]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
bluetooth: Fix a mandoc related issues
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static __exclusive_cache_line u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A", 
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A", 
167     "Total amount of available swap storage.");
168
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179
180 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184
185 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189
190 /* bits from overcommit */
191 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
192 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
193 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
194
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198         uint64_t newval;
199         u_long value = *(u_long *)arg1;
200
201         newval = ((uint64_t)value) << PAGE_SHIFT;
202         return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204
205 static bool
206 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
207 {
208         struct uidinfo *uip;
209         u_long prev;
210
211         uip = cred->cr_ruidinfo;
212
213         prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
214         if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
215             prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
216             priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
217                 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
218                 KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
219                 return (false);
220         }
221         return (true);
222 }
223
224 static void
225 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
226 {
227         struct uidinfo *uip;
228 #ifdef INVARIANTS
229         u_long prev;
230 #endif
231
232         uip = cred->cr_ruidinfo;
233
234 #ifdef INVARIANTS
235         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
236         KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
237 #else
238         atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245         struct uidinfo *uip;
246
247         uip = cred->cr_ruidinfo;
248         atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254
255         return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261         u_long r, s, prev, pincr;
262 #ifdef RACCT
263         int error;
264 #endif
265         int oc;
266         static int curfail;
267         static struct timeval lastfail;
268
269         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
270             (uintmax_t)incr));
271
272 #ifdef RACCT
273         if (RACCT_ENABLED()) {
274                 PROC_LOCK(curproc);
275                 error = racct_add(curproc, RACCT_SWAP, incr);
276                 PROC_UNLOCK(curproc);
277                 if (error != 0)
278                         return (false);
279         }
280 #endif
281
282         pincr = atop(incr);
283         prev = atomic_fetchadd_long(&swap_reserved, pincr);
284         r = prev + pincr;
285         s = swap_total;
286         oc = atomic_load_int(&overcommit);
287         if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288                 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289                     vm_wire_count();
290         }
291         if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292             priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
295                 goto out_error;
296         }
297
298         if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
299                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
300                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
301                 goto out_error;
302         }
303
304         return (true);
305
306 out_error:
307         if (ppsratecheck(&lastfail, &curfail, 1)) {
308                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
309                     cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
310         }
311 #ifdef RACCT
312         if (RACCT_ENABLED()) {
313                 PROC_LOCK(curproc);
314                 racct_sub(curproc, RACCT_SWAP, incr);
315                 PROC_UNLOCK(curproc);
316         }
317 #endif
318
319         return (false);
320 }
321
322 void
323 swap_reserve_force(vm_ooffset_t incr)
324 {
325         u_long pincr;
326
327         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
328             (uintmax_t)incr));
329
330 #ifdef RACCT
331         if (RACCT_ENABLED()) {
332                 PROC_LOCK(curproc);
333                 racct_add_force(curproc, RACCT_SWAP, incr);
334                 PROC_UNLOCK(curproc);
335         }
336 #endif
337         pincr = atop(incr);
338         atomic_add_long(&swap_reserved, pincr);
339         swap_reserve_force_rlimit(pincr, curthread->td_ucred);
340 }
341
342 void
343 swap_release(vm_ooffset_t decr)
344 {
345         struct ucred *cred;
346
347         PROC_LOCK(curproc);
348         cred = curproc->p_ucred;
349         swap_release_by_cred(decr, cred);
350         PROC_UNLOCK(curproc);
351 }
352
353 void
354 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
355 {
356         u_long pdecr;
357 #ifdef INVARIANTS
358         u_long prev;
359 #endif
360
361         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
362             (uintmax_t)decr));
363
364         pdecr = atop(decr);
365 #ifdef INVARIANTS
366         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
367         KASSERT(prev >= pdecr, ("swap_reserved < decr"));
368 #else
369         atomic_subtract_long(&swap_reserved, pdecr);
370 #endif
371
372         swap_release_by_cred_rlimit(pdecr, cred);
373 #ifdef RACCT
374         if (racct_enable)
375                 racct_sub_cred(cred, RACCT_SWAP, decr);
376 #endif
377 }
378
379 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
380 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
381 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
382 static int nsw_wcount_async;    /* limit async write buffers */
383 static int nsw_wcount_async_max;/* assigned maximum                     */
384 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
385
386 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
387 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
388     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
389     "Maximum running async swap ops");
390 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
391 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
392     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
393     "Swap Fragmentation Info");
394
395 static struct sx sw_alloc_sx;
396
397 /*
398  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
399  * of searching a named list by hashing it just a little.
400  */
401
402 #define NOBJLISTS               8
403
404 #define NOBJLIST(handle)        \
405         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
406
407 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
408 static uma_zone_t swwbuf_zone;
409 static uma_zone_t swrbuf_zone;
410 static uma_zone_t swblk_zone;
411 static uma_zone_t swpctrie_zone;
412
413 /*
414  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
415  * calls hooked from other parts of the VM system and do not appear here.
416  * (see vm/swap_pager.h).
417  */
418 static vm_object_t
419                 swap_pager_alloc(void *handle, vm_ooffset_t size,
420                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
421 static void     swap_pager_dealloc(vm_object_t object);
422 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
423     int *);
424 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
425     int *, pgo_getpages_iodone_t, void *);
426 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
427 static boolean_t
428                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
429 static void     swap_pager_init(void);
430 static void     swap_pager_unswapped(vm_page_t);
431 static void     swap_pager_swapoff(struct swdevt *sp);
432 static void     swap_pager_update_writecount(vm_object_t object,
433     vm_offset_t start, vm_offset_t end);
434 static void     swap_pager_release_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436
437 struct pagerops swappagerops = {
438         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
439         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
440         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
441         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
442         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
443         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
444         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
445         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
446         .pgo_update_writecount = swap_pager_update_writecount,
447         .pgo_release_writecount = swap_pager_release_writecount,
448 };
449
450 /*
451  * swap_*() routines are externally accessible.  swp_*() routines are
452  * internal.
453  */
454 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
455 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
456
457 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
458     "Maximum size of a swap block in pages");
459
460 static void     swp_sizecheck(void);
461 static void     swp_pager_async_iodone(struct buf *bp);
462 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
463 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
464 static int      swapongeom(struct vnode *);
465 static int      swaponvp(struct thread *, struct vnode *, u_long);
466 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
467
468 /*
469  * Swap bitmap functions
470  */
471 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
472 static daddr_t  swp_pager_getswapspace(int *npages);
473
474 /*
475  * Metadata functions
476  */
477 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
478 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
479 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
480     vm_pindex_t pindex, vm_pindex_t count);
481 static void swp_pager_meta_free_all(vm_object_t);
482 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
483
484 static void
485 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
486 {
487
488         *start = SWAPBLK_NONE;
489         *num = 0;
490 }
491
492 static void
493 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
494 {
495
496         if (*start + *num == addr) {
497                 (*num)++;
498         } else {
499                 swp_pager_freeswapspace(*start, *num);
500                 *start = addr;
501                 *num = 1;
502         }
503 }
504
505 static void *
506 swblk_trie_alloc(struct pctrie *ptree)
507 {
508
509         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
510             M_USE_RESERVE : 0)));
511 }
512
513 static void
514 swblk_trie_free(struct pctrie *ptree, void *node)
515 {
516
517         uma_zfree(swpctrie_zone, node);
518 }
519
520 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
521
522 /*
523  * SWP_SIZECHECK() -    update swap_pager_full indication
524  *
525  *      update the swap_pager_almost_full indication and warn when we are
526  *      about to run out of swap space, using lowat/hiwat hysteresis.
527  *
528  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
529  *
530  *      No restrictions on call
531  *      This routine may not block.
532  */
533 static void
534 swp_sizecheck(void)
535 {
536
537         if (swap_pager_avail < nswap_lowat) {
538                 if (swap_pager_almost_full == 0) {
539                         printf("swap_pager: out of swap space\n");
540                         swap_pager_almost_full = 1;
541                 }
542         } else {
543                 swap_pager_full = 0;
544                 if (swap_pager_avail > nswap_hiwat)
545                         swap_pager_almost_full = 0;
546         }
547 }
548
549 /*
550  * SWAP_PAGER_INIT() -  initialize the swap pager!
551  *
552  *      Expected to be started from system init.  NOTE:  This code is run
553  *      before much else so be careful what you depend on.  Most of the VM
554  *      system has yet to be initialized at this point.
555  */
556 static void
557 swap_pager_init(void)
558 {
559         /*
560          * Initialize object lists
561          */
562         int i;
563
564         for (i = 0; i < NOBJLISTS; ++i)
565                 TAILQ_INIT(&swap_pager_object_list[i]);
566         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
567         sx_init(&sw_alloc_sx, "swspsx");
568         sx_init(&swdev_syscall_lock, "swsysc");
569 }
570
571 /*
572  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
573  *
574  *      Expected to be started from pageout process once, prior to entering
575  *      its main loop.
576  */
577 void
578 swap_pager_swap_init(void)
579 {
580         unsigned long n, n2;
581
582         /*
583          * Number of in-transit swap bp operations.  Don't
584          * exhaust the pbufs completely.  Make sure we
585          * initialize workable values (0 will work for hysteresis
586          * but it isn't very efficient).
587          *
588          * The nsw_cluster_max is constrained by the bp->b_pages[]
589          * array, which has maxphys / PAGE_SIZE entries, and our locally
590          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
591          * constrained by the swap device interleave stripe size.
592          *
593          * Currently we hardwire nsw_wcount_async to 4.  This limit is
594          * designed to prevent other I/O from having high latencies due to
595          * our pageout I/O.  The value 4 works well for one or two active swap
596          * devices but is probably a little low if you have more.  Even so,
597          * a higher value would probably generate only a limited improvement
598          * with three or four active swap devices since the system does not
599          * typically have to pageout at extreme bandwidths.   We will want
600          * at least 2 per swap devices, and 4 is a pretty good value if you
601          * have one NFS swap device due to the command/ack latency over NFS.
602          * So it all works out pretty well.
603          */
604         nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
605
606         nsw_wcount_async = 4;
607         nsw_wcount_async_max = nsw_wcount_async;
608         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
609
610         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
611         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
612
613         /*
614          * Initialize our zone, taking the user's requested size or
615          * estimating the number we need based on the number of pages
616          * in the system.
617          */
618         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
619             vm_cnt.v_page_count / 2;
620         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
621             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
622         if (swpctrie_zone == NULL)
623                 panic("failed to create swap pctrie zone.");
624         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
625             NULL, NULL, _Alignof(struct swblk) - 1, 0);
626         if (swblk_zone == NULL)
627                 panic("failed to create swap blk zone.");
628         n2 = n;
629         do {
630                 if (uma_zone_reserve_kva(swblk_zone, n))
631                         break;
632                 /*
633                  * if the allocation failed, try a zone two thirds the
634                  * size of the previous attempt.
635                  */
636                 n -= ((n + 2) / 3);
637         } while (n > 0);
638
639         /*
640          * Often uma_zone_reserve_kva() cannot reserve exactly the
641          * requested size.  Account for the difference when
642          * calculating swap_maxpages.
