]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
We'll never have multiple slots a cardbus bridge. So, replace exca
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD, 0, "VM swap stats");
160
161 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
162     &swap_reserved, 0, sysctl_page_shift, "A", 
163     "Amount of swap storage needed to back all allocated anonymous memory.");
164 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
165     &swap_total, 0, sysctl_page_shift, "A", 
166     "Total amount of available swap storage.");
167
168 static int overcommit = 0;
169 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
170     "Configure virtual memory overcommit behavior. See tuning(7) "
171     "for details.");
172 static unsigned long swzone;
173 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
174     "Actual size of swap metadata zone");
175 static unsigned long swap_maxpages;
176 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
177     "Maximum amount of swap supported");
178
179 static counter_u64_t swap_free_deferred;
180 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
181     CTLFLAG_RD, &swap_free_deferred,
182     "Number of pages that deferred freeing swap space");
183
184 static counter_u64_t swap_free_completed;
185 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
186     CTLFLAG_RD, &swap_free_completed,
187     "Number of deferred frees completed");
188
189 /* bits from overcommit */
190 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
191 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
192 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
193
194 static int
195 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
196 {
197         uint64_t newval;
198         u_long value = *(u_long *)arg1;
199
200         newval = ((uint64_t)value) << PAGE_SHIFT;
201         return (sysctl_handle_64(oidp, &newval, 0, req));
202 }
203
204 int
205 swap_reserve(vm_ooffset_t incr)
206 {
207
208         return (swap_reserve_by_cred(incr, curthread->td_ucred));
209 }
210
211 int
212 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
213 {
214         u_long r, s, prev, pincr;
215         int res, error;
216         static int curfail;
217         static struct timeval lastfail;
218         struct uidinfo *uip;
219
220         uip = cred->cr_ruidinfo;
221
222         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
223             (uintmax_t)incr));
224
225 #ifdef RACCT
226         if (racct_enable) {
227                 PROC_LOCK(curproc);
228                 error = racct_add(curproc, RACCT_SWAP, incr);
229                 PROC_UNLOCK(curproc);
230                 if (error != 0)
231                         return (0);
232         }
233 #endif
234
235         pincr = atop(incr);
236         res = 0;
237         prev = atomic_fetchadd_long(&swap_reserved, pincr);
238         r = prev + pincr;
239         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
240                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
241                     vm_wire_count();
242         } else
243                 s = 0;
244         s += swap_total;
245         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
246             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
247                 res = 1;
248         } else {
249                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
250                 if (prev < pincr)
251                         panic("swap_reserved < incr on overcommit fail");
252         }
253         if (res) {
254                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
255                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
256                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
257                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
258                         res = 0;
259                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
260                         if (prev < pincr)
261                                 panic("uip->ui_vmsize < incr on overcommit fail");
262                 }
263         }
264         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
265                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
266                     uip->ui_uid, curproc->p_pid, incr);
267         }
268
269 #ifdef RACCT
270         if (racct_enable && !res) {
271                 PROC_LOCK(curproc);
272                 racct_sub(curproc, RACCT_SWAP, incr);
273                 PROC_UNLOCK(curproc);
274         }
275 #endif
276
277         return (res);
278 }
279
280 void
281 swap_reserve_force(vm_ooffset_t incr)
282 {
283         struct uidinfo *uip;
284         u_long pincr;
285
286         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
287             (uintmax_t)incr));
288
289         PROC_LOCK(curproc);
290 #ifdef RACCT
291         if (racct_enable)
292                 racct_add_force(curproc, RACCT_SWAP, incr);
293 #endif
294         pincr = atop(incr);
295         atomic_add_long(&swap_reserved, pincr);
296         uip = curproc->p_ucred->cr_ruidinfo;
297         atomic_add_long(&uip->ui_vmsize, pincr);
298         PROC_UNLOCK(curproc);
299 }
300
301 void
302 swap_release(vm_ooffset_t decr)
303 {
304         struct ucred *cred;
305
306         PROC_LOCK(curproc);
307         cred = curproc->p_ucred;
308         swap_release_by_cred(decr, cred);
309         PROC_UNLOCK(curproc);
310 }
311
312 void
313 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
314 {
315         u_long prev, pdecr;
316         struct uidinfo *uip;
317
318         uip = cred->cr_ruidinfo;
319
320         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
321             (uintmax_t)decr));
322
323         pdecr = atop(decr);
324         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
325         if (prev < pdecr)
326                 panic("swap_reserved < decr");
327
328         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
329         if (prev < pdecr)
330                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
331 #ifdef RACCT
332         if (racct_enable)
333                 racct_sub_cred(cred, RACCT_SWAP, decr);
334 #endif
335 }
336
337 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
338 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
339 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
340 static int nsw_wcount_async;    /* limit async write buffers */
341 static int nsw_wcount_async_max;/* assigned maximum                     */
342 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
343
344 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
345 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
346     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
347     "Maximum running async swap ops");
348 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
349 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
350     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
351     "Swap Fragmentation Info");
352
353 static struct sx sw_alloc_sx;
354
355 /*
356  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
357  * of searching a named list by hashing it just a little.
