]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
sys: Remove $FreeBSD$: one-line .c pattern
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 /*
31  * Cryptographic Subsystem.
32  *
33  * This code is derived from the Openbsd Cryptographic Framework (OCF)
34  * that has the copyright shown below.  Very little of the original
35  * code remains.
36  */
37
38 /*-
39  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
40  *
41  * This code was written by Angelos D. Keromytis in Athens, Greece, in
42  * February 2000. Network Security Technologies Inc. (NSTI) kindly
43  * supported the development of this code.
44  *
45  * Copyright (c) 2000, 2001 Angelos D. Keromytis
46  *
47  * Permission to use, copy, and modify this software with or without fee
48  * is hereby granted, provided that this entire notice is included in
49  * all source code copies of any software which is or includes a copy or
50  * modification of this software.
51  *
52  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
53  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
54  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
55  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
56  * PURPOSE.
57  */
58
59 #include "opt_ddb.h"
60
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/counter.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/linker.h>
67 #include <sys/lock.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/malloc.h>
71 #include <sys/mbuf.h>
72 #include <sys/proc.h>
73 #include <sys/refcount.h>
74 #include <sys/sdt.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/taskqueue.h>
78 #include <sys/uio.h>
79
80 #include <ddb/ddb.h>
81
82 #include <machine/vmparam.h>
83 #include <vm/uma.h>
84
85 #include <crypto/intake.h>
86 #include <opencrypto/cryptodev.h>
87 #include <opencrypto/xform_auth.h>
88 #include <opencrypto/xform_enc.h>
89
90 #include <sys/kobj.h>
91 #include <sys/bus.h>
92 #include "cryptodev_if.h"
93
94 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
95 #include <machine/pcb.h>
96 #endif
97
98 SDT_PROVIDER_DEFINE(opencrypto);
99
100 /*
101  * Crypto drivers register themselves by allocating a slot in the
102  * crypto_drivers table with crypto_get_driverid().
103  */
104 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
105 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
106 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
107 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108
109 /*
110  * Crypto device/driver capabilities structure.
111  *
112  * Synchronization:
113  * (d) - protected by CRYPTO_DRIVER_LOCK()
114  * (q) - protected by CRYPTO_Q_LOCK()
115  * Not tagged fields are read-only.
116  */
117 struct cryptocap {
118         device_t        cc_dev;
119         uint32_t        cc_hid;
120         uint32_t        cc_sessions;            /* (d) # of sessions */
121
122         int             cc_flags;               /* (d) flags */
123 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
124         int             cc_qblocked;            /* (q) symmetric q blocked */
125         size_t          cc_session_size;
126         volatile int    cc_refs;
127 };
128
129 static  struct cryptocap **crypto_drivers = NULL;
130 static  int crypto_drivers_size = 0;
131
132 struct crypto_session {
133         struct cryptocap *cap;
134         struct crypto_session_params csp;
135         uint64_t id;
136         /* Driver softc follows. */
137 };
138
139 static  int crp_sleep = 0;
140 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
141 static  struct mtx crypto_q_mtx;
142 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
143 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
144
145 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
146     "In-kernel cryptography");
147
148 /*
149  * Taskqueue used to dispatch the crypto requests submitted with
150  * crypto_dispatch_async .
151  */
152 static struct taskqueue *crypto_tq;
153
154 /*
155  * Crypto seq numbers are operated on with modular arithmetic
156  */
157 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
158
159 struct crypto_ret_worker {
160         struct mtx crypto_ret_mtx;
161
162         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
163         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
164
165         uint32_t reorder_ops;           /* total ordered sym jobs received */
166         uint32_t reorder_cur_seq;       /* current sym job dispatched */
167
168         struct thread *td;
169 };
170 static struct crypto_ret_worker *crypto_ret_workers = NULL;
171
172 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
173 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
174 #define FOREACH_CRYPTO_RETW(w) \
175         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
176
177 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
178 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
179
180 static int crypto_workers_num = 0;
181 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
182            &crypto_workers_num, 0,
183            "Number of crypto workers used to dispatch crypto jobs");
184 #ifdef COMPAT_FREEBSD12
185 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
186            &crypto_workers_num, 0,
187            "Number of crypto workers used to dispatch crypto jobs");
188 #endif
189
190 static  uma_zone_t cryptop_zone;
191
192 int     crypto_devallowsoft = 0;
193 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
194            &crypto_devallowsoft, 0,
195            "Enable use of software crypto by /dev/crypto");
196 #ifdef COMPAT_FREEBSD12
197 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
198            &crypto_devallowsoft, 0,
199            "Enable/disable use of software crypto by /dev/crypto");
200 #endif
201
202 #ifdef DIAGNOSTIC
203 bool crypto_destroyreq_check;
204 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
205            &crypto_destroyreq_check, 0,
206            "Enable checks when destroying a request");
207 #endif
208
209 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
210
211 static  void crypto_dispatch_thread(void *arg);
212 static  struct thread *cryptotd;
213 static  void crypto_ret_thread(void *arg);
214 static  void crypto_destroy(void);
215 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
216 static  void crypto_task_invoke(void *ctx, int pending);
217 static void crypto_batch_enqueue(struct cryptop *crp);
218
219 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
220 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
221     cryptostats, nitems(cryptostats),
222     "Crypto system statistics");
223
224 #define CRYPTOSTAT_INC(stat) do {                                       \
225         counter_u64_add(                                                \
226             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
227             1);                                                         \
228 } while (0)
229
230 static void
231 cryptostats_init(void *arg __unused)
232 {
233         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
234 }
235 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
236
237 static void
238 cryptostats_fini(void *arg __unused)
239 {
240         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
241 }
242 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
243     NULL);
244
245 /* Try to avoid directly exposing the key buffer as a symbol */
246 static struct keybuf *keybuf;
247
248 static struct keybuf empty_keybuf = {
249         .kb_nents = 0
250 };
251
252 /* Obtain the key buffer from boot metadata */
253 static void
254 keybuf_init(void)
255 {
256         caddr_t kmdp;
257
258         kmdp = preload_search_by_type("elf kernel");
259
260         if (kmdp == NULL)
261                 kmdp = preload_search_by_type("elf64 kernel");
262
263         keybuf = (struct keybuf *)preload_search_info(kmdp,
264             MODINFO_METADATA | MODINFOMD_KEYBUF);
265
266         if (keybuf == NULL)
267                 keybuf = &empty_keybuf;
268 }
269
270 /* It'd be nice if we could store these in some kind of secure memory... */
271 struct keybuf *
272 get_keybuf(void)
273 {
274
275         return (keybuf);
276 }
277
278 static struct cryptocap *
279 cap_ref(struct cryptocap *cap)
280 {
281
282         refcount_acquire(&cap->cc_refs);
283         return (cap);
284 }
285
286 static void
287 cap_rele(struct cryptocap *cap)
288 {
289
290         if (refcount_release(&cap->cc_refs) == 0)
291                 return;
292
293         KASSERT(cap->cc_sessions == 0,
294             ("freeing crypto driver with active sessions"));
295
296         free(cap, M_CRYPTO_DATA);
297 }
298
299 static int
300 crypto_init(void)
301 {
302         struct crypto_ret_worker *ret_worker;
303         struct proc *p;
304         int error;
305
306         mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
307
308         TAILQ_INIT(&crp_q);
309         mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
310
311         cryptop_zone = uma_zcreate("cryptop",
312             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
313             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
314
315         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
316         crypto_drivers = malloc(crypto_drivers_size *
317             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
318
319         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
320                 crypto_workers_num = mp_ncpus;
321
322         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
323             taskqueue_thread_enqueue, &crypto_tq);
324
325         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
326             "crypto");
327
328         p = NULL;
329         error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
330             0, 0, "crypto", "crypto");
331         if (error) {
332                 printf("crypto_init: cannot start crypto thread; error %d",
333                         error);
334                 goto bad;
335         }
336
337         crypto_ret_workers = mallocarray(crypto_workers_num,
338             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
339
340         FOREACH_CRYPTO_RETW(ret_worker) {
341                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
342                 TAILQ_INIT(&ret_worker->crp_ret_q);
343
344                 ret_worker->reorder_ops = 0;
345                 ret_worker->reorder_cur_seq = 0;
346
347                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
348                     NULL, MTX_DEF);
349
350                 error = kthread_add(crypto_ret_thread, ret_worker, p,
351                     &ret_worker->td, 0, 0, "crypto returns %td",
352                     CRYPTO_RETW_ID(ret_worker));
353                 if (error) {
354                         printf("crypto_init: cannot start cryptoret thread; error %d",
355                                 error);
356                         goto bad;
357                 }
358         }
359
360         keybuf_init();
361
362         return 0;
363 bad:
364         crypto_destroy();
365         return error;
366 }
367
368 /*
369  * Signal a crypto thread to terminate.  We use the driver
370  * table lock to synchronize the sleep/wakeups so that we
371  * are sure the threads have terminated before we release
372  * the data structures they use.  See crypto_finis below
373  * for the other half of this song-and-dance.
