]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
Initial import from vendor-sys branch of openzfs
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78
79 #include <ddb/ddb.h>
80
81 #include <vm/uma.h>
82 #include <crypto/intake.h>
83 #include <opencrypto/cryptodev.h>
84 #include <opencrypto/xform_auth.h>
85 #include <opencrypto/xform_enc.h>
86
87 #include <sys/kobj.h>
88 #include <sys/bus.h>
89 #include "cryptodev_if.h"
90
91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
92 #include <machine/pcb.h>
93 #endif
94
95 SDT_PROVIDER_DEFINE(opencrypto);
96
97 /*
98  * Crypto drivers register themselves by allocating a slot in the
99  * crypto_drivers table with crypto_get_driverid() and then registering
100  * each asym algorithm they support with crypto_kregister().
101  */
102 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
103 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
104 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
105 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
106
107 /*
108  * Crypto device/driver capabilities structure.
109  *
110  * Synchronization:
111  * (d) - protected by CRYPTO_DRIVER_LOCK()
112  * (q) - protected by CRYPTO_Q_LOCK()
113  * Not tagged fields are read-only.
114  */
115 struct cryptocap {
116         device_t        cc_dev;
117         uint32_t        cc_hid;
118         u_int32_t       cc_sessions;            /* (d) # of sessions */
119         u_int32_t       cc_koperations;         /* (d) # os asym operations */
120         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
121
122         int             cc_flags;               /* (d) flags */
123 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
124         int             cc_qblocked;            /* (q) symmetric q blocked */
125         int             cc_kqblocked;           /* (q) asymmetric q blocked */
126         size_t          cc_session_size;
127         volatile int    cc_refs;
128 };
129
130 static  struct cryptocap **crypto_drivers = NULL;
131 static  int crypto_drivers_size = 0;
132
133 struct crypto_session {
134         struct cryptocap *cap;
135         void *softc;
136         struct crypto_session_params csp;
137 };
138
139 /*
140  * There are two queues for crypto requests; one for symmetric (e.g.
141  * cipher) operations and one for asymmetric (e.g. MOD)operations.
142  * A single mutex is used to lock access to both queues.  We could
143  * have one per-queue but having one simplifies handling of block/unblock
144  * operations.
145  */
146 static  int crp_sleep = 0;
147 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
148 static  TAILQ_HEAD(,cryptkop) crp_kq;
149 static  struct mtx crypto_q_mtx;
150 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
151 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
152
153 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
154     "In-kernel cryptography");
155
156 /*
157  * Taskqueue used to dispatch the crypto requests
158  * that have the CRYPTO_F_ASYNC flag
159  */
160 static struct taskqueue *crypto_tq;
161
162 /*
163  * Crypto seq numbers are operated on with modular arithmetic
164  */
165 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
166
167 struct crypto_ret_worker {
168         struct mtx crypto_ret_mtx;
169
170         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
171         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
172         TAILQ_HEAD(,cryptkop) crp_ret_kq;       /* callback queue for asym jobs */
173
174         u_int32_t reorder_ops;          /* total ordered sym jobs received */
175         u_int32_t reorder_cur_seq;      /* current sym job dispatched */
176
177         struct proc *cryptoretproc;
178 };
179 static struct crypto_ret_worker *crypto_ret_workers = NULL;
180
181 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
182 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
183 #define FOREACH_CRYPTO_RETW(w) \
184         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
185
186 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
187 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
188 #define CRYPTO_RETW_EMPTY(w) \
189         (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
190
191 static int crypto_workers_num = 0;
192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
193            &crypto_workers_num, 0,
194            "Number of crypto workers used to dispatch crypto jobs");
195 #ifdef COMPAT_FREEBSD12
196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
197            &crypto_workers_num, 0,
198            "Number of crypto workers used to dispatch crypto jobs");
199 #endif
200
201 static  uma_zone_t cryptop_zone;
202 static  uma_zone_t cryptoses_zone;
203
204 int     crypto_userasymcrypto = 1;
205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
206            &crypto_userasymcrypto, 0,
207            "Enable user-mode access to asymmetric crypto support");
208 #ifdef COMPAT_FREEBSD12
209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
210            &crypto_userasymcrypto, 0,
211            "Enable/disable user-mode access to asymmetric crypto support");
212 #endif
213
214 int     crypto_devallowsoft = 0;
215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
216            &crypto_devallowsoft, 0,
217            "Enable use of software crypto by /dev/crypto");
218 #ifdef COMPAT_FREEBSD12
219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
220            &crypto_devallowsoft, 0,
221            "Enable/disable use of software crypto by /dev/crypto");
222 #endif
223
224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
225
226 static  void crypto_proc(void);
227 static  struct proc *cryptoproc;
228 static  void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
229 static  void crypto_destroy(void);
230 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
231 static  int crypto_kinvoke(struct cryptkop *krp);
232 static  void crypto_task_invoke(void *ctx, int pending);
233 static void crypto_batch_enqueue(struct cryptop *crp);
234
235 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
236 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
237     cryptostats, nitems(cryptostats),
238     "Crypto system statistics");
239
240 #define CRYPTOSTAT_INC(stat) do {                                       \
241         counter_u64_add(                                                \
242             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
243             1);                                                         \
244 } while (0)
245
246 static void
247 cryptostats_init(void *arg __unused)
248 {
249         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
250 }
251 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
252
253 static void
254 cryptostats_fini(void *arg __unused)
255 {
256         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
257 }
258 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
259     NULL);
260
261 /* Try to avoid directly exposing the key buffer as a symbol */
262 static struct keybuf *keybuf;
263
264 static struct keybuf empty_keybuf = {
265         .kb_nents = 0
266 };
267
268 /* Obtain the key buffer from boot metadata */
269 static void
270 keybuf_init(void)
271 {
272         caddr_t kmdp;
273
274         kmdp = preload_search_by_type("elf kernel");
275
276         if (kmdp == NULL)
277                 kmdp = preload_search_by_type("elf64 kernel");
278
279         keybuf = (struct keybuf *)preload_search_info(kmdp,
280             MODINFO_METADATA | MODINFOMD_KEYBUF);
281
282         if (keybuf == NULL)
283                 keybuf = &empty_keybuf;
284 }
285
286 /* It'd be nice if we could store these in some kind of secure memory... */
287 struct keybuf * get_keybuf(void) {
288
289         return (keybuf);
290 }
291
292 static struct cryptocap *
293 cap_ref(struct cryptocap *cap)
294 {
295
296         refcount_acquire(&cap->cc_refs);
297         return (cap);
298 }
299
300 static void
301 cap_rele(struct cryptocap *cap)
302 {
303
304         if (refcount_release(&cap->cc_refs) == 0)
305                 return;
306
307         KASSERT(cap->cc_sessions == 0,
308             ("freeing crypto driver with active sessions"));
309         KASSERT(cap->cc_koperations == 0,
310             ("freeing crypto driver with active key operations"));
311
312         free(cap, M_CRYPTO_DATA);
313 }
314
315 static int
316 crypto_init(void)
317 {
318         struct crypto_ret_worker *ret_worker;
319         int error;
320
321         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
322                 MTX_DEF|MTX_QUIET);
323
324         TAILQ_INIT(&crp_q);
325         TAILQ_INIT(&crp_kq);
326         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
327
328         cryptop_zone = uma_zcreate("cryptop",
329             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
330             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
331         cryptoses_zone = uma_zcreate("crypto_session",
332             sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
333             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
334
335         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
336         crypto_drivers = malloc(crypto_drivers_size *
337             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
338
339         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
340                 crypto_workers_num = mp_ncpus;
341
342         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
343             taskqueue_thread_enqueue, &crypto_tq);
344
345         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
346             "crypto");
347
348         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
349                     &cryptoproc, 0, 0, "crypto");
350         if (error) {
351                 printf("crypto_init: cannot start crypto thread; error %d",
352                         error);
353                 goto bad;
354         }
355
356         crypto_ret_workers = mallocarray(crypto_workers_num,
357             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
358
359         FOREACH_CRYPTO_RETW(ret_worker) {
360                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
361                 TAILQ_INIT(&ret_worker->crp_ret_q);
362                 TAILQ_INIT(&ret_worker->crp_ret_kq);
363
364                 ret_worker->reorder_ops = 0;
365                 ret_worker->reorder_cur_seq = 0;
366
367                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
368
369                 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
370                                 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
371                 if (error) {
372                         printf("crypto_init: cannot start cryptoret thread; error %d",
373                                 error);
374                         goto bad;
375                 }
376         }
377
378         keybuf_init();
379
380         return 0;
381 bad:
382         crypto_destroy();
383         return error;
384 }
385
386 /*
387  * Signal a crypto thread to terminate.  We use the driver
388  * table lock to synchronize the sleep/wakeups so that we
389  * are sure the threads have terminated before we release
390  * the data structures they use.  See crypto_finis below
391  * for the other half of this song-and-dance.
