]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/pc98/cbus/pcrtc.c
This commit was generated by cvs2svn to compensate for changes in r57422,
[FreeBSD/FreeBSD.git] / sys / pc98 / cbus / pcrtc.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * William Jolitz and Don Ahn.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
37  * $FreeBSD$
38  */
39
40 /*
41  * Routines to handle clock hardware.
42  */
43
44 /*
45  * inittodr, settodr and support routines written
46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47  *
48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49  */
50
51 /*
52  * modified for PC98 by Kakefuda
53  */
54
55 #include "opt_clock.h"
56 #include "apm.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/time.h>
61 #include <sys/kernel.h>
62 #ifndef SMP
63 #include <sys/lock.h>
64 #endif
65 #include <sys/sysctl.h>
66 #include <sys/cons.h>
67
68 #include <machine/clock.h>
69 #ifdef CLK_CALIBRATION_LOOP
70 #endif
71 #include <machine/cputypes.h>
72 #include <machine/frame.h>
73 #include <machine/ipl.h>
74 #include <machine/limits.h>
75 #include <machine/md_var.h>
76 #include <machine/psl.h>
77 #ifdef APIC_IO
78 #include <machine/segments.h>
79 #endif
80 #if defined(SMP) || defined(APIC_IO)
81 #include <machine/smp.h>
82 #endif /* SMP || APIC_IO */
83 #include <machine/specialreg.h>
84
85 #include <i386/isa/icu.h>
86 #ifdef PC98
87 #include <pc98/pc98/pc98.h>
88 #include <pc98/pc98/pc98_machdep.h>
89 #include <i386/isa/isa_device.h>
90 #else
91 #include <i386/isa/isa.h>
92 #include <isa/rtc.h>
93 #endif
94 #include <i386/isa/timerreg.h>
95
96 #include <i386/isa/intr_machdep.h>
97
98 #include "mca.h"
99 #if NMCA > 0
100 #include <i386/isa/mca_machdep.h>
101 #endif
102
103 #ifdef SMP
104 #define disable_intr()  CLOCK_DISABLE_INTR()
105 #define enable_intr()   CLOCK_ENABLE_INTR()
106
107 #ifdef APIC_IO
108 #include <i386/isa/intr_machdep.h>
109 /* The interrupt triggered by the 8254 (timer) chip */
110 int apic_8254_intr;
111 static u_long read_intr_count __P((int vec));
112 static void setup_8254_mixed_mode __P((void));
113 #endif
114 #endif /* SMP */
115
116 /*
117  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
118  * can use a simple formula for leap years.
119  */
120 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
121 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
122
123 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
124
125 /*
126  * Time in timer cycles that it takes for microtime() to disable interrupts
127  * and latch the count.  microtime() currently uses "cli; outb ..." so it
128  * normally takes less than 2 timer cycles.  Add a few for cache misses.
129  * Add a few more to allow for latency in bogus calls to microtime() with
130  * interrupts already disabled.
131  */
132 #define TIMER0_LATCH_COUNT      20
133
134 /*
135  * Maximum frequency that we are willing to allow for timer0.  Must be
136  * low enough to guarantee that the timer interrupt handler returns
137  * before the next timer interrupt.
138  */
139 #define TIMER0_MAX_FREQ         20000
140
141 int     adjkerntz;              /* local offset from GMT in seconds */
142 int     clkintr_pending;
143 int     disable_rtc_set;        /* disable resettodr() if != 0 */
144 volatile u_int  idelayed;
145 int     statclock_disable;
146 u_int   stat_imask = SWI_CLOCK_MASK;
147 #ifndef TIMER_FREQ
148 #ifdef PC98
149 #define TIMER_FREQ      2457600;
150 #else /* IBM-PC */
151 #define TIMER_FREQ      1193182;
152 #endif /* PC98 */
153 #endif
154 u_int   timer_freq = TIMER_FREQ;
155 int     timer0_max_count;
156 u_int   tsc_freq;
157 int     tsc_is_broken;
158 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
159
160 static  int     beeping = 0;
161 static  u_int   clk_imask = HWI_MASK | SWI_MASK;
162 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
163 static  u_int   hardclock_max_count;
164 static  u_int32_t i8254_lastcount;
165 static  u_int32_t i8254_offset;
166 static  int     i8254_ticked;
167 /*
168  * XXX new_function and timer_func should not handle clockframes, but
169  * timer_func currently needs to hold hardclock to handle the
170  * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
171  * to switch between clkintr() and a slightly different timerintr().