374  */
375 static void
376 crypto_terminate(struct thread **tdp, void *q)
377 {
378         struct thread *td;
379
380         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
381         td = *tdp;
382         *tdp = NULL;
383         if (td != NULL) {
384                 wakeup_one(q);
385                 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
386         }
387 }
388
389 static void
390 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
391     void *auth_ctx, uint8_t padval)
392 {
393         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
394         u_int i;
395
396         KASSERT(axf->blocksize <= sizeof(hmac_key),
397             ("Invalid HMAC block size %d", axf->blocksize));
398
399         /*
400          * If the key is larger than the block size, use the digest of
401          * the key as the key instead.
402          */
403         memset(hmac_key, 0, sizeof(hmac_key));
404         if (klen > axf->blocksize) {
405                 axf->Init(auth_ctx);
406                 axf->Update(auth_ctx, key, klen);
407                 axf->Final(hmac_key, auth_ctx);
408                 klen = axf->hashsize;
409         } else
410                 memcpy(hmac_key, key, klen);
411
412         for (i = 0; i < axf->blocksize; i++)
413                 hmac_key[i] ^= padval;
414
415         axf->Init(auth_ctx);
416         axf->Update(auth_ctx, hmac_key, axf->blocksize);
417         explicit_bzero(hmac_key, sizeof(hmac_key));
418 }
419
420 void
421 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
422     void *auth_ctx)
423 {
424
425         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
426 }
427
428 void
429 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
430     void *auth_ctx)
431 {
432
433         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
434 }
435
436 static void
437 crypto_destroy(void)
438 {
439         struct crypto_ret_worker *ret_worker;
440         int i;
441
442         /*
443          * Terminate any crypto threads.
444          */
445         if (crypto_tq != NULL)
446                 taskqueue_drain_all(crypto_tq);
447         CRYPTO_DRIVER_LOCK();
448         crypto_terminate(&cryptotd, &crp_q);
449         FOREACH_CRYPTO_RETW(ret_worker)
450                 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
451         CRYPTO_DRIVER_UNLOCK();
452
453         /* XXX flush queues??? */
454
455         /*
456          * Reclaim dynamically allocated resources.
457          */
458         for (i = 0; i < crypto_drivers_size; i++) {
459                 if (crypto_drivers[i] != NULL)
460                         cap_rele(crypto_drivers[i]);
461         }
462         free(crypto_drivers, M_CRYPTO_DATA);
463
464         if (cryptop_zone != NULL)
465                 uma_zdestroy(cryptop_zone);
466         mtx_destroy(&crypto_q_mtx);
467         FOREACH_CRYPTO_RETW(ret_worker)
468                 mtx_destroy(&ret_worker->crypto_ret_mtx);
469         free(crypto_ret_workers, M_CRYPTO_DATA);
470         if (crypto_tq != NULL)
471                 taskqueue_free(crypto_tq);
472         mtx_destroy(&crypto_drivers_mtx);
473 }
474
475 uint32_t
476 crypto_ses2hid(crypto_session_t crypto_session)
477 {
478         return (crypto_session->cap->cc_hid);
479 }
480
481 uint32_t
482 crypto_ses2caps(crypto_session_t crypto_session)
483 {
484         return (crypto_session->cap->cc_flags & 0xff000000);
485 }
486
487 void *
488 crypto_get_driver_session(crypto_session_t crypto_session)
489 {
490         return (crypto_session + 1);
491 }
492
493 const struct crypto_session_params *
494 crypto_get_params(crypto_session_t crypto_session)
495 {
496         return (&crypto_session->csp);
497 }
498
499 const struct auth_hash *
500 crypto_auth_hash(const struct crypto_session_params *csp)
501 {
502
503         switch (csp->csp_auth_alg) {
504         case CRYPTO_SHA1_HMAC:
505                 return (&auth_hash_hmac_sha1);
506         case CRYPTO_SHA2_224_HMAC:
507                 return (&auth_hash_hmac_sha2_224);
508         case CRYPTO_SHA2_256_HMAC:
509                 return (&auth_hash_hmac_sha2_256);
510         case CRYPTO_SHA2_384_HMAC:
511                 return (&auth_hash_hmac_sha2_384);
512         case CRYPTO_SHA2_512_HMAC:
513                 return (&auth_hash_hmac_sha2_512);
514         case CRYPTO_NULL_HMAC:
515                 return (&auth_hash_null);
516         case CRYPTO_RIPEMD160_HMAC:
517                 return (&auth_hash_hmac_ripemd_160);
518         case CRYPTO_RIPEMD160:
519                 return (&auth_hash_ripemd_160);
520         case CRYPTO_SHA1:
521                 return (&auth_hash_sha1);
522         case CRYPTO_SHA2_224:
523                 return (&auth_hash_sha2_224);
524         case CRYPTO_SHA2_256:
525                 return (&auth_hash_sha2_256);
526         case CRYPTO_SHA2_384:
527                 return (&auth_hash_sha2_384);
528         case CRYPTO_SHA2_512:
529                 return (&auth_hash_sha2_512);
530         case CRYPTO_AES_NIST_GMAC:
531                 switch (csp->csp_auth_klen) {
532                 case 128 / 8:
533                         return (&auth_hash_nist_gmac_aes_128);
534                 case 192 / 8:
535                         return (&auth_hash_nist_gmac_aes_192);
536                 case 256 / 8:
537                         return (&auth_hash_nist_gmac_aes_256);
538                 default:
539                         return (NULL);
540                 }
541         case CRYPTO_BLAKE2B:
542                 return (&auth_hash_blake2b);
543         case CRYPTO_BLAKE2S:
544                 return (&auth_hash_blake2s);
545         case CRYPTO_POLY1305:
546                 return (&auth_hash_poly1305);
547         case CRYPTO_AES_CCM_CBC_MAC:
548                 switch (csp->csp_auth_klen) {
549                 case 128 / 8:
550                         return (&auth_hash_ccm_cbc_mac_128);
551                 case 192 / 8:
552                         return (&auth_hash_ccm_cbc_mac_192);
553                 case 256 / 8:
554                         return (&auth_hash_ccm_cbc_mac_256);
555                 default:
556                         return (NULL);
557                 }
558         default:
559                 return (NULL);
560         }
561 }
562
563 const struct enc_xform *
564 crypto_cipher(const struct crypto_session_params *csp)
565 {
566
567         switch (csp->csp_cipher_alg) {
568         case CRYPTO_AES_CBC:
569                 return (&enc_xform_aes_cbc);
570         case CRYPTO_AES_XTS:
571                 return (&enc_xform_aes_xts);
572         case CRYPTO_AES_ICM:
573                 return (&enc_xform_aes_icm);
574         case CRYPTO_AES_NIST_GCM_16:
575                 return (&enc_xform_aes_nist_gcm);
576         case CRYPTO_CAMELLIA_CBC:
577                 return (&enc_xform_camellia);
578         case CRYPTO_NULL_CBC:
579                 return (&enc_xform_null);
580         case CRYPTO_CHACHA20:
581                 return (&enc_xform_chacha20);
582         case CRYPTO_AES_CCM_16:
583                 return (&enc_xform_ccm);
584         case CRYPTO_CHACHA20_POLY1305:
585                 return (&enc_xform_chacha20_poly1305);
586         case CRYPTO_XCHACHA20_POLY1305:
587                 return (&enc_xform_xchacha20_poly1305);
588         default:
589                 return (NULL);
590         }
591 }
592
593 static struct cryptocap *
594 crypto_checkdriver(uint32_t hid)
595 {
596
597         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
598 }
599
600 /*
601  * Select a driver for a new session that supports the specified
602  * algorithms and, optionally, is constrained according to the flags.