643          */
644         n = uma_zone_get_max(swblk_zone);
645
646         if (n < n2)
647                 printf("Swap blk zone entries changed from %lu to %lu.\n",
648                     n2, n);
649         /* absolute maximum we can handle assuming 100% efficiency */
650         swap_maxpages = n * SWAP_META_PAGES;
651         swzone = n * sizeof(struct swblk);
652         if (!uma_zone_reserve_kva(swpctrie_zone, n))
653                 printf("Cannot reserve swap pctrie zone, "
654                     "reduce kern.maxswzone.\n");
655 }
656
657 static vm_object_t
658 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
659     vm_ooffset_t offset)
660 {
661         vm_object_t object;
662
663         if (cred != NULL) {
664                 if (!swap_reserve_by_cred(size, cred))
665                         return (NULL);
666                 crhold(cred);
667         }
668
669         /*
670          * The un_pager.swp.swp_blks trie is initialized by
671          * vm_object_allocate() to ensure the correct order of
672          * visibility to other threads.
673          */
674         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
675             PAGE_MASK + size));
676
677         object->un_pager.swp.writemappings = 0;
678         object->handle = handle;
679         if (cred != NULL) {
680                 object->cred = cred;
681                 object->charge = size;
682         }
683         return (object);
684 }
685
686 /*
687  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
688  *                      its metadata structures.
689  *
690  *      This routine is called from the mmap and fork code to create a new
691  *      OBJT_SWAP object.
692  *
693  *      This routine must ensure that no live duplicate is created for
694  *      the named object request, which is protected against by
695  *      holding the sw_alloc_sx lock in case handle != NULL.
696  */
697 static vm_object_t
698 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
699     vm_ooffset_t offset, struct ucred *cred)
700 {
701         vm_object_t object;
702
703         if (handle != NULL) {
704                 /*
705                  * Reference existing named region or allocate new one.  There
706                  * should not be a race here against swp_pager_meta_build()
707                  * as called from vm_page_remove() in regards to the lookup
708                  * of the handle.
709                  */
710                 sx_xlock(&sw_alloc_sx);
711                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
712                 if (object == NULL) {
713                         object = swap_pager_alloc_init(handle, cred, size,
714                             offset);
715                         if (object != NULL) {
716                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
717                                     object, pager_object_list);
718                         }
719                 }
720                 sx_xunlock(&sw_alloc_sx);
721         } else {
722                 object = swap_pager_alloc_init(handle, cred, size, offset);
723         }
724         return (object);
725 }
726
727 /*
728  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
729  *
730  *      The swap backing for the object is destroyed.  The code is
731  *      designed such that we can reinstantiate it later, but this
732  *      routine is typically called only when the entire object is
733  *      about to be destroyed.
734  *
735  *      The object must be locked.
736  */
737 static void
738 swap_pager_dealloc(vm_object_t object)
739 {
740
741         VM_OBJECT_ASSERT_WLOCKED(object);
742         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
743
744         /*
745          * Remove from list right away so lookups will fail if we block for
746          * pageout completion.
747          */
748         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
749                 VM_OBJECT_WUNLOCK(object);
750                 sx_xlock(&sw_alloc_sx);
751                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
752                     pager_object_list);
753                 sx_xunlock(&sw_alloc_sx);
754                 VM_OBJECT_WLOCK(object);
755         }
756
757         vm_object_pip_wait(object, "swpdea");
758
759         /*
760          * Free all remaining metadata.  We only bother to free it from
761          * the swap meta data.  We do not attempt to free swapblk's still
762          * associated with vm_page_t's for this object.  We do not care
763          * if paging is still in progress on some objects.
764          */
765         swp_pager_meta_free_all(object);
766         object->handle = NULL;
767         object->type = OBJT_DEAD;
768 }
769
770 /************************************************************************
771  *                      SWAP PAGER BITMAP ROUTINES                      *
772  ************************************************************************/
773
774 /*
775  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
776  *
777  *      Allocate swap for up to the requested number of pages.  The
778  *      starting swap block number (a page index) is returned or
779  *      SWAPBLK_NONE if the allocation failed.
780  *
781  *      Also has the side effect of advising that somebody made a mistake
782  *      when they configured swap and didn't configure enough.
783  *
784  *      This routine may not sleep.
785  *
786  *      We allocate in round-robin fashion from the configured devices.
787  */
788 static daddr_t
789 swp_pager_getswapspace(int *io_npages)
790 {
791         daddr_t blk;
792         struct swdevt *sp;
793         int mpages, npages;
794
795         KASSERT(*io_npages >= 1,
796             ("%s: npages not positive", __func__));
797         blk = SWAPBLK_NONE;
798         mpages = *io_npages;
799         npages = imin(BLIST_MAX_ALLOC, mpages);
800         mtx_lock(&sw_dev_mtx);
801         sp = swdevhd;
802         while (!TAILQ_EMPTY(&swtailq)) {
803                 if (sp == NULL)
804                         sp = TAILQ_FIRST(&swtailq);
805                 if ((sp->sw_flags & SW_CLOSING) == 0)
806                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
807                 if (blk != SWAPBLK_NONE)
808                         break;
809                 sp = TAILQ_NEXT(sp, sw_list);
810                 if (swdevhd == sp) {
811                         if (npages == 1)
812                                 break;
813                         mpages = npages - 1;
814                         npages >>= 1;
815                 }
816         }
817         if (blk != SWAPBLK_NONE) {
818                 *io_npages = npages;
819                 blk += sp->sw_first;
820                 sp->sw_used += npages;
821                 swap_pager_avail -= npages;
822                 swp_sizecheck();
823                 swdevhd = TAILQ_NEXT(sp, sw_list);
824         } else {
825                 if (swap_pager_full != 2) {
826                         printf("swp_pager_getswapspace(%d): failed\n",
827                             *io_npages);
828                         swap_pager_full = 2;
829                         swap_pager_almost_full = 1;
830                 }
831                 swdevhd = NULL;
832         }
833         mtx_unlock(&sw_dev_mtx);
834         return (blk);
835 }
836
837 static bool
838 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
839 {
840
841         return (blk >= sp->sw_first && blk < sp->sw_end);
842 }
843
844 static void
845 swp_pager_strategy(struct buf *bp)
846 {
847         struct swdevt *sp;
848
849         mtx_lock(&sw_dev_mtx);
850         TAILQ_FOREACH(sp, &swtailq, sw_list) {
851                 if (swp_pager_isondev(bp->b_blkno, sp)) {
852                         mtx_unlock(&sw_dev_mtx);
853                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
854                             unmapped_buf_allowed) {
855                                 bp->b_data = unmapped_buf;
856                                 bp->b_offset = 0;
857                         } else {
858                                 pmap_qenter((vm_offset_t)bp->b_data,
859                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
860                         }
861                         sp->sw_strategy(bp, sp);
862                         return;
863                 }
864         }
865         panic("Swapdev not found");
866 }
867
868 /*
869  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
870  *
871  *      This routine returns the specified swap blocks back to the bitmap.
872  *
873  *      This routine may not sleep.
874  */
875 static void
876 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
877 {
878         struct swdevt *sp;
879
880         if (npages == 0)
881                 return;
882         mtx_lock(&sw_dev_mtx);
883         TAILQ_FOREACH(sp, &swtailq, sw_list) {
884                 if (swp_pager_isondev(blk, sp)) {
885                         sp->sw_used -= npages;
886                         /*
887                          * If we are attempting to stop swapping on
888                          * this device, we don't want to mark any
889                          * blocks free lest they be reused.
890                          */
891                         if ((sp->sw_flags & SW_CLOSING) == 0) {
892                                 blist_free(sp->sw_blist, blk - sp->sw_first,
893                                     npages);
894                                 swap_pager_avail += npages;
895                                 swp_sizecheck();
896                         }
897                         mtx_unlock(&sw_dev_mtx);
898                         return;
899                 }
900         }
901         panic("Swapdev not found");
902 }
903
904 /*
905  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
906  */
907 static int
908 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
909 {
910         struct sbuf sbuf;
911         struct swdevt *sp;
912         const char *devname;
913         int error;
914
915         error = sysctl_wire_old_buffer(req, 0);
916         if (error != 0)
917                 return (error);
918         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
919         mtx_lock(&sw_dev_mtx);
920         TAILQ_FOREACH(sp, &swtailq, sw_list) {
921                 if (vn_isdisk(sp->sw_vp))
922                         devname = devtoname(sp->sw_vp->v_rdev);
923                 else
924                         devname = "[file]";
925                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
926                 blist_stats(sp->sw_blist, &sbuf);
927         }
928         mtx_unlock(&sw_dev_mtx);
929         error = sbuf_finish(&sbuf);
930         sbuf_delete(&sbuf);
931         return (error);
932 }
933
934 /*
935  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
936  *                              range within an object.
937  *
938  *      This is a globally accessible routine.
939  *
940  *      This routine removes swapblk assignments from swap metadata.
941  *
942  *      The external callers of this routine typically have already destroyed
943  *      or renamed vm_page_t's associated with this range in the object so
944  *      we should be ok.
945  *
946  *      The object must be locked.
947  */
948 void
949 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
950 {
951
952         swp_pager_meta_free(object, start, size);
953 }
954
955 /*
956  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
957  *
958  *      Assigns swap blocks to the specified range within the object.  The
959  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
960  *
961  *      Returns 0 on success, -1 on failure.
962  */
963 int
964 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
965 {
966         daddr_t addr, blk, n_free, s_free;
967         int i, j, n;
968
969         swp_pager_init_freerange(&s_free, &n_free);
970         VM_OBJECT_WLOCK(object);
971         for (i = 0; i < size; i += n) {
972                 n = size - i;
973                 blk = swp_pager_getswapspace(&n);
974                 if (blk == SWAPBLK_NONE) {
975                         swp_pager_meta_free(object, start, i);
976                         VM_OBJECT_WUNLOCK(object);
977                         return (-1);
978                 }
979                 for (j = 0; j < n; ++j) {
980                         addr = swp_pager_meta_build(object,
981                             start + i + j, blk + j);
982                         if (addr != SWAPBLK_NONE)
983                                 swp_pager_update_freerange(&s_free, &n_free,
984                                     addr);
985                 }
986         }
987         swp_pager_freeswapspace(s_free, n_free);
988         VM_OBJECT_WUNLOCK(object);
989         return (0);
990 }
991
992 static bool
993 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
994     vm_pindex_t pindex, daddr_t addr)
995 {
996         daddr_t dstaddr;
997
998         KASSERT(srcobject->type == OBJT_SWAP,
999             ("%s: Srcobject not swappable", __func__));
1000         if (dstobject->type == OBJT_SWAP &&
1001             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1002                 /* Caller should destroy the source block. */
1003                 return (false);
1004         }
1005
1006         /*
1007          * Destination has no swapblk and is not resident, transfer source.
1008          * swp_pager_meta_build() can sleep.
