]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/pc98/cbus/pcrtc.c
This commit was generated by cvs2svn to compensate for changes in r53024,
[FreeBSD/FreeBSD.git] / sys / pc98 / cbus / pcrtc.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * William Jolitz and Don Ahn.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
37  * $FreeBSD$
38  */
39
40 /*
41  * Routines to handle clock hardware.
42  */
43
44 /*
45  * inittodr, settodr and support routines written
46  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47  *
48  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49  */
50
51 /*
52  * modified for PC98 by Kakefuda
53  */
54
55 #include "opt_clock.h"
56 #include "apm.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/time.h>
61 #include <sys/kernel.h>
62 #ifndef SMP
63 #include <sys/lock.h>
64 #endif
65 #include <sys/sysctl.h>
66 #include <sys/cons.h>
67
68 #include <machine/clock.h>
69 #ifdef CLK_CALIBRATION_LOOP
70 #endif
71 #include <machine/cputypes.h>
72 #include <machine/frame.h>
73 #include <machine/ipl.h>
74 #include <machine/limits.h>
75 #include <machine/md_var.h>
76 #include <machine/psl.h>
77 #ifdef APIC_IO
78 #include <machine/segments.h>
79 #endif
80 #if defined(SMP) || defined(APIC_IO)
81 #include <machine/smp.h>
82 #endif /* SMP || APIC_IO */
83 #include <machine/specialreg.h>
84
85 #include <i386/isa/icu.h>
86 #ifdef PC98
87 #include <pc98/pc98/pc98.h>
88 #include <pc98/pc98/pc98_machdep.h>
89 #include <i386/isa/isa_device.h>
90 #else
91 #include <i386/isa/isa.h>
92 #include <isa/rtc.h>
93 #endif
94 #include <i386/isa/timerreg.h>
95
96 #include <i386/isa/intr_machdep.h>
97
98 #include "mca.h"
99 #if NMCA > 0
100 #include <i386/isa/mca_machdep.h>
101 #endif
102
103 #ifdef SMP
104 #define disable_intr()  CLOCK_DISABLE_INTR()
105 #define enable_intr()   CLOCK_ENABLE_INTR()
106
107 #ifdef APIC_IO
108 #include <i386/isa/intr_machdep.h>
109 /* The interrupt triggered by the 8254 (timer) chip */
110 int apic_8254_intr;
111 static u_long read_intr_count __P((int vec));
112 static void setup_8254_mixed_mode __P((void));
113 #endif
114 #endif /* SMP */
115
116 /*
117  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
118  * can use a simple formula for leap years.
119  */
120 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
121 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
122
123 #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
124
125 /*
126  * Time in timer cycles that it takes for microtime() to disable interrupts
127  * and latch the count.  microtime() currently uses "cli; outb ..." so it
128  * normally takes less than 2 timer cycles.  Add a few for cache misses.
129  * Add a few more to allow for latency in bogus calls to microtime() with
130  * interrupts already disabled.
131  */
132 #define TIMER0_LATCH_COUNT      20
133
134 /*
135  * Maximum frequency that we are willing to allow for timer0.  Must be
136  * low enough to guarantee that the timer interrupt handler returns
137  * before the next timer interrupt.
138  */
139 #define TIMER0_MAX_FREQ         20000
140
141 int     adjkerntz;              /* local offset from GMT in seconds */
142 int     clkintr_pending;
143 int     disable_rtc_set;        /* disable resettodr() if != 0 */
144 volatile u_int  idelayed;
145 int     statclock_disable;
146 u_int   stat_imask = SWI_CLOCK_MASK;
147 #ifndef TIMER_FREQ
148 #ifdef PC98
149 #define TIMER_FREQ      2457600;
150 #else /* IBM-PC */
151 #define TIMER_FREQ      1193182;
152 #endif /* PC98 */
153 #endif
154 u_int   timer_freq = TIMER_FREQ;
155 int     timer0_max_count;
156 u_int   tsc_freq;
157 int     tsc_is_broken;
158 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
159
160 static  int     beeping = 0;
161 static  u_int   clk_imask = HWI_MASK | SWI_MASK;
162 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
163 static  u_int   hardclock_max_count;
164 static  u_int32_t i8254_lastcount;
165 static  u_int32_t i8254_offset;
166 static  int     i8254_ticked;
167 /*
168  * XXX new_function and timer_func should not handle clockframes, but
169  * timer_func currently needs to hold hardclock to handle the
170  * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
171  * to switch between clkintr() and a slightly different timerintr().