603  */
604 static struct cryptocap *
605 crypto_select_driver(const struct crypto_session_params *csp, int flags)
606 {
607         struct cryptocap *cap, *best;
608         int best_match, error, hid;
609
610         CRYPTO_DRIVER_ASSERT();
611
612         best = NULL;
613         for (hid = 0; hid < crypto_drivers_size; hid++) {
614                 /*
615                  * If there is no driver for this slot, or the driver
616                  * is not appropriate (hardware or software based on
617                  * match), then skip.
618                  */
619                 cap = crypto_drivers[hid];
620                 if (cap == NULL ||
621                     (cap->cc_flags & flags) == 0)
622                         continue;
623
624                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
625                 if (error >= 0)
626                         continue;
627
628                 /*
629                  * Use the driver with the highest probe value.
630                  * Hardware drivers use a higher probe value than
631                  * software.  In case of a tie, prefer the driver with
632                  * the fewest active sessions.
633                  */
634                 if (best == NULL || error > best_match ||
635                     (error == best_match &&
636                     cap->cc_sessions < best->cc_sessions)) {
637                         best = cap;
638                         best_match = error;
639                 }
640         }
641         return best;
642 }
643
644 static enum alg_type {
645         ALG_NONE = 0,
646         ALG_CIPHER,
647         ALG_DIGEST,
648         ALG_KEYED_DIGEST,
649         ALG_COMPRESSION,
650         ALG_AEAD
651 } alg_types[] = {
652         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
653         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
654         [CRYPTO_AES_CBC] = ALG_CIPHER,
655         [CRYPTO_SHA1] = ALG_DIGEST,
656         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
657         [CRYPTO_NULL_CBC] = ALG_CIPHER,
658         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
659         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
660         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
661         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
662         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
663         [CRYPTO_AES_XTS] = ALG_CIPHER,
664         [CRYPTO_AES_ICM] = ALG_CIPHER,
665         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
666         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
667         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
668         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
669         [CRYPTO_CHACHA20] = ALG_CIPHER,
670         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
671         [CRYPTO_RIPEMD160] = ALG_DIGEST,
672         [CRYPTO_SHA2_224] = ALG_DIGEST,
673         [CRYPTO_SHA2_256] = ALG_DIGEST,
674         [CRYPTO_SHA2_384] = ALG_DIGEST,
675         [CRYPTO_SHA2_512] = ALG_DIGEST,
676         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
677         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
678         [CRYPTO_AES_CCM_16] = ALG_AEAD,
679         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
680         [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
681 };
682
683 static enum alg_type
684 alg_type(int alg)
685 {
686
687         if (alg < nitems(alg_types))
688                 return (alg_types[alg]);
689         return (ALG_NONE);
690 }
691
692 static bool
693 alg_is_compression(int alg)
694 {
695
696         return (alg_type(alg) == ALG_COMPRESSION);
697 }
698
699 static bool
700 alg_is_cipher(int alg)
701 {
702
703         return (alg_type(alg) == ALG_CIPHER);
704 }
705
706 static bool
707 alg_is_digest(int alg)
708 {
709
710         return (alg_type(alg) == ALG_DIGEST ||
711             alg_type(alg) == ALG_KEYED_DIGEST);
712 }
713
714 static bool
715 alg_is_keyed_digest(int alg)
716 {
717
718         return (alg_type(alg) == ALG_KEYED_DIGEST);
719 }
720
721 static bool
722 alg_is_aead(int alg)
723 {
724
725         return (alg_type(alg) == ALG_AEAD);
726 }
727
728 static bool
729 ccm_tag_length_valid(int len)
730 {
731         /* RFC 3610 */
732         switch (len) {
733         case 4:
734         case 6:
735         case 8:
736         case 10:
737         case 12:
738         case 14:
739         case 16:
740                 return (true);
741         default:
742                 return (false);
743         }
744 }
745
746 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
747
748 /* Various sanity checks on crypto session parameters. */
749 static bool
750 check_csp(const struct crypto_session_params *csp)
751 {
752         const struct auth_hash *axf;
753
754         /* Mode-independent checks. */
755         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
756                 return (false);
757         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
758             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
759                 return (false);
760         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
761                 return (false);
762         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
763                 return (false);
764
765         switch (csp->csp_mode) {
766         case CSP_MODE_COMPRESS:
767                 if (!alg_is_compression(csp->csp_cipher_alg))
768                         return (false);
769                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
770                         return (false);
771                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
772                         return (false);
773                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
774                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
775                     csp->csp_auth_mlen != 0)
776                         return (false);
777                 break;
778         case CSP_MODE_CIPHER:
779                 if (!alg_is_cipher(csp->csp_cipher_alg))
780                         return (false);
781                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
782                         return (false);
783                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
784                         if (csp->csp_cipher_klen == 0)
785                                 return (false);
786                         if (csp->csp_ivlen == 0)
787                                 return (false);
788                 }
789                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
790                         return (false);
791                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
792                     csp->csp_auth_mlen != 0)
793                         return (false);
794                 break;
795         case CSP_MODE_DIGEST:
796                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
797                         return (false);
798
799                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
800                         return (false);
801
802                 /* IV is optional for digests (e.g. GMAC). */
803                 switch (csp->csp_auth_alg) {
804                 case CRYPTO_AES_CCM_CBC_MAC:
805                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
806                                 return (false);
807                         break;
808                 case CRYPTO_AES_NIST_GMAC:
809                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
810                                 return (false);
811                         break;
812                 default:
813                         if (csp->csp_ivlen != 0)
814                                 return (false);
815                         break;
816                 }
817
818                 if (!alg_is_digest(csp->csp_auth_alg))
819                         return (false);
820
821                 /* Key is optional for BLAKE2 digests. */
822                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
823                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
824                         ;
825                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
826                         if (csp->csp_auth_klen == 0)
827                                 return (false);
828                 } else {
829                         if (csp->csp_auth_klen != 0)
830                                 return (false);
831                 }
832                 if (csp->csp_auth_mlen != 0) {
833                         axf = crypto_auth_hash(csp);
834                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
835                                 return (false);
836
837                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
838                             !ccm_tag_length_valid(csp->csp_auth_mlen))
839                                 return (false);
840                 }
841                 break;
842         case CSP_MODE_AEAD:
843                 if (!alg_is_aead(csp->csp_cipher_alg))
844                         return (false);
845                 if (csp->csp_cipher_klen == 0)
