]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
opencrypto: Add missing ioctl exit SDTs
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56
57 #define CRYPTO_TIMING                           /* enable timing support */
58
59 #include "opt_compat.h"
60 #include "opt_ddb.h"
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/linker.h>
68 #include <sys/lock.h>
69 #include <sys/module.h>
70 #include <sys/mutex.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/refcount.h>
74 #include <sys/sdt.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/taskqueue.h>
78
79 #include <ddb/ddb.h>
80
81 #include <vm/uma.h>
82 #include <crypto/intake.h>
83 #include <opencrypto/cryptodev.h>
84 #include <opencrypto/xform_auth.h>
85 #include <opencrypto/xform_enc.h>
86
87 #include <sys/kobj.h>
88 #include <sys/bus.h>
89 #include "cryptodev_if.h"
90
91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
92 #include <machine/pcb.h>
93 #endif
94
95 SDT_PROVIDER_DEFINE(opencrypto);
96
97 /*
98  * Crypto drivers register themselves by allocating a slot in the
99  * crypto_drivers table with crypto_get_driverid() and then registering
100  * each asym algorithm they support with crypto_kregister().
101  */
102 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
103 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
104 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
105 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
106
107 /*
108  * Crypto device/driver capabilities structure.
109  *
110  * Synchronization:
111  * (d) - protected by CRYPTO_DRIVER_LOCK()
112  * (q) - protected by CRYPTO_Q_LOCK()
113  * Not tagged fields are read-only.
114  */
115 struct cryptocap {
116         device_t        cc_dev;
117         uint32_t        cc_hid;
118         u_int32_t       cc_sessions;            /* (d) # of sessions */
119         u_int32_t       cc_koperations;         /* (d) # os asym operations */
120         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
121
122         int             cc_flags;               /* (d) flags */
123 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
124         int             cc_qblocked;            /* (q) symmetric q blocked */
125         int             cc_kqblocked;           /* (q) asymmetric q blocked */
126         size_t          cc_session_size;
127         volatile int    cc_refs;
128 };
129
130 static  struct cryptocap **crypto_drivers = NULL;
131 static  int crypto_drivers_size = 0;
132
133 struct crypto_session {
134         struct cryptocap *cap;
135         void *softc;
136         struct crypto_session_params csp;
137 };
138
139 /*
140  * There are two queues for crypto requests; one for symmetric (e.g.
141  * cipher) operations and one for asymmetric (e.g. MOD)operations.
142  * A single mutex is used to lock access to both queues.  We could
143  * have one per-queue but having one simplifies handling of block/unblock
144  * operations.
145  */
146 static  int crp_sleep = 0;
147 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
148 static  TAILQ_HEAD(,cryptkop) crp_kq;
149 static  struct mtx crypto_q_mtx;
150 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
151 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
152
153 static SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
154     "In-kernel cryptography");
155
156 /*
157  * Taskqueue used to dispatch the crypto requests
158  * that have the CRYPTO_F_ASYNC flag
159  */
160 static struct taskqueue *crypto_tq;
161
162 /*
163  * Crypto seq numbers are operated on with modular arithmetic
164  */
165 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
166
167 struct crypto_ret_worker {
168         struct mtx crypto_ret_mtx;
169
170         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
171         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
172         TAILQ_HEAD(,cryptkop) crp_ret_kq;       /* callback queue for asym jobs */
173
174         u_int32_t reorder_ops;          /* total ordered sym jobs received */
175         u_int32_t reorder_cur_seq;      /* current sym job dispatched */
176
177         struct proc *cryptoretproc;
178 };
179 static struct crypto_ret_worker *crypto_ret_workers = NULL;
180
181 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
182 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
183 #define FOREACH_CRYPTO_RETW(w) \
184         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
185
186 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
187 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
188 #define CRYPTO_RETW_EMPTY(w) \
189         (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
190
191 static int crypto_workers_num = 0;
192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
193            &crypto_workers_num, 0,
194            "Number of crypto workers used to dispatch crypto jobs");
195 #ifdef COMPAT_FREEBSD12
196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
197            &crypto_workers_num, 0,
198            "Number of crypto workers used to dispatch crypto jobs");
199 #endif
200
201 static  uma_zone_t cryptop_zone;
202 static  uma_zone_t cryptoses_zone;
203
204 int     crypto_userasymcrypto = 1;
205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
206            &crypto_userasymcrypto, 0,
207            "Enable user-mode access to asymmetric crypto support");
208 #ifdef COMPAT_FREEBSD12
209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
210            &crypto_userasymcrypto, 0,
211            "Enable/disable user-mode access to asymmetric crypto support");
212 #endif
213
214 int     crypto_devallowsoft = 0;
215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
216            &crypto_devallowsoft, 0,
217            "Enable use of software crypto by /dev/crypto");
218 #ifdef COMPAT_FREEBSD12
219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
220            &crypto_devallowsoft, 0,
221            "Enable/disable use of software crypto by /dev/crypto");
222 #endif
223
224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
225
226 static  void crypto_proc(void);
227 static  struct proc *cryptoproc;
228 static  void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
229 static  void crypto_destroy(void);
230 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
231 static  int crypto_kinvoke(struct cryptkop *krp);
232 static  void crypto_task_invoke(void *ctx, int pending);
233 static void crypto_batch_enqueue(struct cryptop *crp);
234
235 static  struct cryptostats cryptostats;
236 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats,
237             cryptostats, "Crypto system statistics");
238
239 #ifdef CRYPTO_TIMING
240 static  int crypto_timing = 0;
241 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
242            &crypto_timing, 0, "Enable/disable crypto timing support");
243 #endif
244
245 /* Try to avoid directly exposing the key buffer as a symbol */
246 static struct keybuf *keybuf;
247
248 static struct keybuf empty_keybuf = {
249         .kb_nents = 0
250 };
251
252 /* Obtain the key buffer from boot metadata */
253 static void
254 keybuf_init(void)
255 {
256         caddr_t kmdp;
257
258         kmdp = preload_search_by_type("elf kernel");
259
260         if (kmdp == NULL)
261                 kmdp = preload_search_by_type("elf64 kernel");
262
263         keybuf = (struct keybuf *)preload_search_info(kmdp,
264             MODINFO_METADATA | MODINFOMD_KEYBUF);
265
266         if (keybuf == NULL)
267                 keybuf = &empty_keybuf;
268 }
269
270 /* It'd be nice if we could store these in some kind of secure memory... */
271 struct keybuf * get_keybuf(void) {
272
273         return (keybuf);
274 }
275
276 static struct cryptocap *
277 cap_ref(struct cryptocap *cap)
278 {
279
280         refcount_acquire(&cap->cc_refs);
281         return (cap);
282 }
283
284 static void
285 cap_rele(struct cryptocap *cap)
286 {
287
288         if (refcount_release(&cap->cc_refs) == 0)
289                 return;
290
291         KASSERT(cap->cc_sessions == 0,
292             ("freeing crypto driver with active sessions"));
293         KASSERT(cap->cc_koperations == 0,
294             ("freeing crypto driver with active key operations"));
295
296         free(cap, M_CRYPTO_DATA);
297 }
298
299 static int
300 crypto_init(void)
301 {
302         struct crypto_ret_worker *ret_worker;
303         int error;
304
305         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
306                 MTX_DEF|MTX_QUIET);
307
308         TAILQ_INIT(&crp_q);
309         TAILQ_INIT(&crp_kq);
310         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
311
312         cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
313                                     0, 0, 0, 0,
314                                     UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
315         cryptoses_zone = uma_zcreate("crypto_session",
316             sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
317             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
318
319         if (cryptop_zone == NULL || cryptoses_zone == NULL) {
320                 printf("crypto_init: cannot setup crypto zones\n");
321                 error = ENOMEM;
322                 goto bad;
323         }
324
325         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
326         crypto_drivers = malloc(crypto_drivers_size *
327             sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
328         if (crypto_drivers == NULL) {
329                 printf("crypto_init: cannot setup crypto drivers\n");
330                 error = ENOMEM;
331                 goto bad;
332         }
333
334         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
335                 crypto_workers_num = mp_ncpus;
336
337         crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO,
338                                 taskqueue_thread_enqueue, &crypto_tq);
339         if (crypto_tq == NULL) {
340                 printf("crypto init: cannot setup crypto taskqueue\n");
341                 error = ENOMEM;
342                 goto bad;
343         }
344
345         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
346                 "crypto");
347
348         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
349                     &cryptoproc, 0, 0, "crypto");
350         if (error) {
351                 printf("crypto_init: cannot start crypto thread; error %d",
352                         error);
353                 goto bad;
354         }
355
356         crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker),
357                         M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
358         if (crypto_ret_workers == NULL) {
359                 error = ENOMEM;
360                 printf("crypto_init: cannot allocate ret workers\n");
361                 goto bad;
362         }
363
364
365         FOREACH_CRYPTO_RETW(ret_worker) {
366                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
367                 TAILQ_INIT(&ret_worker->crp_ret_q);
368                 TAILQ_INIT(&ret_worker->crp_ret_kq);
369
370                 ret_worker->reorder_ops = 0;
371                 ret_worker->reorder_cur_seq = 0;
372
373                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
374
375                 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
376                                 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
377                 if (error) {
378                         printf("crypto_init: cannot start cryptoret thread; error %d",
379                                 error);
380                         goto bad;
381                 }
382         }
383
384         keybuf_init();
385
386         return 0;
387 bad:
388         crypto_destroy();
389         return error;
390 }
391
392 /*
393  * Signal a crypto thread to terminate.  We use the driver
394  * table lock to synchronize the sleep/wakeups so that we
395  * are sure the threads have terminated before we release
396  * the data structures they use.  See crypto_finis below
397  * for the other half of this song-and-dance.
