]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/pc98/cbus/clock.c
Remove the tc_update() function. Any frequency change to the
[FreeBSD/FreeBSD.git] / sys / pc98 / cbus / clock.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * William Jolitz and Don Ahn.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
37  * $FreeBSD$
38  */
39
40 /*
41  * Routines to handle clock hardware.
42  */
43
44 /*
45  * inittodr, settodr and support routines written
46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47  *
48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49  */
50
51 /*
52  * modified for PC98 by Kakefuda
53  */
54
55 #include "opt_clock.h"
56 #include "opt_isa.h"
57 #include "opt_mca.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/bus.h>
62 #include <sys/lock.h>
63 #include <sys/mutex.h>
64 #include <sys/proc.h>
65 #include <sys/time.h>
66 #include <sys/timetc.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/cons.h>
70 #include <sys/power.h>
71
72 #include <machine/clock.h>
73 #ifdef CLK_CALIBRATION_LOOP
74 #endif
75 #include <machine/cputypes.h>
76 #include <machine/frame.h>
77 #include <machine/limits.h>
78 #include <machine/md_var.h>
79 #include <machine/psl.h>
80 #ifdef APIC_IO
81 #include <machine/segments.h>
82 #endif
83 #if defined(SMP) || defined(APIC_IO)
84 #include <machine/smp.h>
85 #endif /* SMP || APIC_IO */
86 #include <machine/specialreg.h>
87
88 #include <i386/isa/icu.h>
89 #ifdef PC98
90 #include <pc98/pc98/pc98.h>
91 #include <pc98/pc98/pc98_machdep.h>
92 #include <i386/isa/isa_device.h>
93 #else
94 #include <i386/isa/isa.h>
95 #include <isa/rtc.h>
96 #endif
97 #ifdef DEV_ISA
98 #include <isa/isavar.h>
99 #endif
100 #include <i386/isa/timerreg.h>
101
102 #include <i386/isa/intr_machdep.h>
103
104 #ifdef DEV_MCA
105 #include <i386/isa/mca_machdep.h>
106 #endif
107
108 #ifdef APIC_IO
109 #include <i386/isa/intr_machdep.h>
110 /* The interrupt triggered by the 8254 (timer) chip */
111 int apic_8254_intr;
112 static u_long read_intr_count(int vec);
113 static void setup_8254_mixed_mode(void);
114 #endif
115
116 /*
117  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
118  * can use a simple formula for leap years.
119  */
120 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
121 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
122
123 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
124
125 /*
126  * Time in timer cycles that it takes for microtime() to disable interrupts
127  * and latch the count.  microtime() currently uses "cli; outb ..." so it
128  * normally takes less than 2 timer cycles.  Add a few for cache misses.
129  * Add a few more to allow for latency in bogus calls to microtime() with
130  * interrupts already disabled.
131  */
132 #define TIMER0_LATCH_COUNT      20
133
134 /*
135  * Maximum frequency that we are willing to allow for timer0.  Must be
136  * low enough to guarantee that the timer interrupt handler returns
137  * before the next timer interrupt.
138  */
139 #define TIMER0_MAX_FREQ         20000
140
141 int     adjkerntz;              /* local offset from GMT in seconds */
142 int     clkintr_pending;
143 int     disable_rtc_set;        /* disable resettodr() if != 0 */
144 int     statclock_disable;
145 #ifndef TIMER_FREQ
146 #ifdef PC98
147 #define TIMER_FREQ   2457600
148 #else /* IBM-PC */
149 #define TIMER_FREQ   1193182
150 #endif /* PC98 */
151 #endif
152 u_int   timer_freq = TIMER_FREQ;
153 int     timer0_max_count;
154 u_int   tsc_freq;
155 int     tsc_is_broken;
156 u_int   tsc_present;
157 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
158 struct mtx clock_lock;
159
160 static  int     beeping = 0;
161 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
162 static  u_int   hardclock_max_count;
163 static  u_int32_t i8254_lastcount;
164 static  u_int32_t i8254_offset;
165 static  int     i8254_ticked;
166 /*
167  * XXX new_function and timer_func should not handle clockframes, but
168  * timer_func currently needs to hold hardclock to handle the
169  * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
170  * to switch between clkintr() and a slightly different timerintr().
171  */
172 static  void    (*new_function)(struct clockframe *frame);
173 static  u_int   new_rate;
174 #ifndef PC98
175 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
176 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
177 #endif
178 static  u_int   timer0_prescaler_count;
179
180 /* Values for timerX_state: */
181 #define RELEASED        0
182 #define RELEASE_PENDING 1
183 #define ACQUIRED        2
184 #define ACQUIRE_PENDING 3
185
186 static  u_char  timer0_state;
187 #ifdef  PC98
188 static  u_char  timer1_state;
189 #endif
190 static  u_char  timer2_state;
191 static  void    (*timer_func)(struct clockframe *frame) = hardclock;
192 #ifdef PC98
193 static void rtc_serialcombit(int);
194 static void rtc_serialcom(int);
195 static int rtc_inb(void);
196 static void rtc_outb(int);
197 #endif
198
199 static  unsigned i8254_get_timecount(struct timecounter *tc);
200 static  unsigned tsc_get_timecount(struct timecounter *tc);
201 static  void    set_timer_freq(u_int freq, int intr_freq);
202
203 static struct timecounter tsc_timecounter = {
204         tsc_get_timecount,      /* get_timecount */
205         0,                      /* no poll_pps */
206         ~0u,                    /* counter_mask */
207         0,                      /* frequency */
208          "TSC"                  /* name */
209 };
210
211 SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD, 
212         &tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
213
214 static struct timecounter i8254_timecounter = {
215         i8254_get_timecount,    /* get_timecount */
216         0,                      /* no poll_pps */
217         ~0u,                    /* counter_mask */
218         0,                      /* frequency */
219         "i8254"                 /* name */
220 };
221
222 SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD, 
223         &i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
224
225 static void
226 clkintr(struct clockframe frame)
227 {
228
229         if (timecounter->tc_get_timecount == i8254_get_timecount) {
230                 mtx_lock_spin(&clock_lock);
231                 if (i8254_ticked)
232                         i8254_ticked = 0;
233                 else {
234                         i8254_offset += timer0_max_count;
235                         i8254_lastcount = 0;
236                 }
237                 clkintr_pending = 0;
238                 mtx_unlock_spin(&clock_lock);
239         }
240         timer_func(&frame);
241 #ifdef SMP
242         if (timer_func == hardclock)
243                 forward_hardclock();
244 #endif
245         switch (timer0_state) {
246
247         case RELEASED:
248                 break;
249
250         case ACQUIRED:
251                 if ((timer0_prescaler_count += timer0_max_count)