846                         return (false);
847                 if (csp->csp_ivlen == 0 ||
848                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
849                         return (false);
850                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
851                         return (false);
852
853                 switch (csp->csp_cipher_alg) {
854                 case CRYPTO_AES_CCM_16:
855                         if (csp->csp_auth_mlen != 0 &&
856                             !ccm_tag_length_valid(csp->csp_auth_mlen))
857                                 return (false);
858
859                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
860                                 return (false);
861                         break;
862                 case CRYPTO_AES_NIST_GCM_16:
863                         if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
864                                 return (false);
865
866                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
867                                 return (false);
868                         break;
869                 case CRYPTO_CHACHA20_POLY1305:
870                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
871                                 return (false);
872                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
873                                 return (false);
874                         break;
875                 case CRYPTO_XCHACHA20_POLY1305:
876                         if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
877                                 return (false);
878                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
879                                 return (false);
880                         break;
881                 }
882                 break;
883         case CSP_MODE_ETA:
884                 if (!alg_is_cipher(csp->csp_cipher_alg))
885                         return (false);
886                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
887                         if (csp->csp_cipher_klen == 0)
888                                 return (false);
889                         if (csp->csp_ivlen == 0)
890                                 return (false);
891                 }
892                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
893                         return (false);
894                 if (!alg_is_digest(csp->csp_auth_alg))
895                         return (false);
896
897                 /* Key is optional for BLAKE2 digests. */
898                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
899                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
900                         ;
901                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
902                         if (csp->csp_auth_klen == 0)
903                                 return (false);
904                 } else {
905                         if (csp->csp_auth_klen != 0)
906                                 return (false);
907                 }
908                 if (csp->csp_auth_mlen != 0) {
909                         axf = crypto_auth_hash(csp);
910                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
911                                 return (false);
912                 }
913                 break;
914         default:
915                 return (false);
916         }
917
918         return (true);
919 }
920
921 /*
922  * Delete a session after it has been detached from its driver.
923  */
924 static void
925 crypto_deletesession(crypto_session_t cses)
926 {
927         struct cryptocap *cap;
928
929         cap = cses->cap;
930
931         zfree(cses, M_CRYPTO_DATA);
932
933         CRYPTO_DRIVER_LOCK();
934         cap->cc_sessions--;
935         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
936                 wakeup(cap);
937         CRYPTO_DRIVER_UNLOCK();
938         cap_rele(cap);
939 }
940
941 /*
942  * Create a new session.  The crid argument specifies a crypto
943  * driver to use or constraints on a driver to select (hardware
944  * only, software only, either).  Whatever driver is selected
945  * must be capable of the requested crypto algorithms.
946  */
947 int
948 crypto_newsession(crypto_session_t *cses,
949     const struct crypto_session_params *csp, int crid)
950 {
951         static uint64_t sessid = 0;
952         crypto_session_t res;
953         struct cryptocap *cap;
954         int err;
955
956         if (!check_csp(csp))
957                 return (EINVAL);
958
959         res = NULL;
960
961         CRYPTO_DRIVER_LOCK();
962         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
963                 /*
964                  * Use specified driver; verify it is capable.
965                  */
966                 cap = crypto_checkdriver(crid);
967                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
968                         cap = NULL;
969         } else {
970                 /*
971                  * No requested driver; select based on crid flags.
972                  */
973                 cap = crypto_select_driver(csp, crid);
974         }
975         if (cap == NULL) {
976                 CRYPTO_DRIVER_UNLOCK();
977                 CRYPTDEB("no driver");
978                 return (EOPNOTSUPP);
979         }
980         cap_ref(cap);
981         cap->cc_sessions++;
982         CRYPTO_DRIVER_UNLOCK();
983
984         /* Allocate a single block for the generic session and driver softc. */
985         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
986             M_WAITOK | M_ZERO);
987         res->cap = cap;
988         res->csp = *csp;
989         res->id = atomic_fetchadd_64(&sessid, 1);
990
991         /* Call the driver initialization routine. */
992         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
993         if (err != 0) {
994                 CRYPTDEB("dev newsession failed: %d", err);
995                 crypto_deletesession(res);
996                 return (err);
997         }
998
999         *cses = res;
1000         return (0);
1001 }
1002
1003 /*
1004  * Delete an existing session (or a reserved session on an unregistered
1005  * driver).
1006  */
1007 void
1008 crypto_freesession(crypto_session_t cses)
1009 {
1010         struct cryptocap *cap;
1011
1012         if (cses == NULL)
1013                 return;
1014
1015         cap = cses->cap;
1016
1017         /* Call the driver cleanup routine, if available. */
1018         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1019
1020         crypto_deletesession(cses);
1021 }
1022
1023 /*
1024  * Return a new driver id.  Registers a driver with the system so that
1025  * it can be probed by subsequent sessions.
1026  */
1027 int32_t
1028 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1029 {
1030         struct cryptocap *cap, **newdrv;
1031         int i;
1032
1033         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1034                 device_printf(dev,
1035                     "no flags specified when registering driver\n");
1036                 return -1;
1037         }
1038
1039         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1040         cap->cc_dev = dev;
1041         cap->cc_session_size = sessionsize;
1042         cap->cc_flags = flags;
1043         refcount_init(&cap->cc_refs, 1);
1044
1045         CRYPTO_DRIVER_LOCK();
1046         for (;;) {
1047                 for (i = 0; i < crypto_drivers_size; i++) {
1048                         if (crypto_drivers[i] == NULL)
1049                                 break;
1050                 }
1051
1052                 if (i < crypto_drivers_size)
1053                         break;
1054
1055                 /* Out of entries, allocate some more. */
1056
1057                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1058                         CRYPTO_DRIVER_UNLOCK();
1059                         printf("crypto: driver count wraparound!\n");
1060                         cap_rele(cap);
1061                         return (-1);
1062                 }
1063                 CRYPTO_DRIVER_UNLOCK();
1064
1065                 newdrv = malloc(2 * crypto_drivers_size *
1066                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1067
1068                 CRYPTO_DRIVER_LOCK();
1069                 memcpy(newdrv, crypto_drivers,
1070                     crypto_drivers_size * sizeof(*crypto_drivers));
1071
1072                 crypto_drivers_size *= 2;
1073
1074                 free(crypto_drivers, M_CRYPTO_DATA);
1075                 crypto_drivers = newdrv;
1076         }
1077
1078         cap->cc_hid = i;
1079         crypto_drivers[i] = cap;
1080         CRYPTO_DRIVER_UNLOCK();
1081
1082         if (bootverbose)
1083                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1084                     device_get_nameunit(dev), i, flags);
1085
1086         return i;
1087 }
1088
1089 /*
1090  * Lookup a driver by name.  We match against the full device
1091  * name and unit, and against just the name.  The latter gives
1092  * us a simple widlcarding by device name.  On success return the
1093  * driver/hardware identifier; otherwise return -1.
