by name.  We match against the full device
1073  * name and unit, and against just the name.  The latter gives
1074  * us a simple widlcarding by device name.  On success return the
1075  * driver/hardware identifier; otherwise return -1.
1076  */
1077 int
1078 crypto_find_driver(const char *match)
1079 {
1080         struct cryptocap *cap;
1081         int i, len = strlen(match);
1082
1083         CRYPTO_DRIVER_LOCK();
1084         for (i = 0; i < crypto_drivers_size; i++) {
1085                 if (crypto_drivers[i] == NULL)
1086                         continue;
1087                 cap = crypto_drivers[i];
1088                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1089                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1090                         CRYPTO_DRIVER_UNLOCK();
1091                         return (i);
1092                 }
1093         }
1094         CRYPTO_DRIVER_UNLOCK();
1095         return (-1);
1096 }
1097
1098 /*
1099  * Return the device_t for the specified driver or NULL
1100  * if the driver identifier is invalid.
1101  */
1102 device_t
1103 crypto_find_device_byhid(int hid)
1104 {
1105         struct cryptocap *cap;
1106         device_t dev;
1107
1108         dev = NULL;
1109         CRYPTO_DRIVER_LOCK();
1110         cap = crypto_checkdriver(hid);
1111         if (cap != NULL)
1112                 dev = cap->cc_dev;
1113         CRYPTO_DRIVER_UNLOCK();
1114         return (dev);
1115 }
1116
1117 /*
1118  * Return the device/driver capabilities.
1119  */
1120 int
1121 crypto_getcaps(int hid)
1122 {
1123         struct cryptocap *cap;
1124         int flags;
1125
1126         flags = 0;
1127         CRYPTO_DRIVER_LOCK();
1128         cap = crypto_checkdriver(hid);
1129         if (cap != NULL)
1130                 flags = cap->cc_flags;
1131         CRYPTO_DRIVER_UNLOCK();
1132         return (flags);
1133 }
1134
1135 /*
1136  * Unregister all algorithms associated with a crypto driver.
1137  * If there are pending sessions using it, leave enough information
1138  * around so that subsequent calls using those sessions will
1139  * correctly detect the driver has been unregistered and reroute
1140  * requests.
1141  */
1142 int
1143 crypto_unregister_all(uint32_t driverid)
1144 {
1145         struct cryptocap *cap;
1146
1147         CRYPTO_DRIVER_LOCK();
1148         cap = crypto_checkdriver(driverid);
1149         if (cap == NULL) {
1150                 CRYPTO_DRIVER_UNLOCK();
1151                 return (EINVAL);
1152         }
1153
1154         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1155         crypto_drivers[driverid] = NULL;
1156
1157         /*
1158          * XXX: This doesn't do anything to kick sessions that
1159          * have no pending operations.
1160          */
1161         while (cap->cc_sessions != 0)
1162                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1163         CRYPTO_DRIVER_UNLOCK();
1164         cap_rele(cap);
1165
1166         return (0);
1167 }
1168
1169 /*
1170  * Clear blockage on a driver.  The what parameter indicates whether
1171  * the driver is now ready for cryptop's and/or cryptokop's.
