]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/pci/if_rl.c
Merge OpenBSM 1.1 alpha 2 from the OpenBSM vendor branch to head, both
[FreeBSD/FreeBSD.git] / sys / pci / if_rl.c
1 /*-
2  * Copyright (c) 1997, 1998
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 /*
48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49  * probably the worst PCI ethernet controller ever made, with the possible
50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51  * DMA, but it has a terrible interface that nullifies any performance
52  * gains that bus-master DMA usually offers.
53  *
54  * For transmission, the chip offers a series of four TX descriptor
55  * registers. Each transmit frame must be in a contiguous buffer, aligned
56  * on a longword (32-bit) boundary. This means we almost always have to
57  * do mbuf copies in order to transmit a frame, except in the unlikely
58  * case where a) the packet fits into a single mbuf, and b) the packet
59  * is 32-bit aligned within the mbuf's data area. The presence of only
60  * four descriptor registers means that we can never have more than four
61  * packets queued for transmission at any one time.
62  *
63  * Reception is not much better. The driver has to allocate a single large
64  * buffer area (up to 64K in size) into which the chip will DMA received
65  * frames. Because we don't know where within this region received packets
66  * will begin or end, we have no choice but to copy data from the buffer
67  * area into mbufs in order to pass the packets up to the higher protocol
68  * levels.
69  *
70  * It's impossible given this rotten design to really achieve decent
71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72  * some equally overmuscled CPU to drive it.
73  *
74  * On the bright side, the 8139 does have a built-in PHY, although
75  * rather than using an MDIO serial interface like most other NICs, the
76  * PHY registers are directly accessible through the 8139's register
77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78  * filter.
79  *
80  * The 8129 chip is an older version of the 8139 that uses an external PHY
81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
82  * the 8139 lets you directly access the on-board PHY registers. We need
83  * to select which interface to use depending on the chip type.
84  */
85
86 #ifdef HAVE_KERNEL_OPTION_HEADERS
87 #include "opt_device_polling.h"
88 #endif
89
90 #include <sys/param.h>
91 #include <sys/endian.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sysctl.h>
100
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107
108 #include <net/bpf.h>
109
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120
121 MODULE_DEPEND(rl, pci, 1, 1, 1);
122 MODULE_DEPEND(rl, ether, 1, 1, 1);
123 MODULE_DEPEND(rl, miibus, 1, 1, 1);
124
125 /* "device miibus" required.  See GENERIC if you get errors here. */
126 #include "miibus_if.h"
127
128 /*
129  * Default to using PIO access for this driver. On SMP systems,
130  * there appear to be problems with memory mapped mode: it looks like
131  * doing too many memory mapped access back to back in rapid succession
132  * can hang the bus. I'm inclined to blame this on crummy design/construction
133  * on the part of RealTek. Memory mapped mode does appear to work on
134  * uniprocessor systems though.
135  */
136 #define RL_USEIOSPACE
137
138 #include <pci/if_rlreg.h>
139
140 /*
141  * Various supported device vendors/types and their names.
142  */
143 static struct rl_type rl_devs[] = {
144         { RT_VENDORID, RT_DEVICEID_8129, RL_8129,
145                 "RealTek 8129 10/100BaseTX" },
146         { RT_VENDORID, RT_DEVICEID_8139, RL_8139,
147                 "RealTek 8139 10/100BaseTX" },
148         { RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
149                 "RealTek 8139 10/100BaseTX" },
150         { RT_VENDORID, RT_DEVICEID_8138, RL_8139,
151                 "RealTek 8139 10/100BaseTX CardBus" },
152         { RT_VENDORID, RT_DEVICEID_8100, RL_8139,
153                 "RealTek 8100 10/100BaseTX" },
154         { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
155                 "Accton MPX 5030/5038 10/100BaseTX" },
156         { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
157                 "Delta Electronics 8139 10/100BaseTX" },
158         { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
159                 "Addtron Technology 8139 10/100BaseTX" },
160         { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
161                 "D-Link DFE-530TX+ 10/100BaseTX" },
162         { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
163                 "D-Link DFE-690TXD 10/100BaseTX" },
164         { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
165                 "Nortel Networks 10/100BaseTX" },
166         { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
167                 "Corega FEther CB-TXD" },
168         { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
169                 "Corega FEtherII CB-TXD" },
170         { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
171                 "Peppercon AG ROL-F" },
172         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
173                 "Planex FNW-3603-TX" },
174         { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
175                 "Planex FNW-3800-TX" },
176         { CP_VENDORID, RT_DEVICEID_8139, RL_8139,
177                 "Compaq HNE-300" },
178         { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
179                 "LevelOne FPC-0106TX" },
180         { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
181                 "Edimax EP-4103DL CardBus" }
182 };
183
184 static int rl_attach(device_t);
185 static int rl_detach(device_t);
186 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
187 static int rl_dma_alloc(struct rl_softc *);
188 static void rl_dma_free(struct rl_softc *);
189 static void rl_eeprom_putbyte(struct rl_softc *, int);
190 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
191 static int rl_encap(struct rl_softc *, struct mbuf **);
192 static int rl_list_tx_init(struct rl_softc *);
193 static int rl_list_rx_init(struct rl_softc *);
194 static int rl_ifmedia_upd(struct ifnet *);
195 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
196 static int rl_ioctl(struct ifnet *, u_long, caddr_t);
197 static void rl_intr(void *);
198 static void rl_init(void *);
199 static void rl_init_locked(struct rl_softc *sc);
200 static void rl_mii_send(struct rl_softc *, uint32_t, int);
201 static void rl_mii_sync(struct rl_softc *);
202 static int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
203 static int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
204 static int rl_miibus_readreg(device_t, int, int);
205 static void rl_miibus_statchg(device_t);
206 static int rl_miibus_writereg(device_t, int, int, int);
207 #ifdef DEVICE_POLLING
208 static void rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
209 static void rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
210 #endif
211 static int rl_probe(device_t);
212 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
213 static void rl_reset(struct rl_softc *);
214 static int rl_resume(device_t);
215 static void rl_rxeof(struct rl_softc *);
216 static void rl_setmulti(struct rl_softc *);
217 static int rl_shutdown(device_t);
218 static void rl_start(struct ifnet *);
219 static void rl_start_locked(struct ifnet *);
220 static void rl_stop(struct rl_softc *);
221 static int rl_suspend(device_t);
222 static void rl_tick(void *);
223 static void rl_txeof(struct rl_softc *);
224 static void rl_watchdog(struct rl_softc *);
225
226 #ifdef RL_USEIOSPACE
227 #define RL_RES                  SYS_RES_IOPORT
228 #define RL_RID                  RL_PCI_LOIO
229 #else
230 #define RL_RES                  SYS_RES_MEMORY
231 #define RL_RID                  RL_PCI_LOMEM
232 #endif
233
234 static device_method_t rl_methods[] = {
235         /* Device interface */
236         DEVMETHOD(device_probe,         rl_probe),
237         DEVMETHOD(device_attach,        rl_attach),
238         DEVMETHOD(device_detach,        rl_detach),
239         DEVMETHOD(device_suspend,       rl_suspend),
240         DEVMETHOD(device_resume,        rl_resume),
241         DEVMETHOD(device_shutdown,      rl_shutdown),
242
243         /* bus interface */
244         DEVMETHOD(bus_print_child,      bus_generic_print_child),
245         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
246
247         /* MII interface */
248         DEVMETHOD(miibus_readreg,       rl_miibus_readreg),
249         DEVMETHOD(miibus_writereg,      rl_miibus_writereg),
250         DEVMETHOD(miibus_statchg,       rl_miibus_statchg),
251
252         { 0, 0 }
253 };
254
255 static driver_t rl_driver = {
256         "rl",
257         rl_methods,
258         sizeof(struct rl_softc)
259 };
260
261 static devclass_t rl_devclass;
262
263 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
264 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
265 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
266
267 #define EE_SET(x)                                       \
268         CSR_WRITE_1(sc, RL_EECMD,                       \
269                 CSR_READ_1(sc, RL_EECMD) | x)
270
271 #define EE_CLR(x)                                       \
272         CSR_WRITE_1(sc, RL_EECMD,                       \
273                 CSR_READ_1(sc, RL_EECMD) & ~x)
274
275 /*
276  * Send a read command and address to the EEPROM, check for ACK.