1094  */
1095 int
1096 crypto_find_driver(const char *match)
1097 {
1098         struct cryptocap *cap;
1099         int i, len = strlen(match);
1100
1101         CRYPTO_DRIVER_LOCK();
1102         for (i = 0; i < crypto_drivers_size; i++) {
1103                 if (crypto_drivers[i] == NULL)
1104                         continue;
1105                 cap = crypto_drivers[i];
1106                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1107                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1108                         CRYPTO_DRIVER_UNLOCK();
1109                         return (i);
1110                 }
1111         }
1112         CRYPTO_DRIVER_UNLOCK();
1113         return (-1);
1114 }
1115
1116 /*
1117  * Return the device_t for the specified driver or NULL
1118  * if the driver identifier is invalid.
1119  */
1120 device_t
1121 crypto_find_device_byhid(int hid)
1122 {
1123         struct cryptocap *cap;
1124         device_t dev;
1125
1126         dev = NULL;
1127         CRYPTO_DRIVER_LOCK();
1128         cap = crypto_checkdriver(hid);
1129         if (cap != NULL)
1130                 dev = cap->cc_dev;
1131         CRYPTO_DRIVER_UNLOCK();
1132         return (dev);
1133 }
1134
1135 /*
1136  * Return the device/driver capabilities.
1137  */
1138 int
1139 crypto_getcaps(int hid)
1140 {
1141         struct cryptocap *cap;
1142         int flags;
1143
1144         flags = 0;
1145         CRYPTO_DRIVER_LOCK();
1146         cap = crypto_checkdriver(hid);
1147         if (cap != NULL)
1148                 flags = cap->cc_flags;
1149         CRYPTO_DRIVER_UNLOCK();
1150         return (flags);
1151 }
1152
1153 /*
1154  * Unregister all algorithms associated with a crypto driver.
1155  * If there are pending sessions using it, leave enough information
1156  * around so that subsequent calls using those sessions will
1157  * correctly detect the driver has been unregistered and reroute
1158  * requests.
1159  */
1160 int
1161 crypto_unregister_all(uint32_t driverid)
1162 {
1163         struct cryptocap *cap;
1164
1165         CRYPTO_DRIVER_LOCK();
1166         cap = crypto_checkdriver(driverid);
1167         if (cap == NULL) {
1168                 CRYPTO_DRIVER_UNLOCK();
1169                 return (EINVAL);
1170         }
1171
1172         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1173         crypto_drivers[driverid] = NULL;
1174
1175         /*
1176          * XXX: This doesn't do anything to kick sessions that
1177          * have no pending operations.
1178          */
1179         while (cap->cc_sessions != 0)
1180                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1181         CRYPTO_DRIVER_UNLOCK();
1182         cap_rele(cap);
1183
1184         return (0);
1185 }
1186
1187 /*
1188  * Clear blockage on a driver.  The what parameter indicates whether
1189  * the driver is now ready for cryptop's and/or cryptokop's.
1190  */
1191 int
1192 crypto_unblock(uint32_t driverid, int what)
1193 {
1194         struct cryptocap *cap;
1195         int err;
1196
1197         CRYPTO_Q_LOCK();
1198         cap = crypto_checkdriver(driverid);
1199         if (cap != NULL) {
1200                 if (what & CRYPTO_SYMQ)
1201                         cap->cc_qblocked = 0;
1202                 if (crp_sleep)
1203                         wakeup_one(&crp_q);
1204                 err = 0;
1205         } else
1206                 err = EINVAL;
1207         CRYPTO_Q_UNLOCK();
1208
1209         return err;
1210 }
1211
1212 size_t
1213 crypto_buffer_len(struct crypto_buffer *cb)
1214 {
1215         switch (cb->cb_type) {
1216         case CRYPTO_BUF_CONTIG:
1217                 return (cb->cb_buf_len);
1218         case CRYPTO_BUF_MBUF:
1219                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1220                         return (cb->cb_mbuf->m_pkthdr.len);
1221                 return (m_length(cb->cb_mbuf, NULL));
1222         case CRYPTO_BUF_SINGLE_MBUF:
1223                 return (cb->cb_mbuf->m_len);
1224         case CRYPTO_BUF_VMPAGE:
1225                 return (cb->cb_vm_page_len);
1226         case CRYPTO_BUF_UIO:
1227                 return (cb->cb_uio->uio_resid);
1228         default:
1229                 return (0);
1230         }
1231 }
1232
1233 #ifdef INVARIANTS
1234 /* Various sanity checks on crypto requests. */
1235 static void
1236 cb_sanity(struct crypto_buffer *cb, const char *name)
1237 {
1238         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1239             ("incoming crp with invalid %s buffer type", name));
1240         switch (cb->cb_type) {
1241         case CRYPTO_BUF_CONTIG:
1242                 KASSERT(cb->cb_buf_len >= 0,
1243                     ("incoming crp with -ve %s buffer length", name));
1244                 break;
1245         case CRYPTO_BUF_VMPAGE:
1246                 KASSERT(CRYPTO_HAS_VMPAGE,
1247                     ("incoming crp uses dmap on supported arch"));
1248                 KASSERT(cb->cb_vm_page_len >= 0,
1249                     ("incoming crp with -ve %s buffer length", name));
1250                 KASSERT(cb->cb_vm_page_offset >= 0,
1251                     ("incoming crp with -ve %s buffer offset", name));
1252                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1253                     ("incoming crp with %s buffer offset greater than page size"
1254                      , name));
1255                 break;
1256         default:
1257                 break;
1258         }
1259 }
1260
1261 static void
1262 crp_sanity(struct cryptop *crp)
1263 {
1264         struct crypto_session_params *csp;
1265         struct crypto_buffer *out;
1266         size_t ilen, len, olen;
1267
1268         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1269         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1270             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1271             ("incoming crp with invalid output buffer type"));
1272         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1273         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1274             ("incoming crp already done"));
1275
1276         csp = &crp->crp_session->csp;
1277         cb_sanity(&crp->crp_buf, "input");
1278         ilen = crypto_buffer_len(&crp->crp_buf);
1279         olen = ilen;
1280         out = NULL;
1281         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1282                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1283                         cb_sanity(&crp->crp_obuf, "output");
1284                         out = &crp->crp_obuf;
1285                         olen = crypto_buffer_len(out);
1286                 }
1287         } else
1288                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1289                     ("incoming crp with separate output buffer "
1290                     "but no session support"));
1291
1292         switch (csp->csp_mode) {
1293         case CSP_MODE_COMPRESS:
1294                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1295                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1296                     ("invalid compression op %x", crp->crp_op));
1297                 break;
1298         case CSP_MODE_CIPHER:
1299                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1300                     crp->crp_op == CRYPTO_OP_DECRYPT,
1301                     ("invalid cipher op %x", crp->crp_op));
1302                 break;
1303         case CSP_MODE_DIGEST:
1304                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1305                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1306                     ("invalid digest op %x", crp->crp_op));
1307                 break;
1308         case CSP_MODE_AEAD:
1309                 KASSERT(crp->crp_op ==
1310                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1311                     crp->crp_op ==
1312                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1313                     ("invalid AEAD op %x", crp->crp_op));
1314                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1315                     ("AEAD without a separate IV"));
1316                 break;
1317         case CSP_MODE_ETA:
1318                 KASSERT(crp->crp_op ==
1319                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1320                     crp->crp_op ==
1321                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1322                     ("invalid ETA op %x", crp->crp_op));
1323                 break;
1324         }
1325         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1326                 if (crp->crp_aad == NULL) {
1327                         KASSERT(crp->crp_aad_start == 0 ||
1328                             crp->crp_aad_start < ilen,
1329                             ("invalid AAD start"));
1330                         KASSERT(crp->crp_aad_length != 0 ||