1172  */
1173 int
1174 crypto_unblock(uint32_t driverid, int what)
1175 {
1176         struct cryptocap *cap;
1177         int err;
1178
1179         CRYPTO_Q_LOCK();
1180         cap = crypto_checkdriver(driverid);
1181         if (cap != NULL) {
1182                 if (what & CRYPTO_SYMQ)
1183                         cap->cc_qblocked = 0;
1184                 if (crp_sleep)
1185                         wakeup_one(&crp_q);
1186                 err = 0;
1187         } else
1188                 err = EINVAL;
1189         CRYPTO_Q_UNLOCK();
1190
1191         return err;
1192 }
1193
1194 size_t
1195 crypto_buffer_len(struct crypto_buffer *cb)
1196 {
1197         switch (cb->cb_type) {
1198         case CRYPTO_BUF_CONTIG:
1199                 return (cb->cb_buf_len);
1200         case CRYPTO_BUF_MBUF:
1201                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1202                         return (cb->cb_mbuf->m_pkthdr.len);
1203                 return (m_length(cb->cb_mbuf, NULL));
1204         case CRYPTO_BUF_SINGLE_MBUF:
1205                 return (cb->cb_mbuf->m_len);
1206         case CRYPTO_BUF_VMPAGE:
1207                 return (cb->cb_vm_page_len);
1208         case CRYPTO_BUF_UIO:
1209                 return (cb->cb_uio->uio_resid);
1210         default:
1211                 return (0);
1212         }
1213 }
1214
1215 #ifdef INVARIANTS
1216 /* Various sanity checks on crypto requests. */
1217 static void
1218 cb_sanity(struct crypto_buffer *cb, const char *name)
1219 {
1220         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1221             ("incoming crp with invalid %s buffer type", name));
1222         switch (cb->cb_type) {
1223         case CRYPTO_BUF_CONTIG:
1224                 KASSERT(cb->cb_buf_len >= 0,
1225                     ("incoming crp with -ve %s buffer length", name));
1226                 break;
1227         case CRYPTO_BUF_VMPAGE:
1228                 KASSERT(CRYPTO_HAS_VMPAGE,
1229                     ("incoming crp uses dmap on supported arch"));
1230                 KASSERT(cb->cb_vm_page_len >= 0,
1231                     ("incoming crp with -ve %s buffer length", name));
1232                 KASSERT(cb->cb_vm_page_offset >= 0,
1233                     ("incoming crp with -ve %s buffer offset", name));
1234                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1235                     ("incoming crp with %s buffer offset greater than page size"
1236                      , name));
1237                 break;
1238         default:
1239                 break;
1240         }
1241 }
1242
1243 static void
1244 crp_sanity(struct cryptop *crp)
1245 {
1246         struct crypto_session_params *csp;
1247         struct crypto_buffer *out;
1248         size_t ilen, len, olen;
1249
1250         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1251         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1252             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1253             ("incoming crp with invalid output buffer type"));
1254         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1255         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1256             ("incoming crp already done"));
1257
1258         csp = &crp->crp_session->csp;
1259         cb_sanity(&crp->crp_buf, "input");
1260         ilen = crypto_buffer_len(&crp->crp_buf);
1261         olen = ilen;
1262         out = NULL;
1263         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1264                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1265                         cb_sanity(&crp->crp_obuf, "output");
1266                         out = &crp->crp_obuf;
1267                         olen = crypto_buffer_len(out);
1268                 }
1269         } else
1270                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1271                     ("incoming crp with separate output buffer "
1272                     "but no session support"));
1273
1274         switch (csp->csp_mode) {
1275         case CSP_MODE_COMPRESS:
1276                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1277                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1278                     ("invalid compression op %x", crp->crp_op));
1279                 break;
1280         case CSP_MODE_CIPHER:
1281                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1282                     crp->crp_op == CRYPTO_OP_DECRYPT,
1283                     ("invalid cipher op %x", crp->crp_op));
1284                 break;
1285         case CSP_MODE_DIGEST:
1286                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1287                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1288                     ("invalid digest op %x", crp->crp_op));
1289                 break;
1290         case CSP_MODE_AEAD:
1291                 KASSERT(crp->crp_op ==
1292                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1293                     crp->crp_op ==
1294                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1295                     ("invalid AEAD op %x", crp->crp_op));
1296                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1297                     ("AEAD without a separate IV"));
1298                 break;
1299         case CSP_MODE_ETA:
1300                 KASSERT(crp->crp_op ==
1301                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1302                     crp->crp_op ==
1303                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1304                     ("invalid ETA op %x", crp->crp_op));
1305                 break;
1306         }
1307         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1308                 if (crp->crp_aad == NULL) {
