]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
Include sys/types.h here
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78
79 #include <ddb/ddb.h>
80
81 #include <machine/vmparam.h>
82 #include <vm/uma.h>
83
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96
97 SDT_PROVIDER_DEFINE(opencrypto);
98
99 /*
100  * Crypto drivers register themselves by allocating a slot in the
101  * crypto_drivers table with crypto_get_driverid() and then registering
102  * each asym algorithm they support with crypto_kregister().
103  */
104 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
105 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
106 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
107 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108
109 /*
110  * Crypto device/driver capabilities structure.
111  *
112  * Synchronization:
113  * (d) - protected by CRYPTO_DRIVER_LOCK()
114  * (q) - protected by CRYPTO_Q_LOCK()
115  * Not tagged fields are read-only.
116  */
117 struct cryptocap {
118         device_t        cc_dev;
119         uint32_t        cc_hid;
120         u_int32_t       cc_sessions;            /* (d) # of sessions */
121         u_int32_t       cc_koperations;         /* (d) # os asym operations */
122         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
123
124         int             cc_flags;               /* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
126         int             cc_qblocked;            /* (q) symmetric q blocked */
127         int             cc_kqblocked;           /* (q) asymmetric q blocked */
128         size_t          cc_session_size;
129         volatile int    cc_refs;
130 };
131
132 static  struct cryptocap **crypto_drivers = NULL;
133 static  int crypto_drivers_size = 0;
134
135 struct crypto_session {
136         struct cryptocap *cap;
137         void *softc;
138         struct crypto_session_params csp;
139 };
140
141 /*
142  * There are two queues for crypto requests; one for symmetric (e.g.
143  * cipher) operations and one for asymmetric (e.g. MOD)operations.
144  * A single mutex is used to lock access to both queues.  We could
145  * have one per-queue but having one simplifies handling of block/unblock
146  * operations.
147  */
148 static  int crp_sleep = 0;
149 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
150 static  TAILQ_HEAD(,cryptkop) crp_kq;
151 static  struct mtx crypto_q_mtx;
152 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
153 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
154
155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
156     "In-kernel cryptography");
157
158 /*
159  * Taskqueue used to dispatch the crypto requests
160  * that have the CRYPTO_F_ASYNC flag
161  */
162 static struct taskqueue *crypto_tq;
163
164 /*
165  * Crypto seq numbers are operated on with modular arithmetic
166  */
167 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
168
169 struct crypto_ret_worker {
170         struct mtx crypto_ret_mtx;
171
172         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
173         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
174         TAILQ_HEAD(,cryptkop) crp_ret_kq;       /* callback queue for asym jobs */
175
176         u_int32_t reorder_ops;          /* total ordered sym jobs received */
177         u_int32_t reorder_cur_seq;      /* current sym job dispatched */
178
179         struct proc *cryptoretproc;
180 };
181 static struct crypto_ret_worker *crypto_ret_workers = NULL;
182
183 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
184 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
185 #define FOREACH_CRYPTO_RETW(w) \
186         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
187
188 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
189 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
190 #define CRYPTO_RETW_EMPTY(w) \
191         (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
192
193 static int crypto_workers_num = 0;
194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
195            &crypto_workers_num, 0,
196            "Number of crypto workers used to dispatch crypto jobs");
197 #ifdef COMPAT_FREEBSD12
198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
199            &crypto_workers_num, 0,
200            "Number of crypto workers used to dispatch crypto jobs");
201 #endif
202
203 static  uma_zone_t cryptop_zone;
204 static  uma_zone_t cryptoses_zone;
205
206 int     crypto_userasymcrypto = 1;
207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
208            &crypto_userasymcrypto, 0,
209            "Enable user-mode access to asymmetric crypto support");
210 #ifdef COMPAT_FREEBSD12
211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
212            &crypto_userasymcrypto, 0,
213            "Enable/disable user-mode access to asymmetric crypto support");
214 #endif
215
216 int     crypto_devallowsoft = 0;
217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
218            &crypto_devallowsoft, 0,
219            "Enable use of software crypto by /dev/crypto");
220 #ifdef COMPAT_FREEBSD12
221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
222            &crypto_devallowsoft, 0,
223            "Enable/disable use of software crypto by /dev/crypto");
224 #endif
225
226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
227
228 static  void crypto_proc(void);
229 static  struct proc *cryptoproc;
230 static  void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
231 static  void crypto_destroy(void);
232 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
233 static  int crypto_kinvoke(struct cryptkop *krp);
234 static  void crypto_task_invoke(void *ctx, int pending);
235 static void crypto_batch_enqueue(struct cryptop *crp);
236
237 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
238 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
239     cryptostats, nitems(cryptostats),
240     "Crypto system statistics");
241
242 #define CRYPTOSTAT_INC(stat) do {                                       \
243         counter_u64_add(                                                \
244             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
245             1);                                                         \
246 } while (0)
247
248 static void
249 cryptostats_init(void *arg __unused)
250 {
251         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
252 }
253 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
254
255 static void
256 cryptostats_fini(void *arg __unused)
257 {
258         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
259 }
260 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
261     NULL);
262
263 /* Try to avoid directly exposing the key buffer as a symbol */
264 static struct keybuf *keybuf;
265
266 static struct keybuf empty_keybuf = {
267         .kb_nents = 0
268 };
269
270 /* Obtain the key buffer from boot metadata */
271 static void
272 keybuf_init(void)
273 {
274         caddr_t kmdp;
275
276         kmdp = preload_search_by_type("elf kernel");
277
278         if (kmdp == NULL)
279                 kmdp = preload_search_by_type("elf64 kernel");
280
281         keybuf = (struct keybuf *)preload_search_info(kmdp,
282             MODINFO_METADATA | MODINFOMD_KEYBUF);
283
284         if (keybuf == NULL)
285                 keybuf = &empty_keybuf;
286 }
287
288 /* It'd be nice if we could store these in some kind of secure memory... */
289 struct keybuf * get_keybuf(void) {
290
291         return (keybuf);
292 }
293
294 static struct cryptocap *
295 cap_ref(struct cryptocap *cap)
296 {
297
298         refcount_acquire(&cap->cc_refs);
299         return (cap);
300 }
301
302 static void
303 cap_rele(struct cryptocap *cap)
304 {
305
306         if (refcount_release(&cap->cc_refs) == 0)
307                 return;
308
309         KASSERT(cap->cc_sessions == 0,
310             ("freeing crypto driver with active sessions"));
311         KASSERT(cap->cc_koperations == 0,
312             ("freeing crypto driver with active key operations"));
313
314         free(cap, M_CRYPTO_DATA);
315 }
316
317 static int
318 crypto_init(void)
319 {
320         struct crypto_ret_worker *ret_worker;
321         int error;
322
323         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
324                 MTX_DEF|MTX_QUIET);
325
326         TAILQ_INIT(&crp_q);
327         TAILQ_INIT(&crp_kq);
328         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
329
330         cryptop_zone = uma_zcreate("cryptop",
331             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
332             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
333         cryptoses_zone = uma_zcreate("crypto_session",
334             sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
335             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
336
337         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
338         crypto_drivers = malloc(crypto_drivers_size *
339             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
340
341         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
342                 crypto_workers_num = mp_ncpus;
343
344         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
345             taskqueue_thread_enqueue, &crypto_tq);
346
347         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
348             "crypto");
349
350         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
351                     &cryptoproc, 0, 0, "crypto");
352         if (error) {
353                 printf("crypto_init: cannot start crypto thread; error %d",
354                         error);
355                 goto bad;
356         }
357
358         crypto_ret_workers = mallocarray(crypto_workers_num,
359             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
360
361         FOREACH_CRYPTO_RETW(ret_worker) {
362                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
363                 TAILQ_INIT(&ret_worker->crp_ret_q);
364                 TAILQ_INIT(&ret_worker->crp_ret_kq);
365
366                 ret_worker->reorder_ops = 0;
367                 ret_worker->reorder_cur_seq = 0;
368
369                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
370
371                 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
372                                 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
373                 if (error) {
374                         printf("crypto_init: cannot start cryptoret thread; error %d",
375                                 error);
376                         goto bad;
377                 }
378         }
379
380         keybuf_init();
381
382         return 0;
383 bad:
384         crypto_destroy();
385         return error;
386 }
387
388 /*
389  * Signal a crypto thread to terminate.  We use the driver
390  * table lock to synchronize the sleep/wakeups so that we
391  * are sure the threads have terminated before we release
392  * the data structures they use.  See crypto_finis below
393  * for the other half of this song-and-dance.