1009          */
1010         VM_OBJECT_WUNLOCK(srcobject);
1011         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1012         KASSERT(dstaddr == SWAPBLK_NONE,
1013             ("Unexpected destination swapblk"));
1014         VM_OBJECT_WLOCK(srcobject);
1015
1016         return (true);
1017 }
1018
1019 /*
1020  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1021  *                      and destroy the source.
1022  *
1023  *      Copy any valid swapblks from the source to the destination.  In
1024  *      cases where both the source and destination have a valid swapblk,
1025  *      we keep the destination's.
1026  *
1027  *      This routine is allowed to sleep.  It may sleep allocating metadata
1028  *      indirectly through swp_pager_meta_build().
1029  *
1030  *      The source object contains no vm_page_t's (which is just as well)
1031  *
1032  *      The source object is of type OBJT_SWAP.
1033  *
1034  *      The source and destination objects must be locked.
1035  *      Both object locks may temporarily be released.
1036  */
1037 void
1038 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1039     vm_pindex_t offset, int destroysource)
1040 {
1041
1042         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1043         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1044
1045         /*
1046          * If destroysource is set, we remove the source object from the
1047          * swap_pager internal queue now.
1048          */
1049         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1050             srcobject->handle != NULL) {
1051                 VM_OBJECT_WUNLOCK(srcobject);
1052                 VM_OBJECT_WUNLOCK(dstobject);
1053                 sx_xlock(&sw_alloc_sx);
1054                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1055                     pager_object_list);
1056                 sx_xunlock(&sw_alloc_sx);
1057                 VM_OBJECT_WLOCK(dstobject);
1058                 VM_OBJECT_WLOCK(srcobject);
1059         }
1060
1061         /*
1062          * Transfer source to destination.
1063          */
1064         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1065
1066         /*
1067          * Free left over swap blocks in source.
1068          *
1069          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1070          * double-remove the object from the swap queues.
1071          */
1072         if (destroysource) {
1073                 swp_pager_meta_free_all(srcobject);
1074                 /*
1075                  * Reverting the type is not necessary, the caller is going
1076                  * to destroy srcobject directly, but I'm doing it here
1077                  * for consistency since we've removed the object from its
1078                  * queues.
1079                  */
1080                 srcobject->type = OBJT_DEFAULT;
1081         }
1082 }
1083
1084 /*
1085  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1086  *                              the requested page.
1087  *
1088  *      We determine whether good backing store exists for the requested
1089  *      page and return TRUE if it does, FALSE if it doesn't.
1090  *
1091  *      If TRUE, we also try to determine how much valid, contiguous backing
1092  *      store exists before and after the requested page.
1093  */
1094 static boolean_t
1095 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1096     int *after)
1097 {
1098         daddr_t blk, blk0;
1099         int i;
1100
1101         VM_OBJECT_ASSERT_LOCKED(object);
1102         KASSERT(object->type == OBJT_SWAP,
1103             ("%s: object not swappable", __func__));
1104
1105         /*
1106          * do we have good backing store at the requested index ?
1107          */
1108         blk0 = swp_pager_meta_lookup(object, pindex);
1109         if (blk0 == SWAPBLK_NONE) {
1110                 if (before)
1111                         *before = 0;
1112                 if (after)
1113                         *after = 0;
1114                 return (FALSE);
1115         }
1116
1117         /*
1118          * find backwards-looking contiguous good backing store
1119          */
1120         if (before != NULL) {
1121                 for (i = 1; i < SWB_NPAGES; i++) {
1122                         if (i > pindex)
1123                                 break;
1124                         blk = swp_pager_meta_lookup(object, pindex - i);
1125                         if (blk != blk0 - i)
1126                                 break;
1127                 }
1128                 *before = i - 1;
1129         }
1130
1131         /*
1132          * find forward-looking contiguous good backing store
1133          */
1134         if (after != NULL) {
1135                 for (i = 1; i < SWB_NPAGES; i++) {
1136                         blk = swp_pager_meta_lookup(object, pindex + i);
1137                         if (blk != blk0 + i)
1138                                 break;
1139                 }
1140                 *after = i - 1;
1141         }
1142         return (TRUE);
1143 }
1144
1145 /*
1146  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1147  *
1148  *      This removes any associated swap backing store, whether valid or
1149  *      not, from the page.
1150  *
1151  *      This routine is typically called when a page is made dirty, at
1152  *      which point any associated swap can be freed.  MADV_FREE also
1153  *      calls us in a special-case situation
1154  *
1155  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1156  *      should make the page dirty before calling this routine.  This routine
1157  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1158  *      depends on it.
1159  *
1160  *      This routine may not sleep.
1161  *
1162  *      The object containing the page may be locked.
1163  */
1164 static void
1165 swap_pager_unswapped(vm_page_t m)
1166 {
1167         struct swblk *sb;
1168         vm_object_t obj;
1169
1170         /*
1171          * Handle enqueing deferred frees first.  If we do not have the
1172          * object lock we wait for the page daemon to clear the space.
1173          */
1174         obj = m->object;
1175         if (!VM_OBJECT_WOWNED(obj)) {
1176                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1177                 /*
1178                  * The caller is responsible for synchronization but we
1179                  * will harmlessly handle races.  This is typically provided
1180                  * by only calling unswapped() when a page transitions from
1181                  * clean to dirty.
1182                  */
1183                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1184                     PGA_SWAP_SPACE) {
1185                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1186                         counter_u64_add(swap_free_deferred, 1);
1187                 }
1188                 return;
1189         }
1190         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1191                 counter_u64_add(swap_free_completed, 1);
1192         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1193
1194         /*
1195          * The meta data only exists if the object is OBJT_SWAP
1196          * and even then might not be allocated yet.
1197          */
1198         KASSERT(m->object->type == OBJT_SWAP,
1199             ("Free object not swappable"));
1200
1201         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1202             rounddown(m->pindex, SWAP_META_PAGES));
1203         if (sb == NULL)
1204                 return;
1205         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1206                 return;
1207         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1208         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1209         swp_pager_free_empty_swblk(m->object, sb);
1210 }
1211
1212 /*
1213  * swap_pager_getpages() - bring pages in from swap
1214  *
1215  *      Attempt to page in the pages in array "ma" of length "count".  The
1216  *      caller may optionally specify that additional pages preceding and
1217  *      succeeding the specified range be paged in.  The number of such pages
1218  *      is returned in the "rbehind" and "rahead" parameters, and they will
1219  *      be in the inactive queue upon return.
1220  *
1221  *      The pages in "ma" must be busied and will remain busied upon return.
1222  */
1223 static int
1224 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1225     int *rbehind, int *rahead)
1226 {
1227         struct buf *bp;
1228         vm_page_t bm, mpred, msucc, p;
1229         vm_pindex_t pindex;
1230         daddr_t blk;
1231         int i, maxahead, maxbehind, reqcount;
1232
1233         VM_OBJECT_ASSERT_WLOCKED(object);
1234         reqcount = count;
1235
1236         KASSERT(object->type == OBJT_SWAP,
1237             ("%s: object not swappable", __func__));
1238         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1239                 VM_OBJECT_WUNLOCK(object);
1240                 return (VM_PAGER_FAIL);
1241         }
1242
1243         KASSERT(reqcount - 1 <= maxahead,
1244             ("page count %d extends beyond swap block", reqcount));
1245
1246         /*
1247          * Do not transfer any pages other than those that are xbusied
1248          * when running during a split or collapse operation.  This
1249          * prevents clustering from re-creating pages which are being
1250          * moved into another object.
1251          */
1252         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1253                 maxahead = reqcount - 1;
1254                 maxbehind = 0;
1255         }
1256
1257         /*
1258          * Clip the readahead and readbehind ranges to exclude resident pages.
1259          */
1260         if (rahead != NULL) {
1261                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1262                 pindex = ma[reqcount - 1]->pindex;
1263                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1264                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1265                         *rahead = msucc->pindex - pindex - 1;
1266         }
1267         if (rbehind != NULL) {
1268                 *rbehind = imin(*rbehind, maxbehind);
1269                 pindex = ma[0]->pindex;
1270                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1271                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1272                         *rbehind = pindex - mpred->pindex - 1;
1273         }
1274
1275         bm = ma[0];
1276         for (i = 0; i < count; i++)
1277                 ma[i]->oflags |= VPO_SWAPINPROG;
1278
1279         /*
1280          * Allocate readahead and readbehind pages.
1281          */
1282         if (rbehind != NULL) {
1283                 for (i = 1; i <= *rbehind; i++) {
1284                         p = vm_page_alloc(object, ma[0]->pindex - i,
1285                             VM_ALLOC_NORMAL);
1286                         if (p == NULL)
1287                                 break;
1288                         p->oflags |= VPO_SWAPINPROG;
1289                         bm = p;
1290                 }
1291                 *rbehind = i - 1;
1292         }
1293         if (rahead != NULL) {
1294                 for (i = 0; i < *rahead; i++) {
1295                         p = vm_page_alloc(object,
1296                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1297                         if (p == NULL)
1298                                 break;
1299                         p->oflags |= VPO_SWAPINPROG;
1300                 }
1301                 *rahead = i;
1302         }
1303         if (rbehind != NULL)
1304                 count += *rbehind;
1305         if (rahead != NULL)
1306                 count += *rahead;
1307
1308         vm_object_pip_add(object, count);
1309
1310         pindex = bm->pindex;
1311         blk = swp_pager_meta_lookup(object, pindex);
1312         KASSERT(blk != SWAPBLK_NONE,
1313             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1314
1315         VM_OBJECT_WUNLOCK(object);
1316         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1317         MPASS((bp->b_flags & B_MAXPHYS) != 0);
1318         /* Pages cannot leave the object while busy. */
1319         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1320                 MPASS(p->pindex == bm->pindex + i);
1321                 bp->b_pages[i] = p;
1322         }
1323
1324         bp->b_flags |= B_PAGING;
1325         bp->b_iocmd = BIO_READ;
1326         bp->b_iodone = swp_pager_async_iodone;
1327         bp->b_rcred = crhold(thread0.td_ucred);
1328         bp->b_wcred = crhold(thread0.td_ucred);
1329         bp->b_blkno = blk;
1330         bp->b_bcount = PAGE_SIZE * count;
1331         bp->b_bufsize = PAGE_SIZE * count;
1332         bp->b_npages = count;
1333         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1334         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1335
1336         VM_CNT_INC(v_swapin);
1337         VM_CNT_ADD(v_swappgsin, count);
1338
1339         /*
1340          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1341          * this point because we automatically release it on completion.
1342          * Instead, we look at the one page we are interested in which we
1343          * still hold a lock on even through the I/O completion.
1344          *
1345          * The other pages in our ma[] array are also released on completion,
1346          * so we cannot assume they are valid anymore either.
1347          *
1348          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1349          */
1350         BUF_KERNPROC(bp);
1351         swp_pager_strategy(bp);
1352
1353         /*
1354          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1355          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1356          * is set in the metadata for each page in the request.