358  */
359
360 #define NOBJLISTS               8
361
362 #define NOBJLIST(handle)        \
363         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
364
365 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
366 static uma_zone_t swwbuf_zone;
367 static uma_zone_t swrbuf_zone;
368 static uma_zone_t swblk_zone;
369 static uma_zone_t swpctrie_zone;
370
371 /*
372  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
373  * calls hooked from other parts of the VM system and do not appear here.
374  * (see vm/swap_pager.h).
375  */
376 static vm_object_t
377                 swap_pager_alloc(void *handle, vm_ooffset_t size,
378                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
379 static void     swap_pager_dealloc(vm_object_t object);
380 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
381     int *);
382 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
383     int *, pgo_getpages_iodone_t, void *);
384 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
385 static boolean_t
386                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
387 static void     swap_pager_init(void);
388 static void     swap_pager_unswapped(vm_page_t);
389 static void     swap_pager_swapoff(struct swdevt *sp);
390 static void     swap_pager_update_writecount(vm_object_t object,
391     vm_offset_t start, vm_offset_t end);
392 static void     swap_pager_release_writecount(vm_object_t object,
393     vm_offset_t start, vm_offset_t end);
394
395 struct pagerops swappagerops = {
396         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
397         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
398         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
399         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
400         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
401         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
402         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
403         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
404         .pgo_update_writecount = swap_pager_update_writecount,
405         .pgo_release_writecount = swap_pager_release_writecount,
406 };
407
408 /*
409  * swap_*() routines are externally accessible.  swp_*() routines are
410  * internal.
411  */
412 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
413 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
414
415 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
416     "Maximum size of a swap block in pages");
417
418 static void     swp_sizecheck(void);
419 static void     swp_pager_async_iodone(struct buf *bp);
420 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
421 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
422 static int      swapongeom(struct vnode *);
423 static int      swaponvp(struct thread *, struct vnode *, u_long);
424 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
425
426 /*
427  * Swap bitmap functions
428  */
429 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
430 static daddr_t  swp_pager_getswapspace(int *npages, int limit);
431
432 /*
433  * Metadata functions
434  */
435 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
436 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
437 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
438     vm_pindex_t pindex, vm_pindex_t count);
439 static void swp_pager_meta_free_all(vm_object_t);
440 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
441
442 static void
443 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
444 {
445
446         *start = SWAPBLK_NONE;
447         *num = 0;
448 }
449
450 static void
451 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
452 {
453
454         if (*start + *num == addr) {
455                 (*num)++;
456         } else {
457                 swp_pager_freeswapspace(*start, *num);
458                 *start = addr;
459                 *num = 1;
460         }
461 }
462
463 static void *
464 swblk_trie_alloc(struct pctrie *ptree)
465 {
466
467         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
468             M_USE_RESERVE : 0)));
469 }
470
471 static void
472 swblk_trie_free(struct pctrie *ptree, void *node)
473 {
474
475         uma_zfree(swpctrie_zone, node);
476 }
477
478 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
479
480 /*
481  * SWP_SIZECHECK() -    update swap_pager_full indication
482  *
483  *      update the swap_pager_almost_full indication and warn when we are
484  *      about to run out of swap space, using lowat/hiwat hysteresis.
485  *
486  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
487  *
488  *      No restrictions on call
489  *      This routine may not block.