172  */
173 static  void    (*new_function) __P((struct clockframe *frame));
174 static  u_int   new_rate;
175 #ifndef PC98
176 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
177 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
178 #endif
179 static  u_int   timer0_prescaler_count;
180
181 /* Values for timerX_state: */
182 #define RELEASED        0
183 #define RELEASE_PENDING 1
184 #define ACQUIRED        2
185 #define ACQUIRE_PENDING 3
186
187 static  u_char  timer0_state;
188 #ifdef  PC98
189 static  u_char  timer1_state;
190 #endif
191 static  u_char  timer2_state;
192 static  void    (*timer_func) __P((struct clockframe *frame)) = hardclock;
193 #ifdef PC98
194 static void rtc_serialcombit __P((int));
195 static void rtc_serialcom __P((int));
196 static int rtc_inb __P((void));
197 static void rtc_outb __P((int));
198 #endif
199 static  u_int   tsc_present;
200
201 static  unsigned i8254_get_timecount __P((struct timecounter *tc));
202 static  unsigned tsc_get_timecount __P((struct timecounter *tc));
203 static  void    set_timer_freq(u_int freq, int intr_freq);
204
205 static struct timecounter tsc_timecounter = {
206         tsc_get_timecount,      /* get_timecount */
207         0,                      /* no poll_pps */
208         ~0u,                    /* counter_mask */
209         0,                      /* frequency */
210          "TSC"                  /* name */
211 };
212
213 SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD, 
214         &tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
215
216 static struct timecounter i8254_timecounter = {
217         i8254_get_timecount,    /* get_timecount */
218         0,                      /* no poll_pps */
219         ~0u,                    /* counter_mask */
220         0,                      /* frequency */
221         "i8254"                 /* name */
222 };
223
224 SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD, 
225         &i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
226
227 static void
228 clkintr(struct clockframe frame)
229 {
230         if (timecounter->tc_get_timecount == i8254_get_timecount) {
231                 disable_intr();
232                 if (i8254_ticked)
233                         i8254_ticked = 0;
234                 else {
235                         i8254_offset += timer0_max_count;
236                         i8254_lastcount = 0;
237                 }
238                 clkintr_pending = 0;
239                 enable_intr();
240         }
241         timer_func(&frame);
242         switch (timer0_state) {
243
244         case RELEASED:
245                 setdelayed();
246                 break;
247
248         case ACQUIRED:
249                 if ((timer0_prescaler_count += timer0_max_count)
250                     >= hardclock_max_count) {
251                         timer0_prescaler_count -= hardclock_max_count;
252                         hardclock(&frame);
253                         setdelayed();
254                 }
255                 break;
256
257         case ACQUIRE_PENDING:
258                 disable_intr();
259                 i8254_offset = i8254_get_timecount(NULL);
260                 i8254_lastcount = 0;
261                 timer0_max_count = TIMER_DIV(new_rate);
262                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
263                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
264                 outb(TIMER_CNTR0, timer0_max_count >> 8);
265                 enable_intr();
266                 timer_func = new_function;
267                 timer0_state = ACQUIRED;
268                 setdelayed();
269                 break;
270
271         case RELEASE_PENDING:
272                 if ((timer0_prescaler_count += timer0_max_count)
273                     >= hardclock_max_count) {
274                         disable_intr();
275                         i8254_offset = i8254_get_timecount(NULL);
276                         i8254_lastcount = 0;
277                         timer0_max_count = hardclock_max_count;
278                         outb(TIMER_MODE,
279                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
280                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
281                         outb(TIMER_CNTR0, timer0_max_count >> 8);
282                         enable_intr();
283                         timer0_prescaler_count = 0;
284                         timer_func = hardclock;
285                         timer0_state = RELEASED;
286                         hardclock(&frame);
287                         setdelayed();
288                 }
289                 break;
290         }
291 #if NMCA > 0
292         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
293         if (MCA_system)
294                 outb(0x61, inb(0x61) | 0x80);
295 #endif
296 }
297
298 /*
299  * The acquire and release functions must be called at ipl >= splclock().
300  */
301 int
302 acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
303 {
304         static int old_rate;
305
306         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
307                 return (-1);
308         switch (timer0_state) {
309
310         case RELEASED:
311                 timer0_state = ACQUIRE_PENDING;
312                 break;
313
314         case RELEASE_PENDING:
315                 if (rate != old_rate)
316                         return (-1);
317                 /*
318                  * The timer has been released recently, but is being
319                  * re-acquired before the release completed.  In this
320                  * case, we simply reclaim it as if it had not been
321                  * released at all.
322                  */
323                 timer0_state = ACQUIRED;
324                 break;
325
326         default:
327                 return (-1);    /* busy */
328         }
329         new_function = function;
330         old_rate = new_rate = rate;
331         return (0);
332 }
333
334 #ifdef PC98
335 int
336 acquire_timer1(int mode)
337 {
338
339         if (timer1_state != RELEASED)
340                 return (-1);
341         timer1_state = ACQUIRED;
342
343         /*
344          * This access to the timer registers is as atomic as possible
345          * because it is a single instruction.  We could do better if we
346          * knew the rate.  Use of splclock() limits glitches to 10-100us,
347          * and this is probably good enough for timer2, so we aren't as
348          * careful with it as with timer0.
349          */
350         outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
351
352         return (0);
353 }
354 #endif
355
356 int
357 acquire_timer2(int mode)
358 {
359
360         if (timer2_state != RELEASED)
361                 return (-1);
362         timer2_state = ACQUIRED;
363
364         /*
365          * This access to the timer registers is as atomic as possible
366          * because it is a single instruction.  We could do better if we
367          * knew the rate.  Use of splclock() limits glitches to 10-100us,
368          * and this is probably good enough for timer2, so we aren't as
369          * careful with it as with timer0.
370          */
371         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
372
373         return (0);
374 }
375
376 int
377 release_timer0()
378 {
379         switch (timer0_state) {
380
381         case ACQUIRED:
382                 timer0_state = RELEASE_PENDING;
383                 break;
384
385         case ACQUIRE_PENDING:
386                 /* Nothing happened yet, release quickly. */
387                 timer0_state = RELEASED;
388                 break;
389
390         default:
391                 return (-1);
392         }
393         return (0);
394 }
395
396 #ifdef PC98
397 int
398 release_timer1()
399 {
400
401         if (timer1_state != ACQUIRED)
402                 return (-1);
403         timer1_state = RELEASED;
404         outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
405         return (0);
406 }
407 #endif
408
409 int
410 release_timer2()
411 {
412
413         if (timer2_state != ACQUIRED)
414                 return (-1);
415         timer2_state = RELEASED;
416         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
417         return (0);
418 }
419
420 #ifndef PC98
421 /*
422  * This routine receives statistical clock interrupts from the RTC.
423  * As explained above, these occur at 128 interrupts per second.
424  * When profiling, we receive interrupts at a rate of 1024 Hz.
425  *
426  * This does not actually add as much overhead as it sounds, because
427  * when the statistical clock is active, the hardclock driver no longer
428  * needs to keep (inaccurate) statistics on its own.  This decouples
429  * statistics gathering from scheduling interrupts.
430  *
431  * The RTC chip requires that we read status register C (RTC_INTR)
432  * to acknowledge an interrupt, before it will generate the next one.
