]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
contrib/tzdata: import tzdata 2021d
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60
61 #include "opt_compat.h"
62 #include "opt_ddb.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/counter.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/linker.h>
70 #include <sys/lock.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/sdt.h>
78 #include <sys/smp.h>
79 #include <sys/sysctl.h>
80 #include <sys/taskqueue.h>
81 #include <sys/uio.h>
82
83 #include <ddb/ddb.h>
84
85 #include <machine/vmparam.h>
86 #include <vm/uma.h>
87
88 #include <crypto/intake.h>
89 #include <opencrypto/cryptodev.h>
90 #include <opencrypto/xform_auth.h>
91 #include <opencrypto/xform_enc.h>
92
93 #include <sys/kobj.h>
94 #include <sys/bus.h>
95 #include "cryptodev_if.h"
96
97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
98 #include <machine/pcb.h>
99 #endif
100
101 SDT_PROVIDER_DEFINE(opencrypto);
102
103 /*
104  * Crypto drivers register themselves by allocating a slot in the
105  * crypto_drivers table with crypto_get_driverid().
106  */
107 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
108 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
109 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
110 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
111
112 /*
113  * Crypto device/driver capabilities structure.
114  *
115  * Synchronization:
116  * (d) - protected by CRYPTO_DRIVER_LOCK()
117  * (q) - protected by CRYPTO_Q_LOCK()
118  * Not tagged fields are read-only.
119  */
120 struct cryptocap {
121         device_t        cc_dev;
122         uint32_t        cc_hid;
123         uint32_t        cc_sessions;            /* (d) # of sessions */
124
125         int             cc_flags;               /* (d) flags */
126 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
127         int             cc_qblocked;            /* (q) symmetric q blocked */
128         size_t          cc_session_size;
129         volatile int    cc_refs;
130 };
131
132 static  struct cryptocap **crypto_drivers = NULL;
133 static  int crypto_drivers_size = 0;
134
135 struct crypto_session {
136         struct cryptocap *cap;
137         struct crypto_session_params csp;
138         uint64_t id;
139         /* Driver softc follows. */
140 };
141
142 static  int crp_sleep = 0;
143 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
144 static  struct mtx crypto_q_mtx;
145 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
146 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
147
148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
149     "In-kernel cryptography");
150
151 /*
152  * Taskqueue used to dispatch the crypto requests
153  * that have the CRYPTO_F_ASYNC flag
154  */
155 static struct taskqueue *crypto_tq;
156
157 /*
158  * Crypto seq numbers are operated on with modular arithmetic
159  */
160 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
161
162 struct crypto_ret_worker {
163         struct mtx crypto_ret_mtx;
164
165         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
166         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
167
168         uint32_t reorder_ops;           /* total ordered sym jobs received */
169         uint32_t reorder_cur_seq;       /* current sym job dispatched */
170
171         struct proc *cryptoretproc;
172 };
173 static struct crypto_ret_worker *crypto_ret_workers = NULL;
174
175 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
176 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
177 #define FOREACH_CRYPTO_RETW(w) \
178         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
179
180 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
181 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
182
183 static int crypto_workers_num = 0;
184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
185            &crypto_workers_num, 0,
186            "Number of crypto workers used to dispatch crypto jobs");
187 #ifdef COMPAT_FREEBSD12
188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
189            &crypto_workers_num, 0,
190            "Number of crypto workers used to dispatch crypto jobs");
191 #endif
192
193 static  uma_zone_t cryptop_zone;
194
195 int     crypto_devallowsoft = 0;
196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
197            &crypto_devallowsoft, 0,
198            "Enable use of software crypto by /dev/crypto");
199 #ifdef COMPAT_FREEBSD12
200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
201            &crypto_devallowsoft, 0,
202            "Enable/disable use of software crypto by /dev/crypto");
203 #endif
204
205 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
206
207 static  void crypto_proc(void);
208 static  struct proc *cryptoproc;
209 static  void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
210 static  void crypto_destroy(void);
211 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
212 static  void crypto_task_invoke(void *ctx, int pending);
213 static void crypto_batch_enqueue(struct cryptop *crp);
214
215 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
216 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
217     cryptostats, nitems(cryptostats),
218     "Crypto system statistics");
219
220 #define CRYPTOSTAT_INC(stat) do {                                       \
221         counter_u64_add(                                                \
222             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
223             1);                                                         \
224 } while (0)
225
226 static void
227 cryptostats_init(void *arg __unused)
228 {
229         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
230 }
231 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
232
233 static void
234 cryptostats_fini(void *arg __unused)
235 {
236         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
237 }
238 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
239     NULL);
240
241 /* Try to avoid directly exposing the key buffer as a symbol */
242 static struct keybuf *keybuf;
243
244 static struct keybuf empty_keybuf = {
245         .kb_nents = 0
246 };
247
248 /* Obtain the key buffer from boot metadata */
249 static void
250 keybuf_init(void)
251 {
252         caddr_t kmdp;
253
254         kmdp = preload_search_by_type("elf kernel");
255
256         if (kmdp == NULL)
257                 kmdp = preload_search_by_type("elf64 kernel");
258
259         keybuf = (struct keybuf *)preload_search_info(kmdp,
260             MODINFO_METADATA | MODINFOMD_KEYBUF);
261
262         if (keybuf == NULL)
263                 keybuf = &empty_keybuf;
264 }
265
266 /* It'd be nice if we could store these in some kind of secure memory... */
267 struct keybuf *
268 get_keybuf(void)
269 {
270
271         return (keybuf);
272 }
273
274 static struct cryptocap *
275 cap_ref(struct cryptocap *cap)
276 {
277
278         refcount_acquire(&cap->cc_refs);
279         return (cap);
280 }
281
282 static void
283 cap_rele(struct cryptocap *cap)
284 {
285
286         if (refcount_release(&cap->cc_refs) == 0)
287                 return;
288
289         KASSERT(cap->cc_sessions == 0,
290             ("freeing crypto driver with active sessions"));
291
292         free(cap, M_CRYPTO_DATA);
293 }
294
295 static int
296 crypto_init(void)
297 {
298         struct crypto_ret_worker *ret_worker;
299         int error;
300
301         mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
302                 MTX_DEF|MTX_QUIET);
303
304         TAILQ_INIT(&crp_q);
305         mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
306
307         cryptop_zone = uma_zcreate("cryptop",
308             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
309             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
310
311         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
312         crypto_drivers = malloc(crypto_drivers_size *
313             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
314
315         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
316                 crypto_workers_num = mp_ncpus;
317
318         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
319             taskqueue_thread_enqueue, &crypto_tq);
320
321         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
322             "crypto");
323
324         error = kproc_create((void (*)(void *)) crypto_proc, NULL,
325                     &cryptoproc, 0, 0, "crypto");
326         if (error) {
327                 printf("crypto_init: cannot start crypto thread; error %d",
328                         error);
329                 goto bad;
330         }
331
332         crypto_ret_workers = mallocarray(crypto_workers_num,
333             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
334
335         FOREACH_CRYPTO_RETW(ret_worker) {
336                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
337                 TAILQ_INIT(&ret_worker->crp_ret_q);
338
339                 ret_worker->reorder_ops = 0;
340                 ret_worker->reorder_cur_seq = 0;
341
342                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
343
344                 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
345                                 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
346                 if (error) {
347                         printf("crypto_init: cannot start cryptoret thread; error %d",
348                                 error);
349                         goto bad;
350                 }
351         }
352
353         keybuf_init();
354
355         return 0;
356 bad:
357         crypto_destroy();
358         return error;
359 }
360
361 /*
362  * Signal a crypto thread to terminate.  We use the driver
363  * table lock to synchronize the sleep/wakeups so that we
364  * are sure the threads have terminated before we release
365  * the data structures they use.  See crypto_finis below
366  * for the other half of this song-and-dance.
