]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
crypto: Don't assert for empty output buffers.
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60
61 #include "opt_compat.h"
62 #include "opt_ddb.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/counter.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/linker.h>
70 #include <sys/lock.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/sdt.h>
78 #include <sys/smp.h>
79 #include <sys/sysctl.h>
80 #include <sys/taskqueue.h>
81 #include <sys/uio.h>
82
83 #include <ddb/ddb.h>
84
85 #include <machine/vmparam.h>
86 #include <vm/uma.h>
87
88 #include <crypto/intake.h>
89 #include <opencrypto/cryptodev.h>
90 #include <opencrypto/xform_auth.h>
91 #include <opencrypto/xform_enc.h>
92
93 #include <sys/kobj.h>
94 #include <sys/bus.h>
95 #include "cryptodev_if.h"
96
97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
98 #include <machine/pcb.h>
99 #endif
100
101 SDT_PROVIDER_DEFINE(opencrypto);
102
103 /*
104  * Crypto drivers register themselves by allocating a slot in the
105  * crypto_drivers table with crypto_get_driverid() and then registering
106  * each asym algorithm they support with crypto_kregister().
107  */
108 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
109 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
110 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
111 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
112
113 /*
114  * Crypto device/driver capabilities structure.
115  *
116  * Synchronization:
117  * (d) - protected by CRYPTO_DRIVER_LOCK()
118  * (q) - protected by CRYPTO_Q_LOCK()
119  * Not tagged fields are read-only.
120  */
121 struct cryptocap {
122         device_t        cc_dev;
123         uint32_t        cc_hid;
124         uint32_t        cc_sessions;            /* (d) # of sessions */
125         uint32_t        cc_koperations;         /* (d) # os asym operations */
126         uint8_t         cc_kalg[CRK_ALGORITHM_MAX + 1];
127
128         int             cc_flags;               /* (d) flags */
129 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
130         int             cc_qblocked;            /* (q) symmetric q blocked */
131         int             cc_kqblocked;           /* (q) asymmetric q blocked */
132         size_t          cc_session_size;
133         volatile int    cc_refs;
134 };
135
136 static  struct cryptocap **crypto_drivers = NULL;
137 static  int crypto_drivers_size = 0;
138
139 struct crypto_session {
140         struct cryptocap *cap;
141         struct crypto_session_params csp;
142         uint64_t id;
143         /* Driver softc follows. */
144 };
145
146 /*
147  * There are two queues for crypto requests; one for symmetric (e.g.
148  * cipher) operations and one for asymmetric (e.g. MOD)operations.
149  * A single mutex is used to lock access to both queues.  We could
150  * have one per-queue but having one simplifies handling of block/unblock
151  * operations.
152  */
153 static  int crp_sleep = 0;
154 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
155 static  TAILQ_HEAD(,cryptkop) crp_kq;
156 static  struct mtx crypto_q_mtx;
157 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
158 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
159
160 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
161     "In-kernel cryptography");
162
163 /*
164  * Taskqueue used to dispatch the crypto requests
165  * that have the CRYPTO_F_ASYNC flag
166  */
167 static struct taskqueue *crypto_tq;
168
169 /*
170  * Crypto seq numbers are operated on with modular arithmetic
171  */
172 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
173
174 struct crypto_ret_worker {
175         struct mtx crypto_ret_mtx;
176
177         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
178         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
179         TAILQ_HEAD(,cryptkop) crp_ret_kq;       /* callback queue for asym jobs */
180
181         uint32_t reorder_ops;           /* total ordered sym jobs received */
182         uint32_t reorder_cur_seq;       /* current sym job dispatched */
183
184         struct thread *td;
185 };
186 static struct crypto_ret_worker *crypto_ret_workers = NULL;
187
188 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
189 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
190 #define FOREACH_CRYPTO_RETW(w) \
191         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
192
193 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
194 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
195 #define CRYPTO_RETW_EMPTY(w) \
196         (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
197
198 static int crypto_workers_num = 0;
199 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
200            &crypto_workers_num, 0,
201            "Number of crypto workers used to dispatch crypto jobs");
202 #ifdef COMPAT_FREEBSD12
203 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
204            &crypto_workers_num, 0,
205            "Number of crypto workers used to dispatch crypto jobs");
206 #endif
207
208 static  uma_zone_t cryptop_zone;
209
210 int     crypto_userasymcrypto = 1;
211 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
212            &crypto_userasymcrypto, 0,
213            "Enable user-mode access to asymmetric crypto support");
214 #ifdef COMPAT_FREEBSD12
215 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
216            &crypto_userasymcrypto, 0,
217            "Enable/disable user-mode access to asymmetric crypto support");
218 #endif
219
220 int     crypto_devallowsoft = 0;
221 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
222            &crypto_devallowsoft, 0,
223            "Enable use of software crypto by /dev/crypto");
224 #ifdef COMPAT_FREEBSD12
225 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
226            &crypto_devallowsoft, 0,
227            "Enable/disable use of software crypto by /dev/crypto");
228 #endif
229
230 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
231
232 static  void crypto_dispatch_thread(void *arg);
233 static  struct thread *cryptotd;
234 static  void crypto_ret_thread(void *arg);
235 static  void crypto_destroy(void);
236 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
237 static  int crypto_kinvoke(struct cryptkop *krp);
238 static  void crypto_task_invoke(void *ctx, int pending);
239 static void crypto_batch_enqueue(struct cryptop *crp);
240
241 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
242 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
243     cryptostats, nitems(cryptostats),
244     "Crypto system statistics");
245
246 #define CRYPTOSTAT_INC(stat) do {                                       \
247         counter_u64_add(                                                \
248             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
249             1);                                                         \
250 } while (0)
251
252 static void
253 cryptostats_init(void *arg __unused)
254 {
255         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
256 }
257 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
258
259 static void
260 cryptostats_fini(void *arg __unused)
261 {
262         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
263 }
264 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
265     NULL);
266
267 /* Try to avoid directly exposing the key buffer as a symbol */
268 static struct keybuf *keybuf;
269
270 static struct keybuf empty_keybuf = {
271         .kb_nents = 0
272 };
273
274 /* Obtain the key buffer from boot metadata */
275 static void
276 keybuf_init(void)
277 {
278         caddr_t kmdp;
279
280         kmdp = preload_search_by_type("elf kernel");
281
282         if (kmdp == NULL)
283                 kmdp = preload_search_by_type("elf64 kernel");
284
285         keybuf = (struct keybuf *)preload_search_info(kmdp,
286             MODINFO_METADATA | MODINFOMD_KEYBUF);
287
288         if (keybuf == NULL)
289                 keybuf = &empty_keybuf;
290 }
291
292 /* It'd be nice if we could store these in some kind of secure memory... */
293 struct keybuf *
294 get_keybuf(void)
295 {
296
297         return (keybuf);
298 }
299
300 static struct cryptocap *
301 cap_ref(struct cryptocap *cap)
302 {
303
304         refcount_acquire(&cap->cc_refs);
305         return (cap);
306 }
307
308 static void
309 cap_rele(struct cryptocap *cap)
310 {
311
312         if (refcount_release(&cap->cc_refs) == 0)
313                 return;
314
315         KASSERT(cap->cc_sessions == 0,
316             ("freeing crypto driver with active sessions"));
317         KASSERT(cap->cc_koperations == 0,
318             ("freeing crypto driver with active key operations"));
319
320         free(cap, M_CRYPTO_DATA);
321 }
322
323 static int
324 crypto_init(void)
325 {
326         struct crypto_ret_worker *ret_worker;
327         struct proc *p;
328         int error;
329
330         mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
331
332         TAILQ_INIT(&crp_q);
333         TAILQ_INIT(&crp_kq);
334         mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
335
336         cryptop_zone = uma_zcreate("cryptop",
337             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
338             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
339
340         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
341         crypto_drivers = malloc(crypto_drivers_size *
342             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
343
344         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
345                 crypto_workers_num = mp_ncpus;
346
347         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
348             taskqueue_thread_enqueue, &crypto_tq);
349
350         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
351             "crypto");
352
353         p = NULL;
354         error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
355             0, 0, "crypto", "crypto");
356         if (error) {
357                 printf("crypto_init: cannot start crypto thread; error %d",
358                         error);
359                 goto bad;
360         }
361
362         crypto_ret_workers = mallocarray(crypto_workers_num,
363             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
364
365         FOREACH_CRYPTO_RETW(ret_worker) {
366                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
367                 TAILQ_INIT(&ret_worker->crp_ret_q);
368                 TAILQ_INIT(&ret_worker->crp_ret_kq);
369
370                 ret_worker->reorder_ops = 0;
371                 ret_worker->reorder_cur_seq = 0;
372
373                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
374                     NULL, MTX_DEF);
375
376                 error = kthread_add(crypto_ret_thread, ret_worker, p,
377                     &ret_worker->td, 0, 0, "crypto returns %td",
378                     CRYPTO_RETW_ID(ret_worker));
379                 if (error) {
380                         printf("crypto_init: cannot start cryptoret thread; error %d",
381                                 error);
382                         goto bad;
383                 }
384         }
385
386         keybuf_init();
387
388         return 0;
389 bad:
390         crypto_destroy();
391         return error;
392 }
393
394 /*
395  * Signal a crypto thread to terminate.  We use the driver
396  * table lock to synchronize the sleep/wakeups so that we
397  * are sure the threads have terminated before we release
398  * the data structures they use.  See crypto_finis below
399  * for the other half of this song-and-dance.
