]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
zfs: merge openzfs/zfs@4694131a0 (master) into main
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78
79 #include <ddb/ddb.h>
80
81 #include <machine/vmparam.h>
82 #include <vm/uma.h>
83
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96
97 SDT_PROVIDER_DEFINE(opencrypto);
98
99 /*
100  * Crypto drivers register themselves by allocating a slot in the
101  * crypto_drivers table with crypto_get_driverid().
102  */
103 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
104 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
105 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
106 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
107
108 /*
109  * Crypto device/driver capabilities structure.
110  *
111  * Synchronization:
112  * (d) - protected by CRYPTO_DRIVER_LOCK()
113  * (q) - protected by CRYPTO_Q_LOCK()
114  * Not tagged fields are read-only.
115  */
116 struct cryptocap {
117         device_t        cc_dev;
118         uint32_t        cc_hid;
119         uint32_t        cc_sessions;            /* (d) # of sessions */
120
121         int             cc_flags;               /* (d) flags */
122 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
123         int             cc_qblocked;            /* (q) symmetric q blocked */
124         size_t          cc_session_size;
125         volatile int    cc_refs;
126 };
127
128 static  struct cryptocap **crypto_drivers = NULL;
129 static  int crypto_drivers_size = 0;
130
131 struct crypto_session {
132         struct cryptocap *cap;
133         struct crypto_session_params csp;
134         uint64_t id;
135         /* Driver softc follows. */
136 };
137
138 static  int crp_sleep = 0;
139 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
140 static  struct mtx crypto_q_mtx;
141 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
142 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
143
144 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
145     "In-kernel cryptography");
146
147 /*
148  * Taskqueue used to dispatch the crypto requests
149  * that have the CRYPTO_F_ASYNC flag
150  */
151 static struct taskqueue *crypto_tq;
152
153 /*
154  * Crypto seq numbers are operated on with modular arithmetic
155  */
156 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
157
158 struct crypto_ret_worker {
159         struct mtx crypto_ret_mtx;
160
161         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
162         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
163
164         uint32_t reorder_ops;           /* total ordered sym jobs received */
165         uint32_t reorder_cur_seq;       /* current sym job dispatched */
166
167         struct proc *cryptoretproc;
168 };
169 static struct crypto_ret_worker *crypto_ret_workers = NULL;
170
171 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
172 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
173 #define FOREACH_CRYPTO_RETW(w) \
174         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
175
176 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
177 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
178
179 static int crypto_workers_num = 0;
180 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
181            &crypto_workers_num, 0,
182            "Number of crypto workers used to dispatch crypto jobs");
183 #ifdef COMPAT_FREEBSD12
184 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
185            &crypto_workers_num, 0,
186            "Number of crypto workers used to dispatch crypto jobs");
187 #endif
188
189 static  uma_zone_t cryptop_zone;
190
191 int     crypto_devallowsoft = 0;
192 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
193            &crypto_devallowsoft, 0,
194            "Enable use of software crypto by /dev/crypto");
195 #ifdef COMPAT_FREEBSD12
196 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
197            &crypto_devallowsoft, 0,
198            "Enable/disable use of software crypto by /dev/crypto");
199 #endif
200
201 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
202
203 static  void crypto_proc(void);
204 static  struct proc *cryptoproc;
205 static  void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
206 static  void crypto_destroy(void);
207 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
208 static  void crypto_task_invoke(void *ctx, int pending);
209 static void crypto_batch_enqueue(struct cryptop *crp);
210
211 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
212 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
213     cryptostats, nitems(cryptostats),
214     "Crypto system statistics");
215
216 #define CRYPTOSTAT_INC(stat) do {                                       \
217         counter_u64_add(                                                \
218             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
219             1);                                                         \
220 } while (0)
221
222 static void
223 cryptostats_init(void *arg __unused)
224 {
225         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
226 }
227 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
228
229 static void
230 cryptostats_fini(void *arg __unused)
231 {
232         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
233 }
234 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
235     NULL);
236
237 /* Try to avoid directly exposing the key buffer as a symbol */
238 static struct keybuf *keybuf;
239
240 static struct keybuf empty_keybuf = {
241         .kb_nents = 0
242 };
243
244 /* Obtain the key buffer from boot metadata */
245 static void
246 keybuf_init(void)
247 {
248         caddr_t kmdp;
249
250         kmdp = preload_search_by_type("elf kernel");
251
252         if (kmdp == NULL)
253                 kmdp = preload_search_by_type("elf64 kernel");
254
255         keybuf = (struct keybuf *)preload_search_info(kmdp,
256             MODINFO_METADATA | MODINFOMD_KEYBUF);
257
258         if (keybuf == NULL)
259                 keybuf = &empty_keybuf;
260 }
261
262 /* It'd be nice if we could store these in some kind of secure memory... */
263 struct keybuf *
264 get_keybuf(void)
265 {
266
267         return (keybuf);
268 }
269
270 static struct cryptocap *
271 cap_ref(struct cryptocap *cap)
272 {
273
274         refcount_acquire(&cap->cc_refs);
275         return (cap);
276 }
277
278 static void
279 cap_rele(struct cryptocap *cap)
280 {
281
282         if (refcount_release(&cap->cc_refs) == 0)
283                 return;
284
285         KASSERT(cap->cc_sessions == 0,
286             ("freeing crypto driver with active sessions"));
287
288         free(cap, M_CRYPTO_DATA);
289 }
290
291 static int
292 crypto_init(void)
293 {
294         struct crypto_ret_worker *ret_worker;
295         int error;
296
297         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
298                 MTX_DEF|MTX_QUIET);
299
300         TAILQ_INIT(&crp_q);
301         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
302
303         cryptop_zone = uma_zcreate("cryptop",
304             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
305             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
306
307         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
308         crypto_drivers = malloc(crypto_drivers_size *
309             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
310
311         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
312                 crypto_workers_num = mp_ncpus;
313
314         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
315             taskqueue_thread_enqueue, &crypto_tq);
316
317         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
318             "crypto");
319
320         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
321                     &cryptoproc, 0, 0, "crypto");
322         if (error) {
323                 printf("crypto_init: cannot start crypto thread; error %d",
324                         error);
325                 goto bad;
326         }
327
328         crypto_ret_workers = mallocarray(crypto_workers_num,
329             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
330
331         FOREACH_CRYPTO_RETW(ret_worker) {
332                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
333                 TAILQ_INIT(&ret_worker->crp_ret_q);
334
335                 ret_worker->reorder_ops = 0;
336                 ret_worker->reorder_cur_seq = 0;
337
338                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
339
340                 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
341                                 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
342                 if (error) {
343                         printf("crypto_init: cannot start cryptoret thread; error %d",
344                                 error);
345                         goto bad;
346                 }
347         }
348
349         keybuf_init();
350
351         return 0;
352 bad:
353         crypto_destroy();
354         return error;
355 }
356
357 /*
358  * Signal a crypto thread to terminate.  We use the driver
359  * table lock to synchronize the sleep/wakeups so that we
360  * are sure the threads have terminated before we release
361  * the data structures they use.  See crypto_finis below
362  * for the other half of this song-and-dance.