252                     >= hardclock_max_count) {
253                         timer0_prescaler_count -= hardclock_max_count;
254                         hardclock(&frame);
255 #ifdef SMP
256                         forward_hardclock();
257 #endif
258                 }
259                 break;
260
261         case ACQUIRE_PENDING:
262                 mtx_lock_spin(&clock_lock);
263                 i8254_offset = i8254_get_timecount(NULL);
264                 i8254_lastcount = 0;
265                 timer0_max_count = TIMER_DIV(new_rate);
266                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
267                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
268                 outb(TIMER_CNTR0, timer0_max_count >> 8);
269                 mtx_unlock_spin(&clock_lock);
270                 timer_func = new_function;
271                 timer0_state = ACQUIRED;
272                 break;
273
274         case RELEASE_PENDING:
275                 if ((timer0_prescaler_count += timer0_max_count)
276                     >= hardclock_max_count) {
277                         mtx_lock_spin(&clock_lock);
278                         i8254_offset = i8254_get_timecount(NULL);
279                         i8254_lastcount = 0;
280                         timer0_max_count = hardclock_max_count;
281                         outb(TIMER_MODE,
282                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
283                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
284                         outb(TIMER_CNTR0, timer0_max_count >> 8);
285                         mtx_unlock_spin(&clock_lock);
286                         timer0_prescaler_count = 0;
287                         timer_func = hardclock;
288                         timer0_state = RELEASED;
289                         hardclock(&frame);
290 #ifdef SMP
291                         forward_hardclock();
292 #endif
293                 }
294                 break;
295         }
296 #ifdef DEV_MCA
297         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
298         if (MCA_system)
299                 outb(0x61, inb(0x61) | 0x80);
300 #endif
301 }
302
303 /*
304  * The acquire and release functions must be called at ipl >= splclock().
305  */
306 int
307 acquire_timer0(int rate, void (*function)(struct clockframe *frame))
308 {
309         static int old_rate;
310
311         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
312                 return (-1);
313         switch (timer0_state) {
314
315         case RELEASED:
316                 timer0_state = ACQUIRE_PENDING;
317                 break;
318
319         case RELEASE_PENDING:
320                 if (rate != old_rate)
321                         return (-1);
322                 /*
323                  * The timer has been released recently, but is being
324                  * re-acquired before the release completed.  In this
325                  * case, we simply reclaim it as if it had not been
326                  * released at all.
327                  */
328                 timer0_state = ACQUIRED;
329                 break;
330
331         default:
332                 return (-1);    /* busy */
333         }
334         new_function = function;
335         old_rate = new_rate = rate;
336         return (0);
337 }
338
339 #ifdef PC98
340 int
341 acquire_timer1(int mode)
342 {
343
344         if (timer1_state != RELEASED)
345                 return (-1);
346         timer1_state = ACQUIRED;
347
348         /*
349          * This access to the timer registers is as atomic as possible
350          * because it is a single instruction.  We could do better if we
351          * knew the rate.  Use of splclock() limits glitches to 10-100us,
352          * and this is probably good enough for timer2, so we aren't as
353          * careful with it as with timer0.
354          */
355         outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
356
357         return (0);
358 }
359 #endif
360
361 int
362 acquire_timer2(int mode)
363 {
364
365         if (timer2_state != RELEASED)
366                 return (-1);
367         timer2_state = ACQUIRED;
368
369         /*
370          * This access to the timer registers is as atomic as possible
371          * because it is a single instruction.  We could do better if we
372          * knew the rate.  Use of splclock() limits glitches to 10-100us,
373          * and this is probably good enough for timer2, so we aren't as
374          * careful with it as with timer0.
375          */
376         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
377
378         return (0);
379 }
380
381 int
382 release_timer0()
383 {
384         switch (timer0_state) {
385
386         case ACQUIRED:
387                 timer0_state = RELEASE_PENDING;
388                 break;
389
390         case ACQUIRE_PENDING:
391                 /* Nothing happened yet, release quickly. */
392                 timer0_state = RELEASED;
393                 break;
394
395         default:
396                 return (-1);
397         }
398         return (0);
399 }
400
401 #ifdef PC98
402 int
403 release_timer1()
404 {
405
406         if (timer1_state != ACQUIRED)
407                 return (-1);
408         timer1_state = RELEASED;
409         outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
410         return (0);
411 }
412 #endif
413
414 int
415 release_timer2()
416 {
417
418         if (timer2_state != ACQUIRED)
419                 return (-1);
420         timer2_state = RELEASED;
421         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
422         return (0);
423 }
424
425 #ifndef PC98
426 /*
427  * This routine receives statistical clock interrupts from the RTC.
428  * As explained above, these occur at 128 interrupts per second.
429  * When profiling, we receive interrupts at a rate of 1024 Hz.
430  *
431  * This does not actually add as much overhead as it sounds, because
432  * when the statistical clock is active, the hardclock driver no longer
433  * needs to keep (inaccurate) statistics on its own.  This decouples
434  * statistics gathering from scheduling interrupts.
435  *
436  * The RTC chip requires that we read status register C (RTC_INTR)
437  * to acknowledge an interrupt, before it will generate the next one.
438  * Under high interrupt load, rtcintr() can be indefinitely delayed and
439  * the clock can tick immediately after the read from RTC_INTR.  In this
440  * case, the mc146818A interrupt signal will not drop for long enough
441  * to register with the 8259 PIC.  If an interrupt is missed, the stat
442  * clock will halt, considerably degrading system performance.  This is
443  * why we use 'while' rather than a more straightforward 'if' below.
444  * Stat clock ticks can still be lost, causing minor loss of accuracy
445  * in the statistics, but the stat clock will no longer stop.
