]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/sparc64/include/vmparam.h
Merge LLVM libunwind trunk r351319, from just before upstream's
[FreeBSD/FreeBSD.git] / sys / sparc64 / include / vmparam.h
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 The Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * William Jolitz.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vmparam.h     5.9 (Berkeley) 5/12/91
37  *      from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
38  * $FreeBSD$
39  */
40
41 #ifndef _MACHINE_VMPARAM_H_
42 #define _MACHINE_VMPARAM_H_
43
44 /*
45  * Virtual memory related constants, all in bytes
46  */
47 #ifndef MAXTSIZ
48 #define MAXTSIZ         (1*1024*1024*1024)      /* max text size */
49 #endif
50 #ifndef DFLDSIZ
51 #define DFLDSIZ         (128*1024*1024)         /* initial data size limit */
52 #endif
53 #ifndef MAXDSIZ
54 #define MAXDSIZ         (1*1024*1024*1024)      /* max data size */
55 #endif
56 #ifndef DFLSSIZ
57 #define DFLSSIZ         (128*1024*1024)         /* initial stack size limit */
58 #endif
59 #ifndef MAXSSIZ
60 #define MAXSSIZ         (1*1024*1024*1024)      /* max stack size */
61 #endif
62 #ifndef SGROWSIZ
63 #define SGROWSIZ        (128*1024)              /* amount to grow stack */
64 #endif
65
66 /*
67  * The physical address space is sparsely populated.
68  */
69 #define VM_PHYSSEG_SPARSE
70
71 /*
72  * The number of PHYSSEG entries must be one greater than the number
73  * of phys_avail entries because the phys_avail entry that spans the
74  * largest physical address that is accessible by ISA DMA is split
75  * into two PHYSSEG entries.
76  */
77 #define VM_PHYSSEG_MAX          64
78
79 /*
80  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
81  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
82  * the pool from which physical pages for small UMA objects are
83  * allocated.
84  */
85 #define VM_NFREEPOOL            2
86 #define VM_FREEPOOL_DEFAULT     0
87 #define VM_FREEPOOL_DIRECT      1
88
89 /*
90  * Create one free page list: VM_FREELIST_DEFAULT is for all physical
91  * pages.
92  */
93 #define VM_NFREELIST            1
94 #define VM_FREELIST_DEFAULT     0
95
96 /*
97  * An allocation size of 16MB is supported in order to optimize the
98  * use of the direct map by UMA.  Specifically, a cache line contains
99  * at most four TTEs, collectively mapping 16MB of physical memory.
100  * By reducing the number of distinct 16MB "pages" that are used by UMA,
101  * the physical memory allocator reduces the likelihood of both 4MB
102  * page TLB misses and cache misses caused by 4MB page TLB misses.
103  */
104 #define VM_NFREEORDER           12
105
106 /*
107  * Enable superpage reservations: 1 level.
108  */
109 #ifndef VM_NRESERVLEVEL
110 #define VM_NRESERVLEVEL         1
111 #endif
112
113 /*
114  * Level 0 reservations consist of 512 pages.
115  */
116 #ifndef VM_LEVEL_0_ORDER
117 #define VM_LEVEL_0_ORDER        9
118 #endif
119
120 /**
121  * Address space layout.
122  *
123  * UltraSPARC I and II implement a 44 bit virtual address space.  The address
124  * space is split into 2 regions at each end of the 64 bit address space, with
125  * an out of range "hole" in the middle.  UltraSPARC III implements the full
126  * 64 bit virtual address space, but we don't really have any use for it and
127  * 43 bits of user address space is considered to be "enough", so we ignore it.
128  *
129  * Upper region:        0xffffffffffffffff
130  *                      0xfffff80000000000
131  *
132  * Hole:                0xfffff7ffffffffff
133  *                      0x0000080000000000
134  *
135  * Lower region:        0x000007ffffffffff
136  *                      0x0000000000000000
137  *
138  * In general we ignore the upper region, and use the lower region as mappable
139  * space.
140  *
141  * We define some interesting address constants:
142  *
143  * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
144  * 64 bit address space, mostly just for convenience.
145  *
146  * VM_MIN_DIRECT_ADDRESS and VM_MAX_DIRECT_ADDRESS define the start and end
147  * of the direct mapped region.  This maps virtual addresses to physical
148  * addresses directly using 4mb tlb entries, with the physical address encoded
149  * in the lower 43 bits of virtual address.  These mappings are convenient
150  * because they do not require page tables, and because they never change they
151  * do not require tlb flushes.  However, since these mappings are cacheable,
152  * we must ensure that all pages accessed this way are either not double
153  * mapped, or that all other mappings have virtual color equal to physical
154  * color, in order to avoid creating illegal aliases in the data cache.