277  */
278 static void
279 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
280 {
281         register int            d, i;
282
283         d = addr | sc->rl_eecmd_read;
284
285         /*
286          * Feed in each bit and strobe the clock.
287          */
288         for (i = 0x400; i; i >>= 1) {
289                 if (d & i) {
290                         EE_SET(RL_EE_DATAIN);
291                 } else {
292                         EE_CLR(RL_EE_DATAIN);
293                 }
294                 DELAY(100);
295                 EE_SET(RL_EE_CLK);
296                 DELAY(150);
297                 EE_CLR(RL_EE_CLK);
298                 DELAY(100);
299         }
300 }
301
302 /*
303  * Read a word of data stored in the EEPROM at address 'addr.'
304  */
305 static void
306 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
307 {
308         register int            i;
309         uint16_t                word = 0;
310
311         /* Enter EEPROM access mode. */
312         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
313
314         /*
315          * Send address of word we want to read.
316          */
317         rl_eeprom_putbyte(sc, addr);
318
319         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
320
321         /*
322          * Start reading bits from EEPROM.
323          */
324         for (i = 0x8000; i; i >>= 1) {
325                 EE_SET(RL_EE_CLK);
326                 DELAY(100);
327                 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
328                         word |= i;
329                 EE_CLR(RL_EE_CLK);
330                 DELAY(100);
331         }
332
333         /* Turn off EEPROM access mode. */
334         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
335
336         *dest = word;
337 }
338
339 /*
340  * Read a sequence of words from the EEPROM.
341  */
342 static void
343 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
344 {
345         int                     i;
346         uint16_t                word = 0, *ptr;
347
348         for (i = 0; i < cnt; i++) {
349                 rl_eeprom_getword(sc, off + i, &word);
350                 ptr = (uint16_t *)(dest + (i * 2));
351                 if (swap)
352                         *ptr = ntohs(word);
353                 else
354                         *ptr = word;
355         }
356 }
357
358 /*
359  * MII access routines are provided for the 8129, which
360  * doesn't have a built-in PHY. For the 8139, we fake things
361  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
362  * direct access PHY registers.
363  */
364 #define MII_SET(x)                                      \
365         CSR_WRITE_1(sc, RL_MII,                         \
366                 CSR_READ_1(sc, RL_MII) | (x))
367
368 #define MII_CLR(x)                                      \
369         CSR_WRITE_1(sc, RL_MII,                         \
370                 CSR_READ_1(sc, RL_MII) & ~(x))
371
372 /*
373  * Sync the PHYs by setting data bit and strobing the clock 32 times.
374  */
375 static void
376 rl_mii_sync(struct rl_softc *sc)
377 {
378         register int            i;
379
380         MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
381
382         for (i = 0; i < 32; i++) {
383                 MII_SET(RL_MII_CLK);
384                 DELAY(1);
385                 MII_CLR(RL_MII_CLK);
386                 DELAY(1);
387         }
388 }
389
390 /*
391  * Clock a series of bits through the MII.
392  */
393 static void
394 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
395 {
396         int                     i;
397
398         MII_CLR(RL_MII_CLK);
399
400         for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
401                 if (bits & i) {
402                         MII_SET(RL_MII_DATAOUT);
403                 } else {
404                         MII_CLR(RL_MII_DATAOUT);
405                 }
406                 DELAY(1);
407                 MII_CLR(RL_MII_CLK);
408                 DELAY(1);
409                 MII_SET(RL_MII_CLK);
410         }
411 }
412
413 /*
414  * Read an PHY register through the MII.
415  */
416 static int
417 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
418 {
419         int                     i, ack;
420
421         /* Set up frame for RX. */
422         frame->mii_stdelim = RL_MII_STARTDELIM;
423         frame->mii_opcode = RL_MII_READOP;
424         frame->mii_turnaround = 0;
425         frame->mii_data = 0;
426
427         CSR_WRITE_2(sc, RL_MII, 0);
428
429         /* Turn on data xmit. */
430         MII_SET(RL_MII_DIR);
431
432         rl_mii_sync(sc);
433
434         /* Send command/address info. */
435         rl_mii_send(sc, frame->mii_stdelim, 2);
436         rl_mii_send(sc, frame->mii_opcode, 2);
437         rl_mii_send(sc, frame->mii_phyaddr, 5);
438         rl_mii_send(sc, frame->mii_regaddr, 5);
439
440         /* Idle bit */
441         MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
442         DELAY(1);
443         MII_SET(RL_MII_CLK);
444         DELAY(1);
445
446         /* Turn off xmit. */
447         MII_CLR(RL_MII_DIR);
448
449         /* Check for ack */
450         MII_CLR(RL_MII_CLK);
451         DELAY(1);
452         ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
453         MII_SET(RL_MII_CLK);
454         DELAY(1);
455
456         /*
457          * Now try reading data bits. If the ack failed, we still
458          * need to clock through 16 cycles to keep the PHY(s) in sync.
459          */
460         if (ack) {
461                 for(i = 0; i < 16; i++) {
462                         MII_CLR(RL_MII_CLK);
463                         DELAY(1);
464                         MII_SET(RL_MII_CLK);
465                         DELAY(1);
466                 }
467                 goto fail;
468         }
469
470         for (i = 0x8000; i; i >>= 1) {
471                 MII_CLR(RL_MII_CLK);
472                 DELAY(1);
473                 if (!ack) {
474                         if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
475                                 frame->mii_data |= i;
476                         DELAY(1);
477                 }
478                 MII_SET(RL_MII_CLK);
479                 DELAY(1);
480         }
481
482 fail:
483         MII_CLR(RL_MII_CLK);
484         DELAY(1);
485         MII_SET(RL_MII_CLK);
486         DELAY(1);
487
488         return (ack ? 1 : 0);
489 }
490
491 /*
492  * Write to a PHY register through the MII.
493  */
494 static int
495 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
496 {
497
498         /* Set up frame for TX. */
499         frame->mii_stdelim = RL_MII_STARTDELIM;
500         frame->mii_opcode = RL_MII_WRITEOP;
501         frame->mii_turnaround = RL_MII_TURNAROUND;
502
503         /* Turn on data output. */
504         MII_SET(RL_MII_DIR);
505
506         rl_mii_sync(sc);
507
508         rl_mii_send(sc, frame->mii_stdelim, 2);
509         rl_mii_send(sc, frame->mii_opcode, 2);
510         rl_mii_send(sc, frame->mii_phyaddr, 5);
511         rl_mii_send(sc, frame->mii_regaddr, 5);
512         rl_mii_send(sc, frame->mii_turnaround, 2);
513         rl_mii_send(sc, frame->mii_data, 16);
514
515         /* Idle bit. */
516         MII_SET(RL_MII_CLK);
517         DELAY(1);
518         MII_CLR(RL_MII_CLK);
519         DELAY(1);
520
521         /* Turn off xmit. */
522         MII_CLR(RL_MII_DIR);
523
524         return (0);
525 }
526
527 static int
528 rl_miibus_readreg(device_t dev, int phy, int reg)
529 {
530         struct rl_softc         *sc;
531         struct rl_mii_frame     frame;
532         uint16_t                rval = 0;
533         uint16_t                rl8139_reg = 0;
534
535         sc = device_get_softc(dev);
536
537         if (sc->rl_type == RL_8139) {
538                 /* Pretend the internal PHY is only at address 0 */
539                 if (phy) {
540                         return (0);
541                 }
542                 switch (reg) {
543                 case MII_BMCR:
544                         rl8139_reg = RL_BMCR;
545                         break;
546                 case MII_BMSR:
547                         rl8139_reg = RL_BMSR;
548                         break;
549                 case MII_ANAR:
550                         rl8139_reg = RL_ANAR;
551                         break;
552                 case MII_ANER:
553                         rl8139_reg = RL_ANER;
554                         break;
555                 case MII_ANLPAR:
556                         rl8139_reg = RL_LPAR;
557                         break;
558                 case MII_PHYIDR1:
559                 case MII_PHYIDR2:
560                         return (0);
561                 /*
562                  * Allow the rlphy driver to read the media status
563                  * register. If we have a link partner which does not
564                  * support NWAY, this is the register which will tell
565                  * us the results of parallel detection.