400  */
401 static void
402 crypto_terminate(struct thread **tdp, void *q)
403 {
404         struct thread *td;
405
406         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
407         td = *tdp;
408         *tdp = NULL;
409         if (td != NULL) {
410                 wakeup_one(q);
411                 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
412         }
413 }
414
415 static void
416 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
417     void *auth_ctx, uint8_t padval)
418 {
419         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
420         u_int i;
421
422         KASSERT(axf->blocksize <= sizeof(hmac_key),
423             ("Invalid HMAC block size %d", axf->blocksize));
424
425         /*
426          * If the key is larger than the block size, use the digest of
427          * the key as the key instead.
428          */
429         memset(hmac_key, 0, sizeof(hmac_key));
430         if (klen > axf->blocksize) {
431                 axf->Init(auth_ctx);
432                 axf->Update(auth_ctx, key, klen);
433                 axf->Final(hmac_key, auth_ctx);
434                 klen = axf->hashsize;
435         } else
436                 memcpy(hmac_key, key, klen);
437
438         for (i = 0; i < axf->blocksize; i++)
439                 hmac_key[i] ^= padval;
440
441         axf->Init(auth_ctx);
442         axf->Update(auth_ctx, hmac_key, axf->blocksize);
443         explicit_bzero(hmac_key, sizeof(hmac_key));
444 }
445
446 void
447 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
448     void *auth_ctx)
449 {
450
451         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
452 }
453
454 void
455 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
456     void *auth_ctx)
457 {
458
459         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
460 }
461
462 static void
463 crypto_destroy(void)
464 {
465         struct crypto_ret_worker *ret_worker;
466         int i;
467
468         /*
469          * Terminate any crypto threads.
470          */
471         if (crypto_tq != NULL)
472                 taskqueue_drain_all(crypto_tq);
473         CRYPTO_DRIVER_LOCK();
474         crypto_terminate(&cryptotd, &crp_q);
475         FOREACH_CRYPTO_RETW(ret_worker)
476                 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
477         CRYPTO_DRIVER_UNLOCK();
478
479         /* XXX flush queues??? */
480
481         /*
482          * Reclaim dynamically allocated resources.
483          */
484         for (i = 0; i < crypto_drivers_size; i++) {
485                 if (crypto_drivers[i] != NULL)
486                         cap_rele(crypto_drivers[i]);
487         }
488         free(crypto_drivers, M_CRYPTO_DATA);
489
490         if (cryptop_zone != NULL)
491                 uma_zdestroy(cryptop_zone);
492         mtx_destroy(&crypto_q_mtx);
493         FOREACH_CRYPTO_RETW(ret_worker)
494                 mtx_destroy(&ret_worker->crypto_ret_mtx);
495         free(crypto_ret_workers, M_CRYPTO_DATA);
496         if (crypto_tq != NULL)
497                 taskqueue_free(crypto_tq);
498         mtx_destroy(&crypto_drivers_mtx);
499 }
500
501 uint32_t
502 crypto_ses2hid(crypto_session_t crypto_session)
503 {
504         return (crypto_session->cap->cc_hid);
505 }
506
507 uint32_t
508 crypto_ses2caps(crypto_session_t crypto_session)
509 {
510         return (crypto_session->cap->cc_flags & 0xff000000);
511 }
512
513 void *
514 crypto_get_driver_session(crypto_session_t crypto_session)
515 {
516         return (crypto_session + 1);
517 }
518
519 const struct crypto_session_params *
520 crypto_get_params(crypto_session_t crypto_session)
521 {
522         return (&crypto_session->csp);
523 }
524
525 struct auth_hash *
526 crypto_auth_hash(const struct crypto_session_params *csp)
527 {
528
529         switch (csp->csp_auth_alg) {
530         case CRYPTO_SHA1_HMAC:
531                 return (&auth_hash_hmac_sha1);
532         case CRYPTO_SHA2_224_HMAC:
533                 return (&auth_hash_hmac_sha2_224);
534         case CRYPTO_SHA2_256_HMAC:
535                 return (&auth_hash_hmac_sha2_256);
536         case CRYPTO_SHA2_384_HMAC:
537                 return (&auth_hash_hmac_sha2_384);
538         case CRYPTO_SHA2_512_HMAC:
539                 return (&auth_hash_hmac_sha2_512);
540         case CRYPTO_NULL_HMAC:
541                 return (&auth_hash_null);
542         case CRYPTO_RIPEMD160_HMAC:
543                 return (&auth_hash_hmac_ripemd_160);
544         case CRYPTO_SHA1:
545                 return (&auth_hash_sha1);
546         case CRYPTO_SHA2_224:
547                 return (&auth_hash_sha2_224);
548         case CRYPTO_SHA2_256:
549                 return (&auth_hash_sha2_256);
550         case CRYPTO_SHA2_384:
551                 return (&auth_hash_sha2_384);
552         case CRYPTO_SHA2_512:
553                 return (&auth_hash_sha2_512);
554         case CRYPTO_AES_NIST_GMAC:
555                 switch (csp->csp_auth_klen) {
556                 case 128 / 8:
557                         return (&auth_hash_nist_gmac_aes_128);
558                 case 192 / 8:
559                         return (&auth_hash_nist_gmac_aes_192);
560                 case 256 / 8:
561                         return (&auth_hash_nist_gmac_aes_256);
562                 default:
563                         return (NULL);
564                 }
565         case CRYPTO_BLAKE2B:
566                 return (&auth_hash_blake2b);
567         case CRYPTO_BLAKE2S:
568                 return (&auth_hash_blake2s);
569         case CRYPTO_POLY1305:
570                 return (&auth_hash_poly1305);
571         case CRYPTO_AES_CCM_CBC_MAC:
572                 switch (csp->csp_auth_klen) {
573                 case 128 / 8:
574                         return (&auth_hash_ccm_cbc_mac_128);
575                 case 192 / 8:
576                         return (&auth_hash_ccm_cbc_mac_192);
577                 case 256 / 8:
578                         return (&auth_hash_ccm_cbc_mac_256);
579                 default:
580                         return (NULL);
581                 }
582         default:
583                 return (NULL);
584         }
585 }
586
587 struct enc_xform *
588 crypto_cipher(const struct crypto_session_params *csp)
589 {
590
591         switch (csp->csp_cipher_alg) {
592         case CRYPTO_RIJNDAEL128_CBC:
593                 return (&enc_xform_rijndael128);
594         case CRYPTO_AES_XTS:
595                 return (&enc_xform_aes_xts);
596         case CRYPTO_AES_ICM:
597                 return (&enc_xform_aes_icm);
598         case CRYPTO_AES_NIST_GCM_16:
599                 return (&enc_xform_aes_nist_gcm);
600         case CRYPTO_CAMELLIA_CBC:
601                 return (&enc_xform_camellia);
602         case CRYPTO_NULL_CBC:
603                 return (&enc_xform_null);
604         case CRYPTO_CHACHA20:
605                 return (&enc_xform_chacha20);
606         case CRYPTO_AES_CCM_16:
607                 return (&enc_xform_ccm);
608         case CRYPTO_CHACHA20_POLY1305:
609                 return (&enc_xform_chacha20_poly1305);
610         default:
611                 return (NULL);
612         }
613 }
614
615 static struct cryptocap *
616 crypto_checkdriver(uint32_t hid)
617 {
618
619         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
620 }
621
622 /*
623  * Select a driver for a new session that supports the specified
624  * algorithms and, optionally, is constrained according to the flags.
625  */
626 static struct cryptocap *
627 crypto_select_driver(const struct crypto_session_params *csp, int flags)
628 {
629         struct cryptocap *cap, *best;
630         int best_match, error, hid;
631
632         CRYPTO_DRIVER_ASSERT();
633
634         best = NULL;
635         for (hid = 0; hid < crypto_drivers_size; hid++) {
636                 /*
637                  * If there is no driver for this slot, or the driver
638                  * is not appropriate (hardware or software based on
639                  * match), then skip.