394  */
395 static void
396 crypto_terminate(struct proc **pp, void *q)
397 {
398         struct proc *p;
399
400         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
401         p = *pp;
402         *pp = NULL;
403         if (p) {
404                 wakeup_one(q);
405                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
406                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
407                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
408                 PROC_UNLOCK(p);
409                 CRYPTO_DRIVER_LOCK();
410         }
411 }
412
413 static void
414 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
415     uint8_t padval)
416 {
417         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
418         u_int i;
419
420         KASSERT(axf->blocksize <= sizeof(hmac_key),
421             ("Invalid HMAC block size %d", axf->blocksize));
422
423         /*
424          * If the key is larger than the block size, use the digest of
425          * the key as the key instead.
426          */
427         memset(hmac_key, 0, sizeof(hmac_key));
428         if (klen > axf->blocksize) {
429                 axf->Init(auth_ctx);
430                 axf->Update(auth_ctx, key, klen);
431                 axf->Final(hmac_key, auth_ctx);
432                 klen = axf->hashsize;
433         } else
434                 memcpy(hmac_key, key, klen);
435
436         for (i = 0; i < axf->blocksize; i++)
437                 hmac_key[i] ^= padval;
438
439         axf->Init(auth_ctx);
440         axf->Update(auth_ctx, hmac_key, axf->blocksize);
441         explicit_bzero(hmac_key, sizeof(hmac_key));
442 }
443
444 void
445 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
446     void *auth_ctx)
447 {
448
449         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
450 }
451
452 void
453 hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
454     void *auth_ctx)
455 {
456
457         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
458 }
459
460 static void
461 crypto_destroy(void)
462 {
463         struct crypto_ret_worker *ret_worker;
464         int i;
465
466         /*
467          * Terminate any crypto threads.
468          */
469         if (crypto_tq != NULL)
470                 taskqueue_drain_all(crypto_tq);
471         CRYPTO_DRIVER_LOCK();
472         crypto_terminate(&cryptoproc, &crp_q);
473         FOREACH_CRYPTO_RETW(ret_worker)
474                 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
475         CRYPTO_DRIVER_UNLOCK();
476
477         /* XXX flush queues??? */
478
479         /*
480          * Reclaim dynamically allocated resources.
481          */
482         for (i = 0; i < crypto_drivers_size; i++) {
483                 if (crypto_drivers[i] != NULL)
484                         cap_rele(crypto_drivers[i]);
485         }
486         free(crypto_drivers, M_CRYPTO_DATA);
487
488         if (cryptoses_zone != NULL)
489                 uma_zdestroy(cryptoses_zone);
490         if (cryptop_zone != NULL)
491                 uma_zdestroy(cryptop_zone);
492         mtx_destroy(&crypto_q_mtx);
493         FOREACH_CRYPTO_RETW(ret_worker)
494                 mtx_destroy(&ret_worker->crypto_ret_mtx);
495         free(crypto_ret_workers, M_CRYPTO_DATA);
496         if (crypto_tq != NULL)
497                 taskqueue_free(crypto_tq);
498         mtx_destroy(&crypto_drivers_mtx);
499 }
500
501 uint32_t
502 crypto_ses2hid(crypto_session_t crypto_session)
503 {
504         return (crypto_session->cap->cc_hid);
505 }
506
507 uint32_t
508 crypto_ses2caps(crypto_session_t crypto_session)
509 {
510         return (crypto_session->cap->cc_flags & 0xff000000);
511 }
512
513 void *
514 crypto_get_driver_session(crypto_session_t crypto_session)
515 {
516         return (crypto_session->softc);
517 }
518
519 const struct crypto_session_params *
520 crypto_get_params(crypto_session_t crypto_session)
521 {
522         return (&crypto_session->csp);
523 }
524
525 struct auth_hash *
526 crypto_auth_hash(const struct crypto_session_params *csp)
527 {
528
529         switch (csp->csp_auth_alg) {
530         case CRYPTO_SHA1_HMAC:
531                 return (&auth_hash_hmac_sha1);
532         case CRYPTO_SHA2_224_HMAC:
533                 return (&auth_hash_hmac_sha2_224);
534         case CRYPTO_SHA2_256_HMAC:
535                 return (&auth_hash_hmac_sha2_256);
536         case CRYPTO_SHA2_384_HMAC:
537                 return (&auth_hash_hmac_sha2_384);
538         case CRYPTO_SHA2_512_HMAC:
539                 return (&auth_hash_hmac_sha2_512);
540         case CRYPTO_NULL_HMAC:
541                 return (&auth_hash_null);
542         case CRYPTO_RIPEMD160_HMAC:
543                 return (&auth_hash_hmac_ripemd_160);
544         case CRYPTO_SHA1:
545                 return (&auth_hash_sha1);
546         case CRYPTO_SHA2_224:
547                 return (&auth_hash_sha2_224);
548         case CRYPTO_SHA2_256:
549                 return (&auth_hash_sha2_256);
550         case CRYPTO_SHA2_384:
551                 return (&auth_hash_sha2_384);
552         case CRYPTO_SHA2_512:
553                 return (&auth_hash_sha2_512);
554         case CRYPTO_AES_NIST_GMAC:
555                 switch (csp->csp_auth_klen) {
556                 case 128 / 8:
557                         return (&auth_hash_nist_gmac_aes_128);
558                 case 192 / 8:
559                         return (&auth_hash_nist_gmac_aes_192);
560                 case 256 / 8:
561                         return (&auth_hash_nist_gmac_aes_256);
562                 default:
563                         return (NULL);
564                 }
565         case CRYPTO_BLAKE2B:
566                 return (&auth_hash_blake2b);
567         case CRYPTO_BLAKE2S:
568                 return (&auth_hash_blake2s);
569         case CRYPTO_POLY1305:
570                 return (&auth_hash_poly1305);
571         case CRYPTO_AES_CCM_CBC_MAC:
572                 switch (csp->csp_auth_klen) {
573                 case 128 / 8:
574                         return (&auth_hash_ccm_cbc_mac_128);
575                 case 192 / 8:
576                         return (&auth_hash_ccm_cbc_mac_192);
577                 case 256 / 8:
578                         return (&auth_hash_ccm_cbc_mac_256);
579                 default:
580                         return (NULL);
581                 }
582         default:
583                 return (NULL);
584         }
585 }
586
587 struct enc_xform *
588 crypto_cipher(const struct crypto_session_params *csp)
589 {
590
591         switch (csp->csp_cipher_alg) {
592         case CRYPTO_RIJNDAEL128_CBC:
593                 return (&enc_xform_rijndael128);
594         case CRYPTO_AES_XTS:
595                 return (&enc_xform_aes_xts);
596         case CRYPTO_AES_ICM:
597                 return (&enc_xform_aes_icm);
598         case CRYPTO_AES_NIST_GCM_16:
599                 return (&enc_xform_aes_nist_gcm);
600         case CRYPTO_CAMELLIA_CBC:
601                 return (&enc_xform_camellia);
602         case CRYPTO_NULL_CBC:
603                 return (&enc_xform_null);
604         case CRYPTO_CHACHA20:
605                 return (&enc_xform_chacha20);
606         case CRYPTO_AES_CCM_16:
607                 return (&enc_xform_ccm);
608         default:
609                 return (NULL);
610         }
611 }
612
613 static struct cryptocap *
614 crypto_checkdriver(u_int32_t hid)
615 {
616
617         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
618 }
619
620 /*
621  * Select a driver for a new session that supports the specified
622  * algorithms and, optionally, is constrained according to the flags.
623  */
624 static struct cryptocap *
625 crypto_select_driver(const struct crypto_session_params *csp, int flags)
626 {
627         struct cryptocap *cap, *best;
628         int best_match, error, hid;
629
630         CRYPTO_DRIVER_ASSERT();
631
632         best = NULL;
633         for (hid = 0; hid < crypto_drivers_size; hid++) {
634                 /*
635                  * If there is no driver for this slot, or the driver
636                  * is not appropriate (hardware or software based on
637                  * match), then skip.
638                  */
639                 cap = crypto_drivers[hid];
640                 if (cap == NULL ||
641                     (cap->cc_flags & flags) == 0)
642                         continue;
643
644                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
645                 if (error >= 0)
646                         continue;
647
648                 /*
649                  * Use the driver with the highest probe value.