446  */
447 static void
448 rtcintr(struct clockframe frame)
449 {
450         while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
451                 statclock(&frame);
452 #ifdef SMP
453                 forward_statclock();
454 #endif
455         }
456 }
457
458 #include "opt_ddb.h"
459 #ifdef DDB
460 #include <ddb/ddb.h>
461
462 DB_SHOW_COMMAND(rtc, rtc)
463 {
464         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
465                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
466                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
467                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
468 }
469 #endif /* DDB */
470 #endif /* for PC98 */
471
472 static int
473 getit(void)
474 {
475         int high, low;
476
477         mtx_lock_spin(&clock_lock);
478
479         /* Select timer0 and latch counter value. */
480         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
481
482         low = inb(TIMER_CNTR0);
483         high = inb(TIMER_CNTR0);
484
485         mtx_unlock_spin(&clock_lock);
486         return ((high << 8) | low);
487 }
488
489 /*
490  * Wait "n" microseconds.
491  * Relies on timer 1 counting down from (timer_freq / hz)
492  * Note: timer had better have been programmed before this is first used!
493  */
494 void
495 DELAY(int n)
496 {
497         int delta, prev_tick, tick, ticks_left;
498
499 #ifdef DELAYDEBUG
500         int getit_calls = 1;
501         int n1;
502         static int state = 0;
503
504         if (state == 0) {
505                 state = 1;
506                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
507                         DELAY(n1);
508                 state = 2;
509         }
510         if (state == 1)
511                 printf("DELAY(%d)...", n);
512 #endif
513         /*
514          * Guard against the timer being uninitialized if we are called
515          * early for console i/o.
516          */
517         if (timer0_max_count == 0)
518                 set_timer_freq(timer_freq, hz);
519
520         /*
521          * Read the counter first, so that the rest of the setup overhead is
522          * counted.  Guess the initial overhead is 20 usec (on most systems it
523          * takes about 1.5 usec for each of the i/o's in getit().  The loop
524          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
525          * multiplications and divisions to scale the count take a while).
526          */
527         prev_tick = getit();
528         n -= 0;                 /* XXX actually guess no initial overhead */
529         /*
530          * Calculate (n * (timer_freq / 1e6)) without using floating point
531          * and without any avoidable overflows.
532          */
533         if (n <= 0)
534                 ticks_left = 0;
535         else if (n < 256)
536                 /*
537                  * Use fixed point to avoid a slow division by 1000000.
538                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
539                  * 2^15 is the first power of 2 that gives exact results
540                  * for n between 0 and 256.
541                  */
542                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
543         else
544                 /*
545                  * Don't bother using fixed point, although gcc-2.7.2
546                  * generates particularly poor code for the long long
547                  * division, since even the slow way will complete long
548                  * before the delay is up (unless we're interrupted).
549                  */
550                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
551                              / 1000000;
552
553         while (ticks_left > 0) {
554                 tick = getit();
555 #ifdef DELAYDEBUG
556                 ++getit_calls;
557 #endif
558                 delta = prev_tick - tick;
559                 prev_tick = tick;
560                 if (delta < 0) {
561                         delta += timer0_max_count;
562                         /*
563                          * Guard against timer0_max_count being wrong.
564                          * This shouldn't happen in normal operation,
565                          * but it may happen if set_timer_freq() is
566                          * traced.
567                          */
568                         if (delta < 0)
569                                 delta = 0;
570                 }
571                 ticks_left -= delta;
572         }
573 #ifdef DELAYDEBUG
574         if (state == 1)
575                 printf(" %d calls to getit() at %d usec each\n",
576                        getit_calls, (n + 5) / getit_calls);
577 #endif
578 }
579
580 static void
581 sysbeepstop(void *chan)
582 {
583 #ifdef PC98     /* PC98 */
584         outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
585         release_timer1();
586 #else
587         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
588         release_timer2();
589 #endif
590         beeping = 0;
591 }
592
593 int
594 sysbeep(int pitch, int period)
595 {
596         int x = splclock();
597
598 #ifdef PC98
599         if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
600                 if (!beeping) {
601                         /* Something else owns it. */
602                         splx(x);
603                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
604                 }
605         disable_intr();
606         outb(0x3fdb, pitch);
607         outb(0x3fdb, (pitch>>8));
608         enable_intr();
609         if (!beeping) {
610                 /* enable counter1 output to speaker */
611                 outb(IO_PPI, (inb(IO_PPI) & 0xf7));
612                 beeping = period;
613                 timeout(sysbeepstop, (void *)NULL, period);
614         }
615 #else
616         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
617                 if (!beeping) {
618                         /* Something else owns it. */
619                         splx(x);
620                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
621                 }
622         mtx_lock_spin(&clock_lock);
623         outb(TIMER_CNTR2, pitch);
624         outb(TIMER_CNTR2, (pitch>>8));
625         mtx_unlock_spin(&clock_lock);
626         if (!beeping) {
627                 /* enable counter2 output to speaker */
628                 outb(IO_PPI, inb(IO_PPI) | 3);
629                 beeping = period;
630                 timeout(sysbeepstop, (void *)NULL, period);
631         }
632 #endif
633         splx(x);
634         return (0);
635 }
636
637 #ifndef PC98
638 /*
639  * RTC support routines
640  */
641
642 int
643 rtcin(reg)
644         int reg;
645 {
646         int s;
647         u_char val;
648
649         s = splhigh();
650         outb(IO_RTC, reg);
651         inb(0x84);
652         val = inb(IO_RTC + 1);
653         inb(0x84);
654         splx(s);
655         return (val);
656 }
657
658 static __inline void
659 writertc(u_char reg, u_char val)
660 {
661         int s;
662
663         s = splhigh();
664         inb(0x84);
665         outb(IO_RTC, reg);
666         inb(0x84);
667         outb(IO_RTC + 1, val);
668         inb(0x84);              /* XXX work around wrong order in rtcin() */
669         splx(s);
670 }
671
672 static __inline int
673 readrtc(int port)
674 {
675         return(bcd2bin(rtcin(port)));
676 }
677 #endif
678
679 #ifdef PC98
680 unsigned int delaycount;
681 #define FIRST_GUESS     0x2000
682 static void findcpuspeed(void)
683 {
684         int i;
685         int remainder;
686
687         /* Put counter in count down mode */
688         outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
689         outb(TIMER_CNTR0, 0xff);
690         outb(TIMER_CNTR0, 0xff);
691         for (i = FIRST_GUESS; i; i--)
692                 ;
693         remainder = getit();
694         delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
695 }
696 #endif
697
698 #ifdef PC98
699 static u_int
700 calibrate_clocks(void)
701 {
702         int     timeout;
703         u_int   count, prev_count, tot_count;
704         u_short sec, start_sec;
705
706         if (bootverbose)
707                 printf("Calibrating clock(s) ... ");
708         /* Check ARTIC. */
709         if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
710             !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
711                 goto fail;
712         timeout = 100000000;
713
714         /* Read the ARTIC. */
715         sec = inw(0x5e);
716
717         /* Wait for the ARTIC to changes. */
718         start_sec = sec;
719         for (;;) {
720                 sec = inw(0x5e);
721                 if (sec != start_sec)
722                         break;
723                 if (--timeout == 0)
724                         goto fail;
725         }
726         prev_count = getit();
727         if (prev_count == 0 || prev_count > timer0_max_count)
728                 goto fail;
729         tot_count = 0;
730
731         if (tsc_present) 
732                 wrmsr(0x10, 0LL);       /* XXX 0x10 is the MSR for the TSC */
733         start_sec = sec;
734         for (;;) {
735                 sec = inw(0x5e);
736                 count = getit();
737                 if (count == 0 || count > timer0_max_count)
738                         goto fail;
739                 if (count > prev_count)
740                         tot_count += prev_count - (count - timer0_max_count);
741                 else
742                         tot_count += prev_count - count;
743                 prev_count = count;
744                 if ((sec == start_sec + 1200) ||
745                     (sec < start_sec &&
746                         (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
747                         break;
748                 if (--timeout == 0)
749                         goto fail;
750         }
751         /*
752          * Read the cpu cycle counter.  The timing considerations are
753          * similar to those for the i8254 clock.