490  */
491 static void
492 swp_sizecheck(void)
493 {
494
495         if (swap_pager_avail < nswap_lowat) {
496                 if (swap_pager_almost_full == 0) {
497                         printf("swap_pager: out of swap space\n");
498                         swap_pager_almost_full = 1;
499                 }
500         } else {
501                 swap_pager_full = 0;
502                 if (swap_pager_avail > nswap_hiwat)
503                         swap_pager_almost_full = 0;
504         }
505 }
506
507 /*
508  * SWAP_PAGER_INIT() -  initialize the swap pager!
509  *
510  *      Expected to be started from system init.  NOTE:  This code is run
511  *      before much else so be careful what you depend on.  Most of the VM
512  *      system has yet to be initialized at this point.
513  */
514 static void
515 swap_pager_init(void)
516 {
517         /*
518          * Initialize object lists
519          */
520         int i;
521
522         for (i = 0; i < NOBJLISTS; ++i)
523                 TAILQ_INIT(&swap_pager_object_list[i]);
524         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
525         sx_init(&sw_alloc_sx, "swspsx");
526         sx_init(&swdev_syscall_lock, "swsysc");
527 }
528
529 static void
530 swap_pager_counters(void)
531 {
532
533         swap_free_deferred = counter_u64_alloc(M_WAITOK);
534         swap_free_completed = counter_u64_alloc(M_WAITOK);
535 }
536 SYSINIT(swap_counters, SI_SUB_CPU, SI_ORDER_ANY, swap_pager_counters, NULL);
537
538 /*
539  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
540  *
541  *      Expected to be started from pageout process once, prior to entering
542  *      its main loop.
543  */
544 void
545 swap_pager_swap_init(void)
546 {
547         unsigned long n, n2;
548
549         /*
550          * Number of in-transit swap bp operations.  Don't
551          * exhaust the pbufs completely.  Make sure we
552          * initialize workable values (0 will work for hysteresis
553          * but it isn't very efficient).
554          *
555          * The nsw_cluster_max is constrained by the bp->b_pages[]
556          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
557          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
558          * constrained by the swap device interleave stripe size.
559          *
560          * Currently we hardwire nsw_wcount_async to 4.  This limit is
561          * designed to prevent other I/O from having high latencies due to
562          * our pageout I/O.  The value 4 works well for one or two active swap
563          * devices but is probably a little low if you have more.  Even so,
564          * a higher value would probably generate only a limited improvement
565          * with three or four active swap devices since the system does not
566          * typically have to pageout at extreme bandwidths.   We will want
567          * at least 2 per swap devices, and 4 is a pretty good value if you
568          * have one NFS swap device due to the command/ack latency over NFS.
569          * So it all works out pretty well.
570          */
571         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
572
573         nsw_wcount_async = 4;
574         nsw_wcount_async_max = nsw_wcount_async;
575         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
576
577         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
578         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
579
580         /*
581          * Initialize our zone, taking the user's requested size or
582          * estimating the number we need based on the number of pages
583          * in the system.
584          */
585         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
586             vm_cnt.v_page_count / 2;
587         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
588             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
589         if (swpctrie_zone == NULL)
590                 panic("failed to create swap pctrie zone.");
591         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
592             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
593         if (swblk_zone == NULL)
594                 panic("failed to create swap blk zone.");
595         n2 = n;
596         do {
597                 if (uma_zone_reserve_kva(swblk_zone, n))
598                         break;
599                 /*
600                  * if the allocation failed, try a zone two thirds the
601                  * size of the previous attempt.
602                  */
603                 n -= ((n + 2) / 3);
604         } while (n > 0);
605
606         /*
607          * Often uma_zone_reserve_kva() cannot reserve exactly the
608          * requested size.  Account for the difference when
609          * calculating swap_maxpages.
610          */
611         n = uma_zone_get_max(swblk_zone);
612
613         if (n < n2)
614                 printf("Swap blk zone entries changed from %lu to %lu.\n",
615                     n2, n);
616         /* absolute maximum we can handle assuming 100% efficiency */
617         swap_maxpages = n * SWAP_META_PAGES;
618         swzone = n * sizeof(struct swblk);
619         if (!uma_zone_reserve_kva(swpctrie_zone, n))
620                 printf("Cannot reserve swap pctrie zone, "
621                     "reduce kern.maxswzone.\n");
622 }
623
624 static vm_object_t
625 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
626     vm_ooffset_t offset)
627 {
628         vm_object_t object;
629
630         if (cred != NULL) {
631                 if (!swap_reserve_by_cred(size, cred))
632                         return (NULL);
633                 crhold(cred);
634         }
635
636         /*
637          * The un_pager.swp.swp_blks trie is initialized by
638          * vm_object_allocate() to ensure the correct order of
639          * visibility to other threads.
