]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/opencrypto/crypto.c
Merge bmake-20230208
[FreeBSD/FreeBSD.git] / sys / opencrypto / crypto.c
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60
61 #include "opt_compat.h"
62 #include "opt_ddb.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/counter.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/linker.h>
70 #include <sys/lock.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/sdt.h>
78 #include <sys/smp.h>
79 #include <sys/sysctl.h>
80 #include <sys/taskqueue.h>
81 #include <sys/uio.h>
82
83 #include <ddb/ddb.h>
84
85 #include <machine/vmparam.h>
86 #include <vm/uma.h>
87
88 #include <crypto/intake.h>
89 #include <opencrypto/cryptodev.h>
90 #include <opencrypto/xform_auth.h>
91 #include <opencrypto/xform_enc.h>
92
93 #include <sys/kobj.h>
94 #include <sys/bus.h>
95 #include "cryptodev_if.h"
96
97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
98 #include <machine/pcb.h>
99 #endif
100
101 SDT_PROVIDER_DEFINE(opencrypto);
102
103 /*
104  * Crypto drivers register themselves by allocating a slot in the
105  * crypto_drivers table with crypto_get_driverid().
106  */
107 static  struct mtx crypto_drivers_mtx;          /* lock on driver table */
108 #define CRYPTO_DRIVER_LOCK()    mtx_lock(&crypto_drivers_mtx)
109 #define CRYPTO_DRIVER_UNLOCK()  mtx_unlock(&crypto_drivers_mtx)
110 #define CRYPTO_DRIVER_ASSERT()  mtx_assert(&crypto_drivers_mtx, MA_OWNED)
111
112 /*
113  * Crypto device/driver capabilities structure.
114  *
115  * Synchronization:
116  * (d) - protected by CRYPTO_DRIVER_LOCK()
117  * (q) - protected by CRYPTO_Q_LOCK()
118  * Not tagged fields are read-only.
119  */
120 struct cryptocap {
121         device_t        cc_dev;
122         uint32_t        cc_hid;
123         uint32_t        cc_sessions;            /* (d) # of sessions */
124
125         int             cc_flags;               /* (d) flags */
126 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
127         int             cc_qblocked;            /* (q) symmetric q blocked */
128         size_t          cc_session_size;
129         volatile int    cc_refs;
130 };
131
132 static  struct cryptocap **crypto_drivers = NULL;
133 static  int crypto_drivers_size = 0;
134
135 struct crypto_session {
136         struct cryptocap *cap;
137         struct crypto_session_params csp;
138         uint64_t id;
139         /* Driver softc follows. */
140 };
141
142 static  int crp_sleep = 0;
143 static  TAILQ_HEAD(cryptop_q ,cryptop) crp_q;           /* request queues */
144 static  struct mtx crypto_q_mtx;
145 #define CRYPTO_Q_LOCK()         mtx_lock(&crypto_q_mtx)
146 #define CRYPTO_Q_UNLOCK()       mtx_unlock(&crypto_q_mtx)
147
148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
149     "In-kernel cryptography");
150
151 /*
152  * Taskqueue used to dispatch the crypto requests submitted with
153  * crypto_dispatch_async .
154  */
155 static struct taskqueue *crypto_tq;
156
157 /*
158  * Crypto seq numbers are operated on with modular arithmetic
159  */
160 #define CRYPTO_SEQ_GT(a,b)      ((int)((a)-(b)) > 0)
161
162 struct crypto_ret_worker {
163         struct mtx crypto_ret_mtx;
164
165         TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */
166         TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queue for symetric jobs */
167
168         uint32_t reorder_ops;           /* total ordered sym jobs received */
169         uint32_t reorder_cur_seq;       /* current sym job dispatched */
170
171         struct thread *td;
172 };
173 static struct crypto_ret_worker *crypto_ret_workers = NULL;
174
175 #define CRYPTO_RETW(i)          (&crypto_ret_workers[i])
176 #define CRYPTO_RETW_ID(w)       ((w) - crypto_ret_workers)
177 #define FOREACH_CRYPTO_RETW(w) \
178         for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
179
180 #define CRYPTO_RETW_LOCK(w)     mtx_lock(&w->crypto_ret_mtx)
181 #define CRYPTO_RETW_UNLOCK(w)   mtx_unlock(&w->crypto_ret_mtx)
182
183 static int crypto_workers_num = 0;
184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
185            &crypto_workers_num, 0,
186            "Number of crypto workers used to dispatch crypto jobs");
187 #ifdef COMPAT_FREEBSD12
188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
189            &crypto_workers_num, 0,
190            "Number of crypto workers used to dispatch crypto jobs");
191 #endif
192
193 static  uma_zone_t cryptop_zone;
194
195 int     crypto_devallowsoft = 0;
196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
197            &crypto_devallowsoft, 0,
198            "Enable use of software crypto by /dev/crypto");
199 #ifdef COMPAT_FREEBSD12
200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
201            &crypto_devallowsoft, 0,
202            "Enable/disable use of software crypto by /dev/crypto");
203 #endif
204
205 #ifdef DIAGNOSTIC
206 bool crypto_destroyreq_check;
207 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
208            &crypto_destroyreq_check, 0,
209            "Enable checks when destroying a request");
210 #endif
211
212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
213
214 static  void crypto_dispatch_thread(void *arg);
215 static  struct thread *cryptotd;
216 static  void crypto_ret_thread(void *arg);
217 static  void crypto_destroy(void);
218 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
219 static  void crypto_task_invoke(void *ctx, int pending);
220 static void crypto_batch_enqueue(struct cryptop *crp);
221
222 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
223 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
224     cryptostats, nitems(cryptostats),
225     "Crypto system statistics");
226
227 #define CRYPTOSTAT_INC(stat) do {                                       \
228         counter_u64_add(                                                \
229             cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
230             1);                                                         \
231 } while (0)
232
233 static void
234 cryptostats_init(void *arg __unused)
235 {
236         COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
237 }
238 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
239
240 static void
241 cryptostats_fini(void *arg __unused)
242 {
243         COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
244 }
245 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
246     NULL);
247
248 /* Try to avoid directly exposing the key buffer as a symbol */
249 static struct keybuf *keybuf;
250
251 static struct keybuf empty_keybuf = {
252         .kb_nents = 0
253 };
254
255 /* Obtain the key buffer from boot metadata */
256 static void
257 keybuf_init(void)
258 {
259         caddr_t kmdp;
260
261         kmdp = preload_search_by_type("elf kernel");
262
263         if (kmdp == NULL)
264                 kmdp = preload_search_by_type("elf64 kernel");
265
266         keybuf = (struct keybuf *)preload_search_info(kmdp,
267             MODINFO_METADATA | MODINFOMD_KEYBUF);
268
269         if (keybuf == NULL)
270                 keybuf = &empty_keybuf;
271 }
272
273 /* It'd be nice if we could store these in some kind of secure memory... */
274 struct keybuf *
275 get_keybuf(void)
276 {
277
278         return (keybuf);
279 }
280
281 static struct cryptocap *
282 cap_ref(struct cryptocap *cap)
283 {
284
285         refcount_acquire(&cap->cc_refs);
286         return (cap);
287 }
288
289 static void
290 cap_rele(struct cryptocap *cap)
291 {
292
293         if (refcount_release(&cap->cc_refs) == 0)
294                 return;
295
296         KASSERT(cap->cc_sessions == 0,
297             ("freeing crypto driver with active sessions"));
298
299         free(cap, M_CRYPTO_DATA);
300 }
301
302 static int
303 crypto_init(void)
304 {
305         struct crypto_ret_worker *ret_worker;
306         struct proc *p;
307         int error;
308
309         mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
310
311         TAILQ_INIT(&crp_q);
312         mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
313
314         cryptop_zone = uma_zcreate("cryptop",
315             sizeof(struct cryptop), NULL, NULL, NULL, NULL,
316             UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
317
318         crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
319         crypto_drivers = malloc(crypto_drivers_size *
320             sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
321
322         if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
323                 crypto_workers_num = mp_ncpus;
324
325         crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
326             taskqueue_thread_enqueue, &crypto_tq);
327
328         taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
329             "crypto");
330
331         p = NULL;
332         error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
333             0, 0, "crypto", "crypto");
334         if (error) {
335                 printf("crypto_init: cannot start crypto thread; error %d",
336                         error);
337                 goto bad;
338         }
339
340         crypto_ret_workers = mallocarray(crypto_workers_num,
341             sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
342
343         FOREACH_CRYPTO_RETW(ret_worker) {
344                 TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
345                 TAILQ_INIT(&ret_worker->crp_ret_q);
346
347                 ret_worker->reorder_ops = 0;
348                 ret_worker->reorder_cur_seq = 0;
349
350                 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
351                     NULL, MTX_DEF);
352
353                 error = kthread_add(crypto_ret_thread, ret_worker, p,
354                     &ret_worker->td, 0, 0, "crypto returns %td",
355                     CRYPTO_RETW_ID(ret_worker));
356                 if (error) {
357                         printf("crypto_init: cannot start cryptoret thread; error %d",
358                                 error);
359                         goto bad;
360                 }
361         }
362
363         keybuf_init();
364
365         return 0;
366 bad:
367         crypto_destroy();
368         return error;
369 }
370
371 /*
372  * Signal a crypto thread to terminate.  We use the driver
373  * table lock to synchronize the sleep/wakeups so that we
374  * are sure the threads have terminated before we release
375  * the data structures they use.  See crypto_finis below
376  * for the other half of this song-and-dance.