650                  * Hardware drivers use a higher probe value than
651                  * software.  In case of a tie, prefer the driver with
652                  * the fewest active sessions.
653                  */
654                 if (best == NULL || error > best_match ||
655                     (error == best_match &&
656                     cap->cc_sessions < best->cc_sessions)) {
657                         best = cap;
658                         best_match = error;
659                 }
660         }
661         return best;
662 }
663
664 static enum alg_type {
665         ALG_NONE = 0,
666         ALG_CIPHER,
667         ALG_DIGEST,
668         ALG_KEYED_DIGEST,
669         ALG_COMPRESSION,
670         ALG_AEAD
671 } alg_types[] = {
672         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
673         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
674         [CRYPTO_AES_CBC] = ALG_CIPHER,
675         [CRYPTO_SHA1] = ALG_DIGEST,
676         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
677         [CRYPTO_NULL_CBC] = ALG_CIPHER,
678         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
679         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
680         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
681         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
682         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
683         [CRYPTO_AES_XTS] = ALG_CIPHER,
684         [CRYPTO_AES_ICM] = ALG_CIPHER,
685         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
686         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
687         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
688         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
689         [CRYPTO_CHACHA20] = ALG_CIPHER,
690         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
691         [CRYPTO_RIPEMD160] = ALG_DIGEST,
692         [CRYPTO_SHA2_224] = ALG_DIGEST,
693         [CRYPTO_SHA2_256] = ALG_DIGEST,
694         [CRYPTO_SHA2_384] = ALG_DIGEST,
695         [CRYPTO_SHA2_512] = ALG_DIGEST,
696         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
697         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
698         [CRYPTO_AES_CCM_16] = ALG_AEAD,
699 };
700
701 static enum alg_type
702 alg_type(int alg)
703 {
704
705         if (alg < nitems(alg_types))
706                 return (alg_types[alg]);
707         return (ALG_NONE);
708 }
709
710 static bool
711 alg_is_compression(int alg)
712 {
713
714         return (alg_type(alg) == ALG_COMPRESSION);
715 }
716
717 static bool
718 alg_is_cipher(int alg)
719 {
720
721         return (alg_type(alg) == ALG_CIPHER);
722 }
723
724 static bool
725 alg_is_digest(int alg)
726 {
727
728         return (alg_type(alg) == ALG_DIGEST ||
729             alg_type(alg) == ALG_KEYED_DIGEST);
730 }
731
732 static bool
733 alg_is_keyed_digest(int alg)
734 {
735
736         return (alg_type(alg) == ALG_KEYED_DIGEST);
737 }
738
739 static bool
740 alg_is_aead(int alg)
741 {
742
743         return (alg_type(alg) == ALG_AEAD);
744 }
745
746 /* Various sanity checks on crypto session parameters. */
747 static bool
748 check_csp(const struct crypto_session_params *csp)
749 {
750         struct auth_hash *axf;
751
752         /* Mode-independent checks. */
753         if ((csp->csp_flags & ~(CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD)) !=
754             0)
755                 return (false);
756         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
757             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
758                 return (false);
759         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
760                 return (false);
761         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
762                 return (false);
763
764         switch (csp->csp_mode) {
765         case CSP_MODE_COMPRESS:
766                 if (!alg_is_compression(csp->csp_cipher_alg))
767                         return (false);
768                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
769                         return (false);
770                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
771                         return (false);
772                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
773                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
774                     csp->csp_auth_mlen != 0)
775                         return (false);
776                 break;
777         case CSP_MODE_CIPHER:
778                 if (!alg_is_cipher(csp->csp_cipher_alg))
779                         return (false);
780                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
781                         return (false);
782                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
783                         if (csp->csp_cipher_klen == 0)
784                                 return (false);
785                         if (csp->csp_ivlen == 0)
786                                 return (false);
787                 }
788                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
789                         return (false);
790                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
791                     csp->csp_auth_mlen != 0)
792                         return (false);
793                 break;
794         case CSP_MODE_DIGEST:
795                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
796                         return (false);
797
798                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
799                         return (false);
800
801                 /* IV is optional for digests (e.g. GMAC). */
802                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
803                         return (false);
804                 if (!alg_is_digest(csp->csp_auth_alg))
805                         return (false);
806
807                 /* Key is optional for BLAKE2 digests. */
808                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
809                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
810                         ;
811                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
812                         if (csp->csp_auth_klen == 0)
813                                 return (false);
814                 } else {
815                         if (csp->csp_auth_klen != 0)
816                                 return (false);
817                 }
818                 if (csp->csp_auth_mlen != 0) {
819                         axf = crypto_auth_hash(csp);
820                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
821                                 return (false);
822                 }
823                 break;
824         case CSP_MODE_AEAD:
825                 if (!alg_is_aead(csp->csp_cipher_alg))
826                         return (false);
827                 if (csp->csp_cipher_klen == 0)
828                         return (false);
829                 if (csp->csp_ivlen == 0 ||
830                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
831                         return (false);
832                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
833                         return (false);
834
835                 /*
836                  * XXX: Would be nice to have a better way to get this
837                  * value.
838                  */
839                 switch (csp->csp_cipher_alg) {
840                 case CRYPTO_AES_NIST_GCM_16:
841                 case CRYPTO_AES_CCM_16:
842                         if (csp->csp_auth_mlen > 16)
843                                 return (false);
844                         break;
845                 }
846                 break;
847         case CSP_MODE_ETA:
848                 if (!alg_is_cipher(csp->csp_cipher_alg))
849                         return (false);
850                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
851                         if (csp->csp_cipher_klen == 0)
852                                 return (false);
853                         if (csp->csp_ivlen == 0)
854                                 return (false);
855                 }
856                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
857                         return (false);
858                 if (!alg_is_digest(csp->csp_auth_alg))
859                         return (false);
860
861                 /* Key is optional for BLAKE2 digests. */
862                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
863                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
864                         ;
865                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
866                         if (csp->csp_auth_klen == 0)
867                                 return (false);
868                 } else {
869                         if (csp->csp_auth_klen != 0)
870                                 return (false);
871                 }
872                 if (csp->csp_auth_mlen != 0) {
873                         axf = crypto_auth_hash(csp);
874                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
875                                 return (false);
876                 }
877                 break;
878         default:
879                 return (false);
880         }
881
882         return (true);
883 }
884
885 /*
886  * Delete a session after it has been detached from its driver.
887  */
888 static void
889 crypto_deletesession(crypto_session_t cses)
890 {
891         struct cryptocap *cap;
892
893         cap = cses->cap;
894
895         zfree(cses->softc, M_CRYPTO_DATA);
896         uma_zfree(cryptoses_zone, cses);
897
898         CRYPTO_DRIVER_LOCK();
899         cap->cc_sessions--;
900         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
901                 wakeup(cap);
902         CRYPTO_DRIVER_UNLOCK();
903         cap_rele(cap);
904 }
905
906 /*
907  * Create a new session.  The crid argument specifies a crypto
908  * driver to use or constraints on a driver to select (hardware
909  * only, software only, either).  Whatever driver is selected
910  * must be capable of the requested crypto algorithms.
911  */
912 int
913 crypto_newsession(crypto_session_t *cses,
914     const struct crypto_session_params *csp, int crid)
915 {
916         crypto_session_t res;
917         struct cryptocap *cap;
918         int err;
919
920         if (!check_csp(csp))
921                 return (EINVAL);
922
923         res = NULL;
924
925         CRYPTO_DRIVER_LOCK();
926         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
927                 /*
928                  * Use specified driver; verify it is capable.
929                  */
930                 cap = crypto_checkdriver(crid);
931                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
932                         cap = NULL;
933         } else {
934                 /*
935                  * No requested driver; select based on crid flags.
936                  */
937                 cap = crypto_select_driver(csp, crid);
938         }
939         if (cap == NULL) {
940                 CRYPTO_DRIVER_UNLOCK();
941                 CRYPTDEB("no driver");
942                 return (EOPNOTSUPP);
943         }
944         cap_ref(cap);
945         cap->cc_sessions++;
946         CRYPTO_DRIVER_UNLOCK();
947
948         res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
949         res->cap = cap;
950         res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
951             M_ZERO);
952         res->csp = *csp;
953
954         /* Call the driver initialization routine. */
955         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
956         if (err != 0) {
957                 CRYPTDEB("dev newsession failed: %d", err);
958                 crypto_deletesession(res);
959                 return (err);
960         }
961
962         *cses = res;
963         return (0);
964 }
965
966 /*
967  * Delete an existing session (or a reserved session on an unregistered
968  * driver).