398  */
399 static void
400 crypto_terminate(struct proc **pp, void *q)
401 {
402         struct proc *p;
403
404         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
405         p = *pp;
406         *pp = NULL;
407         if (p) {
408                 wakeup_one(q);
409                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
410                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
411                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
412                 PROC_UNLOCK(p);
413                 CRYPTO_DRIVER_LOCK();
414         }
415 }
416
417 static void
418 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
419     uint8_t padval)
420 {
421         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
422         u_int i;
423
424         KASSERT(axf->blocksize <= sizeof(hmac_key),
425             ("Invalid HMAC block size %d", axf->blocksize));
426
427         /*
428          * If the key is larger than the block size, use the digest of
429          * the key as the key instead.
430          */
431         memset(hmac_key, 0, sizeof(hmac_key));
432         if (klen > axf->blocksize) {
433                 axf->Init(auth_ctx);
434                 axf->Update(auth_ctx, key, klen);
435                 axf->Final(hmac_key, auth_ctx);
436                 klen = axf->hashsize;
437         } else
438                 memcpy(hmac_key, key, klen);
439
440         for (i = 0; i < axf->blocksize; i++)
441                 hmac_key[i] ^= padval;
442
443         axf->Init(auth_ctx);
444         axf->Update(auth_ctx, hmac_key, axf->blocksize);
445 }
446
447 void
448 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
449     void *auth_ctx)
450 {
451
452         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
453 }
454
455 void
456 hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
457     void *auth_ctx)
458 {
459
460         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
461 }
462
463 static void
464 crypto_destroy(void)
465 {
466         struct crypto_ret_worker *ret_worker;
467         int i;
468
469         /*
470          * Terminate any crypto threads.
471          */
472         if (crypto_tq != NULL)
473                 taskqueue_drain_all(crypto_tq);
474         CRYPTO_DRIVER_LOCK();
475         crypto_terminate(&cryptoproc, &crp_q);
476         FOREACH_CRYPTO_RETW(ret_worker)
477                 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
478         CRYPTO_DRIVER_UNLOCK();
479
480         /* XXX flush queues??? */
481
482         /*
483          * Reclaim dynamically allocated resources.
484          */
485         for (i = 0; i < crypto_drivers_size; i++) {
486                 if (crypto_drivers[i] != NULL)
487                         cap_rele(crypto_drivers[i]);
488         }
489         free(crypto_drivers, M_CRYPTO_DATA);
490
491         if (cryptoses_zone != NULL)
492                 uma_zdestroy(cryptoses_zone);
493         if (cryptop_zone != NULL)
494                 uma_zdestroy(cryptop_zone);
495         mtx_destroy(&crypto_q_mtx);
496         FOREACH_CRYPTO_RETW(ret_worker)
497                 mtx_destroy(&ret_worker->crypto_ret_mtx);
498         free(crypto_ret_workers, M_CRYPTO_DATA);
499         if (crypto_tq != NULL)
500                 taskqueue_free(crypto_tq);
501         mtx_destroy(&crypto_drivers_mtx);
502 }
503
504 uint32_t
505 crypto_ses2hid(crypto_session_t crypto_session)
506 {
507         return (crypto_session->cap->cc_hid);
508 }
509
510 uint32_t
511 crypto_ses2caps(crypto_session_t crypto_session)
512 {
513         return (crypto_session->cap->cc_flags & 0xff000000);
514 }
515
516 void *
517 crypto_get_driver_session(crypto_session_t crypto_session)
518 {
519         return (crypto_session->softc);
520 }
521
522 const struct crypto_session_params *
523 crypto_get_params(crypto_session_t crypto_session)
524 {
525         return (&crypto_session->csp);
526 }
527
528 struct auth_hash *
529 crypto_auth_hash(const struct crypto_session_params *csp)
530 {
531
532         switch (csp->csp_auth_alg) {
533         case CRYPTO_MD5_HMAC:
534                 return (&auth_hash_hmac_md5);
535         case CRYPTO_SHA1_HMAC:
536                 return (&auth_hash_hmac_sha1);
537         case CRYPTO_SHA2_224_HMAC:
538                 return (&auth_hash_hmac_sha2_224);
539         case CRYPTO_SHA2_256_HMAC:
540                 return (&auth_hash_hmac_sha2_256);
541         case CRYPTO_SHA2_384_HMAC:
542                 return (&auth_hash_hmac_sha2_384);
543         case CRYPTO_SHA2_512_HMAC:
544                 return (&auth_hash_hmac_sha2_512);
545         case CRYPTO_NULL_HMAC:
546                 return (&auth_hash_null);
547         case CRYPTO_RIPEMD160_HMAC:
548                 return (&auth_hash_hmac_ripemd_160);
549         case CRYPTO_SHA1:
550                 return (&auth_hash_sha1);
551         case CRYPTO_SHA2_224:
552                 return (&auth_hash_sha2_224);
553         case CRYPTO_SHA2_256:
554                 return (&auth_hash_sha2_256);
555         case CRYPTO_SHA2_384:
556                 return (&auth_hash_sha2_384);
557         case CRYPTO_SHA2_512:
558                 return (&auth_hash_sha2_512);
559         case CRYPTO_AES_NIST_GMAC:
560                 switch (csp->csp_auth_klen) {
561                 case 128 / 8:
562                         return (&auth_hash_nist_gmac_aes_128);
563                 case 192 / 8:
564                         return (&auth_hash_nist_gmac_aes_192);
565                 case 256 / 8:
566                         return (&auth_hash_nist_gmac_aes_256);
567                 default:
568                         return (NULL);
569                 }
570         case CRYPTO_BLAKE2B:
571                 return (&auth_hash_blake2b);
572         case CRYPTO_BLAKE2S:
573                 return (&auth_hash_blake2s);
574         case CRYPTO_POLY1305:
575                 return (&auth_hash_poly1305);
576         case CRYPTO_AES_CCM_CBC_MAC:
577                 switch (csp->csp_auth_klen) {
578                 case 128 / 8:
579                         return (&auth_hash_ccm_cbc_mac_128);
580                 case 192 / 8:
581                         return (&auth_hash_ccm_cbc_mac_192);
582                 case 256 / 8:
583                         return (&auth_hash_ccm_cbc_mac_256);
584                 default:
585                         return (NULL);
586                 }
587         default:
588                 return (NULL);
589         }
590 }
591
592 struct enc_xform *
593 crypto_cipher(const struct crypto_session_params *csp)
594 {
595
596         switch (csp->csp_cipher_alg) {
597         case CRYPTO_RIJNDAEL128_CBC:
598                 return (&enc_xform_rijndael128);
599         case CRYPTO_AES_XTS:
600                 return (&enc_xform_aes_xts);
601         case CRYPTO_AES_ICM:
602                 return (&enc_xform_aes_icm);
603         case CRYPTO_AES_NIST_GCM_16:
604                 return (&enc_xform_aes_nist_gcm);
605         case CRYPTO_CAMELLIA_CBC:
606                 return (&enc_xform_camellia);
607         case CRYPTO_NULL_CBC:
608                 return (&enc_xform_null);
609         case CRYPTO_CHACHA20:
610                 return (&enc_xform_chacha20);
611         case CRYPTO_AES_CCM_16:
612                 return (&enc_xform_ccm);
613         default:
614                 return (NULL);
615         }
616 }
617
618 static struct cryptocap *
619 crypto_checkdriver(u_int32_t hid)
620 {
621
622         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
623 }
624
625 /*
626  * Select a driver for a new session that supports the specified
627  * algorithms and, optionally, is constrained according to the flags.