377  */
378 static void
379 crypto_terminate(struct thread **tdp, void *q)
380 {
381         struct thread *td;
382
383         mtx_assert(&crypto_drivers_mtx, MA_OWNED);
384         td = *tdp;
385         *tdp = NULL;
386         if (td != NULL) {
387                 wakeup_one(q);
388                 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
389         }
390 }
391
392 static void
393 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
394     void *auth_ctx, uint8_t padval)
395 {
396         uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
397         u_int i;
398
399         KASSERT(axf->blocksize <= sizeof(hmac_key),
400             ("Invalid HMAC block size %d", axf->blocksize));
401
402         /*
403          * If the key is larger than the block size, use the digest of
404          * the key as the key instead.
405          */
406         memset(hmac_key, 0, sizeof(hmac_key));
407         if (klen > axf->blocksize) {
408                 axf->Init(auth_ctx);
409                 axf->Update(auth_ctx, key, klen);
410                 axf->Final(hmac_key, auth_ctx);
411                 klen = axf->hashsize;
412         } else
413                 memcpy(hmac_key, key, klen);
414
415         for (i = 0; i < axf->blocksize; i++)
416                 hmac_key[i] ^= padval;
417
418         axf->Init(auth_ctx);
419         axf->Update(auth_ctx, hmac_key, axf->blocksize);
420         explicit_bzero(hmac_key, sizeof(hmac_key));
421 }
422
423 void
424 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
425     void *auth_ctx)
426 {
427
428         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
429 }
430
431 void
432 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
433     void *auth_ctx)
434 {
435
436         hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
437 }
438
439 static void
440 crypto_destroy(void)
441 {
442         struct crypto_ret_worker *ret_worker;
443         int i;
444
445         /*
446          * Terminate any crypto threads.
447          */
448         if (crypto_tq != NULL)
449                 taskqueue_drain_all(crypto_tq);
450         CRYPTO_DRIVER_LOCK();
451         crypto_terminate(&cryptotd, &crp_q);
452         FOREACH_CRYPTO_RETW(ret_worker)
453                 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
454         CRYPTO_DRIVER_UNLOCK();
455
456         /* XXX flush queues??? */
457
458         /*
459          * Reclaim dynamically allocated resources.
460          */
461         for (i = 0; i < crypto_drivers_size; i++) {
462                 if (crypto_drivers[i] != NULL)
463                         cap_rele(crypto_drivers[i]);
464         }
465         free(crypto_drivers, M_CRYPTO_DATA);
466
467         if (cryptop_zone != NULL)
468                 uma_zdestroy(cryptop_zone);
469         mtx_destroy(&crypto_q_mtx);
470         FOREACH_CRYPTO_RETW(ret_worker)
471                 mtx_destroy(&ret_worker->crypto_ret_mtx);
472         free(crypto_ret_workers, M_CRYPTO_DATA);
473         if (crypto_tq != NULL)
474                 taskqueue_free(crypto_tq);
475         mtx_destroy(&crypto_drivers_mtx);
476 }
477
478 uint32_t
479 crypto_ses2hid(crypto_session_t crypto_session)
480 {
481         return (crypto_session->cap->cc_hid);
482 }
483
484 uint32_t
485 crypto_ses2caps(crypto_session_t crypto_session)
486 {
487         return (crypto_session->cap->cc_flags & 0xff000000);
488 }
489
490 void *
491 crypto_get_driver_session(crypto_session_t crypto_session)
492 {
493         return (crypto_session + 1);
494 }
495
496 const struct crypto_session_params *
497 crypto_get_params(crypto_session_t crypto_session)
498 {
499         return (&crypto_session->csp);
500 }
501
502 const struct auth_hash *
503 crypto_auth_hash(const struct crypto_session_params *csp)
504 {
505
506         switch (csp->csp_auth_alg) {
507         case CRYPTO_SHA1_HMAC:
508                 return (&auth_hash_hmac_sha1);
509         case CRYPTO_SHA2_224_HMAC:
510                 return (&auth_hash_hmac_sha2_224);
511         case CRYPTO_SHA2_256_HMAC:
512                 return (&auth_hash_hmac_sha2_256);
513         case CRYPTO_SHA2_384_HMAC:
514                 return (&auth_hash_hmac_sha2_384);
515         case CRYPTO_SHA2_512_HMAC:
516                 return (&auth_hash_hmac_sha2_512);
517         case CRYPTO_NULL_HMAC:
518                 return (&auth_hash_null);
519         case CRYPTO_RIPEMD160_HMAC:
520                 return (&auth_hash_hmac_ripemd_160);
521         case CRYPTO_RIPEMD160:
522                 return (&auth_hash_ripemd_160);
523         case CRYPTO_SHA1:
524                 return (&auth_hash_sha1);
525         case CRYPTO_SHA2_224:
526                 return (&auth_hash_sha2_224);
527         case CRYPTO_SHA2_256:
528                 return (&auth_hash_sha2_256);
529         case CRYPTO_SHA2_384:
530                 return (&auth_hash_sha2_384);
531         case CRYPTO_SHA2_512:
532                 return (&auth_hash_sha2_512);
533         case CRYPTO_AES_NIST_GMAC:
534                 switch (csp->csp_auth_klen) {
535                 case 128 / 8:
536                         return (&auth_hash_nist_gmac_aes_128);
537                 case 192 / 8:
538                         return (&auth_hash_nist_gmac_aes_192);
539                 case 256 / 8:
540                         return (&auth_hash_nist_gmac_aes_256);
541                 default:
542                         return (NULL);
543                 }
544         case CRYPTO_BLAKE2B:
545                 return (&auth_hash_blake2b);
546         case CRYPTO_BLAKE2S:
547                 return (&auth_hash_blake2s);
548         case CRYPTO_POLY1305:
549                 return (&auth_hash_poly1305);
550         case CRYPTO_AES_CCM_CBC_MAC:
551                 switch (csp->csp_auth_klen) {
552                 case 128 / 8:
553                         return (&auth_hash_ccm_cbc_mac_128);
554                 case 192 / 8:
555                         return (&auth_hash_ccm_cbc_mac_192);
556                 case 256 / 8:
557                         return (&auth_hash_ccm_cbc_mac_256);
558                 default:
559                         return (NULL);
560                 }
561         default:
562                 return (NULL);
563         }
564 }
565
566 const struct enc_xform *
567 crypto_cipher(const struct crypto_session_params *csp)
568 {
569
570         switch (csp->csp_cipher_alg) {
571         case CRYPTO_AES_CBC:
572                 return (&enc_xform_aes_cbc);
573         case CRYPTO_AES_XTS:
574                 return (&enc_xform_aes_xts);
575         case CRYPTO_AES_ICM:
576                 return (&enc_xform_aes_icm);
577         case CRYPTO_AES_NIST_GCM_16:
578                 return (&enc_xform_aes_nist_gcm);
579         case CRYPTO_CAMELLIA_CBC:
580                 return (&enc_xform_camellia);
581         case CRYPTO_NULL_CBC:
582                 return (&enc_xform_null);
583         case CRYPTO_CHACHA20:
584                 return (&enc_xform_chacha20);
585         case CRYPTO_AES_CCM_16:
586                 return (&enc_xform_ccm);
587         case CRYPTO_CHACHA20_POLY1305:
588                 return (&enc_xform_chacha20_poly1305);
589         case CRYPTO_XCHACHA20_POLY1305:
590                 return (&enc_xform_xchacha20_poly1305);
591         default:
592                 return (NULL);
593         }
594 }
595
596 static struct cryptocap *
597 crypto_checkdriver(uint32_t hid)
598 {
599
600         return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
601 }
602
603 /*
604  * Select a driver for a new session that supports the specified
605  * algorithms and, optionally, is constrained according to the flags.