640                  */
641                 cap = crypto_drivers[hid];
642                 if (cap == NULL ||
643                     (cap->cc_flags & flags) == 0)
644                         continue;
645
646                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
647                 if (error >= 0)
648                         continue;
649
650                 /*
651                  * Use the driver with the highest probe value.
652                  * Hardware drivers use a higher probe value than
653                  * software.  In case of a tie, prefer the driver with
654                  * the fewest active sessions.
655                  */
656                 if (best == NULL || error > best_match ||
657                     (error == best_match &&
658                     cap->cc_sessions < best->cc_sessions)) {
659                         best = cap;
660                         best_match = error;
661                 }
662         }
663         return best;
664 }
665
666 static enum alg_type {
667         ALG_NONE = 0,
668         ALG_CIPHER,
669         ALG_DIGEST,
670         ALG_KEYED_DIGEST,
671         ALG_COMPRESSION,
672         ALG_AEAD
673 } alg_types[] = {
674         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
675         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
676         [CRYPTO_AES_CBC] = ALG_CIPHER,
677         [CRYPTO_SHA1] = ALG_DIGEST,
678         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
679         [CRYPTO_NULL_CBC] = ALG_CIPHER,
680         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
681         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
682         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
683         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
684         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
685         [CRYPTO_AES_XTS] = ALG_CIPHER,
686         [CRYPTO_AES_ICM] = ALG_CIPHER,
687         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
688         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
689         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
690         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
691         [CRYPTO_CHACHA20] = ALG_CIPHER,
692         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
693         [CRYPTO_RIPEMD160] = ALG_DIGEST,
694         [CRYPTO_SHA2_224] = ALG_DIGEST,
695         [CRYPTO_SHA2_256] = ALG_DIGEST,
696         [CRYPTO_SHA2_384] = ALG_DIGEST,
697         [CRYPTO_SHA2_512] = ALG_DIGEST,
698         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
699         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
700         [CRYPTO_AES_CCM_16] = ALG_AEAD,
701         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
702 };
703
704 static enum alg_type
705 alg_type(int alg)
706 {
707
708         if (alg < nitems(alg_types))
709                 return (alg_types[alg]);
710         return (ALG_NONE);
711 }
712
713 static bool
714 alg_is_compression(int alg)
715 {
716
717         return (alg_type(alg) == ALG_COMPRESSION);
718 }
719
720 static bool
721 alg_is_cipher(int alg)
722 {
723
724         return (alg_type(alg) == ALG_CIPHER);
725 }
726
727 static bool
728 alg_is_digest(int alg)
729 {
730
731         return (alg_type(alg) == ALG_DIGEST ||
732             alg_type(alg) == ALG_KEYED_DIGEST);
733 }
734
735 static bool
736 alg_is_keyed_digest(int alg)
737 {
738
739         return (alg_type(alg) == ALG_KEYED_DIGEST);
740 }
741
742 static bool
743 alg_is_aead(int alg)
744 {
745
746         return (alg_type(alg) == ALG_AEAD);
747 }
748
749 static bool
750 ccm_tag_length_valid(int len)
751 {
752         /* RFC 3610 */
753         switch (len) {
754         case 4:
755         case 6:
756         case 8:
757         case 10:
758         case 12:
759         case 14:
760         case 16:
761                 return (true);
762         default:
763                 return (false);
764         }
765 }
766
767 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
768
769 /* Various sanity checks on crypto session parameters. */
770 static bool
771 check_csp(const struct crypto_session_params *csp)
772 {
773         struct auth_hash *axf;
774
775         /* Mode-independent checks. */
776         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
777                 return (false);
778         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
779             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
780                 return (false);
781         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
782                 return (false);
783         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
784                 return (false);
785
786         switch (csp->csp_mode) {
787         case CSP_MODE_COMPRESS:
788                 if (!alg_is_compression(csp->csp_cipher_alg))
789                         return (false);
790                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
791                         return (false);
792                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
793                         return (false);
794                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
795                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
796                     csp->csp_auth_mlen != 0)
797                         return (false);
798                 break;
799         case CSP_MODE_CIPHER:
800                 if (!alg_is_cipher(csp->csp_cipher_alg))
801                         return (false);
802                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
803                         return (false);
804                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
805                         if (csp->csp_cipher_klen == 0)
806                                 return (false);
807                         if (csp->csp_ivlen == 0)
808                                 return (false);
809                 }
810                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
811                         return (false);
812                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
813                     csp->csp_auth_mlen != 0)
814                         return (false);
815                 break;
816         case CSP_MODE_DIGEST:
817                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
818                         return (false);
819
820                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
821                         return (false);
822
823                 /* IV is optional for digests (e.g. GMAC). */
824                 switch (csp->csp_auth_alg) {
825                 case CRYPTO_AES_CCM_CBC_MAC:
826                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
827                                 return (false);
828                         break;
829                 case CRYPTO_AES_NIST_GMAC:
830                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
831                                 return (false);
832                         break;
833                 default:
834                         if (csp->csp_ivlen != 0)
835                                 return (false);
836                         break;
837                 }
838
839                 if (!alg_is_digest(csp->csp_auth_alg))
840                         return (false);
841
842                 /* Key is optional for BLAKE2 digests. */
843                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
844                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
845                         ;
846                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
847                         if (csp->csp_auth_klen == 0)
848                                 return (false);
849                 } else {
850                         if (csp->csp_auth_klen != 0)
851                                 return (false);
852                 }
853                 if (csp->csp_auth_mlen != 0) {
854                         axf = crypto_auth_hash(csp);
855                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
856                                 return (false);
857
858                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
859                             !ccm_tag_length_valid(csp->csp_auth_mlen))
860                                 return (false);
861                 }
862                 break;
863         case CSP_MODE_AEAD:
864                 if (!alg_is_aead(csp->csp_cipher_alg))
865                         return (false);
866                 if (csp->csp_cipher_klen == 0)
867                         return (false);
868                 if (csp->csp_ivlen == 0 ||
869                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
870                         return (false);
871                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
872                         return (false);
873
874                 switch (csp->csp_cipher_alg) {
875                 case CRYPTO_AES_CCM_16:
876                         if (csp->csp_auth_mlen != 0 &&
877                             !ccm_tag_length_valid(csp->csp_auth_mlen))
878                                 return (false);
879
880                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
881                                 return (false);
882                         break;
883                 case CRYPTO_AES_NIST_GCM_16:
884                         if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
885                                 return (false);
886
887                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
888                                 return (false);
889                         break;
890                 case CRYPTO_CHACHA20_POLY1305:
891                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
892                                 return (false);
893                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
894                                 return (false);
895                         break;
896                 }
897                 break;
898         case CSP_MODE_ETA:
899                 if (!alg_is_cipher(csp->csp_cipher_alg))
900                         return (false);
901                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
902                         if (csp->csp_cipher_klen == 0)
903                                 return (false);
904                         if (csp->csp_ivlen == 0)
905                                 return (false);
906                 }
907                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
908                         return (false);
909                 if (!alg_is_digest(csp->csp_auth_alg))
910                         return (false);
911
912                 /* Key is optional for BLAKE2 digests. */
913                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
914                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
915                         ;
916                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
917                         if (csp->csp_auth_klen == 0)
918                                 return (false);
919                 } else {
920                         if (csp->csp_auth_klen != 0)
921                                 return (false);
922                 }
923                 if (csp->csp_auth_mlen != 0) {
924                         axf = crypto_auth_hash(csp);
925                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
926                                 return (false);
927                 }
928                 break;
929         default:
930                 return (false);
931         }
932
933         return (true);
934 }
935
936 /*
937  * Delete a session after it has been detached from its driver.
938  */
939 static void
940 crypto_deletesession(crypto_session_t cses)
941 {
942         struct cryptocap *cap;
943
944         cap = cses->cap;
945
946         zfree(cses, M_CRYPTO_DATA);
947
948         CRYPTO_DRIVER_LOCK();
949         cap->cc_sessions--;
950         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
951                 wakeup(cap);
952         CRYPTO_DRIVER_UNLOCK();
953         cap_rele(cap);
954 }
955
956 /*
957  * Create a new session.  The crid argument specifies a crypto
958  * driver to use or constraints on a driver to select (hardware
959  * only, software only, either).  Whatever driver is selected
960  * must be capable of the requested crypto algorithms.
961  */
962 int
963 crypto_newsession(crypto_session_t *cses,
964     const struct crypto_session_params *csp, int crid)
965 {
966         static uint64_t sessid = 0;
967         crypto_session_t res;
968         struct cryptocap *cap;
969         int err;
970
971         if (!check_csp(csp))
972                 return (EINVAL);
973
974         res = NULL;
975
976         CRYPTO_DRIVER_LOCK();
977         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
978                 /*
979                  * Use specified driver; verify it is capable.