1331                             crp->crp_aad_start == 0,
1332                             ("AAD with zero length and non-zero start"));
1333                         KASSERT(crp->crp_aad_length == 0 ||
1334                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1335                             ("AAD outside input length"));
1336                 } else {
1337                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1338                             ("session doesn't support separate AAD buffer"));
1339                         KASSERT(crp->crp_aad_start == 0,
1340                             ("separate AAD buffer with non-zero AAD start"));
1341                         KASSERT(crp->crp_aad_length != 0,
1342                             ("separate AAD buffer with zero length"));
1343                 }
1344         } else {
1345                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1346                     crp->crp_aad_length == 0,
1347                     ("AAD region in request not supporting AAD"));
1348         }
1349         if (csp->csp_ivlen == 0) {
1350                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1351                     ("IV_SEPARATE set when IV isn't used"));
1352                 KASSERT(crp->crp_iv_start == 0,
1353                     ("crp_iv_start set when IV isn't used"));
1354         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1355                 KASSERT(crp->crp_iv_start == 0,
1356                     ("IV_SEPARATE used with non-zero IV start"));
1357         } else {
1358                 KASSERT(crp->crp_iv_start < ilen,
1359                     ("invalid IV start"));
1360                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1361                     ("IV outside buffer length"));
1362         }
1363         /* XXX: payload_start of 0 should always be < ilen? */
1364         KASSERT(crp->crp_payload_start == 0 ||
1365             crp->crp_payload_start < ilen,
1366             ("invalid payload start"));
1367         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1368             ilen, ("payload outside input buffer"));
1369         if (out == NULL) {
1370                 KASSERT(crp->crp_payload_output_start == 0,
1371                     ("payload output start non-zero without output buffer"));
1372         } else if (csp->csp_mode == CSP_MODE_DIGEST) {
1373                 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1374                     ("digest verify with separate output buffer"));
1375                 KASSERT(crp->crp_payload_output_start == 0,
1376                     ("digest operation with non-zero payload output start"));
1377         } else {
1378                 KASSERT(crp->crp_payload_output_start == 0 ||
1379                     crp->crp_payload_output_start < olen,
1380                     ("invalid payload output start"));
1381                 KASSERT(crp->crp_payload_output_start +
1382                     crp->crp_payload_length <= olen,
1383                     ("payload outside output buffer"));
1384         }
1385         if (csp->csp_mode == CSP_MODE_DIGEST ||
1386             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1387                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1388                         len = ilen;
1389                 else
1390                         len = olen;
1391                 KASSERT(crp->crp_digest_start == 0 ||
1392                     crp->crp_digest_start < len,
1393                     ("invalid digest start"));
1394                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1395                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1396                     ("digest outside buffer"));
1397         } else {
1398                 KASSERT(crp->crp_digest_start == 0,
1399                     ("non-zero digest start for request without a digest"));
1400         }
1401         if (csp->csp_cipher_klen != 0)
1402                 KASSERT(csp->csp_cipher_key != NULL ||
1403                     crp->crp_cipher_key != NULL,
1404                     ("cipher request without a key"));
1405         if (csp->csp_auth_klen != 0)
1406                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1407                     ("auth request without a key"));
1408         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1409 }
1410 #endif
1411
1412 static int
1413 crypto_dispatch_one(struct cryptop *crp, int hint)
1414 {
1415         struct cryptocap *cap;
1416         int result;
1417
1418 #ifdef INVARIANTS
1419         crp_sanity(crp);
1420 #endif
1421         CRYPTOSTAT_INC(cs_ops);
1422
1423         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1424
1425         /*
1426          * Caller marked the request to be processed immediately; dispatch it
1427          * directly to the driver unless the driver is currently blocked, in
1428          * which case it is queued for deferred dispatch.
1429          */
1430         cap = crp->crp_session->cap;
1431         if (!atomic_load_int(&cap->cc_qblocked)) {
1432                 result = crypto_invoke(cap, crp, hint);
1433                 if (result != ERESTART)
1434                         return (result);
1435
1436                 /*
1437                  * The driver ran out of resources, put the request on the
1438                  * queue.
1439                  */
1440         }
1441         crypto_batch_enqueue(crp);
1442         return (0);
1443 }
1444
1445 int
1446 crypto_dispatch(struct cryptop *crp)
1447 {
1448         return (crypto_dispatch_one(crp, 0));
1449 }
1450
1451 int
1452 crypto_dispatch_async(struct cryptop *crp, int flags)
1453 {
1454         struct crypto_ret_worker *ret_worker;
1455
1456         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1457                 /*
1458                  * The driver issues completions asynchonously, don't bother
1459                  * deferring dispatch to a worker thread.
1460                  */
1461                 return (crypto_dispatch(crp));
1462         }
1463
1464 #ifdef INVARIANTS
1465         crp_sanity(crp);
1466 #endif
1467         CRYPTOSTAT_INC(cs_ops);
1468
1469         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1470         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1471                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1472                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1473                 CRYPTO_RETW_LOCK(ret_worker);
1474                 crp->crp_seq = ret_worker->reorder_ops++;
1475                 CRYPTO_RETW_UNLOCK(ret_worker);
1476         }
1477         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1478         taskqueue_enqueue(crypto_tq, &crp->crp_task);
1479         return (0);
1480 }
1481
1482 void
1483 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1484 {
1485         struct cryptop *crp;
1486         int hint;
1487
1488         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1489                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1490                 TAILQ_REMOVE(crpq, crp, crp_next);
1491                 if (crypto_dispatch_one(crp, hint) != 0)
1492                         crypto_batch_enqueue(crp);
1493         }
1494 }
1495
1496 static void
1497 crypto_batch_enqueue(struct cryptop *crp)
1498 {
1499
1500         CRYPTO_Q_LOCK();
1501         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1502         if (crp_sleep)
1503                 wakeup_one(&crp_q);
1504         CRYPTO_Q_UNLOCK();
1505 }
1506
1507 static void
1508 crypto_task_invoke(void *ctx, int pending)
1509 {
1510         struct cryptocap *cap;
1511         struct cryptop *crp;
1512         int result;
1513
1514         crp = (struct cryptop *)ctx;
1515         cap = crp->crp_session->cap;
1516         result = crypto_invoke(cap, crp, 0);
1517         if (result == ERESTART)
1518                 crypto_batch_enqueue(crp);
1519 }
1520
1521 /*
1522  * Dispatch a crypto request to the appropriate crypto devices.
1523  */
1524 static int
1525 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1526 {
1527         int error;
1528
1529         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1530         KASSERT(crp->crp_callback != NULL,
1531             ("%s: crp->crp_callback == NULL", __func__));
1532         KASSERT(crp->crp_session != NULL,
1533             ("%s: crp->crp_session == NULL", __func__));
1534
1535         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1536                 struct crypto_session_params csp;
1537                 crypto_session_t nses;
1538
1539                 /*
1540                  * Driver has unregistered; migrate the session and return
1541                  * an error to the caller so they'll resubmit the op.
1542                  *
1543                  * XXX: What if there are more already queued requests for this
1544                  *      session?