1357          */
1358         VM_OBJECT_WLOCK(object);
1359         /* This could be implemented more efficiently with aflags */
1360         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1361                 ma[0]->oflags |= VPO_SWAPSLEEP;
1362                 VM_CNT_INC(v_intrans);
1363                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1364                     "swread", hz * 20)) {
1365                         printf(
1366 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1367                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1368                 }
1369         }
1370         VM_OBJECT_WUNLOCK(object);
1371
1372         /*
1373          * If we had an unrecoverable read error pages will not be valid.
1374          */
1375         for (i = 0; i < reqcount; i++)
1376                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1377                         return (VM_PAGER_ERROR);
1378
1379         return (VM_PAGER_OK);
1380
1381         /*
1382          * A final note: in a low swap situation, we cannot deallocate swap
1383          * and mark a page dirty here because the caller is likely to mark
1384          * the page clean when we return, causing the page to possibly revert
1385          * to all-zero's later.
1386          */
1387 }
1388
1389 static int
1390 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1391     int *rbehind, int *rahead)
1392 {
1393
1394         VM_OBJECT_WLOCK(object);
1395         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1396 }
1397
1398 /*
1399  *      swap_pager_getpages_async():
1400  *
1401  *      Right now this is emulation of asynchronous operation on top of
1402  *      swap_pager_getpages().
1403  */
1404 static int
1405 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1406     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1407 {
1408         int r, error;
1409
1410         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1411         switch (r) {
1412         case VM_PAGER_OK:
1413                 error = 0;
1414                 break;
1415         case VM_PAGER_ERROR:
1416                 error = EIO;
1417                 break;
1418         case VM_PAGER_FAIL:
1419                 error = EINVAL;
1420                 break;
1421         default:
1422                 panic("unhandled swap_pager_getpages() error %d", r);
1423         }
1424         (iodone)(arg, ma, count, error);
1425
1426         return (r);
1427 }
1428
1429 /*
1430  *      swap_pager_putpages:
1431  *
1432  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1433  *
1434  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1435  *      are automatically converted to SWAP objects.
1436  *
1437  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1438  *      vm_page reservation system coupled with properly written VFS devices
1439  *      should ensure that no low-memory deadlock occurs.  This is an area
1440  *      which needs work.
1441  *
1442  *      The parent has N vm_object_pip_add() references prior to
1443  *      calling us and will remove references for rtvals[] that are
1444  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1445  *      completion.
1446  *
1447  *      The parent has soft-busy'd the pages it passes us and will unbusy
1448  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1449  *      We need to unbusy the rest on I/O completion.
1450  */
1451 static void
1452 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1453     int flags, int *rtvals)
1454 {
1455         struct buf *bp;
1456         daddr_t addr, blk, n_free, s_free;
1457         vm_page_t mreq;
1458         int i, j, n;
1459         bool async;
1460
1461         KASSERT(count == 0 || ma[0]->object == object,
1462             ("%s: object mismatch %p/%p",
1463             __func__, object, ma[0]->object));
1464
1465         /*
1466          * Step 1
1467          *
1468          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1469          */
1470         if (object->type != OBJT_SWAP) {
1471                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1472                 KASSERT(addr == SWAPBLK_NONE,
1473                     ("unexpected object swap block"));
1474         }
1475         VM_OBJECT_WUNLOCK(object);
1476         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1477         swp_pager_init_freerange(&s_free, &n_free);
1478
1479         /*
1480          * Step 2
1481          *
1482          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1483          * The page is left dirty until the pageout operation completes
1484          * successfully.
1485          */
1486         for (i = 0; i < count; i += n) {
1487                 /* Maximum I/O size is limited by maximum swap block size. */
1488                 n = min(count - i, nsw_cluster_max);
1489
1490                 if (async) {
1491                         mtx_lock(&swbuf_mtx);
1492                         while (nsw_wcount_async == 0)
1493                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1494                                     "swbufa", 0);
1495                         nsw_wcount_async--;
1496                         mtx_unlock(&swbuf_mtx);
1497                 }
1498
1499                 /* Get a block of swap of size up to size n. */
1500                 VM_OBJECT_WLOCK(object);
1501                 blk = swp_pager_getswapspace(&n);
1502                 if (blk == SWAPBLK_NONE) {
1503                         VM_OBJECT_WUNLOCK(object);
1504                         mtx_lock(&swbuf_mtx);
1505                         if (++nsw_wcount_async == 1)
1506                                 wakeup(&nsw_wcount_async);
1507                         mtx_unlock(&swbuf_mtx);
1508                         for (j = 0; j < n; ++j)
1509                                 rtvals[i + j] = VM_PAGER_FAIL;
1510                         continue;
1511                 }
1512                 for (j = 0; j < n; ++j) {
1513                         mreq = ma[i + j];
1514                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1515                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1516                             blk + j);
1517                         if (addr != SWAPBLK_NONE)
1518                                 swp_pager_update_freerange(&s_free, &n_free,
1519                                     addr);
1520                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1521                         mreq->oflags |= VPO_SWAPINPROG;
1522                 }
1523                 VM_OBJECT_WUNLOCK(object);
1524
1525                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1526                 MPASS((bp->b_flags & B_MAXPHYS) != 0);
1527                 if (async)
1528                         bp->b_flags |= B_ASYNC;
1529                 bp->b_flags |= B_PAGING;
1530                 bp->b_iocmd = BIO_WRITE;
1531
1532                 bp->b_rcred = crhold(thread0.td_ucred);
1533                 bp->b_wcred = crhold(thread0.td_ucred);
1534                 bp->b_bcount = PAGE_SIZE * n;
1535                 bp->b_bufsize = PAGE_SIZE * n;
1536                 bp->b_blkno = blk;
1537                 for (j = 0; j < n; j++)
1538                         bp->b_pages[j] = ma[i + j];
1539                 bp->b_npages = n;
1540
1541                 /*
1542                  * Must set dirty range for NFS to work.
1543                  */
1544                 bp->b_dirtyoff = 0;
1545                 bp->b_dirtyend = bp->b_bcount;
1546
1547                 VM_CNT_INC(v_swapout);
1548                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1549
1550                 /*
1551                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1552                  * can call the async completion routine at the end of a
1553                  * synchronous I/O operation.  Otherwise, our caller would
1554                  * perform duplicate unbusy and wakeup operations on the page
1555                  * and object, respectively.
1556                  */
1557                 for (j = 0; j < n; j++)
1558                         rtvals[i + j] = VM_PAGER_PEND;
1559
1560                 /*
1561                  * asynchronous
1562                  *
1563                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1564                  */
1565                 if (async) {
1566                         bp->b_iodone = swp_pager_async_iodone;
1567                         BUF_KERNPROC(bp);
1568                         swp_pager_strategy(bp);
1569                         continue;
1570                 }
1571
1572                 /*
1573                  * synchronous
1574                  *
1575                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1576                  */
1577                 bp->b_iodone = bdone;
1578                 swp_pager_strategy(bp);
1579
1580                 /*
1581                  * Wait for the sync I/O to complete.
1582                  */
1583                 bwait(bp, PVM, "swwrt");
1584
1585                 /*
1586                  * Now that we are through with the bp, we can call the
1587                  * normal async completion, which frees everything up.
1588                  */
1589                 swp_pager_async_iodone(bp);
1590         }
1591         swp_pager_freeswapspace(s_free, n_free);
1592         VM_OBJECT_WLOCK(object);
1593 }
1594
1595 /*
1596  *      swp_pager_async_iodone:
1597  *
1598  *      Completion routine for asynchronous reads and writes from/to swap.
1599  *      Also called manually by synchronous code to finish up a bp.
1600  *
1601  *      This routine may not sleep.
1602  */
1603 static void
1604 swp_pager_async_iodone(struct buf *bp)
1605 {
1606         int i;
1607         vm_object_t object = NULL;
1608
1609         /*
1610          * Report error - unless we ran out of memory, in which case
1611          * we've already logged it in swapgeom_strategy().
1612          */
1613         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1614                 printf(
1615                     "swap_pager: I/O error - %s failed; blkno %ld,"
1616                         "size %ld, error %d\n",
1617                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1618                     (long)bp->b_blkno,
1619                     (long)bp->b_bcount,
1620                     bp->b_error
1621                 );
1622         }
1623
1624         /*
1625          * remove the mapping for kernel virtual
1626          */
1627         if (buf_mapped(bp))
1628                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1629         else
1630                 bp->b_data = bp->b_kvabase;
1631
1632         if (bp->b_npages) {
1633                 object = bp->b_pages[0]->object;
1634                 VM_OBJECT_WLOCK(object);
1635         }
1636
1637         /*
1638          * cleanup pages.  If an error occurs writing to swap, we are in
1639          * very serious trouble.  If it happens to be a disk error, though,
1640          * we may be able to recover by reassigning the swap later on.  So
1641          * in this case we remove the m->swapblk assignment for the page
1642          * but do not free it in the rlist.  The errornous block(s) are thus
1643          * never reallocated as swap.  Redirty the page and continue.
1644          */
1645         for (i = 0; i < bp->b_npages; ++i) {
1646                 vm_page_t m = bp->b_pages[i];
1647
1648                 m->oflags &= ~VPO_SWAPINPROG;
1649                 if (m->oflags & VPO_SWAPSLEEP) {
1650                         m->oflags &= ~VPO_SWAPSLEEP;
1651                         wakeup(&object->handle);
1652                 }
1653
1654                 /* We always have space after I/O, successful or not. */
1655                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1656
1657                 if (bp->b_ioflags & BIO_ERROR) {
1658                         /*
1659                          * If an error occurs I'd love to throw the swapblk
1660                          * away without freeing it back to swapspace, so it
1661                          * can never be used again.  But I can't from an
1662                          * interrupt.
1663                          */
1664                         if (bp->b_iocmd == BIO_READ) {
1665                                 /*
1666                                  * NOTE: for reads, m->dirty will probably
1667                                  * be overridden by the original caller of
1668                                  * getpages so don't play cute tricks here.
1669                                  */
1670                                 vm_page_invalid(m);
1671                         } else {
1672                                 /*
1673                                  * If a write error occurs, reactivate page
1674                                  * so it doesn't clog the inactive list,
1675                                  * then finish the I/O.
1676                                  */
1677                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1678
1679                                 /* PQ_UNSWAPPABLE? */
1680                                 vm_page_activate(m);
1681                                 vm_page_sunbusy(m);
1682                         }
1683                 } else if (bp->b_iocmd == BIO_READ) {
1684                         /*
1685                          * NOTE: for reads, m->dirty will probably be
1686                          * overridden by the original caller of getpages so
1687                          * we cannot set them in order to free the underlying
1688                          * swap in a low-swap situation.  I don't think we'd
1689                          * want to do that anyway, but it was an optimization
1690                          * that existed in the old swapper for a time before
1691                          * it got ripped out due to precisely this problem.