980                  */
981                 cap = crypto_checkdriver(crid);
982                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
983                         cap = NULL;
984         } else {
985                 /*
986                  * No requested driver; select based on crid flags.
987                  */
988                 cap = crypto_select_driver(csp, crid);
989         }
990         if (cap == NULL) {
991                 CRYPTO_DRIVER_UNLOCK();
992                 CRYPTDEB("no driver");
993                 return (EOPNOTSUPP);
994         }
995         cap_ref(cap);
996         cap->cc_sessions++;
997         CRYPTO_DRIVER_UNLOCK();
998
999         /* Allocate a single block for the generic session and driver softc. */
1000         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
1001             M_WAITOK | M_ZERO);
1002         res->cap = cap;
1003         res->csp = *csp;
1004         res->id = atomic_fetchadd_64(&sessid, 1);
1005
1006         /* Call the driver initialization routine. */
1007         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
1008         if (err != 0) {
1009                 CRYPTDEB("dev newsession failed: %d", err);
1010                 crypto_deletesession(res);
1011                 return (err);
1012         }
1013
1014         *cses = res;
1015         return (0);
1016 }
1017
1018 /*
1019  * Delete an existing session (or a reserved session on an unregistered
1020  * driver).
1021  */
1022 void
1023 crypto_freesession(crypto_session_t cses)
1024 {
1025         struct cryptocap *cap;
1026
1027         if (cses == NULL)
1028                 return;
1029
1030         cap = cses->cap;
1031
1032         /* Call the driver cleanup routine, if available. */
1033         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1034
1035         crypto_deletesession(cses);
1036 }
1037
1038 /*
1039  * Return a new driver id.  Registers a driver with the system so that
1040  * it can be probed by subsequent sessions.
1041  */
1042 int32_t
1043 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1044 {
1045         struct cryptocap *cap, **newdrv;
1046         int i;
1047
1048         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1049                 device_printf(dev,
1050                     "no flags specified when registering driver\n");
1051                 return -1;
1052         }
1053
1054         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1055         cap->cc_dev = dev;
1056         cap->cc_session_size = sessionsize;
1057         cap->cc_flags = flags;
1058         refcount_init(&cap->cc_refs, 1);
1059
1060         CRYPTO_DRIVER_LOCK();
1061         for (;;) {
1062                 for (i = 0; i < crypto_drivers_size; i++) {
1063                         if (crypto_drivers[i] == NULL)
1064                                 break;
1065                 }
1066
1067                 if (i < crypto_drivers_size)
1068                         break;
1069
1070                 /* Out of entries, allocate some more. */
1071
1072                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1073                         CRYPTO_DRIVER_UNLOCK();
1074                         printf("crypto: driver count wraparound!\n");
1075                         cap_rele(cap);
1076                         return (-1);
1077                 }
1078                 CRYPTO_DRIVER_UNLOCK();
1079
1080                 newdrv = malloc(2 * crypto_drivers_size *
1081                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1082
1083                 CRYPTO_DRIVER_LOCK();
1084                 memcpy(newdrv, crypto_drivers,
1085                     crypto_drivers_size * sizeof(*crypto_drivers));
1086
1087                 crypto_drivers_size *= 2;
1088
1089                 free(crypto_drivers, M_CRYPTO_DATA);
1090                 crypto_drivers = newdrv;
1091         }
1092
1093         cap->cc_hid = i;
1094         crypto_drivers[i] = cap;
1095         CRYPTO_DRIVER_UNLOCK();
1096
1097         if (bootverbose)
1098                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1099                     device_get_nameunit(dev), i, flags);
1100
1101         return i;
1102 }
1103
1104 /*
1105  * Lookup a driver by name.  We match against the full device
1106  * name and unit, and against just the name.  The latter gives
1107  * us a simple widlcarding by device name.  On success return the
1108  * driver/hardware identifier; otherwise return -1.
1109  */
1110 int
1111 crypto_find_driver(const char *match)
1112 {
1113         struct cryptocap *cap;
1114         int i, len = strlen(match);
1115
1116         CRYPTO_DRIVER_LOCK();
1117         for (i = 0; i < crypto_drivers_size; i++) {
1118                 if (crypto_drivers[i] == NULL)
1119                         continue;
1120                 cap = crypto_drivers[i];
1121                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1122                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1123                         CRYPTO_DRIVER_UNLOCK();
1124                         return (i);
1125                 }
1126         }
1127         CRYPTO_DRIVER_UNLOCK();
1128         return (-1);
1129 }
1130
1131 /*
1132  * Return the device_t for the specified driver or NULL
1133  * if the driver identifier is invalid.
1134  */
1135 device_t
1136 crypto_find_device_byhid(int hid)
1137 {
1138         struct cryptocap *cap;
1139         device_t dev;
1140
1141         dev = NULL;
1142         CRYPTO_DRIVER_LOCK();
1143         cap = crypto_checkdriver(hid);
1144         if (cap != NULL)
1145                 dev = cap->cc_dev;
1146         CRYPTO_DRIVER_UNLOCK();
1147         return (dev);
1148 }
1149
1150 /*
1151  * Return the device/driver capabilities.
1152  */
1153 int
1154 crypto_getcaps(int hid)
1155 {
1156         struct cryptocap *cap;
1157         int flags;
1158
1159         flags = 0;
1160         CRYPTO_DRIVER_LOCK();
1161         cap = crypto_checkdriver(hid);
1162         if (cap != NULL)
1163                 flags = cap->cc_flags;
1164         CRYPTO_DRIVER_UNLOCK();
1165         return (flags);
1166 }
1167
1168 /*
1169  * Register support for a key-related algorithm.  This routine
1170  * is called once for each algorithm supported a driver.
1171  */
1172 int
1173 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags)
1174 {
1175         struct cryptocap *cap;
1176         int err;
1177
1178         CRYPTO_DRIVER_LOCK();
1179
1180         cap = crypto_checkdriver(driverid);
1181         if (cap != NULL &&
1182             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1183                 /*
1184                  * XXX Do some performance testing to determine placing.
1185                  * XXX We probably need an auxiliary data structure that
1186                  * XXX describes relative performances.
1187                  */
1188
1189                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1190                 if (bootverbose)
1191                         printf("crypto: %s registers key alg %u flags %u\n"
1192                                 , device_get_nameunit(cap->cc_dev)
1193                                 , kalg
1194                                 , flags
1195                         );
1196                 gone_in_dev(cap->cc_dev, 14, "asymmetric crypto");
1197                 err = 0;
1198         } else
1199                 err = EINVAL;
1200
1201         CRYPTO_DRIVER_UNLOCK();
1202         return err;
1203 }
1204
1205 /*
1206  * Unregister all algorithms associated with a crypto driver.
1207  * If there are pending sessions using it, leave enough information
1208  * around so that subsequent calls using those sessions will
1209  * correctly detect the driver has been unregistered and reroute
1210  * requests.
1211  */
1212 int
1213 crypto_unregister_all(uint32_t driverid)
1214 {
1215         struct cryptocap *cap;
1216
1217         CRYPTO_DRIVER_LOCK();
1218         cap = crypto_checkdriver(driverid);
1219         if (cap == NULL) {
1220                 CRYPTO_DRIVER_UNLOCK();
1221                 return (EINVAL);
1222         }
1223
1224         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1225         crypto_drivers[driverid] = NULL;
1226
1227         /*
1228          * XXX: This doesn't do anything to kick sessions that
1229          * have no pending operations.
1230          */
1231         while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1232                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1233         CRYPTO_DRIVER_UNLOCK();
1234         cap_rele(cap);
1235
1236         return (0);
1237 }
1238
1239 /*
1240  * Clear blockage on a driver.  The what parameter indicates whether
1241  * the driver is now ready for cryptop's and/or cryptokop's.