566                  */
567                 case RL_MEDIASTAT:
568                         rval = CSR_READ_1(sc, RL_MEDIASTAT);
569                         return (rval);
570                 default:
571                         device_printf(sc->rl_dev, "bad phy register\n");
572                         return (0);
573                 }
574                 rval = CSR_READ_2(sc, rl8139_reg);
575                 return (rval);
576         }
577
578         bzero((char *)&frame, sizeof(frame));
579         frame.mii_phyaddr = phy;
580         frame.mii_regaddr = reg;
581         rl_mii_readreg(sc, &frame);
582
583         return (frame.mii_data);
584 }
585
586 static int
587 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
588 {
589         struct rl_softc         *sc;
590         struct rl_mii_frame     frame;
591         uint16_t                rl8139_reg = 0;
592
593         sc = device_get_softc(dev);
594
595         if (sc->rl_type == RL_8139) {
596                 /* Pretend the internal PHY is only at address 0 */
597                 if (phy) {
598                         return (0);
599                 }
600                 switch (reg) {
601                 case MII_BMCR:
602                         rl8139_reg = RL_BMCR;
603                         break;
604                 case MII_BMSR:
605                         rl8139_reg = RL_BMSR;
606                         break;
607                 case MII_ANAR:
608                         rl8139_reg = RL_ANAR;
609                         break;
610                 case MII_ANER:
611                         rl8139_reg = RL_ANER;
612                         break;
613                 case MII_ANLPAR:
614                         rl8139_reg = RL_LPAR;
615                         break;
616                 case MII_PHYIDR1:
617                 case MII_PHYIDR2:
618                         return (0);
619                         break;
620                 default:
621                         device_printf(sc->rl_dev, "bad phy register\n");
622                         return (0);
623                 }
624                 CSR_WRITE_2(sc, rl8139_reg, data);
625                 return (0);
626         }
627
628         bzero((char *)&frame, sizeof(frame));
629         frame.mii_phyaddr = phy;
630         frame.mii_regaddr = reg;
631         frame.mii_data = data;
632         rl_mii_writereg(sc, &frame);
633
634         return (0);
635 }
636
637 static void
638 rl_miibus_statchg(device_t dev)
639 {
640         struct rl_softc         *sc;
641         struct ifnet            *ifp;
642         struct mii_data         *mii;
643
644         sc = device_get_softc(dev);
645         mii = device_get_softc(sc->rl_miibus);
646         ifp = sc->rl_ifp;
647         if (mii == NULL || ifp == NULL ||
648             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
649                 return;
650
651         sc->rl_flags &= ~RL_FLAG_LINK;
652         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
653             (IFM_ACTIVE | IFM_AVALID)) {
654                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
655                 case IFM_10_T:
656                 case IFM_100_TX:
657                         sc->rl_flags |= RL_FLAG_LINK;
658                         break;
659                 default:
660                         break;
661                 }
662         }
663         /*
664          * RealTek controllers do not provide any interface to
665          * Tx/Rx MACs for resolved speed, duplex and flow-control
666          * parameters.
667          */
668 }
669
670 /*
671  * Program the 64-bit multicast hash filter.
672  */
673 static void
674 rl_setmulti(struct rl_softc *sc)
675 {
676         struct ifnet            *ifp = sc->rl_ifp;
677         int                     h = 0;
678         uint32_t                hashes[2] = { 0, 0 };
679         struct ifmultiaddr      *ifma;
680         uint32_t                rxfilt;
681         int                     mcnt = 0;
682
683         RL_LOCK_ASSERT(sc);
684
685         rxfilt = CSR_READ_4(sc, RL_RXCFG);
686
687         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
688                 rxfilt |= RL_RXCFG_RX_MULTI;
689                 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
690                 CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
691                 CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
692                 return;
693         }
694
695         /* first, zot all the existing hash bits */
696         CSR_WRITE_4(sc, RL_MAR0, 0);
697         CSR_WRITE_4(sc, RL_MAR4, 0);
698
699         /* now program new ones */
700         IF_ADDR_LOCK(ifp);
701         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
702                 if (ifma->ifma_addr->sa_family != AF_LINK)
703                         continue;
704                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
705                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
706                 if (h < 32)
707                         hashes[0] |= (1 << h);
708                 else
709                         hashes[1] |= (1 << (h - 32));
710                 mcnt++;
711         }
712         IF_ADDR_UNLOCK(ifp);
713
714         if (mcnt)
715                 rxfilt |= RL_RXCFG_RX_MULTI;
716         else
717                 rxfilt &= ~RL_RXCFG_RX_MULTI;
718
719         CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
720         CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
721         CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
722 }
723
724 static void
725 rl_reset(struct rl_softc *sc)
726 {
727         register int            i;
728
729         RL_LOCK_ASSERT(sc);
730
731         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
732
733         for (i = 0; i < RL_TIMEOUT; i++) {
734                 DELAY(10);
735                 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
736                         break;
737         }
738         if (i == RL_TIMEOUT)
739                 device_printf(sc->rl_dev, "reset never completed!\n");
740 }
741
742 /*
743  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
744  * IDs against our list and return a device name if we find a match.
745  */
746 static int
747 rl_probe(device_t dev)
748 {
749         struct rl_type          *t;
750         uint16_t                devid, revid, vendor;
751         int                     i;
752         
753         vendor = pci_get_vendor(dev);
754         devid = pci_get_device(dev);
755         revid = pci_get_revid(dev);
756
757         if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
758                 if (revid == 0x20) {
759                         /* 8139C+, let re(4) take care of this device. */
760                         return (ENXIO);
761                 }
762         }
763         t = rl_devs;
764         for (i = 0; i < sizeof(rl_devs) / sizeof(rl_devs[0]); i++, t++) {
765                 if (vendor == t->rl_vid && devid == t->rl_did) {
766                         device_set_desc(dev, t->rl_name);
767                         return (BUS_PROBE_DEFAULT);
768                 }
769         }
770
771         return (ENXIO);
772 }
773
774 struct rl_dmamap_arg {
775         bus_addr_t      rl_busaddr;
776 };
777
778 static void
779 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
780 {
781         struct rl_dmamap_arg    *ctx;
782
783         if (error != 0)
784                 return;
785
786         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
787
788         ctx = (struct rl_dmamap_arg *)arg;
789         ctx->rl_busaddr = segs[0].ds_addr;
790 }
791
792 /*
793  * Attach the interface. Allocate softc structures, do ifmedia
794  * setup and ethernet/BPF attach.
795  */
796 static int
797 rl_attach(device_t dev)
798 {
799         uint8_t                 eaddr[ETHER_ADDR_LEN];
800         uint16_t                as[3];
801         struct ifnet            *ifp;
802         struct rl_softc         *sc;
803         struct rl_type          *t;
804         struct sysctl_ctx_list  *ctx;
805         struct sysctl_oid_list  *children;
806         int                     error = 0, i, rid;
807         int                     unit;
808         uint16_t                rl_did = 0;
809         char                    tn[32];
810
811         sc = device_get_softc(dev);
812         unit = device_get_unit(dev);
813         sc->rl_dev = dev;
814
815         sc->rl_twister_enable = 0;
816         snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
817         TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
818         ctx = device_get_sysctl_ctx(sc->rl_dev);
819         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
820         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
821            &sc->rl_twister_enable, 0, "");
822
823         mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
824             MTX_DEF);
825         callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
826
827         pci_enable_busmaster(dev);
828
829         /* Map control/status registers. */
830         rid = RL_RID;
831         sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
832
833         if (sc->rl_res == NULL) {
834                 device_printf(dev, "couldn't map ports/memory\n");
835                 error = ENXIO;
836                 goto fail;
837         }
838
839 #ifdef notdef
840         /*
841          * Detect the Realtek 8139B. For some reason, this chip is very
842          * unstable when left to autoselect the media
843          * The best workaround is to set the device to the required
844          * media type or to set it to the 10 Meg speed.