392  */
393 static void
394 crypto_terminate(struct proc **pp, void *q)
395 {
396         struct proc *p;
397
398         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
399         p = *pp;
400         *pp = NULL;
401         if (p) {
402                 wakeup_one(q);
403                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
404                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
405                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
406                 PROC_UNLOCK(p);
407                 CRYPTO_DRIVER_LOCK();
408         }
409 }
410
411 static void
412 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
413     uint8_t padval)
414 {
415         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
416         u_int i;
417
418         KASSERT(axf->blocksize <= sizeof(hmac_key),
419             ("Invalid HMAC block size %d", axf->blocksize));
420
421         /*
422          * If the key is larger than the block size, use the digest of
423          * the key as the key instead.
424          */
425         memset(hmac_key, 0, sizeof(hmac_key));
426         if (klen > axf->blocksize) {
427                 axf->Init(auth_ctx);
428                 axf->Update(auth_ctx, key, klen);
429                 axf->Final(hmac_key, auth_ctx);
430                 klen = axf->hashsize;
431         } else
432                 memcpy(hmac_key, key, klen);
433
434         for (i = 0; i < axf->blocksize; i++)
435                 hmac_key[i] ^= padval;
436
437         axf->Init(auth_ctx);
438         axf->Update(auth_ctx, hmac_key, axf->blocksize);
439         explicit_bzero(hmac_key, sizeof(hmac_key));
440 }
441
442 void
443 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
444     void *auth_ctx)
445 {
446
447         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
448 }
449
450 void
451 hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
452     void *auth_ctx)
453 {
454
455         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
456 }
457
458 static void
459 crypto_destroy(void)
460 {
461         struct crypto_ret_worker *ret_worker;
462         int i;
463
464         /*
465          * Terminate any crypto threads.
466          */
467         if (crypto_tq != NULL)
468                 taskqueue_drain_all(crypto_tq);
469         CRYPTO_DRIVER_LOCK();
470         crypto_terminate(&cryptoproc, &crp_q);
471         FOREACH_CRYPTO_RETW(ret_worker)
472                 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
473         CRYPTO_DRIVER_UNLOCK();
474
475         /* XXX flush queues??? */
476
477         /*
478          * Reclaim dynamically allocated resources.
479          */
480         for (i = 0; i < crypto_drivers_size; i++) {
481                 if (crypto_drivers[i] != NULL)
482                         cap_rele(crypto_drivers[i]);
483         }
484         free(crypto_drivers, M_CRYPTO_DATA);
485
486         if (cryptoses_zone != NULL)
487                 uma_zdestroy(cryptoses_zone);
488         if (cryptop_zone != NULL)
489                 uma_zdestroy(cryptop_zone);
490         mtx_destroy(&crypto_q_mtx);
491         FOREACH_CRYPTO_RETW(ret_worker)
492                 mtx_destroy(&ret_worker->crypto_ret_mtx);
493         free(crypto_ret_workers, M_CRYPTO_DATA);
494         if (crypto_tq != NULL)
495                 taskqueue_free(crypto_tq);
496         mtx_destroy(&crypto_drivers_mtx);
497 }
498
499 uint32_t
500 crypto_ses2hid(crypto_session_t crypto_session)
501 {
502         return (crypto_session->cap->cc_hid);
503 }
504
505 uint32_t
506 crypto_ses2caps(crypto_session_t crypto_session)
507 {
508         return (crypto_session->cap->cc_flags & 0xff000000);
509 }
510
511 void *
512 crypto_get_driver_session(crypto_session_t crypto_session)
513 {
514         return (crypto_session->softc);
515 }
516
517 const struct crypto_session_params *
518 crypto_get_params(crypto_session_t crypto_session)
519 {
520         return (&crypto_session->csp);
521 }
522
523 struct auth_hash *
524 crypto_auth_hash(const struct crypto_session_params *csp)
525 {
526
527         switch (csp->csp_auth_alg) {
528         case CRYPTO_SHA1_HMAC:
529                 return (&auth_hash_hmac_sha1);
530         case CRYPTO_SHA2_224_HMAC:
531                 return (&auth_hash_hmac_sha2_224);
532         case CRYPTO_SHA2_256_HMAC:
533                 return (&auth_hash_hmac_sha2_256);
534         case CRYPTO_SHA2_384_HMAC:
535                 return (&auth_hash_hmac_sha2_384);
536         case CRYPTO_SHA2_512_HMAC:
537                 return (&auth_hash_hmac_sha2_512);
538         case CRYPTO_NULL_HMAC:
539                 return (&auth_hash_null);
540         case CRYPTO_RIPEMD160_HMAC:
541                 return (&auth_hash_hmac_ripemd_160);
542         case CRYPTO_SHA1:
543                 return (&auth_hash_sha1);
544         case CRYPTO_SHA2_224:
545                 return (&auth_hash_sha2_224);
546         case CRYPTO_SHA2_256:
547                 return (&auth_hash_sha2_256);
548         case CRYPTO_SHA2_384:
549                 return (&auth_hash_sha2_384);
550         case CRYPTO_SHA2_512:
551                 return (&auth_hash_sha2_512);
552         case CRYPTO_AES_NIST_GMAC:
553                 switch (csp->csp_auth_klen) {
554                 case 128 / 8:
555                         return (&auth_hash_nist_gmac_aes_128);
556                 case 192 / 8:
557                         return (&auth_hash_nist_gmac_aes_192);
558                 case 256 / 8:
559                         return (&auth_hash_nist_gmac_aes_256);
560                 default:
561                         return (NULL);
562                 }
563         case CRYPTO_BLAKE2B:
564                 return (&auth_hash_blake2b);
565         case CRYPTO_BLAKE2S:
566                 return (&auth_hash_blake2s);
567         case CRYPTO_POLY1305:
568                 return (&auth_hash_poly1305);
569         case CRYPTO_AES_CCM_CBC_MAC:
570                 switch (csp->csp_auth_klen) {
571                 case 128 / 8:
572                         return (&auth_hash_ccm_cbc_mac_128);
573                 case 192 / 8:
574                         return (&auth_hash_ccm_cbc_mac_192);
575                 case 256 / 8:
576                         return (&auth_hash_ccm_cbc_mac_256);
577                 default:
578                         return (NULL);
579                 }
580         default:
581                 return (NULL);
582         }
583 }
584
585 struct enc_xform *
586 crypto_cipher(const struct crypto_session_params *csp)
587 {
588
589         switch (csp->csp_cipher_alg) {
590         case CRYPTO_RIJNDAEL128_CBC:
591                 return (&enc_xform_rijndael128);
592         case CRYPTO_AES_XTS:
593                 return (&enc_xform_aes_xts);
594         case CRYPTO_AES_ICM:
595                 return (&enc_xform_aes_icm);
596         case CRYPTO_AES_NIST_GCM_16:
597                 return (&enc_xform_aes_nist_gcm);
598         case CRYPTO_CAMELLIA_CBC:
599                 return (&enc_xform_camellia);
600         case CRYPTO_NULL_CBC:
601                 return (&enc_xform_null);
602         case CRYPTO_CHACHA20:
603                 return (&enc_xform_chacha20);
604         case CRYPTO_AES_CCM_16:
605                 return (&enc_xform_ccm);
606         default:
607                 return (NULL);
608         }
609 }
610
611 static struct cryptocap *
612 crypto_checkdriver(u_int32_t hid)
613 {
614
615         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
616 }
617
618 /*
619  * Select a driver for a new session that supports the specified
620  * algorithms and, optionally, is constrained according to the flags.