367  */
368 static void
369 crypto_terminate(struct proc **pp, void *q)
370 {
371         struct proc *p;
372
373         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
374         p = *pp;
375         *pp = NULL;
376         if (p) {
377                 wakeup_one(q);
378                 PROC_LOCK(p);           /* NB: insure we don't miss wakeup */
379                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
380                 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
381                 PROC_UNLOCK(p);
382                 CRYPTO_DRIVER_LOCK();
383         }
384 }
385
386 static void
387 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
388     void *auth_ctx, uint8_t padval)
389 {
390         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
391         u_int i;
392
393         KASSERT(axf->blocksize <= sizeof(hmac_key),
394             ("Invalid HMAC block size %d", axf->blocksize));
395
396         /*
397          * If the key is larger than the block size, use the digest of
398          * the key as the key instead.
399          */
400         memset(hmac_key, 0, sizeof(hmac_key));
401         if (klen > axf->blocksize) {
402                 axf->Init(auth_ctx);
403                 axf->Update(auth_ctx, key, klen);
404                 axf->Final(hmac_key, auth_ctx);
405                 klen = axf->hashsize;
406         } else
407                 memcpy(hmac_key, key, klen);
408
409         for (i = 0; i < axf->blocksize; i++)
410                 hmac_key[i] ^= padval;
411
412         axf->Init(auth_ctx);
413         axf->Update(auth_ctx, hmac_key, axf->blocksize);
414         explicit_bzero(hmac_key, sizeof(hmac_key));
415 }
416
417 void
418 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
419     void *auth_ctx)
420 {
421
422         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
423 }
424
425 void
426 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
427     void *auth_ctx)
428 {
429
430         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
431 }
432
433 static void
434 crypto_destroy(void)
435 {
436         struct crypto_ret_worker *ret_worker;
437         int i;
438
439         /*
440          * Terminate any crypto threads.
441          */
442         if (crypto_tq != NULL)
443                 taskqueue_drain_all(crypto_tq);
444         CRYPTO_DRIVER_LOCK();
445         crypto_terminate(&cryptoproc, &crp_q);
446         FOREACH_CRYPTO_RETW(ret_worker)
447                 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
448         CRYPTO_DRIVER_UNLOCK();
449
450         /* XXX flush queues??? */
451
452         /*
453          * Reclaim dynamically allocated resources.
454          */
455         for (i = 0; i < crypto_drivers_size; i++) {
456                 if (crypto_drivers[i] != NULL)
457                         cap_rele(crypto_drivers[i]);
458         }
459         free(crypto_drivers, M_CRYPTO_DATA);
460
461         if (cryptop_zone != NULL)
462                 uma_zdestroy(cryptop_zone);
463         mtx_destroy(&crypto_q_mtx);
464         FOREACH_CRYPTO_RETW(ret_worker)
465                 mtx_destroy(&ret_worker->crypto_ret_mtx);
466         free(crypto_ret_workers, M_CRYPTO_DATA);
467         if (crypto_tq != NULL)
468                 taskqueue_free(crypto_tq);
469         mtx_destroy(&crypto_drivers_mtx);
470 }
471
472 uint32_t
473 crypto_ses2hid(crypto_session_t crypto_session)
474 {
475         return (crypto_session->cap->cc_hid);
476 }
477
478 uint32_t
479 crypto_ses2caps(crypto_session_t crypto_session)
480 {
481         return (crypto_session->cap->cc_flags & 0xff000000);
482 }
483
484 void *
485 crypto_get_driver_session(crypto_session_t crypto_session)
486 {
487         return (crypto_session + 1);
488 }
489
490 const struct crypto_session_params *
491 crypto_get_params(crypto_session_t crypto_session)
492 {
493         return (&crypto_session->csp);
494 }
495
496 const struct auth_hash *
497 crypto_auth_hash(const struct crypto_session_params *csp)
498 {
499
500         switch (csp->csp_auth_alg) {
501         case CRYPTO_SHA1_HMAC:
502                 return (&auth_hash_hmac_sha1);
503         case CRYPTO_SHA2_224_HMAC:
504                 return (&auth_hash_hmac_sha2_224);
505         case CRYPTO_SHA2_256_HMAC:
506                 return (&auth_hash_hmac_sha2_256);
507         case CRYPTO_SHA2_384_HMAC:
508                 return (&auth_hash_hmac_sha2_384);
509         case CRYPTO_SHA2_512_HMAC:
510                 return (&auth_hash_hmac_sha2_512);
511         case CRYPTO_NULL_HMAC:
512                 return (&auth_hash_null);
513         case CRYPTO_RIPEMD160_HMAC:
514                 return (&auth_hash_hmac_ripemd_160);
515         case CRYPTO_SHA1:
516                 return (&auth_hash_sha1);
517         case CRYPTO_SHA2_224:
518                 return (&auth_hash_sha2_224);
519         case CRYPTO_SHA2_256:
520                 return (&auth_hash_sha2_256);
521         case CRYPTO_SHA2_384:
522                 return (&auth_hash_sha2_384);
523         case CRYPTO_SHA2_512:
524                 return (&auth_hash_sha2_512);
525         case CRYPTO_AES_NIST_GMAC:
526                 switch (csp->csp_auth_klen) {
527                 case 128 / 8:
528                         return (&auth_hash_nist_gmac_aes_128);
529                 case 192 / 8:
530                         return (&auth_hash_nist_gmac_aes_192);
531                 case 256 / 8:
532                         return (&auth_hash_nist_gmac_aes_256);
533                 default:
534                         return (NULL);
535                 }
536         case CRYPTO_BLAKE2B:
537                 return (&auth_hash_blake2b);
538         case CRYPTO_BLAKE2S:
539                 return (&auth_hash_blake2s);
540         case CRYPTO_POLY1305:
541                 return (&auth_hash_poly1305);
542         case CRYPTO_AES_CCM_CBC_MAC:
543                 switch (csp->csp_auth_klen) {
544                 case 128 / 8:
545                         return (&auth_hash_ccm_cbc_mac_128);
546                 case 192 / 8:
547                         return (&auth_hash_ccm_cbc_mac_192);
548                 case 256 / 8:
549                         return (&auth_hash_ccm_cbc_mac_256);
550                 default:
551                         return (NULL);
552                 }
553         default:
554                 return (NULL);
555         }
556 }
557
558 const struct enc_xform *
559 crypto_cipher(const struct crypto_session_params *csp)
560 {
561
562         switch (csp->csp_cipher_alg) {
563         case CRYPTO_RIJNDAEL128_CBC:
564                 return (&enc_xform_rijndael128);
565         case CRYPTO_AES_XTS:
566                 return (&enc_xform_aes_xts);
567         case CRYPTO_AES_ICM:
568                 return (&enc_xform_aes_icm);
569         case CRYPTO_AES_NIST_GCM_16:
570                 return (&enc_xform_aes_nist_gcm);
571         case CRYPTO_CAMELLIA_CBC:
572                 return (&enc_xform_camellia);
573         case CRYPTO_NULL_CBC:
574                 return (&enc_xform_null);
575         case CRYPTO_CHACHA20:
576                 return (&enc_xform_chacha20);
577         case CRYPTO_AES_CCM_16:
578                 return (&enc_xform_ccm);
579         case CRYPTO_CHACHA20_POLY1305:
580                 return (&enc_xform_chacha20_poly1305);
581         default:
582                 return (NULL);
583         }
584 }
585
586 static struct cryptocap *
587 crypto_checkdriver(uint32_t hid)
588 {
589
590         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
591 }
592
593 /*
594  * Select a driver for a new session that supports the specified
595  * algorithms and, optionally, is constrained according to the flags.