845          */
846         if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
847                 device_printf(dev,
848 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
849 #endif
850
851         sc->rl_btag = rman_get_bustag(sc->rl_res);
852         sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
853
854         /* Allocate interrupt */
855         rid = 0;
856         sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
857             RF_SHAREABLE | RF_ACTIVE);
858
859         if (sc->rl_irq[0] == NULL) {
860                 device_printf(dev, "couldn't map interrupt\n");
861                 error = ENXIO;
862                 goto fail;
863         }
864
865         /*
866          * Reset the adapter. Only take the lock here as it's needed in
867          * order to call rl_reset().
868          */
869         RL_LOCK(sc);
870         rl_reset(sc);
871         RL_UNLOCK(sc);
872
873         sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
874         rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
875         if (rl_did != 0x8129)
876                 sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
877
878         /*
879          * Get station address from the EEPROM.
880          */
881         rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
882         for (i = 0; i < 3; i++) {
883                 eaddr[(i * 2) + 0] = as[i] & 0xff;
884                 eaddr[(i * 2) + 1] = as[i] >> 8;
885         }
886
887         /*
888          * Now read the exact device type from the EEPROM to find
889          * out if it's an 8129 or 8139.
890          */
891         rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
892
893         t = rl_devs;
894         sc->rl_type = 0;
895         while(t->rl_name != NULL) {
896                 if (rl_did == t->rl_did) {
897                         sc->rl_type = t->rl_basetype;
898                         break;
899                 }
900                 t++;
901         }
902
903         if (sc->rl_type == 0) {
904                 device_printf(dev, "unknown device ID: %x\n", rl_did);
905                 error = ENXIO;
906                 goto fail;
907         }
908
909         if ((error = rl_dma_alloc(sc)) != 0)
910                 goto fail;
911
912         ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
913         if (ifp == NULL) {
914                 device_printf(dev, "can not if_alloc()\n");
915                 error = ENOSPC;
916                 goto fail;
917         }
918
919         /* Do MII setup */
920         if (mii_phy_probe(dev, &sc->rl_miibus,
921             rl_ifmedia_upd, rl_ifmedia_sts)) {
922                 device_printf(dev, "MII without any phy!\n");
923                 error = ENXIO;
924                 goto fail;
925         }
926
927         ifp->if_softc = sc;
928         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
929         ifp->if_mtu = ETHERMTU;
930         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
931         ifp->if_ioctl = rl_ioctl;
932         ifp->if_start = rl_start;
933         ifp->if_init = rl_init;
934         ifp->if_capabilities = IFCAP_VLAN_MTU;
935         ifp->if_capenable = ifp->if_capabilities;
936 #ifdef DEVICE_POLLING
937         ifp->if_capabilities |= IFCAP_POLLING;
938 #endif
939         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
940         ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
941         IFQ_SET_READY(&ifp->if_snd);
942
943         /*
944          * Call MI attach routine.
945          */
946         ether_ifattach(ifp, eaddr);
947
948         /* Hook interrupt last to avoid having to lock softc */
949         error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
950             NULL, rl_intr, sc, &sc->rl_intrhand[0]);
951         if (error) {
952                 device_printf(sc->rl_dev, "couldn't set up irq\n");
953                 ether_ifdetach(ifp);
954         }
955
956 fail:
957         if (error)
958                 rl_detach(dev);
959
960         return (error);
961 }
962
963 /*
964  * Shutdown hardware and free up resources. This can be called any
965  * time after the mutex has been initialized. It is called in both
966  * the error case in attach and the normal detach case so it needs
967  * to be careful about only freeing resources that have actually been
968  * allocated.
969  */
970 static int
971 rl_detach(device_t dev)
972 {
973         struct rl_softc         *sc;
974         struct ifnet            *ifp;
975
976         sc = device_get_softc(dev);
977         ifp = sc->rl_ifp;
978
979         KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
980
981 #ifdef DEVICE_POLLING
982         if (ifp->if_capenable & IFCAP_POLLING)
983                 ether_poll_deregister(ifp);
984 #endif
985         /* These should only be active if attach succeeded */
986         if (device_is_attached(dev)) {
987                 RL_LOCK(sc);
988                 rl_stop(sc);
989                 RL_UNLOCK(sc);
990                 callout_drain(&sc->rl_stat_callout);
991                 ether_ifdetach(ifp);
992         }
993 #if 0
994         sc->suspended = 1;
995 #endif
996         if (sc->rl_miibus)
997                 device_delete_child(dev, sc->rl_miibus);
998         bus_generic_detach(dev);
999
1000         if (sc->rl_intrhand[0])
1001                 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1002         if (sc->rl_irq[0])
1003                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
1004         if (sc->rl_res)
1005                 bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1006
1007         if (ifp)
1008                 if_free(ifp);
1009
1010         rl_dma_free(sc);
1011
1012         mtx_destroy(&sc->rl_mtx);
1013
1014         return (0);
1015 }
1016
1017 static int
1018 rl_dma_alloc(struct rl_softc *sc)
1019 {
1020         struct rl_dmamap_arg    ctx;
1021         int                     error, i;
1022
1023         /*
1024          * Allocate the parent bus DMA tag appropriate for PCI.
1025          */
1026         error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */
1027             1, 0,                       /* alignment, boundary */
1028             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
1029             BUS_SPACE_MAXADDR,          /* highaddr */
1030             NULL, NULL,                 /* filter, filterarg */
1031             BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */
1032             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1033             0,                          /* flags */
1034             NULL, NULL,                 /* lockfunc, lockarg */
1035             &sc->rl_parent_tag);
1036         if (error) {
1037                 device_printf(sc->rl_dev,
1038                     "failed to create parent DMA tag.\n");
1039                 goto fail;
1040         }
1041         /* Create DMA tag for Rx memory block. */
1042         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
1043             RL_RX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
1044             BUS_SPACE_MAXADDR,          /* lowaddr */
1045             BUS_SPACE_MAXADDR,          /* highaddr */
1046             NULL, NULL,                 /* filter, filterarg */
1047             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,   /* maxsize,nsegments */
1048             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,      /* maxsegsize */
1049             0,                          /* flags */
1050             NULL, NULL,                 /* lockfunc, lockarg */
1051             &sc->rl_cdata.rl_rx_tag);
1052         if (error) {
1053                 device_printf(sc->rl_dev,
1054                     "failed to create Rx memory block DMA tag.\n");
1055                 goto fail;
1056         }
1057         /* Create DMA tag for Tx buffer. */
1058         error = bus_dma_tag_create(sc->rl_parent_tag,   /* parent */
1059             RL_TX_8139_BUF_ALIGN, 0,    /* alignment, boundary */
1060             BUS_SPACE_MAXADDR,          /* lowaddr */
1061             BUS_SPACE_MAXADDR,          /* highaddr */
1062             NULL, NULL,                 /* filter, filterarg */
1063             MCLBYTES, 1,                /* maxsize, nsegments */
1064             MCLBYTES,                   /* maxsegsize */
1065             0,                          /* flags */
1066             NULL, NULL,                 /* lockfunc, lockarg */
1067             &sc->rl_cdata.rl_tx_tag);
1068         if (error) {
1069                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
1070                 goto fail;
1071         }
1072
1073         /*
1074          * Allocate DMA'able memory and load DMA map for Rx memory block.