1309                         KASSERT(crp->crp_aad_start == 0 ||
1310                             crp->crp_aad_start < ilen,
1311                             ("invalid AAD start"));
1312                         KASSERT(crp->crp_aad_length != 0 ||
1313                             crp->crp_aad_start == 0,
1314                             ("AAD with zero length and non-zero start"));
1315                         KASSERT(crp->crp_aad_length == 0 ||
1316                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1317                             ("AAD outside input length"));
1318                 } else {
1319                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1320                             ("session doesn't support separate AAD buffer"));
1321                         KASSERT(crp->crp_aad_start == 0,
1322                             ("separate AAD buffer with non-zero AAD start"));
1323                         KASSERT(crp->crp_aad_length != 0,
1324                             ("separate AAD buffer with zero length"));
1325                 }
1326         } else {
1327                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1328                     crp->crp_aad_length == 0,
1329                     ("AAD region in request not supporting AAD"));
1330         }
1331         if (csp->csp_ivlen == 0) {
1332                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1333                     ("IV_SEPARATE set when IV isn't used"));
1334                 KASSERT(crp->crp_iv_start == 0,
1335                     ("crp_iv_start set when IV isn't used"));
1336         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1337                 KASSERT(crp->crp_iv_start == 0,
1338                     ("IV_SEPARATE used with non-zero IV start"));
1339         } else {
1340                 KASSERT(crp->crp_iv_start < ilen,
1341                     ("invalid IV start"));
1342                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1343                     ("IV outside buffer length"));
1344         }
1345         /* XXX: payload_start of 0 should always be < ilen? */
1346         KASSERT(crp->crp_payload_start == 0 ||
1347             crp->crp_payload_start < ilen,
1348             ("invalid payload start"));
1349         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1350             ilen, ("payload outside input buffer"));
1351         if (out == NULL) {
1352                 KASSERT(crp->crp_payload_output_start == 0,
1353                     ("payload output start non-zero without output buffer"));
1354         } else {
1355                 KASSERT(crp->crp_payload_output_start < olen,
1356                     ("invalid payload output start"));
1357                 KASSERT(crp->crp_payload_output_start +
1358                     crp->crp_payload_length <= olen,
1359                     ("payload outside output buffer"));
1360         }
1361         if (csp->csp_mode == CSP_MODE_DIGEST ||
1362             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1363                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1364                         len = ilen;
1365                 else
1366                         len = olen;
1367                 KASSERT(crp->crp_digest_start == 0 ||
1368                     crp->crp_digest_start < len,
1369                     ("invalid digest start"));
1370                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1371                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1372                     ("digest outside buffer"));
1373         } else {
1374                 KASSERT(crp->crp_digest_start == 0,
1375                     ("non-zero digest start for request without a digest"));
1376         }
1377         if (csp->csp_cipher_klen != 0)
1378                 KASSERT(csp->csp_cipher_key != NULL ||
1379                     crp->crp_cipher_key != NULL,
1380                     ("cipher request without a key"));
1381         if (csp->csp_auth_klen != 0)
1382                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1383                     ("auth request without a key"));
1384         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1385 }
1386 #endif
1387
1388 static int
1389 crypto_dispatch_one(struct cryptop *crp, int hint)
1390 {
1391         struct cryptocap *cap;
1392         int result;
1393
1394 #ifdef INVARIANTS
1395         crp_sanity(crp);
1396 #endif
1397         CRYPTOSTAT_INC(cs_ops);
1398
1399         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1400
1401         /*
1402          * Caller marked the request to be processed immediately; dispatch it
1403          * directly to the driver unless the driver is currently blocked, in
1404          * which case it is queued for deferred dispatch.
1405          */
1406         cap = crp->crp_session->cap;
1407         if (!atomic_load_int(&cap->cc_qblocked)) {
1408                 result = crypto_invoke(cap, crp, hint);
1409                 if (result != ERESTART)
1410                         return (result);
1411
1412                 /*
1413                  * The driver ran out of resources, put the request on the
1414                  * queue.
1415                  */
1416         }
1417         crypto_batch_enqueue(crp);
1418         return (0);
1419 }
1420
1421 int
1422 crypto_dispatch(struct cryptop *crp)
1423 {
1424         return (crypto_dispatch_one(crp, 0));
1425 }
1426
1427 int
1428 crypto_dispatch_async(struct cryptop *crp, int flags)
1429 {
1430         struct crypto_ret_worker *ret_worker;
1431
1432         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1433                 /*
1434                  * The driver issues completions asynchonously, don't bother
1435                  * deferring dispatch to a worker thread.