969  */
970 void
971 crypto_freesession(crypto_session_t cses)
972 {
973         struct cryptocap *cap;
974
975         if (cses == NULL)
976                 return;
977
978         cap = cses->cap;
979
980         /* Call the driver cleanup routine, if available. */
981         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
982
983         crypto_deletesession(cses);
984 }
985
986 /*
987  * Return a new driver id.  Registers a driver with the system so that
988  * it can be probed by subsequent sessions.
989  */
990 int32_t
991 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
992 {
993         struct cryptocap *cap, **newdrv;
994         int i;
995
996         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
997                 device_printf(dev,
998                     "no flags specified when registering driver\n");
999                 return -1;
1000         }
1001
1002         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1003         cap->cc_dev = dev;
1004         cap->cc_session_size = sessionsize;
1005         cap->cc_flags = flags;
1006         refcount_init(&cap->cc_refs, 1);
1007
1008         CRYPTO_DRIVER_LOCK();
1009         for (;;) {
1010                 for (i = 0; i < crypto_drivers_size; i++) {
1011                         if (crypto_drivers[i] == NULL)
1012                                 break;
1013                 }
1014
1015                 if (i < crypto_drivers_size)
1016                         break;
1017
1018                 /* Out of entries, allocate some more. */
1019
1020                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1021                         CRYPTO_DRIVER_UNLOCK();
1022                         printf("crypto: driver count wraparound!\n");
1023                         cap_rele(cap);
1024                         return (-1);
1025                 }
1026                 CRYPTO_DRIVER_UNLOCK();
1027
1028                 newdrv = malloc(2 * crypto_drivers_size *
1029                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1030
1031                 CRYPTO_DRIVER_LOCK();
1032                 memcpy(newdrv, crypto_drivers,
1033                     crypto_drivers_size * sizeof(*crypto_drivers));
1034
1035                 crypto_drivers_size *= 2;
1036
1037                 free(crypto_drivers, M_CRYPTO_DATA);
1038                 crypto_drivers = newdrv;
1039         }
1040
1041         cap->cc_hid = i;
1042         crypto_drivers[i] = cap;
1043         CRYPTO_DRIVER_UNLOCK();
1044
1045         if (bootverbose)
1046                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1047                     device_get_nameunit(dev), i, flags);
1048
1049         return i;
1050 }
1051
1052 /*
1053  * Lookup a driver by name.  We match against the full device
1054  * name and unit, and against just the name.  The latter gives
1055  * us a simple widlcarding by device name.  On success return the
1056  * driver/hardware identifier; otherwise return -1.
1057  */
1058 int
1059 crypto_find_driver(const char *match)
1060 {
1061         struct cryptocap *cap;
1062         int i, len = strlen(match);
1063
1064         CRYPTO_DRIVER_LOCK();
1065         for (i = 0; i < crypto_drivers_size; i++) {
1066                 if (crypto_drivers[i] == NULL)
1067                         continue;
1068                 cap = crypto_drivers[i];
1069                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1070                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1071                         CRYPTO_DRIVER_UNLOCK();
1072                         return (i);
1073                 }
1074         }
1075         CRYPTO_DRIVER_UNLOCK();
1076         return (-1);
1077 }
1078
1079 /*
1080  * Return the device_t for the specified driver or NULL
1081  * if the driver identifier is invalid.
1082  */
1083 device_t
1084 crypto_find_device_byhid(int hid)
1085 {
1086         struct cryptocap *cap;
1087         device_t dev;
1088
1089         dev = NULL;
1090         CRYPTO_DRIVER_LOCK();
1091         cap = crypto_checkdriver(hid);
1092         if (cap != NULL)
1093                 dev = cap->cc_dev;
1094         CRYPTO_DRIVER_UNLOCK();
1095         return (dev);
1096 }
1097
1098 /*
1099  * Return the device/driver capabilities.
1100  */
1101 int
1102 crypto_getcaps(int hid)
1103 {
1104         struct cryptocap *cap;
1105         int flags;
1106
1107         flags = 0;
1108         CRYPTO_DRIVER_LOCK();
1109         cap = crypto_checkdriver(hid);
1110         if (cap != NULL)
1111                 flags = cap->cc_flags;
1112         CRYPTO_DRIVER_UNLOCK();
1113         return (flags);
1114 }
1115
1116 /*
1117  * Register support for a key-related algorithm.  This routine
1118  * is called once for each algorithm supported a driver.
1119  */
1120 int
1121 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
1122 {
1123         struct cryptocap *cap;
1124         int err;
1125
1126         CRYPTO_DRIVER_LOCK();
1127
1128         cap = crypto_checkdriver(driverid);
1129         if (cap != NULL &&
1130             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1131                 /*
1132                  * XXX Do some performance testing to determine placing.
1133                  * XXX We probably need an auxiliary data structure that
1134                  * XXX describes relative performances.
1135                  */
1136
1137                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1138                 if (bootverbose)
1139                         printf("crypto: %s registers key alg %u flags %u\n"
1140                                 , device_get_nameunit(cap->cc_dev)
1141                                 , kalg
1142                                 , flags
1143                         );
1144                 err = 0;
1145         } else
1146                 err = EINVAL;
1147
1148         CRYPTO_DRIVER_UNLOCK();
1149         return err;
1150 }
1151
1152 /*
1153  * Unregister all algorithms associated with a crypto driver.
1154  * If there are pending sessions using it, leave enough information
1155  * around so that subsequent calls using those sessions will
1156  * correctly detect the driver has been unregistered and reroute
1157  * requests.
1158  */
1159 int
1160 crypto_unregister_all(u_int32_t driverid)
1161 {
1162         struct cryptocap *cap;
1163
1164         CRYPTO_DRIVER_LOCK();
1165         cap = crypto_checkdriver(driverid);
1166         if (cap == NULL) {
1167                 CRYPTO_DRIVER_UNLOCK();
1168                 return (EINVAL);
1169         }
1170
1171         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1172         crypto_drivers[driverid] = NULL;
1173
1174         /*
1175          * XXX: This doesn't do anything to kick sessions that
1176          * have no pending operations.
1177          */
1178         while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1179                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1180         CRYPTO_DRIVER_UNLOCK();
1181         cap_rele(cap);
1182
1183         return (0);
1184 }
1185
1186 /*
1187  * Clear blockage on a driver.  The what parameter indicates whether
1188  * the driver is now ready for cryptop's and/or cryptokop's.