596  */
597 static struct cryptocap *
598 crypto_select_driver(const struct crypto_session_params *csp, int flags)
599 {
600         struct cryptocap *cap, *best;
601         int best_match, error, hid;
602
603         CRYPTO_DRIVER_ASSERT();
604
605         best = NULL;
606         for (hid = 0; hid < crypto_drivers_size; hid++) {
607                 /*
608                  * If there is no driver for this slot, or the driver
609                  * is not appropriate (hardware or software based on
610                  * match), then skip.
611                  */
612                 cap = crypto_drivers[hid];
613                 if (cap == NULL ||
614                     (cap->cc_flags & flags) == 0)
615                         continue;
616
617                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
618                 if (error >= 0)
619                         continue;
620
621                 /*
622                  * Use the driver with the highest probe value.
623                  * Hardware drivers use a higher probe value than
624                  * software.  In case of a tie, prefer the driver with
625                  * the fewest active sessions.
626                  */
627                 if (best == NULL || error > best_match ||
628                     (error == best_match &&
629                     cap->cc_sessions < best->cc_sessions)) {
630                         best = cap;
631                         best_match = error;
632                 }
633         }
634         return best;
635 }
636
637 static enum alg_type {
638         ALG_NONE = 0,
639         ALG_CIPHER,
640         ALG_DIGEST,
641         ALG_KEYED_DIGEST,
642         ALG_COMPRESSION,
643         ALG_AEAD
644 } alg_types[] = {
645         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
646         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
647         [CRYPTO_AES_CBC] = ALG_CIPHER,
648         [CRYPTO_SHA1] = ALG_DIGEST,
649         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
650         [CRYPTO_NULL_CBC] = ALG_CIPHER,
651         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
652         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
653         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
654         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
655         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
656         [CRYPTO_AES_XTS] = ALG_CIPHER,
657         [CRYPTO_AES_ICM] = ALG_CIPHER,
658         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
659         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
660         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
661         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
662         [CRYPTO_CHACHA20] = ALG_CIPHER,
663         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
664         [CRYPTO_RIPEMD160] = ALG_DIGEST,
665         [CRYPTO_SHA2_224] = ALG_DIGEST,
666         [CRYPTO_SHA2_256] = ALG_DIGEST,
667         [CRYPTO_SHA2_384] = ALG_DIGEST,
668         [CRYPTO_SHA2_512] = ALG_DIGEST,
669         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
670         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
671         [CRYPTO_AES_CCM_16] = ALG_AEAD,
672         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
673 };
674
675 static enum alg_type
676 alg_type(int alg)
677 {
678
679         if (alg < nitems(alg_types))
680                 return (alg_types[alg]);
681         return (ALG_NONE);
682 }
683
684 static bool
685 alg_is_compression(int alg)
686 {
687
688         return (alg_type(alg) == ALG_COMPRESSION);
689 }
690
691 static bool
692 alg_is_cipher(int alg)
693 {
694
695         return (alg_type(alg) == ALG_CIPHER);
696 }
697
698 static bool
699 alg_is_digest(int alg)
700 {
701
702         return (alg_type(alg) == ALG_DIGEST ||
703             alg_type(alg) == ALG_KEYED_DIGEST);
704 }
705
706 static bool
707 alg_is_keyed_digest(int alg)
708 {
709
710         return (alg_type(alg) == ALG_KEYED_DIGEST);
711 }
712
713 static bool
714 alg_is_aead(int alg)
715 {
716
717         return (alg_type(alg) == ALG_AEAD);
718 }
719
720 static bool
721 ccm_tag_length_valid(int len)
722 {
723         /* RFC 3610 */
724         switch (len) {
725         case 4:
726         case 6:
727         case 8:
728         case 10:
729         case 12:
730         case 14:
731         case 16:
732                 return (true);
733         default:
734                 return (false);
735         }
736 }
737
738 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
739
740 /* Various sanity checks on crypto session parameters. */
741 static bool
742 check_csp(const struct crypto_session_params *csp)
743 {
744         const struct auth_hash *axf;
745
746         /* Mode-independent checks. */
747         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
748                 return (false);
749         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
750             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
751                 return (false);
752         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
753                 return (false);
754         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
755                 return (false);
756
757         switch (csp->csp_mode) {
758         case CSP_MODE_COMPRESS:
759                 if (!alg_is_compression(csp->csp_cipher_alg))
760                         return (false);
761                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
762                         return (false);
763                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
764                         return (false);
765                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
766                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
767                     csp->csp_auth_mlen != 0)
768                         return (false);
769                 break;
770         case CSP_MODE_CIPHER:
771                 if (!alg_is_cipher(csp->csp_cipher_alg))
772                         return (false);
773                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
774                         return (false);
775                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
776                         if (csp->csp_cipher_klen == 0)
777                                 return (false);
778                         if (csp->csp_ivlen == 0)
779                                 return (false);
780                 }
781                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
782                         return (false);
783                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
784                     csp->csp_auth_mlen != 0)
785                         return (false);
786                 break;
787         case CSP_MODE_DIGEST:
788                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
789                         return (false);
790
791                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
792                         return (false);
793
794                 /* IV is optional for digests (e.g. GMAC). */
795                 switch (csp->csp_auth_alg) {
796                 case CRYPTO_AES_CCM_CBC_MAC:
797                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
798                                 return (false);
799                         break;
800                 case CRYPTO_AES_NIST_GMAC:
801                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
802                                 return (false);
803                         break;
804                 default:
805                         if (csp->csp_ivlen != 0)
806                                 return (false);
807                         break;
808                 }
809
810                 if (!alg_is_digest(csp->csp_auth_alg))
811                         return (false);
812
813                 /* Key is optional for BLAKE2 digests. */
814                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
815                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
816                         ;
817                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
818                         if (csp->csp_auth_klen == 0)
819                                 return (false);
820                 } else {
821                         if (csp->csp_auth_klen != 0)
822                                 return (false);
823                 }
824                 if (csp->csp_auth_mlen != 0) {
825                         axf = crypto_auth_hash(csp);
826                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
827                                 return (false);
828
829                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
830                             !ccm_tag_length_valid(csp->csp_auth_mlen))
831                                 return (false);