628  */
629 static struct cryptocap *
630 crypto_select_driver(const struct crypto_session_params *csp, int flags)
631 {
632         struct cryptocap *cap, *best;
633         int best_match, error, hid;
634
635         CRYPTO_DRIVER_ASSERT();
636
637         best = NULL;
638         for (hid = 0; hid < crypto_drivers_size; hid++) {
639                 /*
640                  * If there is no driver for this slot, or the driver
641                  * is not appropriate (hardware or software based on
642                  * match), then skip.
643                  */
644                 cap = crypto_drivers[hid];
645                 if (cap == NULL ||
646                     (cap->cc_flags & flags) == 0)
647                         continue;
648
649                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
650                 if (error >= 0)
651                         continue;
652
653                 /*
654                  * Use the driver with the highest probe value.
655                  * Hardware drivers use a higher probe value than
656                  * software.  In case of a tie, prefer the driver with
657                  * the fewest active sessions.
658                  */
659                 if (best == NULL || error > best_match ||
660                     (error == best_match &&
661                     cap->cc_sessions < best->cc_sessions)) {
662                         best = cap;
663                         best_match = error;
664                 }
665         }
666         return best;
667 }
668
669 static enum alg_type {
670         ALG_NONE = 0,
671         ALG_CIPHER,
672         ALG_DIGEST,
673         ALG_KEYED_DIGEST,
674         ALG_COMPRESSION,
675         ALG_AEAD
676 } alg_types[] = {
677         [CRYPTO_MD5_HMAC] = ALG_KEYED_DIGEST,
678         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
679         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
680         [CRYPTO_AES_CBC] = ALG_CIPHER,
681         [CRYPTO_SHA1] = ALG_DIGEST,
682         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
683         [CRYPTO_NULL_CBC] = ALG_CIPHER,
684         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
685         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
686         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
687         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
688         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
689         [CRYPTO_AES_XTS] = ALG_CIPHER,
690         [CRYPTO_AES_ICM] = ALG_CIPHER,
691         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
692         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
693         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
694         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
695         [CRYPTO_CHACHA20] = ALG_CIPHER,
696         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
697         [CRYPTO_RIPEMD160] = ALG_DIGEST,
698         [CRYPTO_SHA2_224] = ALG_DIGEST,
699         [CRYPTO_SHA2_256] = ALG_DIGEST,
700         [CRYPTO_SHA2_384] = ALG_DIGEST,
701         [CRYPTO_SHA2_512] = ALG_DIGEST,
702         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
703         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
704         [CRYPTO_AES_CCM_16] = ALG_AEAD,
705 };
706
707 static enum alg_type
708 alg_type(int alg)
709 {
710
711         if (alg < nitems(alg_types))
712                 return (alg_types[alg]);
713         return (ALG_NONE);
714 }
715
716 static bool
717 alg_is_compression(int alg)
718 {
719
720         return (alg_type(alg) == ALG_COMPRESSION);
721 }
722
723 static bool
724 alg_is_cipher(int alg)
725 {
726
727         return (alg_type(alg) == ALG_CIPHER);
728 }
729
730 static bool
731 alg_is_digest(int alg)
732 {
733
734         return (alg_type(alg) == ALG_DIGEST ||
735             alg_type(alg) == ALG_KEYED_DIGEST);
736 }
737
738 static bool
739 alg_is_keyed_digest(int alg)
740 {
741
742         return (alg_type(alg) == ALG_KEYED_DIGEST);
743 }
744
745 static bool
746 alg_is_aead(int alg)
747 {
748
749         return (alg_type(alg) == ALG_AEAD);
750 }
751
752 /* Various sanity checks on crypto session parameters. */
753 static bool
754 check_csp(const struct crypto_session_params *csp)
755 {
756         struct auth_hash *axf;
757
758         /* Mode-independent checks. */
759         if (csp->csp_flags != 0)
760                 return (false);
761         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
762             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
763                 return (false);
764         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
765                 return (false);
766         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
767                 return (false);
768
769         switch (csp->csp_mode) {
770         case CSP_MODE_COMPRESS:
771                 if (!alg_is_compression(csp->csp_cipher_alg))
772                         return (false);
773                 if (csp->csp_flags != 0)
774                         return (false);
775                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
776                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
777                     csp->csp_auth_mlen != 0)
778                         return (false);
779                 break;
780         case CSP_MODE_CIPHER:
781                 if (!alg_is_cipher(csp->csp_cipher_alg))
782                         return (false);
783                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
784                         if (csp->csp_cipher_klen == 0)
785                                 return (false);
786                         if (csp->csp_ivlen == 0)
787                                 return (false);
788                 }
789                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
790                         return (false);
791                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
792                     csp->csp_auth_mlen != 0)
793                         return (false);
794                 break;
795         case CSP_MODE_DIGEST:
796                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
797                         return (false);
798
799                 /* IV is optional for digests (e.g. GMAC). */
800                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
801                         return (false);
802                 if (!alg_is_digest(csp->csp_auth_alg))
803                         return (false);
804
805                 /* Key is optional for BLAKE2 digests. */
806                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
807                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
808                         ;
809                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
810                         if (csp->csp_auth_klen == 0)
811                                 return (false);
812                 } else {
813                         if (csp->csp_auth_klen != 0)
814                                 return (false);
815                 }
816                 if (csp->csp_auth_mlen != 0) {
817                         axf = crypto_auth_hash(csp);
818                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
819                                 return (false);
820                 }
821                 break;
822         case CSP_MODE_AEAD:
823                 if (!alg_is_aead(csp->csp_cipher_alg))
824                         return (false);
825                 if (csp->csp_cipher_klen == 0)
826                         return (false);
827                 if (csp->csp_ivlen == 0 ||
828                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
829                         return (false);
830                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
831                         return (false);
832
833                 /*
834                  * XXX: Would be nice to have a better way to get this
835                  * value.
836                  */
837                 switch (csp->csp_cipher_alg) {
838                 case CRYPTO_AES_NIST_GCM_16:
839                 case CRYPTO_AES_CCM_16:
840                         if (csp->csp_auth_mlen > 16)
841                                 return (false);
842                         break;
843                 }
844                 break;
845         case CSP_MODE_ETA:
846                 if (!alg_is_cipher(csp->csp_cipher_alg))
847                         return (false);
848                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
849                         if (csp->csp_cipher_klen == 0)
850                                 return (false);
851                         if (csp->csp_ivlen == 0)
852                                 return (false);
853                 }
854                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
855                         return (false);
856                 if (!alg_is_digest(csp->csp_auth_alg))
857                         return (false);
858
859                 /* Key is optional for BLAKE2 digests. */
860                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
861                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
862                         ;
863                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
864                         if (csp->csp_auth_klen == 0)
865                                 return (false);
866                 } else {
867                         if (csp->csp_auth_klen != 0)
868                                 return (false);
869                 }
870                 if (csp->csp_auth_mlen != 0) {
871                         axf = crypto_auth_hash(csp);
872                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
873                                 return (false);
874                 }
875                 break;
876         default:
877                 return (false);
878         }
879
880         return (true);
881 }
882
883 /*
884  * Delete a session after it has been detached from its driver.
885  */
886 static void
887 crypto_deletesession(crypto_session_t cses)
888 {
889         struct cryptocap *cap;
890
891         cap = cses->cap;
892
893         explicit_bzero(cses->softc, cap->cc_session_size);
894         free(cses->softc, M_CRYPTO_DATA);
895         uma_zfree(cryptoses_zone, cses);
896
897         CRYPTO_DRIVER_LOCK();
898         cap->cc_sessions--;
899         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
900                 wakeup(cap);
901         CRYPTO_DRIVER_UNLOCK();
902         cap_rele(cap);
903 }
904
905 /*
906  * Create a new session.  The crid argument specifies a crypto
907  * driver to use or constraints on a driver to select (hardware
908  * only, software only, either).  Whatever driver is selected
909  * must be capable of the requested crypto algorithms.