1189  */
1190 int
1191 crypto_unblock(u_int32_t driverid, int what)
1192 {
1193         struct cryptocap *cap;
1194         int err;
1195
1196         CRYPTO_Q_LOCK();
1197         cap = crypto_checkdriver(driverid);
1198         if (cap != NULL) {
1199                 if (what & CRYPTO_SYMQ)
1200                         cap->cc_qblocked = 0;
1201                 if (what & CRYPTO_ASYMQ)
1202                         cap->cc_kqblocked = 0;
1203                 if (crp_sleep)
1204                         wakeup_one(&crp_q);
1205                 err = 0;
1206         } else
1207                 err = EINVAL;
1208         CRYPTO_Q_UNLOCK();
1209
1210         return err;
1211 }
1212
1213 size_t
1214 crypto_buffer_len(struct crypto_buffer *cb)
1215 {
1216         switch (cb->cb_type) {
1217         case CRYPTO_BUF_CONTIG:
1218                 return (cb->cb_buf_len);
1219         case CRYPTO_BUF_MBUF:
1220                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1221                         return (cb->cb_mbuf->m_pkthdr.len);
1222                 return (m_length(cb->cb_mbuf, NULL));
1223         case CRYPTO_BUF_VMPAGE:
1224                 return (cb->cb_vm_page_len);
1225         case CRYPTO_BUF_UIO:
1226                 return (cb->cb_uio->uio_resid);
1227         default:
1228                 return (0);
1229         }
1230 }
1231
1232 #ifdef INVARIANTS
1233 /* Various sanity checks on crypto requests. */
1234 static void
1235 cb_sanity(struct crypto_buffer *cb, const char *name)
1236 {
1237         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1238             ("incoming crp with invalid %s buffer type", name));
1239         switch (cb->cb_type) {
1240         case CRYPTO_BUF_CONTIG:
1241                 KASSERT(cb->cb_buf_len >= 0,
1242                     ("incoming crp with -ve %s buffer length", name));
1243                 break;
1244         case CRYPTO_BUF_VMPAGE:
1245                 KASSERT(CRYPTO_HAS_VMPAGE,
1246                     ("incoming crp uses dmap on supported arch"));
1247                 KASSERT(cb->cb_vm_page_len >= 0,
1248                     ("incoming crp with -ve %s buffer length", name));
1249                 KASSERT(cb->cb_vm_page_offset >= 0,
1250                     ("incoming crp with -ve %s buffer offset", name));
1251                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1252                     ("incoming crp with %s buffer offset greater than page size"
1253                      , name));
1254                 break;
1255         default:
1256                 break;
1257         }
1258 }
1259
1260 static void
1261 crp_sanity(struct cryptop *crp)
1262 {
1263         struct crypto_session_params *csp;
1264         struct crypto_buffer *out;
1265         size_t ilen, len, olen;
1266
1267         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1268         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1269             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1270             ("incoming crp with invalid output buffer type"));
1271         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1272         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1273             ("incoming crp already done"));
1274
1275         csp = &crp->crp_session->csp;
1276         cb_sanity(&crp->crp_buf, "input");
1277         ilen = crypto_buffer_len(&crp->crp_buf);
1278         olen = ilen;
1279         out = NULL;
1280         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1281                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1282                         cb_sanity(&crp->crp_obuf, "output");
1283                         out = &crp->crp_obuf;
1284                         olen = crypto_buffer_len(out);
1285                 }
1286         } else
1287                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1288                     ("incoming crp with separate output buffer "
1289                     "but no session support"));
1290
1291         switch (csp->csp_mode) {
1292         case CSP_MODE_COMPRESS:
1293                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1294                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1295                     ("invalid compression op %x", crp->crp_op));
1296                 break;
1297         case CSP_MODE_CIPHER:
1298                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1299                     crp->crp_op == CRYPTO_OP_DECRYPT,
1300                     ("invalid cipher op %x", crp->crp_op));
1301                 break;
1302         case CSP_MODE_DIGEST:
1303                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1304                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1305                     ("invalid digest op %x", crp->crp_op));
1306                 break;
1307         case CSP_MODE_AEAD:
1308                 KASSERT(crp->crp_op ==
1309                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1310                     crp->crp_op ==
1311                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1312                     ("invalid AEAD op %x", crp->crp_op));
1313                 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1314                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1315                             ("GCM without a separate IV"));
1316                 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1317                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1318                             ("CCM without a separate IV"));
1319                 break;
1320         case CSP_MODE_ETA:
1321                 KASSERT(crp->crp_op ==
1322                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1323                     crp->crp_op ==
1324                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1325                     ("invalid ETA op %x", crp->crp_op));
1326                 break;
1327         }
1328         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1329                 if (crp->crp_aad == NULL) {
1330                         KASSERT(crp->crp_aad_start == 0 ||
1331                             crp->crp_aad_start < ilen,
1332                             ("invalid AAD start"));
1333                         KASSERT(crp->crp_aad_length != 0 ||
1334                             crp->crp_aad_start == 0,
1335                             ("AAD with zero length and non-zero start"));
1336                         KASSERT(crp->crp_aad_length == 0 ||
1337                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1338                             ("AAD outside input length"));
1339                 } else {
1340                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1341                             ("session doesn't support separate AAD buffer"));
1342                         KASSERT(crp->crp_aad_start == 0,
1343                             ("separate AAD buffer with non-zero AAD start"));
1344                         KASSERT(crp->crp_aad_length != 0,
1345                             ("separate AAD buffer with zero length"));
1346                 }
1347         } else {
1348                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1349                     crp->crp_aad_length == 0,
1350                     ("AAD region in request not supporting AAD"));
1351         }
1352         if (csp->csp_ivlen == 0) {
1353                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1354                     ("IV_SEPARATE set when IV isn't used"));
1355                 KASSERT(crp->crp_iv_start == 0,
1356                     ("crp_iv_start set when IV isn't used"));
1357         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1358                 KASSERT(crp->crp_iv_start == 0,
1359                     ("IV_SEPARATE used with non-zero IV start"));
1360         } else {
1361                 KASSERT(crp->crp_iv_start < ilen,
1362                     ("invalid IV start"));
1363                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1364                     ("IV outside buffer length"));
1365         }
1366         /* XXX: payload_start of 0 should always be < ilen? */
1367         KASSERT(crp->crp_payload_start == 0 ||
1368             crp->crp_payload_start < ilen,
1369             ("invalid payload start"));
1370         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1371             ilen, ("payload outside input buffer"));
1372         if (out == NULL) {
1373                 KASSERT(crp->crp_payload_output_start == 0,
1374                     ("payload output start non-zero without output buffer"));
1375         } else {
1376                 KASSERT(crp->crp_payload_output_start < olen,
1377                     ("invalid payload output start"));
1378                 KASSERT(crp->crp_payload_output_start +
1379                     crp->crp_payload_length <= olen,
1380                     ("payload outside output buffer"));
1381         }
1382         if (csp->csp_mode == CSP_MODE_DIGEST ||
1383             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1384                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1385                         len = ilen;
1386                 else
1387                         len = olen;
1388                 KASSERT(crp->crp_digest_start == 0 ||
1389                     crp->crp_digest_start < len,
1390                     ("invalid digest start"));
1391                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1392                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1393                     ("digest outside buffer"));
1394         } else {
1395                 KASSERT(crp->crp_digest_start == 0,
1396                     ("non-zero digest start for request without a digest"));
1397         }
1398         if (csp->csp_cipher_klen != 0)
1399                 KASSERT(csp->csp_cipher_key != NULL ||
1400                     crp->crp_cipher_key != NULL,
1401                     ("cipher request without a key"));
1402         if (csp->csp_auth_klen != 0)
1403                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1404                     ("auth request without a key"));
1405         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1406 }
1407 #endif
1408
1409 /*
1410  * Add a crypto request to a queue, to be processed by the kernel thread.
1411  */
1412 int
1413 crypto_dispatch(struct cryptop *crp)
1414 {
1415         struct cryptocap *cap;
1416         int result;
1417
1418 #ifdef INVARIANTS
1419         crp_sanity(crp);
1420 #endif
1421
1422         CRYPTOSTAT_INC(cs_ops);
1423
1424         crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1425
1426         if (CRYPTOP_ASYNC(crp)) {
1427                 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1428                         struct crypto_ret_worker *ret_worker;
1429
1430                         ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1431
1432                         CRYPTO_RETW_LOCK(ret_worker);
1433                         crp->crp_seq = ret_worker->reorder_ops++;
1434                         CRYPTO_RETW_UNLOCK(ret_worker);
1435                 }
1436
1437                 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1438                 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1439                 return (0);
1440         }
1441
1442         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1443                 /*
1444                  * Caller marked the request to be processed
1445                  * immediately; dispatch it directly to the
1446                  * driver unless the driver is currently blocked.
1447                  */
1448                 cap = crp->crp_session->cap;
1449                 if (!cap->cc_qblocked) {
1450                         result = crypto_invoke(cap, crp, 0);
1451                         if (result != ERESTART)
1452                                 return (result);
1453                         /*
1454                          * The driver ran out of resources, put the request on
1455                          * the queue.
1456                          */
1457                 }
1458         }
1459         crypto_batch_enqueue(crp);
1460         return 0;
1461 }
1462
1463 void
1464 crypto_batch_enqueue(struct cryptop *crp)
1465 {
1466
1467         CRYPTO_Q_LOCK();
1468         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1469         if (crp_sleep)
1470                 wakeup_one(&crp_q);
1471         CRYPTO_Q_UNLOCK();
1472 }
1473
1474 /*
1475  * Add an asymetric crypto request to a queue,
1476  * to be processed by the kernel thread.
1477  */
1478 int
1479 crypto_kdispatch(struct cryptkop *krp)
1480 {
1481         int error;
1482
1483         CRYPTOSTAT_INC(cs_kops);
1484
1485         krp->krp_cap = NULL;
1486         error = crypto_kinvoke(krp);
1487         if (error == ERESTART) {
1488                 CRYPTO_Q_LOCK();
1489                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1490                 if (crp_sleep)
1491                         wakeup_one(&crp_q);
1492                 CRYPTO_Q_UNLOCK();
1493                 error = 0;
1494         }
1495         return error;
1496 }
1497
1498 /*
1499  * Verify a driver is suitable for the specified operation.