363  */
364 static void
365 crypto_terminate(struct proc **pp, void *q)
366 {
367         struct proc *p;
368
369         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
370         p = *pp;
371         *pp = NULL;
372         if (p) {
373                 wakeup_one(q);
374                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
375                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
376                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
377                 PROC_UNLOCK(p);
378                 CRYPTO_DRIVER_LOCK();
379         }
380 }
381
382 static void
383 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
384     void *auth_ctx, uint8_t padval)
385 {
386         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
387         u_int i;
388
389         KASSERT(axf->blocksize <= sizeof(hmac_key),
390             ("Invalid HMAC block size %d", axf->blocksize));
391
392         /*
393          * If the key is larger than the block size, use the digest of
394          * the key as the key instead.
395          */
396         memset(hmac_key, 0, sizeof(hmac_key));
397         if (klen > axf->blocksize) {
398                 axf->Init(auth_ctx);
399                 axf->Update(auth_ctx, key, klen);
400                 axf->Final(hmac_key, auth_ctx);
401                 klen = axf->hashsize;
402         } else
403                 memcpy(hmac_key, key, klen);
404
405         for (i = 0; i < axf->blocksize; i++)
406                 hmac_key[i] ^= padval;
407
408         axf->Init(auth_ctx);
409         axf->Update(auth_ctx, hmac_key, axf->blocksize);
410         explicit_bzero(hmac_key, sizeof(hmac_key));
411 }
412
413 void
414 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
415     void *auth_ctx)
416 {
417
418         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
419 }
420
421 void
422 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
423     void *auth_ctx)
424 {
425
426         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
427 }
428
429 static void
430 crypto_destroy(void)
431 {
432         struct crypto_ret_worker *ret_worker;
433         int i;
434
435         /*
436          * Terminate any crypto threads.
437          */
438         if (crypto_tq != NULL)
439                 taskqueue_drain_all(crypto_tq);
440         CRYPTO_DRIVER_LOCK();
441         crypto_terminate(&cryptoproc, &crp_q);
442         FOREACH_CRYPTO_RETW(ret_worker)
443                 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
444         CRYPTO_DRIVER_UNLOCK();
445
446         /* XXX flush queues??? */
447
448         /*
449          * Reclaim dynamically allocated resources.
450          */
451         for (i = 0; i < crypto_drivers_size; i++) {
452                 if (crypto_drivers[i] != NULL)
453                         cap_rele(crypto_drivers[i]);
454         }
455         free(crypto_drivers, M_CRYPTO_DATA);
456
457         if (cryptop_zone != NULL)
458                 uma_zdestroy(cryptop_zone);
459         mtx_destroy(&crypto_q_mtx);
460         FOREACH_CRYPTO_RETW(ret_worker)
461                 mtx_destroy(&ret_worker->crypto_ret_mtx);
462         free(crypto_ret_workers, M_CRYPTO_DATA);
463         if (crypto_tq != NULL)
464                 taskqueue_free(crypto_tq);
465         mtx_destroy(&crypto_drivers_mtx);
466 }
467
468 uint32_t
469 crypto_ses2hid(crypto_session_t crypto_session)
470 {
471         return (crypto_session->cap->cc_hid);
472 }
473
474 uint32_t
475 crypto_ses2caps(crypto_session_t crypto_session)
476 {
477         return (crypto_session->cap->cc_flags & 0xff000000);
478 }
479
480 void *
481 crypto_get_driver_session(crypto_session_t crypto_session)
482 {
483         return (crypto_session + 1);
484 }
485
486 const struct crypto_session_params *
487 crypto_get_params(crypto_session_t crypto_session)
488 {
489         return (&crypto_session->csp);
490 }
491
492 struct auth_hash *
493 crypto_auth_hash(const struct crypto_session_params *csp)
494 {
495
496         switch (csp->csp_auth_alg) {
497         case CRYPTO_SHA1_HMAC:
498                 return (&auth_hash_hmac_sha1);
499         case CRYPTO_SHA2_224_HMAC:
500                 return (&auth_hash_hmac_sha2_224);
501         case CRYPTO_SHA2_256_HMAC:
502                 return (&auth_hash_hmac_sha2_256);
503         case CRYPTO_SHA2_384_HMAC:
504                 return (&auth_hash_hmac_sha2_384);
505         case CRYPTO_SHA2_512_HMAC:
506                 return (&auth_hash_hmac_sha2_512);
507         case CRYPTO_NULL_HMAC:
508                 return (&auth_hash_null);
509         case CRYPTO_RIPEMD160_HMAC:
510                 return (&auth_hash_hmac_ripemd_160);
511         case CRYPTO_SHA1:
512                 return (&auth_hash_sha1);
513         case CRYPTO_SHA2_224:
514                 return (&auth_hash_sha2_224);
515         case CRYPTO_SHA2_256:
516                 return (&auth_hash_sha2_256);
517         case CRYPTO_SHA2_384:
518                 return (&auth_hash_sha2_384);
519         case CRYPTO_SHA2_512:
520                 return (&auth_hash_sha2_512);
521         case CRYPTO_AES_NIST_GMAC:
522                 switch (csp->csp_auth_klen) {
523                 case 128 / 8:
524                         return (&auth_hash_nist_gmac_aes_128);
525                 case 192 / 8:
526                         return (&auth_hash_nist_gmac_aes_192);
527                 case 256 / 8:
528                         return (&auth_hash_nist_gmac_aes_256);
529                 default:
530                         return (NULL);
531                 }
532         case CRYPTO_BLAKE2B:
533                 return (&auth_hash_blake2b);
534         case CRYPTO_BLAKE2S:
535                 return (&auth_hash_blake2s);
536         case CRYPTO_POLY1305:
537                 return (&auth_hash_poly1305);
538         case CRYPTO_AES_CCM_CBC_MAC:
539                 switch (csp->csp_auth_klen) {
540                 case 128 / 8:
541                         return (&auth_hash_ccm_cbc_mac_128);
542                 case 192 / 8:
543                         return (&auth_hash_ccm_cbc_mac_192);
544                 case 256 / 8:
545                         return (&auth_hash_ccm_cbc_mac_256);
546                 default:
547                         return (NULL);
548                 }
549         default:
550                 return (NULL);
551         }
552 }
553
554 struct enc_xform *
555 crypto_cipher(const struct crypto_session_params *csp)
556 {
557
558         switch (csp->csp_cipher_alg) {
559         case CRYPTO_RIJNDAEL128_CBC:
560                 return (&enc_xform_rijndael128);
561         case CRYPTO_AES_XTS:
562                 return (&enc_xform_aes_xts);
563         case CRYPTO_AES_ICM:
564                 return (&enc_xform_aes_icm);
565         case CRYPTO_AES_NIST_GCM_16:
566                 return (&enc_xform_aes_nist_gcm);
567         case CRYPTO_CAMELLIA_CBC:
568                 return (&enc_xform_camellia);
569         case CRYPTO_NULL_CBC:
570                 return (&enc_xform_null);
571         case CRYPTO_CHACHA20:
572                 return (&enc_xform_chacha20);
573         case CRYPTO_AES_CCM_16:
574                 return (&enc_xform_ccm);
575         case CRYPTO_CHACHA20_POLY1305:
576                 return (&enc_xform_chacha20_poly1305);
577         default:
578                 return (NULL);
579         }
580 }
581
582 static struct cryptocap *
583 crypto_checkdriver(uint32_t hid)
584 {
585
586         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
587 }
588
589 /*
590  * Select a driver for a new session that supports the specified
591  * algorithms and, optionally, is constrained according to the flags.