621  */
622 static struct cryptocap *
623 crypto_select_driver(const struct crypto_session_params *csp, int flags)
624 {
625         struct cryptocap *cap, *best;
626         int best_match, error, hid;
627
628         CRYPTO_DRIVER_ASSERT();
629
630         best = NULL;
631         for (hid = 0; hid < crypto_drivers_size; hid++) {
632                 /*
633                  * If there is no driver for this slot, or the driver
634                  * is not appropriate (hardware or software based on
635                  * match), then skip.
636                  */
637                 cap = crypto_drivers[hid];
638                 if (cap == NULL ||
639                     (cap->cc_flags & flags) == 0)
640                         continue;
641
642                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
643                 if (error >= 0)
644                         continue;
645
646                 /*
647                  * Use the driver with the highest probe value.
648                  * Hardware drivers use a higher probe value than
649                  * software.  In case of a tie, prefer the driver with
650                  * the fewest active sessions.
651                  */
652                 if (best == NULL || error > best_match ||
653                     (error == best_match &&
654                     cap->cc_sessions < best->cc_sessions)) {
655                         best = cap;
656                         best_match = error;
657                 }
658         }
659         return best;
660 }
661
662 static enum alg_type {
663         ALG_NONE = 0,
664         ALG_CIPHER,
665         ALG_DIGEST,
666         ALG_KEYED_DIGEST,
667         ALG_COMPRESSION,
668         ALG_AEAD
669 } alg_types[] = {
670         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
671         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
672         [CRYPTO_AES_CBC] = ALG_CIPHER,
673         [CRYPTO_SHA1] = ALG_DIGEST,
674         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
675         [CRYPTO_NULL_CBC] = ALG_CIPHER,
676         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
677         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
678         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
679         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
680         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
681         [CRYPTO_AES_XTS] = ALG_CIPHER,
682         [CRYPTO_AES_ICM] = ALG_CIPHER,
683         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
684         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
685         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
686         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
687         [CRYPTO_CHACHA20] = ALG_CIPHER,
688         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
689         [CRYPTO_RIPEMD160] = ALG_DIGEST,
690         [CRYPTO_SHA2_224] = ALG_DIGEST,
691         [CRYPTO_SHA2_256] = ALG_DIGEST,
692         [CRYPTO_SHA2_384] = ALG_DIGEST,
693         [CRYPTO_SHA2_512] = ALG_DIGEST,
694         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
695         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
696         [CRYPTO_AES_CCM_16] = ALG_AEAD,
697 };
698
699 static enum alg_type
700 alg_type(int alg)
701 {
702
703         if (alg < nitems(alg_types))
704                 return (alg_types[alg]);
705         return (ALG_NONE);
706 }
707
708 static bool
709 alg_is_compression(int alg)
710 {
711
712         return (alg_type(alg) == ALG_COMPRESSION);
713 }
714
715 static bool
716 alg_is_cipher(int alg)
717 {
718
719         return (alg_type(alg) == ALG_CIPHER);
720 }
721
722 static bool
723 alg_is_digest(int alg)
724 {
725
726         return (alg_type(alg) == ALG_DIGEST ||
727             alg_type(alg) == ALG_KEYED_DIGEST);
728 }
729
730 static bool
731 alg_is_keyed_digest(int alg)
732 {
733
734         return (alg_type(alg) == ALG_KEYED_DIGEST);
735 }
736
737 static bool
738 alg_is_aead(int alg)
739 {
740
741         return (alg_type(alg) == ALG_AEAD);
742 }
743
744 /* Various sanity checks on crypto session parameters. */
745 static bool
746 check_csp(const struct crypto_session_params *csp)
747 {
748         struct auth_hash *axf;
749
750         /* Mode-independent checks. */
751         if ((csp->csp_flags & ~(CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD)) !=
752             0)
753                 return (false);
754         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
755             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
756                 return (false);
757         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
758                 return (false);
759         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
760                 return (false);
761
762         switch (csp->csp_mode) {
763         case CSP_MODE_COMPRESS:
764                 if (!alg_is_compression(csp->csp_cipher_alg))
765                         return (false);
766                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
767                         return (false);
768                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
769                         return (false);
770                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
771                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
772                     csp->csp_auth_mlen != 0)
773                         return (false);
774                 break;
775         case CSP_MODE_CIPHER:
776                 if (!alg_is_cipher(csp->csp_cipher_alg))
777                         return (false);
778                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
779                         return (false);
780                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
781                         if (csp->csp_cipher_klen == 0)
782                                 return (false);
783                         if (csp->csp_ivlen == 0)
784                                 return (false);
785                 }
786                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
787                         return (false);
788                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
789                     csp->csp_auth_mlen != 0)
790                         return (false);
791                 break;
792         case CSP_MODE_DIGEST:
793                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
794                         return (false);
795
796                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
797                         return (false);
798
799                 /* IV is optional for digests (e.g. GMAC). */
800                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
801                         return (false);
802                 if (!alg_is_digest(csp->csp_auth_alg))
803                         return (false);
804
805                 /* Key is optional for BLAKE2 digests. */
806                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
807                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
808                         ;
809                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
810                         if (csp->csp_auth_klen == 0)
811                                 return (false);
812                 } else {
813                         if (csp->csp_auth_klen != 0)
814                                 return (false);
815                 }
816                 if (csp->csp_auth_mlen != 0) {
817                         axf = crypto_auth_hash(csp);
818                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
819                                 return (false);
820                 }
821                 break;
822         case CSP_MODE_AEAD:
823                 if (!alg_is_aead(csp->csp_cipher_alg))
824                         return (false);
825                 if (csp->csp_cipher_klen == 0)
826                         return (false);
827                 if (csp->csp_ivlen == 0 ||
828                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
829                         return (false);
830                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
831                         return (false);
832
833                 /*
834                  * XXX: Would be nice to have a better way to get this
835                  * value.
836                  */
837                 switch (csp->csp_cipher_alg) {
838                 case CRYPTO_AES_NIST_GCM_16:
839                 case CRYPTO_AES_CCM_16:
840                         if (csp->csp_auth_mlen > 16)
841                                 return (false);
842                         break;
843                 }
844                 break;
845         case CSP_MODE_ETA:
846                 if (!alg_is_cipher(csp->csp_cipher_alg))
847                         return (false);
848                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
849                         if (csp->csp_cipher_klen == 0)
850                                 return (false);
851                         if (csp->csp_ivlen == 0)
852                                 return (false);
853                 }
854                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
855                         return (false);
856                 if (!alg_is_digest(csp->csp_auth_alg))
857                         return (false);
858
859                 /* Key is optional for BLAKE2 digests. */
860                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
861                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
862                         ;
863                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
864                         if (csp->csp_auth_klen == 0)
865                                 return (false);
866                 } else {
867                         if (csp->csp_auth_klen != 0)
868                                 return (false);
869                 }
870                 if (csp->csp_auth_mlen != 0) {
871                         axf = crypto_auth_hash(csp);
872                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
873                                 return (false);
874                 }
875                 break;
876         default:
877                 return (false);
878         }
879
880         return (true);
881 }
882
883 /*
884  * Delete a session after it has been detached from its driver.
885  */
886 static void
887 crypto_deletesession(crypto_session_t cses)
888 {
889         struct cryptocap *cap;
890
891         cap = cses->cap;
892
893         zfree(cses->softc, M_CRYPTO_DATA);
894         uma_zfree(cryptoses_zone, cses);
895
896         CRYPTO_DRIVER_LOCK();
897         cap->cc_sessions--;
898         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
899                 wakeup(cap);
900         CRYPTO_DRIVER_UNLOCK();
901         cap_rele(cap);
902 }
903
904 /*
905  * Create a new session.  The crid argument specifies a crypto
906  * driver to use or constraints on a driver to select (hardware
907  * only, software only, either).  Whatever driver is selected
908  * must be capable of the requested crypto algorithms.
909  */
910 int
911 crypto_newsession(crypto_session_t *cses,
912     const struct crypto_session_params *csp, int crid)
913 {
914         crypto_session_t res;
915         struct cryptocap *cap;
916         int err;
917
918         if (!check_csp(csp))
919                 return (EINVAL);
920
921         res = NULL;
922
923         CRYPTO_DRIVER_LOCK();
924         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
925                 /*
926                  * Use specified driver; verify it is capable.
927                  */
928                 cap = crypto_checkdriver(crid);
929                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
930                         cap = NULL;
931         } else {
932                 /*
933                  * No requested driver; select based on crid flags.