754          */
755         if (tsc_present) 
756                 tsc_freq = rdtsc();
757
758         if (bootverbose) {
759                 if (tsc_present)
760                         printf("TSC clock: %u Hz, ", tsc_freq);
761                 printf("i8254 clock: %u Hz\n", tot_count);
762         }
763         return (tot_count);
764
765 fail:
766         if (bootverbose)
767                 printf("failed, using default i8254 clock of %u Hz\n",
768                        timer_freq);
769         return (timer_freq);
770 }
771 #else
772 static u_int
773 calibrate_clocks(void)
774 {
775         u_int64_t old_tsc;
776         u_int count, prev_count, tot_count;
777         int sec, start_sec, timeout;
778
779         if (bootverbose)
780                 printf("Calibrating clock(s) ... ");
781         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
782                 goto fail;
783         timeout = 100000000;
784
785         /* Read the mc146818A seconds counter. */
786         for (;;) {
787                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
788                         sec = rtcin(RTC_SEC);
789                         break;
790                 }
791                 if (--timeout == 0)
792                         goto fail;
793         }
794
795         /* Wait for the mC146818A seconds counter to change. */
796         start_sec = sec;
797         for (;;) {
798                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
799                         sec = rtcin(RTC_SEC);
800                         if (sec != start_sec)
801                                 break;
802                 }
803                 if (--timeout == 0)
804                         goto fail;
805         }
806
807         /* Start keeping track of the i8254 counter. */
808         prev_count = getit();
809         if (prev_count == 0 || prev_count > timer0_max_count)
810                 goto fail;
811         tot_count = 0;
812
813         if (tsc_present) 
814                 old_tsc = rdtsc();
815         else
816                 old_tsc = 0;            /* shut up gcc */
817
818         /*
819          * Wait for the mc146818A seconds counter to change.  Read the i8254
820          * counter for each iteration since this is convenient and only
821          * costs a few usec of inaccuracy. The timing of the final reads
822          * of the counters almost matches the timing of the initial reads,
823          * so the main cause of inaccuracy is the varying latency from 
824          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
825          * rtcin(RTC_SEC) that returns a changed seconds count.  The
826          * maximum inaccuracy from this cause is < 10 usec on 486's.
827          */
828         start_sec = sec;
829         for (;;) {
830                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
831                         sec = rtcin(RTC_SEC);
832                 count = getit();
833                 if (count == 0 || count > timer0_max_count)
834                         goto fail;
835                 if (count > prev_count)
836                         tot_count += prev_count - (count - timer0_max_count);
837                 else
838                         tot_count += prev_count - count;
839                 prev_count = count;
840                 if (sec != start_sec)
841                         break;
842                 if (--timeout == 0)
843                         goto fail;
844         }
845
846         /*
847          * Read the cpu cycle counter.  The timing considerations are
848          * similar to those for the i8254 clock.
849          */
850         if (tsc_present) 
851                 tsc_freq = rdtsc() - old_tsc;
852
853         if (bootverbose) {
854                 if (tsc_present)
855                         printf("TSC clock: %u Hz, ", tsc_freq);
856                 printf("i8254 clock: %u Hz\n", tot_count);
857         }
858         return (tot_count);
859
860 fail:
861         if (bootverbose)
862                 printf("failed, using default i8254 clock of %u Hz\n",
863                        timer_freq);
864         return (timer_freq);
865 }
866 #endif  /* !PC98 */
867
868 static void
869 set_timer_freq(u_int freq, int intr_freq)
870 {
871         int new_timer0_max_count;
872
873         mtx_lock_spin(&clock_lock);
874         timer_freq = freq;
875         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
876         if (new_timer0_max_count != timer0_max_count) {
877                 timer0_max_count = new_timer0_max_count;
878                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
879                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
880                 outb(TIMER_CNTR0, timer0_max_count >> 8);
881         }
882         mtx_unlock_spin(&clock_lock);
883 }
884
885 /*
886  * i8254_restore is called from apm_default_resume() to reload
887  * the countdown register.
888  * this should not be necessary but there are broken laptops that
889  * do not restore the countdown register on resume.
890  * when it happnes, it messes up the hardclock interval and system clock,
891  * which leads to the infamous "calcru: negative time" problem.
892  */
893 static void
894 i8254_restore(void)
895 {
896
897         mtx_lock_spin(&clock_lock);
898         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
899         outb(TIMER_CNTR0, timer0_max_count & 0xff);
900         outb(TIMER_CNTR0, timer0_max_count >> 8);
901         mtx_unlock_spin(&clock_lock);
902 }
903
904 #ifndef PC98
905 static void
906 rtc_restore(void)
907 {
908
909         /* Reenable RTC updates and interrupts. */
910         /* XXX locking is needed for RTC access? */
911         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
912         writertc(RTC_STATUSB, rtc_statusb);
913 }
914 #endif
915
916 /*
917  * Restore all the timers atomically.