1692                          */
1693                         KASSERT(!pmap_page_is_mapped(m),
1694                             ("swp_pager_async_iodone: page %p is mapped", m));
1695                         KASSERT(m->dirty == 0,
1696                             ("swp_pager_async_iodone: page %p is dirty", m));
1697
1698                         vm_page_valid(m);
1699                         if (i < bp->b_pgbefore ||
1700                             i >= bp->b_npages - bp->b_pgafter)
1701                                 vm_page_readahead_finish(m);
1702                 } else {
1703                         /*
1704                          * For write success, clear the dirty
1705                          * status, then finish the I/O ( which decrements the
1706                          * busy count and possibly wakes waiter's up ).
1707                          * A page is only written to swap after a period of
1708                          * inactivity.  Therefore, we do not expect it to be
1709                          * reused.
1710                          */
1711                         KASSERT(!pmap_page_is_write_mapped(m),
1712                             ("swp_pager_async_iodone: page %p is not write"
1713                             " protected", m));
1714                         vm_page_undirty(m);
1715                         vm_page_deactivate_noreuse(m);
1716                         vm_page_sunbusy(m);
1717                 }
1718         }
1719
1720         /*
1721          * adjust pip.  NOTE: the original parent may still have its own
1722          * pip refs on the object.
1723          */
1724         if (object != NULL) {
1725                 vm_object_pip_wakeupn(object, bp->b_npages);
1726                 VM_OBJECT_WUNLOCK(object);
1727         }
1728
1729         /*
1730          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1731          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1732          * trigger a KASSERT in relpbuf().
1733          */
1734         if (bp->b_vp) {
1735                     bp->b_vp = NULL;
1736                     bp->b_bufobj = NULL;
1737         }
1738         /*
1739          * release the physical I/O buffer
1740          */
1741         if (bp->b_flags & B_ASYNC) {
1742                 mtx_lock(&swbuf_mtx);
1743                 if (++nsw_wcount_async == 1)
1744                         wakeup(&nsw_wcount_async);
1745                 mtx_unlock(&swbuf_mtx);
1746         }
1747         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1748 }
1749
1750 int
1751 swap_pager_nswapdev(void)
1752 {
1753
1754         return (nswapdev);
1755 }
1756
1757 static void
1758 swp_pager_force_dirty(vm_page_t m)
1759 {
1760
1761         vm_page_dirty(m);
1762         swap_pager_unswapped(m);
1763         vm_page_launder(m);
1764 }
1765
1766 /*
1767  *      swap_pager_swapoff_object:
1768  *
1769  *      Page in all of the pages that have been paged out for an object
1770  *      to a swap device.
1771  */
1772 static void
1773 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1774 {
1775         struct swblk *sb;
1776         vm_page_t m;
1777         vm_pindex_t pi;
1778         daddr_t blk;
1779         int i, nv, rahead, rv;
1780
1781         KASSERT(object->type == OBJT_SWAP,
1782             ("%s: Object not swappable", __func__));
1783
1784         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1785             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1786                 if ((object->flags & OBJ_DEAD) != 0) {
1787                         /*
1788                          * Make sure that pending writes finish before
1789                          * returning.
1790                          */
1791                         vm_object_pip_wait(object, "swpoff");
1792                         swp_pager_meta_free_all(object);
1793                         break;
1794                 }
1795                 for (i = 0; i < SWAP_META_PAGES; i++) {
1796                         /*
1797                          * Count the number of contiguous valid blocks.
1798                          */
1799                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1800                                 blk = sb->d[i + nv];
1801                                 if (!swp_pager_isondev(blk, sp) ||
1802                                     blk == SWAPBLK_NONE)
1803                                         break;
1804                         }
1805                         if (nv == 0)
1806                                 continue;
1807
1808                         /*
1809                          * Look for a page corresponding to the first
1810                          * valid block and ensure that any pending paging
1811                          * operations on it are complete.  If the page is valid,
1812                          * mark it dirty and free the swap block.  Try to batch
1813                          * this operation since it may cause sp to be freed,
1814                          * meaning that we must restart the scan.  Avoid busying
1815                          * valid pages since we may block forever on kernel
1816                          * stack pages.
1817                          */
1818                         m = vm_page_lookup(object, sb->p + i);
1819                         if (m == NULL) {
1820                                 m = vm_page_alloc(object, sb->p + i,
1821                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1822                                 if (m == NULL)
1823                                         break;
1824                         } else {
1825                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1826                                         m->oflags |= VPO_SWAPSLEEP;
1827                                         VM_OBJECT_SLEEP(object, &object->handle,
1828                                             PSWP, "swpoff", 0);
1829                                         break;
1830                                 }
1831                                 if (vm_page_all_valid(m)) {
1832                                         do {
1833                                                 swp_pager_force_dirty(m);
1834                                         } while (--nv > 0 &&
1835                                             (m = vm_page_next(m)) != NULL &&
1836                                             vm_page_all_valid(m) &&
1837                                             (m->oflags & VPO_SWAPINPROG) == 0);
1838                                         break;
1839                                 }
1840                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1841                                         break;
1842                         }
1843
1844                         vm_object_pip_add(object, 1);
1845                         rahead = SWAP_META_PAGES;
1846                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1847                             &rahead);
1848                         if (rv != VM_PAGER_OK)
1849                                 panic("%s: read from swap failed: %d",
1850                                     __func__, rv);
1851                         vm_object_pip_wakeupn(object, 1);
1852                         VM_OBJECT_WLOCK(object);
1853                         vm_page_xunbusy(m);
1854
1855                         /*
1856                          * The object lock was dropped so we must restart the
1857                          * scan of this swap block.  Pages paged in during this
1858                          * iteration will be marked dirty in a future iteration.
1859                          */
1860                         break;
1861                 }
1862                 if (i == SWAP_META_PAGES)
1863                         pi = sb->p + SWAP_META_PAGES;
1864         }
1865 }
1866
1867 /*
1868  *      swap_pager_swapoff:
1869  *
1870  *      Page in all of the pages that have been paged out to the
1871  *      given device.  The corresponding blocks in the bitmap must be
1872  *      marked as allocated and the device must be flagged SW_CLOSING.
1873  *      There may be no processes swapped out to the device.
1874  *
1875  *      This routine may block.
1876  */
1877 static void
1878 swap_pager_swapoff(struct swdevt *sp)
1879 {
1880         vm_object_t object;
1881         int retries;
1882
1883         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1884
1885         retries = 0;
1886 full_rescan:
1887         mtx_lock(&vm_object_list_mtx);
1888         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1889                 if (object->type != OBJT_SWAP)
1890                         continue;
1891                 mtx_unlock(&vm_object_list_mtx);
1892                 /* Depends on type-stability. */
1893                 VM_OBJECT_WLOCK(object);
1894
1895                 /*
1896                  * Dead objects are eventually terminated on their own.
1897                  */
1898                 if ((object->flags & OBJ_DEAD) != 0)
1899                         goto next_obj;
1900
1901                 /*
1902                  * Sync with fences placed after pctrie
1903                  * initialization.  We must not access pctrie below
1904                  * unless we checked that our object is swap and not
1905                  * dead.
1906                  */
1907                 atomic_thread_fence_acq();
1908                 if (object->type != OBJT_SWAP)
1909                         goto next_obj;
1910
1911                 swap_pager_swapoff_object(sp, object);
1912 next_obj:
1913                 VM_OBJECT_WUNLOCK(object);
1914                 mtx_lock(&vm_object_list_mtx);
1915         }
1916         mtx_unlock(&vm_object_list_mtx);
1917
1918         if (sp->sw_used) {
1919                 /*
1920                  * Objects may be locked or paging to the device being
1921                  * removed, so we will miss their pages and need to
1922                  * make another pass.  We have marked this device as
1923                  * SW_CLOSING, so the activity should finish soon.
1924                  */
1925                 retries++;
1926                 if (retries > 100) {
1927                         panic("swapoff: failed to locate %d swap blocks",
1928                             sp->sw_used);
1929                 }
1930                 pause("swpoff", hz / 20);
1931                 goto full_rescan;
1932         }
1933         EVENTHANDLER_INVOKE(swapoff, sp);
1934 }
1935
1936 /************************************************************************
1937  *                              SWAP META DATA                          *
1938  ************************************************************************
1939  *
1940  *      These routines manipulate the swap metadata stored in the
1941  *      OBJT_SWAP object.
1942  *
1943  *      Swap metadata is implemented with a global hash and not directly
1944  *      linked into the object.  Instead the object simply contains
1945  *      appropriate tracking counters.
1946  */
1947
1948 /*
1949  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1950  */
1951 static bool
1952 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1953 {
1954         int i;
1955
1956         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1957         for (i = start; i < limit; i++) {
1958                 if (sb->d[i] != SWAPBLK_NONE)
1959                         return (false);
1960         }
1961         return (true);
1962 }
1963
1964 /*
1965  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1966  *
1967  *  Nothing is done if the block is still in use.
1968  */
1969 static void
1970 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1971 {
1972
1973         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1974                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1975                 uma_zfree(swblk_zone, sb);
1976         }
1977 }
1978    
1979 /*
1980  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1981  *
1982  *      We first convert the object to a swap object if it is a default
1983  *      object.
1984  *
1985  *      The specified swapblk is added to the object's swap metadata.  If
1986  *      the swapblk is not valid, it is freed instead.  Any previously
1987  *      assigned swapblk is returned.
1988  */
1989 static daddr_t
1990 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1991 {
1992         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1993         struct swblk *sb, *sb1;
1994         vm_pindex_t modpi, rdpi;
1995         daddr_t prev_swapblk;
1996         int error, i;
1997
1998         VM_OBJECT_ASSERT_WLOCKED(object);
1999
2000         /*
2001          * Convert default object to swap object if necessary
2002          */
2003         if (object->type != OBJT_SWAP) {
2004                 pctrie_init(&object->un_pager.swp.swp_blks);
2005
2006                 /*
2007                  * Ensure that swap_pager_swapoff()'s iteration over
2008                  * object_list does not see a garbage pctrie.
2009                  */
2010                 atomic_thread_fence_rel();
2011
2012                 object->type = OBJT_SWAP;
2013                 object->un_pager.swp.writemappings = 0;
2014                 KASSERT((object->flags & OBJ_ANON) != 0 ||
2015                     object->handle == NULL,
2016                     ("default pager %p with handle %p",
2017                     object, object->handle));
2018         }
2019
2020         rdpi = rounddown(pindex, SWAP_META_PAGES);
2021         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2022         if (sb == NULL) {
2023                 if (swapblk == SWAPBLK_NONE)
2024                         return (SWAPBLK_NONE);
2025                 for (;;) {
2026                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2027                             pageproc ? M_USE_RESERVE : 0));
2028                         if (sb != NULL) {
2029                                 sb->p = rdpi;
2030                                 for (i = 0; i < SWAP_META_PAGES; i++)
2031                                         sb->d[i] = SWAPBLK_NONE;
2032                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2033                                     1, 0))
2034                                         printf("swblk zone ok\n");
2035                                 break;
2036                         }
2037                         VM_OBJECT_WUNLOCK(object);
2038                         if (uma_zone_exhausted(swblk_zone)) {
2039                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2040                                     0, 1))
2041                                         printf("swap blk zone exhausted, "
2042                                             "increase kern.maxswzone\n");
2043                                 vm_pageout_oom(VM_OOM_SWAPZ);
2044                                 pause("swzonxb", 10);
2045                         } else
2046                                 uma_zwait(swblk_zone);
2047                         VM_OBJECT_WLOCK(object);
2048                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2049                             rdpi);
2050                         if (sb != NULL)
2051                                 /*
2052                                  * Somebody swapped out a nearby page,
2053                                  * allocating swblk at the rdpi index,
2054                                  * while we dropped the object lock.