592  */
593 static struct cryptocap *
594 crypto_select_driver(const struct crypto_session_params *csp, int flags)
595 {
596         struct cryptocap *cap, *best;
597         int best_match, error, hid;
598
599         CRYPTO_DRIVER_ASSERT();
600
601         best = NULL;
602         for (hid = 0; hid < crypto_drivers_size; hid++) {
603                 /*
604                  * If there is no driver for this slot, or the driver
605                  * is not appropriate (hardware or software based on
606                  * match), then skip.
607                  */
608                 cap = crypto_drivers[hid];
609                 if (cap == NULL ||
610                     (cap->cc_flags & flags) == 0)
611                         continue;
612
613                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
614                 if (error >= 0)
615                         continue;
616
617                 /*
618                  * Use the driver with the highest probe value.
619                  * Hardware drivers use a higher probe value than
620                  * software.  In case of a tie, prefer the driver with
621                  * the fewest active sessions.
622                  */
623                 if (best == NULL || error > best_match ||
624                     (error == best_match &&
625                     cap->cc_sessions < best->cc_sessions)) {
626                         best = cap;
627                         best_match = error;
628                 }
629         }
630         return best;
631 }
632
633 static enum alg_type {
634         ALG_NONE = 0,
635         ALG_CIPHER,
636         ALG_DIGEST,
637         ALG_KEYED_DIGEST,
638         ALG_COMPRESSION,
639         ALG_AEAD
640 } alg_types[] = {
641         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
642         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
643         [CRYPTO_AES_CBC] = ALG_CIPHER,
644         [CRYPTO_SHA1] = ALG_DIGEST,
645         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
646         [CRYPTO_NULL_CBC] = ALG_CIPHER,
647         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
648         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
649         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
650         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
651         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
652         [CRYPTO_AES_XTS] = ALG_CIPHER,
653         [CRYPTO_AES_ICM] = ALG_CIPHER,
654         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
655         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
656         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
657         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
658         [CRYPTO_CHACHA20] = ALG_CIPHER,
659         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
660         [CRYPTO_RIPEMD160] = ALG_DIGEST,
661         [CRYPTO_SHA2_224] = ALG_DIGEST,
662         [CRYPTO_SHA2_256] = ALG_DIGEST,
663         [CRYPTO_SHA2_384] = ALG_DIGEST,
664         [CRYPTO_SHA2_512] = ALG_DIGEST,
665         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
666         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
667         [CRYPTO_AES_CCM_16] = ALG_AEAD,
668         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
669 };
670
671 static enum alg_type
672 alg_type(int alg)
673 {
674
675         if (alg < nitems(alg_types))
676                 return (alg_types[alg]);
677         return (ALG_NONE);
678 }
679
680 static bool
681 alg_is_compression(int alg)
682 {
683
684         return (alg_type(alg) == ALG_COMPRESSION);
685 }
686
687 static bool
688 alg_is_cipher(int alg)
689 {
690
691         return (alg_type(alg) == ALG_CIPHER);
692 }
693
694 static bool
695 alg_is_digest(int alg)
696 {
697
698         return (alg_type(alg) == ALG_DIGEST ||
699             alg_type(alg) == ALG_KEYED_DIGEST);
700 }
701
702 static bool
703 alg_is_keyed_digest(int alg)
704 {
705
706         return (alg_type(alg) == ALG_KEYED_DIGEST);
707 }
708
709 static bool
710 alg_is_aead(int alg)
711 {
712
713         return (alg_type(alg) == ALG_AEAD);
714 }
715
716 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
717
718 /* Various sanity checks on crypto session parameters. */
719 static bool
720 check_csp(const struct crypto_session_params *csp)
721 {
722         struct auth_hash *axf;
723
724         /* Mode-independent checks. */
725         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
726                 return (false);
727         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
728             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
729                 return (false);
730         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
731                 return (false);
732         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
733                 return (false);
734
735         switch (csp->csp_mode) {
736         case CSP_MODE_COMPRESS:
737                 if (!alg_is_compression(csp->csp_cipher_alg))
738                         return (false);
739                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
740                         return (false);
741                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
742                         return (false);
743                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
744                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
745                     csp->csp_auth_mlen != 0)
746                         return (false);
747                 break;
748         case CSP_MODE_CIPHER:
749                 if (!alg_is_cipher(csp->csp_cipher_alg))
750                         return (false);
751                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
752                         return (false);
753                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
754                         if (csp->csp_cipher_klen == 0)
755                                 return (false);
756                         if (csp->csp_ivlen == 0)
757                                 return (false);
758                 }
759                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
760                         return (false);
761                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
762                     csp->csp_auth_mlen != 0)
763                         return (false);
764                 break;
765         case CSP_MODE_DIGEST:
766                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
767                         return (false);
768
769                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
770                         return (false);
771
772                 /* IV is optional for digests (e.g. GMAC). */
773                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
774                         return (false);
775                 if (!alg_is_digest(csp->csp_auth_alg))
776                         return (false);
777
778                 /* Key is optional for BLAKE2 digests. */
779                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
780                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
781                         ;
782                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
783                         if (csp->csp_auth_klen == 0)
784                                 return (false);
785                 } else {
786                         if (csp->csp_auth_klen != 0)
787                                 return (false);
788                 }
789                 if (csp->csp_auth_mlen != 0) {
790                         axf = crypto_auth_hash(csp);
791                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
792                                 return (false);
793                 }
794                 break;
795         case CSP_MODE_AEAD:
796                 if (!alg_is_aead(csp->csp_cipher_alg))
797                         return (false);
798                 if (csp->csp_cipher_klen == 0)
799                         return (false);
800                 if (csp->csp_ivlen == 0 ||
801                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
802                         return (false);
803                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
804                         return (false);
805
806                 /*
807                  * XXX: Would be nice to have a better way to get this
808                  * value.
