]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
MFV r361322:
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56
57 #define CRYPTO_TIMING                           /* enable timing support */
58
59 #include "opt_compat.h"
60 #include "opt_ddb.h"
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/linker.h>
68 #include <sys/lock.h>
69 #include <sys/module.h>
70 #include <sys/mutex.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/refcount.h>
74 #include <sys/sdt.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/taskqueue.h>
78
79 #include <ddb/ddb.h>
80
81 #include <vm/uma.h>
82 #include <crypto/intake.h>
83 #include <opencrypto/cryptodev.h>
84 #include <opencrypto/xform_auth.h>
85 #include <opencrypto/xform_enc.h>
86
87 #include <sys/kobj.h>
88 #include <sys/bus.h>
89 #include "cryptodev_if.h"
90
91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
92 #include <machine/pcb.h>
93 #endif
94
95 SDT_PROVIDER_DEFINE(opencrypto);
96
97 /*
98  * Crypto drivers register themselves by allocating a slot in the
99  * crypto_drivers table with crypto_get_driverid() and then registering
100  * each asym algorithm they support with crypto_kregister().
101  */
102 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
103 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
104 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
105 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
106
107 /*
108  * Crypto device/driver capabilities structure.
109  *
110  * Synchronization:
111  * (d) - protected by CRYPTO_DRIVER_LOCK()
112  * (q) - protected by CRYPTO_Q_LOCK()
113  * Not tagged fields are read-only.
114  */
115 struct cryptocap {
116         device_t        cc_dev;
117         uint32_t        cc_hid;
118         u_int32_t       cc_sessions;            /* (d) # of sessions */
119         u_int32_t       cc_koperations;         /* (d) # os asym operations */
120         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
121
122         int             cc_flags;               /* (d) flags */
123 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
124         int             cc_qblocked;            /* (q) symmetric q blocked */
125         int             cc_kqblocked;           /* (q) asymmetric q blocked */
126         size_t          cc_session_size;
127         volatile int    cc_refs;
128 };
129
130 static  struct cryptocap **crypto_drivers = NULL;
131 static  int crypto_drivers_size = 0;
132
133 struct crypto_session {
134         struct cryptocap *cap;
135         void *softc;
136         struct crypto_session_params csp;
137 };
138
139 /*
140  * There are two queues for crypto requests; one for symmetric (e.g.
141  * cipher) operations and one for asymmetric (e.g. MOD)operations.
142  * A single mutex is used to lock access to both queues.  We could
143  * have one per-queue but having one simplifies handling of block/unblock
144  * operations.
145  */
146 static  int crp_sleep = 0;
147 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
148 static  TAILQ_HEAD(,cryptkop) crp_kq;
149 static  struct mtx crypto_q_mtx;
150 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
151 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
152
153 static SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
154     "In-kernel cryptography");
155
156 /*
157  * Taskqueue used to dispatch the crypto requests
158  * that have the CRYPTO_F_ASYNC flag
159  */
160 static struct taskqueue *crypto_tq;
161
162 /*
163  * Crypto seq numbers are operated on with modular arithmetic
164  */
165 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
166
167 struct crypto_ret_worker {
168         struct mtx crypto_ret_mtx;
169
170         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
171         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
172         TAILQ_HEAD(,cryptkop) crp_ret_kq;       /* callback queue for asym jobs */
173
174         u_int32_t reorder_ops;          /* total ordered sym jobs received */
175         u_int32_t reorder_cur_seq;      /* current sym job dispatched */
176
177         struct proc *cryptoretproc;
178 };
179 static struct crypto_ret_worker *crypto_ret_workers = NULL;
180
181 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
182 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
183 #define FOREACH_CRYPTO_RETW(w) \
184         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
185
186 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
187 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
188 #define CRYPTO_RETW_EMPTY(w) \
189         (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
190
191 static int crypto_workers_num = 0;
192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
193            &crypto_workers_num, 0,
194            "Number of crypto workers used to dispatch crypto jobs");
195 #ifdef COMPAT_FREEBSD12
196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
197            &crypto_workers_num, 0,
198            "Number of crypto workers used to dispatch crypto jobs");
199 #endif
200
201 static  uma_zone_t cryptop_zone;
202 static  uma_zone_t cryptoses_zone;
203
204 int     crypto_userasymcrypto = 1;
205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
206            &crypto_userasymcrypto, 0,
207            "Enable user-mode access to asymmetric crypto support");
208 #ifdef COMPAT_FREEBSD12
209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
210            &crypto_userasymcrypto, 0,
211            "Enable/disable user-mode access to asymmetric crypto support");
212 #endif
213
214 int     crypto_devallowsoft = 0;
215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
216            &crypto_devallowsoft, 0,
217            "Enable use of software crypto by /dev/crypto");
218 #ifdef COMPAT_FREEBSD12
219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
220            &crypto_devallowsoft, 0,
221            "Enable/disable use of software crypto by /dev/crypto");
222 #endif
223
224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
225
226 static  void crypto_proc(void);
227 static  struct proc *cryptoproc;
228 static  void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
229 static  void crypto_destroy(void);
230 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
231 static  int crypto_kinvoke(struct cryptkop *krp);
232 static  void crypto_task_invoke(void *ctx, int pending);
233 static void crypto_batch_enqueue(struct cryptop *crp);
234
235 static  struct cryptostats cryptostats;
236 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats,
237             cryptostats, "Crypto system statistics");
238
239 #ifdef CRYPTO_TIMING
240 static  int crypto_timing = 0;
241 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
242            &crypto_timing, 0, "Enable/disable crypto timing support");
243 #endif
244
245 /* Try to avoid directly exposing the key buffer as a symbol */
246 static struct keybuf *keybuf;
247
248 static struct keybuf empty_keybuf = {
249         .kb_nents = 0
250 };
251
252 /* Obtain the key buffer from boot metadata */
253 static void
254 keybuf_init(void)
255 {
256         caddr_t kmdp;
257
258         kmdp = preload_search_by_type("elf kernel");
259
260         if (kmdp == NULL)
261                 kmdp = preload_search_by_type("elf64 kernel");
262
263         keybuf = (struct keybuf *)preload_search_info(kmdp,
264             MODINFO_METADATA | MODINFOMD_KEYBUF);
265
266         if (keybuf == NULL)
267                 keybuf = &empty_keybuf;
268 }
269
270 /* It'd be nice if we could store these in some kind of secure memory... */
271 struct keybuf * get_keybuf(void) {
272
273         return (keybuf);
274 }
275
276 static struct cryptocap *
277 cap_ref(struct cryptocap *cap)
278 {
279
280         refcount_acquire(&cap->cc_refs);
281         return (cap);
282 }
283
284 static void
285 cap_rele(struct cryptocap *cap)
286 {
287
288         if (refcount_release(&cap->cc_refs) == 0)
289                 return;
290
291         KASSERT(cap->cc_sessions == 0,
292             ("freeing crypto driver with active sessions"));
293         KASSERT(cap->cc_koperations == 0,
294             ("freeing crypto driver with active key operations"));
295
296         free(cap, M_CRYPTO_DATA);
297 }
298
299 static int
300 crypto_init(void)
301 {
302         struct crypto_ret_worker *ret_worker;
303         int error;
304
305         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
306                 MTX_DEF|MTX_QUIET);
307
308         TAILQ_INIT(&crp_q);
309         TAILQ_INIT(&crp_kq);
310         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
311
312         cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
313                                     0, 0, 0, 0,
314                                     UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
315         cryptoses_zone = uma_zcreate("crypto_session",
316             sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
317             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
318
319         if (cryptop_zone == NULL || cryptoses_zone == NULL) {
320                 printf("crypto_init: cannot setup crypto zones\n");
321                 error = ENOMEM;
322                 goto bad;
323         }
324
325         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
326         crypto_drivers = malloc(crypto_drivers_size *
327             sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
328         if (crypto_drivers == NULL) {
329                 printf("crypto_init: cannot setup crypto drivers\n");
330                 error = ENOMEM;
331                 goto bad;
332         }
333
334         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
335                 crypto_workers_num = mp_ncpus;
336
337         crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO,
338                                 taskqueue_thread_enqueue, &crypto_tq);
339         if (crypto_tq == NULL) {
340                 printf("crypto init: cannot setup crypto taskqueue\n");
341                 error = ENOMEM;
342                 goto bad;
343         }
344
345         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
346                 "crypto");
347
348         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
349                     &cryptoproc, 0, 0, "crypto");
350         if (error) {
351                 printf("crypto_init: cannot start crypto thread; error %d",
352                         error);
353                 goto bad;
354         }
355
356         crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker),
357                         M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
358         if (crypto_ret_workers == NULL) {
359                 error = ENOMEM;
360                 printf("crypto_init: cannot allocate ret workers\n");
361                 goto bad;
362         }
363
364
365         FOREACH_CRYPTO_RETW(ret_worker) {
366                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
367                 TAILQ_INIT(&ret_worker->crp_ret_q);
368                 TAILQ_INIT(&ret_worker->crp_ret_kq);
369
370                 ret_worker->reorder_ops = 0;
371                 ret_worker->reorder_cur_seq = 0;
372
373                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
374
375                 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
376                                 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
377                 if (error) {
378                         printf("crypto_init: cannot start cryptoret thread; error %d",
379                                 error);
380                         goto bad;
381                 }
382         }
383
384         keybuf_init();
385
386         return 0;
387 bad:
388         crypto_destroy();
389         return error;
390 }
391
392 /*
393  * Signal a crypto thread to terminate.  We use the driver
394  * table lock to synchronize the sleep/wakeups so that we
395  * are sure the threads have terminated before we release
396  * the data structures they use.  See crypto_finis below
397  * for the other half of this song-and-dance.