2055                                  */
2056                                 goto allocated;
2057                 }
2058                 for (;;) {
2059                         error = SWAP_PCTRIE_INSERT(
2060                             &object->un_pager.swp.swp_blks, sb);
2061                         if (error == 0) {
2062                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2063                                     1, 0))
2064                                         printf("swpctrie zone ok\n");
2065                                 break;
2066                         }
2067                         VM_OBJECT_WUNLOCK(object);
2068                         if (uma_zone_exhausted(swpctrie_zone)) {
2069                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2070                                     0, 1))
2071                                         printf("swap pctrie zone exhausted, "
2072                                             "increase kern.maxswzone\n");
2073                                 vm_pageout_oom(VM_OOM_SWAPZ);
2074                                 pause("swzonxp", 10);
2075                         } else
2076                                 uma_zwait(swpctrie_zone);
2077                         VM_OBJECT_WLOCK(object);
2078                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2079                             rdpi);
2080                         if (sb1 != NULL) {
2081                                 uma_zfree(swblk_zone, sb);
2082                                 sb = sb1;
2083                                 goto allocated;
2084                         }
2085                 }
2086         }
2087 allocated:
2088         MPASS(sb->p == rdpi);
2089
2090         modpi = pindex % SWAP_META_PAGES;
2091         /* Return prior contents of metadata. */
2092         prev_swapblk = sb->d[modpi];
2093         /* Enter block into metadata. */
2094         sb->d[modpi] = swapblk;
2095
2096         /*
2097          * Free the swblk if we end up with the empty page run.
2098          */
2099         if (swapblk == SWAPBLK_NONE)
2100                 swp_pager_free_empty_swblk(object, sb);
2101         return (prev_swapblk);
2102 }
2103
2104 /*
2105  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2106  * metadata, or transfer it into dstobject.
2107  *
2108  *      This routine will free swap metadata structures as they are cleaned
2109  *      out.
2110  */
2111 static void
2112 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2113     vm_pindex_t pindex, vm_pindex_t count)
2114 {
2115         struct swblk *sb;
2116         daddr_t n_free, s_free;
2117         vm_pindex_t offset, last;
2118         int i, limit, start;
2119
2120         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2121         if (srcobject->type != OBJT_SWAP || count == 0)
2122                 return;
2123
2124         swp_pager_init_freerange(&s_free, &n_free);
2125         offset = pindex;
2126         last = pindex + count;
2127         for (;;) {
2128                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2129                     rounddown(pindex, SWAP_META_PAGES));
2130                 if (sb == NULL || sb->p >= last)
2131                         break;
2132                 start = pindex > sb->p ? pindex - sb->p : 0;
2133                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2134                     SWAP_META_PAGES;
2135                 for (i = start; i < limit; i++) {
2136                         if (sb->d[i] == SWAPBLK_NONE)
2137                                 continue;
2138                         if (dstobject == NULL ||
2139                             !swp_pager_xfer_source(srcobject, dstobject, 
2140                             sb->p + i - offset, sb->d[i])) {
2141                                 swp_pager_update_freerange(&s_free, &n_free,
2142                                     sb->d[i]);
2143                         }
2144                         sb->d[i] = SWAPBLK_NONE;
2145                 }
2146                 pindex = sb->p + SWAP_META_PAGES;
2147                 if (swp_pager_swblk_empty(sb, 0, start) &&
2148                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2149                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2150                             sb->p);
2151                         uma_zfree(swblk_zone, sb);
2152                 }
2153         }
2154         swp_pager_freeswapspace(s_free, n_free);
2155 }
2156
2157 /*
2158  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2159  *
2160  *      The requested range of blocks is freed, with any associated swap
2161  *      returned to the swap bitmap.
2162  *
2163  *      This routine will free swap metadata structures as they are cleaned
2164  *      out.  This routine does *NOT* operate on swap metadata associated
2165  *      with resident pages.
2166  */
2167 static void
2168 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2169 {
2170         swp_pager_meta_transfer(object, NULL, pindex, count);
2171 }
2172
2173 /*
2174  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2175  *
2176  *      This routine locates and destroys all swap metadata associated with
2177  *      an object.
2178  */
2179 static void
2180 swp_pager_meta_free_all(vm_object_t object)
2181 {
2182         struct swblk *sb;
2183         daddr_t n_free, s_free;
2184         vm_pindex_t pindex;
2185         int i;
2186
2187         VM_OBJECT_ASSERT_WLOCKED(object);
2188         if (object->type != OBJT_SWAP)
2189                 return;
2190
2191         swp_pager_init_freerange(&s_free, &n_free);
2192         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2193             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2194                 pindex = sb->p + SWAP_META_PAGES;
2195                 for (i = 0; i < SWAP_META_PAGES; i++) {
2196                         if (sb->d[i] == SWAPBLK_NONE)
2197                                 continue;
2198                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2199                 }
2200                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2201                 uma_zfree(swblk_zone, sb);
2202         }
2203         swp_pager_freeswapspace(s_free, n_free);
2204 }
2205
2206 /*
2207  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2208  *
2209  *      This routine is capable of looking up, or removing swapblk
2210  *      assignments in the swap meta data.  It returns the swapblk being
2211  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2212  *
2213  *      When acting on a busy resident page and paging is in progress, we
2214  *      have to wait until paging is complete but otherwise can act on the
2215  *      busy page.
2216  */
2217 static daddr_t
2218 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2219 {
2220         struct swblk *sb;
2221
2222         VM_OBJECT_ASSERT_LOCKED(object);
2223
2224         /*
2225          * The meta data only exists if the object is OBJT_SWAP
2226          * and even then might not be allocated yet.
2227          */
2228         KASSERT(object->type == OBJT_SWAP,
2229             ("Lookup object not swappable"));
2230
2231         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2232             rounddown(pindex, SWAP_META_PAGES));
2233         if (sb == NULL)
2234                 return (SWAPBLK_NONE);
2235         return (sb->d[pindex % SWAP_META_PAGES]);
2236 }
2237
2238 /*
2239  * Returns the least page index which is greater than or equal to the
2240  * parameter pindex and for which there is a swap block allocated.
2241  * Returns object's size if the object's type is not swap or if there
2242  * are no allocated swap blocks for the object after the requested
2243  * pindex.
2244  */
2245 vm_pindex_t
2246 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2247 {
2248         struct swblk *sb;
2249         int i;
2250
2251         VM_OBJECT_ASSERT_LOCKED(object);
2252         if (object->type != OBJT_SWAP)
2253                 return (object->size);
2254
2255         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2256             rounddown(pindex, SWAP_META_PAGES));
2257         if (sb == NULL)
2258                 return (object->size);
2259         if (sb->p < pindex) {
2260                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2261                         if (sb->d[i] != SWAPBLK_NONE)
2262                                 return (sb->p + i);
2263                 }
2264                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2265                     roundup(pindex, SWAP_META_PAGES));
2266                 if (sb == NULL)
2267                         return (object->size);
2268         }
2269         for (i = 0; i < SWAP_META_PAGES; i++) {
2270                 if (sb->d[i] != SWAPBLK_NONE)
2271                         return (sb->p + i);
2272         }
2273
2274         /*
2275          * We get here if a swblk is present in the trie but it
2276          * doesn't map any blocks.
2277          */
2278         MPASS(0);
2279         return (object->size);
2280 }
2281
2282 /*
2283  * System call swapon(name) enables swapping on device name,
2284  * which must be in the swdevsw.  Return EBUSY
2285  * if already swapping on this device.
2286  */
2287 #ifndef _SYS_SYSPROTO_H_
2288 struct swapon_args {
2289         char *name;
2290 };
2291 #endif
2292
2293 /*
2294  * MPSAFE
2295  */
2296 /* ARGSUSED */
2297 int
2298 sys_swapon(struct thread *td, struct swapon_args *uap)
2299 {
2300         struct vattr attr;
2301         struct vnode *vp;
2302         struct nameidata nd;
2303         int error;
2304
2305         error = priv_check(td, PRIV_SWAPON);
2306         if (error)
2307                 return (error);
2308
2309         sx_xlock(&swdev_syscall_lock);
2310
2311         /*
2312          * Swap metadata may not fit in the KVM if we have physical
2313          * memory of >1GB.
2314          */
2315         if (swblk_zone == NULL) {
2316                 error = ENOMEM;
2317                 goto done;
2318         }
2319
2320         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2321             uap->name, td);
2322         error = namei(&nd);
2323         if (error)
2324                 goto done;
2325
2326         NDFREE(&nd, NDF_ONLY_PNBUF);
2327         vp = nd.ni_vp;
2328
2329         if (vn_isdisk_error(vp, &error)) {
2330                 error = swapongeom(vp);
2331         } else if (vp->v_type == VREG &&
2332             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2333             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2334                 /*
2335                  * Allow direct swapping to NFS regular files in the same
2336                  * way that nfs_mountroot() sets up diskless swapping.
2337                  */
2338                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2339         }
2340
2341         if (error)
2342                 vrele(vp);
2343 done:
2344         sx_xunlock(&swdev_syscall_lock);
2345         return (error);
2346 }
2347
2348 /*
2349  * Check that the total amount of swap currently configured does not
2350  * exceed half the theoretical maximum.  If it does, print a warning
2351  * message.
2352  */
2353 static void
2354 swapon_check_swzone(void)
2355 {
2356
2357         /* recommend using no more than half that amount */
2358         if (swap_total > swap_maxpages / 2) {
2359                 printf("warning: total configured swap (%lu pages) "
2360                     "exceeds maximum recommended amount (%lu pages).\n",
2361                     swap_total, swap_maxpages / 2);
2362                 printf("warning: increase kern.maxswzone "
2363                     "or reduce amount of swap.\n");
2364         }
2365 }
2366
2367 static void
2368 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2369     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2370 {
2371         struct swdevt *sp, *tsp;
2372         daddr_t dvbase;
2373
2374         /*
2375          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2376          * First chop nblks off to page-align it, then convert.
2377          *
2378          * sw->sw_nblks is in page-sized chunks now too.