832                 }
833                 break;
834         case CSP_MODE_AEAD:
835                 if (!alg_is_aead(csp->csp_cipher_alg))
836                         return (false);
837                 if (csp->csp_cipher_klen == 0)
838                         return (false);
839                 if (csp->csp_ivlen == 0 ||
840                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
841                         return (false);
842                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
843                         return (false);
844
845                 switch (csp->csp_cipher_alg) {
846                 case CRYPTO_AES_CCM_16:
847                         if (csp->csp_auth_mlen != 0 &&
848                             !ccm_tag_length_valid(csp->csp_auth_mlen))
849                                 return (false);
850
851                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
852                                 return (false);
853                         break;
854                 case CRYPTO_AES_NIST_GCM_16:
855                         if (csp->csp_auth_mlen > 16)
856                                 return (false);
857                         break;
858                 case CRYPTO_CHACHA20_POLY1305:
859                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
860                                 return (false);
861                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
862                                 return (false);
863                         break;
864                 }
865                 break;
866         case CSP_MODE_ETA:
867                 if (!alg_is_cipher(csp->csp_cipher_alg))
868                         return (false);
869                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
870                         if (csp->csp_cipher_klen == 0)
871                                 return (false);
872                         if (csp->csp_ivlen == 0)
873                                 return (false);
874                 }
875                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
876                         return (false);
877                 if (!alg_is_digest(csp->csp_auth_alg))
878                         return (false);
879
880                 /* Key is optional for BLAKE2 digests. */
881                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
882                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
883                         ;
884                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
885                         if (csp->csp_auth_klen == 0)
886                                 return (false);
887                 } else {
888                         if (csp->csp_auth_klen != 0)
889                                 return (false);
890                 }
891                 if (csp->csp_auth_mlen != 0) {
892                         axf = crypto_auth_hash(csp);
893                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
894                                 return (false);
895                 }
896                 break;
897         default:
898                 return (false);
899         }
900
901         return (true);
902 }
903
904 /*
905  * Delete a session after it has been detached from its driver.
906  */
907 static void
908 crypto_deletesession(crypto_session_t cses)
909 {
910         struct cryptocap *cap;
911
912         cap = cses->cap;
913
914         zfree(cses, M_CRYPTO_DATA);
915
916         CRYPTO_DRIVER_LOCK();
917         cap->cc_sessions--;
918         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
919                 wakeup(cap);
920         CRYPTO_DRIVER_UNLOCK();
921         cap_rele(cap);
922 }
923
924 /*
925  * Create a new session.  The crid argument specifies a crypto
926  * driver to use or constraints on a driver to select (hardware
927  * only, software only, either).  Whatever driver is selected
928  * must be capable of the requested crypto algorithms.
929  */
930 int
931 crypto_newsession(crypto_session_t *cses,
932     const struct crypto_session_params *csp, int crid)
933 {
934         static uint64_t sessid = 0;
935         crypto_session_t res;
936         struct cryptocap *cap;
937         int err;
938
939         if (!check_csp(csp))
940                 return (EINVAL);
941
942         res = NULL;
943
944         CRYPTO_DRIVER_LOCK();
945         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
946                 /*
947                  * Use specified driver; verify it is capable.
948                  */
949                 cap = crypto_checkdriver(crid);
950                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
951                         cap = NULL;
952         } else {
953                 /*
954                  * No requested driver; select based on crid flags.
955                  */
956                 cap = crypto_select_driver(csp, crid);
957         }
958         if (cap == NULL) {
959                 CRYPTO_DRIVER_UNLOCK();
960                 CRYPTDEB("no driver");
961                 return (EOPNOTSUPP);
962         }
963         cap_ref(cap);
964         cap->cc_sessions++;
965         CRYPTO_DRIVER_UNLOCK();
966
967         /* Allocate a single block for the generic session and driver softc. */
968         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
969             M_WAITOK | M_ZERO);
970         res->cap = cap;
971         res->csp = *csp;
972         res->id = atomic_fetchadd_64(&sessid, 1);
973
974         /* Call the driver initialization routine. */
975         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
976         if (err != 0) {
977                 CRYPTDEB("dev newsession failed: %d", err);
978                 crypto_deletesession(res);
979                 return (err);
980         }
981
982         *cses = res;
983         return (0);
984 }
985
986 /*
987  * Delete an existing session (or a reserved session on an unregistered
988  * driver).
989  */
990 void
991 crypto_freesession(crypto_session_t cses)
992 {
993         struct cryptocap *cap;
994
995         if (cses == NULL)
996                 return;
997
998         cap = cses->cap;
999
1000         /* Call the driver cleanup routine, if available. */
1001         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1002
1003         crypto_deletesession(cses);
1004 }
1005
1006 /*
1007  * Return a new driver id.  Registers a driver with the system so that
1008  * it can be probed by subsequent sessions.
1009  */
1010 int32_t
1011 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1012 {
1013         struct cryptocap *cap, **newdrv;
1014         int i;
1015
1016         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1017                 device_printf(dev,
1018                     "no flags specified when registering driver\n");
1019                 return -1;
1020         }
1021
1022         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1023         cap->cc_dev = dev;
1024         cap->cc_session_size = sessionsize;
1025         cap->cc_flags = flags;
1026         refcount_init(&cap->cc_refs, 1);
1027
1028         CRYPTO_DRIVER_LOCK();
1029         for (;;) {
1030                 for (i = 0; i < crypto_drivers_size; i++) {
1031                         if (crypto_drivers[i] == NULL)
1032                                 break;
1033                 }
1034
1035                 if (i < crypto_drivers_size)
1036                         break;
1037
1038                 /* Out of entries, allocate some more. */
1039
1040                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1041                         CRYPTO_DRIVER_UNLOCK();
1042                         printf("crypto: driver count wraparound!\n");
1043                         cap_rele(cap);
1044                         return (-1);
1045                 }
1046                 CRYPTO_DRIVER_UNLOCK();
1047
1048                 newdrv = malloc(2 * crypto_drivers_size *
1049                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1050
1051                 CRYPTO_DRIVER_LOCK();
1052                 memcpy(newdrv, crypto_drivers,
1053                     crypto_drivers_size * sizeof(*crypto_drivers));
1054
1055                 crypto_drivers_size *= 2;
1056
1057                 free(crypto_drivers, M_CRYPTO_DATA);
1058                 crypto_drivers = newdrv;
1059         }
1060
1061         cap->cc_hid = i;
1062         crypto_drivers[i] = cap;
1063         CRYPTO_DRIVER_UNLOCK();
1064
1065         if (bootverbose)
1066                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1067                     device_get_nameunit(dev), i, flags);
1068
1069         return i;
1070 }
1071
1072 /*
1073  * Lookup a driver by name.  We match against the full device
1074  * name and unit, and against just the name.  The latter gives
1075  * us a simple widlcarding by device name.  On success return the
1076  * driver/hardware identifier; otherwise return -1.