172  */
173 static  void    (*new_function) __P((struct clockframe *frame));
174 static  u_int   new_rate;
175 #ifndef PC98
176 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
177 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
178 #endif
179 static  u_int   timer0_prescaler_count;
180
181 /* Values for timerX_state: */
182 #define RELEASED        0
183 #define RELEASE_PENDING 1
184 #define ACQUIRED        2
185 #define ACQUIRE_PENDING 3
186
187 static  u_char  timer0_state;
188 #ifdef  PC98
189 static  u_char  timer1_state;
190 #endif
191 static  u_char  timer2_state;
192 static  void    (*timer_func) __P((struct clockframe *frame)) = hardclock;
193 #ifdef PC98
194 static void rtc_serialcombit __P((int));
195 static void rtc_serialcom __P((int));
196 static int rtc_inb __P((void));
197 static void rtc_outb __P((int));
198 #endif
199 static  u_int   tsc_present;
200
201 static  unsigned i8254_get_timecount __P((struct timecounter *tc));
202 static  unsigned tsc_get_timecount __P((struct timecounter *tc));
203 static  void    set_timer_freq(u_int freq, int intr_freq);
204
205 static struct timecounter tsc_timecounter = {
206         tsc_get_timecount,      /* get_timecount */
207         0,                      /* no poll_pps */
208         ~0u,                    /* counter_mask */
209         0,                      /* frequency */
210          "TSC"                  /* name */
211 };
212
213 SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD, 
214         &tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
215
216 static struct timecounter i8254_timecounter = {
217         i8254_get_timecount,    /* get_timecount */
218         0,                      /* no poll_pps */
219         ~0u,                    /* counter_mask */
220         0,                      /* frequency */
221         "i8254"                 /* name */
222 };
223
224 SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD, 
225         &i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
226
227 static void
228 clkintr(struct clockframe frame)
229 {
230         if (timecounter->tc_get_timecount == i8254_get_timecount) {
231                 disable_intr();
232                 if (i8254_ticked)
233                         i8254_ticked = 0;
234                 else {
235                         i8254_offset += timer0_max_count;
236                         i8254_lastcount = 0;
237                 }
238                 clkintr_pending = 0;
239                 enable_intr();
240         }
241         timer_func(&frame);
242         switch (timer0_state) {
243
244         case RELEASED:
245                 setdelayed();
246                 break;
247
248         case ACQUIRED:
249                 if ((timer0_prescaler_count += timer0_max_count)
250                     >= hardclock_max_count) {
251                         timer0_prescaler_count -= hardclock_max_count;
252                         hardclock(&frame);
253                         setdelayed();
254                 }
255                 break;
256
257         case ACQUIRE_PENDING:
258                 disable_intr();
259                 i8254_offset = i8254_get_timecount(NULL);
260                 i8254_lastcount = 0;
261                 timer0_max_count = TIMER_DIV(new_rate);
262                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
263                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
264                 outb(TIMER_CNTR0, timer0_max_count >> 8);
265                 enable_intr();
266                 timer_func = new_function;
267                 timer0_state = ACQUIRED;
268                 setdelayed();
269                 break;
270
271         case RELEASE_PENDING:
272                 if ((timer0_prescaler_count += timer0_max_count)
273                     >= hardclock_max_count) {
274                         disable_intr();
275                         i8254_offset = i8254_get_timecount(NULL);
276                         i8254_lastcount = 0;
277                         timer0_max_count = hardclock_max_count;
278                         outb(TIMER_MODE,
279                              TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
280                         outb(TIMER_CNTR0, timer0_max_count & 0xff);
281                         outb(TIMER_CNTR0, timer0_max_count >> 8);
282                         enable_intr();
283                         timer0_prescaler_count = 0;
284                         timer_func = hardclock;
285                         timer0_state = RELEASED;
286                         hardclock(&frame);
287                         setdelayed();
288                 }
289                 break;
290         }
291 #if NMCA > 0
292         /* Reset clock interrupt by asserting bit 7 of port 0x61 */
293         if (MCA_system)
294                 outb(0x61, inb(0x61) | 0x80);
295 #endif
296 }
297
298 /*
299  * The acquire and release functions must be called at ipl >= splclock().
300  */
301 int
302 acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
303 {
304         static int old_rate;
305
306         if (rate <= 0 || rate > TIMER0_MAX_FREQ)
307                 return (-1);
308         switch (timer0_state) {
309
310         case RELEASED:
311                 timer0_state = ACQUIRE_PENDING;
312                 break;
313
314         case RELEASE_PENDING:
315                 if (rate != old_rate)
316                         return (-1);
317                 /*
318                  * The timer has been released recently, but is being
319                  * re-acquired before the release completed.  In this
320                  * case, we simply reclaim it as if it had not been
321                  * released at all.
322                  */
323                 timer0_state = ACQUIRED;
324                 break;
325
326         default:
327                 return (-1);    /* busy */
328         }
329         new_function = function;
330         old_rate = new_rate = rate;
331         return (0);
332 }
333
334 #ifdef PC98
335 int
336 acquire_timer1(int mode)
337 {
338
339         if (timer1_state != RELEASED)
340                 return (-1);
341         timer1_state = ACQUIRED;
342
343         /*
344          * This access to the timer registers is as atomic as possible
345          * because it is a single instruction.  We could do better if we
346          * knew the rate.  Use of splclock() limits glitches to 10-100us,
347          * and this is probably good enough for timer2, so we aren't as
348          * careful with it as with timer0.
349          */
350         outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
351
352         return (0);
353 }
354 #endif
355
356 int
357 acquire_timer2(int mode)
358 {
359
360         if (timer2_state != RELEASED)
361                 return (-1);
362         timer2_state = ACQUIRED;
363
364         /*
365          * This access to the timer registers is as atomic as possible
366          * because it is a single instruction.  We could do better if we
367          * knew the rate.  Use of splclock() limits glitches to 10-100us,
368          * and this is probably good enough for timer2, so we aren't as
369          * careful with it as with timer0.
370          */
371         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
372
373         return (0);
374 }
375
376 int
377 release_timer0()
378 {
379         switch (timer0_state) {
380
381         case ACQUIRED:
382                 timer0_state = RELEASE_PENDING;
383                 break;
384
385         case ACQUIRE_PENDING:
386                 /* Nothing happened yet, release quickly. */
387                 timer0_state = RELEASED;
388                 break;
389
390         default:
391                 return (-1);
392         }
393         return (0);
394 }
395
396 #ifdef PC98
397 int
398 release_timer1()
399 {
400
401         if (timer1_state != ACQUIRED)
402                 return (-1);
403         timer1_state = RELEASED;
404         outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
405         return (0);
406 }
407 #endif
408
409 int
410 release_timer2()
411 {
412
413         if (timer2_state != ACQUIRED)
414                 return (-1);
415         timer2_state = RELEASED;
416         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
417         return (0);
418 }
419
420 #ifndef PC98
421 /*
422  * This routine receives statistical clock interrupts from the RTC.
423  * As explained above, these occur at 128 interrupts per second.
424  * When profiling, we receive interrupts at a rate of 1024 Hz.