1436                  */
1437                 return (crypto_dispatch(crp));
1438         }
1439
1440 #ifdef INVARIANTS
1441         crp_sanity(crp);
1442 #endif
1443         CRYPTOSTAT_INC(cs_ops);
1444
1445         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1446         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1447                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1448                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1449                 CRYPTO_RETW_LOCK(ret_worker);
1450                 crp->crp_seq = ret_worker->reorder_ops++;
1451                 CRYPTO_RETW_UNLOCK(ret_worker);
1452         }
1453         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1454         taskqueue_enqueue(crypto_tq, &crp->crp_task);
1455         return (0);
1456 }
1457
1458 void
1459 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1460 {
1461         struct cryptop *crp;
1462         int hint;
1463
1464         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1465                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1466                 TAILQ_REMOVE(crpq, crp, crp_next);
1467                 if (crypto_dispatch_one(crp, hint) != 0)
1468                         crypto_batch_enqueue(crp);
1469         }
1470 }
1471
1472 static void
1473 crypto_batch_enqueue(struct cryptop *crp)
1474 {
1475
1476         CRYPTO_Q_LOCK();
1477         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1478         if (crp_sleep)
1479                 wakeup_one(&crp_q);
1480         CRYPTO_Q_UNLOCK();
1481 }
1482
1483 static void
1484 crypto_task_invoke(void *ctx, int pending)
1485 {
1486         struct cryptocap *cap;
1487         struct cryptop *crp;
1488         int result;
1489
1490         crp = (struct cryptop *)ctx;
1491         cap = crp->crp_session->cap;
1492         result = crypto_invoke(cap, crp, 0);
1493         if (result == ERESTART)
1494                 crypto_batch_enqueue(crp);
1495 }
1496
1497 /*
1498  * Dispatch a crypto request to the appropriate crypto devices.
1499  */
1500 static int
1501 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1502 {
1503
1504         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1505         KASSERT(crp->crp_callback != NULL,
1506             ("%s: crp->crp_callback == NULL", __func__));
1507         KASSERT(crp->crp_session != NULL,
1508             ("%s: crp->crp_session == NULL", __func__));
1509
1510         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1511                 struct crypto_session_params csp;
1512                 crypto_session_t nses;
1513
1514                 /*
1515                  * Driver has unregistered; migrate the session and return
1516                  * an error to the caller so they'll resubmit the op.
1517                  *
1518                  * XXX: What if there are more already queued requests for this
1519                  *      session?
1520                  *
1521                  * XXX: Real solution is to make sessions refcounted
1522                  * and force callers to hold a reference when
1523                  * assigning to crp_session.  Could maybe change
1524                  * crypto_getreq to accept a session pointer to make
1525                  * that work.  Alternatively, we could abandon the
1526                  * notion of rewriting crp_session in requests forcing
1527                  * the caller to deal with allocating a new session.
1528                  * Perhaps provide a method to allow a crp's session to
1529                  * be swapped that callers could use.
1530                  */
1531                 csp = crp->crp_session->csp;
1532                 crypto_freesession(crp->crp_session);
1533
1534                 /*
1535                  * XXX: Key pointers may no longer be valid.  If we
1536                  * really want to support this we need to define the
1537                  * KPI such that 'csp' is required to be valid for the
1538                  * duration of a session by the caller perhaps.
1539                  *
1540                  * XXX: If the keys have been changed this will reuse
1541                  * the old keys.  This probably suggests making
1542                  * rekeying more explicit and updating the key
1543                  * pointers in 'csp' when the keys change.
1544                  */
1545                 if (crypto_newsession(&nses, &csp,
1546                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1547                         crp->crp_session = nses;
1548
1549                 crp->crp_etype = EAGAIN;
1550                 crypto_done(crp);
1551                 return 0;
1552         } else {
1553                 /*
1554                  * Invoke the driver to process the request.