918  */
919 void
920 timer_restore(void)
921 {
922
923         i8254_restore();                /* restore timer_freq and hz */
924 #ifndef PC98
925         rtc_restore();                  /* reenable RTC interrupts */
926 #endif
927 }
928
929 /*
930  * Initialize 8254 timer 0 early so that it can be used in DELAY().
931  * XXX initialization of other timers is unintentionally left blank.
932  */
933 void
934 startrtclock()
935 {
936         u_int delta, freq;
937
938 #ifdef PC98
939         findcpuspeed();
940         if (pc98_machine_type & M_8M)
941                 timer_freq = 1996800L; /* 1.9968 MHz */
942         else
943                 timer_freq = 2457600L; /* 2.4576 MHz */
944 #endif /* PC98 */
945
946         if (cpu_feature & CPUID_TSC)
947                 tsc_present = 1;
948         else
949                 tsc_present = 0;
950
951 #ifndef PC98
952         writertc(RTC_STATUSA, rtc_statusa);
953         writertc(RTC_STATUSB, RTCSB_24HR);
954 #endif
955
956         set_timer_freq(timer_freq, hz);
957         freq = calibrate_clocks();
958 #ifdef CLK_CALIBRATION_LOOP
959         if (bootverbose) {
960                 printf(
961                 "Press a key on the console to abort clock calibration\n");
962                 while (cncheckc() == -1)
963                         calibrate_clocks();
964         }
965 #endif
966
967         /*
968          * Use the calibrated i8254 frequency if it seems reasonable.
969          * Otherwise use the default, and don't use the calibrated i586
970          * frequency.
971          */
972         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
973         if (delta < timer_freq / 100) {
974 #ifndef CLK_USE_I8254_CALIBRATION
975                 if (bootverbose)
976                         printf(
977 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
978                 freq = timer_freq;
979 #endif
980                 timer_freq = freq;
981         } else {
982                 if (bootverbose)
983                         printf(
984                     "%d Hz differs from default of %d Hz by more than 1%%\n",
985                                freq, timer_freq);
986                 tsc_freq = 0;
987         }
988
989         set_timer_freq(timer_freq, hz);
990         i8254_timecounter.tc_frequency = timer_freq;
991         tc_init(&i8254_timecounter);
992
993 #ifndef CLK_USE_TSC_CALIBRATION
994         if (tsc_freq != 0) {
995                 if (bootverbose)
996                         printf(
997 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
998                 tsc_freq = 0;
999         }
1000 #endif
1001         if (tsc_present && tsc_freq == 0) {
1002                 /*
1003                  * Calibration of the i586 clock relative to the mc146818A
1004                  * clock failed.  Do a less accurate calibration relative
1005                  * to the i8254 clock.
1006                  */
1007                 u_int64_t old_tsc = rdtsc();
1008
1009                 DELAY(1000000);
1010                 tsc_freq = rdtsc() - old_tsc;
1011 #ifdef CLK_USE_TSC_CALIBRATION
1012                 if (bootverbose)
1013                         printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
1014 #endif
1015         }
1016
1017 #if !defined(SMP)
1018         /*
1019          * We can not use the TSC in SMP mode, until we figure out a
1020          * cheap (impossible), reliable and precise (yeah right!)  way
1021          * to synchronize the TSCs of all the CPUs.
1022          * Curse Intel for leaving the counter out of the I/O APIC.
1023          */
1024
1025         /*
1026          * We can not use the TSC if we support APM. Precise timekeeping
1027          * on an APM'ed machine is at best a fools pursuit, since 
1028          * any and all of the time spent in various SMM code can't 
1029          * be reliably accounted for.  Reading the RTC is your only
1030          * source of reliable time info.  The i8254 looses too of course
1031          * but we need to have some kind of time...
1032          * We don't know at this point whether APM is going to be used
1033          * or not, nor when it might be activated.  Play it safe.
1034          */
1035         if (power_pm_get_type() == POWER_PM_TYPE_APM) {
1036                 if (bootverbose)
1037                         printf("TSC initialization skipped: APM enabled.\n");
1038                 return;
1039         }
1040
1041         if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1042                 tsc_timecounter.tc_frequency = tsc_freq;
1043                 tc_init(&tsc_timecounter);
1044         }
1045
1046 #endif /* !defined(SMP) */
1047 }
1048
1049 #ifdef PC98
1050 static void
1051 rtc_serialcombit(int i)
1052 {
1053         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1054         DELAY(1);
1055         outb(IO_RTC, ((i&0x01)<<5)|0x17);
1056         DELAY(1);
1057         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1058         DELAY(1);
1059 }
1060
1061 static void
1062 rtc_serialcom(int i)
1063 {
1064         rtc_serialcombit(i&0x01);
1065         rtc_serialcombit((i&0x02)>>1);
1066         rtc_serialcombit((i&0x04)>>2);
1067         rtc_serialcombit((i&0x08)>>3);
1068         outb(IO_RTC, 0x07);
1069         DELAY(1);
1070         outb(IO_RTC, 0x0f);
1071         DELAY(1);
1072         outb(IO_RTC, 0x07);
1073         DELAY(1);
1074 }
1075
1076 static void
1077 rtc_outb(int val)
1078 {
1079         int s;
1080         int sa = 0;
1081
1082         for (s=0;s<8;s++) {
1083             sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1084             outb(IO_RTC, sa);           /* set DI & CLK 0 */
1085             DELAY(1);
1086             outb(IO_RTC, sa | 0x10);    /* CLK 1 */
1087             DELAY(1);
1088         }
1089         outb(IO_RTC, sa & 0xef);        /* CLK 0 */
1090 }
1091
1092 static int
1093 rtc_inb(void)
1094 {
1095         int s;
1096         int sa = 0;
1097
1098         for (s=0;s<8;s++) {
1099             sa |= ((inb(0x33) & 0x01) << s);
1100             outb(IO_RTC, 0x17); /* CLK 1 */
1101             DELAY(1);
1102             outb(IO_RTC, 0x07); /* CLK 0 */
1103             DELAY(2);
1104         }
1105         return sa;
1106 }
1107 #endif /* PC-98 */
1108
1109 /*
1110  * Initialize the time of day register, based on the time base which is, e.g.
