]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/pc98/cbus/pcrtc.c
Merged from sys/i386/isa/clock.c and sys/isa/sio.c revisions 1.150 and
[FreeBSD/FreeBSD.git] / sys / pc98 / cbus / pcrtc.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * William Jolitz and Don Ahn.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
37  * $FreeBSD$
38  */
39
40 /*
41  * Routines to handle clock hardware.
42  */
43
44 /*
45  * inittodr, settodr and support routines written
46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47  *
48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49  */
50
51 /*
52  * modified for PC98 by Kakefuda
53  */
54
55 #include "opt_clock.h"
56 #include "apm.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/time.h>
61 #include <sys/timetc.h>
62 #include <sys/kernel.h>
63 #ifndef SMP
64 #include <sys/lock.h>
65 #endif
66 #include <sys/sysctl.h>
67 #include <sys/cons.h>
68
69 #include <machine/clock.h>
70 #ifdef CLK_CALIBRATION_LOOP
71 #endif
72 #include <machine/cputypes.h>
73 #include <machine/frame.h>
74 #include <machine/ipl.h>
75 #include <machine/limits.h>
76 #include <machine/md_var.h>
77 #include <machine/psl.h>
78 #ifdef APIC_IO
79 #include <machine/segments.h>
80 #endif
81 #if defined(SMP) || defined(APIC_IO)
82 #include <machine/smp.h>
83 #endif /* SMP || APIC_IO */
84 #include <machine/specialreg.h>
85
86 #include <i386/isa/icu.h>
87 #ifdef PC98
88 #include <pc98/pc98/pc98.h>
89 #include <pc98/pc98/pc98_machdep.h>
90 #include <i386/isa/isa_device.h>
91 #else
92 #include <i386/isa/isa.h>
93 #include <isa/rtc.h>
94 #endif
95 #include <i386/isa/timerreg.h>
96
97 #include <i386/isa/intr_machdep.h>
98
99 #include "mca.h"
100 #if NMCA > 0
101 #include <i386/isa/mca_machdep.h>
102 #endif
103
104 #ifdef SMP
105 #define disable_intr()  CLOCK_DISABLE_INTR()
106 #define enable_intr()   CLOCK_ENABLE_INTR()
107
108 #ifdef APIC_IO
109 #include <i386/isa/intr_machdep.h>
110 /* The interrupt triggered by the 8254 (timer) chip */
111 int apic_8254_intr;
112 static u_long read_intr_count __P((int vec));
113 static void setup_8254_mixed_mode __P((void));
114 #endif
115 #endif /* SMP */
116
117 /*
118  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
119  * can use a simple formula for leap years.
120  */
121 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
122 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
123
124 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
125
126 /*
127  * Time in timer cycles that it takes for microtime() to disable interrupts
128  * and latch the count.  microtime() currently uses "cli; outb ..." so it
129  * normally takes less than 2 timer cycles.  Add a few for cache misses.
130  * Add a few more to allow for latency in bogus calls to microtime() with
131  * interrupts already disabled.
132  */
133 #define TIMER0_LATCH_COUNT      20
134
135 /*
136  * Maximum frequency that we are willing to allow for timer0.  Must be
137  * low enough to guarantee that the timer interrupt handler returns
138  * before the next timer interrupt.
139  */
140 #define TIMER0_MAX_FREQ         20000
141
142 int     adjkerntz;              /* local offset from GMT in seconds */
143 int     clkintr_pending;
144 int     disable_rtc_set;        /* disable resettodr() if != 0 */
145 volatile u_int  idelayed;
146 int     statclock_disable;
147 u_int   stat_imask = SWI_CLOCK_MASK;
148 #ifndef TIMER_FREQ
149 #ifdef PC98
150 #define TIMER_FREQ      2457600;
151 #else /* IBM-PC */
152 #define TIMER_FREQ      1193182;
153 #endif /* PC98 */
154 #endif
155 u_int   timer_freq = TIMER_FREQ;
156 int     timer0_max_count;
157 u_int   tsc_freq;
158 int     tsc_is_broken;
159 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
160
161 static  int     beeping = 0;
162 static  u_int   clk_imask = HWI_MASK | SWI_MASK;
163 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
164 static  u_int   hardclock_max_count;
165 static  u_int32_t i8254_lastcount;
166 static  u_int32_t i8254_offset;
167 static  int     i8254_ticked;
168 /*
169  * XXX new_function and timer_func should not handle clockframes, but
170  * timer_func currently needs to hold hardclock to handle the
171  * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
172  * to switch between clkintr() and a slightly different timerintr().