934                  */
935                 cap = crypto_select_driver(csp, crid);
936         }
937         if (cap == NULL) {
938                 CRYPTO_DRIVER_UNLOCK();
939                 CRYPTDEB("no driver");
940                 return (EOPNOTSUPP);
941         }
942         cap_ref(cap);
943         cap->cc_sessions++;
944         CRYPTO_DRIVER_UNLOCK();
945
946         res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
947         res->cap = cap;
948         res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
949             M_ZERO);
950         res->csp = *csp;
951
952         /* Call the driver initialization routine. */
953         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
954         if (err != 0) {
955                 CRYPTDEB("dev newsession failed: %d", err);
956                 crypto_deletesession(res);
957                 return (err);
958         }
959
960         *cses = res;
961         return (0);
962 }
963
964 /*
965  * Delete an existing session (or a reserved session on an unregistered
966  * driver).
967  */
968 void
969 crypto_freesession(crypto_session_t cses)
970 {
971         struct cryptocap *cap;
972
973         if (cses == NULL)
974                 return;
975
976         cap = cses->cap;
977
978         /* Call the driver cleanup routine, if available. */
979         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
980
981         crypto_deletesession(cses);
982 }
983
984 /*
985  * Return a new driver id.  Registers a driver with the system so that
986  * it can be probed by subsequent sessions.
987  */
988 int32_t
989 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
990 {
991         struct cryptocap *cap, **newdrv;
992         int i;
993
994         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
995                 device_printf(dev,
996                     "no flags specified when registering driver\n");
997                 return -1;
998         }
999
1000         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1001         cap->cc_dev = dev;
1002         cap->cc_session_size = sessionsize;
1003         cap->cc_flags = flags;
1004         refcount_init(&cap->cc_refs, 1);
1005
1006         CRYPTO_DRIVER_LOCK();
1007         for (;;) {
1008                 for (i = 0; i < crypto_drivers_size; i++) {
1009                         if (crypto_drivers[i] == NULL)
1010                                 break;
1011                 }
1012
1013                 if (i < crypto_drivers_size)
1014                         break;
1015
1016                 /* Out of entries, allocate some more. */
1017
1018                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1019                         CRYPTO_DRIVER_UNLOCK();
1020                         printf("crypto: driver count wraparound!\n");
1021                         cap_rele(cap);
1022                         return (-1);
1023                 }
1024                 CRYPTO_DRIVER_UNLOCK();
1025
1026                 newdrv = malloc(2 * crypto_drivers_size *
1027                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1028
1029                 CRYPTO_DRIVER_LOCK();
1030                 memcpy(newdrv, crypto_drivers,
1031                     crypto_drivers_size * sizeof(*crypto_drivers));
1032
1033                 crypto_drivers_size *= 2;
1034
1035                 free(crypto_drivers, M_CRYPTO_DATA);
1036                 crypto_drivers = newdrv;
1037         }
1038
1039         cap->cc_hid = i;
1040         crypto_drivers[i] = cap;
1041         CRYPTO_DRIVER_UNLOCK();
1042
1043         if (bootverbose)
1044                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1045                     device_get_nameunit(dev), i, flags);
1046
1047         return i;
1048 }
1049
1050 /*
1051  * Lookup a driver by name.  We match against the full device
1052  * name and unit, and against just the name.  The latter gives
1053  * us a simple widlcarding by device name.  On success return the
1054  * driver/hardware identifier; otherwise return -1.
1055  */
1056 int
1057 crypto_find_driver(const char *match)
1058 {
1059         struct cryptocap *cap;
1060         int i, len = strlen(match);
1061
1062         CRYPTO_DRIVER_LOCK();
1063         for (i = 0; i < crypto_drivers_size; i++) {
1064                 if (crypto_drivers[i] == NULL)
1065                         continue;
1066                 cap = crypto_drivers[i];
1067                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1068                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1069                         CRYPTO_DRIVER_UNLOCK();
1070                         return (i);
1071                 }
1072         }
1073         CRYPTO_DRIVER_UNLOCK();
1074         return (-1);
1075 }
1076
1077 /*
1078  * Return the device_t for the specified driver or NULL
1079  * if the driver identifier is invalid.
1080  */
1081 device_t
1082 crypto_find_device_byhid(int hid)
1083 {
1084         struct cryptocap *cap;
1085         device_t dev;
1086
1087         dev = NULL;
1088         CRYPTO_DRIVER_LOCK();
1089         cap = crypto_checkdriver(hid);
1090         if (cap != NULL)
1091                 dev = cap->cc_dev;
1092         CRYPTO_DRIVER_UNLOCK();
1093         return (dev);
1094 }
1095
1096 /*
1097  * Return the device/driver capabilities.
1098  */
1099 int
1100 crypto_getcaps(int hid)
1101 {
1102         struct cryptocap *cap;
1103         int flags;
1104
1105         flags = 0;
1106         CRYPTO_DRIVER_LOCK();
1107         cap = crypto_checkdriver(hid);
1108         if (cap != NULL)
1109                 flags = cap->cc_flags;
1110         CRYPTO_DRIVER_UNLOCK();
1111         return (flags);
1112 }
1113
1114 /*
1115  * Register support for a key-related algorithm.  This routine
1116  * is called once for each algorithm supported a driver.
1117  */
1118 int
1119 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
1120 {
1121         struct cryptocap *cap;
1122         int err;
1123
1124         CRYPTO_DRIVER_LOCK();
1125
1126         cap = crypto_checkdriver(driverid);
1127         if (cap != NULL &&
1128             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1129                 /*
1130                  * XXX Do some performance testing to determine placing.
1131                  * XXX We probably need an auxiliary data structure that
1132                  * XXX describes relative performances.
1133                  */
1134
1135                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1136                 if (bootverbose)
1137                         printf("crypto: %s registers key alg %u flags %u\n"
1138                                 , device_get_nameunit(cap->cc_dev)
1139                                 , kalg
1140                                 , flags
1141                         );
1142                 err = 0;
1143         } else
1144                 err = EINVAL;
1145
1146         CRYPTO_DRIVER_UNLOCK();
1147         return err;
1148 }
1149
1150 /*
1151  * Unregister all algorithms associated with a crypto driver.
1152  * If there are pending sessions using it, leave enough information
1153  * around so that subsequent calls using those sessions will
1154  * correctly detect the driver has been unregistered and reroute
1155  * requests.
1156  */
1157 int
1158 crypto_unregister_all(u_int32_t driverid)
1159 {
1160         struct cryptocap *cap;
1161
1162         CRYPTO_DRIVER_LOCK();
1163         cap = crypto_checkdriver(driverid);
1164         if (cap == NULL) {
1165                 CRYPTO_DRIVER_UNLOCK();
1166                 return (EINVAL);
1167         }
1168
1169         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1170         crypto_drivers[driverid] = NULL;
1171
1172         /*
1173          * XXX: This doesn't do anything to kick sessions that
1174          * have no pending operations.
1175          */
1176         while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1177                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1178         CRYPTO_DRIVER_UNLOCK();
1179         cap_rele(cap);
1180
1181         return (0);
1182 }
1183
1184 /*
1185  * Clear blockage on a driver.  The what parameter indicates whether
1186  * the driver is now ready for cryptop's and/or cryptokop's.