398  */
399 static void
400 crypto_terminate(struct proc **pp, void *q)
401 {
402         struct proc *p;
403
404         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
405         p = *pp;
406         *pp = NULL;
407         if (p) {
408                 wakeup_one(q);
409                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
410                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
411                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
412                 PROC_UNLOCK(p);
413                 CRYPTO_DRIVER_LOCK();
414         }
415 }
416
417 static void
418 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
419     uint8_t padval)
420 {
421         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
422         u_int i;
423
424         KASSERT(axf->blocksize <= sizeof(hmac_key),
425             ("Invalid HMAC block size %d", axf->blocksize));
426
427         /*
428          * If the key is larger than the block size, use the digest of
429          * the key as the key instead.
430          */
431         memset(hmac_key, 0, sizeof(hmac_key));
432         if (klen > axf->blocksize) {
433                 axf->Init(auth_ctx);
434                 axf->Update(auth_ctx, key, klen);
435                 axf->Final(hmac_key, auth_ctx);
436                 klen = axf->hashsize;
437         } else
438                 memcpy(hmac_key, key, klen);
439
440         for (i = 0; i < axf->blocksize; i++)
441                 hmac_key[i] ^= padval;
442
443         axf->Init(auth_ctx);
444         axf->Update(auth_ctx, hmac_key, axf->blocksize);
445 }
446
447 void
448 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
449     void *auth_ctx)
450 {
451
452         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
453 }
454
455 void
456 hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
457     void *auth_ctx)
458 {
459
460         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
461 }
462
463 static void
464 crypto_destroy(void)
465 {
466         struct crypto_ret_worker *ret_worker;
467         int i;
468
469         /*
470          * Terminate any crypto threads.
471          */
472         if (crypto_tq != NULL)
473                 taskqueue_drain_all(crypto_tq);
474         CRYPTO_DRIVER_LOCK();
475         crypto_terminate(&cryptoproc, &crp_q);
476         FOREACH_CRYPTO_RETW(ret_worker)
477                 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
478         CRYPTO_DRIVER_UNLOCK();
479
480         /* XXX flush queues??? */
481
482         /*
483          * Reclaim dynamically allocated resources.
484          */
485         for (i = 0; i < crypto_drivers_size; i++) {
486                 if (crypto_drivers[i] != NULL)
487                         cap_rele(crypto_drivers[i]);
488         }
489         free(crypto_drivers, M_CRYPTO_DATA);
490
491         if (cryptoses_zone != NULL)
492                 uma_zdestroy(cryptoses_zone);
493         if (cryptop_zone != NULL)
494                 uma_zdestroy(cryptop_zone);
495         mtx_destroy(&crypto_q_mtx);
496         FOREACH_CRYPTO_RETW(ret_worker)
497                 mtx_destroy(&ret_worker->crypto_ret_mtx);
498         free(crypto_ret_workers, M_CRYPTO_DATA);
499         if (crypto_tq != NULL)
500                 taskqueue_free(crypto_tq);
501         mtx_destroy(&crypto_drivers_mtx);
502 }
503
504 uint32_t
505 crypto_ses2hid(crypto_session_t crypto_session)
506 {
507         return (crypto_session->cap->cc_hid);
508 }
509
510 uint32_t
511 crypto_ses2caps(crypto_session_t crypto_session)
512 {
513         return (crypto_session->cap->cc_flags & 0xff000000);
514 }
515
516 void *
517 crypto_get_driver_session(crypto_session_t crypto_session)
518 {
519         return (crypto_session->softc);
520 }
521
522 const struct crypto_session_params *
523 crypto_get_params(crypto_session_t crypto_session)
524 {
525         return (&crypto_session->csp);
526 }
527
528 struct auth_hash *
529 crypto_auth_hash(const struct crypto_session_params *csp)
530 {
531
532         switch (csp->csp_auth_alg) {
533         case CRYPTO_SHA1_HMAC:
534                 return (&auth_hash_hmac_sha1);
535         case CRYPTO_SHA2_224_HMAC:
536                 return (&auth_hash_hmac_sha2_224);
537         case CRYPTO_SHA2_256_HMAC:
538                 return (&auth_hash_hmac_sha2_256);
539         case CRYPTO_SHA2_384_HMAC:
540                 return (&auth_hash_hmac_sha2_384);
541         case CRYPTO_SHA2_512_HMAC:
542                 return (&auth_hash_hmac_sha2_512);
543         case CRYPTO_NULL_HMAC:
544                 return (&auth_hash_null);
545         case CRYPTO_RIPEMD160_HMAC:
546                 return (&auth_hash_hmac_ripemd_160);
547         case CRYPTO_SHA1:
548                 return (&auth_hash_sha1);
549         case CRYPTO_SHA2_224:
550                 return (&auth_hash_sha2_224);
551         case CRYPTO_SHA2_256:
552                 return (&auth_hash_sha2_256);
553         case CRYPTO_SHA2_384:
554                 return (&auth_hash_sha2_384);
555         case CRYPTO_SHA2_512:
556                 return (&auth_hash_sha2_512);
557         case CRYPTO_AES_NIST_GMAC:
558                 switch (csp->csp_auth_klen) {
559                 case 128 / 8:
560                         return (&auth_hash_nist_gmac_aes_128);
561                 case 192 / 8:
562                         return (&auth_hash_nist_gmac_aes_192);
563                 case 256 / 8:
564                         return (&auth_hash_nist_gmac_aes_256);
565                 default:
566                         return (NULL);
567                 }
568         case CRYPTO_BLAKE2B:
569                 return (&auth_hash_blake2b);
570         case CRYPTO_BLAKE2S:
571                 return (&auth_hash_blake2s);
572         case CRYPTO_POLY1305:
573                 return (&auth_hash_poly1305);
574         case CRYPTO_AES_CCM_CBC_MAC:
575                 switch (csp->csp_auth_klen) {
576                 case 128 / 8:
577                         return (&auth_hash_ccm_cbc_mac_128);
578                 case 192 / 8:
579                         return (&auth_hash_ccm_cbc_mac_192);
580                 case 256 / 8:
581                         return (&auth_hash_ccm_cbc_mac_256);
582                 default:
583                         return (NULL);
584                 }
585         default:
586                 return (NULL);
587         }
588 }
589
590 struct enc_xform *
591 crypto_cipher(const struct crypto_session_params *csp)
592 {
593
594         switch (csp->csp_cipher_alg) {
595         case CRYPTO_RIJNDAEL128_CBC:
596                 return (&enc_xform_rijndael128);
597         case CRYPTO_AES_XTS:
598                 return (&enc_xform_aes_xts);
599         case CRYPTO_AES_ICM:
600                 return (&enc_xform_aes_icm);
601         case CRYPTO_AES_NIST_GCM_16:
602                 return (&enc_xform_aes_nist_gcm);
603         case CRYPTO_CAMELLIA_CBC:
604                 return (&enc_xform_camellia);
605         case CRYPTO_NULL_CBC:
606                 return (&enc_xform_null);
607         case CRYPTO_CHACHA20:
608                 return (&enc_xform_chacha20);
609         case CRYPTO_AES_CCM_16:
610                 return (&enc_xform_ccm);
611         default:
612                 return (NULL);
613         }
614 }
615
616 static struct cryptocap *
617 crypto_checkdriver(u_int32_t hid)
618 {
619
620         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
621 }
622
623 /*
624  * Select a driver for a new session that supports the specified
625  * algorithms and, optionally, is constrained according to the flags.