910  */
911 int
912 crypto_newsession(crypto_session_t *cses,
913     const struct crypto_session_params *csp, int crid)
914 {
915         crypto_session_t res;
916         struct cryptocap *cap;
917         int err;
918
919         if (!check_csp(csp))
920                 return (EINVAL);
921
922         res = NULL;
923
924         CRYPTO_DRIVER_LOCK();
925         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
926                 /*
927                  * Use specified driver; verify it is capable.
928                  */
929                 cap = crypto_checkdriver(crid);
930                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
931                         cap = NULL;
932         } else {
933                 /*
934                  * No requested driver; select based on crid flags.
935                  */
936                 cap = crypto_select_driver(csp, crid);
937         }
938         if (cap == NULL) {
939                 CRYPTO_DRIVER_UNLOCK();
940                 CRYPTDEB("no driver");
941                 return (EOPNOTSUPP);
942         }
943         cap_ref(cap);
944         cap->cc_sessions++;
945         CRYPTO_DRIVER_UNLOCK();
946
947         res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
948         res->cap = cap;
949         res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
950             M_ZERO);
951         res->csp = *csp;
952
953         /* Call the driver initialization routine. */
954         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
955         if (err != 0) {
956                 CRYPTDEB("dev newsession failed: %d", err);
957                 crypto_deletesession(res);
958                 return (err);
959         }
960
961         *cses = res;
962         return (0);
963 }
964
965 /*
966  * Delete an existing session (or a reserved session on an unregistered
967  * driver).
968  */
969 void
970 crypto_freesession(crypto_session_t cses)
971 {
972         struct cryptocap *cap;
973
974         if (cses == NULL)
975                 return;
976
977         cap = cses->cap;
978
979         /* Call the driver cleanup routine, if available. */
980         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
981
982         crypto_deletesession(cses);
983 }
984
985 /*
986  * Return a new driver id.  Registers a driver with the system so that
987  * it can be probed by subsequent sessions.
988  */
989 int32_t
990 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
991 {
992         struct cryptocap *cap, **newdrv;
993         int i;
994
995         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
996                 device_printf(dev,
997                     "no flags specified when registering driver\n");
998                 return -1;
999         }
1000
1001         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1002         cap->cc_dev = dev;
1003         cap->cc_session_size = sessionsize;
1004         cap->cc_flags = flags;
1005         refcount_init(&cap->cc_refs, 1);
1006
1007         CRYPTO_DRIVER_LOCK();
1008         for (;;) {
1009                 for (i = 0; i < crypto_drivers_size; i++) {
1010                         if (crypto_drivers[i] == NULL)
1011                                 break;
1012                 }
1013
1014                 if (i < crypto_drivers_size)
1015                         break;
1016
1017                 /* Out of entries, allocate some more. */
1018
1019                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1020                         CRYPTO_DRIVER_UNLOCK();
1021                         printf("crypto: driver count wraparound!\n");
1022                         cap_rele(cap);
1023                         return (-1);
1024                 }
1025                 CRYPTO_DRIVER_UNLOCK();
1026
1027                 newdrv = malloc(2 * crypto_drivers_size *
1028                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1029
1030                 CRYPTO_DRIVER_LOCK();
1031                 memcpy(newdrv, crypto_drivers,
1032                     crypto_drivers_size * sizeof(*crypto_drivers));
1033
1034                 crypto_drivers_size *= 2;
1035
1036                 free(crypto_drivers, M_CRYPTO_DATA);
1037                 crypto_drivers = newdrv;
1038         }
1039
1040         cap->cc_hid = i;
1041         crypto_drivers[i] = cap;
1042         CRYPTO_DRIVER_UNLOCK();
1043
1044         if (bootverbose)
1045                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1046                     device_get_nameunit(dev), i, flags);
1047
1048         return i;
1049 }
1050
1051 /*
1052  * Lookup a driver by name.  We match against the full device
1053  * name and unit, and against just the name.  The latter gives
1054  * us a simple widlcarding by device name.  On success return the
1055  * driver/hardware identifier; otherwise return -1.
1056  */
1057 int
1058 crypto_find_driver(const char *match)
1059 {
1060         struct cryptocap *cap;
1061         int i, len = strlen(match);
1062
1063         CRYPTO_DRIVER_LOCK();
1064         for (i = 0; i < crypto_drivers_size; i++) {
1065                 if (crypto_drivers[i] == NULL)
1066                         continue;
1067                 cap = crypto_drivers[i];
1068                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1069                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1070                         CRYPTO_DRIVER_UNLOCK();
1071                         return (i);
1072                 }
1073         }
1074         CRYPTO_DRIVER_UNLOCK();
1075         return (-1);
1076 }
1077
1078 /*
1079  * Return the device_t for the specified driver or NULL
1080  * if the driver identifier is invalid.
1081  */
1082 device_t
1083 crypto_find_device_byhid(int hid)
1084 {
1085         struct cryptocap *cap;
1086         device_t dev;
1087
1088         dev = NULL;
1089         CRYPTO_DRIVER_LOCK();
1090         cap = crypto_checkdriver(hid);
1091         if (cap != NULL)
1092                 dev = cap->cc_dev;
1093         CRYPTO_DRIVER_UNLOCK();
1094         return (dev);
1095 }
1096
1097 /*
1098  * Return the device/driver capabilities.
1099  */
1100 int
1101 crypto_getcaps(int hid)
1102 {
1103         struct cryptocap *cap;
1104         int flags;
1105
1106         flags = 0;
1107         CRYPTO_DRIVER_LOCK();
1108         cap = crypto_checkdriver(hid);
1109         if (cap != NULL)
1110                 flags = cap->cc_flags;
1111         CRYPTO_DRIVER_UNLOCK();
1112         return (flags);
1113 }
1114
1115 /*
1116  * Register support for a key-related algorithm.  This routine
1117  * is called once for each algorithm supported a driver.
1118  */
1119 int
1120 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
1121 {
1122         struct cryptocap *cap;
1123         int err;
1124
1125         CRYPTO_DRIVER_LOCK();
1126
1127         cap = crypto_checkdriver(driverid);
1128         if (cap != NULL &&
1129             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1130                 /*
1131                  * XXX Do some performance testing to determine placing.
1132                  * XXX We probably need an auxiliary data structure that
1133                  * XXX describes relative performances.
1134                  */
1135
1136                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1137                 if (bootverbose)
1138                         printf("crypto: %s registers key alg %u flags %u\n"
1139                                 , device_get_nameunit(cap->cc_dev)
1140                                 , kalg
1141                                 , flags
1142                         );
1143                 err = 0;
1144         } else
1145                 err = EINVAL;
1146
1147         CRYPTO_DRIVER_UNLOCK();
1148         return err;
1149 }
1150
1151 /*
1152  * Unregister all algorithms associated with a crypto driver.
1153  * If there are pending sessions using it, leave enough information
1154  * around so that subsequent calls using those sessions will
1155  * correctly detect the driver has been unregistered and reroute
1156  * requests.
1157  */
1158 int
1159 crypto_unregister_all(u_int32_t driverid)
1160 {
1161         struct cryptocap *cap;
1162
1163         CRYPTO_DRIVER_LOCK();
1164         cap = crypto_checkdriver(driverid);
1165         if (cap == NULL) {
1166                 CRYPTO_DRIVER_UNLOCK();
1167                 return (EINVAL);
1168         }
1169
1170         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1171         crypto_drivers[driverid] = NULL;
1172
1173         /*
1174          * XXX: This doesn't do anything to kick sessions that
1175          * have no pending operations.
1176          */
1177         while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1178                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1179         CRYPTO_DRIVER_UNLOCK();
1180         cap_rele(cap);
1181
1182         return (0);
1183 }
1184
1185 /*
1186  * Clear blockage on a driver.  The what parameter indicates whether
1187  * the driver is now ready for cryptop's and/or cryptokop's.