1555                  */
1556                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1557         }
1558 }
1559
1560 void
1561 crypto_destroyreq(struct cryptop *crp)
1562 {
1563 #ifdef DIAGNOSTIC
1564         {
1565                 struct cryptop *crp2;
1566                 struct crypto_ret_worker *ret_worker;
1567
1568                 CRYPTO_Q_LOCK();
1569                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1570                         KASSERT(crp2 != crp,
1571                             ("Freeing cryptop from the crypto queue (%p).",
1572                             crp));
1573                 }
1574                 CRYPTO_Q_UNLOCK();
1575
1576                 FOREACH_CRYPTO_RETW(ret_worker) {
1577                         CRYPTO_RETW_LOCK(ret_worker);
1578                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1579                                 KASSERT(crp2 != crp,
1580                                     ("Freeing cryptop from the return queue (%p).",
1581                                     crp));
1582                         }
1583                         CRYPTO_RETW_UNLOCK(ret_worker);
1584                 }
1585         }
1586 #endif
1587 }
1588
1589 void
1590 crypto_freereq(struct cryptop *crp)
1591 {
1592         if (crp == NULL)
1593                 return;
1594
1595         crypto_destroyreq(crp);
1596         uma_zfree(cryptop_zone, crp);
1597 }
1598
1599 static void
1600 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1601 {
1602         crp->crp_session = cses;
1603 }
1604
1605 void
1606 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1607 {
1608         memset(crp, 0, sizeof(*crp));
1609         _crypto_initreq(crp, cses);
1610 }
1611
1612 struct cryptop *
1613 crypto_getreq(crypto_session_t cses, int how)
1614 {
1615         struct cryptop *crp;
1616
1617         MPASS(how == M_WAITOK || how == M_NOWAIT);
1618         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1619         if (crp != NULL)
1620                 _crypto_initreq(crp, cses);
1621         return (crp);
1622 }
1623
1624 /*
1625  * Invoke the callback on behalf of the driver.
1626  */
1627 void
1628 crypto_done(struct cryptop *crp)
1629 {
1630         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1631                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1632         crp->crp_flags |= CRYPTO_F_DONE;
1633         if (crp->crp_etype != 0)
1634                 CRYPTOSTAT_INC(cs_errs);
1635
1636         /*
1637          * CBIMM means unconditionally do the callback immediately;
1638          * CBIFSYNC means do the callback immediately only if the
1639          * operation was done synchronously.  Both are used to avoid
1640          * doing extraneous context switches; the latter is mostly
1641          * used with the software crypto driver.
1642          */
1643         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1644             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1645             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1646             CRYPTO_SESS_SYNC(crp->crp_session)))) {
1647                 /*
1648                  * Do the callback directly.  This is ok when the
1649                  * callback routine does very little (e.g. the
1650                  * /dev/crypto callback method just does a wakeup).
1651                  */
1652                 crp->crp_callback(crp);
1653         } else {
1654                 struct crypto_ret_worker *ret_worker;
1655                 bool wake;
1656
1657                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1658
1659                 /*
1660                  * Normal case; queue the callback for the thread.
1661                  */
1662                 CRYPTO_RETW_LOCK(ret_worker);
1663                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1664                         struct cryptop *tmp;
1665
1666                         TAILQ_FOREACH_REVERSE(tmp,
1667                             &ret_worker->crp_ordered_ret_q, cryptop_q,
1668                             crp_next) {
1669                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1670                                         TAILQ_INSERT_AFTER(
1671                                             &ret_worker->crp_ordered_ret_q, tmp,
1672                                             crp, crp_next);
1673                                         break;
1674                                 }
1675                         }
1676                         if (tmp == NULL) {
1677                                 TAILQ_INSERT_HEAD(
1678                                     &ret_worker->crp_ordered_ret_q, crp,
1679                                     crp_next);
1680                         }
1681
1682                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1683                 } else {
1684                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1685                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1686                             crp_next);
1687                 }
1688
1689                 if (wake)
1690                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1691                 CRYPTO_RETW_UNLOCK(ret_worker);
1692         }
1693 }
1694
1695 /*
1696  * Terminate a thread at module unload.  The process that
1697  * initiated this is waiting for us to signal that we're gone;
1698  * wake it up and exit.  We use the driver table lock to insure
1699  * we don't do the wakeup before they're waiting.  There is no
1700  * race here because the waiter sleeps on the proc lock for the
1701  * thread so it gets notified at the right time because of an
1702  * extra wakeup that's done in exit1().
1703  */
1704 static void
1705 crypto_finis(void *chan)
1706 {
1707         CRYPTO_DRIVER_LOCK();
1708         wakeup_one(chan);
1709         CRYPTO_DRIVER_UNLOCK();
1710         kthread_exit();
1711 }
1712
1713 /*
1714  * Crypto thread, dispatches crypto requests.