433  * Under high interrupt load, rtcintr() can be indefinitely delayed and
434  * the clock can tick immediately after the read from RTC_INTR.  In this
435  * case, the mc146818A interrupt signal will not drop for long enough
436  * to register with the 8259 PIC.  If an interrupt is missed, the stat
437  * clock will halt, considerably degrading system performance.  This is
438  * why we use 'while' rather than a more straightforward 'if' below.
439  * Stat clock ticks can still be lost, causing minor loss of accuracy
440  * in the statistics, but the stat clock will no longer stop.
441  */
442 static void
443 rtcintr(struct clockframe frame)
444 {
445         while (rtcin(RTC_INTR) & RTCIR_PERIOD)
446                 statclock(&frame);
447 }
448
449 #include "opt_ddb.h"
450 #ifdef DDB
451 #include <ddb/ddb.h>
452
453 DB_SHOW_COMMAND(rtc, rtc)
454 {
455         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
456                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
457                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
458                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
459 }
460 #endif /* DDB */
461 #endif /* for PC98 */
462
463 static int
464 getit(void)
465 {
466         u_long ef;
467         int high, low;
468
469         ef = read_eflags();
470         disable_intr();
471
472         /* Select timer0 and latch counter value. */
473         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
474
475         low = inb(TIMER_CNTR0);
476         high = inb(TIMER_CNTR0);
477
478         CLOCK_UNLOCK();
479         write_eflags(ef);
480         return ((high << 8) | low);
481 }
482
483 /*
484  * Wait "n" microseconds.
485  * Relies on timer 1 counting down from (timer_freq / hz)
486  * Note: timer had better have been programmed before this is first used!
487  */
488 void
489 DELAY(int n)
490 {
491         int delta, prev_tick, tick, ticks_left;
492
493 #ifdef DELAYDEBUG
494         int getit_calls = 1;
495         int n1;
496         static int state = 0;
497
498         if (state == 0) {
499                 state = 1;
500                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
501                         DELAY(n1);
502                 state = 2;
503         }
504         if (state == 1)
505                 printf("DELAY(%d)...", n);
506 #endif
507         /*
508          * Guard against the timer being uninitialized if we are called
509          * early for console i/o.
510          */
511         if (timer0_max_count == 0)
512                 set_timer_freq(timer_freq, hz);
513
514         /*
515          * Read the counter first, so that the rest of the setup overhead is
516          * counted.  Guess the initial overhead is 20 usec (on most systems it
517          * takes about 1.5 usec for each of the i/o's in getit().  The loop
518          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
519          * multiplications and divisions to scale the count take a while).
520          */
521         prev_tick = getit();
522         n -= 0;                 /* XXX actually guess no initial overhead */
523         /*
524          * Calculate (n * (timer_freq / 1e6)) without using floating point
525          * and without any avoidable overflows.
526          */
527         if (n <= 0)
528                 ticks_left = 0;
529         else if (n < 256)
530                 /*
531                  * Use fixed point to avoid a slow division by 1000000.
532                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
533                  * 2^15 is the first power of 2 that gives exact results
534                  * for n between 0 and 256.
535                  */
536                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
537         else
538                 /*
539                  * Don't bother using fixed point, although gcc-2.7.2
540                  * generates particularly poor code for the long long
541                  * division, since even the slow way will complete long
542                  * before the delay is up (unless we're interrupted).
543                  */
544                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
545                              / 1000000;
546
547         while (ticks_left > 0) {
548                 tick = getit();
549 #ifdef DELAYDEBUG
550                 ++getit_calls;
551 #endif
552                 delta = prev_tick - tick;
553                 prev_tick = tick;
554                 if (delta < 0) {
555                         delta += timer0_max_count;
556                         /*
557                          * Guard against timer0_max_count being wrong.
558                          * This shouldn't happen in normal operation,
559                          * but it may happen if set_timer_freq() is
560                          * traced.
561                          */
562                         if (delta < 0)
563                                 delta = 0;
564                 }
565                 ticks_left -= delta;
566         }
567 #ifdef DELAYDEBUG
568         if (state == 1)
569                 printf(" %d calls to getit() at %d usec each\n",
570                        getit_calls, (n + 5) / getit_calls);
571 #endif
572 }
573
574 static void
575 sysbeepstop(void *chan)
576 {
577 #ifdef PC98     /* PC98 */
578         outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
579         release_timer1();
580 #else
581         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
582         release_timer2();
583 #endif
584         beeping = 0;
585 }
586
587 int
588 sysbeep(int pitch, int period)
589 {
590         int x = splclock();
591
592 #ifdef PC98
593         if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
594                 if (!beeping) {
595                         /* Something else owns it. */
596                         splx(x);
597                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
598                 }
599         disable_intr();
600         outb(0x3fdb, pitch);
601         outb(0x3fdb, (pitch>>8));
602         enable_intr();
603         if (!beeping) {
604                 /* enable counter1 output to speaker */
605                 outb(IO_PPI, (inb(IO_PPI) & 0xf7));
606                 beeping = period;
607                 timeout(sysbeepstop, (void *)NULL, period);
608         }
609 #else
610         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
611                 if (!beeping) {
612                         /* Something else owns it. */
613                         splx(x);
614                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
615                 }
616         disable_intr();
617         outb(TIMER_CNTR2, pitch);
618         outb(TIMER_CNTR2, (pitch>>8));
619         enable_intr();
620         if (!beeping) {
621                 /* enable counter2 output to speaker */
622                 outb(IO_PPI, inb(IO_PPI) | 3);
623                 beeping = period;
624                 timeout(sysbeepstop, (void *)NULL, period);
625         }
626 #endif
627         splx(x);