1500  */
1501 static __inline int
1502 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1503 {
1504         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1505 }
1506
1507 /*
1508  * Select a driver for an asym operation.  The driver must
1509  * support the necessary algorithm.  The caller can constrain
1510  * which device is selected with the flags parameter.  The
1511  * algorithm we use here is pretty stupid; just use the first
1512  * driver that supports the algorithms we need. If there are
1513  * multiple suitable drivers we choose the driver with the
1514  * fewest active operations.  We prefer hardware-backed
1515  * drivers to software ones when either may be used.
1516  */
1517 static struct cryptocap *
1518 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1519 {
1520         struct cryptocap *cap, *best;
1521         int match, hid;
1522
1523         CRYPTO_DRIVER_ASSERT();
1524
1525         /*
1526          * Look first for hardware crypto devices if permitted.
1527          */
1528         if (flags & CRYPTOCAP_F_HARDWARE)
1529                 match = CRYPTOCAP_F_HARDWARE;
1530         else
1531                 match = CRYPTOCAP_F_SOFTWARE;
1532         best = NULL;
1533 again:
1534         for (hid = 0; hid < crypto_drivers_size; hid++) {
1535                 /*
1536                  * If there is no driver for this slot, or the driver
1537                  * is not appropriate (hardware or software based on
1538                  * match), then skip.
1539                  */
1540                 cap = crypto_drivers[hid];
1541                 if (cap->cc_dev == NULL ||
1542                     (cap->cc_flags & match) == 0)
1543                         continue;
1544
1545                 /* verify all the algorithms are supported. */
1546                 if (kdriver_suitable(cap, krp)) {
1547                         if (best == NULL ||
1548                             cap->cc_koperations < best->cc_koperations)
1549                                 best = cap;
1550                 }
1551         }
1552         if (best != NULL)
1553                 return best;
1554         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1555                 /* sort of an Algol 68-style for loop */
1556                 match = CRYPTOCAP_F_SOFTWARE;
1557                 goto again;
1558         }
1559         return best;
1560 }
1561
1562 /*
1563  * Choose a driver for an asymmetric crypto request.
1564  */
1565 static struct cryptocap *
1566 crypto_lookup_kdriver(struct cryptkop *krp)
1567 {
1568         struct cryptocap *cap;
1569         uint32_t crid;
1570
1571         /* If this request is requeued, it might already have a driver. */
1572         cap = krp->krp_cap;
1573         if (cap != NULL)
1574                 return (cap);
1575
1576         /* Use krp_crid to choose a driver. */
1577         crid = krp->krp_crid;
1578         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1579                 cap = crypto_checkdriver(crid);
1580                 if (cap != NULL) {
1581                         /*
1582                          * Driver present, it must support the
1583                          * necessary algorithm and, if s/w drivers are
1584                          * excluded, it must be registered as
1585                          * hardware-backed.
1586                          */
1587                         if (!kdriver_suitable(cap, krp) ||
1588                             (!crypto_devallowsoft &&
1589                             (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1590                                 cap = NULL;
1591                 }
1592         } else {
1593                 /*
1594                  * No requested driver; select based on crid flags.
1595                  */
1596                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
1597                         crid &= ~CRYPTOCAP_F_SOFTWARE;
1598                 cap = crypto_select_kdriver(krp, crid);
1599         }
1600
1601         if (cap != NULL) {
1602                 krp->krp_cap = cap_ref(cap);
1603                 krp->krp_hid = cap->cc_hid;
1604         }
1605         return (cap);
1606 }
1607
1608 /*
1609  * Dispatch an asymmetric crypto request.
1610  */
1611 static int
1612 crypto_kinvoke(struct cryptkop *krp)
1613 {
1614         struct cryptocap *cap = NULL;
1615         int error;
1616
1617         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1618         KASSERT(krp->krp_callback != NULL,
1619             ("%s: krp->crp_callback == NULL", __func__));
1620
1621         CRYPTO_DRIVER_LOCK();
1622         cap = crypto_lookup_kdriver(krp);
1623         if (cap == NULL) {
1624                 CRYPTO_DRIVER_UNLOCK();
1625                 krp->krp_status = ENODEV;
1626                 crypto_kdone(krp);
1627                 return (0);
1628         }
1629
1630         /*
1631          * If the device is blocked, return ERESTART to requeue it.
1632          */
1633         if (cap->cc_kqblocked) {
1634                 /*
1635                  * XXX: Previously this set krp_status to ERESTART and
1636                  * invoked crypto_kdone but the caller would still
1637                  * requeue it.
1638                  */
1639                 CRYPTO_DRIVER_UNLOCK();
1640                 return (ERESTART);
1641         }
1642
1643         cap->cc_koperations++;
1644         CRYPTO_DRIVER_UNLOCK();
1645         error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1646         if (error == ERESTART) {
1647                 CRYPTO_DRIVER_LOCK();
1648                 cap->cc_koperations--;
1649                 CRYPTO_DRIVER_UNLOCK();
1650                 return (error);
1651         }
1652
1653         KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1654         return (0);
1655 }
1656
1657 static void
1658 crypto_task_invoke(void *ctx, int pending)
1659 {
1660         struct cryptocap *cap;
1661         struct cryptop *crp;
1662         int result;
1663
1664         crp = (struct cryptop *)ctx;
1665         cap = crp->crp_session->cap;
1666         result = crypto_invoke(cap, crp, 0);
1667         if (result == ERESTART)
1668                 crypto_batch_enqueue(crp);
1669 }
1670
1671 /*
1672  * Dispatch a crypto request to the appropriate crypto devices.
1673  */
1674 static int
1675 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1676 {
1677
1678         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1679         KASSERT(crp->crp_callback != NULL,
1680             ("%s: crp->crp_callback == NULL", __func__));
1681         KASSERT(crp->crp_session != NULL,
1682             ("%s: crp->crp_session == NULL", __func__));
1683
1684         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1685                 struct crypto_session_params csp;
1686                 crypto_session_t nses;
1687
1688                 /*
1689                  * Driver has unregistered; migrate the session and return
1690                  * an error to the caller so they'll resubmit the op.
1691                  *
1692                  * XXX: What if there are more already queued requests for this
1693                  *      session?
1694                  *
1695                  * XXX: Real solution is to make sessions refcounted
1696                  * and force callers to hold a reference when
1697                  * assigning to crp_session.  Could maybe change
1698                  * crypto_getreq to accept a session pointer to make
1699                  * that work.  Alternatively, we could abandon the
1700                  * notion of rewriting crp_session in requests forcing
1701                  * the caller to deal with allocating a new session.
1702                  * Perhaps provide a method to allow a crp's session to
1703                  * be swapped that callers could use.
1704                  */
1705                 csp = crp->crp_session->csp;
1706                 crypto_freesession(crp->crp_session);
1707
1708                 /*
1709                  * XXX: Key pointers may no longer be valid.  If we
1710                  * really want to support this we need to define the
1711                  * KPI such that 'csp' is required to be valid for the
1712                  * duration of a session by the caller perhaps.
1713                  *
1714                  * XXX: If the keys have been changed this will reuse
1715                  * the old keys.  This probably suggests making
1716                  * rekeying more explicit and updating the key
1717                  * pointers in 'csp' when the keys change.
1718                  */
1719                 if (crypto_newsession(&nses, &csp,
1720                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1721                         crp->crp_session = nses;
1722
1723                 crp->crp_etype = EAGAIN;
1724                 crypto_done(crp);
1725                 return 0;
1726         } else {
1727                 /*
1728                  * Invoke the driver to process the request.