1715  */
1716 static void
1717 crypto_dispatch_thread(void *arg __unused)
1718 {
1719         struct cryptop *crp, *submit;
1720         struct cryptocap *cap;
1721         int result, hint;
1722
1723 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1724         fpu_kern_thread(FPU_KERN_NORMAL);
1725 #endif
1726
1727         CRYPTO_Q_LOCK();
1728         for (;;) {
1729                 /*
1730                  * Find the first element in the queue that can be
1731                  * processed and look-ahead to see if multiple ops
1732                  * are ready for the same driver.
1733                  */
1734                 submit = NULL;
1735                 hint = 0;
1736                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1737                         cap = crp->crp_session->cap;
1738                         /*
1739                          * Driver cannot disappeared when there is an active
1740                          * session.
1741                          */
1742                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1743                             __func__, __LINE__));
1744                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1745                                 /* Op needs to be migrated, process it. */
1746                                 if (submit == NULL)
1747                                         submit = crp;
1748                                 break;
1749                         }
1750                         if (!cap->cc_qblocked) {
1751                                 if (submit != NULL) {
1752                                         /*
1753                                          * We stop on finding another op,
1754                                          * regardless whether its for the same
1755                                          * driver or not.  We could keep
1756                                          * searching the queue but it might be
1757                                          * better to just use a per-driver
1758                                          * queue instead.
1759                                          */
1760                                         if (submit->crp_session->cap == cap)
1761                                                 hint = CRYPTO_HINT_MORE;
1762                                 } else {
1763                                         submit = crp;
1764                                 }
1765                                 break;
1766                         }
1767                 }
1768                 if (submit != NULL) {
1769                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1770                         cap = submit->crp_session->cap;
1771                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1772                             __func__, __LINE__));
1773                         CRYPTO_Q_UNLOCK();
1774                         result = crypto_invoke(cap, submit, hint);
1775                         CRYPTO_Q_LOCK();
1776                         if (result == ERESTART) {
1777                                 /*
1778                                  * The driver ran out of resources, mark the
1779                                  * driver ``blocked'' for cryptop's and put
1780                                  * the request back in the queue.  It would
1781                                  * best to put the request back where we got
1782                                  * it but that's hard so for now we put it
1783                                  * at the front.  This should be ok; putting
1784                                  * it at the end does not work.
1785                                  */
1786                                 cap->cc_qblocked = 1;
1787                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1788                                 CRYPTOSTAT_INC(cs_blocks);
1789                         }
1790                 } else {
1791                         /*
1792                          * Nothing more to be processed.  Sleep until we're
1793                          * woken because there are more ops to process.
1794                          * This happens either by submission or by a driver
1795                          * becoming unblocked and notifying us through
1796                          * crypto_unblock.  Note that when we wakeup we
1797                          * start processing each queue again from the
1798                          * front. It's not clear that it's important to
1799                          * preserve this ordering since ops may finish
1800                          * out of order if dispatched to different devices
1801                          * and some become blocked while others do not.
1802                          */
1803                         crp_sleep = 1;
1804                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1805                         crp_sleep = 0;
1806                         if (cryptotd == NULL)
1807                                 break;
1808                         CRYPTOSTAT_INC(cs_intrs);
1809                 }
1810         }
1811         CRYPTO_Q_UNLOCK();
1812
1813         crypto_finis(&crp_q);
1814 }
1815
1816 /*
1817  * Crypto returns thread, does callbacks for processed crypto requests.
1818  * Callbacks are done here, rather than in the crypto drivers, because
1819  * callbacks typically are expensive and would slow interrupt handling.
1820  */
1821 static void
1822 crypto_ret_thread(void *arg)
1823 {
1824         struct crypto_ret_worker *ret_worker = arg;
1825         struct cryptop *crpt;
1826
1827         CRYPTO_RETW_LOCK(ret_worker);
1828         for (;;) {
1829                 /* Harvest return q's for completed ops */
1830                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1831                 if (crpt != NULL) {
1832                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1833                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1834                                 ret_worker->reorder_cur_seq++;
1835                         } else {
1836                                 crpt = NULL;
1837                         }
1838                 }
1839
1840                 if (crpt == NULL) {
1841                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1842                         if (crpt != NULL)
1843                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1844                 }
1845
1846                 if (crpt != NULL) {
1847                         CRYPTO_RETW_UNLOCK(ret_worker);
1848                         /*
1849                          * Run callbacks unlocked.