809                  */
810                 switch (csp->csp_cipher_alg) {
811                 case CRYPTO_AES_NIST_GCM_16:
812                 case CRYPTO_AES_CCM_16:
813                 case CRYPTO_CHACHA20_POLY1305:
814                         if (csp->csp_auth_mlen > 16)
815                                 return (false);
816                         break;
817                 }
818                 break;
819         case CSP_MODE_ETA:
820                 if (!alg_is_cipher(csp->csp_cipher_alg))
821                         return (false);
822                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
823                         if (csp->csp_cipher_klen == 0)
824                                 return (false);
825                         if (csp->csp_ivlen == 0)
826                                 return (false);
827                 }
828                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
829                         return (false);
830                 if (!alg_is_digest(csp->csp_auth_alg))
831                         return (false);
832
833                 /* Key is optional for BLAKE2 digests. */
834                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
835                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
836                         ;
837                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
838                         if (csp->csp_auth_klen == 0)
839                                 return (false);
840                 } else {
841                         if (csp->csp_auth_klen != 0)
842                                 return (false);
843                 }
844                 if (csp->csp_auth_mlen != 0) {
845                         axf = crypto_auth_hash(csp);
846                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
847                                 return (false);
848                 }
849                 break;
850         default:
851                 return (false);
852         }
853
854         return (true);
855 }
856
857 /*
858  * Delete a session after it has been detached from its driver.
859  */
860 static void
861 crypto_deletesession(crypto_session_t cses)
862 {
863         struct cryptocap *cap;
864
865         cap = cses->cap;
866
867         zfree(cses, M_CRYPTO_DATA);
868
869         CRYPTO_DRIVER_LOCK();
870         cap->cc_sessions--;
871         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
872                 wakeup(cap);
873         CRYPTO_DRIVER_UNLOCK();
874         cap_rele(cap);
875 }
876
877 /*
878  * Create a new session.  The crid argument specifies a crypto
879  * driver to use or constraints on a driver to select (hardware
880  * only, software only, either).  Whatever driver is selected
881  * must be capable of the requested crypto algorithms.
882  */
883 int
884 crypto_newsession(crypto_session_t *cses,
885     const struct crypto_session_params *csp, int crid)
886 {
887         static uint64_t sessid = 0;
888         crypto_session_t res;
889         struct cryptocap *cap;
890         int err;
891
892         if (!check_csp(csp))
893                 return (EINVAL);
894
895         res = NULL;
896
897         CRYPTO_DRIVER_LOCK();
898         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
899                 /*
900                  * Use specified driver; verify it is capable.
901                  */
902                 cap = crypto_checkdriver(crid);
903                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
904                         cap = NULL;
905         } else {
906                 /*
907                  * No requested driver; select based on crid flags.
908                  */
909                 cap = crypto_select_driver(csp, crid);
910         }
911         if (cap == NULL) {
912                 CRYPTO_DRIVER_UNLOCK();
913                 CRYPTDEB("no driver");
914                 return (EOPNOTSUPP);
915         }
916         cap_ref(cap);
917         cap->cc_sessions++;
918         CRYPTO_DRIVER_UNLOCK();
919
920         /* Allocate a single block for the generic session and driver softc. */
921         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
922             M_WAITOK | M_ZERO);
923         res->cap = cap;
924         res->csp = *csp;
925         res->id = atomic_fetchadd_64(&sessid, 1);
926
927         /* Call the driver initialization routine. */
928         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
929         if (err != 0) {
930                 CRYPTDEB("dev newsession failed: %d", err);
931                 crypto_deletesession(res);
932                 return (err);
933         }
934
935         *cses = res;
936         return (0);
937 }
938
939 /*
940  * Delete an existing session (or a reserved session on an unregistered
941  * driver).
942  */
943 void
944 crypto_freesession(crypto_session_t cses)
945 {
946         struct cryptocap *cap;
947
948         if (cses == NULL)
949                 return;
950
951         cap = cses->cap;
952
953         /* Call the driver cleanup routine, if available. */
954         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
955
956         crypto_deletesession(cses);
957 }
958
959 /*
960  * Return a new driver id.  Registers a driver with the system so that
961  * it can be probed by subsequent sessions.
962  */
963 int32_t
964 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
965 {
966         struct cryptocap *cap, **newdrv;
967         int i;
968
969         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
970                 device_printf(dev,
971                     "no flags specified when registering driver\n");
972                 return -1;
973         }
974
975         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
976         cap->cc_dev = dev;
977         cap->cc_session_size = sessionsize;
978         cap->cc_flags = flags;
979         refcount_init(&cap->cc_refs, 1);
980
981         CRYPTO_DRIVER_LOCK();
982         for (;;) {
983                 for (i = 0; i < crypto_drivers_size; i++) {
984                         if (crypto_drivers[i] == NULL)
985                                 break;
986                 }
987
988                 if (i < crypto_drivers_size)
989                         break;
990
991                 /* Out of entries, allocate some more. */
992
993                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
994                         CRYPTO_DRIVER_UNLOCK();
995                         printf("crypto: driver count wraparound!\n");
996                         cap_rele(cap);
997                         return (-1);
998                 }
999                 CRYPTO_DRIVER_UNLOCK();
1000
1001                 newdrv = malloc(2 * crypto_drivers_size *
1002                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1003
1004                 CRYPTO_DRIVER_LOCK();
1005                 memcpy(newdrv, crypto_drivers,
1006                     crypto_drivers_size * sizeof(*crypto_drivers));
1007
1008                 crypto_drivers_size *= 2;
1009
1010                 free(crypto_drivers, M_CRYPTO_DATA);
1011                 crypto_drivers = newdrv;
1012         }
1013
1014         cap->cc_hid = i;
1015         crypto_drivers[i] = cap;
1016         CRYPTO_DRIVER_UNLOCK();
1017
1018         if (bootverbose)
1019                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1020                     device_get_nameunit(dev), i, flags);
1021
1022         return i;
1023 }
1024
1025 /*
1026  * Lookup a driver by name.  We match against the full device
1027  * name and unit, and against just the name.  The latter gives
1028  * us a simple widlcarding by device name.  On success return the
1029  * driver/hardware identifier; otherwise return -1.
1030  */
1031 int
1032 crypto_find_driver(const char *match)
1033 {
1034         struct cryptocap *cap;
1035         int i, len = strlen(match);
1036
1037         CRYPTO_DRIVER_LOCK();
1038         for (i = 0; i < crypto_drivers_size; i++) {
1039                 if (crypto_drivers[i] == NULL)
1040                         continue;
1041                 cap = crypto_drivers[i];
1042                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1043                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1044                         CRYPTO_DRIVER_UNLOCK();
1045                         return (i);
1046                 }
1047         }
1048         CRYPTO_DRIVER_UNLOCK();
1049         return (-1);
1050 }
1051
1052 /*
1053  * Return the device_t for the specified driver or NULL
1054  * if the driver identifier is invalid.
1055  */
1056 device_t
1057 crypto_find_device_byhid(int hid)
1058 {
1059         struct cryptocap *cap;
1060         device_t dev;
1061
1062         dev = NULL;
1063         CRYPTO_DRIVER_LOCK();
1064         cap = crypto_checkdriver(hid);
1065         if (cap != NULL)
1066                 dev = cap->cc_dev;
1067         CRYPTO_DRIVER_UNLOCK();
1068         return (dev);
1069 }
1070
1071 /*
1072  * Return the device/driver capabilities.