1077  */
1078 int
1079 crypto_find_driver(const char *match)
1080 {
1081         struct cryptocap *cap;
1082         int i, len = strlen(match);
1083
1084         CRYPTO_DRIVER_LOCK();
1085         for (i = 0; i < crypto_drivers_size; i++) {
1086                 if (crypto_drivers[i] == NULL)
1087                         continue;
1088                 cap = crypto_drivers[i];
1089                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1090                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1091                         CRYPTO_DRIVER_UNLOCK();
1092                         return (i);
1093                 }
1094         }
1095         CRYPTO_DRIVER_UNLOCK();
1096         return (-1);
1097 }
1098
1099 /*
1100  * Return the device_t for the specified driver or NULL
1101  * if the driver identifier is invalid.
1102  */
1103 device_t
1104 crypto_find_device_byhid(int hid)
1105 {
1106         struct cryptocap *cap;
1107         device_t dev;
1108
1109         dev = NULL;
1110         CRYPTO_DRIVER_LOCK();
1111         cap = crypto_checkdriver(hid);
1112         if (cap != NULL)
1113                 dev = cap->cc_dev;
1114         CRYPTO_DRIVER_UNLOCK();
1115         return (dev);
1116 }
1117
1118 /*
1119  * Return the device/driver capabilities.
1120  */
1121 int
1122 crypto_getcaps(int hid)
1123 {
1124         struct cryptocap *cap;
1125         int flags;
1126
1127         flags = 0;
1128         CRYPTO_DRIVER_LOCK();
1129         cap = crypto_checkdriver(hid);
1130         if (cap != NULL)
1131                 flags = cap->cc_flags;
1132         CRYPTO_DRIVER_UNLOCK();
1133         return (flags);
1134 }
1135
1136 /*
1137  * Unregister all algorithms associated with a crypto driver.
1138  * If there are pending sessions using it, leave enough information
1139  * around so that subsequent calls using those sessions will
1140  * correctly detect the driver has been unregistered and reroute
1141  * requests.
1142  */
1143 int
1144 crypto_unregister_all(uint32_t driverid)
1145 {
1146         struct cryptocap *cap;
1147
1148         CRYPTO_DRIVER_LOCK();
1149         cap = crypto_checkdriver(driverid);
1150         if (cap == NULL) {
1151                 CRYPTO_DRIVER_UNLOCK();
1152                 return (EINVAL);
1153         }
1154
1155         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1156         crypto_drivers[driverid] = NULL;
1157
1158         /*
1159          * XXX: This doesn't do anything to kick sessions that
1160          * have no pending operations.
1161          */
1162         while (cap->cc_sessions != 0)
1163                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1164         CRYPTO_DRIVER_UNLOCK();
1165         cap_rele(cap);
1166
1167         return (0);
1168 }
1169
1170 /*
1171  * Clear blockage on a driver.  The what parameter indicates whether
1172  * the driver is now ready for cryptop's and/or cryptokop's.
1173  */
1174 int
1175 crypto_unblock(uint32_t driverid, int what)
1176 {
1177         struct cryptocap *cap;
1178         int err;
1179
1180         CRYPTO_Q_LOCK();
1181         cap = crypto_checkdriver(driverid);
1182         if (cap != NULL) {
1183                 if (what & CRYPTO_SYMQ)
1184                         cap->cc_qblocked = 0;
1185                 if (crp_sleep)
1186                         wakeup_one(&crp_q);
1187                 err = 0;
1188         } else
1189                 err = EINVAL;
1190         CRYPTO_Q_UNLOCK();
1191
1192         return err;
1193 }
1194
1195 size_t
1196 crypto_buffer_len(struct crypto_buffer *cb)
1197 {
1198         switch (cb->cb_type) {
1199         case CRYPTO_BUF_CONTIG:
1200                 return (cb->cb_buf_len);
1201         case CRYPTO_BUF_MBUF:
1202                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1203                         return (cb->cb_mbuf->m_pkthdr.len);
1204                 return (m_length(cb->cb_mbuf, NULL));
1205         case CRYPTO_BUF_SINGLE_MBUF:
1206                 return (cb->cb_mbuf->m_len);
1207         case CRYPTO_BUF_VMPAGE:
1208                 return (cb->cb_vm_page_len);
1209         case CRYPTO_BUF_UIO:
1210                 return (cb->cb_uio->uio_resid);
1211         default:
1212                 return (0);
1213         }
1214 }
1215
1216 #ifdef INVARIANTS
1217 /* Various sanity checks on crypto requests. */
1218 static void
1219 cb_sanity(struct crypto_buffer *cb, const char *name)
1220 {
1221         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1222             ("incoming crp with invalid %s buffer type", name));
1223         switch (cb->cb_type) {
1224         case CRYPTO_BUF_CONTIG:
1225                 KASSERT(cb->cb_buf_len >= 0,
1226                     ("incoming crp with -ve %s buffer length", name));
1227                 break;
1228         case CRYPTO_BUF_VMPAGE:
1229                 KASSERT(CRYPTO_HAS_VMPAGE,
1230                     ("incoming crp uses dmap on supported arch"));
1231                 KASSERT(cb->cb_vm_page_len >= 0,
1232                     ("incoming crp with -ve %s buffer length", name));
1233                 KASSERT(cb->cb_vm_page_offset >= 0,
1234                     ("incoming crp with -ve %s buffer offset", name));
1235                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1236                     ("incoming crp with %s buffer offset greater than page size"
1237                      , name));
1238                 break;
1239         default:
1240                 break;
1241         }
1242 }
1243
1244 static void
1245 crp_sanity(struct cryptop *crp)
1246 {
1247         struct crypto_session_params *csp;
1248         struct crypto_buffer *out;
1249         size_t ilen, len, olen;
1250
1251         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1252         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1253             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1254             ("incoming crp with invalid output buffer type"));
1255         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1256         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1257             ("incoming crp already done"));
1258
1259         csp = &crp->crp_session->csp;
1260         cb_sanity(&crp->crp_buf, "input");
1261         ilen = crypto_buffer_len(&crp->crp_buf);
1262         olen = ilen;
1263         out = NULL;
1264         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1265                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1266                         cb_sanity(&crp->crp_obuf, "output");
1267                         out = &crp->crp_obuf;
1268                         olen = crypto_buffer_len(out);
1269                 }
1270         } else
1271                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1272                     ("incoming crp with separate output buffer "
1273                     "but no session support"));
1274
1275         switch (csp->csp_mode) {
1276         case CSP_MODE_COMPRESS:
1277                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1278                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1279                     ("invalid compression op %x", crp->crp_op));
1280                 break;
1281         case CSP_MODE_CIPHER:
1282                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1283                     crp->crp_op == CRYPTO_OP_DECRYPT,
1284                     ("invalid cipher op %x", crp->crp_op));
1285                 break;
1286         case CSP_MODE_DIGEST:
1287                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1288                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1289                     ("invalid digest op %x", crp->crp_op));
1290                 break;
1291         case CSP_MODE_AEAD:
1292                 KASSERT(crp->crp_op ==
1293                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1294                     crp->crp_op ==
1295                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1296                     ("invalid AEAD op %x", crp->crp_op));
1297                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1298                     ("AEAD without a separate IV"));
1299                 break;
1300         case CSP_MODE_ETA:
1301                 KASSERT(crp->crp_op ==
1302                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1303                     crp->crp_op ==
1304                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1305                     ("invalid ETA op %x", crp->crp_op));
1306                 break;
1307         }
1308         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1309                 if (crp->crp_aad == NULL) {