1111  * from a filesystem.
1112  */
1113 void
1114 inittodr(time_t base)
1115 {
1116         unsigned long   sec, days;
1117         int             year, month;
1118         int             y, m, s;
1119         struct timespec ts;
1120 #ifdef PC98
1121         int             second, min, hour;
1122 #endif
1123
1124         if (base) {
1125                 s = splclock();
1126                 ts.tv_sec = base;
1127                 ts.tv_nsec = 0;
1128                 tc_setclock(&ts);
1129                 splx(s);
1130         }
1131
1132 #ifdef PC98
1133         rtc_serialcom(0x03);    /* Time Read */
1134         rtc_serialcom(0x01);    /* Register shift command. */
1135         DELAY(20);
1136
1137         second = bcd2bin(rtc_inb() & 0xff);     /* sec */
1138         min = bcd2bin(rtc_inb() & 0xff);        /* min */
1139         hour = bcd2bin(rtc_inb() & 0xff);       /* hour */
1140         days = bcd2bin(rtc_inb() & 0xff) - 1;   /* date */
1141
1142         month = (rtc_inb() >> 4) & 0x0f;        /* month */
1143         for (m = 1; m < month; m++)
1144                 days += daysinmonth[m-1];
1145         year = bcd2bin(rtc_inb() & 0xff) + 1900;        /* year */
1146         /* 2000 year problem */
1147         if (year < 1995)
1148                 year += 100;
1149         if (year < 1970)
1150                 goto wrong_time;
1151         for (y = 1970; y < year; y++)
1152                 days += DAYSPERYEAR + LEAPYEAR(y);
1153         if ((month > 2) && LEAPYEAR(year))
1154                 days ++;
1155         sec = ((( days * 24 +
1156                   hour) * 60 +
1157                   min) * 60 +
1158                   second);
1159         /* sec now contains the number of seconds, since Jan 1 1970,
1160            in the local time zone */
1161
1162         s = splhigh();
1163 #else   /* IBM-PC */
1164         /* Look if we have a RTC present and the time is valid */
1165         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1166                 goto wrong_time;
1167
1168         /* wait for time update to complete */
1169         /* If RTCSA_TUP is zero, we have at least 244us before next update */
1170         s = splhigh();
1171         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1172                 splx(s);
1173                 s = splhigh();
1174         }
1175
1176         days = 0;
1177 #ifdef USE_RTC_CENTURY
1178         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1179 #else
1180         year = readrtc(RTC_YEAR) + 1900;
1181         if (year < 1970)
1182                 year += 100;
1183 #endif
1184         if (year < 1970) {
1185                 splx(s);
1186                 goto wrong_time;
1187         }
1188         month = readrtc(RTC_MONTH);
1189         for (m = 1; m < month; m++)
1190                 days += daysinmonth[m-1];
1191         if ((month > 2) && LEAPYEAR(year))
1192                 days ++;
1193         days += readrtc(RTC_DAY) - 1;
1194         for (y = 1970; y < year; y++)
1195                 days += DAYSPERYEAR + LEAPYEAR(y);
1196         sec = ((( days * 24 +
1197                   readrtc(RTC_HRS)) * 60 +
1198                   readrtc(RTC_MIN)) * 60 +
1199                   readrtc(RTC_SEC));
1200         /* sec now contains the number of seconds, since Jan 1 1970,
1201            in the local time zone */
1202 #endif
1203
1204         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1205
1206         y = time_second - sec;
1207         if (y <= -2 || y >= 2) {
1208                 /* badly off, adjust it */
1209                 ts.tv_sec = sec;
1210                 ts.tv_nsec = 0;
1211                 tc_setclock(&ts);
1212         }
1213         splx(s);
1214         return;
1215
1216 wrong_time:
1217         printf("Invalid time in real time clock.\n");
1218         printf("Check and reset the date immediately!\n");
1219 }
1220
1221 /*
1222  * Write system time back to RTC
1223  */
1224 void
1225 resettodr()
1226 {
1227         unsigned long   tm;
1228         int             y, m, s;
1229 #ifdef PC98
1230         int             wd;
1231 #endif
1232
1233         if (disable_rtc_set)
1234                 return;
1235
1236         s = splclock();
1237         tm = time_second;
1238         splx(s);
1239
1240 #ifdef PC98
1241         rtc_serialcom(0x01);    /* Register shift command. */
1242
1243         /* Calculate local time to put in RTC */
1244
1245         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1246
1247         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Seconds */
1248         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Minutes */
1249         rtc_outb(bin2bcd(tm%24)); tm /= 24;     /* Write back Hours   */
1250
1251         /* We have now the days since 01-01-1970 in tm */
1252         wd = (tm+4)%7;
1253         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1254              tm >= m;
1255              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1256              tm -= m;
1257
1258         /* Now we have the years in y and the day-of-the-year in tm */
1259         for (m = 0; ; m++) {
1260                 int ml;
1261
1262                 ml = daysinmonth[m];
1263                 if (m == 1 && LEAPYEAR(y))
1264                         ml++;
1265                 if (tm < ml)
1266                         break;
1267                 tm -= ml;
1268         }
1269
1270         m++;
1271         rtc_outb(bin2bcd(tm+1));                /* Write back Day     */
1272         rtc_outb((m << 4) | wd);                /* Write back Month & Weekday  */
1273         rtc_outb(bin2bcd(y%100));               /* Write back Year    */
1274
1275         rtc_serialcom(0x02);    /* Time set & Counter hold command. */
1276         rtc_serialcom(0x00);    /* Register hold command. */
1277 #else
1278         /* Disable RTC updates and interrupts. */
1279         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1280
1281         /* Calculate local time to put in RTC */
1282
1283         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1284
1285         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
1286         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
1287         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
1288
1289         /* We have now the days since 01-01-1970 in tm */
1290         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
1291         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1292              tm >= m;
1293              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1294              tm -= m;
1295
1296         /* Now we have the years in y and the day-of-the-year in tm */
1297         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
1298 #ifdef USE_RTC_CENTURY
1299         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
1300 #endif
1301         for (m = 0; ; m++) {
1302                 int ml;
1303
1304                 ml = daysinmonth[m];
1305                 if (m == 1 && LEAPYEAR(y))
1306                         ml++;
1307                 if (tm < ml)
1308                         break;
1309                 tm -= ml;
1310         }
1311
1312         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1313         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1314
1315         /* Reenable RTC updates and interrupts. */
1316         writertc(RTC_STATUSB, rtc_statusb);
1317 #endif /* PC98 */
1318 }
1319
1320
1321 /*
1322  * Start both clocks running.