1850                          */
1851                         if (crpt != NULL)
1852                                 crpt->crp_callback(crpt);
1853                         CRYPTO_RETW_LOCK(ret_worker);
1854                 } else {
1855                         /*
1856                          * Nothing more to be processed.  Sleep until we're
1857                          * woken because there are more returns to process.
1858                          */
1859                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1860                                 "crypto_ret_wait", 0);
1861                         if (ret_worker->td == NULL)
1862                                 break;
1863                         CRYPTOSTAT_INC(cs_rets);
1864                 }
1865         }
1866         CRYPTO_RETW_UNLOCK(ret_worker);
1867
1868         crypto_finis(&ret_worker->crp_ret_q);
1869 }
1870
1871 #ifdef DDB
1872 static void
1873 db_show_drivers(void)
1874 {
1875         int hid;
1876
1877         db_printf("%12s %4s %8s %2s\n"
1878                 , "Device"
1879                 , "Ses"
1880                 , "Flags"
1881                 , "QB"
1882         );
1883         for (hid = 0; hid < crypto_drivers_size; hid++) {
1884                 const struct cryptocap *cap = crypto_drivers[hid];
1885                 if (cap == NULL)
1886                         continue;
1887                 db_printf("%-12s %4u %08x %2u\n"
1888                     , device_get_nameunit(cap->cc_dev)
1889                     , cap->cc_sessions
1890                     , cap->cc_flags
1891                     , cap->cc_qblocked
1892                 );
1893         }
1894 }
1895
1896 DB_SHOW_COMMAND(crypto, db_show_crypto)
1897 {
1898         struct cryptop *crp;
1899         struct crypto_ret_worker *ret_worker;
1900
1901         db_show_drivers();
1902         db_printf("\n");
1903
1904         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1905             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1906             "Device", "Callback");
1907         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1908                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1909                     , crp->crp_session->cap->cc_hid
1910                     , (int) crypto_ses2caps(crp->crp_session)
1911                     , crp->crp_olen
1912                     , crp->crp_etype
1913                     , crp->crp_flags
1914                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
1915                     , crp->crp_callback
1916                 );
1917         }
1918         FOREACH_CRYPTO_RETW(ret_worker) {
1919                 db_printf("\n%8s %4s %4s %4s %8s\n",
1920                     "ret_worker", "HID", "Etype", "Flags", "Callback");
1921                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1922                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1923                                 db_printf("%8td %4u %4u %04x %8p\n"
1924                                     , CRYPTO_RETW_ID(ret_worker)
1925                                     , crp->crp_session->cap->cc_hid
1926                                     , crp->crp_etype
1927                                     , crp->crp_flags
1928                                     , crp->crp_callback
1929                                 );
1930                         }
1931                 }
1932         }
1933 }
1934 #endif
1935
1936 int crypto_modevent(module_t mod, int type, void *unused);
1937
1938 /*
1939  * Initialization code, both for static and dynamic loading.
1940  * Note this is not invoked with the usual MODULE_DECLARE
1941  * mechanism but instead is listed as a dependency by the
1942  * cryptosoft driver.  This guarantees proper ordering of
1943  * calls on module load/unload.
1944  */
1945 int
1946 crypto_modevent(module_t mod, int type, void *unused)
1947 {
1948         int error = EINVAL;
1949
1950         switch (type) {
1951         case MOD_LOAD:
1952                 error = crypto_init();
1953                 if (error == 0 && bootverbose)
1954                         printf("crypto: <crypto core>\n");
1955                 break;
1956         case MOD_UNLOAD:
1957                 /*XXX disallow if active sessions */
1958                 error = 0;
1959                 crypto_destroy();
1960                 return 0;
1961         }
1962         return error;
1963 }
1964 MODULE_VERSION(crypto, 1);
1965 MODULE_DEPEND(crypto, zlib, 1, 1, 1);