1310                         KASSERT(crp->crp_aad_start == 0 ||
1311                             crp->crp_aad_start < ilen,
1312                             ("invalid AAD start"));
1313                         KASSERT(crp->crp_aad_length != 0 ||
1314                             crp->crp_aad_start == 0,
1315                             ("AAD with zero length and non-zero start"));
1316                         KASSERT(crp->crp_aad_length == 0 ||
1317                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1318                             ("AAD outside input length"));
1319                 } else {
1320                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1321                             ("session doesn't support separate AAD buffer"));
1322                         KASSERT(crp->crp_aad_start == 0,
1323                             ("separate AAD buffer with non-zero AAD start"));
1324                         KASSERT(crp->crp_aad_length != 0,
1325                             ("separate AAD buffer with zero length"));
1326                 }
1327         } else {
1328                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1329                     crp->crp_aad_length == 0,
1330                     ("AAD region in request not supporting AAD"));
1331         }
1332         if (csp->csp_ivlen == 0) {
1333                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1334                     ("IV_SEPARATE set when IV isn't used"));
1335                 KASSERT(crp->crp_iv_start == 0,
1336                     ("crp_iv_start set when IV isn't used"));
1337         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1338                 KASSERT(crp->crp_iv_start == 0,
1339                     ("IV_SEPARATE used with non-zero IV start"));
1340         } else {
1341                 KASSERT(crp->crp_iv_start < ilen,
1342                     ("invalid IV start"));
1343                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1344                     ("IV outside buffer length"));
1345         }
1346         /* XXX: payload_start of 0 should always be < ilen? */
1347         KASSERT(crp->crp_payload_start == 0 ||
1348             crp->crp_payload_start < ilen,
1349             ("invalid payload start"));
1350         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1351             ilen, ("payload outside input buffer"));
1352         if (out == NULL) {
1353                 KASSERT(crp->crp_payload_output_start == 0,
1354                     ("payload output start non-zero without output buffer"));
1355         } else {
1356                 KASSERT(crp->crp_payload_output_start < olen,
1357                     ("invalid payload output start"));
1358                 KASSERT(crp->crp_payload_output_start +
1359                     crp->crp_payload_length <= olen,
1360                     ("payload outside output buffer"));
1361         }
1362         if (csp->csp_mode == CSP_MODE_DIGEST ||
1363             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1364                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1365                         len = ilen;
1366                 else
1367                         len = olen;
1368                 KASSERT(crp->crp_digest_start == 0 ||
1369                     crp->crp_digest_start < len,
1370                     ("invalid digest start"));
1371                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1372                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1373                     ("digest outside buffer"));
1374         } else {
1375                 KASSERT(crp->crp_digest_start == 0,
1376                     ("non-zero digest start for request without a digest"));
1377         }
1378         if (csp->csp_cipher_klen != 0)
1379                 KASSERT(csp->csp_cipher_key != NULL ||
1380                     crp->crp_cipher_key != NULL,
1381                     ("cipher request without a key"));
1382         if (csp->csp_auth_klen != 0)
1383                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1384                     ("auth request without a key"));
1385         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1386 }
1387 #endif
1388
1389 static int
1390 crypto_dispatch_one(struct cryptop *crp, int hint)
1391 {
1392         struct cryptocap *cap;
1393         int result;
1394
1395 #ifdef INVARIANTS
1396         crp_sanity(crp);
1397 #endif
1398         CRYPTOSTAT_INC(cs_ops);
1399
1400         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1401
1402         /*
1403          * Caller marked the request to be processed immediately; dispatch it
1404          * directly to the driver unless the driver is currently blocked, in
1405          * which case it is queued for deferred dispatch.
1406          */
1407         cap = crp->crp_session->cap;
1408         if (!atomic_load_int(&cap->cc_qblocked)) {
1409                 result = crypto_invoke(cap, crp, hint);
1410                 if (result != ERESTART)
1411                         return (result);
1412
1413                 /*
1414                  * The driver ran out of resources, put the request on the
1415                  * queue.
1416                  */
1417         }
1418         crypto_batch_enqueue(crp);
1419         return (0);
1420 }
1421
1422 int
1423 crypto_dispatch(struct cryptop *crp)
1424 {
1425         return (crypto_dispatch_one(crp, 0));
1426 }
1427
1428 int
1429 crypto_dispatch_async(struct cryptop *crp, int flags)
1430 {
1431         struct crypto_ret_worker *ret_worker;
1432
1433         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1434                 /*
1435                  * The driver issues completions asynchonously, don't bother
1436                  * deferring dispatch to a worker thread.
1437                  */
1438                 return (crypto_dispatch(crp));
1439         }
1440
1441 #ifdef INVARIANTS
1442         crp_sanity(crp);
1443 #endif
1444         CRYPTOSTAT_INC(cs_ops);
1445
1446         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1447         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1448                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1449                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1450                 CRYPTO_RETW_LOCK(ret_worker);
1451                 crp->crp_seq = ret_worker->reorder_ops++;
1452                 CRYPTO_RETW_UNLOCK(ret_worker);
1453         }
1454         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1455         taskqueue_enqueue(crypto_tq, &crp->crp_task);
1456         return (0);
1457 }
1458
1459 void
1460 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1461 {
1462         struct cryptop *crp;
1463         int hint;
1464
1465         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1466                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1467                 TAILQ_REMOVE(crpq, crp, crp_next);
1468                 if (crypto_dispatch_one(crp, hint) != 0)
1469                         crypto_batch_enqueue(crp);
1470         }
1471 }
1472
1473 static void
1474 crypto_batch_enqueue(struct cryptop *crp)
1475 {
1476
1477         CRYPTO_Q_LOCK();
1478         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1479         if (crp_sleep)
1480                 wakeup_one(&crp_q);
1481         CRYPTO_Q_UNLOCK();
1482 }
1483
1484 static void
1485 crypto_task_invoke(void *ctx, int pending)
1486 {
1487         struct cryptocap *cap;
1488         struct cryptop *crp;
1489         int result;
1490
1491         crp = (struct cryptop *)ctx;
1492         cap = crp->crp_session->cap;
1493         result = crypto_invoke(cap, crp, 0);
1494         if (result == ERESTART)
1495                 crypto_batch_enqueue(crp);
1496 }
1497
1498 /*
1499  * Dispatch a crypto request to the appropriate crypto devices.
1500  */
1501 static int
1502 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1503 {
1504
1505         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1506         KASSERT(crp->crp_callback != NULL,
1507             ("%s: crp->crp_callback == NULL", __func__));
1508         KASSERT(crp->crp_session != NULL,
1509             ("%s: crp->crp_session == NULL", __func__));
1510
1511         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1512                 struct crypto_session_params csp;
1513                 crypto_session_t nses;
1514
1515                 /*
1516                  * Driver has unregistered; migrate the session and return
1517                  * an error to the caller so they'll resubmit the op.