626  */
627 static struct cryptocap *
628 crypto_select_driver(const struct crypto_session_params *csp, int flags)
629 {
630         struct cryptocap *cap, *best;
631         int best_match, error, hid;
632
633         CRYPTO_DRIVER_ASSERT();
634
635         best = NULL;
636         for (hid = 0; hid < crypto_drivers_size; hid++) {
637                 /*
638                  * If there is no driver for this slot, or the driver
639                  * is not appropriate (hardware or software based on
640                  * match), then skip.
641                  */
642                 cap = crypto_drivers[hid];
643                 if (cap == NULL ||
644                     (cap->cc_flags & flags) == 0)
645                         continue;
646
647                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
648                 if (error >= 0)
649                         continue;
650
651                 /*
652                  * Use the driver with the highest probe value.
653                  * Hardware drivers use a higher probe value than
654                  * software.  In case of a tie, prefer the driver with
655                  * the fewest active sessions.
656                  */
657                 if (best == NULL || error > best_match ||
658                     (error == best_match &&
659                     cap->cc_sessions < best->cc_sessions)) {
660                         best = cap;
661                         best_match = error;
662                 }
663         }
664         return best;
665 }
666
667 static enum alg_type {
668         ALG_NONE = 0,
669         ALG_CIPHER,
670         ALG_DIGEST,
671         ALG_KEYED_DIGEST,
672         ALG_COMPRESSION,
673         ALG_AEAD
674 } alg_types[] = {
675         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
676         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
677         [CRYPTO_AES_CBC] = ALG_CIPHER,
678         [CRYPTO_SHA1] = ALG_DIGEST,
679         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
680         [CRYPTO_NULL_CBC] = ALG_CIPHER,
681         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
682         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
683         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
684         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
685         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
686         [CRYPTO_AES_XTS] = ALG_CIPHER,
687         [CRYPTO_AES_ICM] = ALG_CIPHER,
688         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
689         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
690         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
691         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
692         [CRYPTO_CHACHA20] = ALG_CIPHER,
693         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
694         [CRYPTO_RIPEMD160] = ALG_DIGEST,
695         [CRYPTO_SHA2_224] = ALG_DIGEST,
696         [CRYPTO_SHA2_256] = ALG_DIGEST,
697         [CRYPTO_SHA2_384] = ALG_DIGEST,
698         [CRYPTO_SHA2_512] = ALG_DIGEST,
699         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
700         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
701         [CRYPTO_AES_CCM_16] = ALG_AEAD,
702 };
703
704 static enum alg_type
705 alg_type(int alg)
706 {
707
708         if (alg < nitems(alg_types))
709                 return (alg_types[alg]);
710         return (ALG_NONE);
711 }
712
713 static bool
714 alg_is_compression(int alg)
715 {
716
717         return (alg_type(alg) == ALG_COMPRESSION);
718 }
719
720 static bool
721 alg_is_cipher(int alg)
722 {
723
724         return (alg_type(alg) == ALG_CIPHER);
725 }
726
727 static bool
728 alg_is_digest(int alg)
729 {
730
731         return (alg_type(alg) == ALG_DIGEST ||
732             alg_type(alg) == ALG_KEYED_DIGEST);
733 }
734
735 static bool
736 alg_is_keyed_digest(int alg)
737 {
738
739         return (alg_type(alg) == ALG_KEYED_DIGEST);
740 }
741
742 static bool
743 alg_is_aead(int alg)
744 {
745
746         return (alg_type(alg) == ALG_AEAD);
747 }
748
749 /* Various sanity checks on crypto session parameters. */
750 static bool
751 check_csp(const struct crypto_session_params *csp)
752 {
753         struct auth_hash *axf;
754
755         /* Mode-independent checks. */
756         if (csp->csp_flags != 0)
757                 return (false);
758         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
759             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
760                 return (false);
761         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
762                 return (false);
763         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
764                 return (false);
765
766         switch (csp->csp_mode) {
767         case CSP_MODE_COMPRESS:
768                 if (!alg_is_compression(csp->csp_cipher_alg))
769                         return (false);
770                 if (csp->csp_flags != 0)
771                         return (false);
772                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
773                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
774                     csp->csp_auth_mlen != 0)
775                         return (false);
776                 break;
777         case CSP_MODE_CIPHER:
778                 if (!alg_is_cipher(csp->csp_cipher_alg))
779                         return (false);
780                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
781                         if (csp->csp_cipher_klen == 0)
782                                 return (false);
783                         if (csp->csp_ivlen == 0)
784                                 return (false);
785                 }
786                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
787                         return (false);
788                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
789                     csp->csp_auth_mlen != 0)
790                         return (false);
791                 break;
792         case CSP_MODE_DIGEST:
793                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
794                         return (false);
795
796                 /* IV is optional for digests (e.g. GMAC). */
797                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
798                         return (false);
799                 if (!alg_is_digest(csp->csp_auth_alg))
800                         return (false);
801
802                 /* Key is optional for BLAKE2 digests. */
803                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
804                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
805                         ;
806                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
807                         if (csp->csp_auth_klen == 0)
808                                 return (false);
809                 } else {
810                         if (csp->csp_auth_klen != 0)
811                                 return (false);
812                 }
813                 if (csp->csp_auth_mlen != 0) {
814                         axf = crypto_auth_hash(csp);
815                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
816                                 return (false);
817                 }
818                 break;
819         case CSP_MODE_AEAD:
820                 if (!alg_is_aead(csp->csp_cipher_alg))
821                         return (false);
822                 if (csp->csp_cipher_klen == 0)
823                         return (false);
824                 if (csp->csp_ivlen == 0 ||
825                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
826                         return (false);
827                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
828                         return (false);
829
830                 /*
831                  * XXX: Would be nice to have a better way to get this
832                  * value.
833                  */
834                 switch (csp->csp_cipher_alg) {
835                 case CRYPTO_AES_NIST_GCM_16:
836                 case CRYPTO_AES_CCM_16:
837                         if (csp->csp_auth_mlen > 16)
838                                 return (false);
839                         break;
840                 }
841                 break;
842         case CSP_MODE_ETA:
843                 if (!alg_is_cipher(csp->csp_cipher_alg))
844                         return (false);
845                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
846                         if (csp->csp_cipher_klen == 0)
847                                 return (false);
848                         if (csp->csp_ivlen == 0)
849                                 return (false);
850                 }
851                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
852                         return (false);
853                 if (!alg_is_digest(csp->csp_auth_alg))
854                         return (false);
855
856                 /* Key is optional for BLAKE2 digests. */
857                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
858                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
859                         ;
860                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
861                         if (csp->csp_auth_klen == 0)
862                                 return (false);
863                 } else {
864                         if (csp->csp_auth_klen != 0)
865                                 return (false);
866                 }
867                 if (csp->csp_auth_mlen != 0) {
868                         axf = crypto_auth_hash(csp);
869                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
870                                 return (false);
871                 }
872                 break;
873         default:
874                 return (false);
875         }
876
877         return (true);
878 }
879
880 /*
881  * Delete a session after it has been detached from its driver.
882  */
883 static void
884 crypto_deletesession(crypto_session_t cses)
885 {
886         struct cryptocap *cap;
887
888         cap = cses->cap;
889
890         explicit_bzero(cses->softc, cap->cc_session_size);
891         free(cses->softc, M_CRYPTO_DATA);
892         uma_zfree(cryptoses_zone, cses);
893
894         CRYPTO_DRIVER_LOCK();
895         cap->cc_sessions--;
896         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
897                 wakeup(cap);
898         CRYPTO_DRIVER_UNLOCK();
899         cap_rele(cap);
900 }
901
902 /*
903  * Create a new session.  The crid argument specifies a crypto
904  * driver to use or constraints on a driver to select (hardware
905  * only, software only, either).  Whatever driver is selected
906  * must be capable of the requested crypto algorithms.