606  */
607 static struct cryptocap *
608 crypto_select_driver(const struct crypto_session_params *csp, int flags)
609 {
610         struct cryptocap *cap, *best;
611         int best_match, error, hid;
612
613         CRYPTO_DRIVER_ASSERT();
614
615         best = NULL;
616         for (hid = 0; hid < crypto_drivers_size; hid++) {
617                 /*
618                  * If there is no driver for this slot, or the driver
619                  * is not appropriate (hardware or software based on
620                  * match), then skip.
621                  */
622                 cap = crypto_drivers[hid];
623                 if (cap == NULL ||
624                     (cap->cc_flags & flags) == 0)
625                         continue;
626
627                 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
628                 if (error >= 0)
629                         continue;
630
631                 /*
632                  * Use the driver with the highest probe value.
633                  * Hardware drivers use a higher probe value than
634                  * software.  In case of a tie, prefer the driver with
635                  * the fewest active sessions.
636                  */
637                 if (best == NULL || error > best_match ||
638                     (error == best_match &&
639                     cap->cc_sessions < best->cc_sessions)) {
640                         best = cap;
641                         best_match = error;
642                 }
643         }
644         return best;
645 }
646
647 static enum alg_type {
648         ALG_NONE = 0,
649         ALG_CIPHER,
650         ALG_DIGEST,
651         ALG_KEYED_DIGEST,
652         ALG_COMPRESSION,
653         ALG_AEAD
654 } alg_types[] = {
655         [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
656         [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
657         [CRYPTO_AES_CBC] = ALG_CIPHER,
658         [CRYPTO_SHA1] = ALG_DIGEST,
659         [CRYPTO_NULL_HMAC] = ALG_DIGEST,
660         [CRYPTO_NULL_CBC] = ALG_CIPHER,
661         [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
662         [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
663         [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
664         [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
665         [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
666         [CRYPTO_AES_XTS] = ALG_CIPHER,
667         [CRYPTO_AES_ICM] = ALG_CIPHER,
668         [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
669         [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
670         [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
671         [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
672         [CRYPTO_CHACHA20] = ALG_CIPHER,
673         [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
674         [CRYPTO_RIPEMD160] = ALG_DIGEST,
675         [CRYPTO_SHA2_224] = ALG_DIGEST,
676         [CRYPTO_SHA2_256] = ALG_DIGEST,
677         [CRYPTO_SHA2_384] = ALG_DIGEST,
678         [CRYPTO_SHA2_512] = ALG_DIGEST,
679         [CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
680         [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
681         [CRYPTO_AES_CCM_16] = ALG_AEAD,
682         [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
683         [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
684 };
685
686 static enum alg_type
687 alg_type(int alg)
688 {
689
690         if (alg < nitems(alg_types))
691                 return (alg_types[alg]);
692         return (ALG_NONE);
693 }
694
695 static bool
696 alg_is_compression(int alg)
697 {
698
699         return (alg_type(alg) == ALG_COMPRESSION);
700 }
701
702 static bool
703 alg_is_cipher(int alg)
704 {
705
706         return (alg_type(alg) == ALG_CIPHER);
707 }
708
709 static bool
710 alg_is_digest(int alg)
711 {
712
713         return (alg_type(alg) == ALG_DIGEST ||
714             alg_type(alg) == ALG_KEYED_DIGEST);
715 }
716
717 static bool
718 alg_is_keyed_digest(int alg)
719 {
720
721         return (alg_type(alg) == ALG_KEYED_DIGEST);
722 }
723
724 static bool
725 alg_is_aead(int alg)
726 {
727
728         return (alg_type(alg) == ALG_AEAD);
729 }
730
731 static bool
732 ccm_tag_length_valid(int len)
733 {
734         /* RFC 3610 */
735         switch (len) {
736         case 4:
737         case 6:
738         case 8:
739         case 10:
740         case 12:
741         case 14:
742         case 16:
743                 return (true);
744         default:
745                 return (false);
746         }
747 }
748
749 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
750
751 /* Various sanity checks on crypto session parameters. */
752 static bool
753 check_csp(const struct crypto_session_params *csp)
754 {
755         const struct auth_hash *axf;
756
757         /* Mode-independent checks. */
758         if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
759                 return (false);
760         if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
761             csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
762                 return (false);
763         if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
764                 return (false);
765         if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
766                 return (false);
767
768         switch (csp->csp_mode) {
769         case CSP_MODE_COMPRESS:
770                 if (!alg_is_compression(csp->csp_cipher_alg))
771                         return (false);
772                 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
773                         return (false);
774                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
775                         return (false);
776                 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
777                     csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
778                     csp->csp_auth_mlen != 0)
779                         return (false);
780                 break;
781         case CSP_MODE_CIPHER:
782                 if (!alg_is_cipher(csp->csp_cipher_alg))
783                         return (false);
784                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
785                         return (false);
786                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
787                         if (csp->csp_cipher_klen == 0)
788                                 return (false);
789                         if (csp->csp_ivlen == 0)
790                                 return (false);
791                 }
792                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
793                         return (false);
794                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
795                     csp->csp_auth_mlen != 0)
796                         return (false);
797                 break;
798         case CSP_MODE_DIGEST:
799                 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
800                         return (false);
801
802                 if (csp->csp_flags & CSP_F_SEPARATE_AAD)
803                         return (false);
804
805                 /* IV is optional for digests (e.g. GMAC). */
806                 switch (csp->csp_auth_alg) {
807                 case CRYPTO_AES_CCM_CBC_MAC:
808                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
809                                 return (false);
810                         break;
811                 case CRYPTO_AES_NIST_GMAC:
812                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
813                                 return (false);
814                         break;
815                 default:
816                         if (csp->csp_ivlen != 0)
817                                 return (false);
818                         break;
819                 }
820
821                 if (!alg_is_digest(csp->csp_auth_alg))
822                         return (false);
823
824                 /* Key is optional for BLAKE2 digests. */
825                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
826                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
827                         ;
828                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
829                         if (csp->csp_auth_klen == 0)
830                                 return (false);
831                 } else {
832                         if (csp->csp_auth_klen != 0)
833                                 return (false);
834                 }
835                 if (csp->csp_auth_mlen != 0) {
836                         axf = crypto_auth_hash(csp);
837                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
838                                 return (false);
839
840                         if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
841                             !ccm_tag_length_valid(csp->csp_auth_mlen))
842                                 return (false);
843                 }
844                 break;
845         case CSP_MODE_AEAD:
846                 if (!alg_is_aead(csp->csp_cipher_alg))
847                         return (false);
848                 if (csp->csp_cipher_klen == 0)
849                         return (false);