2379          */
2380         nblks &= ~(ctodb(1) - 1);
2381         nblks = dbtoc(nblks);
2382
2383         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2384         sp->sw_blist = blist_create(nblks, M_WAITOK);
2385         sp->sw_vp = vp;
2386         sp->sw_id = id;
2387         sp->sw_dev = dev;
2388         sp->sw_nblks = nblks;
2389         sp->sw_used = 0;
2390         sp->sw_strategy = strategy;
2391         sp->sw_close = close;
2392         sp->sw_flags = flags;
2393
2394         /*
2395          * Do not free the first blocks in order to avoid overwriting
2396          * any bsd label at the front of the partition
2397          */
2398         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2399             nblks - howmany(BBSIZE, PAGE_SIZE));
2400
2401         dvbase = 0;
2402         mtx_lock(&sw_dev_mtx);
2403         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2404                 if (tsp->sw_end >= dvbase) {
2405                         /*
2406                          * We put one uncovered page between the devices
2407                          * in order to definitively prevent any cross-device
2408                          * I/O requests
2409                          */
2410                         dvbase = tsp->sw_end + 1;
2411                 }
2412         }
2413         sp->sw_first = dvbase;
2414         sp->sw_end = dvbase + nblks;
2415         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2416         nswapdev++;
2417         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2418         swap_total += nblks;
2419         swapon_check_swzone();
2420         swp_sizecheck();
2421         mtx_unlock(&sw_dev_mtx);
2422         EVENTHANDLER_INVOKE(swapon, sp);
2423 }
2424
2425 /*
2426  * SYSCALL: swapoff(devname)
2427  *
2428  * Disable swapping on the given device.
2429  *
2430  * XXX: Badly designed system call: it should use a device index
2431  * rather than filename as specification.  We keep sw_vp around
2432  * only to make this work.
2433  */
2434 #ifndef _SYS_SYSPROTO_H_
2435 struct swapoff_args {
2436         char *name;
2437 };
2438 #endif
2439
2440 /*
2441  * MPSAFE
2442  */
2443 /* ARGSUSED */
2444 int
2445 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2446 {
2447         struct vnode *vp;
2448         struct nameidata nd;
2449         struct swdevt *sp;
2450         int error;
2451
2452         error = priv_check(td, PRIV_SWAPOFF);
2453         if (error)
2454                 return (error);
2455
2456         sx_xlock(&swdev_syscall_lock);
2457
2458         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2459             td);
2460         error = namei(&nd);
2461         if (error)
2462                 goto done;
2463         NDFREE(&nd, NDF_ONLY_PNBUF);
2464         vp = nd.ni_vp;
2465
2466         mtx_lock(&sw_dev_mtx);
2467         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2468                 if (sp->sw_vp == vp)
2469                         break;
2470         }
2471         mtx_unlock(&sw_dev_mtx);
2472         if (sp == NULL) {
2473                 error = EINVAL;
2474                 goto done;
2475         }
2476         error = swapoff_one(sp, td->td_ucred);
2477 done:
2478         sx_xunlock(&swdev_syscall_lock);
2479         return (error);
2480 }
2481
2482 static int
2483 swapoff_one(struct swdevt *sp, struct ucred *cred)
2484 {
2485         u_long nblks;
2486 #ifdef MAC
2487         int error;
2488 #endif
2489
2490         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2491 #ifdef MAC
2492         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2493         error = mac_system_check_swapoff(cred, sp->sw_vp);
2494         (void) VOP_UNLOCK(sp->sw_vp);
2495         if (error != 0)
2496                 return (error);
2497 #endif
2498         nblks = sp->sw_nblks;
2499
2500         /*
2501          * We can turn off this swap device safely only if the
2502          * available virtual memory in the system will fit the amount
2503          * of data we will have to page back in, plus an epsilon so
2504          * the system doesn't become critically low on swap space.
2505          */
2506         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2507                 return (ENOMEM);
2508
2509         /*
2510          * Prevent further allocations on this device.
2511          */
2512         mtx_lock(&sw_dev_mtx);
2513         sp->sw_flags |= SW_CLOSING;
2514         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2515         swap_total -= nblks;
2516         mtx_unlock(&sw_dev_mtx);
2517
2518         /*
2519          * Page in the contents of the device and close it.
2520          */
2521         swap_pager_swapoff(sp);
2522
2523         sp->sw_close(curthread, sp);
2524         mtx_lock(&sw_dev_mtx);
2525         sp->sw_id = NULL;
2526         TAILQ_REMOVE(&swtailq, sp, sw_list);
2527         nswapdev--;
2528         if (nswapdev == 0) {
2529                 swap_pager_full = 2;
2530                 swap_pager_almost_full = 1;
2531         }
2532         if (swdevhd == sp)
2533                 swdevhd = NULL;
2534         mtx_unlock(&sw_dev_mtx);
2535         blist_destroy(sp->sw_blist);
2536         free(sp, M_VMPGDATA);
2537         return (0);
2538 }
2539
2540 void
2541 swapoff_all(void)
2542 {
2543         struct swdevt *sp, *spt;
2544         const char *devname;
2545         int error;
2546
2547         sx_xlock(&swdev_syscall_lock);
2548
2549         mtx_lock(&sw_dev_mtx);
2550         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2551                 mtx_unlock(&sw_dev_mtx);
2552                 if (vn_isdisk(sp->sw_vp))
2553                         devname = devtoname(sp->sw_vp->v_rdev);
2554                 else
2555                         devname = "[file]";
2556                 error = swapoff_one(sp, thread0.td_ucred);
2557                 if (error != 0) {
2558                         printf("Cannot remove swap device %s (error=%d), "
2559                             "skipping.\n", devname, error);
2560                 } else if (bootverbose) {
2561                         printf("Swap device %s removed.\n", devname);
2562                 }
2563                 mtx_lock(&sw_dev_mtx);
2564         }
2565         mtx_unlock(&sw_dev_mtx);
2566
2567         sx_xunlock(&swdev_syscall_lock);
2568 }
2569
2570 void
2571 swap_pager_status(int *total, int *used)
2572 {
2573
2574         *total = swap_total;
2575         *used = swap_total - swap_pager_avail -
2576             nswapdev * howmany(BBSIZE, PAGE_SIZE);
2577 }
2578
2579 int
2580 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2581 {
2582         struct swdevt *sp;
2583         const char *tmp_devname;
2584         int error, n;
2585
2586         n = 0;
2587         error = ENOENT;
2588         mtx_lock(&sw_dev_mtx);
2589         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2590                 if (n != name) {
2591                         n++;
2592                         continue;
2593                 }
2594                 xs->xsw_version = XSWDEV_VERSION;
2595                 xs->xsw_dev = sp->sw_dev;
2596                 xs->xsw_flags = sp->sw_flags;
2597                 xs->xsw_nblks = sp->sw_nblks;
2598                 xs->xsw_used = sp->sw_used;
2599                 if (devname != NULL) {
2600                         if (vn_isdisk(sp->sw_vp))
2601                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2602                         else
2603                                 tmp_devname = "[file]";
2604                         strncpy(devname, tmp_devname, len);
2605                 }
2606                 error = 0;
2607                 break;
2608         }
2609         mtx_unlock(&sw_dev_mtx);
2610         return (error);
2611 }
2612
2613 #if defined(COMPAT_FREEBSD11)
2614 #define XSWDEV_VERSION_11       1
2615 struct xswdev11 {
2616         u_int   xsw_version;
2617         uint32_t xsw_dev;
2618         int     xsw_flags;
2619         int     xsw_nblks;
2620         int     xsw_used;
2621 };
2622 #endif
2623
2624 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2625 struct xswdev32 {
2626         u_int   xsw_version;
2627         u_int   xsw_dev1, xsw_dev2;
2628         int     xsw_flags;
2629         int     xsw_nblks;
2630         int     xsw_used;
2631 };
2632 #endif
2633
2634 static int
2635 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2636 {
2637         struct xswdev xs;
2638 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2639         struct xswdev32 xs32;
2640 #endif
2641 #if defined(COMPAT_FREEBSD11)
2642         struct xswdev11 xs11;
2643 #endif
2644         int error;
2645
2646         if (arg2 != 1)                  /* name length */
2647                 return (EINVAL);
2648         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2649         if (error != 0)
2650                 return (error);
2651 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2652         if (req->oldlen == sizeof(xs32)) {
2653                 xs32.xsw_version = XSWDEV_VERSION;
2654                 xs32.xsw_dev1 = xs.xsw_dev;
2655                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2656                 xs32.xsw_flags = xs.xsw_flags;
2657                 xs32.xsw_nblks = xs.xsw_nblks;
2658                 xs32.xsw_used = xs.xsw_used;
2659                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2660                 return (error);
2661         }
2662 #endif
2663 #if defined(COMPAT_FREEBSD11)
2664         if (req->oldlen == sizeof(xs11)) {
2665                 xs11.xsw_version = XSWDEV_VERSION_11;
2666                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2667                 xs11.xsw_flags = xs.xsw_flags;
2668                 xs11.xsw_nblks = xs.xsw_nblks;
2669                 xs11.xsw_used = xs.xsw_used;
2670                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2671                 return (error);
2672         }
2673 #endif
2674         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2675         return (error);
2676 }
2677
2678 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2679     "Number of swap devices");
2680 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2681     sysctl_vm_swap_info,
2682     "Swap statistics by device");
2683
2684 /*
2685  * Count the approximate swap usage in pages for a vmspace.  The
2686  * shadowed or not yet copied on write swap blocks are not accounted.
2687  * The map must be locked.
2688  */
2689 long
2690 vmspace_swap_count(struct vmspace *vmspace)
2691 {
2692         vm_map_t map;
2693         vm_map_entry_t cur;
2694         vm_object_t object;
2695         struct swblk *sb;
2696         vm_pindex_t e, pi;
2697         long count;
2698         int i;
2699
2700         map = &vmspace->vm_map;
2701         count = 0;
2702
2703         VM_MAP_ENTRY_FOREACH(cur, map) {
2704                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2705                         continue;
2706                 object = cur->object.vm_object;
2707                 if (object == NULL || object->type != OBJT_SWAP)
2708                         continue;
2709                 VM_OBJECT_RLOCK(object);
2710                 if (object->type != OBJT_SWAP)
2711                         goto unlock;
2712                 pi = OFF_TO_IDX(cur->offset);
2713                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2714                 for (;; pi = sb->p + SWAP_META_PAGES) {
2715                         sb = SWAP_PCTRIE_LOOKUP_GE(
2716                             &object->un_pager.swp.swp_blks, pi);
2717                         if (sb == NULL || sb->p >= e)
2718                                 break;
2719                         for (i = 0; i < SWAP_META_PAGES; i++) {
2720                                 if (sb->p + i < e &&
2721                                     sb->d[i] != SWAPBLK_NONE)
2722                                         count++;
2723                         }
2724                 }
2725 unlock:
2726                 VM_OBJECT_RUNLOCK(object);
2727         }
2728         return (count);
2729 }
2730
2731 /*
2732  * GEOM backend
2733  *
2734  * Swapping onto disk devices.