1545                  *
1546                  * XXX: Real solution is to make sessions refcounted
1547                  * and force callers to hold a reference when
1548                  * assigning to crp_session.  Could maybe change
1549                  * crypto_getreq to accept a session pointer to make
1550                  * that work.  Alternatively, we could abandon the
1551                  * notion of rewriting crp_session in requests forcing
1552                  * the caller to deal with allocating a new session.
1553                  * Perhaps provide a method to allow a crp's session to
1554                  * be swapped that callers could use.
1555                  */
1556                 csp = crp->crp_session->csp;
1557                 crypto_freesession(crp->crp_session);
1558
1559                 /*
1560                  * XXX: Key pointers may no longer be valid.  If we
1561                  * really want to support this we need to define the
1562                  * KPI such that 'csp' is required to be valid for the
1563                  * duration of a session by the caller perhaps.
1564                  *
1565                  * XXX: If the keys have been changed this will reuse
1566                  * the old keys.  This probably suggests making
1567                  * rekeying more explicit and updating the key
1568                  * pointers in 'csp' when the keys change.
1569                  */
1570                 if (crypto_newsession(&nses, &csp,
1571                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1572                         crp->crp_session = nses;
1573
1574                 crp->crp_etype = EAGAIN;
1575                 crypto_done(crp);
1576                 error = 0;
1577         } else {
1578                 /*
1579                  * Invoke the driver to process the request.  Errors are
1580                  * signaled by setting crp_etype before invoking the completion
1581                  * callback.
1582                  */
1583                 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1584                 KASSERT(error == 0 || error == ERESTART,
1585                     ("%s: invalid error %d from CRYPTODEV_PROCESS",
1586                     __func__, error));
1587         }
1588         return (error);
1589 }
1590
1591 void
1592 crypto_destroyreq(struct cryptop *crp)
1593 {
1594 #ifdef DIAGNOSTIC
1595         {
1596                 struct cryptop *crp2;
1597                 struct crypto_ret_worker *ret_worker;
1598
1599                 if (!crypto_destroyreq_check)
1600                         return;
1601
1602                 CRYPTO_Q_LOCK();
1603                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1604                         KASSERT(crp2 != crp,
1605                             ("Freeing cryptop from the crypto queue (%p).",
1606                             crp));
1607                 }
1608                 CRYPTO_Q_UNLOCK();
1609
1610                 FOREACH_CRYPTO_RETW(ret_worker) {
1611                         CRYPTO_RETW_LOCK(ret_worker);
1612                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1613                                 KASSERT(crp2 != crp,
1614                                     ("Freeing cryptop from the return queue (%p).",
1615                                     crp));
1616                         }
1617                         CRYPTO_RETW_UNLOCK(ret_worker);
1618                 }
1619         }
1620 #endif
1621 }
1622
1623 void
1624 crypto_freereq(struct cryptop *crp)
1625 {
1626         if (crp == NULL)
1627                 return;
1628
1629         crypto_destroyreq(crp);
1630         uma_zfree(cryptop_zone, crp);
1631 }
1632
1633 void
1634 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1635 {
1636         memset(crp, 0, sizeof(*crp));
1637         crp->crp_session = cses;
1638 }
1639
1640 struct cryptop *
1641 crypto_getreq(crypto_session_t cses, int how)
1642 {
1643         struct cryptop *crp;
1644
1645         MPASS(how == M_WAITOK || how == M_NOWAIT);
1646         crp = uma_zalloc(cryptop_zone, how);
1647         if (crp != NULL)
1648                 crypto_initreq(crp, cses);
1649         return (crp);
1650 }
1651
1652 /*
1653  * Clone a crypto request, but associate it with the specified session
1654  * rather than inheriting the session from the original request.  The
1655  * fields describing the request buffers are copied, but not the
1656  * opaque field or callback function.
1657  */
1658 struct cryptop *
1659 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1660 {
1661         struct cryptop *new;
1662
1663         MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1664         new = crypto_getreq(cses, how);
1665         if (new == NULL)
1666                 return (NULL);
1667
1668         memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1669             __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1670         return (new);
1671 }
1672
1673 /*
1674  * Invoke the callback on behalf of the driver.
1675  */
1676 void
1677 crypto_done(struct cryptop *crp)
1678 {
1679         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1680                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1681         crp->crp_flags |= CRYPTO_F_DONE;
1682         if (crp->crp_etype != 0)
1683                 CRYPTOSTAT_INC(cs_errs);
1684
1685         /*
1686          * CBIMM means unconditionally do the callback immediately;
1687          * CBIFSYNC means do the callback immediately only if the
1688          * operation was done synchronously.  Both are used to avoid
1689          * doing extraneous context switches; the latter is mostly
1690          * used with the software crypto driver.
1691          */
1692         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1693             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1694             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1695             CRYPTO_SESS_SYNC(crp->crp_session)))) {
1696                 /*
1697                  * Do the callback directly.  This is ok when the
1698                  * callback routine does very little (e.g. the
1699                  * /dev/crypto callback method just does a wakeup).
1700                  */
1701                 crp->crp_callback(crp);
1702         } else {
1703                 struct crypto_ret_worker *ret_worker;
1704                 bool wake;
1705
1706                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1707
1708                 /*
1709                  * Normal case; queue the callback for the thread.
1710                  */
1711                 CRYPTO_RETW_LOCK(ret_worker);
1712                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1713                         struct cryptop *tmp;
1714
1715                         TAILQ_FOREACH_REVERSE(tmp,
1716                             &ret_worker->crp_ordered_ret_q, cryptop_q,
1717                             crp_next) {
1718                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1719                                         TAILQ_INSERT_AFTER(
1720                                             &ret_worker->crp_ordered_ret_q, tmp,
1721                                             crp, crp_next);
1722                                         break;
1723                                 }
1724                         }
1725                         if (tmp == NULL) {
1726                                 TAILQ_INSERT_HEAD(
1727                                     &ret_worker->crp_ordered_ret_q, crp,
1728                                     crp_next);
1729                         }
1730
1731                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1732                 } else {
1733                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1734                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1735                             crp_next);
1736                 }
1737
1738                 if (wake)
1739                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1740                 CRYPTO_RETW_UNLOCK(ret_worker);
1741         }
1742 }
1743
1744 /*
1745  * Terminate a thread at module unload.  The process that
1746  * initiated this is waiting for us to signal that we're gone;
1747  * wake it up and exit.  We use the driver table lock to insure
1748  * we don't do the wakeup before they're waiting.  There is no
1749  * race here because the waiter sleeps on the proc lock for the
1750  * thread so it gets notified at the right time because of an
1751  * extra wakeup that's done in exit1().
1752  */
1753 static void
1754 crypto_finis(void *chan)
1755 {
1756         CRYPTO_DRIVER_LOCK();
1757         wakeup_one(chan);
1758         CRYPTO_DRIVER_UNLOCK();
1759         kthread_exit();
1760 }
1761
1762 /*
1763  * Crypto thread, dispatches crypto requests.
1764  */
1765 static void
1766 crypto_dispatch_thread(void *arg __unused)
1767 {
1768         struct cryptop *crp, *submit;
1769         struct cryptocap *cap;
1770         int result, hint;
1771
1772 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1773         fpu_kern_thread(FPU_KERN_NORMAL);
1774 #endif
1775
1776         CRYPTO_Q_LOCK();
1777         for (;;) {
1778                 /*
1779                  * Find the first element in the queue that can be
1780                  * processed and look-ahead to see if multiple ops
1781                  * are ready for the same driver.