850                 if (csp->csp_ivlen == 0 ||
851                     csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
852                         return (false);
853                 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
854                         return (false);
855
856                 switch (csp->csp_cipher_alg) {
857                 case CRYPTO_AES_CCM_16:
858                         if (csp->csp_auth_mlen != 0 &&
859                             !ccm_tag_length_valid(csp->csp_auth_mlen))
860                                 return (false);
861
862                         if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
863                                 return (false);
864                         break;
865                 case CRYPTO_AES_NIST_GCM_16:
866                         if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
867                                 return (false);
868
869                         if (csp->csp_ivlen != AES_GCM_IV_LEN)
870                                 return (false);
871                         break;
872                 case CRYPTO_CHACHA20_POLY1305:
873                         if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
874                                 return (false);
875                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
876                                 return (false);
877                         break;
878                 case CRYPTO_XCHACHA20_POLY1305:
879                         if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
880                                 return (false);
881                         if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
882                                 return (false);
883                         break;
884                 }
885                 break;
886         case CSP_MODE_ETA:
887                 if (!alg_is_cipher(csp->csp_cipher_alg))
888                         return (false);
889                 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
890                         if (csp->csp_cipher_klen == 0)
891                                 return (false);
892                         if (csp->csp_ivlen == 0)
893                                 return (false);
894                 }
895                 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
896                         return (false);
897                 if (!alg_is_digest(csp->csp_auth_alg))
898                         return (false);
899
900                 /* Key is optional for BLAKE2 digests. */
901                 if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
902                     csp->csp_auth_alg == CRYPTO_BLAKE2S)
903                         ;
904                 else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
905                         if (csp->csp_auth_klen == 0)
906                                 return (false);
907                 } else {
908                         if (csp->csp_auth_klen != 0)
909                                 return (false);
910                 }
911                 if (csp->csp_auth_mlen != 0) {
912                         axf = crypto_auth_hash(csp);
913                         if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
914                                 return (false);
915                 }
916                 break;
917         default:
918                 return (false);
919         }
920
921         return (true);
922 }
923
924 /*
925  * Delete a session after it has been detached from its driver.
926  */
927 static void
928 crypto_deletesession(crypto_session_t cses)
929 {
930         struct cryptocap *cap;
931
932         cap = cses->cap;
933
934         zfree(cses, M_CRYPTO_DATA);
935
936         CRYPTO_DRIVER_LOCK();
937         cap->cc_sessions--;
938         if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
939                 wakeup(cap);
940         CRYPTO_DRIVER_UNLOCK();
941         cap_rele(cap);
942 }
943
944 /*
945  * Create a new session.  The crid argument specifies a crypto
946  * driver to use or constraints on a driver to select (hardware
947  * only, software only, either).  Whatever driver is selected
948  * must be capable of the requested crypto algorithms.
949  */
950 int
951 crypto_newsession(crypto_session_t *cses,
952     const struct crypto_session_params *csp, int crid)
953 {
954         static uint64_t sessid = 0;
955         crypto_session_t res;
956         struct cryptocap *cap;
957         int err;
958
959         if (!check_csp(csp))
960                 return (EINVAL);
961
962         res = NULL;
963
964         CRYPTO_DRIVER_LOCK();
965         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
966                 /*
967                  * Use specified driver; verify it is capable.
968                  */
969                 cap = crypto_checkdriver(crid);
970                 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
971                         cap = NULL;
972         } else {
973                 /*
974                  * No requested driver; select based on crid flags.
975                  */
976                 cap = crypto_select_driver(csp, crid);
977         }
978         if (cap == NULL) {
979                 CRYPTO_DRIVER_UNLOCK();
980                 CRYPTDEB("no driver");
981                 return (EOPNOTSUPP);
982         }
983         cap_ref(cap);
984         cap->cc_sessions++;
985         CRYPTO_DRIVER_UNLOCK();
986
987         /* Allocate a single block for the generic session and driver softc. */
988         res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
989             M_WAITOK | M_ZERO);
990         res->cap = cap;
991         res->csp = *csp;
992         res->id = atomic_fetchadd_64(&sessid, 1);
993
994         /* Call the driver initialization routine. */
995         err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
996         if (err != 0) {
997                 CRYPTDEB("dev newsession failed: %d", err);
998                 crypto_deletesession(res);
999                 return (err);
1000         }
1001
1002         *cses = res;
1003         return (0);
1004 }
1005
1006 /*
1007  * Delete an existing session (or a reserved session on an unregistered
1008  * driver).
1009  */
1010 void
1011 crypto_freesession(crypto_session_t cses)
1012 {
1013         struct cryptocap *cap;
1014
1015         if (cses == NULL)
1016                 return;
1017
1018         cap = cses->cap;
1019
1020         /* Call the driver cleanup routine, if available. */
1021         CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1022
1023         crypto_deletesession(cses);
1024 }
1025
1026 /*
1027  * Return a new driver id.  Registers a driver with the system so that
1028  * it can be probed by subsequent sessions.
1029  */
1030 int32_t
1031 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1032 {
1033         struct cryptocap *cap, **newdrv;
1034         int i;
1035
1036         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1037                 device_printf(dev,
1038                     "no flags specified when registering driver\n");
1039                 return -1;
1040         }
1041
1042         cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1043         cap->cc_dev = dev;
1044         cap->cc_session_size = sessionsize;
1045         cap->cc_flags = flags;
1046         refcount_init(&cap->cc_refs, 1);
1047
1048         CRYPTO_DRIVER_LOCK();
1049         for (;;) {
1050                 for (i = 0; i < crypto_drivers_size; i++) {
1051                         if (crypto_drivers[i] == NULL)
1052                                 break;
1053                 }
1054
1055                 if (i < crypto_drivers_size)
1056                         break;
1057
1058                 /* Out of entries, allocate some more. */
1059
1060                 if (2 * crypto_drivers_size <= crypto_drivers_size) {
1061                         CRYPTO_DRIVER_UNLOCK();
1062                         printf("crypto: driver count wraparound!\n");
1063                         cap_rele(cap);
1064                         return (-1);
1065                 }
1066                 CRYPTO_DRIVER_UNLOCK();
1067
1068                 newdrv = malloc(2 * crypto_drivers_size *
1069                     sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1070
1071                 CRYPTO_DRIVER_LOCK();
1072                 memcpy(newdrv, crypto_drivers,
1073                     crypto_drivers_size * sizeof(*crypto_drivers));
1074
1075                 crypto_drivers_size *= 2;
1076
1077                 free(crypto_drivers, M_CRYPTO_DATA);
1078                 crypto_drivers = newdrv;
1079         }
1080
1081         cap->cc_hid = i;
1082         crypto_drivers[i] = cap;
1083         CRYPTO_DRIVER_UNLOCK();
1084
1085         if (bootverbose)
1086                 printf("crypto: assign %s driver id %u, flags 0x%x\n",
1087                     device_get_nameunit(dev), i, flags);
1088
1089         return i;
1090 }
1091
1092 /*
1093  * Lookup a driver by name.  We match against the full device
1094  * name and unit, and against just the name.  The latter gives
1095  * us a simple widlcarding by device name.  On success return the
1096  * driver/hardware identifier; otherwise return -1.