640          */
641         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
642             PAGE_MASK + size));
643
644         object->un_pager.swp.writemappings = 0;
645         object->handle = handle;
646         if (cred != NULL) {
647                 object->cred = cred;
648                 object->charge = size;
649         }
650         return (object);
651 }
652
653 /*
654  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
655  *                      its metadata structures.
656  *
657  *      This routine is called from the mmap and fork code to create a new
658  *      OBJT_SWAP object.
659  *
660  *      This routine must ensure that no live duplicate is created for
661  *      the named object request, which is protected against by
662  *      holding the sw_alloc_sx lock in case handle != NULL.
663  */
664 static vm_object_t
665 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
666     vm_ooffset_t offset, struct ucred *cred)
667 {
668         vm_object_t object;
669
670         if (handle != NULL) {
671                 /*
672                  * Reference existing named region or allocate new one.  There
673                  * should not be a race here against swp_pager_meta_build()
674                  * as called from vm_page_remove() in regards to the lookup
675                  * of the handle.
676                  */
677                 sx_xlock(&sw_alloc_sx);
678                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
679                 if (object == NULL) {
680                         object = swap_pager_alloc_init(handle, cred, size,
681                             offset);
682                         if (object != NULL) {
683                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
684                                     object, pager_object_list);
685                         }
686                 }
687                 sx_xunlock(&sw_alloc_sx);
688         } else {
689                 object = swap_pager_alloc_init(handle, cred, size, offset);
690         }
691         return (object);
692 }
693
694 /*
695  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
696  *
697  *      The swap backing for the object is destroyed.  The code is
698  *      designed such that we can reinstantiate it later, but this
699  *      routine is typically called only when the entire object is
700  *      about to be destroyed.
701  *
702  *      The object must be locked.
703  */
704 static void
705 swap_pager_dealloc(vm_object_t object)
706 {
707
708         VM_OBJECT_ASSERT_WLOCKED(object);
709         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
710
711         /*
712          * Remove from list right away so lookups will fail if we block for
713          * pageout completion.
714          */
715         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
716                 VM_OBJECT_WUNLOCK(object);
717                 sx_xlock(&sw_alloc_sx);
718                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
719                     pager_object_list);
720                 sx_xunlock(&sw_alloc_sx);
721                 VM_OBJECT_WLOCK(object);
722         }
723
724         vm_object_pip_wait(object, "swpdea");
725
726         /*
727          * Free all remaining metadata.  We only bother to free it from
728          * the swap meta data.  We do not attempt to free swapblk's still
729          * associated with vm_page_t's for this object.  We do not care
730          * if paging is still in progress on some objects.
731          */
732         swp_pager_meta_free_all(object);
733         object->handle = NULL;
734         object->type = OBJT_DEAD;
735 }
736
737 /************************************************************************
738  *                      SWAP PAGER BITMAP ROUTINES                      *
739  ************************************************************************/
740
741 /*
742  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
743  *
744  *      Allocate swap for up to the requested number of pages, and at
745  *      least a minimum number of pages.  The starting swap block number
746  *      (a page index) is returned or SWAPBLK_NONE if the allocation
747  *      failed.
748  *
749  *      Also has the side effect of advising that somebody made a mistake
750  *      when they configured swap and didn't configure enough.
751  *
752  *      This routine may not sleep.
753  *
754  *      We allocate in round-robin fashion from the configured devices.