155  *
156  * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
157  * mappable kernel virtual address space.  VM_MIN_KERNEL_ADDRESS is basically
158  * arbitrary, a convenient address is chosen which allows both the kernel text
159  * and data and the prom's address space to be mapped with 1 4mb tsb page.
160  * VM_MAX_KERNEL_ADDRESS is variable, computed at startup time based on the
161  * amount of physical memory available.  Each 4mb tsb page provides 1g of
162  * virtual address space, with the only practical limit being available
163  * phsyical memory.
164  *
165  * VM_MIN_PROM_ADDRESS and VM_MAX_PROM_ADDRESS define the start and end of the
166  * prom address space.  On startup the prom's mappings are duplicated in the
167  * kernel tsb, to allow prom memory to be accessed normally by the kernel.
168  *
169  * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
170  * user address space.  There are some hardware errata about using addresses
171  * at the boundary of the va hole, so we allow just under 43 bits of user
172  * address space.  Note that the kernel and user address spaces overlap, but
173  * this doesn't matter because they use different tlb contexts, and because
174  * the kernel address space is not mapped into each process' address space.
175  */
176 #define VM_MIN_ADDRESS          (0x0000000000000000UL)
177 #define VM_MAX_ADDRESS          (0xffffffffffffffffUL)
178
179 #define VM_MIN_DIRECT_ADDRESS   (0xfffff80000000000UL)
180 #define VM_MAX_DIRECT_ADDRESS   (VM_MAX_ADDRESS)
181
182 #define VM_MIN_KERNEL_ADDRESS   (0x00000000c0000000UL)
183 #define VM_MAX_KERNEL_ADDRESS   (vm_max_kernel_address)
184
185 #define VM_MIN_PROM_ADDRESS     (0x00000000f0000000UL)
186 #define VM_MAX_PROM_ADDRESS     (0x00000000ffffffffUL)
187
188 #define VM_MIN_USER_ADDRESS     (0x0000000000000000UL)
189 #define VM_MAX_USER_ADDRESS     (0x000007fe00000000UL)
190
191 #define VM_MINUSER_ADDRESS      (VM_MIN_USER_ADDRESS)
192 #define VM_MAXUSER_ADDRESS      (VM_MAX_USER_ADDRESS)
193
194 #define KERNBASE                (VM_MIN_KERNEL_ADDRESS)
195 #define PROMBASE                (VM_MIN_PROM_ADDRESS)
196 #define USRSTACK                (VM_MAX_USER_ADDRESS)
197
198 /*
199  * How many physical pages per kmem arena virtual page.
200  */
201 #ifndef VM_KMEM_SIZE_SCALE
202 #define VM_KMEM_SIZE_SCALE      (tsb_kernel_ldd_phys == 0 ? 3 : 2)
203 #endif
204
205 /*
206  * Optional floor (in bytes) on the size of the kmem arena.
207  */
208 #ifndef VM_KMEM_SIZE_MIN
209 #define VM_KMEM_SIZE_MIN        (16 * 1024 * 1024)
210 #endif
211
212 /*
213  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
214  * kernel map.
215  */
216 #ifndef VM_KMEM_SIZE_MAX
217 #define VM_KMEM_SIZE_MAX        ((VM_MAX_KERNEL_ADDRESS - \
218     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
219 #endif
220
221 /*
222  * Initial pagein size of beginning of executable file.
223  */
224 #ifndef VM_INITIAL_PAGEIN
225 #define VM_INITIAL_PAGEIN       16
226 #endif
227
228 #define UMA_MD_SMALL_ALLOC
229
230 extern u_int tsb_kernel_ldd_phys;
231 extern vm_offset_t vm_max_kernel_address;
232
233 /*
234  * Older sparc64 machines have a virtually indexed L1 data cache of 16KB.
235  * Consequently, mapping the same physical page multiple times may have
236  * caching disabled.
237  */
238 #define ZERO_REGION_SIZE        PAGE_SIZE
239
240 #include <machine/tlb.h>
241
242 #define SFBUF
243 #define SFBUF_MAP
244
245 #define PMAP_HAS_DMAP   dcache_color_ignore
246 #define PHYS_TO_DMAP(x) (TLB_PHYS_TO_DIRECT(x))
247
248 #endif /* !_MACHINE_VMPARAM_H_ */