1075          */
1076         error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
1077             (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
1078             BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
1079         if (error != 0) {
1080                 device_printf(sc->rl_dev,
1081                     "failed to allocate Rx DMA memory block.\n");
1082                 goto fail;
1083         }
1084         ctx.rl_busaddr = 0;
1085         error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
1086             sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
1087             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
1088             BUS_DMA_NOWAIT);
1089         if (error != 0 || ctx.rl_busaddr == 0) {
1090                 device_printf(sc->rl_dev,
1091                     "could not load Rx DMA memory block.\n");
1092                 goto fail;
1093         }
1094         sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
1095
1096         /* Create DMA maps for Tx buffers. */
1097         for (i = 0; i < RL_TX_LIST_CNT; i++) {
1098                 sc->rl_cdata.rl_tx_chain[i] = NULL;
1099                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1100                 error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
1101                     &sc->rl_cdata.rl_tx_dmamap[i]);
1102                 if (error != 0) {
1103                         device_printf(sc->rl_dev,
1104                             "could not create Tx dmamap.\n");
1105                         goto fail;
1106                 }
1107         }
1108
1109         /* Leave a few bytes before the start of the RX ring buffer. */
1110         sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1111         sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1112
1113 fail:
1114         return (error);
1115 }
1116
1117 static void
1118 rl_dma_free(struct rl_softc *sc)
1119 {
1120         int                     i;
1121
1122         /* Rx memory block. */
1123         if (sc->rl_cdata.rl_rx_tag != NULL) {
1124                 if (sc->rl_cdata.rl_rx_dmamap != NULL)
1125                         bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1126                             sc->rl_cdata.rl_rx_dmamap);
1127                 if (sc->rl_cdata.rl_rx_dmamap != NULL &&
1128                     sc->rl_cdata.rl_rx_buf_ptr != NULL)
1129                         bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1130                             sc->rl_cdata.rl_rx_buf_ptr,
1131                             sc->rl_cdata.rl_rx_dmamap);
1132                 sc->rl_cdata.rl_rx_buf_ptr = NULL;
1133                 sc->rl_cdata.rl_rx_buf = NULL;
1134                 sc->rl_cdata.rl_rx_dmamap = NULL;
1135                 bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1136                 sc->rl_cdata.rl_tx_tag = NULL;
1137         }
1138
1139         /* Tx buffers. */
1140         if (sc->rl_cdata.rl_tx_tag != NULL) {
1141                 for (i = 0; i < RL_TX_LIST_CNT; i++) {
1142                         if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1143                                 bus_dmamap_destroy(
1144                                     sc->rl_cdata.rl_tx_tag,
1145                                     sc->rl_cdata.rl_tx_dmamap[i]);
1146                                 sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1147                         }
1148                 bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1149                 sc->rl_cdata.rl_tx_tag = NULL;
1150                 }
1151         }
1152
1153         if (sc->rl_parent_tag != NULL) {
1154                 bus_dma_tag_destroy(sc->rl_parent_tag);
1155                 sc->rl_parent_tag = NULL;
1156         }
1157 }
1158
1159 /*
1160  * Initialize the transmit descriptors.
1161  */
1162 static int
1163 rl_list_tx_init(struct rl_softc *sc)
1164 {
1165         struct rl_chain_data    *cd;
1166         int                     i;
1167
1168         RL_LOCK_ASSERT(sc);
1169
1170         cd = &sc->rl_cdata;
1171         for (i = 0; i < RL_TX_LIST_CNT; i++) {
1172                 cd->rl_tx_chain[i] = NULL;
1173                 CSR_WRITE_4(sc,
1174                     RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1175         }
1176
1177         sc->rl_cdata.cur_tx = 0;
1178         sc->rl_cdata.last_tx = 0;
1179
1180         return (0);
1181 }
1182
1183 static int
1184 rl_list_rx_init(struct rl_softc *sc)
1185 {
1186
1187         RL_LOCK_ASSERT(sc);
1188
1189         bzero(sc->rl_cdata.rl_rx_buf_ptr,
1190             RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1191         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1192             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1193
1194         return (0);
1195 }
1196
1197 /*
1198  * A frame has been uploaded: pass the resulting mbuf chain up to
1199  * the higher level protocols.
1200  *
1201  * You know there's something wrong with a PCI bus-master chip design
1202  * when you have to use m_devget().
1203  *
1204  * The receive operation is badly documented in the datasheet, so I'll
1205  * attempt to document it here. The driver provides a buffer area and
1206  * places its base address in the RX buffer start address register.
1207  * The chip then begins copying frames into the RX buffer. Each frame
1208  * is preceded by a 32-bit RX status word which specifies the length
1209  * of the frame and certain other status bits. Each frame (starting with
1210  * the status word) is also 32-bit aligned. The frame length is in the
1211  * first 16 bits of the status word; the lower 15 bits correspond with
1212  * the 'rx status register' mentioned in the datasheet.
1213  *
1214  * Note: to make the Alpha happy, the frame payload needs to be aligned
1215  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1216  * as the offset argument to m_devget().
1217  */
1218 static void
1219 rl_rxeof(struct rl_softc *sc)
1220 {
1221         struct mbuf             *m;
1222         struct ifnet            *ifp = sc->rl_ifp;
1223         uint8_t                 *rxbufpos;
1224         int                     total_len = 0;
1225         int                     wrap = 0;
1226         uint32_t                rxstat;
1227         uint16_t                cur_rx;
1228         uint16_t                limit;
1229         uint16_t                max_bytes, rx_bytes = 0;
1230
1231         RL_LOCK_ASSERT(sc);
1232
1233         bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1234             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1235
1236         cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1237
1238         /* Do not try to read past this point. */
1239         limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1240
1241         if (limit < cur_rx)
1242                 max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1243         else
1244                 max_bytes = limit - cur_rx;
1245
1246         while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1247 #ifdef DEVICE_POLLING
1248                 if (ifp->if_capenable & IFCAP_POLLING) {
1249                         if (sc->rxcycles <= 0)
1250                                 break;
1251                         sc->rxcycles--;
1252                 }
1253 #endif
1254                 rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1255                 rxstat = le32toh(*(uint32_t *)rxbufpos);
1256
1257                 /*
1258                  * Here's a totally undocumented fact for you. When the
1259                  * RealTek chip is in the process of copying a packet into
1260                  * RAM for you, the length will be 0xfff0. If you spot a
1261                  * packet header with this value, you need to stop. The
1262                  * datasheet makes absolutely no mention of this and
1263                  * RealTek should be shot for this.
1264                  */
1265                 total_len = rxstat >> 16;
1266                 if (total_len == RL_RXSTAT_UNFINISHED)
1267                         break;
1268
1269                 if (!(rxstat & RL_RXSTAT_RXOK) ||
1270                     total_len < ETHER_MIN_LEN ||
1271                     total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1272                         ifp->if_ierrors++;
1273                         rl_init_locked(sc);
1274                         return;
1275                 }
1276
1277                 /* No errors; receive the packet. */
1278                 rx_bytes += total_len + 4;
1279
1280                 /*
1281                  * XXX The RealTek chip includes the CRC with every
1282                  * received frame, and there's no way to turn this
1283                  * behavior off (at least, I can't find anything in
1284                  * the manual that explains how to do it) so we have
1285                  * to trim off the CRC manually.
1286                  */
1287                 total_len -= ETHER_CRC_LEN;
1288
1289                 /*
1290                  * Avoid trying to read more bytes than we know
1291                  * the chip has prepared for us.
1292                  */
1293                 if (rx_bytes > max_bytes)
1294                         break;
1295
1296                 rxbufpos = sc->rl_cdata.rl_rx_buf +
1297                         ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1298                 if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1299                         rxbufpos = sc->rl_cdata.rl_rx_buf;
1300
1301                 wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1302                 if (total_len > wrap) {
1303                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1304                             NULL);
1305                         if (m == NULL) {
1306                                 ifp->if_ierrors++;
1307                         } else {
1308                                 m_copyback(m, wrap, total_len - wrap,
1309                                         sc->rl_cdata.rl_rx_buf);
1310                         }
1311                         cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1312                 } else {
1313                         m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1314                             NULL);
1315                         if (m == NULL)
1316                                 ifp->if_ierrors++;
1317                         cur_rx += total_len + 4 + ETHER_CRC_LEN;
1318                 }
1319
1320                 /* Round up to 32-bit boundary. */
1321                 cur_rx = (cur_rx + 3) & ~3;
1322                 CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1323
1324                 if (m == NULL)
1325                         continue;
1326
1327                 ifp->if_ipackets++;
1328                 RL_UNLOCK(sc);
1329                 (*ifp->if_input)(ifp, m);
1330                 RL_LOCK(sc);
1331         }
1332
1333         /* No need to sync Rx memory block as we didn't modify it. */
1334 }
1335
1336 /*
1337  * A frame was downloaded to the chip. It's safe for us to clean up
1338  * the list buffers.