173  */
174 static  void    (*new_function) __P((struct clockframe *frame));
175 static  u_int   new_rate;
176 #ifndef PC98
177 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
178 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
179 #endif
180 static  u_int   timer0_prescaler_count;
181
182 /* Values for timerX_state: */
183 #define RELEASED        0
184 #define RELEASE_PENDING 1
185 #define ACQUIRED        2
186 #define ACQUIRE_PENDING 3
187
188 static  u_char  timer0_state;
189 #ifdef  PC98
190 static  u_char  timer1_state;
191 #endif
192 static  u_char  timer2_state;
193 static  void    (*timer_func) __P((struct clockframe *frame)) = hardclock;
194 #ifdef PC98
195 static void rtc_serialcombit __P((int));
196 static void rtc_serialcom __P((int));
197 static int rtc_inb __P((void));
198 static void rtc_outb __P((int));
199 #endif
200 static  u_int   tsc_present;
201
202 static  unsigned i8254_get_timecount __P((struct timecounter *tc));
203 static  unsigned tsc_get_timecount __P((struct timecounter *tc));
204 static  void    set_timer_freq(u_int freq, int intr_freq);
205
206 static struct timecounter tsc_timecounter = {
207         tsc_get_timecount,      /* get_timecount */
208         0,                      /* no poll_pps */
209         ~0u,                    /* counter_mask */
210         0,                      /* frequency */
211          "TSC"                  /* name */
212 };
213
214 SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD, 
215         &tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
216
217 static struct timecounter i8254_timecounter = {
218         i8254_get_timecount,    /* get_timecount */
219         0,                      /* no poll_pps */
220         ~0u,                    /* counter_mask */
221         0,                      /* frequency */
222         "i8254"                 /* name */
223 };
224
225 SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD, 
226         &i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
227
228 static void
229 clkintr(struct clockframe frame)
230 {
231         if (timecounter->tc_get_timecount == i8254_get_timecount) {
232                 disable_intr();
233                 if (i8254_ticked)
234                         i8254_ticked = 0;
235                 else {
236                         i8254_offset += timer0_max_count;
237                         i8254_lastcount = 0;
238                 }
239                 clkintr_pending = 0;
240                 enable_intr();
241         }
242         timer_func(&frame);
243         switch (timer0_state) {
244
245         case RELEASED:
246                 setdelayed();
247                 break;
248
249         case ACQUIRED:
250                 if ((timer0_prescaler_count += timer0_max_count)
251                     >= hardclock_max_count) {
252                         timer0_prescaler_count -= hardclock_max_count;
253                         hardclock(&frame);
254                         setdelayed();
255                 }
256                 break;
257
258         case ACQUIRE_PENDING:
259                 disable_intr();
260                 i8254_offset = i8254_get_timecount(NULL);
261                 i8254_lastcount = 0;
262                 timer0_max_count = TIMER_DIV(new_rate);
263                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
264                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
265                 outb(TIMER_CNTR0, timer0_max_count >> 8);
266                 enable_intr();
267                 timer_func = new_function;
268                 timer0_state = ACQUIRED;
269                 setdelayed();
270                 break;
271
272         case RELEASE_PENDING:
273                 if ((timer0_prescaler_count += timer0_max_count)
274                     >= hardclock_max_count) {
275                         disable_intr();
276                         i8254_offset = i8254_get_timecount(NULL);
277                         i8254_lastcount = 0;
278                         timer0_max_count = hardclock_max_count;
279                         outb(TIMER_MODE,
280                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
281                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
282                         outb(TIMER_CNTR0, timer0_max_count >> 8);
283                         enable_intr();
284                         timer0_prescaler_count = 0;
285                         timer_func = hardclock;
286                         timer0_state = RELEASED;
287                         hardclock(&frame);
288                         setdelayed();
289                 }
290                 break;
291         }
292 #if NMCA > 0
293         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
294         if (MCA_system)
295                 outb(0x61, inb(0x61) | 0x80);
296 #endif
297 }
298
299 /*
300  * The acquire and release functions must be called at ipl >= splclock().
301  */
302 int
303 acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
304 {
305         static int old_rate;
306
307         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
308                 return (-1);
309         switch (timer0_state) {
310
311         case RELEASED:
312                 timer0_state = ACQUIRE_PENDING;
313                 break;
314
315         case RELEASE_PENDING:
316                 if (rate != old_rate)
317                         return (-1);
318                 /*
319                  * The timer has been released recently, but is being
320                  * re-acquired before the release completed.  In this
321                  * case, we simply reclaim it as if it had not been
322                  * released at all.
323                  */
324                 timer0_state = ACQUIRED;
325                 break;
326
327         default:
328                 return (-1);    /* busy */
329         }
330         new_function = function;
331         old_rate = new_rate = rate;
332         return (0);
333 }
334
335 #ifdef PC98
336 int
337 acquire_timer1(int mode)
338 {
339
340         if (timer1_state != RELEASED)
341                 return (-1);
342         timer1_state = ACQUIRED;
343
344         /*
345          * This access to the timer registers is as atomic as possible
346          * because it is a single instruction.  We could do better if we
347          * knew the rate.  Use of splclock() limits glitches to 10-100us,
348          * and this is probably good enough for timer2, so we aren't as
349          * careful with it as with timer0.
350          */
351         outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
352
353         return (0);
354 }
355 #endif
356
357 int
358 acquire_timer2(int mode)
359 {
360
361         if (timer2_state != RELEASED)
362                 return (-1);
363         timer2_state = ACQUIRED;
364
365         /*
366          * This access to the timer registers is as atomic as possible
367          * because it is a single instruction.  We could do better if we
368          * knew the rate.  Use of splclock() limits glitches to 10-100us,
369          * and this is probably good enough for timer2, so we aren't as
370          * careful with it as with timer0.
371          */
372         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
373
374         return (0);
375 }
376
377 int
378 release_timer0()
379 {
380         switch (timer0_state) {
381
382         case ACQUIRED:
383                 timer0_state = RELEASE_PENDING;
384                 break;
385
386         case ACQUIRE_PENDING:
387                 /* Nothing happened yet, release quickly. */
388                 timer0_state = RELEASED;
389                 break;
390
391         default:
392                 return (-1);
393         }
394         return (0);
395 }
396
397 #ifdef PC98
398 int
399 release_timer1()
400 {
401
402         if (timer1_state != ACQUIRED)
403                 return (-1);
404         timer1_state = RELEASED;
405         outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
406         return (0);
407 }
408 #endif
409
410 int
411 release_timer2()
412 {
413
414         if (timer2_state != ACQUIRED)
415                 return (-1);
416         timer2_state = RELEASED;
417         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
418         return (0);
419 }
420
421 #ifndef PC98
422 /*
423  * This routine receives statistical clock interrupts from the RTC.
424  * As explained above, these occur at 128 interrupts per second.
425  * When profiling, we receive interrupts at a rate of 1024 Hz.
426  *
427  * This does not actually add as much overhead as it sounds, because
428  * when the statistical clock is active, the hardclock driver no longer
429  * needs to keep (inaccurate) statistics on its own.  This decouples
430  * statistics gathering from scheduling interrupts.
431  *
432  * The RTC chip requires that we read status register C (RTC_INTR)
433  * to acknowledge an interrupt, before it will generate the next one.