628         return (0);
629 }
630
631 #ifndef PC98
632 /*
633  * RTC support routines
634  */
635
636 int
637 rtcin(reg)
638         int reg;
639 {
640         int s;
641         u_char val;
642
643         s = splhigh();
644         outb(IO_RTC, reg);
645         inb(0x84);
646         val = inb(IO_RTC + 1);
647         inb(0x84);
648         splx(s);
649         return (val);
650 }
651
652 static __inline void
653 writertc(u_char reg, u_char val)
654 {
655         int s;
656
657         s = splhigh();
658         inb(0x84);
659         outb(IO_RTC, reg);
660         inb(0x84);
661         outb(IO_RTC + 1, val);
662         inb(0x84);              /* XXX work around wrong order in rtcin() */
663         splx(s);
664 }
665
666 static __inline int
667 readrtc(int port)
668 {
669         return(bcd2bin(rtcin(port)));
670 }
671 #endif
672
673 #ifdef PC98
674 unsigned int delaycount;
675 #define FIRST_GUESS     0x2000
676 static void findcpuspeed(void)
677 {
678         int i;
679         int remainder;
680
681         /* Put counter in count down mode */
682         outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
683         outb(TIMER_CNTR0, 0xff);
684         outb(TIMER_CNTR0, 0xff);
685         for (i = FIRST_GUESS; i; i--)
686                 ;
687         remainder = getit();
688         delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
689 }
690 #endif
691
692 #ifdef PC98
693 static u_int
694 calibrate_clocks(void)
695 {
696         int     timeout;
697         u_int   count, prev_count, tot_count;
698         u_short sec, start_sec;
699
700         if (bootverbose)
701                 printf("Calibrating clock(s) ... ");
702         /* Check ARTIC. */
703         if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
704             !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
705                 goto fail;
706         timeout = 100000000;
707
708         /* Read the ARTIC. */
709         sec = inw(0x5e);
710
711         /* Wait for the ARTIC to changes. */
712         start_sec = sec;
713         for (;;) {
714                 sec = inw(0x5e);
715                 if (sec != start_sec)
716                         break;
717                 if (--timeout == 0)
718                         goto fail;
719         }
720         prev_count = getit();
721         if (prev_count == 0 || prev_count > timer0_max_count)
722                 goto fail;
723         tot_count = 0;
724
725         if (tsc_present) 
726                 wrmsr(0x10, 0LL);       /* XXX 0x10 is the MSR for the TSC */
727         start_sec = sec;
728         for (;;) {
729                 sec = inw(0x5e);
730                 count = getit();
731                 if (count == 0 || count > timer0_max_count)
732                         goto fail;
733                 if (count > prev_count)
734                         tot_count += prev_count - (count - timer0_max_count);
735                 else
736                         tot_count += prev_count - count;
737                 prev_count = count;
738                 if ((sec == start_sec + 1200) ||
739                     (sec < start_sec &&
740                         (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
741                         break;
742                 if (--timeout == 0)
743                         goto fail;
744         }
745         /*
746          * Read the cpu cycle counter.  The timing considerations are
747          * similar to those for the i8254 clock.
748          */
749         if (tsc_present) 
750                 tsc_freq = rdtsc();
751
752         if (bootverbose) {
753                 if (tsc_present)
754                         printf("TSC clock: %u Hz, ", tsc_freq);
755                 printf("i8254 clock: %u Hz\n", tot_count);
756         }
757         return (tot_count);
758
759 fail:
760         if (bootverbose)
761                 printf("failed, using default i8254 clock of %u Hz\n",
762                        timer_freq);
763         return (timer_freq);
764 }
765 #else
766 static u_int
767 calibrate_clocks(void)
768 {
769         u_int64_t old_tsc;
770         u_int count, prev_count, tot_count;
771         int sec, start_sec, timeout;
772
773         if (bootverbose)
774                 printf("Calibrating clock(s) ... ");
775         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
776                 goto fail;
777         timeout = 100000000;
778
779         /* Read the mc146818A seconds counter. */
780         for (;;) {
781                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
782                         sec = rtcin(RTC_SEC);
783                         break;
784                 }
785                 if (--timeout == 0)
786                         goto fail;
787         }
788
789         /* Wait for the mC146818A seconds counter to change. */
790         start_sec = sec;
791         for (;;) {
792                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
793                         sec = rtcin(RTC_SEC);
794                         if (sec != start_sec)
795                                 break;
796                 }
797                 if (--timeout == 0)
798                         goto fail;
799         }
800
801         /* Start keeping track of the i8254 counter. */
802         prev_count = getit();
803         if (prev_count == 0 || prev_count > timer0_max_count)
804                 goto fail;
805         tot_count = 0;
806
807         if (tsc_present) 
808                 old_tsc = rdtsc();
809         else
810                 old_tsc = 0;            /* shut up gcc */
811
812         /*
813          * Wait for the mc146818A seconds counter to change.  Read the i8254
814          * counter for each iteration since this is convenient and only
815          * costs a few usec of inaccuracy. The timing of the final reads
816          * of the counters almost matches the timing of the initial reads,
817          * so the main cause of inaccuracy is the varying latency from 
818          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
819          * rtcin(RTC_SEC) that returns a changed seconds count.  The
820          * maximum inaccuracy from this cause is < 10 usec on 486's.
821          */
822         start_sec = sec;
823         for (;;) {
824                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
825                         sec = rtcin(RTC_SEC);
826                 count = getit();
827                 if (count == 0 || count > timer0_max_count)
828                         goto fail;
829                 if (count > prev_count)
830                         tot_count += prev_count - (count - timer0_max_count);
831                 else
832                         tot_count += prev_count - count;
833                 prev_count = count;
834                 if (sec != start_sec)
835                         break;
836                 if (--timeout == 0)
837                         goto fail;
838         }
839
840         /*
841          * Read the cpu cycle counter.  The timing considerations are
842          * similar to those for the i8254 clock.