907  */
908 int
909 crypto_newsession(crypto_session_t *cses,
910     const struct crypto_session_params *csp, int crid)
911 {
912         crypto_session_t res;
913         struct cryptocap *cap;
914         int err;
915
916         if (!check_csp(csp))
917                 return (EINVAL);
918
919         res = NULL;
920
921         CRYPTO_DRIVER_LOCK();
922         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
923                 /*
924                  * Use specified driver; verify it is capable.
925                  */
926                 cap = crypto_checkdriver(crid);
927                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
928                         cap = NULL;
929         } else {
930                 /*
931                  * No requested driver; select based on crid flags.
932                  */
933                 cap = crypto_select_driver(csp, crid);
934         }
935         if (cap == NULL) {
936                 CRYPTO_DRIVER_UNLOCK();
937                 CRYPTDEB("no driver");
938                 return (EOPNOTSUPP);
939         }
940         cap_ref(cap);
941         cap->cc_sessions++;
942         CRYPTO_DRIVER_UNLOCK();
943
944         res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
945         res->cap = cap;
946         res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
947             M_ZERO);
948         res->csp = *csp;
949
950         /* Call the driver initialization routine. */
951         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
952         if (err != 0) {
953                 CRYPTDEB("dev newsession failed: %d", err);
954                 crypto_deletesession(res);
955                 return (err);
956         }
957
958         *cses = res;
959         return (0);
960 }
961
962 /*
963  * Delete an existing session (or a reserved session on an unregistered
964  * driver).
965  */
966 void
967 crypto_freesession(crypto_session_t cses)
968 {
969         struct cryptocap *cap;
970
971         if (cses == NULL)
972                 return;
973
974         cap = cses->cap;
975
976         /* Call the driver cleanup routine, if available. */
977         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
978
979         crypto_deletesession(cses);
980 }
981
982 /*
983  * Return a new driver id.  Registers a driver with the system so that
984  * it can be probed by subsequent sessions.
985  */
986 int32_t
987 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
988 {
989         struct cryptocap *cap, **newdrv;
990         int i;
991
992         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
993                 device_printf(dev,
994                     "no flags specified when registering driver\n");
995                 return -1;
996         }
997
998         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
999         cap->cc_dev = dev;
1000         cap->cc_session_size = sessionsize;
1001         cap->cc_flags = flags;
1002         refcount_init(&cap->cc_refs, 1);
1003
1004         CRYPTO_DRIVER_LOCK();
1005         for (;;) {
1006                 for (i = 0; i < crypto_drivers_size; i++) {
1007                         if (crypto_drivers[i] == NULL)
1008                                 break;
1009                 }
1010
1011                 if (i < crypto_drivers_size)
1012                         break;
1013
1014                 /* Out of entries, allocate some more. */
1015
1016                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1017                         CRYPTO_DRIVER_UNLOCK();
1018                         printf("crypto: driver count wraparound!\n");
1019                         cap_rele(cap);
1020                         return (-1);
1021                 }
1022                 CRYPTO_DRIVER_UNLOCK();
1023
1024                 newdrv = malloc(2 * crypto_drivers_size *
1025                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1026
1027                 CRYPTO_DRIVER_LOCK();
1028                 memcpy(newdrv, crypto_drivers,
1029                     crypto_drivers_size * sizeof(*crypto_drivers));
1030
1031                 crypto_drivers_size *= 2;
1032
1033                 free(crypto_drivers, M_CRYPTO_DATA);
1034                 crypto_drivers = newdrv;
1035         }
1036
1037         cap->cc_hid = i;
1038         crypto_drivers[i] = cap;
1039         CRYPTO_DRIVER_UNLOCK();
1040
1041         if (bootverbose)
1042                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1043                     device_get_nameunit(dev), i, flags);
1044
1045         return i;
1046 }
1047
1048 /*
1049  * Lookup a driver by name.  We match against the full device
1050  * name and unit, and against just the name.  The latter gives
1051  * us a simple widlcarding by device name.  On success return the
1052  * driver/hardware identifier; otherwise return -1.
1053  */
1054 int
1055 crypto_find_driver(const char *match)
1056 {
1057         struct cryptocap *cap;
1058         int i, len = strlen(match);
1059
1060         CRYPTO_DRIVER_LOCK();
1061         for (i = 0; i < crypto_drivers_size; i++) {
1062                 if (crypto_drivers[i] == NULL)
1063                         continue;
1064                 cap = crypto_drivers[i];
1065                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1066                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1067                         CRYPTO_DRIVER_UNLOCK();
1068                         return (i);
1069                 }
1070         }
1071         CRYPTO_DRIVER_UNLOCK();
1072         return (-1);
1073 }
1074
1075 /*
1076  * Return the device_t for the specified driver or NULL
1077  * if the driver identifier is invalid.
1078  */
1079 device_t
1080 crypto_find_device_byhid(int hid)
1081 {
1082         struct cryptocap *cap;
1083         device_t dev;
1084
1085         dev = NULL;
1086         CRYPTO_DRIVER_LOCK();
1087         cap = crypto_checkdriver(hid);
1088         if (cap != NULL)
1089                 dev = cap->cc_dev;
1090         CRYPTO_DRIVER_UNLOCK();
1091         return (dev);
1092 }
1093
1094 /*
1095  * Return the device/driver capabilities.
1096  */
1097 int
1098 crypto_getcaps(int hid)
1099 {
1100         struct cryptocap *cap;
1101         int flags;
1102
1103         flags = 0;
1104         CRYPTO_DRIVER_LOCK();
1105         cap = crypto_checkdriver(hid);
1106         if (cap != NULL)
1107                 flags = cap->cc_flags;
1108         CRYPTO_DRIVER_UNLOCK();
1109         return (flags);
1110 }
1111
1112 /*
1113  * Register support for a key-related algorithm.  This routine
1114  * is called once for each algorithm supported a driver.
1115  */
1116 int
1117 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
1118 {
1119         struct cryptocap *cap;
1120         int err;
1121
1122         CRYPTO_DRIVER_LOCK();
1123
1124         cap = crypto_checkdriver(driverid);
1125         if (cap != NULL &&
1126             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1127                 /*
1128                  * XXX Do some performance testing to determine placing.
1129                  * XXX We probably need an auxiliary data structure that
1130                  * XXX describes relative performances.
1131                  */
1132
1133                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1134                 if (bootverbose)
1135                         printf("crypto: %s registers key alg %u flags %u\n"
1136                                 , device_get_nameunit(cap->cc_dev)
1137                                 , kalg
1138                                 , flags
1139                         );
1140                 err = 0;
1141         } else
1142                 err = EINVAL;
1143
1144         CRYPTO_DRIVER_UNLOCK();
1145         return err;
1146 }
1147
1148 /*
1149  * Unregister all algorithms associated with a crypto driver.
1150  * If there are pending sessions using it, leave enough information
1151  * around so that subsequent calls using those sessions will
1152  * correctly detect the driver has been unregistered and reroute
1153  * requests.
1154  */
1155 int
1156 crypto_unregister_all(u_int32_t driverid)
1157 {
1158         struct cryptocap *cap;
1159
1160         CRYPTO_DRIVER_LOCK();
1161         cap = crypto_checkdriver(driverid);
1162         if (cap == NULL) {
1163                 CRYPTO_DRIVER_UNLOCK();
1164                 return (EINVAL);
1165         }
1166
1167         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1168         crypto_drivers[driverid] = NULL;
1169
1170         /*
1171          * XXX: This doesn't do anything to kick sessions that
1172          * have no pending operations.
1173          */
1174         while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1175                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1176         CRYPTO_DRIVER_UNLOCK();
1177         cap_rele(cap);
1178
1179         return (0);
1180 }
1181
1182 /*
1183  * Clear blockage on a driver.  The what parameter indicates whether
1184  * the driver is now ready for cryptop's and/or cryptokop's.