1097  */
1098 int
1099 crypto_find_driver(const char *match)
1100 {
1101         struct cryptocap *cap;
1102         int i, len = strlen(match);
1103
1104         CRYPTO_DRIVER_LOCK();
1105         for (i = 0; i < crypto_drivers_size; i++) {
1106                 if (crypto_drivers[i] == NULL)
1107                         continue;
1108                 cap = crypto_drivers[i];
1109                 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1110                     strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1111                         CRYPTO_DRIVER_UNLOCK();
1112                         return (i);
1113                 }
1114         }
1115         CRYPTO_DRIVER_UNLOCK();
1116         return (-1);
1117 }
1118
1119 /*
1120  * Return the device_t for the specified driver or NULL
1121  * if the driver identifier is invalid.
1122  */
1123 device_t
1124 crypto_find_device_byhid(int hid)
1125 {
1126         struct cryptocap *cap;
1127         device_t dev;
1128
1129         dev = NULL;
1130         CRYPTO_DRIVER_LOCK();
1131         cap = crypto_checkdriver(hid);
1132         if (cap != NULL)
1133                 dev = cap->cc_dev;
1134         CRYPTO_DRIVER_UNLOCK();
1135         return (dev);
1136 }
1137
1138 /*
1139  * Return the device/driver capabilities.
1140  */
1141 int
1142 crypto_getcaps(int hid)
1143 {
1144         struct cryptocap *cap;
1145         int flags;
1146
1147         flags = 0;
1148         CRYPTO_DRIVER_LOCK();
1149         cap = crypto_checkdriver(hid);
1150         if (cap != NULL)
1151                 flags = cap->cc_flags;
1152         CRYPTO_DRIVER_UNLOCK();
1153         return (flags);
1154 }
1155
1156 /*
1157  * Unregister all algorithms associated with a crypto driver.
1158  * If there are pending sessions using it, leave enough information
1159  * around so that subsequent calls using those sessions will
1160  * correctly detect the driver has been unregistered and reroute
1161  * requests.
1162  */
1163 int
1164 crypto_unregister_all(uint32_t driverid)
1165 {
1166         struct cryptocap *cap;
1167
1168         CRYPTO_DRIVER_LOCK();
1169         cap = crypto_checkdriver(driverid);
1170         if (cap == NULL) {
1171                 CRYPTO_DRIVER_UNLOCK();
1172                 return (EINVAL);
1173         }
1174
1175         cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1176         crypto_drivers[driverid] = NULL;
1177
1178         /*
1179          * XXX: This doesn't do anything to kick sessions that
1180          * have no pending operations.
1181          */
1182         while (cap->cc_sessions != 0)
1183                 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1184         CRYPTO_DRIVER_UNLOCK();
1185         cap_rele(cap);
1186
1187         return (0);
1188 }
1189
1190 /*
1191  * Clear blockage on a driver.  The what parameter indicates whether
1192  * the driver is now ready for cryptop's and/or cryptokop's.
1193  */
1194 int
1195 crypto_unblock(uint32_t driverid, int what)
1196 {
1197         struct cryptocap *cap;
1198         int err;
1199
1200         CRYPTO_Q_LOCK();
1201         cap = crypto_checkdriver(driverid);
1202         if (cap != NULL) {
1203                 if (what & CRYPTO_SYMQ)
1204                         cap->cc_qblocked = 0;
1205                 if (crp_sleep)
1206                         wakeup_one(&crp_q);
1207                 err = 0;
1208         } else
1209                 err = EINVAL;
1210         CRYPTO_Q_UNLOCK();
1211
1212         return err;
1213 }
1214
1215 size_t
1216 crypto_buffer_len(struct crypto_buffer *cb)
1217 {
1218         switch (cb->cb_type) {
1219         case CRYPTO_BUF_CONTIG:
1220                 return (cb->cb_buf_len);
1221         case CRYPTO_BUF_MBUF:
1222                 if (cb->cb_mbuf->m_flags & M_PKTHDR)
1223                         return (cb->cb_mbuf->m_pkthdr.len);
1224                 return (m_length(cb->cb_mbuf, NULL));
1225         case CRYPTO_BUF_SINGLE_MBUF:
1226                 return (cb->cb_mbuf->m_len);
1227         case CRYPTO_BUF_VMPAGE:
1228                 return (cb->cb_vm_page_len);
1229         case CRYPTO_BUF_UIO:
1230                 return (cb->cb_uio->uio_resid);
1231         default:
1232                 return (0);
1233         }
1234 }
1235
1236 #ifdef INVARIANTS
1237 /* Various sanity checks on crypto requests. */
1238 static void
1239 cb_sanity(struct crypto_buffer *cb, const char *name)
1240 {
1241         KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1242             ("incoming crp with invalid %s buffer type", name));
1243         switch (cb->cb_type) {
1244         case CRYPTO_BUF_CONTIG:
1245                 KASSERT(cb->cb_buf_len >= 0,
1246                     ("incoming crp with -ve %s buffer length", name));
1247                 break;
1248         case CRYPTO_BUF_VMPAGE:
1249                 KASSERT(CRYPTO_HAS_VMPAGE,
1250                     ("incoming crp uses dmap on supported arch"));
1251                 KASSERT(cb->cb_vm_page_len >= 0,
1252                     ("incoming crp with -ve %s buffer length", name));
1253                 KASSERT(cb->cb_vm_page_offset >= 0,
1254                     ("incoming crp with -ve %s buffer offset", name));
1255                 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1256                     ("incoming crp with %s buffer offset greater than page size"
1257                      , name));
1258                 break;
1259         default:
1260                 break;
1261         }
1262 }
1263
1264 static void
1265 crp_sanity(struct cryptop *crp)
1266 {
1267         struct crypto_session_params *csp;
1268         struct crypto_buffer *out;
1269         size_t ilen, len, olen;
1270
1271         KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1272         KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1273             crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1274             ("incoming crp with invalid output buffer type"));
1275         KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1276         KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1277             ("incoming crp already done"));
1278
1279         csp = &crp->crp_session->csp;
1280         cb_sanity(&crp->crp_buf, "input");
1281         ilen = crypto_buffer_len(&crp->crp_buf);
1282         olen = ilen;
1283         out = NULL;
1284         if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1285                 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1286                         cb_sanity(&crp->crp_obuf, "output");
1287                         out = &crp->crp_obuf;
1288                         olen = crypto_buffer_len(out);
1289                 }
1290         } else
1291                 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1292                     ("incoming crp with separate output buffer "
1293                     "but no session support"));
1294
1295         switch (csp->csp_mode) {
1296         case CSP_MODE_COMPRESS:
1297                 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1298                     crp->crp_op == CRYPTO_OP_DECOMPRESS,
1299                     ("invalid compression op %x", crp->crp_op));
1300                 break;
1301         case CSP_MODE_CIPHER:
1302                 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1303                     crp->crp_op == CRYPTO_OP_DECRYPT,
1304                     ("invalid cipher op %x", crp->crp_op));
1305                 break;
1306         case CSP_MODE_DIGEST:
1307                 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1308                     crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1309                     ("invalid digest op %x", crp->crp_op));
1310                 break;
1311         case CSP_MODE_AEAD:
1312                 KASSERT(crp->crp_op ==
1313                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1314                     crp->crp_op ==
1315                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1316                     ("invalid AEAD op %x", crp->crp_op));
1317                 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1318                     ("AEAD without a separate IV"));
1319                 break;
1320         case CSP_MODE_ETA:
1321                 KASSERT(crp->crp_op ==
1322                     (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1323                     crp->crp_op ==
1324                     (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1325                     ("invalid ETA op %x", crp->crp_op));
1326                 break;
1327         }
1328         if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1329                 if (crp->crp_aad == NULL) {
1330                         KASSERT(crp->crp_aad_start == 0 ||
1331                             crp->crp_aad_start < ilen,
1332                             ("invalid AAD start"));
1333                         KASSERT(crp->crp_aad_length != 0 ||