755  */
756 static daddr_t
757 swp_pager_getswapspace(int *io_npages, int limit)
758 {
759         daddr_t blk;
760         struct swdevt *sp;
761         int mpages, npages;
762
763         blk = SWAPBLK_NONE;
764         mpages = *io_npages;
765         npages = imin(BLIST_MAX_ALLOC, mpages);
766         mtx_lock(&sw_dev_mtx);
767         sp = swdevhd;
768         while (!TAILQ_EMPTY(&swtailq)) {
769                 if (sp == NULL)
770                         sp = TAILQ_FIRST(&swtailq);
771                 if ((sp->sw_flags & SW_CLOSING) == 0)
772                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
773                 if (blk != SWAPBLK_NONE)
774                         break;
775                 sp = TAILQ_NEXT(sp, sw_list);
776                 if (swdevhd == sp) {
777                         if (npages <= limit)
778                                 break;
779                         mpages = npages - 1;
780                         npages >>= 1;
781                 }
782         }
783         if (blk != SWAPBLK_NONE) {
784                 *io_npages = npages;
785                 blk += sp->sw_first;
786                 sp->sw_used += npages;
787                 swap_pager_avail -= npages;
788                 swp_sizecheck();
789                 swdevhd = TAILQ_NEXT(sp, sw_list);
790         } else {
791                 if (swap_pager_full != 2) {
792                         printf("swp_pager_getswapspace(%d): failed\n",
793                             *io_npages);
794                         swap_pager_full = 2;
795                         swap_pager_almost_full = 1;
796                 }
797                 swdevhd = NULL;
798         }
799         mtx_unlock(&sw_dev_mtx);
800         return (blk);
801 }
802
803 static bool
804 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
805 {
806
807         return (blk >= sp->sw_first && blk < sp->sw_end);
808 }
809
810 static void
811 swp_pager_strategy(struct buf *bp)
812 {
813         struct swdevt *sp;
814
815         mtx_lock(&sw_dev_mtx);
816         TAILQ_FOREACH(sp, &swtailq, sw_list) {
817                 if (swp_pager_isondev(bp->b_blkno, sp)) {
818                         mtx_unlock(&sw_dev_mtx);
819                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
820                             unmapped_buf_allowed) {
821                                 bp->b_data = unmapped_buf;
822                                 bp->b_offset = 0;
823                         } else {
824                                 pmap_qenter((vm_offset_t)bp->b_data,
825                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
826                         }
827                         sp->sw_strategy(bp, sp);
828                         return;
829                 }
830         }
831         panic("Swapdev not found");
832 }
833
834
835 /*
836  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
837  *
838  *      This routine returns the specified swap blocks back to the bitmap.
839  *
840  *      This routine may not sleep.
841  */
842 static void
843 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
844 {
845         struct swdevt *sp;
846
847         if (npages == 0)
848                 return;
849         mtx_lock(&sw_dev_mtx);
850         TAILQ_FOREACH(sp, &swtailq, sw_list) {
851                 if (swp_pager_isondev(blk, sp)) {
852                         sp->sw_used -= npages;
853                         /*
854                          * If we are attempting to stop swapping on
855                          * this device, we don't want to mark any
856                          * blocks free lest they be reused.
857                          */
858                         if ((sp->sw_flags & SW_CLOSING) == 0) {
859                                 blist_free(sp->sw_blist, blk - sp->sw_first,
860                                     npages);
861                                 swap_pager_avail += npages;
862                                 swp_sizecheck();
863                         }
864                         mtx_unlock(&sw_dev_mtx);
865                         return;
866                 }
867         }
868         panic("Swapdev not found");
869 }
870
871 /*
872  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
873  */
874 static int
875 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
876 {
877         struct sbuf sbuf;
878         struct swdevt *sp;
879         const char *devname;
880         int error;
881
882         error = sysctl_wire_old_buffer(req, 0);
883         if (error != 0)
884                 return (error);
885         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
886         mtx_lock(&sw_dev_mtx);
887         TAILQ_FOREACH(sp, &swtailq, sw_list) {
888                 if (vn_isdisk(sp->sw_vp, NULL))
889                         devname = devtoname(sp->sw_vp->v_rdev);
890                 else
891                         devname = "[file]";
892                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
893                 blist_stats(sp->sw_blist, &sbuf);
894         }
895         mtx_unlock(&sw_dev_mtx);
896         error = sbuf_finish(&sbuf);
897         sbuf_delete(&sbuf);
898         return (error);
899 }
900
901 /*
902  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
903  *                              range within an object.
904  *
905  *      This is a globally accessible routine.
906  *
907  *      This routine removes swapblk assignments from swap metadata.