1073  */
1074 int
1075 crypto_getcaps(int hid)
1076 {
1077         struct cryptocap *cap;
1078         int flags;
1079
1080         flags = 0;
1081         CRYPTO_DRIVER_LOCK();
1082         cap = crypto_checkdriver(hid);
1083         if (cap != NULL)
1084                 flags = cap->cc_flags;
1085         CRYPTO_DRIVER_UNLOCK();
1086         return (flags);
1087 }
1088
1089 /*
1090  * Unregister all algorithms associated with a crypto driver.
1091  * If there are pending sessions using it, leave enough information
1092  * around so that subsequent calls using those sessions will
1093  * correctly detect the driver has been unregistered and reroute
1094  * requests.
1095  */
1096 int
1097 crypto_unregister_all(uint32_t driverid)
1098 {
1099         struct cryptocap *cap;
1100
1101         CRYPTO_DRIVER_LOCK();
1102         cap = crypto_checkdriver(driverid);
1103         if (cap == NULL) {
1104                 CRYPTO_DRIVER_UNLOCK();
1105                 return (EINVAL);
1106         }
1107
1108         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1109         crypto_drivers[driverid] = NULL;
1110
1111         /*
1112          * XXX: This doesn't do anything to kick sessions that
1113          * have no pending operations.
1114          */
1115         while (cap->cc_sessions != 0)
1116                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1117         CRYPTO_DRIVER_UNLOCK();
1118         cap_rele(cap);
1119
1120         return (0);
1121 }
1122
1123 /*
1124  * Clear blockage on a driver.  The what parameter indicates whether
1125  * the driver is now ready for cryptop's and/or cryptokop's.
1126  */
1127 int
1128 crypto_unblock(uint32_t driverid, int what)
1129 {
1130         struct cryptocap *cap;
1131         int err;
1132
1133         CRYPTO_Q_LOCK();
1134         cap = crypto_checkdriver(driverid);
1135         if (cap != NULL) {
1136                 if (what & CRYPTO_SYMQ)
1137                         cap->cc_qblocked = 0;
1138                 if (crp_sleep)
1139                         wakeup_one(&crp_q);
1140                 err = 0;
1141         } else
1142                 err = EINVAL;
1143         CRYPTO_Q_UNLOCK();
1144
1145         return err;
1146 }
1147
1148 size_t
1149 crypto_buffer_len(struct crypto_buffer *cb)
1150 {
1151         switch (cb->cb_type) {
1152         case CRYPTO_BUF_CONTIG:
1153                 return (cb->cb_buf_len);
1154         case CRYPTO_BUF_MBUF:
1155                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1156                         return (cb->cb_mbuf->m_pkthdr.len);
1157                 return (m_length(cb->cb_mbuf, NULL));
1158         case CRYPTO_BUF_SINGLE_MBUF:
1159                 return (cb->cb_mbuf->m_len);
1160         case CRYPTO_BUF_VMPAGE:
1161                 return (cb->cb_vm_page_len);
1162         case CRYPTO_BUF_UIO:
1163                 return (cb->cb_uio->uio_resid);
1164         default:
1165                 return (0);
1166         }
1167 }
1168
1169 #ifdef INVARIANTS
1170 /* Various sanity checks on crypto requests. */
1171 static void
1172 cb_sanity(struct crypto_buffer *cb, const char *name)
1173 {
1174         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1175             ("incoming crp with invalid %s buffer type", name));
1176         switch (cb->cb_type) {
1177         case CRYPTO_BUF_CONTIG:
1178                 KASSERT(cb->cb_buf_len >= 0,
1179                     ("incoming crp with -ve %s buffer length", name));
1180                 break;
1181         case CRYPTO_BUF_VMPAGE:
1182                 KASSERT(CRYPTO_HAS_VMPAGE,
1183                     ("incoming crp uses dmap on supported arch"));
1184                 KASSERT(cb->cb_vm_page_len >= 0,
1185                     ("incoming crp with -ve %s buffer length", name));
1186                 KASSERT(cb->cb_vm_page_offset >= 0,
1187                     ("incoming crp with -ve %s buffer offset", name));
1188                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1189                     ("incoming crp with %s buffer offset greater than page size"
1190                      , name));
1191                 break;
1192         default:
1193                 break;
1194         }
1195 }
1196
1197 static void
1198 crp_sanity(struct cryptop *crp)
1199 {
1200         struct crypto_session_params *csp;
1201         struct crypto_buffer *out;
1202         size_t ilen, len, olen;
1203
1204         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1205         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1206             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1207             ("incoming crp with invalid output buffer type"));
1208         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1209         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1210             ("incoming crp already done"));
1211
1212         csp = &crp->crp_session->csp;
1213         cb_sanity(&crp->crp_buf, "input");
1214         ilen = crypto_buffer_len(&crp->crp_buf);
1215         olen = ilen;
1216         out = NULL;
1217         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1218                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1219                         cb_sanity(&crp->crp_obuf, "output");
1220                         out = &crp->crp_obuf;
1221                         olen = crypto_buffer_len(out);
1222                 }
1223         } else
1224                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1225                     ("incoming crp with separate output buffer "
1226                     "but no session support"));
1227
1228         switch (csp->csp_mode) {
1229         case CSP_MODE_COMPRESS:
1230                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1231                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1232                     ("invalid compression op %x", crp->crp_op));
1233                 break;
1234         case CSP_MODE_CIPHER:
1235                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1236                     crp->crp_op == CRYPTO_OP_DECRYPT,
1237                     ("invalid cipher op %x", crp->crp_op));
1238                 break;
1239         case CSP_MODE_DIGEST:
1240                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1241                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1242                     ("invalid digest op %x", crp->crp_op));
1243                 break;
1244         case CSP_MODE_AEAD:
1245                 KASSERT(crp->crp_op ==
1246                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1247                     crp->crp_op ==
1248                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1249                     ("invalid AEAD op %x", crp->crp_op));
1250                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1251                     ("AEAD without a separate IV"));
1252                 break;
1253         case CSP_MODE_ETA:
1254                 KASSERT(crp->crp_op ==
1255                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1256                     crp->crp_op ==
1257                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1258                     ("invalid ETA op %x", crp->crp_op));
1259                 break;
1260         }
1261         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1262                 if (crp->crp_aad == NULL) {
1263                         KASSERT(crp->crp_aad_start == 0 ||
1264                             crp->crp_aad_start < ilen,
1265                             ("invalid AAD start"));
1266                         KASSERT(crp->crp_aad_length != 0 ||
1267                             crp->crp_aad_start == 0,
1268                             ("AAD with zero length and non-zero start"));
1269                         KASSERT(crp->crp_aad_length == 0 ||
1270                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1271                             ("AAD outside input length"));
1272                 } else {
1273                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1274                             ("session doesn't support separate AAD buffer"));
1275                         KASSERT(crp->crp_aad_start == 0,
1276                             ("separate AAD buffer with non-zero AAD start"));