434  * Under high interrupt load, rtcintr() can be indefinitely delayed and
435  * the clock can tick immediately after the read from RTC_INTR.  In this
436  * case, the mc146818A interrupt signal will not drop for long enough
437  * to register with the 8259 PIC.  If an interrupt is missed, the stat
438  * clock will halt, considerably degrading system performance.  This is
439  * why we use 'while' rather than a more straightforward 'if' below.
440  * Stat clock ticks can still be lost, causing minor loss of accuracy
441  * in the statistics, but the stat clock will no longer stop.
442  */
443 static void
444 rtcintr(struct clockframe frame)
445 {
446         while (rtcin(RTC_INTR) & RTCIR_PERIOD)
447                 statclock(&frame);
448 }
449
450 #include "opt_ddb.h"
451 #ifdef DDB
452 #include <ddb/ddb.h>
453
454 DB_SHOW_COMMAND(rtc, rtc)
455 {
456         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
457                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
458                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
459                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
460 }
461 #endif /* DDB */
462 #endif /* for PC98 */
463
464 static int
465 getit(void)
466 {
467         u_long ef;
468         int high, low;
469
470         ef = read_eflags();
471         disable_intr();
472
473         /* Select timer0 and latch counter value. */
474         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
475
476         low = inb(TIMER_CNTR0);
477         high = inb(TIMER_CNTR0);
478
479         CLOCK_UNLOCK();
480         write_eflags(ef);
481         return ((high << 8) | low);
482 }
483
484 /*
485  * Wait "n" microseconds.
486  * Relies on timer 1 counting down from (timer_freq / hz)
487  * Note: timer had better have been programmed before this is first used!
488  */
489 void
490 DELAY(int n)
491 {
492         int delta, prev_tick, tick, ticks_left;
493
494 #ifdef DELAYDEBUG
495         int getit_calls = 1;
496         int n1;
497         static int state = 0;
498
499         if (state == 0) {
500                 state = 1;
501                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
502                         DELAY(n1);
503                 state = 2;
504         }
505         if (state == 1)
506                 printf("DELAY(%d)...", n);
507 #endif
508         /*
509          * Guard against the timer being uninitialized if we are called
510          * early for console i/o.
511          */
512         if (timer0_max_count == 0)
513                 set_timer_freq(timer_freq, hz);
514
515         /*
516          * Read the counter first, so that the rest of the setup overhead is
517          * counted.  Guess the initial overhead is 20 usec (on most systems it
518          * takes about 1.5 usec for each of the i/o's in getit().  The loop
519          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
520          * multiplications and divisions to scale the count take a while).
521          */
522         prev_tick = getit();
523         n -= 0;                 /* XXX actually guess no initial overhead */
524         /*
525          * Calculate (n * (timer_freq / 1e6)) without using floating point
526          * and without any avoidable overflows.
527          */
528         if (n <= 0)
529                 ticks_left = 0;
530         else if (n < 256)
531                 /*
532                  * Use fixed point to avoid a slow division by 1000000.
533                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
534                  * 2^15 is the first power of 2 that gives exact results
535                  * for n between 0 and 256.
536                  */
537                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
538         else
539                 /*
540                  * Don't bother using fixed point, although gcc-2.7.2
541                  * generates particularly poor code for the long long
542                  * division, since even the slow way will complete long
543                  * before the delay is up (unless we're interrupted).
544                  */
545                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
546                              / 1000000;
547
548         while (ticks_left > 0) {
549                 tick = getit();
550 #ifdef DELAYDEBUG
551                 ++getit_calls;
552 #endif
553                 delta = prev_tick - tick;
554                 prev_tick = tick;
555                 if (delta < 0) {
556                         delta += timer0_max_count;
557                         /*
558                          * Guard against timer0_max_count being wrong.
559                          * This shouldn't happen in normal operation,
560                          * but it may happen if set_timer_freq() is
561                          * traced.
562                          */
563                         if (delta < 0)
564                                 delta = 0;
565                 }
566                 ticks_left -= delta;
567         }
568 #ifdef DELAYDEBUG
569         if (state == 1)
570                 printf(" %d calls to getit() at %d usec each\n",
571                        getit_calls, (n + 5) / getit_calls);
572 #endif
573 }
574
575 static void
576 sysbeepstop(void *chan)
577 {
578 #ifdef PC98     /* PC98 */
579         outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
580         release_timer1();
581 #else
582         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
583         release_timer2();
584 #endif
585         beeping = 0;
586 }
587
588 int
589 sysbeep(int pitch, int period)
590 {
591         int x = splclock();
592
593 #ifdef PC98
594         if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
595                 if (!beeping) {
596                         /* Something else owns it. */
597                         splx(x);
598                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
599                 }
600         disable_intr();
601         outb(0x3fdb, pitch);
602         outb(0x3fdb, (pitch>>8));
603         enable_intr();
604         if (!beeping) {
605                 /* enable counter1 output to speaker */
606                 outb(IO_PPI, (inb(IO_PPI) & 0xf7));
607                 beeping = period;
608                 timeout(sysbeepstop, (void *)NULL, period);
609         }
610 #else
611         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
612                 if (!beeping) {
613                         /* Something else owns it. */
614                         splx(x);
615                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
616                 }
617         disable_intr();
618         outb(TIMER_CNTR2, pitch);
619         outb(TIMER_CNTR2, (pitch>>8));
620         enable_intr();
621         if (!beeping) {
622                 /* enable counter2 output to speaker */
623                 outb(IO_PPI, inb(IO_PPI) | 3);
624                 beeping = period;
625                 timeout(sysbeepstop, (void *)NULL, period);
626         }
627 #endif
628         splx(x);