1188  */
1189 int
1190 crypto_unblock(u_int32_t driverid, int what)
1191 {
1192         struct cryptocap *cap;
1193         int err;
1194
1195         CRYPTO_Q_LOCK();
1196         cap = crypto_checkdriver(driverid);
1197         if (cap != NULL) {
1198                 if (what & CRYPTO_SYMQ)
1199                         cap->cc_qblocked = 0;
1200                 if (what & CRYPTO_ASYMQ)
1201                         cap->cc_kqblocked = 0;
1202                 if (crp_sleep)
1203                         wakeup_one(&crp_q);
1204                 err = 0;
1205         } else
1206                 err = EINVAL;
1207         CRYPTO_Q_UNLOCK();
1208
1209         return err;
1210 }
1211
1212 #ifdef INVARIANTS
1213 /* Various sanity checks on crypto requests. */
1214 static void
1215 crp_sanity(struct cryptop *crp)
1216 {
1217         struct crypto_session_params *csp;
1218
1219         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1220         KASSERT(crp->crp_ilen >= 0, ("incoming crp with -ve input length"));
1221         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1222         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1223             ("incoming crp already done"));
1224
1225         csp = &crp->crp_session->csp;
1226         switch (csp->csp_mode) {
1227         case CSP_MODE_COMPRESS:
1228                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1229                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1230                     ("invalid compression op %x", crp->crp_op));
1231                 break;
1232         case CSP_MODE_CIPHER:
1233                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1234                     crp->crp_op == CRYPTO_OP_DECRYPT,
1235                     ("invalid cipher op %x", crp->crp_op));
1236                 break;
1237         case CSP_MODE_DIGEST:
1238                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1239                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1240                     ("invalid digest op %x", crp->crp_op));
1241                 break;
1242         case CSP_MODE_AEAD:
1243                 KASSERT(crp->crp_op ==
1244                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1245                     crp->crp_op ==
1246                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1247                     ("invalid AEAD op %x", crp->crp_op));
1248                 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1249                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1250                             ("GCM without a separate IV"));
1251                 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1252                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1253                             ("CCM without a separate IV"));
1254                 break;
1255         case CSP_MODE_ETA:
1256                 KASSERT(crp->crp_op ==
1257                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1258                     crp->crp_op ==
1259                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1260                     ("invalid ETA op %x", crp->crp_op));
1261                 break;
1262         }
1263         KASSERT(crp->crp_buf_type >= CRYPTO_BUF_CONTIG &&
1264             crp->crp_buf_type <= CRYPTO_BUF_MBUF,
1265             ("invalid crp buffer type %d", crp->crp_buf_type));
1266         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1267                 KASSERT(crp->crp_aad_start == 0 ||
1268                     crp->crp_aad_start < crp->crp_ilen,
1269                     ("invalid AAD start"));
1270                 KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0,
1271                     ("AAD with zero length and non-zero start"));
1272                 KASSERT(crp->crp_aad_length == 0 ||
1273                     crp->crp_aad_start + crp->crp_aad_length <= crp->crp_ilen,
1274                     ("AAD outside input length"));
1275         } else {
1276                 KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0,
1277                     ("AAD region in request not supporting AAD"));
1278         }
1279         if (csp->csp_ivlen == 0) {
1280                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1281                     ("IV_SEPARATE set when IV isn't used"));
1282                 KASSERT(crp->crp_iv_start == 0,
1283                     ("crp_iv_start set when IV isn't used"));
1284         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1285                 KASSERT(crp->crp_iv_start == 0,
1286                     ("IV_SEPARATE used with non-zero IV start"));
1287         } else {
1288                 KASSERT(crp->crp_iv_start < crp->crp_ilen,
1289                     ("invalid IV start"));
1290                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= crp->crp_ilen,
1291                     ("IV outside input length"));
1292         }
1293         KASSERT(crp->crp_payload_start == 0 ||
1294             crp->crp_payload_start < crp->crp_ilen,
1295             ("invalid payload start"));
1296         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1297             crp->crp_ilen, ("payload outside input length"));
1298         if (csp->csp_mode == CSP_MODE_DIGEST ||
1299             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1300                 KASSERT(crp->crp_digest_start == 0 ||
1301                     crp->crp_digest_start < crp->crp_ilen,
1302                     ("invalid digest start"));
1303                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1304                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <=
1305                     crp->crp_ilen,
1306                     ("digest outside input length"));
1307         } else {
1308                 KASSERT(crp->crp_digest_start == 0,
1309                     ("non-zero digest start for request without a digest"));
1310         }
1311         if (csp->csp_cipher_klen != 0)
1312                 KASSERT(csp->csp_cipher_key != NULL ||
1313                     crp->crp_cipher_key != NULL,
1314                     ("cipher request without a key"));
1315         if (csp->csp_auth_klen != 0)
1316                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1317                     ("auth request without a key"));
1318         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1319 }
1320 #endif
1321
1322 /*
1323  * Add a crypto request to a queue, to be processed by the kernel thread.
1324  */
1325 int
1326 crypto_dispatch(struct cryptop *crp)
1327 {
1328         struct cryptocap *cap;
1329         int result;
1330
1331 #ifdef INVARIANTS
1332         crp_sanity(crp);
1333 #endif
1334
1335         cryptostats.cs_ops++;
1336
1337 #ifdef CRYPTO_TIMING
1338         if (crypto_timing)
1339                 binuptime(&crp->crp_tstamp);
1340 #endif
1341
1342         crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1343
1344         if (CRYPTOP_ASYNC(crp)) {
1345                 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1346                         struct crypto_ret_worker *ret_worker;
1347
1348                         ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1349
1350                         CRYPTO_RETW_LOCK(ret_worker);
1351                         crp->crp_seq = ret_worker->reorder_ops++;
1352                         CRYPTO_RETW_UNLOCK(ret_worker);
1353                 }
1354
1355                 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1356                 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1357                 return (0);
1358         }
1359
1360         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1361                 /*
1362                  * Caller marked the request to be processed
1363                  * immediately; dispatch it directly to the
1364                  * driver unless the driver is currently blocked.
1365                  */
1366                 cap = crp->crp_session->cap;
1367                 if (!cap->cc_qblocked) {
1368                         result = crypto_invoke(cap, crp, 0);
1369                         if (result != ERESTART)
1370                                 return (result);
1371                         /*
1372                          * The driver ran out of resources, put the request on
1373                          * the queue.
1374                          */
1375                 }
1376         }
1377         crypto_batch_enqueue(crp);
1378         return 0;
1379 }
1380
1381 void
1382 crypto_batch_enqueue(struct cryptop *crp)
1383 {
1384
1385         CRYPTO_Q_LOCK();
1386         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1387         if (crp_sleep)
1388                 wakeup_one(&crp_q);
1389         CRYPTO_Q_UNLOCK();
1390 }
1391
1392 /*
1393  * Add an asymetric crypto request to a queue,
1394  * to be processed by the kernel thread.
1395  */
1396 int
1397 crypto_kdispatch(struct cryptkop *krp)
1398 {
1399         int error;
1400
1401         cryptostats.cs_kops++;
1402
1403         krp->krp_cap = NULL;
1404         error = crypto_kinvoke(krp);
1405         if (error == ERESTART) {
1406                 CRYPTO_Q_LOCK();
1407                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1408                 if (crp_sleep)
1409                         wakeup_one(&crp_q);
1410                 CRYPTO_Q_UNLOCK();
1411                 error = 0;
1412         }
1413         return error;
1414 }
1415
1416 /*
1417  * Verify a driver is suitable for the specified operation.
1418  */
1419 static __inline int
1420 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1421 {
1422         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1423 }
1424
1425 /*
1426  * Select a driver for an asym operation.  The driver must
1427  * support the necessary algorithm.  The caller can constrain
1428  * which device is selected with the flags parameter.  The
1429  * algorithm we use here is pretty stupid; just use the first
1430  * driver that supports the algorithms we need. If there are
1431  * multiple suitable drivers we choose the driver with the
1432  * fewest active operations.  We prefer hardware-backed
1433  * drivers to software ones when either may be used.
1434  */
1435 static struct cryptocap *
1436 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1437 {
1438         struct cryptocap *cap, *best;
1439         int match, hid;
1440
1441         CRYPTO_DRIVER_ASSERT();
1442
1443         /*
1444          * Look first for hardware crypto devices if permitted.
1445          */
1446         if (flags & CRYPTOCAP_F_HARDWARE)
1447                 match = CRYPTOCAP_F_HARDWARE;
1448         else
1449                 match = CRYPTOCAP_F_SOFTWARE;
1450         best = NULL;
1451 again:
1452         for (hid = 0; hid < crypto_drivers_size; hid++) {
1453                 /*
1454                  * If there is no driver for this slot, or the driver
1455                  * is not appropriate (hardware or software based on
1456                  * match), then skip.