2735  *
2736  */
2737
2738 static g_orphan_t swapgeom_orphan;
2739
2740 static struct g_class g_swap_class = {
2741         .name = "SWAP",
2742         .version = G_VERSION,
2743         .orphan = swapgeom_orphan,
2744 };
2745
2746 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2747
2748 static void
2749 swapgeom_close_ev(void *arg, int flags)
2750 {
2751         struct g_consumer *cp;
2752
2753         cp = arg;
2754         g_access(cp, -1, -1, 0);
2755         g_detach(cp);
2756         g_destroy_consumer(cp);
2757 }
2758
2759 /*
2760  * Add a reference to the g_consumer for an inflight transaction.
2761  */
2762 static void
2763 swapgeom_acquire(struct g_consumer *cp)
2764 {
2765
2766         mtx_assert(&sw_dev_mtx, MA_OWNED);
2767         cp->index++;
2768 }
2769
2770 /*
2771  * Remove a reference from the g_consumer.  Post a close event if all
2772  * references go away, since the function might be called from the
2773  * biodone context.
2774  */
2775 static void
2776 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2777 {
2778
2779         mtx_assert(&sw_dev_mtx, MA_OWNED);
2780         cp->index--;
2781         if (cp->index == 0) {
2782                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2783                         sp->sw_id = NULL;
2784         }
2785 }
2786
2787 static void
2788 swapgeom_done(struct bio *bp2)
2789 {
2790         struct swdevt *sp;
2791         struct buf *bp;
2792         struct g_consumer *cp;
2793
2794         bp = bp2->bio_caller2;
2795         cp = bp2->bio_from;
2796         bp->b_ioflags = bp2->bio_flags;
2797         if (bp2->bio_error)
2798                 bp->b_ioflags |= BIO_ERROR;
2799         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2800         bp->b_error = bp2->bio_error;
2801         bp->b_caller1 = NULL;
2802         bufdone(bp);
2803         sp = bp2->bio_caller1;
2804         mtx_lock(&sw_dev_mtx);
2805         swapgeom_release(cp, sp);
2806         mtx_unlock(&sw_dev_mtx);
2807         g_destroy_bio(bp2);
2808 }
2809
2810 static void
2811 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2812 {
2813         struct bio *bio;
2814         struct g_consumer *cp;
2815
2816         mtx_lock(&sw_dev_mtx);
2817         cp = sp->sw_id;
2818         if (cp == NULL) {
2819                 mtx_unlock(&sw_dev_mtx);
2820                 bp->b_error = ENXIO;
2821                 bp->b_ioflags |= BIO_ERROR;
2822                 bufdone(bp);
2823                 return;
2824         }
2825         swapgeom_acquire(cp);
2826         mtx_unlock(&sw_dev_mtx);
2827         if (bp->b_iocmd == BIO_WRITE)
2828                 bio = g_new_bio();
2829         else
2830                 bio = g_alloc_bio();
2831         if (bio == NULL) {
2832                 mtx_lock(&sw_dev_mtx);
2833                 swapgeom_release(cp, sp);
2834                 mtx_unlock(&sw_dev_mtx);
2835                 bp->b_error = ENOMEM;
2836                 bp->b_ioflags |= BIO_ERROR;
2837                 printf("swap_pager: cannot allocate bio\n");
2838                 bufdone(bp);
2839                 return;
2840         }
2841
2842         bp->b_caller1 = bio;
2843         bio->bio_caller1 = sp;
2844         bio->bio_caller2 = bp;
2845         bio->bio_cmd = bp->b_iocmd;
2846         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2847         bio->bio_length = bp->b_bcount;
2848         bio->bio_done = swapgeom_done;
2849         if (!buf_mapped(bp)) {
2850                 bio->bio_ma = bp->b_pages;
2851                 bio->bio_data = unmapped_buf;
2852                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2853                 bio->bio_ma_n = bp->b_npages;
2854                 bio->bio_flags |= BIO_UNMAPPED;
2855         } else {
2856                 bio->bio_data = bp->b_data;
2857                 bio->bio_ma = NULL;
2858         }
2859         g_io_request(bio, cp);
2860         return;
2861 }
2862
2863 static void
2864 swapgeom_orphan(struct g_consumer *cp)
2865 {
2866         struct swdevt *sp;
2867         int destroy;
2868
2869         mtx_lock(&sw_dev_mtx);
2870         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2871                 if (sp->sw_id == cp) {
2872                         sp->sw_flags |= SW_CLOSING;
2873                         break;
2874                 }
2875         }
2876         /*
2877          * Drop reference we were created with. Do directly since we're in a
2878          * special context where we don't have to queue the call to
2879          * swapgeom_close_ev().
2880          */
2881         cp->index--;
2882         destroy = ((sp != NULL) && (cp->index == 0));
2883         if (destroy)
2884                 sp->sw_id = NULL;
2885         mtx_unlock(&sw_dev_mtx);
2886         if (destroy)
2887                 swapgeom_close_ev(cp, 0);
2888 }
2889
2890 static void
2891 swapgeom_close(struct thread *td, struct swdevt *sw)
2892 {
2893         struct g_consumer *cp;
2894
2895         mtx_lock(&sw_dev_mtx);
2896         cp = sw->sw_id;
2897         sw->sw_id = NULL;
2898         mtx_unlock(&sw_dev_mtx);
2899
2900         /*
2901          * swapgeom_close() may be called from the biodone context,
2902          * where we cannot perform topology changes.  Delegate the
2903          * work to the events thread.
2904          */
2905         if (cp != NULL)
2906                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2907 }
2908
2909 static int
2910 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2911 {
2912         struct g_provider *pp;
2913         struct g_consumer *cp;
2914         static struct g_geom *gp;
2915         struct swdevt *sp;
2916         u_long nblks;
2917         int error;
2918
2919         pp = g_dev_getprovider(dev);
2920         if (pp == NULL)
2921                 return (ENODEV);
2922         mtx_lock(&sw_dev_mtx);
2923         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2924                 cp = sp->sw_id;
2925                 if (cp != NULL && cp->provider == pp) {
2926                         mtx_unlock(&sw_dev_mtx);
2927                         return (EBUSY);
2928                 }
2929         }
2930         mtx_unlock(&sw_dev_mtx);
2931         if (gp == NULL)
2932                 gp = g_new_geomf(&g_swap_class, "swap");
2933         cp = g_new_consumer(gp);
2934         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2935         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2936         g_attach(cp, pp);
2937         /*
2938          * XXX: Every time you think you can improve the margin for
2939          * footshooting, somebody depends on the ability to do so:
2940          * savecore(8) wants to write to our swapdev so we cannot
2941          * set an exclusive count :-(
2942          */
2943         error = g_access(cp, 1, 1, 0);
2944         if (error != 0) {
2945                 g_detach(cp);
2946                 g_destroy_consumer(cp);
2947                 return (error);
2948         }
2949         nblks = pp->mediasize / DEV_BSIZE;
2950         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2951             swapgeom_close, dev2udev(dev),
2952             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2953         return (0);
2954 }
2955
2956 static int
2957 swapongeom(struct vnode *vp)
2958 {
2959         int error;
2960
2961         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2962         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2963                 error = ENOENT;
2964         } else {
2965                 g_topology_lock();
2966                 error = swapongeom_locked(vp->v_rdev, vp);
2967                 g_topology_unlock();
2968         }
2969         VOP_UNLOCK(vp);
2970         return (error);
2971 }
2972
2973 /*
2974  * VNODE backend
2975  *
2976  * This is used mainly for network filesystem (read: probably only tested
2977  * with NFS) swapfiles.
2978  *
2979  */
2980
2981 static void
2982 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2983 {
2984         struct vnode *vp2;
2985
2986         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2987
2988         vp2 = sp->sw_id;
2989         vhold(vp2);
2990         if (bp->b_iocmd == BIO_WRITE) {
2991                 if (bp->b_bufobj)
2992                         bufobj_wdrop(bp->b_bufobj);
2993                 bufobj_wref(&vp2->v_bufobj);
2994         }
2995         if (bp->b_bufobj != &vp2->v_bufobj)
2996                 bp->b_bufobj = &vp2->v_bufobj;
2997         bp->b_vp = vp2;
2998         bp->b_iooffset = dbtob(bp->b_blkno);
2999         bstrategy(bp);
3000         return;
3001 }
3002
3003 static void
3004 swapdev_close(struct thread *td, struct swdevt *sp)
3005 {
3006
3007         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3008         vrele(sp->sw_vp);
3009 }
3010
3011 static int
3012 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3013 {
3014         struct swdevt *sp;
3015         int error;
3016
3017         if (nblks == 0)
3018                 return (ENXIO);
3019         mtx_lock(&sw_dev_mtx);
3020         TAILQ_FOREACH(sp, &swtailq, sw_list) {
3021                 if (sp->sw_id == vp) {
3022                         mtx_unlock(&sw_dev_mtx);
3023                         return (EBUSY);
3024                 }
3025         }
3026         mtx_unlock(&sw_dev_mtx);
3027
3028         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3029 #ifdef MAC
3030         error = mac_system_check_swapon(td->td_ucred, vp);
3031         if (error == 0)
3032 #endif
3033                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3034         (void) VOP_UNLOCK(vp);
3035         if (error)
3036                 return (error);
3037
3038         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3039             NODEV, 0);
3040         return (0);
3041 }
3042
3043 static int
3044 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3045 {
3046         int error, new, n;
3047
3048         new = nsw_wcount_async_max;
3049         error = sysctl_handle_int(oidp, &new, 0, req);
3050         if (error != 0 || req->newptr == NULL)
3051                 return (error);
3052
3053         if (new > nswbuf / 2 || new < 1)
3054                 return (EINVAL);
3055
3056         mtx_lock(&swbuf_mtx);
3057         while (nsw_wcount_async_max != new) {
3058                 /*
3059                  * Adjust difference.  If the current async count is too low,
3060                  * we will need to sqeeze our update slowly in.  Sleep with a
3061                  * higher priority than getpbuf() to finish faster.
3062                  */
3063                 n = new - nsw_wcount_async_max;
3064                 if (nsw_wcount_async + n >= 0) {
3065                         nsw_wcount_async += n;
3066                         nsw_wcount_async_max += n;
3067                         wakeup(&nsw_wcount_async);
3068                 } else {
3069                         nsw_wcount_async_max -= nsw_wcount_async;
3070                         nsw_wcount_async = 0;
3071                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3072                             "swpsysctl", 0);
3073                 }
3074         }
3075         mtx_unlock(&swbuf_mtx);
3076
3077         return (0);
3078 }
3079
3080 static void
3081 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3082     vm_offset_t end)
3083 {
3084
3085         VM_OBJECT_WLOCK(object);
3086         KASSERT((object->flags & OBJ_ANON) == 0,
3087             ("Splittable object with writecount"));
3088         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3089         VM_OBJECT_WUNLOCK(object);
3090 }
3091
3092 static void
3093 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3094     vm_offset_t end)
3095 {
3096
3097         VM_OBJECT_WLOCK(object);
3098         KASSERT((object->flags & OBJ_ANON) == 0,
3099             ("Splittable object with writecount"));
3100         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3101         VM_OBJECT_WUNLOCK(object);
3102 }