629         return (0);
630 }
631
632 #ifndef PC98
633 /*
634  * RTC support routines
635  */
636
637 int
638 rtcin(reg)
639         int reg;
640 {
641         int s;
642         u_char val;
643
644         s = splhigh();
645         outb(IO_RTC, reg);
646         inb(0x84);
647         val = inb(IO_RTC + 1);
648         inb(0x84);
649         splx(s);
650         return (val);
651 }
652
653 static __inline void
654 writertc(u_char reg, u_char val)
655 {
656         int s;
657
658         s = splhigh();
659         inb(0x84);
660         outb(IO_RTC, reg);
661         inb(0x84);
662         outb(IO_RTC + 1, val);
663         inb(0x84);              /* XXX work around wrong order in rtcin() */
664         splx(s);
665 }
666
667 static __inline int
668 readrtc(int port)
669 {
670         return(bcd2bin(rtcin(port)));
671 }
672 #endif
673
674 #ifdef PC98
675 unsigned int delaycount;
676 #define FIRST_GUESS     0x2000
677 static void findcpuspeed(void)
678 {
679         int i;
680         int remainder;
681
682         /* Put counter in count down mode */
683         outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
684         outb(TIMER_CNTR0, 0xff);
685         outb(TIMER_CNTR0, 0xff);
686         for (i = FIRST_GUESS; i; i--)
687                 ;
688         remainder = getit();
689         delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
690 }
691 #endif
692
693 #ifdef PC98
694 static u_int
695 calibrate_clocks(void)
696 {
697         int     timeout;
698         u_int   count, prev_count, tot_count;
699         u_short sec, start_sec;
700
701         if (bootverbose)
702                 printf("Calibrating clock(s) ... ");
703         /* Check ARTIC. */
704         if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
705             !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
706                 goto fail;
707         timeout = 100000000;
708
709         /* Read the ARTIC. */
710         sec = inw(0x5e);
711
712         /* Wait for the ARTIC to changes. */
713         start_sec = sec;
714         for (;;) {
715                 sec = inw(0x5e);
716                 if (sec != start_sec)
717                         break;
718                 if (--timeout == 0)
719                         goto fail;
720         }
721         prev_count = getit();
722         if (prev_count == 0 || prev_count > timer0_max_count)
723                 goto fail;
724         tot_count = 0;
725
726         if (tsc_present) 
727                 wrmsr(0x10, 0LL);       /* XXX 0x10 is the MSR for the TSC */
728         start_sec = sec;
729         for (;;) {
730                 sec = inw(0x5e);
731                 count = getit();
732                 if (count == 0 || count > timer0_max_count)
733                         goto fail;
734                 if (count > prev_count)
735                         tot_count += prev_count - (count - timer0_max_count);
736                 else
737                         tot_count += prev_count - count;
738                 prev_count = count;
739                 if ((sec == start_sec + 1200) ||
740                     (sec < start_sec &&
741                         (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
742                         break;
743                 if (--timeout == 0)
744                         goto fail;
745         }
746         /*
747          * Read the cpu cycle counter.  The timing considerations are
748          * similar to those for the i8254 clock.
749          */
750         if (tsc_present) 
751                 tsc_freq = rdtsc();
752
753         if (bootverbose) {
754                 if (tsc_present)
755                         printf("TSC clock: %u Hz, ", tsc_freq);
756                 printf("i8254 clock: %u Hz\n", tot_count);
757         }
758         return (tot_count);
759
760 fail:
761         if (bootverbose)
762                 printf("failed, using default i8254 clock of %u Hz\n",
763                        timer_freq);
764         return (timer_freq);
765 }
766 #else
767 static u_int
768 calibrate_clocks(void)
769 {
770         u_int64_t old_tsc;
771         u_int count, prev_count, tot_count;
772         int sec, start_sec, timeout;
773
774         if (bootverbose)
775                 printf("Calibrating clock(s) ... ");
776         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
777                 goto fail;
778         timeout = 100000000;
779
780         /* Read the mc146818A seconds counter. */
781         for (;;) {
782                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
783                         sec = rtcin(RTC_SEC);
784                         break;
785                 }
786                 if (--timeout == 0)
787                         goto fail;
788         }
789
790         /* Wait for the mC146818A seconds counter to change. */
791         start_sec = sec;
792         for (;;) {
793                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
794                         sec = rtcin(RTC_SEC);
795                         if (sec != start_sec)
796                                 break;
797                 }
798                 if (--timeout == 0)
799                         goto fail;
800         }
801
802         /* Start keeping track of the i8254 counter. */
803         prev_count = getit();
804         if (prev_count == 0 || prev_count > timer0_max_count)
805                 goto fail;
806         tot_count = 0;
807
808         if (tsc_present) 
809                 old_tsc = rdtsc();
810         else
811                 old_tsc = 0;            /* shut up gcc */
812
813         /*
814          * Wait for the mc146818A seconds counter to change.  Read the i8254
815          * counter for each iteration since this is convenient and only
816          * costs a few usec of inaccuracy. The timing of the final reads
817          * of the counters almost matches the timing of the initial reads,
818          * so the main cause of inaccuracy is the varying latency from 
819          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
820          * rtcin(RTC_SEC) that returns a changed seconds count.  The
821          * maximum inaccuracy from this cause is < 10 usec on 486's.
822          */
823         start_sec = sec;
824         for (;;) {
825                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
826                         sec = rtcin(RTC_SEC);
827                 count = getit();
828                 if (count == 0 || count > timer0_max_count)
829                         goto fail;
830                 if (count > prev_count)
831                         tot_count += prev_count - (count - timer0_max_count);
832                 else
833                         tot_count += prev_count - count;
834                 prev_count = count;
835                 if (sec != start_sec)
836                         break;
837                 if (--timeout == 0)
838                         goto fail;
839         }
840
841         /*
842          * Read the cpu cycle counter.  The timing considerations are
843          * similar to those for the i8254 clock.