1334                             crp->crp_aad_start == 0,
1335                             ("AAD with zero length and non-zero start"));
1336                         KASSERT(crp->crp_aad_length == 0 ||
1337                             crp->crp_aad_start + crp->crp_aad_length <= ilen,
1338                             ("AAD outside input length"));
1339                 } else {
1340                         KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1341                             ("session doesn't support separate AAD buffer"));
1342                         KASSERT(crp->crp_aad_start == 0,
1343                             ("separate AAD buffer with non-zero AAD start"));
1344                         KASSERT(crp->crp_aad_length != 0,
1345                             ("separate AAD buffer with zero length"));
1346                 }
1347         } else {
1348                 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1349                     crp->crp_aad_length == 0,
1350                     ("AAD region in request not supporting AAD"));
1351         }
1352         if (csp->csp_ivlen == 0) {
1353                 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1354                     ("IV_SEPARATE set when IV isn't used"));
1355                 KASSERT(crp->crp_iv_start == 0,
1356                     ("crp_iv_start set when IV isn't used"));
1357         } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1358                 KASSERT(crp->crp_iv_start == 0,
1359                     ("IV_SEPARATE used with non-zero IV start"));
1360         } else {
1361                 KASSERT(crp->crp_iv_start < ilen,
1362                     ("invalid IV start"));
1363                 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1364                     ("IV outside buffer length"));
1365         }
1366         /* XXX: payload_start of 0 should always be < ilen? */
1367         KASSERT(crp->crp_payload_start == 0 ||
1368             crp->crp_payload_start < ilen,
1369             ("invalid payload start"));
1370         KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1371             ilen, ("payload outside input buffer"));
1372         if (out == NULL) {
1373                 KASSERT(crp->crp_payload_output_start == 0,
1374                     ("payload output start non-zero without output buffer"));
1375         } else if (csp->csp_mode == CSP_MODE_DIGEST) {
1376                 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1377                     ("digest verify with separate output buffer"));
1378                 KASSERT(crp->crp_payload_output_start == 0,
1379                     ("digest operation with non-zero payload output start"));
1380         } else {
1381                 KASSERT(crp->crp_payload_output_start == 0 ||
1382                     crp->crp_payload_output_start < olen,
1383                     ("invalid payload output start"));
1384                 KASSERT(crp->crp_payload_output_start +
1385                     crp->crp_payload_length <= olen,
1386                     ("payload outside output buffer"));
1387         }
1388         if (csp->csp_mode == CSP_MODE_DIGEST ||
1389             csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1390                 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1391                         len = ilen;
1392                 else
1393                         len = olen;
1394                 KASSERT(crp->crp_digest_start == 0 ||
1395                     crp->crp_digest_start < len,
1396                     ("invalid digest start"));
1397                 /* XXX: For the mlen == 0 case this check isn't perfect. */
1398                 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1399                     ("digest outside buffer"));
1400         } else {
1401                 KASSERT(crp->crp_digest_start == 0,
1402                     ("non-zero digest start for request without a digest"));
1403         }
1404         if (csp->csp_cipher_klen != 0)
1405                 KASSERT(csp->csp_cipher_key != NULL ||
1406                     crp->crp_cipher_key != NULL,
1407                     ("cipher request without a key"));
1408         if (csp->csp_auth_klen != 0)
1409                 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1410                     ("auth request without a key"));
1411         KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1412 }
1413 #endif
1414
1415 static int
1416 crypto_dispatch_one(struct cryptop *crp, int hint)
1417 {
1418         struct cryptocap *cap;
1419         int result;
1420
1421 #ifdef INVARIANTS
1422         crp_sanity(crp);
1423 #endif
1424         CRYPTOSTAT_INC(cs_ops);
1425
1426         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1427
1428         /*
1429          * Caller marked the request to be processed immediately; dispatch it
1430          * directly to the driver unless the driver is currently blocked, in
1431          * which case it is queued for deferred dispatch.
1432          */
1433         cap = crp->crp_session->cap;
1434         if (!atomic_load_int(&cap->cc_qblocked)) {
1435                 result = crypto_invoke(cap, crp, hint);
1436                 if (result != ERESTART)
1437                         return (result);
1438
1439                 /*
1440                  * The driver ran out of resources, put the request on the
1441                  * queue.
1442                  */
1443         }
1444         crypto_batch_enqueue(crp);
1445         return (0);
1446 }
1447
1448 int
1449 crypto_dispatch(struct cryptop *crp)
1450 {
1451         return (crypto_dispatch_one(crp, 0));
1452 }
1453
1454 int
1455 crypto_dispatch_async(struct cryptop *crp, int flags)
1456 {
1457         struct crypto_ret_worker *ret_worker;
1458
1459         if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1460                 /*
1461                  * The driver issues completions asynchonously, don't bother
1462                  * deferring dispatch to a worker thread.
1463                  */
1464                 return (crypto_dispatch(crp));
1465         }
1466
1467 #ifdef INVARIANTS
1468         crp_sanity(crp);
1469 #endif
1470         CRYPTOSTAT_INC(cs_ops);
1471
1472         crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1473         if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1474                 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1475                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1476                 CRYPTO_RETW_LOCK(ret_worker);
1477                 crp->crp_seq = ret_worker->reorder_ops++;
1478                 CRYPTO_RETW_UNLOCK(ret_worker);
1479         }
1480         TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1481         taskqueue_enqueue(crypto_tq, &crp->crp_task);
1482         return (0);
1483 }
1484
1485 void
1486 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1487 {
1488         struct cryptop *crp;
1489         int hint;
1490
1491         while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1492                 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1493                 TAILQ_REMOVE(crpq, crp, crp_next);
1494                 if (crypto_dispatch_one(crp, hint) != 0)
1495                         crypto_batch_enqueue(crp);
1496         }
1497 }
1498
1499 static void
1500 crypto_batch_enqueue(struct cryptop *crp)
1501 {
1502
1503         CRYPTO_Q_LOCK();
1504         TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1505         if (crp_sleep)
1506                 wakeup_one(&crp_q);
1507         CRYPTO_Q_UNLOCK();
1508 }
1509
1510 static void
1511 crypto_task_invoke(void *ctx, int pending)
1512 {
1513         struct cryptocap *cap;
1514         struct cryptop *crp;
1515         int result;
1516
1517         crp = (struct cryptop *)ctx;
1518         cap = crp->crp_session->cap;
1519         result = crypto_invoke(cap, crp, 0);
1520         if (result == ERESTART)
1521                 crypto_batch_enqueue(crp);
1522 }
1523
1524 /*
1525  * Dispatch a crypto request to the appropriate crypto devices.
1526  */
1527 static int
1528 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1529 {
1530         int error;
1531
1532         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1533         KASSERT(crp->crp_callback != NULL,
1534             ("%s: crp->crp_callback == NULL", __func__));
1535         KASSERT(crp->crp_session != NULL,
1536             ("%s: crp->crp_session == NULL", __func__));
1537
1538         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1539                 struct crypto_session_params csp;
1540                 crypto_session_t nses;
1541
1542                 /*
1543                  * Driver has unregistered; migrate the session and return
1544                  * an error to the caller so they'll resubmit the op.
1545                  *
1546                  * XXX: What if there are more already queued requests for this
1547                  *      session?