425  *
426  * This does not actually add as much overhead as it sounds, because
427  * when the statistical clock is active, the hardclock driver no longer
428  * needs to keep (inaccurate) statistics on its own.  This decouples
429  * statistics gathering from scheduling interrupts.
430  *
431  * The RTC chip requires that we read status register C (RTC_INTR)
432  * to acknowledge an interrupt, before it will generate the next one.
433  * Under high interrupt load, rtcintr() can be indefinitely delayed and
434  * the clock can tick immediately after the read from RTC_INTR.  In this
435  * case, the mc146818A interrupt signal will not drop for long enough
436  * to register with the 8259 PIC.  If an interrupt is missed, the stat
437  * clock will halt, considerably degrading system performance.  This is
438  * why we use 'while' rather than a more straightforward 'if' below.
439  * Stat clock ticks can still be lost, causing minor loss of accuracy
440  * in the statistics, but the stat clock will no longer stop.
441  */
442 static void
443 rtcintr(struct clockframe frame)
444 {
445         while (rtcin(RTC_INTR) & RTCIR_PERIOD)
446                 statclock(&frame);
447 }
448
449 #include "opt_ddb.h"
450 #ifdef DDB
451 #include <ddb/ddb.h>
452
453 DB_SHOW_COMMAND(rtc, rtc)
454 {
455         printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
456                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
457                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
458                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
459 }
460 #endif /* DDB */
461 #endif /* for PC98 */
462
463 static int
464 getit(void)
465 {
466         u_long ef;
467         int high, low;
468
469         ef = read_eflags();
470         disable_intr();
471
472         /* Select timer0 and latch counter value. */
473         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
474
475         low = inb(TIMER_CNTR0);
476         high = inb(TIMER_CNTR0);
477
478         CLOCK_UNLOCK();
479         write_eflags(ef);
480         return ((high << 8) | low);
481 }
482
483 /*
484  * Wait "n" microseconds.
485  * Relies on timer 1 counting down from (timer_freq / hz)
486  * Note: timer had better have been programmed before this is first used!
487  */
488 void
489 DELAY(int n)
490 {
491         int delta, prev_tick, tick, ticks_left;
492
493 #ifdef DELAYDEBUG
494         int getit_calls = 1;
495         int n1;
496         static int state = 0;
497
498         if (state == 0) {
499                 state = 1;
500                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
501                         DELAY(n1);
502                 state = 2;
503         }
504         if (state == 1)
505                 printf("DELAY(%d)...", n);
506 #endif
507         /*
508          * Guard against the timer being uninitialized if we are called
509          * early for console i/o.
510          */
511         if (timer0_max_count == 0)
512                 set_timer_freq(timer_freq, hz);
513
514         /*
515          * Read the counter first, so that the rest of the setup overhead is
516          * counted.  Guess the initial overhead is 20 usec (on most systems it
517          * takes about 1.5 usec for each of the i/o's in getit().  The loop
518          * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
519          * multiplications and divisions to scale the count take a while).
520          */
521         prev_tick = getit();
522         n -= 0;                 /* XXX actually guess no initial overhead */
523         /*
524          * Calculate (n * (timer_freq / 1e6)) without using floating point
525          * and without any avoidable overflows.
526          */
527         if (n <= 0)
528                 ticks_left = 0;
529         else if (n < 256)
530                 /*
531                  * Use fixed point to avoid a slow division by 1000000.
532                  * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
533                  * 2^15 is the first power of 2 that gives exact results
534                  * for n between 0 and 256.
535                  */
536                 ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
537         else
538                 /*
539                  * Don't bother using fixed point, although gcc-2.7.2
540                  * generates particularly poor code for the long long
541                  * division, since even the slow way will complete long
542                  * before the delay is up (unless we're interrupted).
543                  */
544                 ticks_left = ((u_int)n * (long long)timer_freq + 999999)
545                              / 1000000;
546
547         while (ticks_left > 0) {
548                 tick = getit();
549 #ifdef DELAYDEBUG
550                 ++getit_calls;
551 #endif
552                 delta = prev_tick - tick;
553                 prev_tick = tick;
554                 if (delta < 0) {
555                         delta += timer0_max_count;
556                         /*
557                          * Guard against timer0_max_count being wrong.
558                          * This shouldn't happen in normal operation,
559                          * but it may happen if set_timer_freq() is
560                          * traced.