1323  */
1324 void
1325 cpu_initclocks()
1326 {
1327 #ifndef PC98
1328         int diag;
1329 #endif
1330 #ifdef APIC_IO
1331         int apic_8254_trial;
1332         void *clkdesc;
1333 #endif /* APIC_IO */
1334         register_t crit;
1335
1336 #ifndef PC98
1337         if (statclock_disable) {
1338                 /*
1339                  * The stat interrupt mask is different without the
1340                  * statistics clock.  Also, don't set the interrupt
1341                  * flag which would normally cause the RTC to generate
1342                  * interrupts.
1343                  */
1344                 rtc_statusb = RTCSB_24HR;
1345         } else {
1346                 /* Setting stathz to nonzero early helps avoid races. */
1347                 stathz = RTC_NOPROFRATE;
1348                 profhz = RTC_PROFRATE;
1349         }
1350 #endif
1351
1352         /* Finish initializing 8253 timer 0. */
1353 #ifdef APIC_IO
1354
1355         apic_8254_intr = isa_apic_irq(0);
1356         apic_8254_trial = 0;
1357         if (apic_8254_intr >= 0 ) {
1358                 if (apic_int_type(0, 0) == 3)
1359                         apic_8254_trial = 1;
1360         } else {
1361                 /* look for ExtInt on pin 0 */
1362                 if (apic_int_type(0, 0) == 3) {
1363                         apic_8254_intr = apic_irq(0, 0);
1364                         setup_8254_mixed_mode();
1365                 } else 
1366                         panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1367         }
1368
1369         inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1370             INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1371         crit = intr_disable();
1372         mtx_lock_spin(&icu_lock);
1373         INTREN(1 << apic_8254_intr);
1374         mtx_unlock_spin(&icu_lock);
1375         intr_restore(crit);
1376
1377 #else /* APIC_IO */
1378
1379         /*
1380          * XXX Check the priority of this interrupt handler.  I
1381          * couldn't find anything suitable in the BSD/OS code (grog,
1382          * 19 July 2000).
1383          */
1384         inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1385             INTR_TYPE_CLK | INTR_FAST, NULL);
1386         crit = intr_disable();
1387         mtx_lock_spin(&icu_lock);
1388         INTREN(IRQ0);
1389         mtx_unlock_spin(&icu_lock);
1390         intr_restore(crit);
1391
1392 #endif /* APIC_IO */
1393
1394 #ifndef PC98
1395         /* Initialize RTC. */
1396         writertc(RTC_STATUSA, rtc_statusa);
1397         writertc(RTC_STATUSB, RTCSB_24HR);
1398
1399         /* Don't bother enabling the statistics clock. */
1400         if (statclock_disable)
1401                 return;
1402         diag = rtcin(RTC_DIAG);
1403         if (diag != 0)
1404                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1405 #endif /* !PC98 */
1406
1407 #ifndef PC98
1408 #ifdef APIC_IO
1409         if (isa_apic_irq(8) != 8)
1410                 panic("APIC RTC != 8");
1411 #endif /* APIC_IO */
1412
1413         inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1414             INTR_TYPE_CLK | INTR_FAST, NULL);
1415
1416         crit = intr_disable();
1417         mtx_lock_spin(&icu_lock);
1418 #ifdef APIC_IO
1419         INTREN(APIC_IRQ8);
1420 #else
1421         INTREN(IRQ8);
1422 #endif /* APIC_IO */
1423         mtx_unlock_spin(&icu_lock);
1424         intr_restore(crit);
1425
1426         writertc(RTC_STATUSB, rtc_statusb);
1427 #endif /* PC98 */
1428
1429 #ifdef APIC_IO
1430         if (apic_8254_trial) {
1431
1432                 printf("APIC_IO: Testing 8254 interrupt delivery\n");
1433                 while (read_intr_count(8) < 6)
1434                         ;       /* nothing */
1435                 if (read_intr_count(apic_8254_intr) < 3) {
1436                         /* 
1437                          * The MP table is broken.
1438                          * The 8254 was not connected to the specified pin
1439                          * on the IO APIC.
1440                          * Workaround: Limited variant of mixed mode.
1441                          */
1442                         crit = intr_disable();
1443                         mtx_lock_spin(&icu_lock);
1444                         INTRDIS(1 << apic_8254_intr);
1445                         mtx_unlock_spin(&icu_lock);
1446                         intr_restore(crit);
1447                         inthand_remove(clkdesc);
1448                         printf("APIC_IO: Broken MP table detected: "
1449                                "8254 is not connected to "
1450                                "IOAPIC #%d intpin %d\n",
1451                                int_to_apicintpin[apic_8254_intr].ioapic,
1452                                int_to_apicintpin[apic_8254_intr].int_pin);
1453                         /* 
1454                          * Revoke current ISA IRQ 0 assignment and 
1455                          * configure a fallback interrupt routing from
1456                          * the 8254 Timer via the 8259 PIC to the
1457                          * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1458                          * We reuse the low level interrupt handler number.