1187  */
1188 int
1189 crypto_unblock(u_int32_t driverid, int what)
1190 {
1191         struct cryptocap *cap;
1192         int err;
1193
1194         CRYPTO_Q_LOCK();
1195         cap = crypto_checkdriver(driverid);
1196         if (cap != NULL) {
1197                 if (what & CRYPTO_SYMQ)
1198                         cap->cc_qblocked = 0;
1199                 if (what & CRYPTO_ASYMQ)
1200                         cap->cc_kqblocked = 0;
1201                 if (crp_sleep)
1202                         wakeup_one(&crp_q);
1203                 err = 0;
1204         } else
1205                 err = EINVAL;
1206         CRYPTO_Q_UNLOCK();
1207
1208         return err;
1209 }
1210
1211 size_t
1212 crypto_buffer_len(struct crypto_buffer *cb)
1213 {
1214         switch (cb->cb_type) {
1215         case CRYPTO_BUF_CONTIG:
1216                 return (cb->cb_buf_len);
1217         case CRYPTO_BUF_MBUF:
1218                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1219                         return (cb->cb_mbuf->m_pkthdr.len);
1220                 return (m_length(cb->cb_mbuf, NULL));
1221         case CRYPTO_BUF_UIO:
1222                 return (cb->cb_uio->uio_resid);
1223         default:
1224                 return (0);
1225         }
1226 }
1227
1228 #ifdef INVARIANTS
1229 /* Various sanity checks on crypto requests. */
1230 static void
1231 cb_sanity(struct crypto_buffer *cb, const char *name)
1232 {
1233         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1234             ("incoming crp with invalid %s buffer type", name));
1235         if (cb->cb_type == CRYPTO_BUF_CONTIG)
1236                 KASSERT(cb->cb_buf_len >= 0,
1237                     ("incoming crp with -ve %s buffer length", name));
1238 }
1239
1240 static void
1241 crp_sanity(struct cryptop *crp)
1242 {
1243         struct crypto_session_params *csp;
1244         struct crypto_buffer *out;
1245         size_t ilen, len, olen;
1246
1247         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1248         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1249             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1250             ("incoming crp with invalid output buffer type"));
1251         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1252         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1253             ("incoming crp already done"));
1254
1255         csp = &crp->crp_session->csp;
1256         cb_sanity(&crp->crp_buf, "input");
1257         ilen = crypto_buffer_len(&crp->crp_buf);
1258         olen = ilen;
1259         out = NULL;
1260         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1261                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1262                         cb_sanity(&crp->crp_obuf, "output");
1263                         out = &crp->crp_obuf;
1264                         olen = crypto_buffer_len(out);
1265                 }
1266         } else
1267                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1268                     ("incoming crp with separate output buffer "
1269                     "but no session support"));
1270
1271         switch (csp->csp_mode) {
1272         case CSP_MODE_COMPRESS:
1273                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1274                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1275                     ("invalid compression op %x", crp->crp_op));
1276                 break;
1277         case CSP_MODE_CIPHER:
1278                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1279                     crp->crp_op == CRYPTO_OP_DECRYPT,
1280                     ("invalid cipher op %x", crp->crp_op));
1281                 break;
1282         case CSP_MODE_DIGEST:
1283                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1284                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1285                     ("invalid digest op %x", crp->crp_op));
1286                 break;
1287         case CSP_MODE_AEAD:
1288                 KASSERT(crp->crp_op ==
1289                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1290                     crp->crp_op ==
1291                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1292                     ("invalid AEAD op %x", crp->crp_op));
1293                 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1294                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1295                             ("GCM without a separate IV"));
1296                 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1297                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1298                             ("CCM without a separate IV"));
1299                 break;
1300         case CSP_MODE_ETA:
1301                 KASSERT(crp->crp_op ==
1302                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1303                     crp->crp_op ==
1304                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1305                     ("invalid ETA op %x", crp->crp_op));
1306                 break;
1307         }
1308         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1309                 if (crp->crp_aad == NULL) {
1310                         KASSERT(crp->crp_aad_start == 0 ||
1311                             crp->crp_aad_start < ilen,
1312                             ("invalid AAD start"));
1313                         KASSERT(crp->crp_aad_length != 0 ||
1314                             crp->crp_aad_start == 0,
1315                             ("AAD with zero length and non-zero start"));
1316                         KASSERT(crp->crp_aad_length == 0 ||
1317                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1318                             ("AAD outside input length"));
1319                 } else {
1320                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1321                             ("session doesn't support separate AAD buffer"));
1322                         KASSERT(crp->crp_aad_start == 0,
1323                             ("separate AAD buffer with non-zero AAD start"));
1324                         KASSERT(crp->crp_aad_length != 0,
1325                             ("separate AAD buffer with zero length"));
1326                 }
1327         } else {
1328                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1329                     crp->crp_aad_length == 0,
1330                     ("AAD region in request not supporting AAD"));
1331         }
1332         if (csp->csp_ivlen == 0) {
1333                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1334                     ("IV_SEPARATE set when IV isn't used"));
1335                 KASSERT(crp->crp_iv_start == 0,
1336                     ("crp_iv_start set when IV isn't used"));
1337         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1338                 KASSERT(crp->crp_iv_start == 0,
1339                     ("IV_SEPARATE used with non-zero IV start"));
1340         } else {
1341                 KASSERT(crp->crp_iv_start < ilen,
1342                     ("invalid IV start"));
1343                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1344                     ("IV outside buffer length"));
1345         }
1346         /* XXX: payload_start of 0 should always be < ilen? */
1347         KASSERT(crp->crp_payload_start == 0 ||
1348             crp->crp_payload_start < ilen,
1349             ("invalid payload start"));
1350         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1351             ilen, ("payload outside input buffer"));
1352         if (out == NULL) {
1353                 KASSERT(crp->crp_payload_output_start == 0,
1354                     ("payload output start non-zero without output buffer"));
1355         } else {
1356                 KASSERT(crp->crp_payload_output_start < olen,
1357                     ("invalid payload output start"));
1358                 KASSERT(crp->crp_payload_output_start +
1359                     crp->crp_payload_length <= olen,
1360                     ("payload outside output buffer"));
1361         }
1362         if (csp->csp_mode == CSP_MODE_DIGEST ||
1363             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1364                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1365                         len = ilen;
1366                 else
1367                         len = olen;
1368                 KASSERT(crp->crp_digest_start == 0 ||
1369                     crp->crp_digest_start < len,
1370                     ("invalid digest start"));
1371                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1372                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1373                     ("digest outside buffer"));
1374         } else {
1375                 KASSERT(crp->crp_digest_start == 0,
1376                     ("non-zero digest start for request without a digest"));
1377         }
1378         if (csp->csp_cipher_klen != 0)
1379                 KASSERT(csp->csp_cipher_key != NULL ||
1380                     crp->crp_cipher_key != NULL,
1381                     ("cipher request without a key"));
1382         if (csp->csp_auth_klen != 0)
1383                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1384                     ("auth request without a key"));
1385         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1386 }
1387 #endif
1388
1389 /*
1390  * Add a crypto request to a queue, to be processed by the kernel thread.
1391  */
1392 int
1393 crypto_dispatch(struct cryptop *crp)
1394 {
1395         struct cryptocap *cap;
1396         int result;
1397
1398 #ifdef INVARIANTS
1399         crp_sanity(crp);
1400 #endif
1401
1402         CRYPTOSTAT_INC(cs_ops);
1403
1404         crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1405
1406         if (CRYPTOP_ASYNC(crp)) {
1407                 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1408                         struct crypto_ret_worker *ret_worker;
1409
1410                         ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1411
1412                         CRYPTO_RETW_LOCK(ret_worker);
1413                         crp->crp_seq = ret_worker->reorder_ops++;
1414                         CRYPTO_RETW_UNLOCK(ret_worker);
1415                 }
1416
1417                 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1418                 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1419                 return (0);
1420         }
1421
1422         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1423                 /*
1424                  * Caller marked the request to be processed
1425                  * immediately; dispatch it directly to the
1426                  * driver unless the driver is currently blocked.
1427                  */
1428                 cap = crp->crp_session->cap;
1429                 if (!cap->cc_qblocked) {
1430                         result = crypto_invoke(cap, crp, 0);
1431                         if (result != ERESTART)
1432                                 return (result);
1433                         /*
1434                          * The driver ran out of resources, put the request on
1435                          * the queue.
1436                          */
1437                 }
1438         }
1439         crypto_batch_enqueue(crp);
1440         return 0;
1441 }
1442
1443 void
1444 crypto_batch_enqueue(struct cryptop *crp)
1445 {
1446
1447         CRYPTO_Q_LOCK();
1448         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1449         if (crp_sleep)
1450                 wakeup_one(&crp_q);
1451         CRYPTO_Q_UNLOCK();
1452 }
1453
1454 /*
1455  * Add an asymetric crypto request to a queue,
1456  * to be processed by the kernel thread.
1457  */
1458 int
1459 crypto_kdispatch(struct cryptkop *krp)
1460 {
1461         int error;
1462
1463         CRYPTOSTAT_INC(cs_kops);
1464
1465         krp->krp_cap = NULL;
1466         error = crypto_kinvoke(krp);
1467         if (error == ERESTART) {
1468                 CRYPTO_Q_LOCK();
1469                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1470                 if (crp_sleep)
1471                         wakeup_one(&crp_q);
1472                 CRYPTO_Q_UNLOCK();
1473                 error = 0;
1474         }
1475         return error;
1476 }
1477
1478 /*
1479  * Verify a driver is suitable for the specified operation.