1782                  */
1783                 submit = NULL;
1784                 hint = 0;
1785                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1786                         cap = crp->crp_session->cap;
1787                         /*
1788                          * Driver cannot disappeared when there is an active
1789                          * session.
1790                          */
1791                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1792                             __func__, __LINE__));
1793                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1794                                 /* Op needs to be migrated, process it. */
1795                                 if (submit == NULL)
1796                                         submit = crp;
1797                                 break;
1798                         }
1799                         if (!cap->cc_qblocked) {
1800                                 if (submit != NULL) {
1801                                         /*
1802                                          * We stop on finding another op,
1803                                          * regardless whether its for the same
1804                                          * driver or not.  We could keep
1805                                          * searching the queue but it might be
1806                                          * better to just use a per-driver
1807                                          * queue instead.
1808                                          */
1809                                         if (submit->crp_session->cap == cap)
1810                                                 hint = CRYPTO_HINT_MORE;
1811                                 } else {
1812                                         submit = crp;
1813                                 }
1814                                 break;
1815                         }
1816                 }
1817                 if (submit != NULL) {
1818                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1819                         cap = submit->crp_session->cap;
1820                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1821                             __func__, __LINE__));
1822                         CRYPTO_Q_UNLOCK();
1823                         result = crypto_invoke(cap, submit, hint);
1824                         CRYPTO_Q_LOCK();
1825                         if (result == ERESTART) {
1826                                 /*
1827                                  * The driver ran out of resources, mark the
1828                                  * driver ``blocked'' for cryptop's and put
1829                                  * the request back in the queue.  It would
1830                                  * best to put the request back where we got
1831                                  * it but that's hard so for now we put it
1832                                  * at the front.  This should be ok; putting
1833                                  * it at the end does not work.
1834                                  */
1835                                 cap->cc_qblocked = 1;
1836                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1837                                 CRYPTOSTAT_INC(cs_blocks);
1838                         }
1839                 } else {
1840                         /*
1841                          * Nothing more to be processed.  Sleep until we're
1842                          * woken because there are more ops to process.
1843                          * This happens either by submission or by a driver
1844                          * becoming unblocked and notifying us through
1845                          * crypto_unblock.  Note that when we wakeup we
1846                          * start processing each queue again from the
1847                          * front. It's not clear that it's important to
1848                          * preserve this ordering since ops may finish
1849                          * out of order if dispatched to different devices
1850                          * and some become blocked while others do not.
1851                          */
1852                         crp_sleep = 1;
1853                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1854                         crp_sleep = 0;
1855                         if (cryptotd == NULL)
1856                                 break;
1857                         CRYPTOSTAT_INC(cs_intrs);
1858                 }
1859         }
1860         CRYPTO_Q_UNLOCK();
1861
1862         crypto_finis(&crp_q);
1863 }
1864
1865 /*
1866  * Crypto returns thread, does callbacks for processed crypto requests.
1867  * Callbacks are done here, rather than in the crypto drivers, because
1868  * callbacks typically are expensive and would slow interrupt handling.
1869  */
1870 static void
1871 crypto_ret_thread(void *arg)
1872 {
1873         struct crypto_ret_worker *ret_worker = arg;
1874         struct cryptop *crpt;
1875
1876         CRYPTO_RETW_LOCK(ret_worker);
1877         for (;;) {
1878                 /* Harvest return q's for completed ops */
1879                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1880                 if (crpt != NULL) {
1881                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1882                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1883                                 ret_worker->reorder_cur_seq++;
1884                         } else {
1885                                 crpt = NULL;
1886                         }
1887                 }
1888
1889                 if (crpt == NULL) {
1890                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1891                         if (crpt != NULL)
1892                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1893                 }
1894
1895                 if (crpt != NULL) {
1896                         CRYPTO_RETW_UNLOCK(ret_worker);
1897                         /*
1898                          * Run callbacks unlocked.
1899                          */
1900                         if (crpt != NULL)
1901                                 crpt->crp_callback(crpt);
1902                         CRYPTO_RETW_LOCK(ret_worker);
1903                 } else {
1904                         /*
1905                          * Nothing more to be processed.  Sleep until we're
1906                          * woken because there are more returns to process.
1907                          */
1908                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1909                                 "crypto_ret_wait", 0);
1910                         if (ret_worker->td == NULL)
1911                                 break;
1912                         CRYPTOSTAT_INC(cs_rets);
1913                 }
1914         }
1915         CRYPTO_RETW_UNLOCK(ret_worker);
1916
1917         crypto_finis(&ret_worker->crp_ret_q);
1918 }
1919
1920 #ifdef DDB
1921 static void
1922 db_show_drivers(void)
1923 {
1924         int hid;
1925
1926         db_printf("%12s %4s %8s %2s\n"
1927                 , "Device"
1928                 , "Ses"
1929                 , "Flags"
1930                 , "QB"
1931         );
1932         for (hid = 0; hid < crypto_drivers_size; hid++) {
1933                 const struct cryptocap *cap = crypto_drivers[hid];
1934                 if (cap == NULL)
1935                         continue;
1936                 db_printf("%-12s %4u %08x %2u\n"
1937                     , device_get_nameunit(cap->cc_dev)
1938                     , cap->cc_sessions
1939                     , cap->cc_flags
1940                     , cap->cc_qblocked
1941                 );
1942         }
1943 }
1944
1945 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1946 {
1947         struct cryptop *crp;
1948         struct crypto_ret_worker *ret_worker;
1949
1950         db_show_drivers();
1951         db_printf("\n");
1952
1953         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1954             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1955             "Device", "Callback");
1956         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1957                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1958                     , crp->crp_session->cap->cc_hid
1959                     , (int) crypto_ses2caps(crp->crp_session)
1960                     , crp->crp_olen
1961                     , crp->crp_etype
1962                     , crp->crp_flags
1963                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
1964                     , crp->crp_callback
1965                 );
1966         }
1967         FOREACH_CRYPTO_RETW(ret_worker) {
1968                 db_printf("\n%8s %4s %4s %4s %8s\n",
1969                     "ret_worker", "HID", "Etype", "Flags", "Callback");
1970                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1971                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1972                                 db_printf("%8td %4u %4u %04x %8p\n"
1973                                     , CRYPTO_RETW_ID(ret_worker)
1974                                     , crp->crp_session->cap->cc_hid
1975                                     , crp->crp_etype
1976                                     , crp->crp_flags
1977                                     , crp->crp_callback
1978                                 );
1979                         }
1980                 }
1981         }
1982 }
1983 #endif
1984
1985 int crypto_modevent(module_t mod, int type, void *unused);
1986
1987 /*
1988  * Initialization code, both for static and dynamic loading.
1989  * Note this is not invoked with the usual MODULE_DECLARE
1990  * mechanism but instead is listed as a dependency by the
1991  * cryptosoft driver.  This guarantees proper ordering of
1992  * calls on module load/unload.
1993  */
1994 int
1995 crypto_modevent(module_t mod, int type, void *unused)
1996 {
1997         int error = EINVAL;
1998
1999         switch (type) {
2000         case MOD_LOAD:
2001                 error = crypto_init();
2002                 if (error == 0 && bootverbose)
2003                         printf("crypto: <crypto core>\n");
2004                 break;
2005         case MOD_UNLOAD:
2006                 /*XXX disallow if active sessions */
2007                 error = 0;
2008                 crypto_destroy();
2009                 return 0;
2010         }
2011         return error;
2012 }
2013 MODULE_VERSION(crypto, 1);
2014 MODULE_DEPEND(crypto, zlib, 1, 1, 1);