1277                         KASSERT(crp->crp_aad_length != 0,
1278                             ("separate AAD buffer with zero length"));
1279                 }
1280         } else {
1281                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1282                     crp->crp_aad_length == 0,
1283                     ("AAD region in request not supporting AAD"));
1284         }
1285         if (csp->csp_ivlen == 0) {
1286                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1287                     ("IV_SEPARATE set when IV isn't used"));
1288                 KASSERT(crp->crp_iv_start == 0,
1289                     ("crp_iv_start set when IV isn't used"));
1290         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1291                 KASSERT(crp->crp_iv_start == 0,
1292                     ("IV_SEPARATE used with non-zero IV start"));
1293         } else {
1294                 KASSERT(crp->crp_iv_start < ilen,
1295                     ("invalid IV start"));
1296                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1297                     ("IV outside buffer length"));
1298         }
1299         /* XXX: payload_start of 0 should always be < ilen? */
1300         KASSERT(crp->crp_payload_start == 0 ||
1301             crp->crp_payload_start < ilen,
1302             ("invalid payload start"));
1303         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1304             ilen, ("payload outside input buffer"));
1305         if (out == NULL) {
1306                 KASSERT(crp->crp_payload_output_start == 0,
1307                     ("payload output start non-zero without output buffer"));
1308         } else {
1309                 KASSERT(crp->crp_payload_output_start < olen,
1310                     ("invalid payload output start"));
1311                 KASSERT(crp->crp_payload_output_start +
1312                     crp->crp_payload_length <= olen,
1313                     ("payload outside output buffer"));
1314         }
1315         if (csp->csp_mode == CSP_MODE_DIGEST ||
1316             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1317                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1318                         len = ilen;
1319                 else
1320                         len = olen;
1321                 KASSERT(crp->crp_digest_start == 0 ||
1322                     crp->crp_digest_start < len,
1323                     ("invalid digest start"));
1324                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1325                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1326                     ("digest outside buffer"));
1327         } else {
1328                 KASSERT(crp->crp_digest_start == 0,
1329                     ("non-zero digest start for request without a digest"));
1330         }
1331         if (csp->csp_cipher_klen != 0)
1332                 KASSERT(csp->csp_cipher_key != NULL ||
1333                     crp->crp_cipher_key != NULL,
1334                     ("cipher request without a key"));
1335         if (csp->csp_auth_klen != 0)
1336                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1337                     ("auth request without a key"));
1338         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1339 }
1340 #endif
1341
1342 static int
1343 crypto_dispatch_one(struct cryptop *crp, int hint)
1344 {
1345         struct cryptocap *cap;
1346         int result;
1347
1348 #ifdef INVARIANTS
1349         crp_sanity(crp);
1350 #endif
1351         CRYPTOSTAT_INC(cs_ops);
1352
1353         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1354
1355         /*
1356          * Caller marked the request to be processed immediately; dispatch it
1357          * directly to the driver unless the driver is currently blocked, in
1358          * which case it is queued for deferred dispatch.
1359          */
1360         cap = crp->crp_session->cap;
1361         if (!atomic_load_int(&cap->cc_qblocked)) {
1362                 result = crypto_invoke(cap, crp, hint);
1363                 if (result != ERESTART)
1364                         return (result);
1365
1366                 /*
1367                  * The driver ran out of resources, put the request on the
1368                  * queue.
1369                  */
1370         }
1371         crypto_batch_enqueue(crp);
1372         return (0);
1373 }
1374
1375 int
1376 crypto_dispatch(struct cryptop *crp)
1377 {
1378         return (crypto_dispatch_one(crp, 0));
1379 }
1380
1381 int
1382 crypto_dispatch_async(struct cryptop *crp, int flags)
1383 {
1384         struct crypto_ret_worker *ret_worker;
1385
1386         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1387                 /*
1388                  * The driver issues completions asynchonously, don't bother
1389                  * deferring dispatch to a worker thread.
1390                  */
1391                 return (crypto_dispatch(crp));
1392         }
1393
1394 #ifdef INVARIANTS
1395         crp_sanity(crp);
1396 #endif
1397         CRYPTOSTAT_INC(cs_ops);
1398
1399         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1400         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1401                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1402                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1403                 CRYPTO_RETW_LOCK(ret_worker);
1404                 crp->crp_seq = ret_worker->reorder_ops++;
1405                 CRYPTO_RETW_UNLOCK(ret_worker);
1406         }
1407         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1408         taskqueue_enqueue(crypto_tq, &crp->crp_task);
1409         return (0);
1410 }
1411
1412 void
1413 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1414 {
1415         struct cryptop *crp;
1416         int hint;
1417
1418         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1419                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1420                 TAILQ_REMOVE(crpq, crp, crp_next);
1421                 if (crypto_dispatch_one(crp, hint) != 0)
1422                         crypto_batch_enqueue(crp);
1423         }
1424 }
1425
1426 static void
1427 crypto_batch_enqueue(struct cryptop *crp)
1428 {
1429
1430         CRYPTO_Q_LOCK();
1431         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1432         if (crp_sleep)
1433                 wakeup_one(&crp_q);
1434         CRYPTO_Q_UNLOCK();
1435 }
1436
1437 static void
1438 crypto_task_invoke(void *ctx, int pending)
1439 {
1440         struct cryptocap *cap;
1441         struct cryptop *crp;
1442         int result;
1443
1444         crp = (struct cryptop *)ctx;
1445         cap = crp->crp_session->cap;
1446         result = crypto_invoke(cap, crp, 0);
1447         if (result == ERESTART)
1448                 crypto_batch_enqueue(crp);
1449 }
1450
1451 /*
1452  * Dispatch a crypto request to the appropriate crypto devices.
1453  */
1454 static int
1455 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1456 {
1457
1458         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1459         KASSERT(crp->crp_callback != NULL,
1460             ("%s: crp->crp_callback == NULL", __func__));
1461         KASSERT(crp->crp_session != NULL,
1462             ("%s: crp->crp_session == NULL", __func__));
1463
1464         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1465                 struct crypto_session_params csp;
1466                 crypto_session_t nses;
1467
1468                 /*
1469                  * Driver has unregistered; migrate the session and return
1470                  * an error to the caller so they'll resubmit the op.
1471                  *
1472                  * XXX: What if there are more already queued requests for this
1473                  *      session?
1474                  *
1475                  * XXX: Real solution is to make sessions refcounted
1476                  * and force callers to hold a reference when
1477                  * assigning to crp_session.  Could maybe change
1478                  * crypto_getreq to accept a session pointer to make
1479                  * that work.  Alternatively, we could abandon the
1480                  * notion of rewriting crp_session in requests forcing
1481                  * the caller to deal with allocating a new session.