1457                  */
1458                 cap = crypto_drivers[hid];
1459                 if (cap->cc_dev == NULL ||
1460                     (cap->cc_flags & match) == 0)
1461                         continue;
1462
1463                 /* verify all the algorithms are supported. */
1464                 if (kdriver_suitable(cap, krp)) {
1465                         if (best == NULL ||
1466                             cap->cc_koperations < best->cc_koperations)
1467                                 best = cap;
1468                 }
1469         }
1470         if (best != NULL)
1471                 return best;
1472         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1473                 /* sort of an Algol 68-style for loop */
1474                 match = CRYPTOCAP_F_SOFTWARE;
1475                 goto again;
1476         }
1477         return best;
1478 }
1479
1480 /*
1481  * Choose a driver for an asymmetric crypto request.
1482  */
1483 static struct cryptocap *
1484 crypto_lookup_kdriver(struct cryptkop *krp)
1485 {
1486         struct cryptocap *cap;
1487         uint32_t crid;
1488
1489         /* If this request is requeued, it might already have a driver. */
1490         cap = krp->krp_cap;
1491         if (cap != NULL)
1492                 return (cap);
1493
1494         /* Use krp_crid to choose a driver. */
1495         crid = krp->krp_crid;
1496         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1497                 cap = crypto_checkdriver(crid);
1498                 if (cap != NULL) {
1499                         /*
1500                          * Driver present, it must support the
1501                          * necessary algorithm and, if s/w drivers are
1502                          * excluded, it must be registered as
1503                          * hardware-backed.
1504                          */
1505                         if (!kdriver_suitable(cap, krp) ||
1506                             (!crypto_devallowsoft &&
1507                             (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1508                                 cap = NULL;
1509                 }
1510         } else {
1511                 /*
1512                  * No requested driver; select based on crid flags.
1513                  */
1514                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
1515                         crid &= ~CRYPTOCAP_F_SOFTWARE;
1516                 cap = crypto_select_kdriver(krp, crid);
1517         }
1518
1519         if (cap != NULL) {
1520                 krp->krp_cap = cap_ref(cap);
1521                 krp->krp_hid = cap->cc_hid;
1522         }
1523         return (cap);
1524 }
1525
1526 /*
1527  * Dispatch an asymmetric crypto request.
1528  */
1529 static int
1530 crypto_kinvoke(struct cryptkop *krp)
1531 {
1532         struct cryptocap *cap = NULL;
1533         int error;
1534
1535         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1536         KASSERT(krp->krp_callback != NULL,
1537             ("%s: krp->crp_callback == NULL", __func__));
1538
1539         CRYPTO_DRIVER_LOCK();
1540         cap = crypto_lookup_kdriver(krp);
1541         if (cap == NULL) {
1542                 CRYPTO_DRIVER_UNLOCK();
1543                 krp->krp_status = ENODEV;
1544                 crypto_kdone(krp);
1545                 return (0);
1546         }
1547
1548         /*
1549          * If the device is blocked, return ERESTART to requeue it.
1550          */
1551         if (cap->cc_kqblocked) {
1552                 /*
1553                  * XXX: Previously this set krp_status to ERESTART and
1554                  * invoked crypto_kdone but the caller would still
1555                  * requeue it.
1556                  */
1557                 CRYPTO_DRIVER_UNLOCK();
1558                 return (ERESTART);
1559         }
1560
1561         cap->cc_koperations++;
1562         CRYPTO_DRIVER_UNLOCK();
1563         error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1564         if (error == ERESTART) {
1565                 CRYPTO_DRIVER_LOCK();
1566                 cap->cc_koperations--;
1567                 CRYPTO_DRIVER_UNLOCK();
1568                 return (error);
1569         }
1570
1571         KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1572         return (0);
1573 }
1574
1575 #ifdef CRYPTO_TIMING
1576 static void
1577 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
1578 {
1579         struct bintime now, delta;
1580         struct timespec t;
1581         uint64_t u;
1582
1583         binuptime(&now);
1584         u = now.frac;
1585         delta.frac = now.frac - bt->frac;
1586         delta.sec = now.sec - bt->sec;
1587         if (u < delta.frac)
1588                 delta.sec--;
1589         bintime2timespec(&delta, &t);
1590         timespecadd(&ts->acc, &t, &ts->acc);
1591         if (timespeccmp(&t, &ts->min, <))
1592                 ts->min = t;
1593         if (timespeccmp(&t, &ts->max, >))
1594                 ts->max = t;
1595         ts->count++;
1596
1597         *bt = now;
1598 }
1599 #endif
1600
1601 static void
1602 crypto_task_invoke(void *ctx, int pending)
1603 {
1604         struct cryptocap *cap;
1605         struct cryptop *crp;
1606         int result;
1607
1608         crp = (struct cryptop *)ctx;
1609         cap = crp->crp_session->cap;
1610         result = crypto_invoke(cap, crp, 0);
1611         if (result == ERESTART)
1612                 crypto_batch_enqueue(crp);
1613 }
1614
1615 /*
1616  * Dispatch a crypto request to the appropriate crypto devices.
1617  */
1618 static int
1619 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1620 {
1621
1622         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1623         KASSERT(crp->crp_callback != NULL,
1624             ("%s: crp->crp_callback == NULL", __func__));
1625         KASSERT(crp->crp_session != NULL,
1626             ("%s: crp->crp_session == NULL", __func__));
1627
1628 #ifdef CRYPTO_TIMING
1629         if (crypto_timing)
1630                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1631 #endif
1632         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1633                 struct crypto_session_params csp;
1634                 crypto_session_t nses;
1635
1636                 /*
1637                  * Driver has unregistered; migrate the session and return
1638                  * an error to the caller so they'll resubmit the op.
1639                  *
1640                  * XXX: What if there are more already queued requests for this
1641                  *      session?
1642                  *
1643                  * XXX: Real solution is to make sessions refcounted
1644                  * and force callers to hold a reference when
1645                  * assigning to crp_session.  Could maybe change
1646                  * crypto_getreq to accept a session pointer to make
1647                  * that work.  Alternatively, we could abandon the
1648                  * notion of rewriting crp_session in requests forcing
1649                  * the caller to deal with allocating a new session.
1650                  * Perhaps provide a method to allow a crp's session to
1651                  * be swapped that callers could use.
1652                  */
1653                 csp = crp->crp_session->csp;
1654                 crypto_freesession(crp->crp_session);
1655
1656                 /*
1657                  * XXX: Key pointers may no longer be valid.  If we
1658                  * really want to support this we need to define the
1659                  * KPI such that 'csp' is required to be valid for the
1660                  * duration of a session by the caller perhaps.
1661                  *
1662                  * XXX: If the keys have been changed this will reuse
1663                  * the old keys.  This probably suggests making
1664                  * rekeying more explicit and updating the key
1665                  * pointers in 'csp' when the keys change.
1666                  */
1667                 if (crypto_newsession(&nses, &csp,
1668                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1669                         crp->crp_session = nses;
1670
1671                 crp->crp_etype = EAGAIN;
1672                 crypto_done(crp);
1673                 return 0;
1674         } else {
1675                 /*
1676                  * Invoke the driver to process the request.
1677                  */
1678                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1679         }
1680 }
1681
1682 void
1683 crypto_freereq(struct cryptop *crp)
1684 {
1685
1686         if (crp == NULL)
1687                 return;
1688
1689 #ifdef DIAGNOSTIC
1690         {
1691                 struct cryptop *crp2;
1692                 struct crypto_ret_worker *ret_worker;
1693
1694                 CRYPTO_Q_LOCK();
1695                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1696                         KASSERT(crp2 != crp,
1697                             ("Freeing cryptop from the crypto queue (%p).",
1698                             crp));
1699                 }
1700                 CRYPTO_Q_UNLOCK();
1701
1702                 FOREACH_CRYPTO_RETW(ret_worker) {
1703                         CRYPTO_RETW_LOCK(ret_worker);
1704                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1705                                 KASSERT(crp2 != crp,
1706                                     ("Freeing cryptop from the return queue (%p).",
1707                                     crp));
1708                         }
1709                         CRYPTO_RETW_UNLOCK(ret_worker);
1710                 }
1711         }
1712 #endif
1713
1714         uma_zfree(cryptop_zone, crp);
1715 }
1716
1717 struct cryptop *
1718 crypto_getreq(crypto_session_t cses, int how)
1719 {
1720         struct cryptop *crp;
1721
1722         MPASS(how == M_WAITOK || how == M_NOWAIT);
1723         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1724         crp->crp_session = cses;
1725         return (crp);
1726 }
1727
1728 /*
1729  * Invoke the callback on behalf of the driver.