1339  */
1340 static void
1341 rl_txeof(struct rl_softc *sc)
1342 {
1343         struct ifnet            *ifp = sc->rl_ifp;
1344         uint32_t                txstat;
1345
1346         RL_LOCK_ASSERT(sc);
1347
1348         /*
1349          * Go through our tx list and free mbufs for those
1350          * frames that have been uploaded.
1351          */
1352         do {
1353                 if (RL_LAST_TXMBUF(sc) == NULL)
1354                         break;
1355                 txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1356                 if (!(txstat & (RL_TXSTAT_TX_OK|
1357                     RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1358                         break;
1359
1360                 ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1361
1362                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1363                     BUS_DMASYNC_POSTWRITE);
1364                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1365                 m_freem(RL_LAST_TXMBUF(sc));
1366                 RL_LAST_TXMBUF(sc) = NULL;
1367                 /*
1368                  * If there was a transmit underrun, bump the TX threshold.
1369                  * Make sure not to overflow the 63 * 32byte we can address
1370                  * with the 6 available bit.
1371                  */
1372                 if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1373                     (sc->rl_txthresh < 2016))
1374                         sc->rl_txthresh += 32;
1375                 if (txstat & RL_TXSTAT_TX_OK)
1376                         ifp->if_opackets++;
1377                 else {
1378                         int                     oldthresh;
1379                         ifp->if_oerrors++;
1380                         if ((txstat & RL_TXSTAT_TXABRT) ||
1381                             (txstat & RL_TXSTAT_OUTOFWIN))
1382                                 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1383                         oldthresh = sc->rl_txthresh;
1384                         /* error recovery */
1385                         rl_init_locked(sc);
1386                         /* restore original threshold */
1387                         sc->rl_txthresh = oldthresh;
1388                         return;
1389                 }
1390                 RL_INC(sc->rl_cdata.last_tx);
1391                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1392         } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1393
1394         if (RL_LAST_TXMBUF(sc) == NULL)
1395                 sc->rl_watchdog_timer = 0;
1396 }
1397
1398 static void
1399 rl_twister_update(struct rl_softc *sc)
1400 {
1401         uint16_t linktest;
1402         /*
1403          * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1404          * Linux driver.  Values undocumented otherwise.
1405          */
1406         static const uint32_t param[4][4] = {
1407                 {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1408                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1409                 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1410                 {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1411         };
1412
1413         /*
1414          * Tune the so-called twister registers of the RTL8139.  These
1415          * are used to compensate for impedance mismatches.  The
1416          * method for tuning these registers is undocumented and the
1417          * following procedure is collected from public sources.
1418          */
1419         switch (sc->rl_twister)
1420         {
1421         case CHK_LINK:
1422                 /*
1423                  * If we have a sufficient link, then we can proceed in
1424                  * the state machine to the next stage.  If not, then
1425                  * disable further tuning after writing sane defaults.
1426                  */
1427                 if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1428                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1429                         sc->rl_twister = FIND_ROW;
1430                 } else {
1431                         CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1432                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1433                         CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1434                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1435                         sc->rl_twister = DONE;
1436                 }
1437                 break;
1438         case FIND_ROW:
1439                 /*
1440                  * Read how long it took to see the echo to find the tuning
1441                  * row to use.
1442                  */
1443                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1444                 if (linktest == RL_CSCFG_ROW3)
1445                         sc->rl_twist_row = 3;
1446                 else if (linktest == RL_CSCFG_ROW2)
1447                         sc->rl_twist_row = 2;
1448                 else if (linktest == RL_CSCFG_ROW1)
1449                         sc->rl_twist_row = 1;
1450                 else
1451                         sc->rl_twist_row = 0;
1452                 sc->rl_twist_col = 0;
1453                 sc->rl_twister = SET_PARAM;
1454                 break;
1455         case SET_PARAM:
1456                 if (sc->rl_twist_col == 0)
1457                         CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1458                 CSR_WRITE_4(sc, RL_PARA7C,
1459                     param[sc->rl_twist_row][sc->rl_twist_col]);
1460                 if (++sc->rl_twist_col == 4) {
1461                         if (sc->rl_twist_row == 3)
1462                                 sc->rl_twister = RECHK_LONG;
1463                         else
1464                                 sc->rl_twister = DONE;
1465                 }
1466                 break;
1467         case RECHK_LONG:
1468                 /*
1469                  * For long cables, we have to double check to make sure we
1470                  * don't mistune.
1471                  */
1472                 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1473                 if (linktest == RL_CSCFG_ROW3)
1474                         sc->rl_twister = DONE;
1475                 else {
1476                         CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1477                         sc->rl_twister = RETUNE;
1478                 }
1479                 break;
1480         case RETUNE:
1481                 /* Retune for a shorter cable (try column 2) */
1482                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1483                 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1484                 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1485                 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1486                 sc->rl_twist_row--;
1487                 sc->rl_twist_col = 0;
1488                 sc->rl_twister = SET_PARAM;
1489                 break;
1490
1491         case DONE:
1492                 break;
1493         }
1494         
1495 }
1496
1497 static void
1498 rl_tick(void *xsc)
1499 {
1500         struct rl_softc         *sc = xsc;
1501         struct mii_data         *mii;
1502         int ticks;
1503
1504         RL_LOCK_ASSERT(sc);
1505         /*
1506          * If we're doing the twister cable calibration, then we need to defer
1507          * watchdog timeouts.  This is a no-op in normal operations, but
1508          * can falsely trigger when the cable calibration takes a while and
1509          * there was traffic ready to go when rl was started.
1510          *
1511          * We don't defer mii_tick since that updates the mii status, which
1512          * helps the twister process, at least according to similar patches
1513          * for the Linux driver I found online while doing the fixes.  Worst
1514          * case is a few extra mii reads during calibration.