843          */
844         if (tsc_present) 
845                 tsc_freq = rdtsc() - old_tsc;
846
847         if (bootverbose) {
848                 if (tsc_present)
849                         printf("TSC clock: %u Hz, ", tsc_freq);
850                 printf("i8254 clock: %u Hz\n", tot_count);
851         }
852         return (tot_count);
853
854 fail:
855         if (bootverbose)
856                 printf("failed, using default i8254 clock of %u Hz\n",
857                        timer_freq);
858         return (timer_freq);
859 }
860 #endif  /* !PC98 */
861
862 static void
863 set_timer_freq(u_int freq, int intr_freq)
864 {
865         u_long ef;
866         int new_timer0_max_count;
867
868         ef = read_eflags();
869         disable_intr();
870         timer_freq = freq;
871         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
872         if (new_timer0_max_count != timer0_max_count) {
873                 timer0_max_count = new_timer0_max_count;
874                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
875                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
876                 outb(TIMER_CNTR0, timer0_max_count >> 8);
877         }
878         CLOCK_UNLOCK();
879         write_eflags(ef);
880 }
881
882 /*
883  * i8254_restore is called from apm_default_resume() to reload
884  * the countdown register.
885  * this should not be necessary but there are broken laptops that
886  * do not restore the countdown register on resume.
887  * when it happnes, it messes up the hardclock interval and system clock,
888  * which leads to the infamous "calcru: negative time" problem.
889  */
890 void
891 i8254_restore(void)
892 {
893         u_long ef;
894
895         ef = read_eflags();
896         disable_intr();
897         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
898         outb(TIMER_CNTR0, timer0_max_count & 0xff);
899         outb(TIMER_CNTR0, timer0_max_count >> 8);
900         CLOCK_UNLOCK();
901         write_eflags(ef);
902 }
903
904 /*
905  * Initialize 8254 timer 0 early so that it can be used in DELAY().
906  * XXX initialization of other timers is unintentionally left blank.
907  */
908 void
909 startrtclock()
910 {
911         u_int delta, freq;
912
913 #ifdef PC98
914         findcpuspeed();
915         if (pc98_machine_type & M_8M)
916                 timer_freq = 1996800L; /* 1.9968 MHz */
917         else
918                 timer_freq = 2457600L; /* 2.4576 MHz */
919 #endif /* PC98 */
920
921         if (cpu_feature & CPUID_TSC)
922                 tsc_present = 1;
923         else
924                 tsc_present = 0;
925
926 #ifndef PC98
927         writertc(RTC_STATUSA, rtc_statusa);
928         writertc(RTC_STATUSB, RTCSB_24HR);
929 #endif
930
931         set_timer_freq(timer_freq, hz);
932         freq = calibrate_clocks();
933 #ifdef CLK_CALIBRATION_LOOP
934         if (bootverbose) {
935                 printf(
936                 "Press a key on the console to abort clock calibration\n");
937                 while (cncheckc() == -1)
938                         calibrate_clocks();
939         }
940 #endif
941
942         /*
943          * Use the calibrated i8254 frequency if it seems reasonable.
944          * Otherwise use the default, and don't use the calibrated i586
945          * frequency.
946          */
947         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
948         if (delta < timer_freq / 100) {
949 #ifndef CLK_USE_I8254_CALIBRATION
950                 if (bootverbose)
951                         printf(
952 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
953                 freq = timer_freq;
954 #endif
955                 timer_freq = freq;
956         } else {
957                 if (bootverbose)
958                         printf(
959                     "%d Hz differs from default of %d Hz by more than 1%%\n",
960                                freq, timer_freq);
961                 tsc_freq = 0;
962         }
963
964         set_timer_freq(timer_freq, hz);
965         i8254_timecounter.tc_frequency = timer_freq;
966         init_timecounter(&i8254_timecounter);
967
968 #ifndef CLK_USE_TSC_CALIBRATION
969         if (tsc_freq != 0) {
970                 if (bootverbose)
971                         printf(
972 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
973                 tsc_freq = 0;
974         }
975 #endif
976         if (tsc_present && tsc_freq == 0) {
977                 /*
978                  * Calibration of the i586 clock relative to the mc146818A
979                  * clock failed.  Do a less accurate calibration relative
980                  * to the i8254 clock.
981                  */
982                 u_int64_t old_tsc = rdtsc();
983
984                 DELAY(1000000);
985                 tsc_freq = rdtsc() - old_tsc;
986 #ifdef CLK_USE_TSC_CALIBRATION
987                 if (bootverbose)
988                         printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
989 #endif
990         }
991
992 #if !defined(SMP)
993         /*
994          * We can not use the TSC in SMP mode, until we figure out a
995          * cheap (impossible), reliable and precise (yeah right!)  way
996          * to synchronize the TSCs of all the CPUs.
997          * Curse Intel for leaving the counter out of the I/O APIC.
998          */
999
1000 #if NAPM > 0
1001         /*
1002          * We can not use the TSC if we support APM. Precise timekeeping
1003          * on an APM'ed machine is at best a fools pursuit, since 
1004          * any and all of the time spent in various SMM code can't 
1005          * be reliably accounted for.  Reading the RTC is your only
1006          * source of reliable time info.  The i8254 looses too of course
1007          * but we need to have some kind of time...
1008          * We don't know at this point whether APM is going to be used
1009          * or not, nor when it might be activated.  Play it safe.