1729                  */
1730                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1731         }
1732 }
1733
1734 void
1735 crypto_destroyreq(struct cryptop *crp)
1736 {
1737 #ifdef DIAGNOSTIC
1738         {
1739                 struct cryptop *crp2;
1740                 struct crypto_ret_worker *ret_worker;
1741
1742                 CRYPTO_Q_LOCK();
1743                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1744                         KASSERT(crp2 != crp,
1745                             ("Freeing cryptop from the crypto queue (%p).",
1746                             crp));
1747                 }
1748                 CRYPTO_Q_UNLOCK();
1749
1750                 FOREACH_CRYPTO_RETW(ret_worker) {
1751                         CRYPTO_RETW_LOCK(ret_worker);
1752                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1753                                 KASSERT(crp2 != crp,
1754                                     ("Freeing cryptop from the return queue (%p).",
1755                                     crp));
1756                         }
1757                         CRYPTO_RETW_UNLOCK(ret_worker);
1758                 }
1759         }
1760 #endif
1761 }
1762
1763 void
1764 crypto_freereq(struct cryptop *crp)
1765 {
1766         if (crp == NULL)
1767                 return;
1768
1769         crypto_destroyreq(crp);
1770         uma_zfree(cryptop_zone, crp);
1771 }
1772
1773 static void
1774 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1775 {
1776         crp->crp_session = cses;
1777 }
1778
1779 void
1780 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1781 {
1782         memset(crp, 0, sizeof(*crp));
1783         _crypto_initreq(crp, cses);
1784 }
1785
1786 struct cryptop *
1787 crypto_getreq(crypto_session_t cses, int how)
1788 {
1789         struct cryptop *crp;
1790
1791         MPASS(how == M_WAITOK || how == M_NOWAIT);
1792         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1793         if (crp != NULL)
1794                 _crypto_initreq(crp, cses);
1795         return (crp);
1796 }
1797
1798 /*
1799  * Invoke the callback on behalf of the driver.
1800  */
1801 void
1802 crypto_done(struct cryptop *crp)
1803 {
1804         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1805                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1806         crp->crp_flags |= CRYPTO_F_DONE;
1807         if (crp->crp_etype != 0)
1808                 CRYPTOSTAT_INC(cs_errs);
1809
1810         /*
1811          * CBIMM means unconditionally do the callback immediately;
1812          * CBIFSYNC means do the callback immediately only if the
1813          * operation was done synchronously.  Both are used to avoid
1814          * doing extraneous context switches; the latter is mostly
1815          * used with the software crypto driver.
1816          */
1817         if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1818             ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1819             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1820              (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1821                 /*
1822                  * Do the callback directly.  This is ok when the
1823                  * callback routine does very little (e.g. the
1824                  * /dev/crypto callback method just does a wakeup).
1825                  */
1826                 crp->crp_callback(crp);
1827         } else {
1828                 struct crypto_ret_worker *ret_worker;
1829                 bool wake;
1830
1831                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1832                 wake = false;
1833
1834                 /*
1835                  * Normal case; queue the callback for the thread.
1836                  */
1837                 CRYPTO_RETW_LOCK(ret_worker);
1838                 if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1839                         struct cryptop *tmp;
1840
1841                         TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1842                                         cryptop_q, crp_next) {
1843                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1844                                         TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1845                                                         tmp, crp, crp_next);
1846                                         break;
1847                                 }
1848                         }
1849                         if (tmp == NULL) {
1850                                 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1851                                                 crp, crp_next);
1852                         }
1853
1854                         if (crp->crp_seq == ret_worker->reorder_cur_seq)
1855                                 wake = true;
1856                 }
1857                 else {
1858                         if (CRYPTO_RETW_EMPTY(ret_worker))
1859                                 wake = true;
1860
1861                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1862                 }
1863
1864                 if (wake)
1865                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1866                 CRYPTO_RETW_UNLOCK(ret_worker);
1867         }
1868 }
1869
1870 /*
1871  * Invoke the callback on behalf of the driver.
1872  */
1873 void
1874 crypto_kdone(struct cryptkop *krp)
1875 {
1876         struct crypto_ret_worker *ret_worker;
1877         struct cryptocap *cap;
1878
1879         if (krp->krp_status != 0)
1880                 CRYPTOSTAT_INC(cs_kerrs);
1881         CRYPTO_DRIVER_LOCK();
1882         cap = krp->krp_cap;
1883         KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1884         cap->cc_koperations--;
1885         if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1886                 wakeup(cap);
1887         CRYPTO_DRIVER_UNLOCK();
1888         krp->krp_cap = NULL;
1889         cap_rele(cap);
1890
1891         ret_worker = CRYPTO_RETW(0);
1892
1893         CRYPTO_RETW_LOCK(ret_worker);
1894         if (CRYPTO_RETW_EMPTY(ret_worker))
1895                 wakeup_one(&ret_worker->crp_ret_q);             /* shared wait channel */
1896         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1897         CRYPTO_RETW_UNLOCK(ret_worker);
1898 }
1899
1900 int
1901 crypto_getfeat(int *featp)
1902 {
1903         int hid, kalg, feat = 0;
1904
1905         CRYPTO_DRIVER_LOCK();
1906         for (hid = 0; hid < crypto_drivers_size; hid++) {
1907                 const struct cryptocap *cap = crypto_drivers[hid];
1908
1909                 if (cap == NULL ||
1910                     ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1911                     !crypto_devallowsoft)) {
1912                         continue;
1913                 }
1914                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1915                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1916                                 feat |=  1 << kalg;
1917         }
1918         CRYPTO_DRIVER_UNLOCK();
1919         *featp = feat;
1920         return (0);
1921 }
1922
1923 /*
1924  * Terminate a thread at module unload.  The process that
1925  * initiated this is waiting for us to signal that we're gone;
1926  * wake it up and exit.  We use the driver table lock to insure
1927  * we don't do the wakeup before they're waiting.  There is no
1928  * race here because the waiter sleeps on the proc lock for the
1929  * thread so it gets notified at the right time because of an
1930  * extra wakeup that's done in exit1().
1931  */
1932 static void
1933 crypto_finis(void *chan)
1934 {
1935         CRYPTO_DRIVER_LOCK();
1936         wakeup_one(chan);
1937         CRYPTO_DRIVER_UNLOCK();
1938         kproc_exit(0);
1939 }
1940
1941 /*
1942  * Crypto thread, dispatches crypto requests.
1943  */
1944 static void
1945 crypto_proc(void)
1946 {
1947         struct cryptop *crp, *submit;
1948         struct cryptkop *krp;
1949         struct cryptocap *cap;
1950         int result, hint;
1951
1952 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1953         fpu_kern_thread(FPU_KERN_NORMAL);
1954 #endif
1955
1956         CRYPTO_Q_LOCK();
1957         for (;;) {
1958                 /*
1959                  * Find the first element in the queue that can be
1960                  * processed and look-ahead to see if multiple ops
1961                  * are ready for the same driver.
1962                  */
1963                 submit = NULL;
1964                 hint = 0;
1965                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1966                         cap = crp->crp_session->cap;
1967                         /*
1968                          * Driver cannot disappeared when there is an active
1969                          * session.
1970                          */
1971                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1972                             __func__, __LINE__));
1973                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1974                                 /* Op needs to be migrated, process it. */
1975                                 if (submit == NULL)
1976                                         submit = crp;
1977                                 break;
1978                         }
1979                         if (!cap->cc_qblocked) {
1980                                 if (submit != NULL) {
1981                                         /*
1982                                          * We stop on finding another op,
1983                                          * regardless whether its for the same
1984                                          * driver or not.  We could keep
1985                                          * searching the queue but it might be
1986                                          * better to just use a per-driver
1987                                          * queue instead.
1988                                          */
1989                                         if (submit->crp_session->cap == cap)
1990                                                 hint = CRYPTO_HINT_MORE;
1991                                         break;
1992                                 } else {
1993                                         submit = crp;
1994                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1995                                                 break;
1996                                         /* keep scanning for more are q'd */
1997                                 }
1998                         }
1999                 }
2000                 if (submit != NULL) {
2001                         TAILQ_REMOVE(&crp_q, submit, crp_next);
2002                         cap = submit->crp_session->cap;
2003                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2004                             __func__, __LINE__));
2005                         CRYPTO_Q_UNLOCK();
2006                         result = crypto_invoke(cap, submit, hint);
2007                         CRYPTO_Q_LOCK();
2008                         if (result == ERESTART) {
2009                                 /*
2010                                  * The driver ran out of resources, mark the
2011                                  * driver ``blocked'' for cryptop's and put
2012                                  * the request back in the queue.  It would
2013                                  * best to put the request back where we got
2014                                  * it but that's hard so for now we put it
2015                                  * at the front.  This should be ok; putting
2016                                  * it at the end does not work.