1730  */
1731 void
1732 crypto_done(struct cryptop *crp)
1733 {
1734         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1735                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1736         crp->crp_flags |= CRYPTO_F_DONE;
1737         if (crp->crp_etype != 0)
1738                 cryptostats.cs_errs++;
1739 #ifdef CRYPTO_TIMING
1740         if (crypto_timing)
1741                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1742 #endif
1743         /*
1744          * CBIMM means unconditionally do the callback immediately;
1745          * CBIFSYNC means do the callback immediately only if the
1746          * operation was done synchronously.  Both are used to avoid
1747          * doing extraneous context switches; the latter is mostly
1748          * used with the software crypto driver.
1749          */
1750         if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1751             ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1752             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1753              (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1754                 /*
1755                  * Do the callback directly.  This is ok when the
1756                  * callback routine does very little (e.g. the
1757                  * /dev/crypto callback method just does a wakeup).
1758                  */
1759 #ifdef CRYPTO_TIMING
1760                 if (crypto_timing) {
1761                         /*
1762                          * NB: We must copy the timestamp before
1763                          * doing the callback as the cryptop is
1764                          * likely to be reclaimed.
1765                          */
1766                         struct bintime t = crp->crp_tstamp;
1767                         crypto_tstat(&cryptostats.cs_cb, &t);
1768                         crp->crp_callback(crp);
1769                         crypto_tstat(&cryptostats.cs_finis, &t);
1770                 } else
1771 #endif
1772                         crp->crp_callback(crp);
1773         } else {
1774                 struct crypto_ret_worker *ret_worker;
1775                 bool wake;
1776
1777                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1778                 wake = false;
1779
1780                 /*
1781                  * Normal case; queue the callback for the thread.
1782                  */
1783                 CRYPTO_RETW_LOCK(ret_worker);
1784                 if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1785                         struct cryptop *tmp;
1786
1787                         TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1788                                         cryptop_q, crp_next) {
1789                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1790                                         TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1791                                                         tmp, crp, crp_next);
1792                                         break;
1793                                 }
1794                         }
1795                         if (tmp == NULL) {
1796                                 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1797                                                 crp, crp_next);
1798                         }
1799
1800                         if (crp->crp_seq == ret_worker->reorder_cur_seq)
1801                                 wake = true;
1802                 }
1803                 else {
1804                         if (CRYPTO_RETW_EMPTY(ret_worker))
1805                                 wake = true;
1806
1807                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1808                 }
1809
1810                 if (wake)
1811                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1812                 CRYPTO_RETW_UNLOCK(ret_worker);
1813         }
1814 }
1815
1816 /*
1817  * Invoke the callback on behalf of the driver.
1818  */
1819 void
1820 crypto_kdone(struct cryptkop *krp)
1821 {
1822         struct crypto_ret_worker *ret_worker;
1823         struct cryptocap *cap;
1824
1825         if (krp->krp_status != 0)
1826                 cryptostats.cs_kerrs++;
1827         CRYPTO_DRIVER_LOCK();
1828         cap = krp->krp_cap;
1829         KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1830         cap->cc_koperations--;
1831         if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1832                 wakeup(cap);
1833         CRYPTO_DRIVER_UNLOCK();
1834         krp->krp_cap = NULL;
1835         cap_rele(cap);
1836
1837         ret_worker = CRYPTO_RETW(0);
1838
1839         CRYPTO_RETW_LOCK(ret_worker);
1840         if (CRYPTO_RETW_EMPTY(ret_worker))
1841                 wakeup_one(&ret_worker->crp_ret_q);             /* shared wait channel */
1842         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1843         CRYPTO_RETW_UNLOCK(ret_worker);
1844 }
1845
1846 int
1847 crypto_getfeat(int *featp)
1848 {
1849         int hid, kalg, feat = 0;
1850
1851         CRYPTO_DRIVER_LOCK();
1852         for (hid = 0; hid < crypto_drivers_size; hid++) {
1853                 const struct cryptocap *cap = crypto_drivers[hid];
1854
1855                 if (cap == NULL ||
1856                     ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1857                     !crypto_devallowsoft)) {
1858                         continue;
1859                 }
1860                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1861                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1862                                 feat |=  1 << kalg;
1863         }
1864         CRYPTO_DRIVER_UNLOCK();
1865         *featp = feat;
1866         return (0);
1867 }
1868
1869 /*
1870  * Terminate a thread at module unload.  The process that
1871  * initiated this is waiting for us to signal that we're gone;
1872  * wake it up and exit.  We use the driver table lock to insure
1873  * we don't do the wakeup before they're waiting.  There is no
1874  * race here because the waiter sleeps on the proc lock for the
1875  * thread so it gets notified at the right time because of an
1876  * extra wakeup that's done in exit1().
1877  */
1878 static void
1879 crypto_finis(void *chan)
1880 {
1881         CRYPTO_DRIVER_LOCK();
1882         wakeup_one(chan);
1883         CRYPTO_DRIVER_UNLOCK();
1884         kproc_exit(0);
1885 }
1886
1887 /*
1888  * Crypto thread, dispatches crypto requests.
1889  */
1890 static void
1891 crypto_proc(void)
1892 {
1893         struct cryptop *crp, *submit;
1894         struct cryptkop *krp;
1895         struct cryptocap *cap;
1896         int result, hint;
1897
1898 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1899         fpu_kern_thread(FPU_KERN_NORMAL);
1900 #endif
1901
1902         CRYPTO_Q_LOCK();
1903         for (;;) {
1904                 /*
1905                  * Find the first element in the queue that can be
1906                  * processed and look-ahead to see if multiple ops
1907                  * are ready for the same driver.
1908                  */
1909                 submit = NULL;
1910                 hint = 0;
1911                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1912                         cap = crp->crp_session->cap;
1913                         /*
1914                          * Driver cannot disappeared when there is an active
1915                          * session.
1916                          */
1917                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1918                             __func__, __LINE__));
1919                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1920                                 /* Op needs to be migrated, process it. */
1921                                 if (submit == NULL)
1922                                         submit = crp;
1923                                 break;
1924                         }
1925                         if (!cap->cc_qblocked) {
1926                                 if (submit != NULL) {
1927                                         /*
1928                                          * We stop on finding another op,
1929                                          * regardless whether its for the same
1930                                          * driver or not.  We could keep
1931                                          * searching the queue but it might be
1932                                          * better to just use a per-driver
1933                                          * queue instead.
1934                                          */
1935                                         if (submit->crp_session->cap == cap)
1936                                                 hint = CRYPTO_HINT_MORE;
1937                                         break;
1938                                 } else {
1939                                         submit = crp;
1940                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1941                                                 break;
1942                                         /* keep scanning for more are q'd */
1943                                 }
1944                         }
1945                 }
1946                 if (submit != NULL) {
1947                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1948                         cap = submit->crp_session->cap;
1949                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1950                             __func__, __LINE__));
1951                         CRYPTO_Q_UNLOCK();
1952                         result = crypto_invoke(cap, submit, hint);
1953                         CRYPTO_Q_LOCK();
1954                         if (result == ERESTART) {
1955                                 /*
1956                                  * The driver ran out of resources, mark the
1957                                  * driver ``blocked'' for cryptop's and put
1958                                  * the request back in the queue.  It would
1959                                  * best to put the request back where we got
1960                                  * it but that's hard so for now we put it
1961                                  * at the front.  This should be ok; putting
1962                                  * it at the end does not work.
1963                                  */
1964                                 cap->cc_qblocked = 1;
1965                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1966                                 cryptostats.cs_blocks++;
1967                         }
1968                 }
1969
1970                 /* As above, but for key ops */
1971                 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1972                         cap = krp->krp_cap;
1973                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1974                                 /*
1975                                  * Operation needs to be migrated,
1976                                  * clear krp_cap so a new driver is
1977                                  * selected.