1480  */
1481 static __inline int
1482 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1483 {
1484         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1485 }
1486
1487 /*
1488  * Select a driver for an asym operation.  The driver must
1489  * support the necessary algorithm.  The caller can constrain
1490  * which device is selected with the flags parameter.  The
1491  * algorithm we use here is pretty stupid; just use the first
1492  * driver that supports the algorithms we need. If there are
1493  * multiple suitable drivers we choose the driver with the
1494  * fewest active operations.  We prefer hardware-backed
1495  * drivers to software ones when either may be used.
1496  */
1497 static struct cryptocap *
1498 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1499 {
1500         struct cryptocap *cap, *best;
1501         int match, hid;
1502
1503         CRYPTO_DRIVER_ASSERT();
1504
1505         /*
1506          * Look first for hardware crypto devices if permitted.
1507          */
1508         if (flags & CRYPTOCAP_F_HARDWARE)
1509                 match = CRYPTOCAP_F_HARDWARE;
1510         else
1511                 match = CRYPTOCAP_F_SOFTWARE;
1512         best = NULL;
1513 again:
1514         for (hid = 0; hid < crypto_drivers_size; hid++) {
1515                 /*
1516                  * If there is no driver for this slot, or the driver
1517                  * is not appropriate (hardware or software based on
1518                  * match), then skip.
1519                  */
1520                 cap = crypto_drivers[hid];
1521                 if (cap->cc_dev == NULL ||
1522                     (cap->cc_flags & match) == 0)
1523                         continue;
1524
1525                 /* verify all the algorithms are supported. */
1526                 if (kdriver_suitable(cap, krp)) {
1527                         if (best == NULL ||
1528                             cap->cc_koperations < best->cc_koperations)
1529                                 best = cap;
1530                 }
1531         }
1532         if (best != NULL)
1533                 return best;
1534         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1535                 /* sort of an Algol 68-style for loop */
1536                 match = CRYPTOCAP_F_SOFTWARE;
1537                 goto again;
1538         }
1539         return best;
1540 }
1541
1542 /*
1543  * Choose a driver for an asymmetric crypto request.
1544  */
1545 static struct cryptocap *
1546 crypto_lookup_kdriver(struct cryptkop *krp)
1547 {
1548         struct cryptocap *cap;
1549         uint32_t crid;
1550
1551         /* If this request is requeued, it might already have a driver. */
1552         cap = krp->krp_cap;
1553         if (cap != NULL)
1554                 return (cap);
1555
1556         /* Use krp_crid to choose a driver. */
1557         crid = krp->krp_crid;
1558         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1559                 cap = crypto_checkdriver(crid);
1560                 if (cap != NULL) {
1561                         /*
1562                          * Driver present, it must support the
1563                          * necessary algorithm and, if s/w drivers are
1564                          * excluded, it must be registered as
1565                          * hardware-backed.
1566                          */
1567                         if (!kdriver_suitable(cap, krp) ||
1568                             (!crypto_devallowsoft &&
1569                             (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1570                                 cap = NULL;
1571                 }
1572         } else {
1573                 /*
1574                  * No requested driver; select based on crid flags.
1575                  */
1576                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
1577                         crid &= ~CRYPTOCAP_F_SOFTWARE;
1578                 cap = crypto_select_kdriver(krp, crid);
1579         }
1580
1581         if (cap != NULL) {
1582                 krp->krp_cap = cap_ref(cap);
1583                 krp->krp_hid = cap->cc_hid;
1584         }
1585         return (cap);
1586 }
1587
1588 /*
1589  * Dispatch an asymmetric crypto request.
1590  */
1591 static int
1592 crypto_kinvoke(struct cryptkop *krp)
1593 {
1594         struct cryptocap *cap = NULL;
1595         int error;
1596
1597         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1598         KASSERT(krp->krp_callback != NULL,
1599             ("%s: krp->crp_callback == NULL", __func__));
1600
1601         CRYPTO_DRIVER_LOCK();
1602         cap = crypto_lookup_kdriver(krp);
1603         if (cap == NULL) {
1604                 CRYPTO_DRIVER_UNLOCK();
1605                 krp->krp_status = ENODEV;
1606                 crypto_kdone(krp);
1607                 return (0);
1608         }
1609
1610         /*
1611          * If the device is blocked, return ERESTART to requeue it.
1612          */
1613         if (cap->cc_kqblocked) {
1614                 /*
1615                  * XXX: Previously this set krp_status to ERESTART and
1616                  * invoked crypto_kdone but the caller would still
1617                  * requeue it.
1618                  */
1619                 CRYPTO_DRIVER_UNLOCK();
1620                 return (ERESTART);
1621         }
1622
1623         cap->cc_koperations++;
1624         CRYPTO_DRIVER_UNLOCK();
1625         error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1626         if (error == ERESTART) {
1627                 CRYPTO_DRIVER_LOCK();
1628                 cap->cc_koperations--;
1629                 CRYPTO_DRIVER_UNLOCK();
1630                 return (error);
1631         }
1632
1633         KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1634         return (0);
1635 }
1636
1637 static void
1638 crypto_task_invoke(void *ctx, int pending)
1639 {
1640         struct cryptocap *cap;
1641         struct cryptop *crp;
1642         int result;
1643
1644         crp = (struct cryptop *)ctx;
1645         cap = crp->crp_session->cap;
1646         result = crypto_invoke(cap, crp, 0);
1647         if (result == ERESTART)
1648                 crypto_batch_enqueue(crp);
1649 }
1650
1651 /*
1652  * Dispatch a crypto request to the appropriate crypto devices.
1653  */
1654 static int
1655 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1656 {
1657
1658         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1659         KASSERT(crp->crp_callback != NULL,
1660             ("%s: crp->crp_callback == NULL", __func__));
1661         KASSERT(crp->crp_session != NULL,
1662             ("%s: crp->crp_session == NULL", __func__));
1663
1664         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1665                 struct crypto_session_params csp;
1666                 crypto_session_t nses;
1667
1668                 /*
1669                  * Driver has unregistered; migrate the session and return
1670                  * an error to the caller so they'll resubmit the op.
1671                  *
1672                  * XXX: What if there are more already queued requests for this
1673                  *      session?
1674                  *
1675                  * XXX: Real solution is to make sessions refcounted
1676                  * and force callers to hold a reference when
1677                  * assigning to crp_session.  Could maybe change
1678                  * crypto_getreq to accept a session pointer to make
1679                  * that work.  Alternatively, we could abandon the
1680                  * notion of rewriting crp_session in requests forcing
1681                  * the caller to deal with allocating a new session.
1682                  * Perhaps provide a method to allow a crp's session to
1683                  * be swapped that callers could use.
1684                  */
1685                 csp = crp->crp_session->csp;
1686                 crypto_freesession(crp->crp_session);
1687
1688                 /*
1689                  * XXX: Key pointers may no longer be valid.  If we
1690                  * really want to support this we need to define the
1691                  * KPI such that 'csp' is required to be valid for the
1692                  * duration of a session by the caller perhaps.
1693                  *
1694                  * XXX: If the keys have been changed this will reuse
1695                  * the old keys.  This probably suggests making
1696                  * rekeying more explicit and updating the key
1697                  * pointers in 'csp' when the keys change.
1698                  */
1699                 if (crypto_newsession(&nses, &csp,
1700                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1701                         crp->crp_session = nses;
1702
1703                 crp->crp_etype = EAGAIN;
1704                 crypto_done(crp);
1705                 return 0;
1706         } else {
1707                 /*
1708                  * Invoke the driver to process the request.