1518                  *
1519                  * XXX: What if there are more already queued requests for this
1520                  *      session?
1521                  *
1522                  * XXX: Real solution is to make sessions refcounted
1523                  * and force callers to hold a reference when
1524                  * assigning to crp_session.  Could maybe change
1525                  * crypto_getreq to accept a session pointer to make
1526                  * that work.  Alternatively, we could abandon the
1527                  * notion of rewriting crp_session in requests forcing
1528                  * the caller to deal with allocating a new session.
1529                  * Perhaps provide a method to allow a crp's session to
1530                  * be swapped that callers could use.
1531                  */
1532                 csp = crp->crp_session->csp;
1533                 crypto_freesession(crp->crp_session);
1534
1535                 /*
1536                  * XXX: Key pointers may no longer be valid.  If we
1537                  * really want to support this we need to define the
1538                  * KPI such that 'csp' is required to be valid for the
1539                  * duration of a session by the caller perhaps.
1540                  *
1541                  * XXX: If the keys have been changed this will reuse
1542                  * the old keys.  This probably suggests making
1543                  * rekeying more explicit and updating the key
1544                  * pointers in 'csp' when the keys change.
1545                  */
1546                 if (crypto_newsession(&nses, &csp,
1547                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1548                         crp->crp_session = nses;
1549
1550                 crp->crp_etype = EAGAIN;
1551                 crypto_done(crp);
1552                 return 0;
1553         } else {
1554                 /*
1555                  * Invoke the driver to process the request.
1556                  */
1557                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1558         }
1559 }
1560
1561 void
1562 crypto_destroyreq(struct cryptop *crp)
1563 {
1564 #ifdef DIAGNOSTIC
1565         {
1566                 struct cryptop *crp2;
1567                 struct crypto_ret_worker *ret_worker;
1568
1569                 CRYPTO_Q_LOCK();
1570                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1571                         KASSERT(crp2 != crp,
1572                             ("Freeing cryptop from the crypto queue (%p).",
1573                             crp));
1574                 }
1575                 CRYPTO_Q_UNLOCK();
1576
1577                 FOREACH_CRYPTO_RETW(ret_worker) {
1578                         CRYPTO_RETW_LOCK(ret_worker);
1579                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1580                                 KASSERT(crp2 != crp,
1581                                     ("Freeing cryptop from the return queue (%p).",
1582                                     crp));
1583                         }
1584                         CRYPTO_RETW_UNLOCK(ret_worker);
1585                 }
1586         }
1587 #endif
1588 }
1589
1590 void
1591 crypto_freereq(struct cryptop *crp)
1592 {
1593         if (crp == NULL)
1594                 return;
1595
1596         crypto_destroyreq(crp);
1597         uma_zfree(cryptop_zone, crp);
1598 }
1599
1600 static void
1601 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1602 {
1603         crp->crp_session = cses;
1604 }
1605
1606 void
1607 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1608 {
1609         memset(crp, 0, sizeof(*crp));
1610         _crypto_initreq(crp, cses);
1611 }
1612
1613 struct cryptop *
1614 crypto_getreq(crypto_session_t cses, int how)
1615 {
1616         struct cryptop *crp;
1617
1618         MPASS(how == M_WAITOK || how == M_NOWAIT);
1619         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1620         if (crp != NULL)
1621                 _crypto_initreq(crp, cses);
1622         return (crp);
1623 }
1624
1625 /*
1626  * Invoke the callback on behalf of the driver.
1627  */
1628 void
1629 crypto_done(struct cryptop *crp)
1630 {
1631         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1632                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1633         crp->crp_flags |= CRYPTO_F_DONE;
1634         if (crp->crp_etype != 0)
1635                 CRYPTOSTAT_INC(cs_errs);
1636
1637         /*
1638          * CBIMM means unconditionally do the callback immediately;
1639          * CBIFSYNC means do the callback immediately only if the
1640          * operation was done synchronously.  Both are used to avoid
1641          * doing extraneous context switches; the latter is mostly
1642          * used with the software crypto driver.
1643          */
1644         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1645             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1646             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1647             CRYPTO_SESS_SYNC(crp->crp_session)))) {
1648                 /*
1649                  * Do the callback directly.  This is ok when the
1650                  * callback routine does very little (e.g. the
1651                  * /dev/crypto callback method just does a wakeup).
1652                  */
1653                 crp->crp_callback(crp);
1654         } else {
1655                 struct crypto_ret_worker *ret_worker;
1656                 bool wake;
1657
1658                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1659
1660                 /*
1661                  * Normal case; queue the callback for the thread.
1662                  */
1663                 CRYPTO_RETW_LOCK(ret_worker);
1664                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1665                         struct cryptop *tmp;
1666
1667                         TAILQ_FOREACH_REVERSE(tmp,
1668                             &ret_worker->crp_ordered_ret_q, cryptop_q,
1669                             crp_next) {
1670                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1671                                         TAILQ_INSERT_AFTER(
1672                                             &ret_worker->crp_ordered_ret_q, tmp,
1673                                             crp, crp_next);
1674                                         break;
1675                                 }
1676                         }
1677                         if (tmp == NULL) {
1678                                 TAILQ_INSERT_HEAD(
1679                                     &ret_worker->crp_ordered_ret_q, crp,
1680                                     crp_next);
1681                         }
1682
1683                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1684                 } else {
1685                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1686                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1687                             crp_next);
1688                 }
1689
1690                 if (wake)
1691                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1692                 CRYPTO_RETW_UNLOCK(ret_worker);
1693         }
1694 }
1695
1696 /*
1697  * Terminate a thread at module unload.  The process that
1698  * initiated this is waiting for us to signal that we're gone;
1699  * wake it up and exit.  We use the driver table lock to insure
1700  * we don't do the wakeup before they're waiting.  There is no
1701  * race here because the waiter sleeps on the proc lock for the
1702  * thread so it gets notified at the right time because of an
1703  * extra wakeup that's done in exit1().
1704  */
1705 static void
1706 crypto_finis(void *chan)
1707 {
1708         CRYPTO_DRIVER_LOCK();
1709         wakeup_one(chan);
1710         CRYPTO_DRIVER_UNLOCK();
1711         kproc_exit(0);
1712 }
1713
1714 /*
1715  * Crypto thread, dispatches crypto requests.
1716  */
1717 static void
1718 crypto_proc(void)
1719 {
1720         struct cryptop *crp, *submit;
1721         struct cryptocap *cap;
1722         int result, hint;
1723
1724 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1725         fpu_kern_thread(FPU_KERN_NORMAL);
1726 #endif
1727
1728         CRYPTO_Q_LOCK();
1729         for (;;) {
1730                 /*
1731                  * Find the first element in the queue that can be
1732                  * processed and look-ahead to see if multiple ops
1733                  * are ready for the same driver.
1734                  */
1735                 submit = NULL;
1736                 hint = 0;
1737                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1738                         cap = crp->crp_session->cap;
1739                         /*
1740                          * Driver cannot disappeared when there is an active
1741                          * session.