1978                                  */
1979                                 krp->krp_cap = NULL;
1980                                 cap_rele(cap);
1981                                 break;
1982                         }
1983                         if (!cap->cc_kqblocked)
1984                                 break;
1985                 }
1986                 if (krp != NULL) {
1987                         TAILQ_REMOVE(&crp_kq, krp, krp_next);
1988                         CRYPTO_Q_UNLOCK();
1989                         result = crypto_kinvoke(krp);
1990                         CRYPTO_Q_LOCK();
1991                         if (result == ERESTART) {
1992                                 /*
1993                                  * The driver ran out of resources, mark the
1994                                  * driver ``blocked'' for cryptkop's and put
1995                                  * the request back in the queue.  It would
1996                                  * best to put the request back where we got
1997                                  * it but that's hard so for now we put it
1998                                  * at the front.  This should be ok; putting
1999                                  * it at the end does not work.
2000                                  */
2001                                 krp->krp_cap->cc_kqblocked = 1;
2002                                 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2003                                 cryptostats.cs_kblocks++;
2004                         }
2005                 }
2006
2007                 if (submit == NULL && krp == NULL) {
2008                         /*
2009                          * Nothing more to be processed.  Sleep until we're
2010                          * woken because there are more ops to process.
2011                          * This happens either by submission or by a driver
2012                          * becoming unblocked and notifying us through
2013                          * crypto_unblock.  Note that when we wakeup we
2014                          * start processing each queue again from the
2015                          * front. It's not clear that it's important to
2016                          * preserve this ordering since ops may finish
2017                          * out of order if dispatched to different devices
2018                          * and some become blocked while others do not.
2019                          */
2020                         crp_sleep = 1;
2021                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2022                         crp_sleep = 0;
2023                         if (cryptoproc == NULL)
2024                                 break;
2025                         cryptostats.cs_intrs++;
2026                 }
2027         }
2028         CRYPTO_Q_UNLOCK();
2029
2030         crypto_finis(&crp_q);
2031 }
2032
2033 /*
2034  * Crypto returns thread, does callbacks for processed crypto requests.
2035  * Callbacks are done here, rather than in the crypto drivers, because
2036  * callbacks typically are expensive and would slow interrupt handling.
2037  */
2038 static void
2039 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2040 {
2041         struct cryptop *crpt;
2042         struct cryptkop *krpt;
2043
2044         CRYPTO_RETW_LOCK(ret_worker);
2045         for (;;) {
2046                 /* Harvest return q's for completed ops */
2047                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2048                 if (crpt != NULL) {
2049                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2050                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2051                                 ret_worker->reorder_cur_seq++;
2052                         } else {
2053                                 crpt = NULL;
2054                         }
2055                 }
2056
2057                 if (crpt == NULL) {
2058                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2059                         if (crpt != NULL)
2060                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2061                 }
2062
2063                 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2064                 if (krpt != NULL)
2065                         TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2066
2067                 if (crpt != NULL || krpt != NULL) {
2068                         CRYPTO_RETW_UNLOCK(ret_worker);
2069                         /*
2070                          * Run callbacks unlocked.
2071                          */
2072                         if (crpt != NULL) {
2073 #ifdef CRYPTO_TIMING
2074                                 if (crypto_timing) {
2075                                         /*
2076                                          * NB: We must copy the timestamp before
2077                                          * doing the callback as the cryptop is
2078                                          * likely to be reclaimed.
2079                                          */
2080                                         struct bintime t = crpt->crp_tstamp;
2081                                         crypto_tstat(&cryptostats.cs_cb, &t);
2082                                         crpt->crp_callback(crpt);
2083                                         crypto_tstat(&cryptostats.cs_finis, &t);
2084                                 } else
2085 #endif
2086                                         crpt->crp_callback(crpt);
2087                         }
2088                         if (krpt != NULL)
2089                                 krpt->krp_callback(krpt);
2090                         CRYPTO_RETW_LOCK(ret_worker);
2091                 } else {
2092                         /*
2093                          * Nothing more to be processed.  Sleep until we're
2094                          * woken because there are more returns to process.
2095                          */
2096                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2097                                 "crypto_ret_wait", 0);
2098                         if (ret_worker->cryptoretproc == NULL)
2099                                 break;
2100                         cryptostats.cs_rets++;
2101                 }
2102         }
2103         CRYPTO_RETW_UNLOCK(ret_worker);
2104
2105         crypto_finis(&ret_worker->crp_ret_q);
2106 }
2107
2108 #ifdef DDB
2109 static void
2110 db_show_drivers(void)
2111 {
2112         int hid;
2113
2114         db_printf("%12s %4s %4s %8s %2s %2s\n"
2115                 , "Device"
2116                 , "Ses"
2117                 , "Kops"
2118                 , "Flags"
2119                 , "QB"
2120                 , "KB"
2121         );
2122         for (hid = 0; hid < crypto_drivers_size; hid++) {
2123                 const struct cryptocap *cap = crypto_drivers[hid];
2124                 if (cap == NULL)
2125                         continue;
2126                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
2127                     , device_get_nameunit(cap->cc_dev)
2128                     , cap->cc_sessions
2129                     , cap->cc_koperations
2130                     , cap->cc_flags
2131                     , cap->cc_qblocked
2132                     , cap->cc_kqblocked
2133                 );
2134         }
2135 }
2136
2137 DB_SHOW_COMMAND(crypto, db_show_crypto)
2138 {
2139         struct cryptop *crp;
2140         struct crypto_ret_worker *ret_worker;
2141
2142         db_show_drivers();
2143         db_printf("\n");
2144
2145         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2146             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2147             "Device", "Callback");
2148         TAILQ_FOREACH(crp, &crp_q, crp_next) {
2149                 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
2150                     , crp->crp_session->cap->cc_hid
2151                     , (int) crypto_ses2caps(crp->crp_session)
2152                     , crp->crp_ilen, crp->crp_olen
2153                     , crp->crp_etype
2154                     , crp->crp_flags
2155                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
2156                     , crp->crp_callback
2157                 );
2158         }
2159         FOREACH_CRYPTO_RETW(ret_worker) {
2160                 db_printf("\n%8s %4s %4s %4s %8s\n",
2161                     "ret_worker", "HID", "Etype", "Flags", "Callback");
2162                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2163                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2164                                 db_printf("%8td %4u %4u %04x %8p\n"
2165                                     , CRYPTO_RETW_ID(ret_worker)
2166                                     , crp->crp_session->cap->cc_hid
2167                                     , crp->crp_etype
2168                                     , crp->crp_flags
2169                                     , crp->crp_callback
2170                                 );
2171                         }
2172                 }
2173         }
2174 }
2175
2176 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2177 {
2178         struct cryptkop *krp;
2179         struct crypto_ret_worker *ret_worker;
2180
2181         db_show_drivers();
2182         db_printf("\n");
2183
2184         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2185             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2186         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2187                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2188                     , krp->krp_op
2189                     , krp->krp_status
2190                     , krp->krp_iparams, krp->krp_oparams
2191                     , krp->krp_crid, krp->krp_hid
2192                     , krp->krp_callback
2193                 );
2194         }
2195
2196         ret_worker = CRYPTO_RETW(0);
2197         if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2198                 db_printf("%4s %5s %8s %4s %8s\n",
2199                     "Op", "Status", "CRID", "HID", "Callback");
2200                 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2201                         db_printf("%4u %5u %08x %4u %8p\n"
2202                             , krp->krp_op
2203                             , krp->krp_status
2204                             , krp->krp_crid, krp->krp_hid
2205                             , krp->krp_callback
2206                         );
2207                 }
2208         }
2209 }
2210 #endif
2211
2212 int crypto_modevent(module_t mod, int type, void *unused);
2213
2214 /*
2215  * Initialization code, both for static and dynamic loading.
2216  * Note this is not invoked with the usual MODULE_DECLARE
2217  * mechanism but instead is listed as a dependency by the
2218  * cryptosoft driver.  This guarantees proper ordering of
2219  * calls on module load/unload.
2220  */
2221 int
2222 crypto_modevent(module_t mod, int type, void *unused)
2223 {
2224         int error = EINVAL;
2225
2226         switch (type) {
2227         case MOD_LOAD:
2228                 error = crypto_init();
2229                 if (error == 0 && bootverbose)
2230                         printf("crypto: <crypto core>\n");
2231                 break;
2232         case MOD_UNLOAD:
2233                 /*XXX disallow if active sessions */
2234                 error = 0;
2235                 crypto_destroy();
2236                 return 0;
2237         }
2238         return error;
2239 }
2240 MODULE_VERSION(crypto, 1);
2241 MODULE_DEPEND(crypto, zlib, 1, 1, 1);