1185  */
1186 int
1187 crypto_unblock(u_int32_t driverid, int what)
1188 {
1189         struct cryptocap *cap;
1190         int err;
1191
1192         CRYPTO_Q_LOCK();
1193         cap = crypto_checkdriver(driverid);
1194         if (cap != NULL) {
1195                 if (what & CRYPTO_SYMQ)
1196                         cap->cc_qblocked = 0;
1197                 if (what & CRYPTO_ASYMQ)
1198                         cap->cc_kqblocked = 0;
1199                 if (crp_sleep)
1200                         wakeup_one(&crp_q);
1201                 err = 0;
1202         } else
1203                 err = EINVAL;
1204         CRYPTO_Q_UNLOCK();
1205
1206         return err;
1207 }
1208
1209 #ifdef INVARIANTS
1210 /* Various sanity checks on crypto requests. */
1211 static void
1212 crp_sanity(struct cryptop *crp)
1213 {
1214         struct crypto_session_params *csp;
1215
1216         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1217         KASSERT(crp->crp_ilen >= 0, ("incoming crp with -ve input length"));
1218         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1219         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1220             ("incoming crp already done"));
1221
1222         csp = &crp->crp_session->csp;
1223         switch (csp->csp_mode) {
1224         case CSP_MODE_COMPRESS:
1225                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1226                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1227                     ("invalid compression op %x", crp->crp_op));
1228                 break;
1229         case CSP_MODE_CIPHER:
1230                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1231                     crp->crp_op == CRYPTO_OP_DECRYPT,
1232                     ("invalid cipher op %x", crp->crp_op));
1233                 break;
1234         case CSP_MODE_DIGEST:
1235                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1236                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1237                     ("invalid digest op %x", crp->crp_op));
1238                 break;
1239         case CSP_MODE_AEAD:
1240                 KASSERT(crp->crp_op ==
1241                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1242                     crp->crp_op ==
1243                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1244                     ("invalid AEAD op %x", crp->crp_op));
1245                 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1246                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1247                             ("GCM without a separate IV"));
1248                 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1249                         KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1250                             ("CCM without a separate IV"));
1251                 break;
1252         case CSP_MODE_ETA:
1253                 KASSERT(crp->crp_op ==
1254                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1255                     crp->crp_op ==
1256                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1257                     ("invalid ETA op %x", crp->crp_op));
1258                 break;
1259         }
1260         KASSERT(crp->crp_buf_type >= CRYPTO_BUF_CONTIG &&
1261             crp->crp_buf_type <= CRYPTO_BUF_MBUF,
1262             ("invalid crp buffer type %d", crp->crp_buf_type));
1263         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1264                 KASSERT(crp->crp_aad_start == 0 ||
1265                     crp->crp_aad_start < crp->crp_ilen,
1266                     ("invalid AAD start"));
1267                 KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0,
1268                     ("AAD with zero length and non-zero start"));
1269                 KASSERT(crp->crp_aad_length == 0 ||
1270                     crp->crp_aad_start + crp->crp_aad_length <= crp->crp_ilen,
1271                     ("AAD outside input length"));
1272         } else {
1273                 KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0,
1274                     ("AAD region in request not supporting AAD"));
1275         }
1276         if (csp->csp_ivlen == 0) {
1277                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1278                     ("IV_SEPARATE set when IV isn't used"));
1279                 KASSERT(crp->crp_iv_start == 0,
1280                     ("crp_iv_start set when IV isn't used"));
1281         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1282                 KASSERT(crp->crp_iv_start == 0,
1283                     ("IV_SEPARATE used with non-zero IV start"));
1284         } else {
1285                 KASSERT(crp->crp_iv_start < crp->crp_ilen,
1286                     ("invalid IV start"));
1287                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= crp->crp_ilen,
1288                     ("IV outside input length"));
1289         }
1290         KASSERT(crp->crp_payload_start == 0 ||
1291             crp->crp_payload_start < crp->crp_ilen,
1292             ("invalid payload start"));
1293         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1294             crp->crp_ilen, ("payload outside input length"));
1295         if (csp->csp_mode == CSP_MODE_DIGEST ||
1296             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1297                 KASSERT(crp->crp_digest_start == 0 ||
1298                     crp->crp_digest_start < crp->crp_ilen,
1299                     ("invalid digest start"));
1300                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1301                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <=
1302                     crp->crp_ilen,
1303                     ("digest outside input length"));
1304         } else {
1305                 KASSERT(crp->crp_digest_start == 0,
1306                     ("non-zero digest start for request without a digest"));
1307         }
1308         if (csp->csp_cipher_klen != 0)
1309                 KASSERT(csp->csp_cipher_key != NULL ||
1310                     crp->crp_cipher_key != NULL,
1311                     ("cipher request without a key"));
1312         if (csp->csp_auth_klen != 0)
1313                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1314                     ("auth request without a key"));
1315         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1316 }
1317 #endif
1318
1319 /*
1320  * Add a crypto request to a queue, to be processed by the kernel thread.
1321  */
1322 int
1323 crypto_dispatch(struct cryptop *crp)
1324 {
1325         struct cryptocap *cap;
1326         int result;
1327
1328 #ifdef INVARIANTS
1329         crp_sanity(crp);
1330 #endif
1331
1332         cryptostats.cs_ops++;
1333
1334 #ifdef CRYPTO_TIMING
1335         if (crypto_timing)
1336                 binuptime(&crp->crp_tstamp);
1337 #endif
1338
1339         crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1340
1341         if (CRYPTOP_ASYNC(crp)) {
1342                 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1343                         struct crypto_ret_worker *ret_worker;
1344
1345                         ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1346
1347                         CRYPTO_RETW_LOCK(ret_worker);
1348                         crp->crp_seq = ret_worker->reorder_ops++;
1349                         CRYPTO_RETW_UNLOCK(ret_worker);
1350                 }
1351
1352                 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1353                 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1354                 return (0);
1355         }
1356
1357         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1358                 /*
1359                  * Caller marked the request to be processed
1360                  * immediately; dispatch it directly to the
1361                  * driver unless the driver is currently blocked.
1362                  */
1363                 cap = crp->crp_session->cap;
1364                 if (!cap->cc_qblocked) {
1365                         result = crypto_invoke(cap, crp, 0);
1366                         if (result != ERESTART)
1367                                 return (result);
1368                         /*
1369                          * The driver ran out of resources, put the request on
1370                          * the queue.
1371                          */
1372                 }
1373         }
1374         crypto_batch_enqueue(crp);
1375         return 0;
1376 }
1377
1378 void
1379 crypto_batch_enqueue(struct cryptop *crp)
1380 {
1381
1382         CRYPTO_Q_LOCK();
1383         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1384         if (crp_sleep)
1385                 wakeup_one(&crp_q);
1386         CRYPTO_Q_UNLOCK();
1387 }
1388
1389 /*
1390  * Add an asymetric crypto request to a queue,
1391  * to be processed by the kernel thread.
1392  */
1393 int
1394 crypto_kdispatch(struct cryptkop *krp)
1395 {
1396         int error;
1397
1398         cryptostats.cs_kops++;
1399
1400         krp->krp_cap = NULL;
1401         error = crypto_kinvoke(krp);
1402         if (error == ERESTART) {
1403                 CRYPTO_Q_LOCK();
1404                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1405                 if (crp_sleep)
1406                         wakeup_one(&crp_q);
1407                 CRYPTO_Q_UNLOCK();
1408                 error = 0;
1409         }
1410         return error;
1411 }
1412
1413 /*
1414  * Verify a driver is suitable for the specified operation.
1415  */
1416 static __inline int
1417 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1418 {
1419         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1420 }
1421
1422 /*
1423  * Select a driver for an asym operation.  The driver must
1424  * support the necessary algorithm.  The caller can constrain
1425  * which device is selected with the flags parameter.  The
1426  * algorithm we use here is pretty stupid; just use the first
1427  * driver that supports the algorithms we need. If there are
1428  * multiple suitable drivers we choose the driver with the
1429  * fewest active operations.  We prefer hardware-backed
1430  * drivers to software ones when either may be used.
1431  */
1432 static struct cryptocap *
1433 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1434 {
1435         struct cryptocap *cap, *best;
1436         int match, hid;
1437
1438         CRYPTO_DRIVER_ASSERT();
1439
1440         /*
1441          * Look first for hardware crypto devices if permitted.
1442          */
1443         if (flags & CRYPTOCAP_F_HARDWARE)
1444                 match = CRYPTOCAP_F_HARDWARE;
1445         else
1446                 match = CRYPTOCAP_F_SOFTWARE;
1447         best = NULL;
1448 again:
1449         for (hid = 0; hid < crypto_drivers_size; hid++) {
1450                 /*
1451                  * If there is no driver for this slot, or the driver
1452                  * is not appropriate (hardware or software based on
1453                  * match), then skip.