1482                  * Perhaps provide a method to allow a crp's session to
1483                  * be swapped that callers could use.
1484                  */
1485                 csp = crp->crp_session->csp;
1486                 crypto_freesession(crp->crp_session);
1487
1488                 /*
1489                  * XXX: Key pointers may no longer be valid.  If we
1490                  * really want to support this we need to define the
1491                  * KPI such that 'csp' is required to be valid for the
1492                  * duration of a session by the caller perhaps.
1493                  *
1494                  * XXX: If the keys have been changed this will reuse
1495                  * the old keys.  This probably suggests making
1496                  * rekeying more explicit and updating the key
1497                  * pointers in 'csp' when the keys change.
1498                  */
1499                 if (crypto_newsession(&nses, &csp,
1500                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1501                         crp->crp_session = nses;
1502
1503                 crp->crp_etype = EAGAIN;
1504                 crypto_done(crp);
1505                 return 0;
1506         } else {
1507                 /*
1508                  * Invoke the driver to process the request.
1509                  */
1510                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1511         }
1512 }
1513
1514 void
1515 crypto_destroyreq(struct cryptop *crp)
1516 {
1517 #ifdef DIAGNOSTIC
1518         {
1519                 struct cryptop *crp2;
1520                 struct crypto_ret_worker *ret_worker;
1521
1522                 CRYPTO_Q_LOCK();
1523                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1524                         KASSERT(crp2 != crp,
1525                             ("Freeing cryptop from the crypto queue (%p).",
1526                             crp));
1527                 }
1528                 CRYPTO_Q_UNLOCK();
1529
1530                 FOREACH_CRYPTO_RETW(ret_worker) {
1531                         CRYPTO_RETW_LOCK(ret_worker);
1532                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1533                                 KASSERT(crp2 != crp,
1534                                     ("Freeing cryptop from the return queue (%p).",
1535                                     crp));
1536                         }
1537                         CRYPTO_RETW_UNLOCK(ret_worker);
1538                 }
1539         }
1540 #endif
1541 }
1542
1543 void
1544 crypto_freereq(struct cryptop *crp)
1545 {
1546         if (crp == NULL)
1547                 return;
1548
1549         crypto_destroyreq(crp);
1550         uma_zfree(cryptop_zone, crp);
1551 }
1552
1553 static void
1554 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1555 {
1556         crp->crp_session = cses;
1557 }
1558
1559 void
1560 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1561 {
1562         memset(crp, 0, sizeof(*crp));
1563         _crypto_initreq(crp, cses);
1564 }
1565
1566 struct cryptop *
1567 crypto_getreq(crypto_session_t cses, int how)
1568 {
1569         struct cryptop *crp;
1570
1571         MPASS(how == M_WAITOK || how == M_NOWAIT);
1572         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1573         if (crp != NULL)
1574                 _crypto_initreq(crp, cses);
1575         return (crp);
1576 }
1577
1578 /*
1579  * Invoke the callback on behalf of the driver.
1580  */
1581 void
1582 crypto_done(struct cryptop *crp)
1583 {
1584         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1585                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1586         crp->crp_flags |= CRYPTO_F_DONE;
1587         if (crp->crp_etype != 0)
1588                 CRYPTOSTAT_INC(cs_errs);
1589
1590         /*
1591          * CBIMM means unconditionally do the callback immediately;
1592          * CBIFSYNC means do the callback immediately only if the
1593          * operation was done synchronously.  Both are used to avoid
1594          * doing extraneous context switches; the latter is mostly
1595          * used with the software crypto driver.
1596          */
1597         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1598             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1599             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1600             CRYPTO_SESS_SYNC(crp->crp_session)))) {
1601                 /*
1602                  * Do the callback directly.  This is ok when the
1603                  * callback routine does very little (e.g. the
1604                  * /dev/crypto callback method just does a wakeup).
1605                  */
1606                 crp->crp_callback(crp);
1607         } else {
1608                 struct crypto_ret_worker *ret_worker;
1609                 bool wake;
1610
1611                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1612
1613                 /*
1614                  * Normal case; queue the callback for the thread.
1615                  */
1616                 CRYPTO_RETW_LOCK(ret_worker);
1617                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1618                         struct cryptop *tmp;
1619
1620                         TAILQ_FOREACH_REVERSE(tmp,
1621                             &ret_worker->crp_ordered_ret_q, cryptop_q,
1622                             crp_next) {
1623                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1624                                         TAILQ_INSERT_AFTER(
1625                                             &ret_worker->crp_ordered_ret_q, tmp,
1626                                             crp, crp_next);
1627                                         break;
1628                                 }
1629                         }
1630                         if (tmp == NULL) {
1631                                 TAILQ_INSERT_HEAD(
1632                                     &ret_worker->crp_ordered_ret_q, crp,
1633                                     crp_next);
1634                         }
1635
1636                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1637                 } else {
1638                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1639                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1640                             crp_next);
1641                 }
1642
1643                 if (wake)
1644                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1645                 CRYPTO_RETW_UNLOCK(ret_worker);
1646         }
1647 }
1648
1649 /*
1650  * Terminate a thread at module unload.  The process that
1651  * initiated this is waiting for us to signal that we're gone;
1652  * wake it up and exit.  We use the driver table lock to insure
1653  * we don't do the wakeup before they're waiting.  There is no
1654  * race here because the waiter sleeps on the proc lock for the
1655  * thread so it gets notified at the right time because of an
1656  * extra wakeup that's done in exit1().
1657  */
1658 static void
1659 crypto_finis(void *chan)
1660 {
1661         CRYPTO_DRIVER_LOCK();
1662         wakeup_one(chan);
1663         CRYPTO_DRIVER_UNLOCK();
1664         kproc_exit(0);
1665 }
1666
1667 /*
1668  * Crypto thread, dispatches crypto requests.
1669  */
1670 static void
1671 crypto_proc(void)
1672 {
1673         struct cryptop *crp, *submit;
1674         struct cryptocap *cap;
1675         int result, hint;
1676
1677 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1678         fpu_kern_thread(FPU_KERN_NORMAL);
1679 #endif
1680
1681         CRYPTO_Q_LOCK();
1682         for (;;) {
1683                 /*
1684                  * Find the first element in the queue that can be
1685                  * processed and look-ahead to see if multiple ops
1686                  * are ready for the same driver.
1687                  */
1688                 submit = NULL;
1689                 hint = 0;
1690                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1691                         cap = crp->crp_session->cap;
1692                         /*
1693                          * Driver cannot disappeared when there is an active
1694                          * session.
1695                          */
1696                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1697                             __func__, __LINE__));
1698                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1699                                 /* Op needs to be migrated, process it. */
1700                                 if (submit == NULL)
1701                                         submit = crp;
1702                                 break;
1703                         }
1704                         if (!cap->cc_qblocked) {
1705                                 if (submit != NULL) {
1706                                         /*
1707                                          * We stop on finding another op,
1708                                          * regardless whether its for the same
1709                                          * driver or not.  We could keep
1710                                          * searching the queue but it might be
1711                                          * better to just use a per-driver
1712                                          * queue instead.