1242  */
1243 int
1244 crypto_unblock(uint32_t driverid, int what)
1245 {
1246         struct cryptocap *cap;
1247         int err;
1248
1249         CRYPTO_Q_LOCK();
1250         cap = crypto_checkdriver(driverid);
1251         if (cap != NULL) {
1252                 if (what & CRYPTO_SYMQ)
1253                         cap->cc_qblocked = 0;
1254                 if (what & CRYPTO_ASYMQ)
1255                         cap->cc_kqblocked = 0;
1256                 if (crp_sleep)
1257                         wakeup_one(&crp_q);
1258                 err = 0;
1259         } else
1260                 err = EINVAL;
1261         CRYPTO_Q_UNLOCK();
1262
1263         return err;
1264 }
1265
1266 size_t
1267 crypto_buffer_len(struct crypto_buffer *cb)
1268 {
1269         switch (cb->cb_type) {
1270         case CRYPTO_BUF_CONTIG:
1271                 return (cb->cb_buf_len);
1272         case CRYPTO_BUF_MBUF:
1273                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1274                         return (cb->cb_mbuf->m_pkthdr.len);
1275                 return (m_length(cb->cb_mbuf, NULL));
1276         case CRYPTO_BUF_SINGLE_MBUF:
1277                 return (cb->cb_mbuf->m_len);
1278         case CRYPTO_BUF_VMPAGE:
1279                 return (cb->cb_vm_page_len);
1280         case CRYPTO_BUF_UIO:
1281                 return (cb->cb_uio->uio_resid);
1282         default:
1283                 return (0);
1284         }
1285 }
1286
1287 #ifdef INVARIANTS
1288 /* Various sanity checks on crypto requests. */
1289 static void
1290 cb_sanity(struct crypto_buffer *cb, const char *name)
1291 {
1292         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1293             ("incoming crp with invalid %s buffer type", name));
1294         switch (cb->cb_type) {
1295         case CRYPTO_BUF_CONTIG:
1296                 KASSERT(cb->cb_buf_len >= 0,
1297                     ("incoming crp with -ve %s buffer length", name));
1298                 break;
1299         case CRYPTO_BUF_VMPAGE:
1300                 KASSERT(CRYPTO_HAS_VMPAGE,
1301                     ("incoming crp uses dmap on supported arch"));
1302                 KASSERT(cb->cb_vm_page_len >= 0,
1303                     ("incoming crp with -ve %s buffer length", name));
1304                 KASSERT(cb->cb_vm_page_offset >= 0,
1305                     ("incoming crp with -ve %s buffer offset", name));
1306                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1307                     ("incoming crp with %s buffer offset greater than page size"
1308                      , name));
1309                 break;
1310         default:
1311                 break;
1312         }
1313 }
1314
1315 static void
1316 crp_sanity(struct cryptop *crp)
1317 {
1318         struct crypto_session_params *csp;
1319         struct crypto_buffer *out;
1320         size_t ilen, len, olen;
1321
1322         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1323         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1324             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1325             ("incoming crp with invalid output buffer type"));
1326         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1327         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1328             ("incoming crp already done"));
1329
1330         csp = &crp->crp_session->csp;
1331         cb_sanity(&crp->crp_buf, "input");
1332         ilen = crypto_buffer_len(&crp->crp_buf);
1333         olen = ilen;
1334         out = NULL;
1335         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1336                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1337                         cb_sanity(&crp->crp_obuf, "output");
1338                         out = &crp->crp_obuf;
1339                         olen = crypto_buffer_len(out);
1340                 }
1341         } else
1342                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1343                     ("incoming crp with separate output buffer "
1344                     "but no session support"));
1345
1346         switch (csp->csp_mode) {
1347         case CSP_MODE_COMPRESS:
1348                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1349                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1350                     ("invalid compression op %x", crp->crp_op));
1351                 break;
1352         case CSP_MODE_CIPHER:
1353                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1354                     crp->crp_op == CRYPTO_OP_DECRYPT,
1355                     ("invalid cipher op %x", crp->crp_op));
1356                 break;
1357         case CSP_MODE_DIGEST:
1358                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1359                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1360                     ("invalid digest op %x", crp->crp_op));
1361                 break;
1362         case CSP_MODE_AEAD:
1363                 KASSERT(crp->crp_op ==
1364                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1365                     crp->crp_op ==
1366                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1367                     ("invalid AEAD op %x", crp->crp_op));
1368                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1369                     ("AEAD without a separate IV"));
1370                 break;
1371         case CSP_MODE_ETA:
1372                 KASSERT(crp->crp_op ==
1373                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1374                     crp->crp_op ==
1375                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1376                     ("invalid ETA op %x", crp->crp_op));
1377                 break;
1378         }
1379         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1380                 if (crp->crp_aad == NULL) {
1381                         KASSERT(crp->crp_aad_start == 0 ||
1382                             crp->crp_aad_start < ilen,
1383                             ("invalid AAD start"));
1384                         KASSERT(crp->crp_aad_length != 0 ||
1385                             crp->crp_aad_start == 0,
1386                             ("AAD with zero length and non-zero start"));
1387                         KASSERT(crp->crp_aad_length == 0 ||
1388                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1389                             ("AAD outside input length"));
1390                 } else {
1391                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1392                             ("session doesn't support separate AAD buffer"));
1393                         KASSERT(crp->crp_aad_start == 0,
1394                             ("separate AAD buffer with non-zero AAD start"));
1395                         KASSERT(crp->crp_aad_length != 0,
1396                             ("separate AAD buffer with zero length"));
1397                 }
1398         } else {
1399                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1400                     crp->crp_aad_length == 0,
1401                     ("AAD region in request not supporting AAD"));
1402         }
1403         if (csp->csp_ivlen == 0) {
1404                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1405                     ("IV_SEPARATE set when IV isn't used"));
1406                 KASSERT(crp->crp_iv_start == 0,
1407                     ("crp_iv_start set when IV isn't used"));
1408         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1409                 KASSERT(crp->crp_iv_start == 0,
1410                     ("IV_SEPARATE used with non-zero IV start"));
1411         } else {
1412                 KASSERT(crp->crp_iv_start < ilen,
1413                     ("invalid IV start"));
1414                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1415                     ("IV outside buffer length"));
1416         }
1417         /* XXX: payload_start of 0 should always be < ilen? */
1418         KASSERT(crp->crp_payload_start == 0 ||
1419             crp->crp_payload_start < ilen,
1420             ("invalid payload start"));
1421         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1422             ilen, ("payload outside input buffer"));
1423         if (out == NULL) {
1424                 KASSERT(crp->crp_payload_output_start == 0,
1425                     ("payload output start non-zero without output buffer"));
1426         } else {
1427                 KASSERT(crp->crp_payload_output_start == 0 ||
1428                     crp->crp_payload_output_start < olen,
1429                     ("invalid payload output start"));
1430                 KASSERT(crp->crp_payload_output_start +
1431                     crp->crp_payload_length <= olen,
1432                     ("payload outside output buffer"));
1433         }
1434         if (csp->csp_mode == CSP_MODE_DIGEST ||
1435             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1436                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1437                         len = ilen;
1438                 else
1439                         len = olen;
1440                 KASSERT(crp->crp_digest_start == 0 ||
1441                     crp->crp_digest_start < len,
1442                     ("invalid digest start"));
1443                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1444                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1445                     ("digest outside buffer"));
1446         } else {
1447                 KASSERT(crp->crp_digest_start == 0,
1448                     ("non-zero digest start for request without a digest"));
1449         }
1450         if (csp->csp_cipher_klen != 0)
1451                 KASSERT(csp->csp_cipher_key != NULL ||
1452                     crp->crp_cipher_key != NULL,
1453                     ("cipher request without a key"));
1454         if (csp->csp_auth_klen != 0)
1455                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1456                     ("auth request without a key"));
1457         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1458 }
1459 #endif
1460
1461 /*
1462  * Add a crypto request to a queue, to be processed by the kernel thread.
1463  */
1464 int
1465 crypto_dispatch(struct cryptop *crp)
1466 {
1467         struct cryptocap *cap;
1468         int result;
1469
1470 #ifdef INVARIANTS
1471         crp_sanity(crp);
1472 #endif
1473
1474         CRYPTOSTAT_INC(cs_ops);
1475
1476         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1477
1478         if (CRYPTOP_ASYNC(crp)) {
1479                 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1480                         struct crypto_ret_worker *ret_worker;
1481
1482                         ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1483
1484                         CRYPTO_RETW_LOCK(ret_worker);
1485                         crp->crp_seq = ret_worker->reorder_ops++;
1486                         CRYPTO_RETW_UNLOCK(ret_worker);
1487                 }
1488
1489                 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1490                 taskqueue_enqueue(crypto_tq, &crp->crp_task);
1491                 return (0);
1492         }
1493
1494         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1495                 /*
1496                  * Caller marked the request to be processed
1497                  * immediately; dispatch it directly to the
1498                  * driver unless the driver is currently blocked.
1499                  */
1500                 cap = crp->crp_session->cap;
1501                 if (!cap->cc_qblocked) {
1502                         result = crypto_invoke(cap, crp, 0);
1503                         if (result != ERESTART)
1504                                 return (result);
1505                         /*
1506                          * The driver ran out of resources, put the request on
1507                          * the queue.