844          */
845         if (tsc_present) 
846                 tsc_freq = rdtsc() - old_tsc;
847
848         if (bootverbose) {
849                 if (tsc_present)
850                         printf("TSC clock: %u Hz, ", tsc_freq);
851                 printf("i8254 clock: %u Hz\n", tot_count);
852         }
853         return (tot_count);
854
855 fail:
856         if (bootverbose)
857                 printf("failed, using default i8254 clock of %u Hz\n",
858                        timer_freq);
859         return (timer_freq);
860 }
861 #endif  /* !PC98 */
862
863 static void
864 set_timer_freq(u_int freq, int intr_freq)
865 {
866         u_long ef;
867         int new_timer0_max_count;
868
869         ef = read_eflags();
870         disable_intr();
871         timer_freq = freq;
872         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
873         if (new_timer0_max_count != timer0_max_count) {
874                 timer0_max_count = new_timer0_max_count;
875                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
876                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
877                 outb(TIMER_CNTR0, timer0_max_count >> 8);
878         }
879         CLOCK_UNLOCK();
880         write_eflags(ef);
881 }
882
883 /*
884  * i8254_restore is called from apm_default_resume() to reload
885  * the countdown register.
886  * this should not be necessary but there are broken laptops that
887  * do not restore the countdown register on resume.
888  * when it happnes, it messes up the hardclock interval and system clock,
889  * which leads to the infamous "calcru: negative time" problem.
890  */
891 void
892 i8254_restore(void)
893 {
894         u_long ef;
895
896         ef = read_eflags();
897         disable_intr();
898         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
899         outb(TIMER_CNTR0, timer0_max_count & 0xff);
900         outb(TIMER_CNTR0, timer0_max_count >> 8);
901         CLOCK_UNLOCK();
902         write_eflags(ef);
903 }
904
905 /*
906  * Initialize 8254 timer 0 early so that it can be used in DELAY().
907  * XXX initialization of other timers is unintentionally left blank.
908  */
909 void
910 startrtclock()
911 {
912         u_int delta, freq;
913
914 #ifdef PC98
915         findcpuspeed();
916         if (pc98_machine_type & M_8M)
917                 timer_freq = 1996800L; /* 1.9968 MHz */
918         else
919                 timer_freq = 2457600L; /* 2.4576 MHz */
920 #endif /* PC98 */
921
922         if (cpu_feature & CPUID_TSC)
923                 tsc_present = 1;
924         else
925                 tsc_present = 0;
926
927 #ifndef PC98
928         writertc(RTC_STATUSA, rtc_statusa);
929         writertc(RTC_STATUSB, RTCSB_24HR);
930 #endif
931
932         set_timer_freq(timer_freq, hz);
933         freq = calibrate_clocks();
934 #ifdef CLK_CALIBRATION_LOOP
935         if (bootverbose) {
936                 printf(
937                 "Press a key on the console to abort clock calibration\n");
938                 while (cncheckc() == -1)
939                         calibrate_clocks();
940         }
941 #endif
942
943         /*
944          * Use the calibrated i8254 frequency if it seems reasonable.
945          * Otherwise use the default, and don't use the calibrated i586
946          * frequency.
947          */
948         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
949         if (delta < timer_freq / 100) {
950 #ifndef CLK_USE_I8254_CALIBRATION
951                 if (bootverbose)
952                         printf(
953 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
954                 freq = timer_freq;
955 #endif
956                 timer_freq = freq;
957         } else {
958                 if (bootverbose)
959                         printf(
960                     "%d Hz differs from default of %d Hz by more than 1%%\n",
961                                freq, timer_freq);
962                 tsc_freq = 0;
963         }
964
965         set_timer_freq(timer_freq, hz);
966         i8254_timecounter.tc_frequency = timer_freq;
967         tc_init(&i8254_timecounter);
968
969 #ifndef CLK_USE_TSC_CALIBRATION
970         if (tsc_freq != 0) {
971                 if (bootverbose)
972                         printf(
973 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
974                 tsc_freq = 0;
975         }
976 #endif
977         if (tsc_present && tsc_freq == 0) {
978                 /*
979                  * Calibration of the i586 clock relative to the mc146818A
980                  * clock failed.  Do a less accurate calibration relative
981                  * to the i8254 clock.
982                  */
983                 u_int64_t old_tsc = rdtsc();
984
985                 DELAY(1000000);
986                 tsc_freq = rdtsc() - old_tsc;
987 #ifdef CLK_USE_TSC_CALIBRATION
988                 if (bootverbose)
989                         printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
990 #endif
991         }
992
993 #if !defined(SMP)
994         /*
995          * We can not use the TSC in SMP mode, until we figure out a
996          * cheap (impossible), reliable and precise (yeah right!)  way
997          * to synchronize the TSCs of all the CPUs.
998          * Curse Intel for leaving the counter out of the I/O APIC.
999          */
1000
1001 #if NAPM > 0
1002         /*
1003          * We can not use the TSC if we support APM. Precise timekeeping
1004          * on an APM'ed machine is at best a fools pursuit, since 
1005          * any and all of the time spent in various SMM code can't 
1006          * be reliably accounted for.  Reading the RTC is your only
1007          * source of reliable time info.  The i8254 looses too of course
1008          * but we need to have some kind of time...
1009          * We don't know at this point whether APM is going to be used
1010          * or not, nor when it might be activated.  Play it safe.