561                          */
562                         if (delta < 0)
563                                 delta = 0;
564                 }
565                 ticks_left -= delta;
566         }
567 #ifdef DELAYDEBUG
568         if (state == 1)
569                 printf(" %d calls to getit() at %d usec each\n",
570                        getit_calls, (n + 5) / getit_calls);
571 #endif
572 }
573
574 static void
575 sysbeepstop(void *chan)
576 {
577 #ifdef PC98     /* PC98 */
578         outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
579         release_timer1();
580 #else
581         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
582         release_timer2();
583 #endif
584         beeping = 0;
585 }
586
587 int
588 sysbeep(int pitch, int period)
589 {
590         int x = splclock();
591
592 #ifdef PC98
593         if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
594                 if (!beeping) {
595                         /* Something else owns it. */
596                         splx(x);
597                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
598                 }
599         disable_intr();
600         outb(0x3fdb, pitch);
601         outb(0x3fdb, (pitch>>8));
602         enable_intr();
603         if (!beeping) {
604                 /* enable counter1 output to speaker */
605                 outb(IO_PPI, (inb(IO_PPI) & 0xf7));
606                 beeping = period;
607                 timeout(sysbeepstop, (void *)NULL, period);
608         }
609 #else
610         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
611                 if (!beeping) {
612                         /* Something else owns it. */
613                         splx(x);
614                         return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
615                 }
616         disable_intr();
617         outb(TIMER_CNTR2, pitch);
618         outb(TIMER_CNTR2, (pitch>>8));
619         enable_intr();
620         if (!beeping) {
621                 /* enable counter2 output to speaker */
622                 outb(IO_PPI, inb(IO_PPI) | 3);
623                 beeping = period;
624                 timeout(sysbeepstop, (void *)NULL, period);
625         }
626 #endif
627         splx(x);
628         return (0);
629 }
630
631 #ifndef PC98
632 /*
633  * RTC support routines
634  */
635
636 int
637 rtcin(reg)
638         int reg;
639 {
640         u_char val;
641
642         outb(IO_RTC, reg);
643         inb(0x84);
644         val = inb(IO_RTC + 1);
645         inb(0x84);
646         return (val);
647 }
648
649 static __inline void
650 writertc(u_char reg, u_char val)
651 {
652         inb(0x84);
653         outb(IO_RTC, reg);
654         inb(0x84);
655         outb(IO_RTC + 1, val);
656         inb(0x84);              /* XXX work around wrong order in rtcin() */
657 }
658
659 static __inline int
660 readrtc(int port)
661 {
662         return(bcd2bin(rtcin(port)));
663 }
664 #endif
665
666 #ifdef PC98
667 unsigned int delaycount;
668 #define FIRST_GUESS     0x2000
669 static void findcpuspeed(void)
670 {
671         int i;
672         int remainder;
673
674         /* Put counter in count down mode */
675         outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
676         outb(TIMER_CNTR0, 0xff);
677         outb(TIMER_CNTR0, 0xff);
678         for (i = FIRST_GUESS; i; i--)
679                 ;
680         remainder = getit();
681         delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
682 }
683 #endif
684
685 #ifdef PC98
686 static u_int
687 calibrate_clocks(void)
688 {
689         int     timeout;
690         u_int   count, prev_count, tot_count;
691         u_short sec, start_sec;
692
693         if (bootverbose)
694                 printf("Calibrating clock(s) ... ");
695         /* Check ARTIC. */
696         if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
697             !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
698                 goto fail;
699         timeout = 100000000;
700
701         /* Read the ARTIC. */
702         sec = inw(0x5e);
703
704         /* Wait for the ARTIC to changes. */
705         start_sec = sec;
706         for (;;) {
707                 sec = inw(0x5e);
708                 if (sec != start_sec)
709                         break;
710                 if (--timeout == 0)
711                         goto fail;
712         }
713         prev_count = getit();
714         if (prev_count == 0 || prev_count > timer0_max_count)
715                 goto fail;
716         tot_count = 0;
717
718         if (tsc_present) 
719                 wrmsr(0x10, 0LL);       /* XXX 0x10 is the MSR for the TSC */
720         start_sec = sec;
721         for (;;) {
722                 sec = inw(0x5e);
723                 count = getit();
724                 if (count == 0 || count > timer0_max_count)
725                         goto fail;
726                 if (count > prev_count)
727                         tot_count += prev_count - (count - timer0_max_count);
728                 else
729                         tot_count += prev_count - count;
730                 prev_count = count;
731                 if ((sec == start_sec + 1200) ||
732                     (sec < start_sec &&
733                         (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
734                         break;
735                 if (--timeout == 0)
736                         goto fail;
737         }
738         /*
739          * Read the cpu cycle counter.  The timing considerations are
740          * similar to those for the i8254 clock.
741          */
742         if (tsc_present) 
743                 tsc_freq = rdtsc();
744
745         if (bootverbose) {
746                 if (tsc_present)
747                         printf("TSC clock: %u Hz, ", tsc_freq);
748                 printf("i8254 clock: %u Hz\n", tot_count);
749         }
750         return (tot_count);
751
752 fail:
753         if (bootverbose)
754                 printf("failed, using default i8254 clock of %u Hz\n",
755                        timer_freq);
756         return (timer_freq);
757 }
758 #else
759 static u_int
760 calibrate_clocks(void)
761 {
762         u_int64_t old_tsc;
763         u_int count, prev_count, tot_count;
764         int sec, start_sec, timeout;
765
766         if (bootverbose)
767                 printf("Calibrating clock(s) ... ");
768         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
769                 goto fail;
770         timeout = 100000000;
771
772         /* Read the mc146818A seconds counter. */
773         for (;;) {
774                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
775                         sec = rtcin(RTC_SEC);
776                         break;
777                 }
778                 if (--timeout == 0)
779                         goto fail;
780         }
781
782         /* Wait for the mC146818A seconds counter to change. */
783         start_sec = sec;
784         for (;;) {
785                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
786                         sec = rtcin(RTC_SEC);
787                         if (sec != start_sec)
788                                 break;
789                 }
790                 if (--timeout == 0)
791                         goto fail;
792         }
793
794         /* Start keeping track of the i8254 counter. */
795         prev_count = getit();
796         if (prev_count == 0 || prev_count > timer0_max_count)
797                 goto fail;
798         tot_count = 0;
799
800         if (tsc_present) 
801                 old_tsc = rdtsc();
802         else
803                 old_tsc = 0;            /* shut up gcc */
804
805         /*
806          * Wait for the mc146818A seconds counter to change.  Read the i8254
807          * counter for each iteration since this is convenient and only
808          * costs a few usec of inaccuracy. The timing of the final reads
809          * of the counters almost matches the timing of the initial reads,
810          * so the main cause of inaccuracy is the varying latency from 
811          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
812          * rtcin(RTC_SEC) that returns a changed seconds count.  The
813          * maximum inaccuracy from this cause is < 10 usec on 486's.
814          */
815         start_sec = sec;
816         for (;;) {
817                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
818                         sec = rtcin(RTC_SEC);
819                 count = getit();
820                 if (count == 0 || count > timer0_max_count)
821                         goto fail;
822                 if (count > prev_count)
823                         tot_count += prev_count - (count - timer0_max_count);
824                 else
825                         tot_count += prev_count - count;
826                 prev_count = count;
827                 if (sec != start_sec)
828                         break;
829                 if (--timeout == 0)
830                         goto fail;
831         }
832
833         /*
834          * Read the cpu cycle counter.  The timing considerations are
835          * similar to those for the i8254 clock.