1508                          */
1509                 }
1510         }
1511         crypto_batch_enqueue(crp);
1512         return 0;
1513 }
1514
1515 void
1516 crypto_batch_enqueue(struct cryptop *crp)
1517 {
1518
1519         CRYPTO_Q_LOCK();
1520         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1521         if (crp_sleep)
1522                 wakeup_one(&crp_q);
1523         CRYPTO_Q_UNLOCK();
1524 }
1525
1526 /*
1527  * Add an asymetric crypto request to a queue,
1528  * to be processed by the kernel thread.
1529  */
1530 int
1531 crypto_kdispatch(struct cryptkop *krp)
1532 {
1533         int error;
1534
1535         CRYPTOSTAT_INC(cs_kops);
1536
1537         krp->krp_cap = NULL;
1538         error = crypto_kinvoke(krp);
1539         if (error == ERESTART) {
1540                 CRYPTO_Q_LOCK();
1541                 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1542                 if (crp_sleep)
1543                         wakeup_one(&crp_q);
1544                 CRYPTO_Q_UNLOCK();
1545                 error = 0;
1546         }
1547         return error;
1548 }
1549
1550 /*
1551  * Verify a driver is suitable for the specified operation.
1552  */
1553 static __inline int
1554 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1555 {
1556         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1557 }
1558
1559 /*
1560  * Select a driver for an asym operation.  The driver must
1561  * support the necessary algorithm.  The caller can constrain
1562  * which device is selected with the flags parameter.  The
1563  * algorithm we use here is pretty stupid; just use the first
1564  * driver that supports the algorithms we need. If there are
1565  * multiple suitable drivers we choose the driver with the
1566  * fewest active operations.  We prefer hardware-backed
1567  * drivers to software ones when either may be used.
1568  */
1569 static struct cryptocap *
1570 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1571 {
1572         struct cryptocap *cap, *best;
1573         int match, hid;
1574
1575         CRYPTO_DRIVER_ASSERT();
1576
1577         /*
1578          * Look first for hardware crypto devices if permitted.
1579          */
1580         if (flags & CRYPTOCAP_F_HARDWARE)
1581                 match = CRYPTOCAP_F_HARDWARE;
1582         else
1583                 match = CRYPTOCAP_F_SOFTWARE;
1584         best = NULL;
1585 again:
1586         for (hid = 0; hid < crypto_drivers_size; hid++) {
1587                 /*
1588                  * If there is no driver for this slot, or the driver
1589                  * is not appropriate (hardware or software based on
1590                  * match), then skip.
1591                  */
1592                 cap = crypto_drivers[hid];
1593                 if (cap == NULL ||
1594                     (cap->cc_flags & match) == 0)
1595                         continue;
1596
1597                 /* verify all the algorithms are supported. */
1598                 if (kdriver_suitable(cap, krp)) {
1599                         if (best == NULL ||
1600                             cap->cc_koperations < best->cc_koperations)
1601                                 best = cap;
1602                 }
1603         }
1604         if (best != NULL)
1605                 return best;
1606         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1607                 /* sort of an Algol 68-style for loop */
1608                 match = CRYPTOCAP_F_SOFTWARE;
1609                 goto again;
1610         }
1611         return best;
1612 }
1613
1614 /*
1615  * Choose a driver for an asymmetric crypto request.
1616  */
1617 static struct cryptocap *
1618 crypto_lookup_kdriver(struct cryptkop *krp)
1619 {
1620         struct cryptocap *cap;
1621         uint32_t crid;
1622
1623         /* If this request is requeued, it might already have a driver. */
1624         cap = krp->krp_cap;
1625         if (cap != NULL)
1626                 return (cap);
1627
1628         /* Use krp_crid to choose a driver. */
1629         crid = krp->krp_crid;
1630         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1631                 cap = crypto_checkdriver(crid);
1632                 if (cap != NULL) {
1633                         /*
1634                          * Driver present, it must support the
1635                          * necessary algorithm and, if s/w drivers are
1636                          * excluded, it must be registered as
1637                          * hardware-backed.
1638                          */
1639                         if (!kdriver_suitable(cap, krp) ||
1640                             (!crypto_devallowsoft &&
1641                             (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1642                                 cap = NULL;
1643                 }
1644         } else {
1645                 /*
1646                  * No requested driver; select based on crid flags.
1647                  */
1648                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
1649                         crid &= ~CRYPTOCAP_F_SOFTWARE;
1650                 cap = crypto_select_kdriver(krp, crid);
1651         }
1652
1653         if (cap != NULL) {
1654                 krp->krp_cap = cap_ref(cap);
1655                 krp->krp_hid = cap->cc_hid;
1656         }
1657         return (cap);
1658 }
1659
1660 /*
1661  * Dispatch an asymmetric crypto request.
1662  */
1663 static int
1664 crypto_kinvoke(struct cryptkop *krp)
1665 {
1666         struct cryptocap *cap = NULL;
1667         int error;
1668
1669         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1670         KASSERT(krp->krp_callback != NULL,
1671             ("%s: krp->crp_callback == NULL", __func__));
1672
1673         CRYPTO_DRIVER_LOCK();
1674         cap = crypto_lookup_kdriver(krp);
1675         if (cap == NULL) {
1676                 CRYPTO_DRIVER_UNLOCK();
1677                 krp->krp_status = ENODEV;
1678                 crypto_kdone(krp);
1679                 return (0);
1680         }
1681
1682         /*
1683          * If the device is blocked, return ERESTART to requeue it.
1684          */
1685         if (cap->cc_kqblocked) {
1686                 /*
1687                  * XXX: Previously this set krp_status to ERESTART and
1688                  * invoked crypto_kdone but the caller would still
1689                  * requeue it.
1690                  */
1691                 CRYPTO_DRIVER_UNLOCK();
1692                 return (ERESTART);
1693         }
1694
1695         cap->cc_koperations++;
1696         CRYPTO_DRIVER_UNLOCK();
1697         error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1698         if (error == ERESTART) {
1699                 CRYPTO_DRIVER_LOCK();
1700                 cap->cc_koperations--;
1701                 CRYPTO_DRIVER_UNLOCK();
1702                 return (error);
1703         }
1704
1705         KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1706         return (0);
1707 }
1708
1709 static void
1710 crypto_task_invoke(void *ctx, int pending)
1711 {
1712         struct cryptocap *cap;
1713         struct cryptop *crp;
1714         int result;
1715
1716         crp = (struct cryptop *)ctx;
1717         cap = crp->crp_session->cap;
1718         result = crypto_invoke(cap, crp, 0);
1719         if (result == ERESTART)
1720                 crypto_batch_enqueue(crp);
1721 }
1722
1723 /*
1724  * Dispatch a crypto request to the appropriate crypto devices.
1725  */
1726 static int
1727 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1728 {
1729
1730         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1731         KASSERT(crp->crp_callback != NULL,
1732             ("%s: crp->crp_callback == NULL", __func__));
1733         KASSERT(crp->crp_session != NULL,
1734             ("%s: crp->crp_session == NULL", __func__));
1735
1736         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1737                 struct crypto_session_params csp;
1738                 crypto_session_t nses;
1739
1740                 /*
1741                  * Driver has unregistered; migrate the session and return
1742                  * an error to the caller so they'll resubmit the op.
1743                  *
1744                  * XXX: What if there are more already queued requests for this
1745                  *      session?
1746                  *
1747                  * XXX: Real solution is to make sessions refcounted
1748                  * and force callers to hold a reference when
1749                  * assigning to crp_session.  Could maybe change
1750                  * crypto_getreq to accept a session pointer to make
1751                  * that work.  Alternatively, we could abandon the
1752                  * notion of rewriting crp_session in requests forcing
1753                  * the caller to deal with allocating a new session.
1754                  * Perhaps provide a method to allow a crp's session to
1755                  * be swapped that callers could use.
1756                  */
1757                 csp = crp->crp_session->csp;
1758                 crypto_freesession(crp->crp_session);
1759
1760                 /*
1761                  * XXX: Key pointers may no longer be valid.  If we
1762                  * really want to support this we need to define the
1763                  * KPI such that 'csp' is required to be valid for the
1764                  * duration of a session by the caller perhaps.
1765                  *
1766                  * XXX: If the keys have been changed this will reuse
1767                  * the old keys.  This probably suggests making
1768                  * rekeying more explicit and updating the key
1769                  * pointers in 'csp' when the keys change.
1770                  */
1771                 if (crypto_newsession(&nses, &csp,
1772                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1773                         crp->crp_session = nses;
1774
1775                 crp->crp_etype = EAGAIN;
1776                 crypto_done(crp);
1777                 return 0;
1778         } else {
1779                 /*
1780                  * Invoke the driver to process the request.