1010          */
1011         return;
1012 #endif /* NAPM > 0 */
1013
1014         if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1015                 tsc_timecounter.tc_frequency = tsc_freq;
1016                 init_timecounter(&tsc_timecounter);
1017         }
1018
1019 #endif /* !defined(SMP) */
1020 }
1021
1022 #ifdef PC98
1023 static void
1024 rtc_serialcombit(int i)
1025 {
1026         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1027         DELAY(1);
1028         outb(IO_RTC, ((i&0x01)<<5)|0x17);
1029         DELAY(1);
1030         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1031         DELAY(1);
1032 }
1033
1034 static void
1035 rtc_serialcom(int i)
1036 {
1037         rtc_serialcombit(i&0x01);
1038         rtc_serialcombit((i&0x02)>>1);
1039         rtc_serialcombit((i&0x04)>>2);
1040         rtc_serialcombit((i&0x08)>>3);
1041         outb(IO_RTC, 0x07);
1042         DELAY(1);
1043         outb(IO_RTC, 0x0f);
1044         DELAY(1);
1045         outb(IO_RTC, 0x07);
1046         DELAY(1);
1047 }
1048
1049 static void
1050 rtc_outb(int val)
1051 {
1052         int s;
1053         int sa = 0;
1054
1055         for (s=0;s<8;s++) {
1056             sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1057             outb(IO_RTC, sa);           /* set DI & CLK 0 */
1058             DELAY(1);
1059             outb(IO_RTC, sa | 0x10);    /* CLK 1 */
1060             DELAY(1);
1061         }
1062         outb(IO_RTC, sa & 0xef);        /* CLK 0 */
1063 }
1064
1065 static int
1066 rtc_inb(void)
1067 {
1068         int s;
1069         int sa = 0;
1070
1071         for (s=0;s<8;s++) {
1072             sa |= ((inb(0x33) & 0x01) << s);
1073             outb(IO_RTC, 0x17); /* CLK 1 */
1074             DELAY(1);
1075             outb(IO_RTC, 0x07); /* CLK 0 */
1076             DELAY(2);
1077         }
1078         return sa;
1079 }
1080 #endif /* PC-98 */
1081
1082 /*
1083  * Initialize the time of day register, based on the time base which is, e.g.
1084  * from a filesystem.
1085  */
1086 void
1087 inittodr(time_t base)
1088 {
1089         unsigned long   sec, days;
1090 #ifndef PC98
1091         int             yd;
1092 #endif
1093         int             year, month;
1094         int             y, m, s;
1095         struct timespec ts;
1096 #ifdef PC98
1097         int             second, min, hour;
1098 #endif
1099
1100         if (base) {
1101                 s = splclock();
1102                 ts.tv_sec = base;
1103                 ts.tv_nsec = 0;
1104                 set_timecounter(&ts);
1105                 splx(s);
1106         }
1107
1108 #ifdef PC98
1109         rtc_serialcom(0x03);    /* Time Read */
1110         rtc_serialcom(0x01);    /* Register shift command. */
1111         DELAY(20);
1112
1113         second = bcd2bin(rtc_inb() & 0xff);     /* sec */
1114         min = bcd2bin(rtc_inb() & 0xff);        /* min */
1115         hour = bcd2bin(rtc_inb() & 0xff);       /* hour */
1116         days = bcd2bin(rtc_inb() & 0xff) - 1;   /* date */
1117
1118         month = (rtc_inb() >> 4) & 0x0f;        /* month */
1119         for (m = 1; m < month; m++)
1120                 days += daysinmonth[m-1];
1121         year = bcd2bin(rtc_inb() & 0xff) + 1900;        /* year */
1122         /* 2000 year problem */
1123         if (year < 1995)
1124                 year += 100;
1125         if (year < 1970)
1126                 goto wrong_time;
1127         for (y = 1970; y < year; y++)
1128                 days += DAYSPERYEAR + LEAPYEAR(y);
1129         if ((month > 2) && LEAPYEAR(year))
1130                 days ++;
1131         sec = ((( days * 24 +
1132                   hour) * 60 +
1133                   min) * 60 +
1134                   second);
1135         /* sec now contains the number of seconds, since Jan 1 1970,
1136            in the local time zone */
1137 #else   /* IBM-PC */
1138         /* Look if we have a RTC present and the time is valid */
1139         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1140                 goto wrong_time;
1141
1142         /* wait for time update to complete */
1143         /* If RTCSA_TUP is zero, we have at least 244us before next update */
1144         s = splhigh();
1145         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1146                 splx(s);
1147                 s = splhigh();
1148         }
1149
1150         days = 0;
1151 #ifdef USE_RTC_CENTURY
1152         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1153 #else
1154         year = readrtc(RTC_YEAR) + 1900;
1155         if (year < 1970)
1156                 year += 100;
1157 #endif
1158         if (year < 1970) {
1159                 splx(s);
1160                 goto wrong_time;
1161         }
1162         month = readrtc(RTC_MONTH);
1163         for (m = 1; m < month; m++)
1164                 days += daysinmonth[m-1];
1165         if ((month > 2) && LEAPYEAR(year))
1166                 days ++;
1167         days += readrtc(RTC_DAY) - 1;
1168         yd = days;
1169         for (y = 1970; y < year; y++)
1170                 days += DAYSPERYEAR + LEAPYEAR(y);
1171         sec = ((( days * 24 +
1172                   readrtc(RTC_HRS)) * 60 +
1173                   readrtc(RTC_MIN)) * 60 +
1174                   readrtc(RTC_SEC));
1175         /* sec now contains the number of seconds, since Jan 1 1970,
1176            in the local time zone */
1177 #endif
1178
1179         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1180
1181         y = time_second - sec;
1182         if (y <= -2 || y >= 2) {
1183                 /* badly off, adjust it */
1184                 ts.tv_sec = sec;
1185                 ts.tv_nsec = 0;
1186                 set_timecounter(&ts);
1187         }
1188         splx(s);
1189         return;
1190
1191 wrong_time:
1192         printf("Invalid time in real time clock.\n");
1193         printf("Check and reset the date immediately!\n");
1194 }
1195
1196 /*
1197  * Write system time back to RTC
1198  */
1199 void
1200 resettodr()
1201 {
1202         unsigned long   tm;
1203         int             y, m, s;
1204 #ifdef PC98
1205         int             wd;
1206 #endif
1207
1208         if (disable_rtc_set)
1209                 return;
1210
1211         s = splclock();
1212         tm = time_second;
1213         splx(s);
1214
1215 #ifdef PC98
1216         rtc_serialcom(0x01);    /* Register shift command. */
1217
1218         /* Calculate local time to put in RTC */
1219