836          */
837         if (tsc_present) 
838                 tsc_freq = rdtsc() - old_tsc;
839
840         if (bootverbose) {
841                 if (tsc_present)
842                         printf("TSC clock: %u Hz, ", tsc_freq);
843                 printf("i8254 clock: %u Hz\n", tot_count);
844         }
845         return (tot_count);
846
847 fail:
848         if (bootverbose)
849                 printf("failed, using default i8254 clock of %u Hz\n",
850                        timer_freq);
851         return (timer_freq);
852 }
853 #endif  /* !PC98 */
854
855 static void
856 set_timer_freq(u_int freq, int intr_freq)
857 {
858         u_long ef;
859         int new_timer0_max_count;
860
861         ef = read_eflags();
862         disable_intr();
863         timer_freq = freq;
864         new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
865         if (new_timer0_max_count != timer0_max_count) {
866                 timer0_max_count = new_timer0_max_count;
867                 outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
868                 outb(TIMER_CNTR0, timer0_max_count & 0xff);
869                 outb(TIMER_CNTR0, timer0_max_count >> 8);
870         }
871         CLOCK_UNLOCK();
872         write_eflags(ef);
873 }
874
875 /*
876  * i8254_restore is called from apm_default_resume() to reload
877  * the countdown register.
878  * this should not be necessary but there are broken laptops that
879  * do not restore the countdown register on resume.
880  * when it happnes, it messes up the hardclock interval and system clock,
881  * which leads to the infamous "calcru: negative time" problem.
882  */
883 void
884 i8254_restore(void)
885 {
886         u_long ef;
887
888         ef = read_eflags();
889         disable_intr();
890         outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
891         outb(TIMER_CNTR0, timer0_max_count & 0xff);
892         outb(TIMER_CNTR0, timer0_max_count >> 8);
893         CLOCK_UNLOCK();
894         write_eflags(ef);
895 }
896
897 /*
898  * Initialize 8254 timer 0 early so that it can be used in DELAY().
899  * XXX initialization of other timers is unintentionally left blank.
900  */
901 void
902 startrtclock()
903 {
904         u_int delta, freq;
905
906 #ifdef PC98
907         findcpuspeed();
908         if (pc98_machine_type & M_8M)
909                 timer_freq = 1996800L; /* 1.9968 MHz */
910         else
911                 timer_freq = 2457600L; /* 2.4576 MHz */
912 #endif /* PC98 */
913
914         if (cpu_feature & CPUID_TSC)
915                 tsc_present = 1;
916         else
917                 tsc_present = 0;
918
919 #ifndef PC98
920         writertc(RTC_STATUSA, rtc_statusa);
921         writertc(RTC_STATUSB, RTCSB_24HR);
922 #endif
923
924         set_timer_freq(timer_freq, hz);
925         freq = calibrate_clocks();
926 #ifdef CLK_CALIBRATION_LOOP
927         if (bootverbose) {
928                 printf(
929                 "Press a key on the console to abort clock calibration\n");
930                 while (cncheckc() == -1)
931                         calibrate_clocks();
932         }
933 #endif
934
935         /*
936          * Use the calibrated i8254 frequency if it seems reasonable.
937          * Otherwise use the default, and don't use the calibrated i586
938          * frequency.
939          */
940         delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
941         if (delta < timer_freq / 100) {
942 #ifndef CLK_USE_I8254_CALIBRATION
943                 if (bootverbose)
944                         printf(
945 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
946                 freq = timer_freq;
947 #endif
948                 timer_freq = freq;
949         } else {
950                 if (bootverbose)
951                         printf(
952                     "%d Hz differs from default of %d Hz by more than 1%%\n",
953                                freq, timer_freq);
954                 tsc_freq = 0;
955         }
956
957         set_timer_freq(timer_freq, hz);
958         i8254_timecounter.tc_frequency = timer_freq;
959         init_timecounter(&i8254_timecounter);
960
961 #ifndef CLK_USE_TSC_CALIBRATION
962         if (tsc_freq != 0) {
963                 if (bootverbose)
964                         printf(
965 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
966                 tsc_freq = 0;
967         }
968 #endif
969         if (tsc_present && tsc_freq == 0) {
970                 /*
971                  * Calibration of the i586 clock relative to the mc146818A
972                  * clock failed.  Do a less accurate calibration relative
973                  * to the i8254 clock.
974                  */
975                 u_int64_t old_tsc = rdtsc();
976
977                 DELAY(1000000);
978                 tsc_freq = rdtsc() - old_tsc;
979 #ifdef CLK_USE_TSC_CALIBRATION
980                 if (bootverbose)
981                         printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
982 #endif
983         }
984
985 #if !defined(SMP)
986         /*
987          * We can not use the TSC in SMP mode, until we figure out a
988          * cheap (impossible), reliable and precise (yeah right!)  way
989          * to synchronize the TSCs of all the CPUs.
990          * Curse Intel for leaving the counter out of the I/O APIC.
991          */
992
993 #if NAPM > 0
994         /*
995          * We can not use the TSC if we support APM. Precise timekeeping
996          * on an APM'ed machine is at best a fools pursuit, since 
997          * any and all of the time spent in various SMM code can't 
998          * be reliably accounted for.  Reading the RTC is your only
999          * source of reliable time info.  The i8254 looses too of course
1000          * but we need to have some kind of time...
1001          * We don't know at this point whether APM is going to be used
1002          * or not, nor when it might be activated.  Play it safe.