908  *
909  *      The external callers of this routine typically have already destroyed
910  *      or renamed vm_page_t's associated with this range in the object so
911  *      we should be ok.
912  *
913  *      The object must be locked.
914  */
915 void
916 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
917 {
918
919         swp_pager_meta_free(object, start, size);
920 }
921
922 /*
923  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
924  *
925  *      Assigns swap blocks to the specified range within the object.  The
926  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
927  *
928  *      Returns 0 on success, -1 on failure.
929  */
930 int
931 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
932 {
933         daddr_t addr, blk, n_free, s_free;
934         int i, j, n;
935
936         swp_pager_init_freerange(&s_free, &n_free);
937         VM_OBJECT_WLOCK(object);
938         for (i = 0; i < size; i += n) {
939                 n = size - i;
940                 blk = swp_pager_getswapspace(&n, 1);
941                 if (blk == SWAPBLK_NONE) {
942                         swp_pager_meta_free(object, start, i);
943                         VM_OBJECT_WUNLOCK(object);
944                         return (-1);
945                 }
946                 for (j = 0; j < n; ++j) {
947                         addr = swp_pager_meta_build(object,
948                             start + i + j, blk + j);
949                         if (addr != SWAPBLK_NONE)
950                                 swp_pager_update_freerange(&s_free, &n_free,
951                                     addr);
952                 }
953         }
954         swp_pager_freeswapspace(s_free, n_free);
955         VM_OBJECT_WUNLOCK(object);
956         return (0);
957 }
958
959 static bool
960 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
961     vm_pindex_t pindex, daddr_t addr)
962 {
963         daddr_t dstaddr;
964
965         KASSERT(srcobject->type == OBJT_SWAP,
966             ("%s: Srcobject not swappable", __func__));
967         if (dstobject->type == OBJT_SWAP &&
968             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
969                 /* Caller should destroy the source block. */
970                 return (false);
971         }
972
973         /*
974          * Destination has no swapblk and is not resident, transfer source.
975          * swp_pager_meta_build() can sleep.
976          */
977         vm_object_pip_add(srcobject, 1);
978         VM_OBJECT_WUNLOCK(srcobject);
979         vm_object_pip_add(dstobject, 1);
980         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
981         KASSERT(dstaddr == SWAPBLK_NONE,
982             ("Unexpected destination swapblk"));
983         vm_object_pip_wakeup(dstobject);
984         VM_OBJECT_WLOCK(srcobject);
985         vm_object_pip_wakeup(srcobject);
986         return (true);
987 }
988
989 /*
990  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
991  *                      and destroy the source.
992  *
993  *      Copy any valid swapblks from the source to the destination.  In
994  *      cases where both the source and destination have a valid swapblk,
995  *      we keep the destination's.
996  *
997  *      This routine is allowed to sleep.  It may sleep allocating metadata
998  *      indirectly through swp_pager_meta_build() or if paging is still in
999  *      progress on the source.
1000  *
1001  *      The source object contains no vm_page_t's (which is just as well)
1002  *
1003  *      The source object is of type OBJT_SWAP.
1004  *
1005  *      The source and destination objects must be locked.
1006  *      Both object locks may temporarily be released.
1007  */
1008 void
1009 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1010     vm_pindex_t offset, int destroysource)
1011 {
1012
1013         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1014         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1015
1016         /*
1017          * If destroysource is set, we remove the source object from the
1018          * swap_pager internal queue now.
1019          */
1020         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1021             srcobject->handle != NULL) {
1022                 vm_object_pip_add(srcobject, 1);
1023                 VM_OBJECT_WUNLOCK(srcobject);
1024                 vm_object_pip_add(dstobject, 1);
1025                 VM_OBJECT_WUNLOCK(dstobject);
1026                 sx_xlock(&sw_alloc_sx);
1027                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1028                     pager_object_list);
1029                 sx_xunlock(&sw_alloc_sx);
1030                 VM_OBJECT_WLOCK(dstobject);
1031                 vm_object_pip_wakeup(dstobject);
1032                 VM_OBJECT_WLOCK(srcobject);
1033                 vm_object_pip_wakeup(srcobject);
1034         }
1035
1036         /*
1037          * Transfer source to destination.
1038          */
1039         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1040
1041         /*
1042          * Free left over swap blocks in source.
1043          *
1044          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1045          * double-remove the object from the swap queues.