1220         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1221
1222         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Seconds */
1223         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Minutes */
1224         rtc_outb(bin2bcd(tm%24)); tm /= 24;     /* Write back Hours   */
1225
1226         /* We have now the days since 01-01-1970 in tm */
1227         wd = (tm+4)%7;
1228         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1229              tm >= m;
1230              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1231              tm -= m;
1232
1233         /* Now we have the years in y and the day-of-the-year in tm */
1234         for (m = 0; ; m++) {
1235                 int ml;
1236
1237                 ml = daysinmonth[m];
1238                 if (m == 1 && LEAPYEAR(y))
1239                         ml++;
1240                 if (tm < ml)
1241                         break;
1242                 tm -= ml;
1243         }
1244
1245         m++;
1246         rtc_outb(bin2bcd(tm+1));                /* Write back Day     */
1247         rtc_outb((m << 4) | wd);                /* Write back Month & Weekday  */
1248         rtc_outb(bin2bcd(y%100));               /* Write back Year    */
1249
1250         rtc_serialcom(0x02);    /* Time set & Counter hold command. */
1251         rtc_serialcom(0x00);    /* Register hold command. */
1252 #else
1253         /* Disable RTC updates and interrupts. */
1254         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1255
1256         /* Calculate local time to put in RTC */
1257
1258         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1259
1260         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
1261         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
1262         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
1263
1264         /* We have now the days since 01-01-1970 in tm */
1265         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
1266         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1267              tm >= m;
1268              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1269              tm -= m;
1270
1271         /* Now we have the years in y and the day-of-the-year in tm */
1272         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
1273 #ifdef USE_RTC_CENTURY
1274         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
1275 #endif
1276         for (m = 0; ; m++) {
1277                 int ml;
1278
1279                 ml = daysinmonth[m];
1280                 if (m == 1 && LEAPYEAR(y))
1281                         ml++;
1282                 if (tm < ml)
1283                         break;
1284                 tm -= ml;
1285         }
1286
1287         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1288         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1289
1290         /* Reenable RTC updates and interrupts. */
1291         writertc(RTC_STATUSB, rtc_statusb);
1292 #endif
1293 }
1294
1295
1296 /*
1297  * Start both clocks running.
1298  */
1299 void
1300 cpu_initclocks()
1301 {
1302 #ifdef APIC_IO
1303         int apic_8254_trial;
1304         struct intrec *clkdesc;
1305 #endif /* APIC_IO */
1306 #ifndef PC98
1307         int diag;
1308
1309         if (statclock_disable) {
1310                 /*
1311                  * The stat interrupt mask is different without the
1312                  * statistics clock.  Also, don't set the interrupt
1313                  * flag which would normally cause the RTC to generate
1314                  * interrupts.
1315                  */
1316                 stat_imask = HWI_MASK | SWI_MASK;
1317                 rtc_statusb = RTCSB_24HR;
1318         } else {
1319                 /* Setting stathz to nonzero early helps avoid races. */
1320                 stathz = RTC_NOPROFRATE;
1321                 profhz = RTC_PROFRATE;
1322         }
1323 #endif
1324
1325         /* Finish initializing 8253 timer 0. */
1326 #ifdef APIC_IO
1327
1328         apic_8254_intr = isa_apic_irq(0);
1329         apic_8254_trial = 0;
1330         if (apic_8254_intr >= 0 ) {
1331                 if (apic_int_type(0, 0) == 3)
1332                         apic_8254_trial = 1;
1333         } else {
1334                 /* look for ExtInt on pin 0 */
1335                 if (apic_int_type(0, 0) == 3) {
1336                         apic_8254_intr = apic_irq(0, 0);
1337                         setup_8254_mixed_mode();
1338                 } else 
1339                         panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1340         }
1341
1342         clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
1343                               NULL, &clk_imask, INTR_EXCL);
1344         INTREN(1 << apic_8254_intr);
1345         
1346 #else /* APIC_IO */
1347
1348         inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
1349                     INTR_EXCL);
1350         INTREN(IRQ0);
1351
1352 #endif /* APIC_IO */
1353
1354 #ifndef PC98
1355         /* Initialize RTC. */
1356         writertc(RTC_STATUSA, rtc_statusa);
1357         writertc(RTC_STATUSB, RTCSB_24HR);
1358
1359         /* Don't bother enabling the statistics clock. */
1360         if (statclock_disable)
1361                 return;
1362         diag = rtcin(RTC_DIAG);
1363         if (diag != 0)
1364                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1365
1366 #ifdef APIC_IO
1367         if (isa_apic_irq(8) != 8)
1368                 panic("APIC RTC != 8");
1369 #endif /* APIC_IO */
1370
1371         inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1372                     INTR_EXCL);
1373
1374 #ifdef APIC_IO
1375         INTREN(APIC_IRQ8);
1376 #else
1377         INTREN(IRQ8);
1378 #endif /* APIC_IO */
1379
1380         writertc(RTC_STATUSB, rtc_statusb);
1381 #endif /* !PC98 */
1382
1383 #ifdef APIC_IO
1384         if (apic_8254_trial) {
1385                 
1386                 printf("APIC_IO: Testing 8254 interrupt delivery\n");
1387                 while (read_intr_count(8) < 6)
1388                         ;       /* nothing */
1389                 if (read_intr_count(apic_8254_intr) < 3) {
1390                         /* 
1391                          * The MP table is broken.
1392                          * The 8254 was not connected to the specified pin
1393                          * on the IO APIC.
1394                          * Workaround: Limited variant of mixed mode.