2017                                  */
2018                                 cap->cc_qblocked = 1;
2019                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2020                                 CRYPTOSTAT_INC(cs_blocks);
2021                         }
2022                 }
2023
2024                 /* As above, but for key ops */
2025                 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2026                         cap = krp->krp_cap;
2027                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2028                                 /*
2029                                  * Operation needs to be migrated,
2030                                  * clear krp_cap so a new driver is
2031                                  * selected.
2032                                  */
2033                                 krp->krp_cap = NULL;
2034                                 cap_rele(cap);
2035                                 break;
2036                         }
2037                         if (!cap->cc_kqblocked)
2038                                 break;
2039                 }
2040                 if (krp != NULL) {
2041                         TAILQ_REMOVE(&crp_kq, krp, krp_next);
2042                         CRYPTO_Q_UNLOCK();
2043                         result = crypto_kinvoke(krp);
2044                         CRYPTO_Q_LOCK();
2045                         if (result == ERESTART) {
2046                                 /*
2047                                  * The driver ran out of resources, mark the
2048                                  * driver ``blocked'' for cryptkop's and put
2049                                  * the request back in the queue.  It would
2050                                  * best to put the request back where we got
2051                                  * it but that's hard so for now we put it
2052                                  * at the front.  This should be ok; putting
2053                                  * it at the end does not work.
2054                                  */
2055                                 krp->krp_cap->cc_kqblocked = 1;
2056                                 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2057                                 CRYPTOSTAT_INC(cs_kblocks);
2058                         }
2059                 }
2060
2061                 if (submit == NULL && krp == NULL) {
2062                         /*
2063                          * Nothing more to be processed.  Sleep until we're
2064                          * woken because there are more ops to process.
2065                          * This happens either by submission or by a driver
2066                          * becoming unblocked and notifying us through
2067                          * crypto_unblock.  Note that when we wakeup we
2068                          * start processing each queue again from the
2069                          * front. It's not clear that it's important to
2070                          * preserve this ordering since ops may finish
2071                          * out of order if dispatched to different devices
2072                          * and some become blocked while others do not.
2073                          */
2074                         crp_sleep = 1;
2075                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2076                         crp_sleep = 0;
2077                         if (cryptoproc == NULL)
2078                                 break;
2079                         CRYPTOSTAT_INC(cs_intrs);
2080                 }
2081         }
2082         CRYPTO_Q_UNLOCK();
2083
2084         crypto_finis(&crp_q);
2085 }
2086
2087 /*
2088  * Crypto returns thread, does callbacks for processed crypto requests.
2089  * Callbacks are done here, rather than in the crypto drivers, because
2090  * callbacks typically are expensive and would slow interrupt handling.
2091  */
2092 static void
2093 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2094 {
2095         struct cryptop *crpt;
2096         struct cryptkop *krpt;
2097
2098         CRYPTO_RETW_LOCK(ret_worker);
2099         for (;;) {
2100                 /* Harvest return q's for completed ops */
2101                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2102                 if (crpt != NULL) {
2103                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2104                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2105                                 ret_worker->reorder_cur_seq++;
2106                         } else {
2107                                 crpt = NULL;
2108                         }
2109                 }
2110
2111                 if (crpt == NULL) {
2112                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2113                         if (crpt != NULL)
2114                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2115                 }
2116
2117                 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2118                 if (krpt != NULL)
2119                         TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2120
2121                 if (crpt != NULL || krpt != NULL) {
2122                         CRYPTO_RETW_UNLOCK(ret_worker);
2123                         /*
2124                          * Run callbacks unlocked.
2125                          */
2126                         if (crpt != NULL)
2127                                 crpt->crp_callback(crpt);
2128                         if (krpt != NULL)
2129                                 krpt->krp_callback(krpt);
2130                         CRYPTO_RETW_LOCK(ret_worker);
2131                 } else {
2132                         /*
2133                          * Nothing more to be processed.  Sleep until we're
2134                          * woken because there are more returns to process.
2135                          */
2136                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2137                                 "crypto_ret_wait", 0);
2138                         if (ret_worker->cryptoretproc == NULL)
2139                                 break;
2140                         CRYPTOSTAT_INC(cs_rets);
2141                 }
2142         }
2143         CRYPTO_RETW_UNLOCK(ret_worker);
2144
2145         crypto_finis(&ret_worker->crp_ret_q);
2146 }
2147
2148 #ifdef DDB
2149 static void
2150 db_show_drivers(void)
2151 {
2152         int hid;
2153
2154         db_printf("%12s %4s %4s %8s %2s %2s\n"
2155                 , "Device"
2156                 , "Ses"
2157                 , "Kops"
2158                 , "Flags"
2159                 , "QB"
2160                 , "KB"
2161         );
2162         for (hid = 0; hid < crypto_drivers_size; hid++) {
2163                 const struct cryptocap *cap = crypto_drivers[hid];
2164                 if (cap == NULL)
2165                         continue;
2166                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
2167                     , device_get_nameunit(cap->cc_dev)
2168                     , cap->cc_sessions
2169                     , cap->cc_koperations
2170                     , cap->cc_flags
2171                     , cap->cc_qblocked
2172                     , cap->cc_kqblocked
2173                 );
2174         }
2175 }
2176
2177 DB_SHOW_COMMAND(crypto, db_show_crypto)
2178 {
2179         struct cryptop *crp;
2180         struct crypto_ret_worker *ret_worker;
2181
2182         db_show_drivers();
2183         db_printf("\n");
2184
2185         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2186             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2187             "Device", "Callback");
2188         TAILQ_FOREACH(crp, &crp_q, crp_next) {
2189                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2190                     , crp->crp_session->cap->cc_hid
2191                     , (int) crypto_ses2caps(crp->crp_session)
2192                     , crp->crp_olen
2193                     , crp->crp_etype
2194                     , crp->crp_flags
2195                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
2196                     , crp->crp_callback
2197                 );
2198         }
2199         FOREACH_CRYPTO_RETW(ret_worker) {
2200                 db_printf("\n%8s %4s %4s %4s %8s\n",
2201                     "ret_worker", "HID", "Etype", "Flags", "Callback");
2202                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2203                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2204                                 db_printf("%8td %4u %4u %04x %8p\n"
2205                                     , CRYPTO_RETW_ID(ret_worker)
2206                                     , crp->crp_session->cap->cc_hid
2207                                     , crp->crp_etype
2208                                     , crp->crp_flags
2209                                     , crp->crp_callback
2210                                 );
2211                         }
2212                 }
2213         }
2214 }
2215
2216 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2217 {
2218         struct cryptkop *krp;
2219         struct crypto_ret_worker *ret_worker;
2220
2221         db_show_drivers();
2222         db_printf("\n");
2223
2224         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2225             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2226         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2227                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2228                     , krp->krp_op
2229                     , krp->krp_status
2230                     , krp->krp_iparams, krp->krp_oparams
2231                     , krp->krp_crid, krp->krp_hid
2232                     , krp->krp_callback
2233                 );
2234         }
2235
2236         ret_worker = CRYPTO_RETW(0);
2237         if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2238                 db_printf("%4s %5s %8s %4s %8s\n",
2239                     "Op", "Status", "CRID", "HID", "Callback");
2240                 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2241                         db_printf("%4u %5u %08x %4u %8p\n"
2242                             , krp->krp_op
2243                             , krp->krp_status
2244                             , krp->krp_crid, krp->krp_hid
2245                             , krp->krp_callback
2246                         );
2247                 }
2248         }
2249 }
2250 #endif
2251
2252 int crypto_modevent(module_t mod, int type, void *unused);
2253
2254 /*
2255  * Initialization code, both for static and dynamic loading.
2256  * Note this is not invoked with the usual MODULE_DECLARE
2257  * mechanism but instead is listed as a dependency by the
2258  * cryptosoft driver.  This guarantees proper ordering of
2259  * calls on module load/unload.
2260  */
2261 int
2262 crypto_modevent(module_t mod, int type, void *unused)
2263 {
2264         int error = EINVAL;
2265
2266         switch (type) {
2267         case MOD_LOAD:
2268                 error = crypto_init();
2269                 if (error == 0 && bootverbose)
2270                         printf("crypto: <crypto core>\n");
2271                 break;
2272         case MOD_UNLOAD:
2273                 /*XXX disallow if active sessions */
2274                 error = 0;
2275                 crypto_destroy();
2276                 return 0;
2277         }
2278         return error;
2279 }
2280 MODULE_VERSION(crypto, 1);
2281 MODULE_DEPEND(crypto, zlib, 1, 1, 1);