1046          */
1047         if (destroysource) {
1048                 swp_pager_meta_free_all(srcobject);
1049                 /*
1050                  * Reverting the type is not necessary, the caller is going
1051                  * to destroy srcobject directly, but I'm doing it here
1052                  * for consistency since we've removed the object from its
1053                  * queues.
1054                  */
1055                 srcobject->type = OBJT_DEFAULT;
1056         }
1057 }
1058
1059 /*
1060  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1061  *                              the requested page.
1062  *
1063  *      We determine whether good backing store exists for the requested
1064  *      page and return TRUE if it does, FALSE if it doesn't.
1065  *
1066  *      If TRUE, we also try to determine how much valid, contiguous backing
1067  *      store exists before and after the requested page.
1068  */
1069 static boolean_t
1070 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1071     int *after)
1072 {
1073         daddr_t blk, blk0;
1074         int i;
1075
1076         VM_OBJECT_ASSERT_LOCKED(object);
1077         KASSERT(object->type == OBJT_SWAP,
1078             ("%s: object not swappable", __func__));
1079
1080         /*
1081          * do we have good backing store at the requested index ?
1082          */
1083         blk0 = swp_pager_meta_lookup(object, pindex);
1084         if (blk0 == SWAPBLK_NONE) {
1085                 if (before)
1086                         *before = 0;
1087                 if (after)
1088                         *after = 0;
1089                 return (FALSE);
1090         }
1091
1092         /*
1093          * find backwards-looking contiguous good backing store
1094          */
1095         if (before != NULL) {
1096                 for (i = 1; i < SWB_NPAGES; i++) {
1097                         if (i > pindex)
1098                                 break;
1099                         blk = swp_pager_meta_lookup(object, pindex - i);
1100                         if (blk != blk0 - i)
1101                                 break;
1102                 }
1103                 *before = i - 1;
1104         }
1105
1106         /*
1107          * find forward-looking contiguous good backing store
1108          */
1109         if (after != NULL) {
1110                 for (i = 1; i < SWB_NPAGES; i++) {
1111                         blk = swp_pager_meta_lookup(object, pindex + i);
1112                         if (blk != blk0 + i)
1113                                 break;
1114                 }
1115                 *after = i - 1;
1116         }
1117         return (TRUE);
1118 }
1119
1120 /*
1121  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1122  *
1123  *      This removes any associated swap backing store, whether valid or
1124  *      not, from the page.
1125  *
1126  *      This routine is typically called when a page is made dirty, at
1127  *      which point any associated swap can be freed.  MADV_FREE also
1128  *      calls us in a special-case situation
1129  *
1130  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1131  *      should make the page dirty before calling this routine.  This routine
1132  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1133  *      depends on it.
1134  *
1135  *      This routine may not sleep.
1136  *
1137  *      The object containing the page may be locked.
1138  */
1139 static void
1140 swap_pager_unswapped(vm_page_t m)
1141 {
1142         struct swblk *sb;
1143         vm_object_t obj;
1144
1145         /*
1146          * Handle enqueing deferred frees first.  If we do not have the
1147          * object lock we wait for the page daemon to clear the space.
1148          */
1149         obj = m->object;
1150         if (!VM_OBJECT_WOWNED(obj)) {
1151                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1152                 /*
1153                  * The caller is responsible for synchronization but we
1154                  * will harmlessly handle races.  This is typically provided
1155                  * by only calling unswapped() when a page transitions from
1156                  * clean to dirty.
1157                  */
1158                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1159                     PGA_SWAP_SPACE) {
1160                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1161                         counter_u64_add(swap_free_deferred, 1);
1162                 }
1163                 return;
1164         }
1165         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1166                 counter_u64_add(swap_free_completed, 1);
1167         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1168
1169         /*
1170          * The meta data only exists if the object is OBJT_SWAP
1171          * and even then might not be allocated yet.