1709                  */
1710                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1711         }
1712 }
1713
1714 void
1715 crypto_destroyreq(struct cryptop *crp)
1716 {
1717 #ifdef DIAGNOSTIC
1718         {
1719                 struct cryptop *crp2;
1720                 struct crypto_ret_worker *ret_worker;
1721
1722                 CRYPTO_Q_LOCK();
1723                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1724                         KASSERT(crp2 != crp,
1725                             ("Freeing cryptop from the crypto queue (%p).",
1726                             crp));
1727                 }
1728                 CRYPTO_Q_UNLOCK();
1729
1730                 FOREACH_CRYPTO_RETW(ret_worker) {
1731                         CRYPTO_RETW_LOCK(ret_worker);
1732                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1733                                 KASSERT(crp2 != crp,
1734                                     ("Freeing cryptop from the return queue (%p).",
1735                                     crp));
1736                         }
1737                         CRYPTO_RETW_UNLOCK(ret_worker);
1738                 }
1739         }
1740 #endif
1741 }
1742
1743 void
1744 crypto_freereq(struct cryptop *crp)
1745 {
1746         if (crp == NULL)
1747                 return;
1748
1749         crypto_destroyreq(crp);
1750         uma_zfree(cryptop_zone, crp);
1751 }
1752
1753 static void
1754 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1755 {
1756         crp->crp_session = cses;
1757 }
1758
1759 void
1760 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1761 {
1762         memset(crp, 0, sizeof(*crp));
1763         _crypto_initreq(crp, cses);
1764 }
1765
1766 struct cryptop *
1767 crypto_getreq(crypto_session_t cses, int how)
1768 {
1769         struct cryptop *crp;
1770
1771         MPASS(how == M_WAITOK || how == M_NOWAIT);
1772         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1773         if (crp != NULL)
1774                 _crypto_initreq(crp, cses);
1775         return (crp);
1776 }
1777
1778 /*
1779  * Invoke the callback on behalf of the driver.
1780  */
1781 void
1782 crypto_done(struct cryptop *crp)
1783 {
1784         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1785                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1786         crp->crp_flags |= CRYPTO_F_DONE;
1787         if (crp->crp_etype != 0)
1788                 CRYPTOSTAT_INC(cs_errs);
1789
1790         /*
1791          * CBIMM means unconditionally do the callback immediately;
1792          * CBIFSYNC means do the callback immediately only if the
1793          * operation was done synchronously.  Both are used to avoid
1794          * doing extraneous context switches; the latter is mostly
1795          * used with the software crypto driver.
1796          */
1797         if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1798             ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1799             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1800              (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1801                 /*
1802                  * Do the callback directly.  This is ok when the
1803                  * callback routine does very little (e.g. the
1804                  * /dev/crypto callback method just does a wakeup).
1805                  */
1806                 crp->crp_callback(crp);
1807         } else {
1808                 struct crypto_ret_worker *ret_worker;
1809                 bool wake;
1810
1811                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1812                 wake = false;
1813
1814                 /*
1815                  * Normal case; queue the callback for the thread.
1816                  */
1817                 CRYPTO_RETW_LOCK(ret_worker);
1818                 if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1819                         struct cryptop *tmp;
1820
1821                         TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1822                                         cryptop_q, crp_next) {
1823                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1824                                         TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1825                                                         tmp, crp, crp_next);
1826                                         break;
1827                                 }
1828                         }
1829                         if (tmp == NULL) {
1830                                 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1831                                                 crp, crp_next);
1832                         }
1833
1834                         if (crp->crp_seq == ret_worker->reorder_cur_seq)
1835                                 wake = true;
1836                 }
1837                 else {
1838                         if (CRYPTO_RETW_EMPTY(ret_worker))
1839                                 wake = true;
1840
1841                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1842                 }
1843
1844                 if (wake)
1845                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1846                 CRYPTO_RETW_UNLOCK(ret_worker);
1847         }
1848 }
1849
1850 /*
1851  * Invoke the callback on behalf of the driver.
1852  */
1853 void
1854 crypto_kdone(struct cryptkop *krp)
1855 {
1856         struct crypto_ret_worker *ret_worker;
1857         struct cryptocap *cap;
1858
1859         if (krp->krp_status != 0)
1860                 CRYPTOSTAT_INC(cs_kerrs);
1861         CRYPTO_DRIVER_LOCK();
1862         cap = krp->krp_cap;
1863         KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1864         cap->cc_koperations--;
1865         if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1866                 wakeup(cap);
1867         CRYPTO_DRIVER_UNLOCK();
1868         krp->krp_cap = NULL;
1869         cap_rele(cap);
1870
1871         ret_worker = CRYPTO_RETW(0);
1872
1873         CRYPTO_RETW_LOCK(ret_worker);
1874         if (CRYPTO_RETW_EMPTY(ret_worker))
1875                 wakeup_one(&ret_worker->crp_ret_q);             /* shared wait channel */
1876         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1877         CRYPTO_RETW_UNLOCK(ret_worker);
1878 }
1879
1880 int
1881 crypto_getfeat(int *featp)
1882 {
1883         int hid, kalg, feat = 0;
1884
1885         CRYPTO_DRIVER_LOCK();
1886         for (hid = 0; hid < crypto_drivers_size; hid++) {
1887                 const struct cryptocap *cap = crypto_drivers[hid];
1888
1889                 if (cap == NULL ||
1890                     ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1891                     !crypto_devallowsoft)) {
1892                         continue;
1893                 }
1894                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1895                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1896                                 feat |=  1 << kalg;
1897         }
1898         CRYPTO_DRIVER_UNLOCK();
1899         *featp = feat;
1900         return (0);
1901 }
1902
1903 /*
1904  * Terminate a thread at module unload.  The process that
1905  * initiated this is waiting for us to signal that we're gone;
1906  * wake it up and exit.  We use the driver table lock to insure
1907  * we don't do the wakeup before they're waiting.  There is no
1908  * race here because the waiter sleeps on the proc lock for the
1909  * thread so it gets notified at the right time because of an
1910  * extra wakeup that's done in exit1().
1911  */
1912 static void
1913 crypto_finis(void *chan)
1914 {
1915         CRYPTO_DRIVER_LOCK();
1916         wakeup_one(chan);
1917         CRYPTO_DRIVER_UNLOCK();
1918         kproc_exit(0);
1919 }
1920
1921 /*
1922  * Crypto thread, dispatches crypto requests.
1923  */
1924 static void
1925 crypto_proc(void)
1926 {
1927         struct cryptop *crp, *submit;
1928         struct cryptkop *krp;
1929         struct cryptocap *cap;
1930         int result, hint;
1931
1932 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1933         fpu_kern_thread(FPU_KERN_NORMAL);
1934 #endif
1935
1936         CRYPTO_Q_LOCK();
1937         for (;;) {
1938                 /*
1939                  * Find the first element in the queue that can be
1940                  * processed and look-ahead to see if multiple ops
1941                  * are ready for the same driver.
1942                  */
1943                 submit = NULL;
1944                 hint = 0;
1945                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1946                         cap = crp->crp_session->cap;
1947                         /*
1948                          * Driver cannot disappeared when there is an active
1949                          * session.
1950                          */
1951                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1952                             __func__, __LINE__));
1953                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1954                                 /* Op needs to be migrated, process it. */
1955                                 if (submit == NULL)
1956                                         submit = crp;
1957                                 break;
1958                         }
1959                         if (!cap->cc_qblocked) {
1960                                 if (submit != NULL) {
1961                                         /*
1962                                          * We stop on finding another op,
1963                                          * regardless whether its for the same
1964                                          * driver or not.  We could keep
1965                                          * searching the queue but it might be
1966                                          * better to just use a per-driver
1967                                          * queue instead.
1968                                          */
1969                                         if (submit->crp_session->cap == cap)
1970                                                 hint = CRYPTO_HINT_MORE;
1971                                         break;
1972                                 } else {
1973                                         submit = crp;
1974                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1975                                                 break;
1976                                         /* keep scanning for more are q'd */
1977                                 }
1978                         }
1979                 }
1980                 if (submit != NULL) {
1981                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1982                         cap = submit->crp_session->cap;
1983                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1984                             __func__, __LINE__));
1985                         CRYPTO_Q_UNLOCK();
1986                         result = crypto_invoke(cap, submit, hint);
1987                         CRYPTO_Q_LOCK();
1988                         if (result == ERESTART) {
1989                                 /*
1990                                  * The driver ran out of resources, mark the
1991                                  * driver ``blocked'' for cryptop's and put
1992                                  * the request back in the queue.  It would
1993                                  * best to put the request back where we got
1994                                  * it but that's hard so for now we put it
1995                                  * at the front.  This should be ok; putting
1996                                  * it at the end does not work.
1997                                  */
1998                                 cap->cc_qblocked = 1;
1999                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2000                                 CRYPTOSTAT_INC(cs_blocks);
2001                         }
2002                 }
2003
2004                 /* As above, but for key ops */
2005                 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2006                         cap = krp->krp_cap;
2007                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2008                                 /*
2009                                  * Operation needs to be migrated,
2010                                  * clear krp_cap so a new driver is
2011                                  * selected.