1454                  */
1455                 cap = crypto_drivers[hid];
1456                 if (cap->cc_dev == NULL ||
1457                     (cap->cc_flags & match) == 0)
1458                         continue;
1459
1460                 /* verify all the algorithms are supported. */
1461                 if (kdriver_suitable(cap, krp)) {
1462                         if (best == NULL ||
1463                             cap->cc_koperations < best->cc_koperations)
1464                                 best = cap;
1465                 }
1466         }
1467         if (best != NULL)
1468                 return best;
1469         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1470                 /* sort of an Algol 68-style for loop */
1471                 match = CRYPTOCAP_F_SOFTWARE;
1472                 goto again;
1473         }
1474         return best;
1475 }
1476
1477 /*
1478  * Choose a driver for an asymmetric crypto request.
1479  */
1480 static struct cryptocap *
1481 crypto_lookup_kdriver(struct cryptkop *krp)
1482 {
1483         struct cryptocap *cap;
1484         uint32_t crid;
1485
1486         /* If this request is requeued, it might already have a driver. */
1487         cap = krp->krp_cap;
1488         if (cap != NULL)
1489                 return (cap);
1490
1491         /* Use krp_crid to choose a driver. */
1492         crid = krp->krp_crid;
1493         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1494                 cap = crypto_checkdriver(crid);
1495                 if (cap != NULL) {
1496                         /*
1497                          * Driver present, it must support the
1498                          * necessary algorithm and, if s/w drivers are
1499                          * excluded, it must be registered as
1500                          * hardware-backed.
1501                          */
1502                         if (!kdriver_suitable(cap, krp) ||
1503                             (!crypto_devallowsoft &&
1504                             (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1505                                 cap = NULL;
1506                 }
1507         } else {
1508                 /*
1509                  * No requested driver; select based on crid flags.
1510                  */
1511                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
1512                         crid &= ~CRYPTOCAP_F_SOFTWARE;
1513                 cap = crypto_select_kdriver(krp, crid);
1514         }
1515
1516         if (cap != NULL) {
1517                 krp->krp_cap = cap_ref(cap);
1518                 krp->krp_hid = cap->cc_hid;
1519         }
1520         return (cap);
1521 }
1522
1523 /*
1524  * Dispatch an asymmetric crypto request.
1525  */
1526 static int
1527 crypto_kinvoke(struct cryptkop *krp)
1528 {
1529         struct cryptocap *cap = NULL;
1530         int error;
1531
1532         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1533         KASSERT(krp->krp_callback != NULL,
1534             ("%s: krp->crp_callback == NULL", __func__));
1535
1536         CRYPTO_DRIVER_LOCK();
1537         cap = crypto_lookup_kdriver(krp);
1538         if (cap == NULL) {
1539                 CRYPTO_DRIVER_UNLOCK();
1540                 krp->krp_status = ENODEV;
1541                 crypto_kdone(krp);
1542                 return (0);
1543         }
1544
1545         /*
1546          * If the device is blocked, return ERESTART to requeue it.
1547          */
1548         if (cap->cc_kqblocked) {
1549                 /*
1550                  * XXX: Previously this set krp_status to ERESTART and
1551                  * invoked crypto_kdone but the caller would still
1552                  * requeue it.
1553                  */
1554                 CRYPTO_DRIVER_UNLOCK();
1555                 return (ERESTART);
1556         }
1557
1558         cap->cc_koperations++;
1559         CRYPTO_DRIVER_UNLOCK();
1560         error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1561         if (error == ERESTART) {
1562                 CRYPTO_DRIVER_LOCK();
1563                 cap->cc_koperations--;
1564                 CRYPTO_DRIVER_UNLOCK();
1565                 return (error);
1566         }
1567
1568         KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1569         return (0);
1570 }
1571
1572 #ifdef CRYPTO_TIMING
1573 static void
1574 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
1575 {
1576         struct bintime now, delta;
1577         struct timespec t;
1578         uint64_t u;
1579
1580         binuptime(&now);
1581         u = now.frac;
1582         delta.frac = now.frac - bt->frac;
1583         delta.sec = now.sec - bt->sec;
1584         if (u < delta.frac)
1585                 delta.sec--;
1586         bintime2timespec(&delta, &t);
1587         timespecadd(&ts->acc, &t, &ts->acc);
1588         if (timespeccmp(&t, &ts->min, <))
1589                 ts->min = t;
1590         if (timespeccmp(&t, &ts->max, >))
1591                 ts->max = t;
1592         ts->count++;
1593
1594         *bt = now;
1595 }
1596 #endif
1597
1598 static void
1599 crypto_task_invoke(void *ctx, int pending)
1600 {
1601         struct cryptocap *cap;
1602         struct cryptop *crp;
1603         int result;
1604
1605         crp = (struct cryptop *)ctx;
1606         cap = crp->crp_session->cap;
1607         result = crypto_invoke(cap, crp, 0);
1608         if (result == ERESTART)
1609                 crypto_batch_enqueue(crp);
1610 }
1611
1612 /*
1613  * Dispatch a crypto request to the appropriate crypto devices.
1614  */
1615 static int
1616 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1617 {
1618
1619         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1620         KASSERT(crp->crp_callback != NULL,
1621             ("%s: crp->crp_callback == NULL", __func__));
1622         KASSERT(crp->crp_session != NULL,
1623             ("%s: crp->crp_session == NULL", __func__));
1624
1625 #ifdef CRYPTO_TIMING
1626         if (crypto_timing)
1627                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1628 #endif
1629         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1630                 struct crypto_session_params csp;
1631                 crypto_session_t nses;
1632
1633                 /*
1634                  * Driver has unregistered; migrate the session and return
1635                  * an error to the caller so they'll resubmit the op.
1636                  *
1637                  * XXX: What if there are more already queued requests for this
1638                  *      session?
1639                  *
1640                  * XXX: Real solution is to make sessions refcounted
1641                  * and force callers to hold a reference when
1642                  * assigning to crp_session.  Could maybe change
1643                  * crypto_getreq to accept a session pointer to make
1644                  * that work.  Alternatively, we could abandon the
1645                  * notion of rewriting crp_session in requests forcing
1646                  * the caller to deal with allocating a new session.
1647                  * Perhaps provide a method to allow a crp's session to
1648                  * be swapped that callers could use.
1649                  */
1650                 csp = crp->crp_session->csp;
1651                 crypto_freesession(crp->crp_session);
1652
1653                 /*
1654                  * XXX: Key pointers may no longer be valid.  If we
1655                  * really want to support this we need to define the
1656                  * KPI such that 'csp' is required to be valid for the
1657                  * duration of a session by the caller perhaps.
1658                  *
1659                  * XXX: If the keys have been changed this will reuse
1660                  * the old keys.  This probably suggests making
1661                  * rekeying more explicit and updating the key
1662                  * pointers in 'csp' when the keys change.
1663                  */
1664                 if (crypto_newsession(&nses, &csp,
1665                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1666                         crp->crp_session = nses;
1667
1668                 crp->crp_etype = EAGAIN;
1669                 crypto_done(crp);
1670                 return 0;
1671         } else {
1672                 /*
1673                  * Invoke the driver to process the request.
1674                  */
1675                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1676         }
1677 }
1678
1679 void
1680 crypto_freereq(struct cryptop *crp)
1681 {
1682
1683         if (crp == NULL)
1684                 return;
1685
1686 #ifdef DIAGNOSTIC
1687         {
1688                 struct cryptop *crp2;
1689                 struct crypto_ret_worker *ret_worker;
1690
1691                 CRYPTO_Q_LOCK();
1692                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1693                         KASSERT(crp2 != crp,
1694                             ("Freeing cryptop from the crypto queue (%p).",
1695                             crp));
1696                 }
1697                 CRYPTO_Q_UNLOCK();
1698
1699                 FOREACH_CRYPTO_RETW(ret_worker) {
1700                         CRYPTO_RETW_LOCK(ret_worker);
1701                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1702                                 KASSERT(crp2 != crp,
1703                                     ("Freeing cryptop from the return queue (%p).",
1704                                     crp));
1705                         }
1706                         CRYPTO_RETW_UNLOCK(ret_worker);
1707                 }
1708         }
1709 #endif
1710
1711         uma_zfree(cryptop_zone, crp);
1712 }
1713
1714 struct cryptop *
1715 crypto_getreq(crypto_session_t cses, int how)
1716 {
1717         struct cryptop *crp;
1718
1719         MPASS(how == M_WAITOK || how == M_NOWAIT);
1720         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1721         crp->crp_session = cses;
1722         return (crp);
1723 }
1724
1725 /*
1726  * Invoke the callback on behalf of the driver.