1713                                          */
1714                                         if (submit->crp_session->cap == cap)
1715                                                 hint = CRYPTO_HINT_MORE;
1716                                 } else {
1717                                         submit = crp;
1718                                 }
1719                                 break;
1720                         }
1721                 }
1722                 if (submit != NULL) {
1723                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1724                         cap = submit->crp_session->cap;
1725                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1726                             __func__, __LINE__));
1727                         CRYPTO_Q_UNLOCK();
1728                         result = crypto_invoke(cap, submit, hint);
1729                         CRYPTO_Q_LOCK();
1730                         if (result == ERESTART) {
1731                                 /*
1732                                  * The driver ran out of resources, mark the
1733                                  * driver ``blocked'' for cryptop's and put
1734                                  * the request back in the queue.  It would
1735                                  * best to put the request back where we got
1736                                  * it but that's hard so for now we put it
1737                                  * at the front.  This should be ok; putting
1738                                  * it at the end does not work.
1739                                  */
1740                                 cap->cc_qblocked = 1;
1741                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1742                                 CRYPTOSTAT_INC(cs_blocks);
1743                         }
1744                 } else {
1745                         /*
1746                          * Nothing more to be processed.  Sleep until we're
1747                          * woken because there are more ops to process.
1748                          * This happens either by submission or by a driver
1749                          * becoming unblocked and notifying us through
1750                          * crypto_unblock.  Note that when we wakeup we
1751                          * start processing each queue again from the
1752                          * front. It's not clear that it's important to
1753                          * preserve this ordering since ops may finish
1754                          * out of order if dispatched to different devices
1755                          * and some become blocked while others do not.
1756                          */
1757                         crp_sleep = 1;
1758                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1759                         crp_sleep = 0;
1760                         if (cryptoproc == NULL)
1761                                 break;
1762                         CRYPTOSTAT_INC(cs_intrs);
1763                 }
1764         }
1765         CRYPTO_Q_UNLOCK();
1766
1767         crypto_finis(&crp_q);
1768 }
1769
1770 /*
1771  * Crypto returns thread, does callbacks for processed crypto requests.
1772  * Callbacks are done here, rather than in the crypto drivers, because
1773  * callbacks typically are expensive and would slow interrupt handling.
1774  */
1775 static void
1776 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
1777 {
1778         struct cryptop *crpt;
1779
1780         CRYPTO_RETW_LOCK(ret_worker);
1781         for (;;) {
1782                 /* Harvest return q's for completed ops */
1783                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1784                 if (crpt != NULL) {
1785                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1786                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1787                                 ret_worker->reorder_cur_seq++;
1788                         } else {
1789                                 crpt = NULL;
1790                         }
1791                 }
1792
1793                 if (crpt == NULL) {
1794                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1795                         if (crpt != NULL)
1796                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1797                 }
1798
1799                 if (crpt != NULL) {
1800                         CRYPTO_RETW_UNLOCK(ret_worker);
1801                         /*
1802                          * Run callbacks unlocked.
1803                          */
1804                         if (crpt != NULL)
1805                                 crpt->crp_callback(crpt);
1806                         CRYPTO_RETW_LOCK(ret_worker);
1807                 } else {
1808                         /*
1809                          * Nothing more to be processed.  Sleep until we're
1810                          * woken because there are more returns to process.
1811                          */
1812                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1813                                 "crypto_ret_wait", 0);
1814                         if (ret_worker->cryptoretproc == NULL)
1815                                 break;
1816                         CRYPTOSTAT_INC(cs_rets);
1817                 }
1818         }
1819         CRYPTO_RETW_UNLOCK(ret_worker);
1820
1821         crypto_finis(&ret_worker->crp_ret_q);
1822 }
1823
1824 #ifdef DDB
1825 static void
1826 db_show_drivers(void)
1827 {
1828         int hid;
1829
1830         db_printf("%12s %4s %8s %2s\n"
1831                 , "Device"
1832                 , "Ses"
1833                 , "Flags"
1834                 , "QB"
1835         );
1836         for (hid = 0; hid < crypto_drivers_size; hid++) {
1837                 const struct cryptocap *cap = crypto_drivers[hid];
1838                 if (cap == NULL)
1839                         continue;
1840                 db_printf("%-12s %4u %08x %2u\n"
1841                     , device_get_nameunit(cap->cc_dev)
1842                     , cap->cc_sessions
1843                     , cap->cc_flags
1844                     , cap->cc_qblocked
1845                 );
1846         }
1847 }
1848
1849 DB_SHOW_COMMAND(crypto, db_show_crypto)
1850 {
1851         struct cryptop *crp;
1852         struct crypto_ret_worker *ret_worker;
1853
1854         db_show_drivers();
1855         db_printf("\n");
1856
1857         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1858             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1859             "Device", "Callback");
1860         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1861                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1862                     , crp->crp_session->cap->cc_hid
1863                     , (int) crypto_ses2caps(crp->crp_session)
1864                     , crp->crp_olen
1865                     , crp->crp_etype
1866                     , crp->crp_flags
1867                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
1868                     , crp->crp_callback
1869                 );
1870         }
1871         FOREACH_CRYPTO_RETW(ret_worker) {
1872                 db_printf("\n%8s %4s %4s %4s %8s\n",
1873                     "ret_worker", "HID", "Etype", "Flags", "Callback");
1874                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1875                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1876                                 db_printf("%8td %4u %4u %04x %8p\n"
1877                                     , CRYPTO_RETW_ID(ret_worker)
1878                                     , crp->crp_session->cap->cc_hid
1879                                     , crp->crp_etype
1880                                     , crp->crp_flags
1881                                     , crp->crp_callback
1882                                 );
1883                         }
1884                 }
1885         }
1886 }
1887 #endif
1888
1889 int crypto_modevent(module_t mod, int type, void *unused);
1890
1891 /*
1892  * Initialization code, both for static and dynamic loading.
1893  * Note this is not invoked with the usual MODULE_DECLARE
1894  * mechanism but instead is listed as a dependency by the
1895  * cryptosoft driver.  This guarantees proper ordering of
1896  * calls on module load/unload.
1897  */
1898 int
1899 crypto_modevent(module_t mod, int type, void *unused)
1900 {
1901         int error = EINVAL;
1902
1903         switch (type) {
1904         case MOD_LOAD:
1905                 error = crypto_init();
1906                 if (error == 0 && bootverbose)
1907                         printf("crypto: <crypto core>\n");
1908                 break;
1909         case MOD_UNLOAD:
1910                 /*XXX disallow if active sessions */
1911                 error = 0;
1912                 crypto_destroy();
1913                 return 0;
1914         }
1915         return error;
1916 }
1917 MODULE_VERSION(crypto, 1);
1918 MODULE_DEPEND(crypto, zlib, 1, 1, 1);