1515          */
1516         mii = device_get_softc(sc->rl_miibus);
1517         mii_tick(mii);
1518         if (sc->rl_twister_enable) {
1519                 if (sc->rl_twister == DONE)
1520                         rl_watchdog(sc);
1521                 else
1522                         rl_twister_update(sc);
1523                 if (sc->rl_twister == DONE)
1524                         ticks = hz;
1525                 else
1526                         ticks = hz / 10;
1527         } else {
1528                 rl_watchdog(sc);
1529                 ticks = hz;
1530         }
1531
1532         callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1533 }
1534
1535 #ifdef DEVICE_POLLING
1536 static void
1537 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1538 {
1539         struct rl_softc *sc = ifp->if_softc;
1540
1541         RL_LOCK(sc);
1542         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1543                 rl_poll_locked(ifp, cmd, count);
1544         RL_UNLOCK(sc);
1545 }
1546
1547 static void
1548 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1549 {
1550         struct rl_softc *sc = ifp->if_softc;
1551
1552         RL_LOCK_ASSERT(sc);
1553
1554         sc->rxcycles = count;
1555         rl_rxeof(sc);
1556         rl_txeof(sc);
1557
1558         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1559                 rl_start_locked(ifp);
1560
1561         if (cmd == POLL_AND_CHECK_STATUS) {
1562                 uint16_t        status;
1563
1564                 /* We should also check the status register. */
1565                 status = CSR_READ_2(sc, RL_ISR);
1566                 if (status == 0xffff)
1567                         return;
1568                 if (status != 0)
1569                         CSR_WRITE_2(sc, RL_ISR, status);
1570
1571                 /* XXX We should check behaviour on receiver stalls. */
1572
1573                 if (status & RL_ISR_SYSTEM_ERR)
1574                         rl_init_locked(sc);
1575         }
1576 }
1577 #endif /* DEVICE_POLLING */
1578
1579 static void
1580 rl_intr(void *arg)
1581 {
1582         struct rl_softc         *sc = arg;
1583         struct ifnet            *ifp = sc->rl_ifp;
1584         uint16_t                status;
1585
1586         RL_LOCK(sc);
1587
1588         if (sc->suspended)
1589                 goto done_locked;
1590
1591 #ifdef DEVICE_POLLING
1592         if  (ifp->if_capenable & IFCAP_POLLING)
1593                 goto done_locked;
1594 #endif
1595
1596         for (;;) {
1597                 status = CSR_READ_2(sc, RL_ISR);
1598                 /* If the card has gone away, the read returns 0xffff. */
1599                 if (status == 0xffff)
1600                         break;
1601                 if (status != 0)
1602                         CSR_WRITE_2(sc, RL_ISR, status);
1603                 if ((status & RL_INTRS) == 0)
1604                         break;
1605                 if (status & RL_ISR_RX_OK)
1606                         rl_rxeof(sc);
1607                 if (status & RL_ISR_RX_ERR)
1608                         rl_rxeof(sc);
1609                 if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1610                         rl_txeof(sc);
1611                 if (status & RL_ISR_SYSTEM_ERR)
1612                         rl_init_locked(sc);
1613         }
1614
1615         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1616                 rl_start_locked(ifp);
1617
1618 done_locked:
1619         RL_UNLOCK(sc);
1620 }
1621
1622 /*
1623  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1624  * pointers to the fragment pointers.
1625  */
1626 static int
1627 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1628 {
1629         struct mbuf             *m;
1630         bus_dma_segment_t       txsegs[1];
1631         int                     error, nsegs, padlen;
1632
1633         RL_LOCK_ASSERT(sc);
1634
1635         m = *m_head;
1636         padlen = 0;
1637         /*
1638          * Hardware doesn't auto-pad, so we have to make sure
1639          * pad short frames out to the minimum frame length.
1640          */
1641         if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1642                 padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1643         /*
1644          * The RealTek is brain damaged and wants longword-aligned
1645          * TX buffers, plus we can only have one fragment buffer
1646          * per packet. We have to copy pretty much all the time.
1647          */
1648         if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1649             (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1650                 m = m_defrag(*m_head, M_DONTWAIT);
1651                 if (m == NULL) {
1652                         m_freem(*m_head);
1653                         *m_head = NULL;
1654                         return (ENOMEM);
1655                 }
1656         }
1657         *m_head = m;
1658
1659         if (padlen > 0) {
1660                 /*
1661                  * Make security-conscious people happy: zero out the
1662                  * bytes in the pad area, since we don't know what
1663                  * this mbuf cluster buffer's previous user might
1664                  * have left in it.
1665                  */
1666                 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1667                 m->m_pkthdr.len += padlen;
1668                 m->m_len = m->m_pkthdr.len;
1669         }
1670
1671         error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1672             RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1673         if (error != 0)
1674                 return (error);
1675         if (nsegs == 0) {
1676                 m_freem(*m_head);
1677                 *m_head = NULL;
1678                 return (EIO);
1679         }
1680
1681         RL_CUR_TXMBUF(sc) = m;
1682         bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1683             BUS_DMASYNC_PREWRITE);
1684         CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1685
1686         return (0);
1687 }
1688
1689 /*
1690  * Main transmit routine.
1691  */
1692 static void
1693 rl_start(struct ifnet *ifp)
1694 {
1695         struct rl_softc         *sc = ifp->if_softc;
1696
1697         RL_LOCK(sc);
1698         rl_start_locked(ifp);
1699         RL_UNLOCK(sc);
1700 }
1701
1702 static void
1703 rl_start_locked(struct ifnet *ifp)
1704 {
1705         struct rl_softc         *sc = ifp->if_softc;
1706         struct mbuf             *m_head = NULL;
1707
1708         RL_LOCK_ASSERT(sc);
1709
1710         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1711             IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1712                 return;
1713
1714         while (RL_CUR_TXMBUF(sc) == NULL) {
1715
1716                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1717
1718                 if (m_head == NULL)
1719                         break;
1720
1721                 if (rl_encap(sc, &m_head)) {
1722                         if (m_head == NULL)
1723                                 break;
1724                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1725                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1726                         break;
1727                 }
1728
1729                 /* Pass a copy of this mbuf chain to the bpf subsystem. */
1730                 BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1731
1732                 /* Transmit the frame. */
1733                 CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1734                     RL_TXTHRESH(sc->rl_txthresh) |
1735                     RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1736
1737                 RL_INC(sc->rl_cdata.cur_tx);
1738
1739                 /* Set a timeout in case the chip goes out to lunch. */
1740                 sc->rl_watchdog_timer = 5;
1741         }
1742
1743         /*
1744          * We broke out of the loop because all our TX slots are
1745          * full. Mark the NIC as busy until it drains some of the
1746          * packets from the queue.
1747          */
1748         if (RL_CUR_TXMBUF(sc) != NULL)
1749                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1750 }
1751
1752 static void
1753 rl_init(void *xsc)
1754 {
1755         struct rl_softc         *sc = xsc;
1756
1757         RL_LOCK(sc);
1758         rl_init_locked(sc);
1759         RL_UNLOCK(sc);
1760 }
1761
1762 static void
1763 rl_init_locked(struct rl_softc *sc)
1764 {
1765         struct ifnet            *ifp = sc->rl_ifp;
1766         struct mii_data         *mii;
1767         uint32_t                rxcfg = 0;
1768         uint32_t                eaddr[2];
1769
1770         RL_LOCK_ASSERT(sc);
1771
1772         mii = device_get_softc(sc->rl_miibus);
1773
1774         /*
1775          * Cancel pending I/O and free all RX/TX buffers.
1776          */
1777         rl_stop(sc);
1778
1779         rl_reset(sc);
1780         if (sc->rl_twister_enable) {
1781                 /*
1782                  * Reset twister register tuning state.  The twister
1783                  * registers and their tuning are undocumented, but
1784                  * are necessary to cope with bad links.  rl_twister =
1785                  * DONE here will disable this entirely.
1786                  */
1787                 sc->rl_twister = CHK_LINK;
1788         }
1789
1790         /*
1791          * Init our MAC address.  Even though the chipset
1792          * documentation doesn't mention it, we need to enter "Config
1793          * register write enable" mode to modify the ID registers.
1794          */
1795         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1796         bzero(eaddr, sizeof(eaddr));
1797         bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1798         CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1799         CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1800         CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1801
1802         /* Init the RX memory block pointer register. */
1803         CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1804             RL_RX_8139_BUF_RESERVE);
1805         /* Init TX descriptors. */
1806         rl_list_tx_init(sc);
1807         /* Init Rx memory block. */
1808         rl_list_rx_init(sc);
1809
1810         /*
1811          * Enable transmit and receive.
1812          */
1813         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1814
1815         /*
1816          * Set the initial TX and RX configuration.