1003          */
1004         return;
1005 #endif /* NAPM > 0 */
1006
1007         if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1008                 tsc_timecounter.tc_frequency = tsc_freq;
1009                 init_timecounter(&tsc_timecounter);
1010         }
1011
1012 #endif /* !defined(SMP) */
1013 }
1014
1015 #ifdef PC98
1016 static void
1017 rtc_serialcombit(int i)
1018 {
1019         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1020         DELAY(1);
1021         outb(IO_RTC, ((i&0x01)<<5)|0x17);
1022         DELAY(1);
1023         outb(IO_RTC, ((i&0x01)<<5)|0x07);
1024         DELAY(1);
1025 }
1026
1027 static void
1028 rtc_serialcom(int i)
1029 {
1030         rtc_serialcombit(i&0x01);
1031         rtc_serialcombit((i&0x02)>>1);
1032         rtc_serialcombit((i&0x04)>>2);
1033         rtc_serialcombit((i&0x08)>>3);
1034         outb(IO_RTC, 0x07);
1035         DELAY(1);
1036         outb(IO_RTC, 0x0f);
1037         DELAY(1);
1038         outb(IO_RTC, 0x07);
1039         DELAY(1);
1040 }
1041
1042 static void
1043 rtc_outb(int val)
1044 {
1045         int s;
1046         int sa = 0;
1047
1048         for (s=0;s<8;s++) {
1049             sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1050             outb(IO_RTC, sa);           /* set DI & CLK 0 */
1051             DELAY(1);
1052             outb(IO_RTC, sa | 0x10);    /* CLK 1 */
1053             DELAY(1);
1054         }
1055         outb(IO_RTC, sa & 0xef);        /* CLK 0 */
1056 }
1057
1058 static int
1059 rtc_inb(void)
1060 {
1061         int s;
1062         int sa = 0;
1063
1064         for (s=0;s<8;s++) {
1065             sa |= ((inb(0x33) & 0x01) << s);
1066             outb(IO_RTC, 0x17); /* CLK 1 */
1067             DELAY(1);
1068             outb(IO_RTC, 0x07); /* CLK 0 */
1069             DELAY(2);
1070         }
1071         return sa;
1072 }
1073 #endif /* PC-98 */
1074
1075 /*
1076  * Initialize the time of day register, based on the time base which is, e.g.
1077  * from a filesystem.
1078  */
1079 void
1080 inittodr(time_t base)
1081 {
1082         unsigned long   sec, days;
1083 #ifndef PC98
1084         int             yd;
1085 #endif
1086         int             year, month;
1087         int             y, m, s;
1088         struct timespec ts;
1089 #ifdef PC98
1090         int             second, min, hour;
1091 #endif
1092
1093         if (base) {
1094                 s = splclock();
1095                 ts.tv_sec = base;
1096                 ts.tv_nsec = 0;
1097                 set_timecounter(&ts);
1098                 splx(s);
1099         }
1100
1101 #ifdef PC98
1102         rtc_serialcom(0x03);    /* Time Read */
1103         rtc_serialcom(0x01);    /* Register shift command. */
1104         DELAY(20);
1105
1106         second = bcd2bin(rtc_inb() & 0xff);     /* sec */
1107         min = bcd2bin(rtc_inb() & 0xff);        /* min */
1108         hour = bcd2bin(rtc_inb() & 0xff);       /* hour */
1109         days = bcd2bin(rtc_inb() & 0xff) - 1;   /* date */
1110
1111         month = (rtc_inb() >> 4) & 0x0f;        /* month */
1112         for (m = 1; m < month; m++)
1113                 days += daysinmonth[m-1];
1114         year = bcd2bin(rtc_inb() & 0xff) + 1900;        /* year */
1115         /* 2000 year problem */
1116         if (year < 1995)
1117                 year += 100;
1118         if (year < 1970)
1119                 goto wrong_time;
1120         for (y = 1970; y < year; y++)
1121                 days += DAYSPERYEAR + LEAPYEAR(y);
1122         if ((month > 2) && LEAPYEAR(year))
1123                 days ++;
1124         sec = ((( days * 24 +
1125                   hour) * 60 +
1126                   min) * 60 +
1127                   second);
1128         /* sec now contains the number of seconds, since Jan 1 1970,
1129            in the local time zone */
1130 #else   /* IBM-PC */
1131         /* Look if we have a RTC present and the time is valid */
1132         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1133                 goto wrong_time;
1134
1135         /* wait for time update to complete */
1136         /* If RTCSA_TUP is zero, we have at least 244us before next update */
1137         while (rtcin(RTC_STATUSA) & RTCSA_TUP);
1138
1139         days = 0;
1140 #ifdef USE_RTC_CENTURY
1141         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1142 #else
1143         year = readrtc(RTC_YEAR) + 1900;
1144         if (year < 1970)
1145                 year += 100;
1146 #endif
1147         if (year < 1970)
1148                 goto wrong_time;
1149         month = readrtc(RTC_MONTH);
1150         for (m = 1; m < month; m++)
1151                 days += daysinmonth[m-1];
1152         if ((month > 2) && LEAPYEAR(year))
1153                 days ++;
1154         days += readrtc(RTC_DAY) - 1;
1155         yd = days;
1156         for (y = 1970; y < year; y++)
1157                 days += DAYSPERYEAR + LEAPYEAR(y);
1158         sec = ((( days * 24 +
1159                   readrtc(RTC_HRS)) * 60 +
1160                   readrtc(RTC_MIN)) * 60 +
1161                   readrtc(RTC_SEC));
1162         /* sec now contains the number of seconds, since Jan 1 1970,
1163            in the local time zone */
1164 #endif
1165
1166         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1167
1168         y = time_second - sec;
1169         if (y <= -2 || y >= 2) {
1170                 /* badly off, adjust it */
1171                 s = splclock();
1172                 ts.tv_sec = sec;
1173                 ts.tv_nsec = 0;
1174                 set_timecounter(&ts);
1175                 splx(s);
1176         }
1177         return;
1178
1179 wrong_time:
1180         printf("Invalid time in real time clock.\n");
1181         printf("Check and reset the date immediately!\n");
1182 }
1183
1184 /*
1185  * Write system time back to RTC
1186  */
1187 void
1188 resettodr()
1189 {
1190         unsigned long   tm;
1191         int             y, m, s;
1192 #ifdef PC98
1193         int             wd;
1194 #endif
1195
1196         if (disable_rtc_set)
1197                 return;
1198
1199         s = splclock();
1200         tm = time_second;
1201         splx(s);
1202
1203 #ifdef PC98
1204         rtc_serialcom(0x01);    /* Register shift command. */
1205
1206         /* Calculate local time to put in RTC */