1548                  *
1549                  * XXX: Real solution is to make sessions refcounted
1550                  * and force callers to hold a reference when
1551                  * assigning to crp_session.  Could maybe change
1552                  * crypto_getreq to accept a session pointer to make
1553                  * that work.  Alternatively, we could abandon the
1554                  * notion of rewriting crp_session in requests forcing
1555                  * the caller to deal with allocating a new session.
1556                  * Perhaps provide a method to allow a crp's session to
1557                  * be swapped that callers could use.
1558                  */
1559                 csp = crp->crp_session->csp;
1560                 crypto_freesession(crp->crp_session);
1561
1562                 /*
1563                  * XXX: Key pointers may no longer be valid.  If we
1564                  * really want to support this we need to define the
1565                  * KPI such that 'csp' is required to be valid for the
1566                  * duration of a session by the caller perhaps.
1567                  *
1568                  * XXX: If the keys have been changed this will reuse
1569                  * the old keys.  This probably suggests making
1570                  * rekeying more explicit and updating the key
1571                  * pointers in 'csp' when the keys change.
1572                  */
1573                 if (crypto_newsession(&nses, &csp,
1574                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1575                         crp->crp_session = nses;
1576
1577                 crp->crp_etype = EAGAIN;
1578                 crypto_done(crp);
1579                 error = 0;
1580         } else {
1581                 /*
1582                  * Invoke the driver to process the request.  Errors are
1583                  * signaled by setting crp_etype before invoking the completion
1584                  * callback.
1585                  */
1586                 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1587                 KASSERT(error == 0 || error == ERESTART,
1588                     ("%s: invalid error %d from CRYPTODEV_PROCESS",
1589                     __func__, error));
1590         }
1591         return (error);
1592 }
1593
1594 void
1595 crypto_destroyreq(struct cryptop *crp)
1596 {
1597 #ifdef DIAGNOSTIC
1598         {
1599                 struct cryptop *crp2;
1600                 struct crypto_ret_worker *ret_worker;
1601
1602                 if (!crypto_destroyreq_check)
1603                         return;
1604
1605                 CRYPTO_Q_LOCK();
1606                 TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1607                         KASSERT(crp2 != crp,
1608                             ("Freeing cryptop from the crypto queue (%p).",
1609                             crp));
1610                 }
1611                 CRYPTO_Q_UNLOCK();
1612
1613                 FOREACH_CRYPTO_RETW(ret_worker) {
1614                         CRYPTO_RETW_LOCK(ret_worker);
1615                         TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1616                                 KASSERT(crp2 != crp,
1617                                     ("Freeing cryptop from the return queue (%p).",
1618                                     crp));
1619                         }
1620                         CRYPTO_RETW_UNLOCK(ret_worker);
1621                 }
1622         }
1623 #endif
1624 }
1625
1626 void
1627 crypto_freereq(struct cryptop *crp)
1628 {
1629         if (crp == NULL)
1630                 return;
1631
1632         crypto_destroyreq(crp);
1633         uma_zfree(cryptop_zone, crp);
1634 }
1635
1636 void
1637 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1638 {
1639         memset(crp, 0, sizeof(*crp));
1640         crp->crp_session = cses;
1641 }
1642
1643 struct cryptop *
1644 crypto_getreq(crypto_session_t cses, int how)
1645 {
1646         struct cryptop *crp;
1647
1648         MPASS(how == M_WAITOK || how == M_NOWAIT);
1649         crp = uma_zalloc(cryptop_zone, how);
1650         if (crp != NULL)
1651                 crypto_initreq(crp, cses);
1652         return (crp);
1653 }
1654
1655 /*
1656  * Clone a crypto request, but associate it with the specified session
1657  * rather than inheriting the session from the original request.  The
1658  * fields describing the request buffers are copied, but not the
1659  * opaque field or callback function.
1660  */
1661 struct cryptop *
1662 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1663 {
1664         struct cryptop *new;
1665
1666         MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1667         new = crypto_getreq(cses, how);
1668         if (new == NULL)
1669                 return (NULL);
1670
1671         memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1672             __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1673         return (new);
1674 }
1675
1676 /*
1677  * Invoke the callback on behalf of the driver.
1678  */
1679 void
1680 crypto_done(struct cryptop *crp)
1681 {
1682         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1683                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1684         crp->crp_flags |= CRYPTO_F_DONE;
1685         if (crp->crp_etype != 0)
1686                 CRYPTOSTAT_INC(cs_errs);
1687
1688         /*
1689          * CBIMM means unconditionally do the callback immediately;
1690          * CBIFSYNC means do the callback immediately only if the
1691          * operation was done synchronously.  Both are used to avoid
1692          * doing extraneous context switches; the latter is mostly
1693          * used with the software crypto driver.
1694          */
1695         if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1696             ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1697             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1698             CRYPTO_SESS_SYNC(crp->crp_session)))) {
1699                 /*
1700                  * Do the callback directly.  This is ok when the
1701                  * callback routine does very little (e.g. the
1702                  * /dev/crypto callback method just does a wakeup).
1703                  */
1704                 crp->crp_callback(crp);
1705         } else {
1706                 struct crypto_ret_worker *ret_worker;
1707                 bool wake;
1708
1709                 ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1710
1711                 /*
1712                  * Normal case; queue the callback for the thread.
1713                  */
1714                 CRYPTO_RETW_LOCK(ret_worker);
1715                 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1716                         struct cryptop *tmp;
1717
1718                         TAILQ_FOREACH_REVERSE(tmp,
1719                             &ret_worker->crp_ordered_ret_q, cryptop_q,
1720                             crp_next) {
1721                                 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1722                                         TAILQ_INSERT_AFTER(
1723                                             &ret_worker->crp_ordered_ret_q, tmp,
1724                                             crp, crp_next);
1725                                         break;
1726                                 }
1727                         }
1728                         if (tmp == NULL) {
1729                                 TAILQ_INSERT_HEAD(
1730                                     &ret_worker->crp_ordered_ret_q, crp,
1731                                     crp_next);
1732                         }
1733
1734                         wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1735                 } else {
1736                         wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1737                         TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1738                             crp_next);
1739                 }
1740
1741                 if (wake)
1742                         wakeup_one(&ret_worker->crp_ret_q);     /* shared wait channel */
1743                 CRYPTO_RETW_UNLOCK(ret_worker);
1744         }
1745 }
1746
1747 /*
1748  * Terminate a thread at module unload.  The process that
1749  * initiated this is waiting for us to signal that we're gone;
1750  * wake it up and exit.  We use the driver table lock to insure
1751  * we don't do the wakeup before they're waiting.  There is no
1752  * race here because the waiter sleeps on the proc lock for the
1753  * thread so it gets notified at the right time because of an
1754  * extra wakeup that's done in exit1().
1755  */
1756 static void
1757 crypto_finis(void *chan)
1758 {
1759         CRYPTO_DRIVER_LOCK();
1760         wakeup_one(chan);
1761         CRYPTO_DRIVER_UNLOCK();
1762         kthread_exit();
1763 }
1764
1765 /*
1766  * Crypto thread, dispatches crypto requests.
1767  */
1768 static void
1769 crypto_dispatch_thread(void *arg __unused)
1770 {
1771         struct cryptop *crp, *submit;
1772         struct cryptocap *cap;
1773         int result, hint;
1774
1775 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1776         fpu_kern_thread(FPU_KERN_NORMAL);
1777 #endif
1778
1779         CRYPTO_Q_LOCK();
1780         for (;;) {
1781                 /*
1782                  * Find the first element in the queue that can be
1783                  * processed and look-ahead to see if multiple ops
1784                  * are ready for the same driver.