1727  */
1728 void
1729 crypto_done(struct cryptop *crp)
1730 {
1731         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1732                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1733         crp->crp_flags |= CRYPTO_F_DONE;
1734         if (crp->crp_etype != 0)
1735                 cryptostats.cs_errs++;
1736 #ifdef CRYPTO_TIMING
1737         if (crypto_timing)
1738                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1739 #endif
1740         /*
1741          * CBIMM means unconditionally do the callback immediately;
1742          * CBIFSYNC means do the callback immediately only if the
1743          * operation was done synchronously.  Both are used to avoid
1744          * doing extraneous context switches; the latter is mostly
1745          * used with the software crypto driver.
1746          */
1747         if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1748             ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1749             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1750              (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1751                 /*
1752                  * Do the callback directly.  This is ok when the
1753                  * callback routine does very little (e.g. the
1754                  * /dev/crypto callback method just does a wakeup).
1755                  */
1756 #ifdef CRYPTO_TIMING
1757                 if (crypto_timing) {
1758                         /*
1759                          * NB: We must copy the timestamp before
1760                          * doing the callback as the cryptop is
1761                          * likely to be reclaimed.
1762                          */
1763                         struct bintime t = crp->crp_tstamp;
1764                         crypto_tstat(&cryptostats.cs_cb, &t);
1765                         crp->crp_callback(crp);
1766                         crypto_tstat(&cryptostats.cs_finis, &t);
1767                 } else
1768 #endif
1769                         crp->crp_callback(crp);
1770         } else {
1771                 struct crypto_ret_worker *ret_worker;
1772                 bool wake;
1773
1774                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1775                 wake = false;
1776
1777                 /*
1778                  * Normal case; queue the callback for the thread.
1779                  */
1780                 CRYPTO_RETW_LOCK(ret_worker);
1781                 if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1782                         struct cryptop *tmp;
1783
1784                         TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1785                                         cryptop_q, crp_next) {
1786                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1787                                         TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1788                                                         tmp, crp, crp_next);
1789                                         break;
1790                                 }
1791                         }
1792                         if (tmp == NULL) {
1793                                 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1794                                                 crp, crp_next);
1795                         }
1796
1797                         if (crp->crp_seq == ret_worker->reorder_cur_seq)
1798                                 wake = true;
1799                 }
1800                 else {
1801                         if (CRYPTO_RETW_EMPTY(ret_worker))
1802                                 wake = true;
1803
1804                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1805                 }
1806
1807                 if (wake)
1808                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1809                 CRYPTO_RETW_UNLOCK(ret_worker);
1810         }
1811 }
1812
1813 /*
1814  * Invoke the callback on behalf of the driver.
1815  */
1816 void
1817 crypto_kdone(struct cryptkop *krp)
1818 {
1819         struct crypto_ret_worker *ret_worker;
1820         struct cryptocap *cap;
1821
1822         if (krp->krp_status != 0)
1823                 cryptostats.cs_kerrs++;
1824         CRYPTO_DRIVER_LOCK();
1825         cap = krp->krp_cap;
1826         KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1827         cap->cc_koperations--;
1828         if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1829                 wakeup(cap);
1830         CRYPTO_DRIVER_UNLOCK();
1831         krp->krp_cap = NULL;
1832         cap_rele(cap);
1833
1834         ret_worker = CRYPTO_RETW(0);
1835
1836         CRYPTO_RETW_LOCK(ret_worker);
1837         if (CRYPTO_RETW_EMPTY(ret_worker))
1838                 wakeup_one(&ret_worker->crp_ret_q);             /* shared wait channel */
1839         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1840         CRYPTO_RETW_UNLOCK(ret_worker);
1841 }
1842
1843 int
1844 crypto_getfeat(int *featp)
1845 {
1846         int hid, kalg, feat = 0;
1847
1848         CRYPTO_DRIVER_LOCK();
1849         for (hid = 0; hid < crypto_drivers_size; hid++) {
1850                 const struct cryptocap *cap = crypto_drivers[hid];
1851
1852                 if (cap == NULL ||
1853                     ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1854                     !crypto_devallowsoft)) {
1855                         continue;
1856                 }
1857                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1858                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1859                                 feat |=  1 << kalg;
1860         }
1861         CRYPTO_DRIVER_UNLOCK();
1862         *featp = feat;
1863         return (0);
1864 }
1865
1866 /*
1867  * Terminate a thread at module unload.  The process that
1868  * initiated this is waiting for us to signal that we're gone;
1869  * wake it up and exit.  We use the driver table lock to insure
1870  * we don't do the wakeup before they're waiting.  There is no
1871  * race here because the waiter sleeps on the proc lock for the
1872  * thread so it gets notified at the right time because of an
1873  * extra wakeup that's done in exit1().
1874  */
1875 static void
1876 crypto_finis(void *chan)
1877 {
1878         CRYPTO_DRIVER_LOCK();
1879         wakeup_one(chan);
1880         CRYPTO_DRIVER_UNLOCK();
1881         kproc_exit(0);
1882 }
1883
1884 /*
1885  * Crypto thread, dispatches crypto requests.
1886  */
1887 static void
1888 crypto_proc(void)
1889 {
1890         struct cryptop *crp, *submit;
1891         struct cryptkop *krp;
1892         struct cryptocap *cap;
1893         int result, hint;
1894
1895 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1896         fpu_kern_thread(FPU_KERN_NORMAL);
1897 #endif
1898
1899         CRYPTO_Q_LOCK();
1900         for (;;) {
1901                 /*
1902                  * Find the first element in the queue that can be
1903                  * processed and look-ahead to see if multiple ops
1904                  * are ready for the same driver.
1905                  */
1906                 submit = NULL;
1907                 hint = 0;
1908                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1909                         cap = crp->crp_session->cap;
1910                         /*
1911                          * Driver cannot disappeared when there is an active
1912                          * session.
1913                          */
1914                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1915                             __func__, __LINE__));
1916                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1917                                 /* Op needs to be migrated, process it. */
1918                                 if (submit == NULL)
1919                                         submit = crp;
1920                                 break;
1921                         }
1922                         if (!cap->cc_qblocked) {
1923                                 if (submit != NULL) {
1924                                         /*
1925                                          * We stop on finding another op,
1926                                          * regardless whether its for the same
1927                                          * driver or not.  We could keep
1928                                          * searching the queue but it might be
1929                                          * better to just use a per-driver
1930                                          * queue instead.
1931                                          */
1932                                         if (submit->crp_session->cap == cap)
1933                                                 hint = CRYPTO_HINT_MORE;
1934                                         break;
1935                                 } else {
1936                                         submit = crp;
1937                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1938                                                 break;
1939                                         /* keep scanning for more are q'd */
1940                                 }
1941                         }
1942                 }
1943                 if (submit != NULL) {
1944                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1945                         cap = submit->crp_session->cap;
1946                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1947                             __func__, __LINE__));
1948                         CRYPTO_Q_UNLOCK();
1949                         result = crypto_invoke(cap, submit, hint);
1950                         CRYPTO_Q_LOCK();
1951                         if (result == ERESTART) {
1952                                 /*
1953                                  * The driver ran out of resources, mark the
1954                                  * driver ``blocked'' for cryptop's and put
1955                                  * the request back in the queue.  It would
1956                                  * best to put the request back where we got
1957                                  * it but that's hard so for now we put it
1958                                  * at the front.  This should be ok; putting
1959                                  * it at the end does not work.
1960                                  */
1961                                 cap->cc_qblocked = 1;
1962                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1963                                 cryptostats.cs_blocks++;
1964                         }
1965                 }
1966
1967                 /* As above, but for key ops */
1968                 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1969                         cap = krp->krp_cap;
1970                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1971                                 /*
1972                                  * Operation needs to be migrated,
1973                                  * clear krp_cap so a new driver is
1974                                  * selected.