1207
1208         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1209
1210         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Seconds */
1211         rtc_outb(bin2bcd(tm%60)); tm /= 60;     /* Write back Minutes */
1212         rtc_outb(bin2bcd(tm%24)); tm /= 24;     /* Write back Hours   */
1213
1214         /* We have now the days since 01-01-1970 in tm */
1215         wd = (tm+4)%7;
1216         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1217              tm >= m;
1218              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1219              tm -= m;
1220
1221         /* Now we have the years in y and the day-of-the-year in tm */
1222         for (m = 0; ; m++) {
1223                 int ml;
1224
1225                 ml = daysinmonth[m];
1226                 if (m == 1 && LEAPYEAR(y))
1227                         ml++;
1228                 if (tm < ml)
1229                         break;
1230                 tm -= ml;
1231         }
1232
1233         m++;
1234         rtc_outb(bin2bcd(tm+1));                /* Write back Day     */
1235         rtc_outb((m << 4) | wd);                /* Write back Month & Weekday  */
1236         rtc_outb(bin2bcd(y%100));               /* Write back Year    */
1237
1238         rtc_serialcom(0x02);    /* Time set & Counter hold command. */
1239         rtc_serialcom(0x00);    /* Register hold command. */
1240 #else
1241         /* Disable RTC updates and interrupts. */
1242         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1243
1244         /* Calculate local time to put in RTC */
1245
1246         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1247
1248         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
1249         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
1250         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
1251
1252         /* We have now the days since 01-01-1970 in tm */
1253         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
1254         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1255              tm >= m;
1256              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1257              tm -= m;
1258
1259         /* Now we have the years in y and the day-of-the-year in tm */
1260         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
1261 #ifdef USE_RTC_CENTURY
1262         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
1263 #endif
1264         for (m = 0; ; m++) {
1265                 int ml;
1266
1267                 ml = daysinmonth[m];
1268                 if (m == 1 && LEAPYEAR(y))
1269                         ml++;
1270                 if (tm < ml)
1271                         break;
1272                 tm -= ml;
1273         }
1274
1275         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1276         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1277
1278         /* Reenable RTC updates and interrupts. */
1279         writertc(RTC_STATUSB, rtc_statusb);
1280 #endif
1281 }
1282
1283
1284 /*
1285  * Start both clocks running.
1286  */
1287 void
1288 cpu_initclocks()
1289 {
1290 #ifdef APIC_IO
1291         int apic_8254_trial;
1292         struct intrec *clkdesc;
1293 #endif /* APIC_IO */
1294 #ifndef PC98
1295         int diag;
1296
1297         if (statclock_disable) {
1298                 /*
1299                  * The stat interrupt mask is different without the
1300                  * statistics clock.  Also, don't set the interrupt
1301                  * flag which would normally cause the RTC to generate
1302                  * interrupts.
1303                  */
1304                 stat_imask = HWI_MASK | SWI_MASK;
1305                 rtc_statusb = RTCSB_24HR;
1306         } else {
1307                 /* Setting stathz to nonzero early helps avoid races. */
1308                 stathz = RTC_NOPROFRATE;
1309                 profhz = RTC_PROFRATE;
1310         }
1311 #endif
1312
1313         /* Finish initializing 8253 timer 0. */
1314 #ifdef APIC_IO
1315
1316         apic_8254_intr = isa_apic_irq(0);
1317         apic_8254_trial = 0;
1318         if (apic_8254_intr >= 0 ) {
1319                 if (apic_int_type(0, 0) == 3)
1320                         apic_8254_trial = 1;
1321         } else {
1322                 /* look for ExtInt on pin 0 */
1323                 if (apic_int_type(0, 0) == 3) {
1324                         apic_8254_intr = 0;
1325                         setup_8254_mixed_mode();
1326                 } else 
1327                         panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1328         }
1329
1330         clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
1331                               NULL, &clk_imask, INTR_EXCL);
1332         INTREN(1 << apic_8254_intr);
1333         
1334 #else /* APIC_IO */
1335
1336         inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
1337                     INTR_EXCL);
1338         INTREN(IRQ0);
1339
1340 #endif /* APIC_IO */
1341
1342 #ifndef PC98
1343         /* Initialize RTC. */
1344         writertc(RTC_STATUSA, rtc_statusa);
1345         writertc(RTC_STATUSB, RTCSB_24HR);
1346
1347         /* Don't bother enabling the statistics clock. */
1348         if (statclock_disable)
1349                 return;
1350         diag = rtcin(RTC_DIAG);
1351         if (diag != 0)
1352                 printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1353
1354 #ifdef APIC_IO
1355         if (isa_apic_irq(8) != 8)
1356                 panic("APIC RTC != 8");
1357 #endif /* APIC_IO */
1358
1359         inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1360                     INTR_EXCL);
1361
1362 #ifdef APIC_IO
1363         INTREN(APIC_IRQ8);
1364 #else
1365         INTREN(IRQ8);
1366 #endif /* APIC_IO */
1367
1368         writertc(RTC_STATUSB, rtc_statusb);
1369 #endif /* !PC98 */
1370
1371 #ifdef APIC_IO
1372         if (apic_8254_trial) {
1373                 
1374                 printf("APIC_IO: Testing 8254 interrupt delivery\n");
1375                 while (read_intr_count(8) < 6)
1376                         ;       /* nothing */
1377                 if (read_intr_count(apic_8254_intr) < 3) {
1378                         /* 
1379                          * The MP table is broken.