1395                          */
1396                         INTRDIS(1 << apic_8254_intr);
1397                         inthand_remove(clkdesc);
1398                         printf("APIC_IO: Broken MP table detected: "
1399                                "8254 is not connected to "
1400                                "IOAPIC #%d intpin %d\n",
1401                                int_to_apicintpin[apic_8254_intr].ioapic,
1402                                int_to_apicintpin[apic_8254_intr].int_pin);
1403                         /* 
1404                          * Revoke current ISA IRQ 0 assignment and 
1405                          * configure a fallback interrupt routing from
1406                          * the 8254 Timer via the 8259 PIC to the
1407                          * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1408                          * We reuse the low level interrupt handler number.
1409                          */
1410                         if (apic_irq(0, 0) < 0) {
1411                                 revoke_apic_irq(apic_8254_intr);
1412                                 assign_apic_irq(0, 0, apic_8254_intr);
1413                         }
1414                         apic_8254_intr = apic_irq(0, 0);
1415                         setup_8254_mixed_mode();
1416                         inthand_add("clk", apic_8254_intr,
1417                                     (inthand2_t *)clkintr,
1418                                     NULL, &clk_imask, INTR_EXCL);
1419                         INTREN(1 << apic_8254_intr);
1420                 }
1421                 
1422         }
1423         if (apic_int_type(0, 0) != 3 ||
1424             int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1425             int_to_apicintpin[apic_8254_intr].int_pin != 0)
1426                 printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1427                        int_to_apicintpin[apic_8254_intr].ioapic,
1428                        int_to_apicintpin[apic_8254_intr].int_pin);
1429         else
1430                 printf("APIC_IO: "
1431                        "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1432 #endif
1433         
1434 }
1435
1436 #ifdef APIC_IO
1437 static u_long
1438 read_intr_count(int vec)
1439 {
1440         u_long *up;
1441         up = intr_countp[vec];
1442         if (up)
1443                 return *up;
1444         return 0UL;
1445 }
1446
1447 static void 
1448 setup_8254_mixed_mode()
1449 {
1450         /*
1451          * Allow 8254 timer to INTerrupt 8259:
1452          *  re-initialize master 8259:
1453          *   reset; prog 4 bytes, single ICU, edge triggered
1454          */
1455         outb(IO_ICU1, 0x13);
1456 #ifdef PC98
1457         outb(IO_ICU1 + 2, NRSVIDT);     /* start vector (unused) */
1458         outb(IO_ICU1 + 2, 0x00);        /* ignore slave */
1459         outb(IO_ICU1 + 2, 0x03);        /* auto EOI, 8086 */
1460         outb(IO_ICU1 + 2, 0xfe);        /* unmask INT0 */
1461 #else
1462         outb(IO_ICU1 + 1, NRSVIDT);     /* start vector (unused) */
1463         outb(IO_ICU1 + 1, 0x00);        /* ignore slave */
1464         outb(IO_ICU1 + 1, 0x03);        /* auto EOI, 8086 */
1465         outb(IO_ICU1 + 1, 0xfe);        /* unmask INT0 */
1466 #endif  
1467         /* program IO APIC for type 3 INT on INT0 */
1468         if (ext_int_setup(0, 0) < 0)
1469                 panic("8254 redirect via APIC pin0 impossible!");
1470 }
1471 #endif
1472
1473 void
1474 setstatclockrate(int newhz)
1475 {
1476 #ifndef PC98
1477         if (newhz == RTC_PROFRATE)
1478                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1479         else
1480                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1481         writertc(RTC_STATUSA, rtc_statusa);
1482 #endif
1483 }
1484
1485 static int
1486 sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1487 {
1488         int error;
1489         u_int freq;
1490
1491         /*
1492          * Use `i8254' instead of `timer' in external names because `timer'
1493          * is is too generic.  Should use it everywhere.
1494          */
1495         freq = timer_freq;
1496         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1497         if (error == 0 && req->newptr != NULL) {
1498                 if (timer0_state != RELEASED)
1499                         return (EBUSY); /* too much trouble to handle */
1500                 set_timer_freq(freq, hz);
1501                 i8254_timecounter.tc_frequency = freq;
1502                 update_timecounter(&i8254_timecounter);
1503         }
1504         return (error);
1505 }
1506
1507 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1508     0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1509
1510 static int
1511 sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1512 {
1513         int error;
1514         u_int freq;
1515
1516         if (tsc_timecounter.tc_frequency == 0)
1517                 return (EOPNOTSUPP);
1518         freq = tsc_freq;
1519         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1520         if (error == 0 && req->newptr != NULL) {
1521                 tsc_freq = freq;
1522                 tsc_timecounter.tc_frequency = tsc_freq;
1523                 update_timecounter(&tsc_timecounter);
1524         }
1525         return (error);
1526 }
1527
1528 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1529     0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1530
1531 static unsigned
1532 i8254_get_timecount(struct timecounter *tc)
1533 {
1534         u_int count;
1535         u_long ef;
1536         u_int high, low;
1537
1538         ef = read_eflags();
1539         disable_intr();
1540
1541         /* Select timer0 and latch counter value. */
1542         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1543
1544         low = inb(TIMER_CNTR0);
1545         high = inb(TIMER_CNTR0);
1546         count = timer0_max_count - ((high << 8) | low);
1547         if (count < i8254_lastcount ||
1548             (!i8254_ticked && (clkintr_pending ||
1549             ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1550 #ifdef APIC_IO
1551 #define lapic_irr1      ((volatile u_int *)&lapic)[0x210 / 4]   /* XXX XXX */
1552             /* XXX this assumes that apic_8254_intr is < 24. */
1553             (lapic_irr1 & (1 << apic_8254_intr))))
1554 #else
1555             (inb(IO_ICU1) & 1)))
1556 #endif
1557             )) {
1558                 i8254_ticked = 1;
1559                 i8254_offset += timer0_max_count;
1560         }
1561         i8254_lastcount = count;
1562         count += i8254_offset;
1563         CLOCK_UNLOCK();
1564         write_eflags(ef);
1565         return (count);
1566 }
1567
1568 static unsigned
1569 tsc_get_timecount(struct timecounter *tc)
1570 {
1571         return (rdtsc());
1572 }