1781                  */
1782                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1783         }
1784 }
1785
1786 void
1787 crypto_destroyreq(struct cryptop *crp)
1788 {
1789 #ifdef DIAGNOSTIC
1790         {
1791                 struct cryptop *crp2;
1792                 struct crypto_ret_worker *ret_worker;
1793
1794                 CRYPTO_Q_LOCK();
1795                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1796                         KASSERT(crp2 != crp,
1797                             ("Freeing cryptop from the crypto queue (%p).",
1798                             crp));
1799                 }
1800                 CRYPTO_Q_UNLOCK();
1801
1802                 FOREACH_CRYPTO_RETW(ret_worker) {
1803                         CRYPTO_RETW_LOCK(ret_worker);
1804                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1805                                 KASSERT(crp2 != crp,
1806                                     ("Freeing cryptop from the return queue (%p).",
1807                                     crp));
1808                         }
1809                         CRYPTO_RETW_UNLOCK(ret_worker);
1810                 }
1811         }
1812 #endif
1813 }
1814
1815 void
1816 crypto_freereq(struct cryptop *crp)
1817 {
1818         if (crp == NULL)
1819                 return;
1820
1821         crypto_destroyreq(crp);
1822         uma_zfree(cryptop_zone, crp);
1823 }
1824
1825 static void
1826 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1827 {
1828         crp->crp_session = cses;
1829 }
1830
1831 void
1832 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1833 {
1834         memset(crp, 0, sizeof(*crp));
1835         _crypto_initreq(crp, cses);
1836 }
1837
1838 struct cryptop *
1839 crypto_getreq(crypto_session_t cses, int how)
1840 {
1841         struct cryptop *crp;
1842
1843         MPASS(how == M_WAITOK || how == M_NOWAIT);
1844         crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1845         if (crp != NULL)
1846                 _crypto_initreq(crp, cses);
1847         return (crp);
1848 }
1849
1850 /*
1851  * Invoke the callback on behalf of the driver.
1852  */
1853 void
1854 crypto_done(struct cryptop *crp)
1855 {
1856         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1857                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1858         crp->crp_flags |= CRYPTO_F_DONE;
1859         if (crp->crp_etype != 0)
1860                 CRYPTOSTAT_INC(cs_errs);
1861
1862         /*
1863          * CBIMM means unconditionally do the callback immediately;
1864          * CBIFSYNC means do the callback immediately only if the
1865          * operation was done synchronously.  Both are used to avoid
1866          * doing extraneous context switches; the latter is mostly
1867          * used with the software crypto driver.
1868          */
1869         if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1870             ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1871             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1872              (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1873                 /*
1874                  * Do the callback directly.  This is ok when the
1875                  * callback routine does very little (e.g. the
1876                  * /dev/crypto callback method just does a wakeup).
1877                  */
1878                 crp->crp_callback(crp);
1879         } else {
1880                 struct crypto_ret_worker *ret_worker;
1881                 bool wake;
1882
1883                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1884                 wake = false;
1885
1886                 /*
1887                  * Normal case; queue the callback for the thread.
1888                  */
1889                 CRYPTO_RETW_LOCK(ret_worker);
1890                 if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1891                         struct cryptop *tmp;
1892
1893                         TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1894                                         cryptop_q, crp_next) {
1895                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1896                                         TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1897                                                         tmp, crp, crp_next);
1898                                         break;
1899                                 }
1900                         }
1901                         if (tmp == NULL) {
1902                                 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1903                                                 crp, crp_next);
1904                         }
1905
1906                         if (crp->crp_seq == ret_worker->reorder_cur_seq)
1907                                 wake = true;
1908                 }
1909                 else {
1910                         if (CRYPTO_RETW_EMPTY(ret_worker))
1911                                 wake = true;
1912
1913                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1914                 }
1915
1916                 if (wake)
1917                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1918                 CRYPTO_RETW_UNLOCK(ret_worker);
1919         }
1920 }
1921
1922 /*
1923  * Invoke the callback on behalf of the driver.
1924  */
1925 void
1926 crypto_kdone(struct cryptkop *krp)
1927 {
1928         struct crypto_ret_worker *ret_worker;
1929         struct cryptocap *cap;
1930
1931         if (krp->krp_status != 0)
1932                 CRYPTOSTAT_INC(cs_kerrs);
1933         cap = krp->krp_cap;
1934         if (cap != NULL) {
1935                 CRYPTO_DRIVER_LOCK();
1936                 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1937                 cap->cc_koperations--;
1938                 if (cap->cc_koperations == 0 &&
1939                     cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1940                         wakeup(cap);
1941                 CRYPTO_DRIVER_UNLOCK();
1942                 krp->krp_cap = NULL;
1943                 cap_rele(cap);
1944         }
1945
1946         ret_worker = CRYPTO_RETW(0);
1947
1948         CRYPTO_RETW_LOCK(ret_worker);
1949         if (CRYPTO_RETW_EMPTY(ret_worker))
1950                 wakeup_one(&ret_worker->crp_ret_q);             /* shared wait channel */
1951         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1952         CRYPTO_RETW_UNLOCK(ret_worker);
1953 }
1954
1955 int
1956 crypto_getfeat(int *featp)
1957 {
1958         int hid, kalg, feat = 0;
1959
1960         CRYPTO_DRIVER_LOCK();
1961         for (hid = 0; hid < crypto_drivers_size; hid++) {
1962                 const struct cryptocap *cap = crypto_drivers[hid];
1963
1964                 if (cap == NULL ||
1965                     ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1966                     !crypto_devallowsoft)) {
1967                         continue;
1968                 }
1969                 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1970                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1971                                 feat |=  1 << kalg;
1972         }
1973         CRYPTO_DRIVER_UNLOCK();
1974         *featp = feat;
1975         return (0);
1976 }
1977
1978 /*
1979  * Terminate a thread at module unload.  The process that
1980  * initiated this is waiting for us to signal that we're gone;
1981  * wake it up and exit.  We use the driver table lock to insure
1982  * we don't do the wakeup before they're waiting.  There is no
1983  * race here because the waiter sleeps on the proc lock for the
1984  * thread so it gets notified at the right time because of an
1985  * extra wakeup that's done in exit1().
1986  */
1987 static void
1988 crypto_finis(void *chan)
1989 {
1990         CRYPTO_DRIVER_LOCK();
1991         wakeup_one(chan);
1992         CRYPTO_DRIVER_UNLOCK();
1993         kthread_exit();
1994 }
1995
1996 /*
1997  * Crypto thread, dispatches crypto requests.
1998  */
1999 static void
2000 crypto_dispatch_thread(void *arg __unused)
2001 {
2002         struct cryptop *crp, *submit;
2003         struct cryptkop *krp;
2004         struct cryptocap *cap;
2005         int result, hint;
2006
2007 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
2008         fpu_kern_thread(FPU_KERN_NORMAL);
2009 #endif
2010
2011         CRYPTO_Q_LOCK();
2012         for (;;) {
2013                 /*
2014                  * Find the first element in the queue that can be
2015                  * processed and look-ahead to see if multiple ops
2016                  * are ready for the same driver.
2017                  */
2018                 submit = NULL;
2019                 hint = 0;
2020                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
2021                         cap = crp->crp_session->cap;
2022                         /*
2023                          * Driver cannot disappeared when there is an active
2024                          * session.
2025                          */
2026                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2027                             __func__, __LINE__));
2028                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2029                                 /* Op needs to be migrated, process it. */
2030                                 if (submit == NULL)
2031                                         submit = crp;
2032                                 break;
2033                         }
2034                         if (!cap->cc_qblocked) {
2035                                 if (submit != NULL) {
2036                                         /*
2037                                          * We stop on finding another op,
2038                                          * regardless whether its for the same
2039                                          * driver or not.  We could keep
2040                                          * searching the queue but it might be
2041                                          * better to just use a per-driver
2042                                          * queue instead.
2043                                          */
2044                                         if (submit->crp_session->cap == cap)
2045                                                 hint = CRYPTO_HINT_MORE;
2046                                         break;
2047                                 } else {
2048                                         submit = crp;
2049                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
2050                                                 break;
2051                                         /* keep scanning for more are q'd */
2052                                 }
2053                         }
2054                 }
2055                 if (submit != NULL) {
2056                         TAILQ_REMOVE(&crp_q, submit, crp_next);
2057                         cap = submit->crp_session->cap;
2058                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2059                             __func__, __LINE__));
2060                         CRYPTO_Q_UNLOCK();
2061                         result = crypto_invoke(cap, submit, hint);
2062                         CRYPTO_Q_LOCK();
2063                         if (result == ERESTART) {
2064                                 /*
2065                                  * The driver ran out of resources, mark the
2066                                  * driver ``blocked'' for cryptop's and put
2067                                  * the request back in the queue.  It would
2068                                  * best to put the request back where we got
2069                                  * it but that's hard so for now we put it
2070                                  * at the front.  This should be ok; putting
2071                                  * it at the end does not work.