1011          */
1012         return;
1013 #endif /* NAPM > 0 */
1014
1015         if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1016                 tsc_timecounter.tc_frequency = tsc_freq;
1017                 tc_init(&tsc_timecounter);
1018         }
1019
1020 #endif /* !defined(SMP) */
1021 }
1022
1023 #ifdef PC98
1024 static void
1025 rtc_serialcombit(int i)
1026 {
1027         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1028         DELAY(1);
1029         outb(IO_RTC, ((i&0x01)<<5)|0x17);
1030         DELAY(1);
1031         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1032         DELAY(1);
1033 }
1034
1035 static void
1036 rtc_serialcom(int i)
1037 {
1038         rtc_serialcombit(i&0x01);
1039         rtc_serialcombit((i&0x02)>>1);
1040         rtc_serialcombit((i&0x04)>>2);
1041         rtc_serialcombit((i&0x08)>>3);
1042         outb(IO_RTC, 0x07);
1043         DELAY(1);
1044         outb(IO_RTC, 0x0f);
1045         DELAY(1);
1046         outb(IO_RTC, 0x07);
1047         DELAY(1);
1048 }
1049
1050 static void
1051 rtc_outb(int val)
1052 {
1053         int s;
1054         int sa = 0;
1055
1056         for (s=0;s<8;s++) {
1057             sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1058             outb(IO_RTC, sa);           /* set DI & CLK 0 */
1059             DELAY(1);
1060             outb(IO_RTC, sa | 0x10);    /* CLK 1 */
1061             DELAY(1);
1062         }
1063         outb(IO_RTC, sa & 0xef);        /* CLK 0 */
1064 }
1065
1066 static int
1067 rtc_inb(void)
1068 {
1069         int s;
1070         int sa = 0;
1071
1072         for (s=0;s<8;s++) {
1073             sa |= ((inb(0x33) & 0x01) << s);
1074             outb(IO_RTC, 0x17); /* CLK 1 */
1075             DELAY(1);
1076             outb(IO_RTC, 0x07); /* CLK 0 */
1077             DELAY(2);
1078         }
1079         return sa;
1080 }
1081 #endif /* PC-98 */
1082
1083 /*
1084  * Initialize the time of day register, based on the time base which is, e.g.
1085  * from a filesystem.
1086  */
1087 void
1088 inittodr(time_t base)
1089 {
1090         unsigned long   sec, days;
1091 #ifndef PC98
1092         int             yd;
1093 #endif
1094         int             year, month;
1095         int             y, m, s;
1096         struct timespec ts;
1097 #ifdef PC98
1098         int             second, min, hour;
1099 #endif
1100
1101         if (base) {
1102                 s = splclock();
1103                 ts.tv_sec = base;
1104                 ts.tv_nsec = 0;
1105                 tc_setclock(&ts);
1106                 splx(s);
1107         }
1108
1109 #ifdef PC98
1110         rtc_serialcom(0x03);    /* Time Read */
1111         rtc_serialcom(0x01);    /* Register shift command. */
1112         DELAY(20);
1113
1114         second = bcd2bin(rtc_inb() & 0xff);     /* sec */
1115         min = bcd2bin(rtc_inb() & 0xff);        /* min */
1116         hour = bcd2bin(rtc_inb() & 0xff);       /* hour */
1117         days = bcd2bin(rtc_inb() & 0xff) - 1;   /* date */
1118
1119         month = (rtc_inb() >> 4) & 0x0f;        /* month */
1120         for (m = 1; m < month; m++)
1121                 days += daysinmonth[m-1];
1122         year = bcd2bin(rtc_inb() & 0xff) + 1900;        /* year */
1123         /* 2000 year problem */
1124         if (year < 1995)
1125                 year += 100;
1126         if (year < 1970)
1127                 goto wrong_time;
1128         for (y = 1970; y < year; y++)
1129                 days += DAYSPERYEAR + LEAPYEAR(y);
1130         if ((month > 2) && LEAPYEAR(year))
1131                 days ++;
1132         sec = ((( days * 24 +
1133                   hour) * 60 +
1134                   min) * 60 +
1135                   second);
1136         /* sec now contains the number of seconds, since Jan 1 1970,
1137            in the local time zone */
1138 #else   /* IBM-PC */
1139         /* Look if we have a RTC present and the time is valid */
1140         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1141                 goto wrong_time;
1142
1143         /* wait for time update to complete */
1144         /* If RTCSA_TUP is zero, we have at least 244us before next update */
1145         s = splhigh();
1146         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1147                 splx(s);
1148                 s = splhigh();
1149         }
1150
1151         days = 0;
1152 #ifdef USE_RTC_CENTURY
1153         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1154 #else
1155         year = readrtc(RTC_YEAR) + 1900;
1156         if (year < 1970)
1157                 year += 100;
1158 #endif
1159         if (year < 1970) {
1160                 splx(s);
1161                 goto wrong_time;
1162         }
1163         month = readrtc(RTC_MONTH);
1164         for (m = 1; m < month; m++)
1165                 days += daysinmonth[m-1];
1166         if ((month > 2) && LEAPYEAR(year))
1167                 days ++;
1168         days += readrtc(RTC_DAY) - 1;
1169         yd = days;
1170         for (y = 1970; y < year; y++)
1171                 days += DAYSPERYEAR + LEAPYEAR(y);
1172         sec = ((( days * 24 +
1173                   readrtc(RTC_HRS)) * 60 +
1174                   readrtc(RTC_MIN)) * 60 +
1175                   readrtc(RTC_SEC));
1176         /* sec now contains the number of seconds, since Jan 1 1970,
1177            in the local time zone */
1178 #endif
1179
1180         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1181
1182         y = time_second - sec;
1183         if (y <= -2 || y >= 2) {
1184                 /* badly off, adjust it */
1185                 ts.tv_sec = sec;
1186                 ts.tv_nsec = 0;
1187                 tc_setclock(&ts);
1188         }
1189         splx(s);
1190         return;
1191
1192 wrong_time:
1193         printf("Invalid time in real time clock.\n");
1194         printf("Check and reset the date immediately!\n");
1195 }
1196
1197 /*
1198  * Write system time back to RTC
1199  */
1200 void
1201 resettodr()
1202 {
1203         unsigned long   tm;
1204         int             y, m, s;
1205 #ifdef PC98
1206         int             wd;
1207 #endif
1208
1209         if (disable_rtc_set)
1210                 return;
1211
1212         s = splclock();
1213         tm = time_second;
1214         splx(s);
1215
1216 #ifdef PC98
1217         rtc_serialcom(0x01);    /* Register shift command. */
1218
1219         /* Calculate local time to put in RTC */
1220