1785                  */
1786                 submit = NULL;
1787                 hint = 0;
1788                 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1789                         cap = crp->crp_session->cap;
1790                         /*
1791                          * Driver cannot disappeared when there is an active
1792                          * session.
1793                          */
1794                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1795                             __func__, __LINE__));
1796                         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1797                                 /* Op needs to be migrated, process it. */
1798                                 if (submit == NULL)
1799                                         submit = crp;
1800                                 break;
1801                         }
1802                         if (!cap->cc_qblocked) {
1803                                 if (submit != NULL) {
1804                                         /*
1805                                          * We stop on finding another op,
1806                                          * regardless whether its for the same
1807                                          * driver or not.  We could keep
1808                                          * searching the queue but it might be
1809                                          * better to just use a per-driver
1810                                          * queue instead.
1811                                          */
1812                                         if (submit->crp_session->cap == cap)
1813                                                 hint = CRYPTO_HINT_MORE;
1814                                 } else {
1815                                         submit = crp;
1816                                 }
1817                                 break;
1818                         }
1819                 }
1820                 if (submit != NULL) {
1821                         TAILQ_REMOVE(&crp_q, submit, crp_next);
1822                         cap = submit->crp_session->cap;
1823                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1824                             __func__, __LINE__));
1825                         CRYPTO_Q_UNLOCK();
1826                         result = crypto_invoke(cap, submit, hint);
1827                         CRYPTO_Q_LOCK();
1828                         if (result == ERESTART) {
1829                                 /*
1830                                  * The driver ran out of resources, mark the
1831                                  * driver ``blocked'' for cryptop's and put
1832                                  * the request back in the queue.  It would
1833                                  * best to put the request back where we got
1834                                  * it but that's hard so for now we put it
1835                                  * at the front.  This should be ok; putting
1836                                  * it at the end does not work.
1837                                  */
1838                                 cap->cc_qblocked = 1;
1839                                 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1840                                 CRYPTOSTAT_INC(cs_blocks);
1841                         }
1842                 } else {
1843                         /*
1844                          * Nothing more to be processed.  Sleep until we're
1845                          * woken because there are more ops to process.
1846                          * This happens either by submission or by a driver
1847                          * becoming unblocked and notifying us through
1848                          * crypto_unblock.  Note that when we wakeup we
1849                          * start processing each queue again from the
1850                          * front. It's not clear that it's important to
1851                          * preserve this ordering since ops may finish
1852                          * out of order if dispatched to different devices
1853                          * and some become blocked while others do not.
1854                          */
1855                         crp_sleep = 1;
1856                         msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1857                         crp_sleep = 0;
1858                         if (cryptotd == NULL)
1859                                 break;
1860                         CRYPTOSTAT_INC(cs_intrs);
1861                 }
1862         }
1863         CRYPTO_Q_UNLOCK();
1864
1865         crypto_finis(&crp_q);
1866 }
1867
1868 /*
1869  * Crypto returns thread, does callbacks for processed crypto requests.
1870  * Callbacks are done here, rather than in the crypto drivers, because
1871  * callbacks typically are expensive and would slow interrupt handling.
1872  */
1873 static void
1874 crypto_ret_thread(void *arg)
1875 {
1876         struct crypto_ret_worker *ret_worker = arg;
1877         struct cryptop *crpt;
1878
1879         CRYPTO_RETW_LOCK(ret_worker);
1880         for (;;) {
1881                 /* Harvest return q's for completed ops */
1882                 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1883                 if (crpt != NULL) {
1884                         if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1885                                 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1886                                 ret_worker->reorder_cur_seq++;
1887                         } else {
1888                                 crpt = NULL;
1889                         }
1890                 }
1891
1892                 if (crpt == NULL) {
1893                         crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1894                         if (crpt != NULL)
1895                                 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1896                 }
1897
1898                 if (crpt != NULL) {
1899                         CRYPTO_RETW_UNLOCK(ret_worker);
1900                         /*
1901                          * Run callbacks unlocked.
1902                          */
1903                         if (crpt != NULL)
1904                                 crpt->crp_callback(crpt);
1905                         CRYPTO_RETW_LOCK(ret_worker);
1906                 } else {
1907                         /*
1908                          * Nothing more to be processed.  Sleep until we're
1909                          * woken because there are more returns to process.
1910                          */
1911                         msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1912                                 "crypto_ret_wait", 0);
1913                         if (ret_worker->td == NULL)
1914                                 break;
1915                         CRYPTOSTAT_INC(cs_rets);
1916                 }
1917         }
1918         CRYPTO_RETW_UNLOCK(ret_worker);
1919
1920         crypto_finis(&ret_worker->crp_ret_q);
1921 }
1922
1923 #ifdef DDB
1924 static void
1925 db_show_drivers(void)
1926 {
1927         int hid;
1928
1929         db_printf("%12s %4s %8s %2s\n"
1930                 , "Device"
1931                 , "Ses"
1932                 , "Flags"
1933                 , "QB"
1934         );
1935         for (hid = 0; hid < crypto_drivers_size; hid++) {
1936                 const struct cryptocap *cap = crypto_drivers[hid];
1937                 if (cap == NULL)
1938                         continue;
1939                 db_printf("%-12s %4u %08x %2u\n"
1940                     , device_get_nameunit(cap->cc_dev)
1941                     , cap->cc_sessions
1942                     , cap->cc_flags
1943                     , cap->cc_qblocked
1944                 );
1945         }
1946 }
1947
1948 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1949 {
1950         struct cryptop *crp;
1951         struct crypto_ret_worker *ret_worker;
1952
1953         db_show_drivers();
1954         db_printf("\n");
1955
1956         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1957             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1958             "Device", "Callback");
1959         TAILQ_FOREACH(crp, &crp_q, crp_next) {
1960                 db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1961                     , crp->crp_session->cap->cc_hid
1962                     , (int) crypto_ses2caps(crp->crp_session)
1963                     , crp->crp_olen
1964                     , crp->crp_etype
1965                     , crp->crp_flags
1966                     , device_get_nameunit(crp->crp_session->cap->cc_dev)
1967                     , crp->crp_callback
1968                 );
1969         }
1970         FOREACH_CRYPTO_RETW(ret_worker) {
1971                 db_printf("\n%8s %4s %4s %4s %8s\n",
1972                     "ret_worker", "HID", "Etype", "Flags", "Callback");
1973                 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1974                         TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1975                                 db_printf("%8td %4u %4u %04x %8p\n"
1976                                     , CRYPTO_RETW_ID(ret_worker)
1977                                     , crp->crp_session->cap->cc_hid
1978                                     , crp->crp_etype
1979                                     , crp->crp_flags
1980                                     , crp->crp_callback
1981                                 );
1982                         }
1983                 }
1984         }
1985 }
1986 #endif
1987
1988 int crypto_modevent(module_t mod, int type, void *unused);
1989
1990 /*
1991  * Initialization code, both for static and dynamic loading.
1992  * Note this is not invoked with the usual MODULE_DECLARE
1993  * mechanism but instead is listed as a dependency by the
1994  * cryptosoft driver.  This guarantees proper ordering of
1995  * calls on module load/unload.
1996  */
1997 int
1998 crypto_modevent(module_t mod, int type, void *unused)
1999 {
2000         int error = EINVAL;
2001
2002         switch (type) {
2003         case MOD_LOAD:
2004                 error = crypto_init();
2005                 if (error == 0 && bootverbose)
2006                         printf("crypto: <crypto core>\n");
2007                 break;
2008         case MOD_UNLOAD:
2009                 /*XXX disallow if active sessions */
2010                 error = 0;
2011                 crypto_destroy();
2012                 return 0;
2013         }
2014         return error;
2015 }
2016 MODULE_VERSION(crypto, 1);
2017 MODULE_DEPEND(crypto, zlib, 1, 1, 1);