1742                          */
1743                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1744                             __func__, __LINE__));
1745                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1746                                 /* Op needs to be migrated, process it. */
1747                                 if (submit == NULL)
1748                                         submit = crp;
1749                                 break;
1750                         }
1751                         if (!cap->cc_qblocked) {
1752                                 if (submit != NULL) {
1753                                         /*
1754                                          * We stop on finding another op,
1755                                          * regardless whether its for the same
1756                                          * driver or not.  We could keep
1757                                          * searching the queue but it might be
1758                                          * better to just use a per-driver
1759                                          * queue instead.
1760                                          */
1761                                         if (submit->crp_session->cap == cap)
1762                                                 hint = CRYPTO_HINT_MORE;
1763                                 } else {
1764                                         submit = crp;
1765                                 }
1766                                 break;
1767                         }
1768                 }
1769                 if (submit != NULL) {
1770                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1771                         cap = submit->crp_session->cap;
1772                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1773                             __func__, __LINE__));
1774                         CRYPTO_Q_UNLOCK();
1775                         result = crypto_invoke(cap, submit, hint);
1776                         CRYPTO_Q_LOCK();
1777                         if (result == ERESTART) {
1778                                 /*
1779                                  * The driver ran out of resources, mark the
1780                                  * driver ``blocked'' for cryptop's and put
1781                                  * the request back in the queue.  It would
1782                                  * best to put the request back where we got
1783                                  * it but that's hard so for now we put it
1784                                  * at the front.  This should be ok; putting
1785                                  * it at the end does not work.
1786                                  */
1787                                 cap->cc_qblocked = 1;
1788                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1789                                 CRYPTOSTAT_INC(cs_blocks);
1790                         }
1791                 } else {
1792                         /*
1793                          * Nothing more to be processed.  Sleep until we're
1794                          * woken because there are more ops to process.
1795                          * This happens either by submission or by a driver
1796                          * becoming unblocked and notifying us through
1797                          * crypto_unblock.  Note that when we wakeup we
1798                          * start processing each queue again from the
1799                          * front. It's not clear that it's important to
1800                          * preserve this ordering since ops may finish
1801                          * out of order if dispatched to different devices
1802                          * and some become blocked while others do not.
1803                          */
1804                         crp_sleep = 1;
1805                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1806                         crp_sleep = 0;
1807                         if (cryptoproc == NULL)
1808                                 break;
1809                         CRYPTOSTAT_INC(cs_intrs);
1810                 }
1811         }
1812         CRYPTO_Q_UNLOCK();
1813
1814         crypto_finis(&crp_q);
1815 }
1816
1817 /*
1818  * Crypto returns thread, does callbacks for processed crypto requests.
1819  * Callbacks are done here, rather than in the crypto drivers, because
1820  * callbacks typically are expensive and would slow interrupt handling.
1821  */
1822 static void
1823 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
1824 {
1825         struct cryptop *crpt;
1826
1827         CRYPTO_RETW_LOCK(ret_worker);
1828         for (;;) {
1829                 /* Harvest return q's for completed ops */
1830                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1831                 if (crpt != NULL) {
1832                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1833                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1834                                 ret_worker->reorder_cur_seq++;
1835                         } else {
1836                                 crpt = NULL;
1837                         }
1838                 }
1839
1840                 if (crpt == NULL) {
1841                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1842                         if (crpt != NULL)
1843                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1844                 }
1845
1846                 if (crpt != NULL) {
1847                         CRYPTO_RETW_UNLOCK(ret_worker);
1848                         /*
1849                          * Run callbacks unlocked.
1850                          */
1851                         if (crpt != NULL)
1852                                 crpt->crp_callback(crpt);
1853                         CRYPTO_RETW_LOCK(ret_worker);
1854                 } else {
1855                         /*
1856                          * Nothing more to be processed.  Sleep until we're
1857                          * woken because there are more returns to process.
1858                          */
1859                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1860                                 "crypto_ret_wait", 0);
1861                         if (ret_worker->cryptoretproc == NULL)
1862                                 break;
1863                         CRYPTOSTAT_INC(cs_rets);
1864                 }
1865         }
1866         CRYPTO_RETW_UNLOCK(ret_worker);
1867
1868         crypto_finis(&ret_worker->crp_ret_q);
1869 }
1870
1871 #ifdef DDB
1872 static void
1873 db_show_drivers(void)
1874 {
1875         int hid;
1876
1877         db_printf("%12s %4s %8s %2s\n"
1878                 , "Device"
1879                 , "Ses"
1880                 , "Flags"
1881                 , "QB"
1882         );
1883         for (hid = 0; hid < crypto_drivers_size; hid++) {
1884                 const struct cryptocap *cap = crypto_drivers[hid];
1885                 if (cap == NULL)
1886                         continue;
1887                 db_printf("%-12s %4u %08x %2u\n"
1888                     , device_get_nameunit(cap->cc_dev)
1889                     , cap->cc_sessions
1890                     , cap->cc_flags
1891                     , cap->cc_qblocked
1892                 );
1893         }
1894 }
1895
1896 DB_SHOW_COMMAND(crypto, db_show_crypto)
1897 {
1898         struct cryptop *crp;
1899         struct crypto_ret_worker *ret_worker;
1900
1901         db_show_drivers();
1902         db_printf("\n");
1903
1904         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1905             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1906             "Device", "Callback");
1907         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1908                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1909                     , crp->crp_session->cap->cc_hid
1910                     , (int) crypto_ses2caps(crp->crp_session)
1911                     , crp->crp_olen
1912                     , crp->crp_etype
1913                     , crp->crp_flags
1914                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
1915                     , crp->crp_callback
1916                 );
1917         }
1918         FOREACH_CRYPTO_RETW(ret_worker) {
1919                 db_printf("\n%8s %4s %4s %4s %8s\n",
1920                     "ret_worker", "HID", "Etype", "Flags", "Callback");
1921                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1922                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1923                                 db_printf("%8td %4u %4u %04x %8p\n"
1924                                     , CRYPTO_RETW_ID(ret_worker)
1925                                     , crp->crp_session->cap->cc_hid
1926                                     , crp->crp_etype
1927                                     , crp->crp_flags
1928                                     , crp->crp_callback
1929                                 );
1930                         }
1931                 }
1932         }
1933 }
1934 #endif
1935
1936 int crypto_modevent(module_t mod, int type, void *unused);
1937
1938 /*
1939  * Initialization code, both for static and dynamic loading.
1940  * Note this is not invoked with the usual MODULE_DECLARE
1941  * mechanism but instead is listed as a dependency by the
1942  * cryptosoft driver.  This guarantees proper ordering of
1943  * calls on module load/unload.
1944  */
1945 int
1946 crypto_modevent(module_t mod, int type, void *unused)
1947 {
1948         int error = EINVAL;
1949
1950         switch (type) {
1951         case MOD_LOAD:
1952                 error = crypto_init();
1953                 if (error == 0 && bootverbose)
1954                         printf("crypto: <crypto core>\n");
1955                 break;
1956         case MOD_UNLOAD:
1957                 /*XXX disallow if active sessions */
1958                 error = 0;
1959                 crypto_destroy();
1960                 return 0;
1961         }
1962         return error;
1963 }
1964 MODULE_VERSION(crypto, 1);
1965 MODULE_DEPEND(crypto, zlib, 1, 1, 1);