1221         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1222
1223         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Seconds */
1224         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Minutes */
1225         rtc_outb(bin2bcd(tm%24)); tm /= 24;     /* Write back Hours   */
1226
1227         /* We have now the days since 01-01-1970 in tm */
1228         wd = (tm+4)%7;
1229         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1230              tm >= m;
1231              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1232              tm -= m;
1233
1234         /* Now we have the years in y and the day-of-the-year in tm */
1235         for (m = 0; ; m++) {
1236                 int ml;
1237
1238                 ml = daysinmonth[m];
1239                 if (m == 1 && LEAPYEAR(y))
1240                         ml++;
1241                 if (tm < ml)
1242                         break;
1243                 tm -= ml;
1244         }
1245
1246         m++;
1247         rtc_outb(bin2bcd(tm+1));                /* Write back Day     */
1248         rtc_outb((m << 4) | wd);                /* Write back Month & Weekday  */
1249         rtc_outb(bin2bcd(y%100));               /* Write back Year    */
1250
1251         rtc_serialcom(0x02);    /* Time set & Counter hold command. */
1252         rtc_serialcom(0x00);    /* Register hold command. */
1253 #else
1254         /* Disable RTC updates and interrupts. */
1255         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1256
1257         /* Calculate local time to put in RTC */
1258
1259         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1260
1261         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
1262         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
1263         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
1264
1265         /* We have now the days since 01-01-1970 in tm */
1266         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
1267         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1268              tm >= m;
1269              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1270              tm -= m;
1271
1272         /* Now we have the years in y and the day-of-the-year in tm */
1273         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
1274 #ifdef USE_RTC_CENTURY
1275         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
1276 #endif
1277         for (m = 0; ; m++) {
1278                 int ml;
1279
1280                 ml = daysinmonth[m];
1281                 if (m == 1 && LEAPYEAR(y))
1282                         ml++;
1283                 if (tm < ml)
1284                         break;
1285                 tm -= ml;
1286         }
1287
1288         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1289         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1290
1291         /* Reenable RTC updates and interrupts. */
1292         writertc(RTC_STATUSB, rtc_statusb);
1293 #endif
1294 }
1295
1296
1297 /*
1298  * Start both clocks running.
1299  */
1300 void
1301 cpu_initclocks()
1302 {
1303 #ifdef APIC_IO
1304         int apic_8254_trial;
1305         struct intrec *clkdesc;
1306 #endif /* APIC_IO */
1307 #ifndef PC98
1308         int diag;
1309
1310         if (statclock_disable) {
1311                 /*
1312                  * The stat interrupt mask is different without the
1313                  * statistics clock.  Also, don't set the interrupt
1314                  * flag which would normally cause the RTC to generate
1315                  * interrupts.
1316                  */
1317                 stat_imask = HWI_MASK | SWI_MASK;
1318                 rtc_statusb = RTCSB_24HR;
1319         } else {
1320                 /* Setting stathz to nonzero early helps avoid races. */
1321                 stathz = RTC_NOPROFRATE;
1322                 profhz = RTC_PROFRATE;
1323         }
1324 #endif
1325
1326         /* Finish initializing 8253 timer 0. */
1327 #ifdef APIC_IO
1328
1329         apic_8254_intr = isa_apic_irq(0);
1330         apic_8254_trial = 0;
1331         if (apic_8254_intr >= 0 ) {
1332                 if (apic_int_type(0, 0) == 3)
1333                         apic_8254_trial = 1;
1334         } else {
1335                 /* look for ExtInt on pin 0 */
1336                 if (apic_int_type(0, 0) == 3) {
1337                         apic_8254_intr = apic_irq(0, 0);
1338                         setup_8254_mixed_mode();
1339                 } else 
1340                         panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1341         }
1342
1343         clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
1344                               NULL, &clk_imask, INTR_EXCL);
1345         INTREN(1 << apic_8254_intr);
1346         
1347 #else /* APIC_IO */
1348
1349         inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
1350                     INTR_EXCL);
1351         INTREN(IRQ0);
1352
1353 #endif /* APIC_IO */
1354
1355 #ifndef PC98
1356         /* Initialize RTC. */
1357         writertc(RTC_STATUSA, rtc_statusa);
1358         writertc(RTC_STATUSB, RTCSB_24HR);
1359
1360         /* Don't bother enabling the statistics clock. */
1361         if (statclock_disable)
1362                 return;
1363         diag = rtcin(RTC_DIAG);
1364         if (diag != 0)
1365                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1366
1367 #ifdef APIC_IO
1368         if (isa_apic_irq(8) != 8)
1369                 panic("APIC RTC != 8");
1370 #endif /* APIC_IO */
1371
1372         inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1373                     INTR_EXCL);
1374
1375 #ifdef APIC_IO
1376         INTREN(APIC_IRQ8);
1377 #else
1378         INTREN(IRQ8);
1379 #endif /* APIC_IO */
1380
1381         writertc(RTC_STATUSB, rtc_statusb);
1382 #endif /* !PC98 */
1383
1384 #ifdef APIC_IO
1385         if (apic_8254_trial) {
1386                 
1387                 printf("APIC_IO: Testing 8254 interrupt delivery\n");
1388                 while (read_intr_count(8) < 6)
1389                         ;       /* nothing */
1390                 if (read_intr_count(apic_8254_intr) < 3) {
1391                         /* 
1392                          * The MP table is broken.
1393                          * The 8254 was not connected to the specified pin
1394                          * on the IO APIC.
1395                          * Workaround: Limited variant of mixed mode.