2012                                  */
2013                                 krp->krp_cap = NULL;
2014                                 cap_rele(cap);
2015                                 break;
2016                         }
2017                         if (!cap->cc_kqblocked)
2018                                 break;
2019                 }
2020                 if (krp != NULL) {
2021                         TAILQ_REMOVE(&crp_kq, krp, krp_next);
2022                         CRYPTO_Q_UNLOCK();
2023                         result = crypto_kinvoke(krp);
2024                         CRYPTO_Q_LOCK();
2025                         if (result == ERESTART) {
2026                                 /*
2027                                  * The driver ran out of resources, mark the
2028                                  * driver ``blocked'' for cryptkop's and put
2029                                  * the request back in the queue.  It would
2030                                  * best to put the request back where we got
2031                                  * it but that's hard so for now we put it
2032                                  * at the front.  This should be ok; putting
2033                                  * it at the end does not work.
2034                                  */
2035                                 krp->krp_cap->cc_kqblocked = 1;
2036                                 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2037                                 CRYPTOSTAT_INC(cs_kblocks);
2038                         }
2039                 }
2040
2041                 if (submit == NULL && krp == NULL) {
2042                         /*
2043                          * Nothing more to be processed.  Sleep until we're
2044                          * woken because there are more ops to process.
2045                          * This happens either by submission or by a driver
2046                          * becoming unblocked and notifying us through
2047                          * crypto_unblock.  Note that when we wakeup we
2048                          * start processing each queue again from the
2049                          * front. It's not clear that it's important to
2050                          * preserve this ordering since ops may finish
2051                          * out of order if dispatched to different devices
2052                          * and some become blocked while others do not.
2053                          */
2054                         crp_sleep = 1;
2055                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2056                         crp_sleep = 0;
2057                         if (cryptoproc == NULL)
2058                                 break;
2059                         CRYPTOSTAT_INC(cs_intrs);
2060                 }
2061         }
2062         CRYPTO_Q_UNLOCK();
2063
2064         crypto_finis(&crp_q);
2065 }
2066
2067 /*
2068  * Crypto returns thread, does callbacks for processed crypto requests.
2069  * Callbacks are done here, rather than in the crypto drivers, because
2070  * callbacks typically are expensive and would slow interrupt handling.
2071  */
2072 static void
2073 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2074 {
2075         struct cryptop *crpt;
2076         struct cryptkop *krpt;
2077
2078         CRYPTO_RETW_LOCK(ret_worker);
2079         for (;;) {
2080                 /* Harvest return q's for completed ops */
2081                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2082                 if (crpt != NULL) {
2083                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2084                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2085                                 ret_worker->reorder_cur_seq++;
2086                         } else {
2087                                 crpt = NULL;
2088                         }
2089                 }
2090
2091                 if (crpt == NULL) {
2092                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2093                         if (crpt != NULL)
2094                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2095                 }
2096
2097                 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2098                 if (krpt != NULL)
2099                         TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2100
2101                 if (crpt != NULL || krpt != NULL) {
2102                         CRYPTO_RETW_UNLOCK(ret_worker);
2103                         /*
2104                          * Run callbacks unlocked.
2105                          */
2106                         if (crpt != NULL)
2107                                 crpt->crp_callback(crpt);
2108                         if (krpt != NULL)
2109                                 krpt->krp_callback(krpt);
2110                         CRYPTO_RETW_LOCK(ret_worker);
2111                 } else {
2112                         /*
2113                          * Nothing more to be processed.  Sleep until we're
2114                          * woken because there are more returns to process.
2115                          */
2116                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2117                                 "crypto_ret_wait", 0);
2118                         if (ret_worker->cryptoretproc == NULL)
2119                                 break;
2120                         CRYPTOSTAT_INC(cs_rets);
2121                 }
2122         }
2123         CRYPTO_RETW_UNLOCK(ret_worker);
2124
2125         crypto_finis(&ret_worker->crp_ret_q);
2126 }
2127
2128 #ifdef DDB
2129 static void
2130 db_show_drivers(void)
2131 {
2132         int hid;
2133
2134         db_printf("%12s %4s %4s %8s %2s %2s\n"
2135                 , "Device"
2136                 , "Ses"
2137                 , "Kops"
2138                 , "Flags"
2139                 , "QB"
2140                 , "KB"
2141         );
2142         for (hid = 0; hid < crypto_drivers_size; hid++) {
2143                 const struct cryptocap *cap = crypto_drivers[hid];
2144                 if (cap == NULL)
2145                         continue;
2146                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
2147                     , device_get_nameunit(cap->cc_dev)
2148                     , cap->cc_sessions
2149                     , cap->cc_koperations
2150                     , cap->cc_flags
2151                     , cap->cc_qblocked
2152                     , cap->cc_kqblocked
2153                 );
2154         }
2155 }
2156
2157 DB_SHOW_COMMAND(crypto, db_show_crypto)
2158 {
2159         struct cryptop *crp;
2160         struct crypto_ret_worker *ret_worker;
2161
2162         db_show_drivers();
2163         db_printf("\n");
2164
2165         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2166             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2167             "Device", "Callback");
2168         TAILQ_FOREACH(crp, &crp_q, crp_next) {
2169                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2170                     , crp->crp_session->cap->cc_hid
2171                     , (int) crypto_ses2caps(crp->crp_session)
2172                     , crp->crp_olen
2173                     , crp->crp_etype
2174                     , crp->crp_flags
2175                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
2176                     , crp->crp_callback
2177                 );
2178         }
2179         FOREACH_CRYPTO_RETW(ret_worker) {
2180                 db_printf("\n%8s %4s %4s %4s %8s\n",
2181                     "ret_worker", "HID", "Etype", "Flags", "Callback");
2182                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2183                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2184                                 db_printf("%8td %4u %4u %04x %8p\n"
2185                                     , CRYPTO_RETW_ID(ret_worker)
2186                                     , crp->crp_session->cap->cc_hid
2187                                     , crp->crp_etype
2188                                     , crp->crp_flags
2189                                     , crp->crp_callback
2190                                 );
2191                         }
2192                 }
2193         }
2194 }
2195
2196 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2197 {
2198         struct cryptkop *krp;
2199         struct crypto_ret_worker *ret_worker;
2200
2201         db_show_drivers();
2202         db_printf("\n");
2203
2204         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2205             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2206         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2207                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2208                     , krp->krp_op
2209                     , krp->krp_status
2210                     , krp->krp_iparams, krp->krp_oparams
2211                     , krp->krp_crid, krp->krp_hid
2212                     , krp->krp_callback
2213                 );
2214         }
2215
2216         ret_worker = CRYPTO_RETW(0);
2217         if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2218                 db_printf("%4s %5s %8s %4s %8s\n",
2219                     "Op", "Status", "CRID", "HID", "Callback");
2220                 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2221                         db_printf("%4u %5u %08x %4u %8p\n"
2222                             , krp->krp_op
2223                             , krp->krp_status
2224                             , krp->krp_crid, krp->krp_hid
2225                             , krp->krp_callback
2226                         );
2227                 }
2228         }
2229 }
2230 #endif
2231
2232 int crypto_modevent(module_t mod, int type, void *unused);
2233
2234 /*
2235  * Initialization code, both for static and dynamic loading.
2236  * Note this is not invoked with the usual MODULE_DECLARE
2237  * mechanism but instead is listed as a dependency by the
2238  * cryptosoft driver.  This guarantees proper ordering of
2239  * calls on module load/unload.
2240  */
2241 int
2242 crypto_modevent(module_t mod, int type, void *unused)
2243 {
2244         int error = EINVAL;
2245
2246         switch (type) {
2247         case MOD_LOAD:
2248                 error = crypto_init();
2249                 if (error == 0 && bootverbose)
2250                         printf("crypto: <crypto core>\n");
2251                 break;
2252         case MOD_UNLOAD:
2253                 /*XXX disallow if active sessions */
2254                 error = 0;
2255                 crypto_destroy();
2256                 return 0;
2257         }
2258         return error;
2259 }
2260 MODULE_VERSION(crypto, 1);
2261 MODULE_DEPEND(crypto, zlib, 1, 1, 1);