1817          */
1818         CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1819         CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1820
1821         /* Set the individual bit to receive frames for this host only. */
1822         rxcfg = CSR_READ_4(sc, RL_RXCFG);
1823         rxcfg |= RL_RXCFG_RX_INDIV;
1824
1825         /* If we want promiscuous mode, set the allframes bit. */
1826         if (ifp->if_flags & IFF_PROMISC) {
1827                 rxcfg |= RL_RXCFG_RX_ALLPHYS;
1828                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1829         } else {
1830                 rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1831                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1832         }
1833
1834         /* Set capture broadcast bit to capture broadcast frames. */
1835         if (ifp->if_flags & IFF_BROADCAST) {
1836                 rxcfg |= RL_RXCFG_RX_BROAD;
1837                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1838         } else {
1839                 rxcfg &= ~RL_RXCFG_RX_BROAD;
1840                 CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1841         }
1842
1843         /* Program the multicast filter, if necessary. */
1844         rl_setmulti(sc);
1845
1846 #ifdef DEVICE_POLLING
1847         /* Disable interrupts if we are polling. */
1848         if (ifp->if_capenable & IFCAP_POLLING)
1849                 CSR_WRITE_2(sc, RL_IMR, 0);
1850         else
1851 #endif
1852         /* Enable interrupts. */
1853         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1854
1855         /* Set initial TX threshold */
1856         sc->rl_txthresh = RL_TX_THRESH_INIT;
1857
1858         /* Start RX/TX process. */
1859         CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1860
1861         /* Enable receiver and transmitter. */
1862         CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1863
1864         sc->rl_flags &= ~RL_FLAG_LINK;
1865         mii_mediachg(mii);
1866
1867         CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1868
1869         ifp->if_drv_flags |= IFF_DRV_RUNNING;
1870         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1871
1872         callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1873 }
1874
1875 /*
1876  * Set media options.
1877  */
1878 static int
1879 rl_ifmedia_upd(struct ifnet *ifp)
1880 {
1881         struct rl_softc         *sc = ifp->if_softc;
1882         struct mii_data         *mii;
1883
1884         mii = device_get_softc(sc->rl_miibus);
1885
1886         RL_LOCK(sc);
1887         mii_mediachg(mii);
1888         RL_UNLOCK(sc);
1889
1890         return (0);
1891 }
1892
1893 /*
1894  * Report current media status.
1895  */
1896 static void
1897 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1898 {
1899         struct rl_softc         *sc = ifp->if_softc;
1900         struct mii_data         *mii;
1901
1902         mii = device_get_softc(sc->rl_miibus);
1903
1904         RL_LOCK(sc);
1905         mii_pollstat(mii);
1906         RL_UNLOCK(sc);
1907         ifmr->ifm_active = mii->mii_media_active;
1908         ifmr->ifm_status = mii->mii_media_status;
1909 }
1910
1911 static int
1912 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1913 {
1914         struct ifreq            *ifr = (struct ifreq *)data;
1915         struct mii_data         *mii;
1916         struct rl_softc         *sc = ifp->if_softc;
1917         int                     error = 0;
1918
1919         switch (command) {
1920         case SIOCSIFFLAGS:
1921                 RL_LOCK(sc);
1922                 if (ifp->if_flags & IFF_UP) {
1923                         rl_init_locked(sc);
1924                 } else {
1925                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1926                                 rl_stop(sc);
1927                 }
1928                 RL_UNLOCK(sc);
1929                 error = 0;
1930                 break;
1931         case SIOCADDMULTI:
1932         case SIOCDELMULTI:
1933                 RL_LOCK(sc);
1934                 rl_setmulti(sc);
1935                 RL_UNLOCK(sc);
1936                 error = 0;
1937                 break;
1938         case SIOCGIFMEDIA:
1939         case SIOCSIFMEDIA:
1940                 mii = device_get_softc(sc->rl_miibus);
1941                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1942                 break;
1943         case SIOCSIFCAP:
1944 #ifdef DEVICE_POLLING
1945                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
1946                     !(ifp->if_capenable & IFCAP_POLLING)) {
1947                         error = ether_poll_register(rl_poll, ifp);
1948                         if (error)
1949                                 return(error);
1950                         RL_LOCK(sc);
1951                         /* Disable interrupts */
1952                         CSR_WRITE_2(sc, RL_IMR, 0x0000);
1953                         ifp->if_capenable |= IFCAP_POLLING;
1954                         RL_UNLOCK(sc);
1955                         return (error);
1956                         
1957                 }
1958                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1959                     ifp->if_capenable & IFCAP_POLLING) {
1960                         error = ether_poll_deregister(ifp);
1961                         /* Enable interrupts. */
1962                         RL_LOCK(sc);
1963                         CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1964                         ifp->if_capenable &= ~IFCAP_POLLING;
1965                         RL_UNLOCK(sc);
1966                         return (error);
1967                 }
1968 #endif /* DEVICE_POLLING */
1969                 break;
1970         default:
1971                 error = ether_ioctl(ifp, command, data);
1972                 break;
1973         }
1974
1975         return (error);
1976 }
1977
1978 static void
1979 rl_watchdog(struct rl_softc *sc)
1980 {
1981
1982         RL_LOCK_ASSERT(sc);
1983
1984         if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1985                 return;
1986
1987         device_printf(sc->rl_dev, "watchdog timeout\n");
1988         sc->rl_ifp->if_oerrors++;
1989
1990         rl_txeof(sc);
1991         rl_rxeof(sc);
1992         rl_init_locked(sc);
1993 }
1994
1995 /*
1996  * Stop the adapter and free any mbufs allocated to the
1997  * RX and TX lists.
1998  */
1999 static void
2000 rl_stop(struct rl_softc *sc)
2001 {
2002         register int            i;
2003         struct ifnet            *ifp = sc->rl_ifp;
2004
2005         RL_LOCK_ASSERT(sc);
2006
2007         sc->rl_watchdog_timer = 0;
2008         callout_stop(&sc->rl_stat_callout);
2009         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2010         sc->rl_flags &= ~RL_FLAG_LINK;
2011
2012         CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2013         CSR_WRITE_2(sc, RL_IMR, 0x0000);
2014         for (i = 0; i < RL_TIMEOUT; i++) {
2015                 DELAY(10);
2016                 if ((CSR_READ_1(sc, RL_COMMAND) &
2017                     (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
2018                         break;
2019         }
2020         if (i == RL_TIMEOUT)
2021                 device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
2022
2023         /*
2024          * Free the TX list buffers.
2025          */
2026         for (i = 0; i < RL_TX_LIST_CNT; i++) {
2027                 if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
2028                         if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
2029                                 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
2030                                     sc->rl_cdata.rl_tx_dmamap[i],
2031                                     BUS_DMASYNC_POSTWRITE);
2032                                 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
2033                                     sc->rl_cdata.rl_tx_dmamap[i]);
2034                                 m_freem(sc->rl_cdata.rl_tx_chain[i]);
2035                                 sc->rl_cdata.rl_tx_chain[i] = NULL;
2036                         }
2037                         CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
2038                             0x0000000);
2039                 }
2040         }
2041 }
2042
2043 /*
2044  * Device suspend routine.  Stop the interface and save some PCI
2045  * settings in case the BIOS doesn't restore them properly on
2046  * resume.
2047  */
2048 static int
2049 rl_suspend(device_t dev)
2050 {
2051         struct rl_softc         *sc;
2052
2053         sc = device_get_softc(dev);
2054
2055         RL_LOCK(sc);
2056         rl_stop(sc);
2057         sc->suspended = 1;
2058         RL_UNLOCK(sc);
2059
2060         return (0);
2061 }
2062
2063 /*
2064  * Device resume routine.  Restore some PCI settings in case the BIOS
2065  * doesn't, re-enable busmastering, and restart the interface if
2066  * appropriate.
2067  */
2068 static int
2069 rl_resume(device_t dev)
2070 {
2071         struct rl_softc         *sc;
2072         struct ifnet            *ifp;
2073
2074         sc = device_get_softc(dev);
2075         ifp = sc->rl_ifp;
2076
2077         RL_LOCK(sc);
2078
2079         /* reinitialize interface if necessary */
2080         if (ifp->if_flags & IFF_UP)
2081                 rl_init_locked(sc);
2082
2083         sc->suspended = 0;
2084
2085         RL_UNLOCK(sc);
2086
2087         return (0);
2088 }
2089
2090 /*
2091  * Stop all chip I/O so that the kernel's probe routines don't
2092  * get confused by errant DMAs when rebooting.
2093  */
2094 static int
2095 rl_shutdown(device_t dev)
2096 {
2097         struct rl_softc         *sc;
2098
2099         sc = device_get_softc(dev);
2100
2101         RL_LOCK(sc);
2102         rl_stop(sc);
2103         RL_UNLOCK(sc);
2104
2105         return (0);
2106 }