1975                                  */
1976                                 krp->krp_cap = NULL;
1977                                 cap_rele(cap);
1978                                 break;
1979                         }
1980                         if (!cap->cc_kqblocked)
1981                                 break;
1982                 }
1983                 if (krp != NULL) {
1984                         TAILQ_REMOVE(&crp_kq, krp, krp_next);
1985                         CRYPTO_Q_UNLOCK();
1986                         result = crypto_kinvoke(krp);
1987                         CRYPTO_Q_LOCK();
1988                         if (result == ERESTART) {
1989                                 /*
1990                                  * The driver ran out of resources, mark the
1991                                  * driver ``blocked'' for cryptkop's and put
1992                                  * the request back in the queue.  It would
1993                                  * best to put the request back where we got
1994                                  * it but that's hard so for now we put it
1995                                  * at the front.  This should be ok; putting
1996                                  * it at the end does not work.
1997                                  */
1998                                 krp->krp_cap->cc_kqblocked = 1;
1999                                 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2000                                 cryptostats.cs_kblocks++;
2001                         }
2002                 }
2003
2004                 if (submit == NULL && krp == NULL) {
2005                         /*
2006                          * Nothing more to be processed.  Sleep until we're
2007                          * woken because there are more ops to process.
2008                          * This happens either by submission or by a driver
2009                          * becoming unblocked and notifying us through
2010                          * crypto_unblock.  Note that when we wakeup we
2011                          * start processing each queue again from the
2012                          * front. It's not clear that it's important to
2013                          * preserve this ordering since ops may finish
2014                          * out of order if dispatched to different devices
2015                          * and some become blocked while others do not.
2016                          */
2017                         crp_sleep = 1;
2018                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2019                         crp_sleep = 0;
2020                         if (cryptoproc == NULL)
2021                                 break;
2022                         cryptostats.cs_intrs++;
2023                 }
2024         }
2025         CRYPTO_Q_UNLOCK();
2026
2027         crypto_finis(&crp_q);
2028 }
2029
2030 /*
2031  * Crypto returns thread, does callbacks for processed crypto requests.
2032  * Callbacks are done here, rather than in the crypto drivers, because
2033  * callbacks typically are expensive and would slow interrupt handling.
2034  */
2035 static void
2036 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2037 {
2038         struct cryptop *crpt;
2039         struct cryptkop *krpt;
2040
2041         CRYPTO_RETW_LOCK(ret_worker);
2042         for (;;) {
2043                 /* Harvest return q's for completed ops */
2044                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2045                 if (crpt != NULL) {
2046                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2047                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2048                                 ret_worker->reorder_cur_seq++;
2049                         } else {
2050                                 crpt = NULL;
2051                         }
2052                 }
2053
2054                 if (crpt == NULL) {
2055                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2056                         if (crpt != NULL)
2057                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2058                 }
2059
2060                 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2061                 if (krpt != NULL)
2062                         TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2063
2064                 if (crpt != NULL || krpt != NULL) {
2065                         CRYPTO_RETW_UNLOCK(ret_worker);
2066                         /*
2067                          * Run callbacks unlocked.
2068                          */
2069                         if (crpt != NULL) {
2070 #ifdef CRYPTO_TIMING
2071                                 if (crypto_timing) {
2072                                         /*
2073                                          * NB: We must copy the timestamp before
2074                                          * doing the callback as the cryptop is
2075                                          * likely to be reclaimed.
2076                                          */
2077                                         struct bintime t = crpt->crp_tstamp;
2078                                         crypto_tstat(&cryptostats.cs_cb, &t);
2079                                         crpt->crp_callback(crpt);
2080                                         crypto_tstat(&cryptostats.cs_finis, &t);
2081                                 } else
2082 #endif
2083                                         crpt->crp_callback(crpt);
2084                         }
2085                         if (krpt != NULL)
2086                                 krpt->krp_callback(krpt);
2087                         CRYPTO_RETW_LOCK(ret_worker);
2088                 } else {
2089                         /*
2090                          * Nothing more to be processed.  Sleep until we're
2091                          * woken because there are more returns to process.
2092                          */
2093                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2094                                 "crypto_ret_wait", 0);
2095                         if (ret_worker->cryptoretproc == NULL)
2096                                 break;
2097                         cryptostats.cs_rets++;
2098                 }
2099         }
2100         CRYPTO_RETW_UNLOCK(ret_worker);
2101
2102         crypto_finis(&ret_worker->crp_ret_q);
2103 }
2104
2105 #ifdef DDB
2106 static void
2107 db_show_drivers(void)
2108 {
2109         int hid;
2110
2111         db_printf("%12s %4s %4s %8s %2s %2s\n"
2112                 , "Device"
2113                 , "Ses"
2114                 , "Kops"
2115                 , "Flags"
2116                 , "QB"
2117                 , "KB"
2118         );
2119         for (hid = 0; hid < crypto_drivers_size; hid++) {
2120                 const struct cryptocap *cap = crypto_drivers[hid];
2121                 if (cap == NULL)
2122                         continue;
2123                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
2124                     , device_get_nameunit(cap->cc_dev)
2125                     , cap->cc_sessions
2126                     , cap->cc_koperations
2127                     , cap->cc_flags
2128                     , cap->cc_qblocked
2129                     , cap->cc_kqblocked
2130                 );
2131         }
2132 }
2133
2134 DB_SHOW_COMMAND(crypto, db_show_crypto)
2135 {
2136         struct cryptop *crp;
2137         struct crypto_ret_worker *ret_worker;
2138
2139         db_show_drivers();
2140         db_printf("\n");
2141
2142         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2143             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2144             "Device", "Callback");
2145         TAILQ_FOREACH(crp, &crp_q, crp_next) {
2146                 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
2147                     , crp->crp_session->cap->cc_hid
2148                     , (int) crypto_ses2caps(crp->crp_session)
2149                     , crp->crp_ilen, crp->crp_olen
2150                     , crp->crp_etype
2151                     , crp->crp_flags
2152                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
2153                     , crp->crp_callback
2154                 );
2155         }
2156         FOREACH_CRYPTO_RETW(ret_worker) {
2157                 db_printf("\n%8s %4s %4s %4s %8s\n",
2158                     "ret_worker", "HID", "Etype", "Flags", "Callback");
2159                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2160                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2161                                 db_printf("%8td %4u %4u %04x %8p\n"
2162                                     , CRYPTO_RETW_ID(ret_worker)
2163                                     , crp->crp_session->cap->cc_hid
2164                                     , crp->crp_etype
2165                                     , crp->crp_flags
2166                                     , crp->crp_callback
2167                                 );
2168                         }
2169                 }
2170         }
2171 }
2172
2173 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2174 {
2175         struct cryptkop *krp;
2176         struct crypto_ret_worker *ret_worker;
2177
2178         db_show_drivers();
2179         db_printf("\n");
2180
2181         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2182             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2183         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2184                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2185                     , krp->krp_op
2186                     , krp->krp_status
2187                     , krp->krp_iparams, krp->krp_oparams
2188                     , krp->krp_crid, krp->krp_hid
2189                     , krp->krp_callback
2190                 );
2191         }
2192
2193         ret_worker = CRYPTO_RETW(0);
2194         if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2195                 db_printf("%4s %5s %8s %4s %8s\n",
2196                     "Op", "Status", "CRID", "HID", "Callback");
2197                 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2198                         db_printf("%4u %5u %08x %4u %8p\n"
2199                             , krp->krp_op
2200                             , krp->krp_status
2201                             , krp->krp_crid, krp->krp_hid
2202                             , krp->krp_callback
2203                         );
2204                 }
2205         }
2206 }
2207 #endif
2208
2209 int crypto_modevent(module_t mod, int type, void *unused);
2210
2211 /*
2212  * Initialization code, both for static and dynamic loading.
2213  * Note this is not invoked with the usual MODULE_DECLARE
2214  * mechanism but instead is listed as a dependency by the
2215  * cryptosoft driver.  This guarantees proper ordering of
2216  * calls on module load/unload.
2217  */
2218 int
2219 crypto_modevent(module_t mod, int type, void *unused)
2220 {
2221         int error = EINVAL;
2222
2223         switch (type) {
2224         case MOD_LOAD:
2225                 error = crypto_init();
2226                 if (error == 0 && bootverbose)
2227                         printf("crypto: <crypto core>\n");
2228                 break;
2229         case MOD_UNLOAD:
2230                 /*XXX disallow if active sessions */
2231                 error = 0;
2232                 crypto_destroy();
2233                 return 0;
2234         }
2235         return error;
2236 }
2237 MODULE_VERSION(crypto, 1);
2238 MODULE_DEPEND(crypto, zlib, 1, 1, 1);