1459                          */
1460                         if (apic_irq(0, 0) < 0) {
1461                                 revoke_apic_irq(apic_8254_intr);
1462                                 assign_apic_irq(0, 0, apic_8254_intr);
1463                         }
1464                         apic_8254_intr = apic_irq(0, 0);
1465                         setup_8254_mixed_mode();
1466                         inthand_add("clk", apic_8254_intr,
1467                                     (driver_intr_t *)clkintr, NULL,
1468                                     INTR_TYPE_CLK | INTR_FAST, NULL);
1469                         crit = intr_disable();
1470                         mtx_lock_spin(&icu_lock);
1471                         INTREN(1 << apic_8254_intr);
1472                         mtx_unlock_spin(&icu_lock);
1473                         intr_restore(crit);
1474                 }
1475                 
1476         }
1477         if (apic_int_type(0, 0) != 3 ||
1478             int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1479             int_to_apicintpin[apic_8254_intr].int_pin != 0)
1480                 printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1481                        int_to_apicintpin[apic_8254_intr].ioapic,
1482                        int_to_apicintpin[apic_8254_intr].int_pin);
1483         else
1484                 printf("APIC_IO: "
1485                        "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1486 #endif
1487         
1488 }
1489
1490 #ifdef APIC_IO
1491 static u_long
1492 read_intr_count(int vec)
1493 {
1494         u_long *up;
1495         up = intr_countp[vec];
1496         if (up)
1497                 return *up;
1498         return 0UL;
1499 }
1500
1501 static void 
1502 setup_8254_mixed_mode()
1503 {
1504         /*
1505          * Allow 8254 timer to INTerrupt 8259:
1506          *  re-initialize master 8259:
1507          *   reset; prog 4 bytes, single ICU, edge triggered
1508          */
1509         outb(IO_ICU1, 0x13);
1510 #ifdef PC98
1511         outb(IO_ICU1 + 2, NRSVIDT);     /* start vector (unused) */
1512         outb(IO_ICU1 + 2, 0x00);        /* ignore slave */
1513         outb(IO_ICU1 + 2, 0x03);        /* auto EOI, 8086 */
1514         outb(IO_ICU1 + 2, 0xfe);        /* unmask INT0 */
1515 #else
1516         outb(IO_ICU1 + 1, NRSVIDT);     /* start vector (unused) */
1517         outb(IO_ICU1 + 1, 0x00);        /* ignore slave */
1518         outb(IO_ICU1 + 1, 0x03);        /* auto EOI, 8086 */
1519         outb(IO_ICU1 + 1, 0xfe);        /* unmask INT0 */
1520 #endif  
1521         
1522         /* program IO APIC for type 3 INT on INT0 */
1523         if (ext_int_setup(0, 0) < 0)
1524                 panic("8254 redirect via APIC pin0 impossible!");
1525 }
1526 #endif
1527
1528 void
1529 setstatclockrate(int newhz)
1530 {
1531 #ifndef PC98
1532         if (newhz == RTC_PROFRATE)
1533                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1534         else
1535                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1536         writertc(RTC_STATUSA, rtc_statusa);
1537 #endif
1538 }
1539
1540 static int
1541 sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1542 {
1543         int error;
1544         u_int freq;
1545
1546         /*
1547          * Use `i8254' instead of `timer' in external names because `timer'
1548          * is is too generic.  Should use it everywhere.
1549          */
1550         freq = timer_freq;
1551         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1552         if (error == 0 && req->newptr != NULL) {
1553                 if (timer0_state != RELEASED)
1554                         return (EBUSY); /* too much trouble to handle */
1555                 set_timer_freq(freq, hz);
1556                 i8254_timecounter.tc_frequency = freq;
1557         }
1558         return (error);
1559 }
1560
1561 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1562     0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1563
1564 static int
1565 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1566 {
1567         int error;
1568         u_int freq;
1569
1570         if (tsc_timecounter.tc_frequency == 0)
1571                 return (EOPNOTSUPP);
1572         freq = tsc_freq;
1573         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1574         if (error == 0 && req->newptr != NULL) {
1575                 tsc_freq = freq;
1576                 tsc_timecounter.tc_frequency = tsc_freq;
1577         }
1578         return (error);
1579 }
1580
1581 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1582     0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1583
1584 static unsigned
1585 i8254_get_timecount(struct timecounter *tc)
1586 {
1587         u_int count;
1588         u_int high, low;
1589         u_int eflags;
1590
1591         eflags = read_eflags();
1592         mtx_lock_spin(&clock_lock);
1593
1594         /* Select timer0 and latch counter value. */
1595         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1596
1597         low = inb(TIMER_CNTR0);
1598         high = inb(TIMER_CNTR0);
1599         count = timer0_max_count - ((high << 8) | low);
1600         if (count < i8254_lastcount ||
1601             (!i8254_ticked && (clkintr_pending ||
1602             ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1603 #ifdef APIC_IO
1604 #define lapic_irr1      ((volatile u_int *)&lapic)[0x210 / 4]   /* XXX XXX */
1605             /* XXX this assumes that apic_8254_intr is < 24. */
1606             (lapic_irr1 & (1 << apic_8254_intr))))
1607 #else
1608             (inb(IO_ICU1) & 1)))
1609 #endif
1610             )) {
1611                 i8254_ticked = 1;
1612                 i8254_offset += timer0_max_count;
1613         }
1614         i8254_lastcount = count;
1615         count += i8254_offset;
1616         mtx_unlock_spin(&clock_lock);
1617         return (count);
1618 }
1619
1620 static unsigned
1621 tsc_get_timecount(struct timecounter *tc)
1622 {
1623         return (rdtsc());
1624 }
1625
1626 #ifdef DEV_ISA
1627 /*
1628  * Attach to the ISA PnP descriptors for the timer and realtime clock.
1629  */
1630 static struct isa_pnp_id attimer_ids[] = {
1631         { 0x0001d041 /* PNP0100 */, "AT timer" },
1632         { 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1633         { 0 }
1634 };
1635
1636 static int
1637 attimer_probe(device_t dev)
1638 {
1639         int result;
1640         
1641         if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1642                 device_quiet(dev);
1643         return(result);
1644 }
1645
1646 static int
1647 attimer_attach(device_t dev)
1648 {
1649         return(0);
1650 }
1651
1652 static device_method_t attimer_methods[] = {
1653         /* Device interface */
1654         DEVMETHOD(device_probe,         attimer_probe),
1655         DEVMETHOD(device_attach,        attimer_attach),
1656         DEVMETHOD(device_detach,        bus_generic_detach),
1657         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
1658         DEVMETHOD(device_suspend,       bus_generic_suspend),   /* XXX stop statclock? */
1659         DEVMETHOD(device_resume,        bus_generic_resume),    /* XXX restart statclock? */
1660         { 0, 0 }
1661 };
1662
1663 static driver_t attimer_driver = {
1664         "attimer",
1665         attimer_methods,
1666         1,              /* no softc */
1667 };
1668
1669 static devclass_t attimer_devclass;
1670
1671 DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1672 #ifndef PC98
1673 DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
1674 #endif
1675 #endif /* DEV_ISA */