2072                                  */
2073                                 cap->cc_qblocked = 1;
2074                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2075                                 CRYPTOSTAT_INC(cs_blocks);
2076                         }
2077                 }
2078
2079                 /* As above, but for key ops */
2080                 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2081                         cap = krp->krp_cap;
2082                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2083                                 /*
2084                                  * Operation needs to be migrated,
2085                                  * clear krp_cap so a new driver is
2086                                  * selected.
2087                                  */
2088                                 krp->krp_cap = NULL;
2089                                 cap_rele(cap);
2090                                 break;
2091                         }
2092                         if (!cap->cc_kqblocked)
2093                                 break;
2094                 }
2095                 if (krp != NULL) {
2096                         TAILQ_REMOVE(&crp_kq, krp, krp_next);
2097                         CRYPTO_Q_UNLOCK();
2098                         result = crypto_kinvoke(krp);
2099                         CRYPTO_Q_LOCK();
2100                         if (result == ERESTART) {
2101                                 /*
2102                                  * The driver ran out of resources, mark the
2103                                  * driver ``blocked'' for cryptkop's and put
2104                                  * the request back in the queue.  It would
2105                                  * best to put the request back where we got
2106                                  * it but that's hard so for now we put it
2107                                  * at the front.  This should be ok; putting
2108                                  * it at the end does not work.
2109                                  */
2110                                 krp->krp_cap->cc_kqblocked = 1;
2111                                 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2112                                 CRYPTOSTAT_INC(cs_kblocks);
2113                         }
2114                 }
2115
2116                 if (submit == NULL && krp == NULL) {
2117                         /*
2118                          * Nothing more to be processed.  Sleep until we're
2119                          * woken because there are more ops to process.
2120                          * This happens either by submission or by a driver
2121                          * becoming unblocked and notifying us through
2122                          * crypto_unblock.  Note that when we wakeup we
2123                          * start processing each queue again from the
2124                          * front. It's not clear that it's important to
2125                          * preserve this ordering since ops may finish
2126                          * out of order if dispatched to different devices
2127                          * and some become blocked while others do not.
2128                          */
2129                         crp_sleep = 1;
2130                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2131                         crp_sleep = 0;
2132                         if (cryptotd == NULL)
2133                                 break;
2134                         CRYPTOSTAT_INC(cs_intrs);
2135                 }
2136         }
2137         CRYPTO_Q_UNLOCK();
2138
2139         crypto_finis(&crp_q);
2140 }
2141
2142 /*
2143  * Crypto returns thread, does callbacks for processed crypto requests.
2144  * Callbacks are done here, rather than in the crypto drivers, because
2145  * callbacks typically are expensive and would slow interrupt handling.
2146  */
2147 static void
2148 crypto_ret_thread(void *arg)
2149 {
2150         struct crypto_ret_worker *ret_worker = arg;
2151         struct cryptop *crpt;
2152         struct cryptkop *krpt;
2153
2154         CRYPTO_RETW_LOCK(ret_worker);
2155         for (;;) {
2156                 /* Harvest return q's for completed ops */
2157                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2158                 if (crpt != NULL) {
2159                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2160                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2161                                 ret_worker->reorder_cur_seq++;
2162                         } else {
2163                                 crpt = NULL;
2164                         }
2165                 }
2166
2167                 if (crpt == NULL) {
2168                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2169                         if (crpt != NULL)
2170                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2171                 }
2172
2173                 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2174                 if (krpt != NULL)
2175                         TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2176
2177                 if (crpt != NULL || krpt != NULL) {
2178                         CRYPTO_RETW_UNLOCK(ret_worker);
2179                         /*
2180                          * Run callbacks unlocked.
2181                          */
2182                         if (crpt != NULL)
2183                                 crpt->crp_callback(crpt);
2184                         if (krpt != NULL)
2185                                 krpt->krp_callback(krpt);
2186                         CRYPTO_RETW_LOCK(ret_worker);
2187                 } else {
2188                         /*
2189                          * Nothing more to be processed.  Sleep until we're
2190                          * woken because there are more returns to process.
2191                          */
2192                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2193                                 "crypto_ret_wait", 0);
2194                         if (ret_worker->td == NULL)
2195                                 break;
2196                         CRYPTOSTAT_INC(cs_rets);
2197                 }
2198         }
2199         CRYPTO_RETW_UNLOCK(ret_worker);
2200
2201         crypto_finis(&ret_worker->crp_ret_q);
2202 }
2203
2204 #ifdef DDB
2205 static void
2206 db_show_drivers(void)
2207 {
2208         int hid;
2209
2210         db_printf("%12s %4s %4s %8s %2s %2s\n"
2211                 , "Device"
2212                 , "Ses"
2213                 , "Kops"
2214                 , "Flags"
2215                 , "QB"
2216                 , "KB"
2217         );
2218         for (hid = 0; hid < crypto_drivers_size; hid++) {
2219                 const struct cryptocap *cap = crypto_drivers[hid];
2220                 if (cap == NULL)
2221                         continue;
2222                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
2223                     , device_get_nameunit(cap->cc_dev)
2224                     , cap->cc_sessions
2225                     , cap->cc_koperations
2226                     , cap->cc_flags
2227                     , cap->cc_qblocked
2228                     , cap->cc_kqblocked
2229                 );
2230         }
2231 }
2232
2233 DB_SHOW_COMMAND(crypto, db_show_crypto)
2234 {
2235         struct cryptop *crp;
2236         struct crypto_ret_worker *ret_worker;
2237
2238         db_show_drivers();
2239         db_printf("\n");
2240
2241         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2242             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2243             "Device", "Callback");
2244         TAILQ_FOREACH(crp, &crp_q, crp_next) {
2245                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2246                     , crp->crp_session->cap->cc_hid
2247                     , (int) crypto_ses2caps(crp->crp_session)
2248                     , crp->crp_olen
2249                     , crp->crp_etype
2250                     , crp->crp_flags
2251                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
2252                     , crp->crp_callback
2253                 );
2254         }
2255         FOREACH_CRYPTO_RETW(ret_worker) {
2256                 db_printf("\n%8s %4s %4s %4s %8s\n",
2257                     "ret_worker", "HID", "Etype", "Flags", "Callback");
2258                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2259                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2260                                 db_printf("%8td %4u %4u %04x %8p\n"
2261                                     , CRYPTO_RETW_ID(ret_worker)
2262                                     , crp->crp_session->cap->cc_hid
2263                                     , crp->crp_etype
2264                                     , crp->crp_flags
2265                                     , crp->crp_callback
2266                                 );
2267                         }
2268                 }
2269         }
2270 }
2271
2272 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2273 {
2274         struct cryptkop *krp;
2275         struct crypto_ret_worker *ret_worker;
2276
2277         db_show_drivers();
2278         db_printf("\n");
2279
2280         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2281             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2282         TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2283                 db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2284                     , krp->krp_op
2285                     , krp->krp_status
2286                     , krp->krp_iparams, krp->krp_oparams
2287                     , krp->krp_crid, krp->krp_hid
2288                     , krp->krp_callback
2289                 );
2290         }
2291
2292         ret_worker = CRYPTO_RETW(0);
2293         if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2294                 db_printf("%4s %5s %8s %4s %8s\n",
2295                     "Op", "Status", "CRID", "HID", "Callback");
2296                 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2297                         db_printf("%4u %5u %08x %4u %8p\n"
2298                             , krp->krp_op
2299                             , krp->krp_status
2300                             , krp->krp_crid, krp->krp_hid
2301                             , krp->krp_callback
2302                         );
2303                 }
2304         }
2305 }
2306 #endif
2307
2308 int crypto_modevent(module_t mod, int type, void *unused);
2309
2310 /*
2311  * Initialization code, both for static and dynamic loading.
2312  * Note this is not invoked with the usual MODULE_DECLARE
2313  * mechanism but instead is listed as a dependency by the
2314  * cryptosoft driver.  This guarantees proper ordering of
2315  * calls on module load/unload.
2316  */
2317 int
2318 crypto_modevent(module_t mod, int type, void *unused)
2319 {
2320         int error = EINVAL;
2321
2322         switch (type) {
2323         case MOD_LOAD:
2324                 error = crypto_init();
2325                 if (error == 0 && bootverbose)
2326                         printf("crypto: <crypto core>\n");
2327                 break;
2328         case MOD_UNLOAD:
2329                 /*XXX disallow if active sessions */
2330                 error = 0;
2331                 crypto_destroy();
2332                 return 0;
2333         }
2334         return error;
2335 }
2336 MODULE_VERSION(crypto, 1);
2337 MODULE_DEPEND(crypto, zlib, 1, 1, 1);