1396                          */
1397                         INTRDIS(1 << apic_8254_intr);
1398                         inthand_remove(clkdesc);
1399                         printf("APIC_IO: Broken MP table detected: "
1400                                "8254 is not connected to "
1401                                "IOAPIC #%d intpin %d\n",
1402                                int_to_apicintpin[apic_8254_intr].ioapic,
1403                                int_to_apicintpin[apic_8254_intr].int_pin);
1404                         /* 
1405                          * Revoke current ISA IRQ 0 assignment and 
1406                          * configure a fallback interrupt routing from
1407                          * the 8254 Timer via the 8259 PIC to the
1408                          * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1409                          * We reuse the low level interrupt handler number.
1410                          */
1411                         if (apic_irq(0, 0) < 0) {
1412                                 revoke_apic_irq(apic_8254_intr);
1413                                 assign_apic_irq(0, 0, apic_8254_intr);
1414                         }
1415                         apic_8254_intr = apic_irq(0, 0);
1416                         setup_8254_mixed_mode();
1417                         inthand_add("clk", apic_8254_intr,
1418                                     (inthand2_t *)clkintr,
1419                                     NULL, &clk_imask, INTR_EXCL);
1420                         INTREN(1 << apic_8254_intr);
1421                 }
1422                 
1423         }
1424         if (apic_int_type(0, 0) != 3 ||
1425             int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1426             int_to_apicintpin[apic_8254_intr].int_pin != 0)
1427                 printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1428                        int_to_apicintpin[apic_8254_intr].ioapic,
1429                        int_to_apicintpin[apic_8254_intr].int_pin);
1430         else
1431                 printf("APIC_IO: "
1432                        "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1433 #endif
1434         
1435 }
1436
1437 #ifdef APIC_IO
1438 static u_long
1439 read_intr_count(int vec)
1440 {
1441         u_long *up;
1442         up = intr_countp[vec];
1443         if (up)
1444                 return *up;
1445         return 0UL;
1446 }
1447
1448 static void 
1449 setup_8254_mixed_mode()
1450 {
1451         /*
1452          * Allow 8254 timer to INTerrupt 8259:
1453          *  re-initialize master 8259:
1454          *   reset; prog 4 bytes, single ICU, edge triggered
1455          */
1456         outb(IO_ICU1, 0x13);
1457 #ifdef PC98
1458         outb(IO_ICU1 + 2, NRSVIDT);     /* start vector (unused) */
1459         outb(IO_ICU1 + 2, 0x00);        /* ignore slave */
1460         outb(IO_ICU1 + 2, 0x03);        /* auto EOI, 8086 */
1461         outb(IO_ICU1 + 2, 0xfe);        /* unmask INT0 */
1462 #else
1463         outb(IO_ICU1 + 1, NRSVIDT);     /* start vector (unused) */
1464         outb(IO_ICU1 + 1, 0x00);        /* ignore slave */
1465         outb(IO_ICU1 + 1, 0x03);        /* auto EOI, 8086 */
1466         outb(IO_ICU1 + 1, 0xfe);        /* unmask INT0 */
1467 #endif  
1468         /* program IO APIC for type 3 INT on INT0 */
1469         if (ext_int_setup(0, 0) < 0)
1470                 panic("8254 redirect via APIC pin0 impossible!");
1471 }
1472 #endif
1473
1474 void
1475 setstatclockrate(int newhz)
1476 {
1477 #ifndef PC98
1478         if (newhz == RTC_PROFRATE)
1479                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1480         else
1481                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1482         writertc(RTC_STATUSA, rtc_statusa);
1483 #endif
1484 }
1485
1486 static int
1487 sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1488 {
1489         int error;
1490         u_int freq;
1491
1492         /*
1493          * Use `i8254' instead of `timer' in external names because `timer'
1494          * is is too generic.  Should use it everywhere.
1495          */
1496         freq = timer_freq;
1497         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1498         if (error == 0 && req->newptr != NULL) {
1499                 if (timer0_state != RELEASED)
1500                         return (EBUSY); /* too much trouble to handle */
1501                 set_timer_freq(freq, hz);
1502                 i8254_timecounter.tc_frequency = freq;
1503                 tc_update(&i8254_timecounter);
1504         }
1505         return (error);
1506 }
1507
1508 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1509     0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1510
1511 static int
1512 sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1513 {
1514         int error;
1515         u_int freq;
1516
1517         if (tsc_timecounter.tc_frequency == 0)
1518                 return (EOPNOTSUPP);
1519         freq = tsc_freq;
1520         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1521         if (error == 0 && req->newptr != NULL) {
1522                 tsc_freq = freq;
1523                 tsc_timecounter.tc_frequency = tsc_freq;
1524                 tc_update(&tsc_timecounter);
1525         }
1526         return (error);
1527 }
1528
1529 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1530     0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1531
1532 static unsigned
1533 i8254_get_timecount(struct timecounter *tc)
1534 {
1535         u_int count;
1536         u_long ef;
1537         u_int high, low;
1538
1539         ef = read_eflags();
1540         disable_intr();
1541
1542         /* Select timer0 and latch counter value. */
1543         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1544
1545         low = inb(TIMER_CNTR0);
1546         high = inb(TIMER_CNTR0);
1547         count = timer0_max_count - ((high << 8) | low);
1548         if (count < i8254_lastcount ||
1549             (!i8254_ticked && (clkintr_pending ||
1550             ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1551 #ifdef APIC_IO
1552 #define lapic_irr1      ((volatile u_int *)&lapic)[0x210 / 4]   /* XXX XXX */
1553             /* XXX this assumes that apic_8254_intr is < 24. */
1554             (lapic_irr1 & (1 << apic_8254_intr))))
1555 #else
1556             (inb(IO_ICU1) & 1)))
1557 #endif
1558             )) {
1559                 i8254_ticked = 1;
1560                 i8254_offset += timer0_max_count;
1561         }
1562         i8254_lastcount = count;
1563         count += i8254_offset;
1564         CLOCK_UNLOCK();
1565         write_eflags(ef);
1566         return (count);
1567 }
1568
1569 static unsigned
1570 tsc_get_timecount(struct timecounter *tc)
1571 {
1572         return (rdtsc());
1573 }