1380                          * The 8254 was not connected to the specified pin
1381                          * on the IO APIC.
1382                          * Workaround: Limited variant of mixed mode.
1383                          */
1384                         INTRDIS(1 << apic_8254_intr);
1385                         inthand_remove(clkdesc);
1386                         printf("APIC_IO: Broken MP table detected: "
1387                                "8254 is not connected to IO APIC int pin %d\n",
1388                                apic_8254_intr);
1389                         
1390                         apic_8254_intr = 0;
1391                         setup_8254_mixed_mode();
1392                         inthand_add("clk", apic_8254_intr,(inthand2_t *)clkintr,
1393                                     NULL, &clk_imask, INTR_EXCL);
1394                         INTREN(1 << apic_8254_intr);
1395                 }
1396                 
1397         }
1398         if (apic_8254_intr)
1399                 printf("APIC_IO: routing 8254 via pin %d\n",apic_8254_intr);
1400         else
1401                 printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1402 #endif
1403         
1404 }
1405
1406 #ifdef APIC_IO
1407 static u_long
1408 read_intr_count(int vec)
1409 {
1410         u_long *up;
1411         up = intr_countp[vec];
1412         if (up)
1413                 return *up;
1414         return 0UL;
1415 }
1416
1417 static void 
1418 setup_8254_mixed_mode()
1419 {
1420         /*
1421          * Allow 8254 timer to INTerrupt 8259:
1422          *  re-initialize master 8259:
1423          *   reset; prog 4 bytes, single ICU, edge triggered
1424          */
1425         outb(IO_ICU1, 0x13);
1426 #ifdef PC98
1427         outb(IO_ICU1 + 2, NRSVIDT);     /* start vector (unused) */
1428         outb(IO_ICU1 + 2, 0x00);        /* ignore slave */
1429         outb(IO_ICU1 + 2, 0x03);        /* auto EOI, 8086 */
1430         outb(IO_ICU1 + 2, 0xfe);        /* unmask INT0 */
1431 #else
1432         outb(IO_ICU1 + 1, NRSVIDT);     /* start vector (unused) */
1433         outb(IO_ICU1 + 1, 0x00);        /* ignore slave */
1434         outb(IO_ICU1 + 1, 0x03);        /* auto EOI, 8086 */
1435         outb(IO_ICU1 + 1, 0xfe);        /* unmask INT0 */
1436 #endif  
1437         /* program IO APIC for type 3 INT on INT0 */
1438         if (ext_int_setup(0, 0) < 0)
1439                 panic("8254 redirect via APIC pin0 impossible!");
1440 }
1441 #endif
1442
1443 void
1444 setstatclockrate(int newhz)
1445 {
1446 #ifndef PC98
1447         if (newhz == RTC_PROFRATE)
1448                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1449         else
1450                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1451         writertc(RTC_STATUSA, rtc_statusa);
1452 #endif
1453 }
1454
1455 static int
1456 sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1457 {
1458         int error;
1459         u_int freq;
1460
1461         /*
1462          * Use `i8254' instead of `timer' in external names because `timer'
1463          * is is too generic.  Should use it everywhere.
1464          */
1465         freq = timer_freq;
1466         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1467         if (error == 0 && req->newptr != NULL) {
1468                 if (timer0_state != RELEASED)
1469                         return (EBUSY); /* too much trouble to handle */
1470                 set_timer_freq(freq, hz);
1471                 i8254_timecounter.tc_frequency = freq;
1472                 update_timecounter(&i8254_timecounter);
1473         }
1474         return (error);
1475 }
1476
1477 SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1478     0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1479
1480 static int
1481 sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1482 {
1483         int error;
1484         u_int freq;
1485
1486         if (tsc_timecounter.tc_frequency == 0)
1487                 return (EOPNOTSUPP);
1488         freq = tsc_freq;
1489         error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1490         if (error == 0 && req->newptr != NULL) {
1491                 tsc_freq = freq;
1492                 tsc_timecounter.tc_frequency = tsc_freq;
1493                 update_timecounter(&tsc_timecounter);
1494         }
1495         return (error);
1496 }
1497
1498 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1499     0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1500
1501 static unsigned
1502 i8254_get_timecount(struct timecounter *tc)
1503 {
1504         u_int count;
1505         u_long ef;
1506         u_int high, low;
1507
1508         ef = read_eflags();
1509         disable_intr();
1510
1511         /* Select timer0 and latch counter value. */
1512         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1513
1514         low = inb(TIMER_CNTR0);
1515         high = inb(TIMER_CNTR0);
1516         count = timer0_max_count - ((high << 8) | low);
1517         if (count < i8254_lastcount ||
1518             (!i8254_ticked && (clkintr_pending ||
1519             ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1520 #ifdef APIC_IO
1521 #define lapic_irr1      ((volatile u_int *)&lapic)[0x210 / 4]   /* XXX XXX */
1522             /* XXX this assumes that apic_8254_intr is < 24. */
1523             (lapic_irr1 & (1 << apic_8254_intr))))
1524 #else
1525             (inb(IO_ICU1) & 1)))
1526 #endif
1527             )) {
1528                 i8254_ticked = 1;
1529                 i8254_offset += timer0_max_count;
1530         }
1531         i8254_lastcount = count;
1532         count += i8254_offset;
1533         CLOCK_UNLOCK();
1534         write_eflags(ef);
1535         return (count);
1536 }
1537
1538 static unsigned
1539 tsc_get_timecount(struct timecounter *tc)
1540 {
1541         return (rdtsc());
1542 }