1172          */
1173         KASSERT(m->object->type == OBJT_SWAP,
1174             ("Free object not swappable"));
1175
1176         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1177             rounddown(m->pindex, SWAP_META_PAGES));
1178         if (sb == NULL)
1179                 return;
1180         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1181                 return;
1182         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1183         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1184         swp_pager_free_empty_swblk(m->object, sb);
1185 }
1186
1187 /*
1188  * swap_pager_getpages() - bring pages in from swap
1189  *
1190  *      Attempt to page in the pages in array "ma" of length "count".  The
1191  *      caller may optionally specify that additional pages preceding and
1192  *      succeeding the specified range be paged in.  The number of such pages
1193  *      is returned in the "rbehind" and "rahead" parameters, and they will
1194  *      be in the inactive queue upon return.
1195  *
1196  *      The pages in "ma" must be busied and will remain busied upon return.
1197  */
1198 static int
1199 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1200     int *rahead)
1201 {
1202         struct buf *bp;
1203         vm_page_t bm, mpred, msucc, p;
1204         vm_pindex_t pindex;
1205         daddr_t blk;
1206         int i, maxahead, maxbehind, reqcount;
1207
1208         reqcount = count;
1209
1210         /*
1211          * Determine the final number of read-behind pages and
1212          * allocate them BEFORE releasing the object lock.  Otherwise,
1213          * there can be a problematic race with vm_object_split().
1214          * Specifically, vm_object_split() might first transfer pages
1215          * that precede ma[0] in the current object to a new object,
1216          * and then this function incorrectly recreates those pages as
1217          * read-behind pages in the current object.
1218          */
1219         KASSERT(object->type == OBJT_SWAP,
1220             ("%s: object not swappable", __func__));
1221         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1222                 return (VM_PAGER_FAIL);
1223
1224         /*
1225          * Clip the readahead and readbehind ranges to exclude resident pages.
1226          */
1227         if (rahead != NULL) {
1228                 KASSERT(reqcount - 1 <= maxahead,
1229                     ("page count %d extends beyond swap block", reqcount));
1230                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1231                 pindex = ma[reqcount - 1]->pindex;
1232                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1233                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1234                         *rahead = msucc->pindex - pindex - 1;
1235         }
1236         if (rbehind != NULL) {
1237                 *rbehind = imin(*rbehind, maxbehind);
1238                 pindex = ma[0]->pindex;
1239                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1240                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1241                         *rbehind = pindex - mpred->pindex - 1;
1242         }
1243
1244         bm = ma[0];
1245         for (i = 0; i < count; i++)
1246                 ma[i]->oflags |= VPO_SWAPINPROG;
1247
1248         /*
1249          * Allocate readahead and readbehind pages.
1250          */
1251         if (rbehind != NULL) {
1252                 for (i = 1; i <= *rbehind; i++) {
1253                         p = vm_page_alloc(object, ma[0]->pindex - i,
1254                             VM_ALLOC_NORMAL);
1255                         if (p == NULL)
1256                                 break;
1257                         p->oflags |= VPO_SWAPINPROG;
1258                         bm = p;
1259                 }
1260                 *rbehind = i - 1;
1261         }
1262         if (rahead != NULL) {
1263                 for (i = 0; i < *rahead; i++) {
1264                         p = vm_page_alloc(object,
1265                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1266                         if (p == NULL)
1267                                 break;
1268                         p->oflags |= VPO_SWAPINPROG;
1269                 }
1270                 *rahead = i;
1271         }
1272         if (rbehind != NULL)
1273                 count += *rbehind;
1274         if (rahead != NULL)
1275                 count += *rahead;
1276
1277         vm_object_pip_add(object, count);
1278
1279         pindex = bm->pindex;
1280         blk = swp_pager_meta_lookup(object, pindex);
1281         KASSERT(blk != SWAPBLK_NONE,
1282             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1283
1284         VM_OBJECT_WUNLOCK(object);
1285         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1286         /* Pages cannot leave the object while busy. */
1287         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1288                 MPASS(p->pindex == bm->pindex + i);
1289                 bp->b_pages[i] = p;
1290         }
1291
1292         bp->b_flags |= B_PAGING;
1293         bp->b_iocmd = BIO_READ;
1294         bp->b_iodone = swp_pager_async_iodone;
1295         bp->b_rcred = crhold(thread0.td_ucred);
1296         bp->b_wcred = crhold(thread0.td_ucred);
1297         bp->b_blkno = blk;
1298         bp->b_bcount = PAGE_SIZE * count;
1299         bp->b_bufsize = PAGE_SIZE * count;
1300         bp->b_npages = count;
1301         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1302         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1303
1304         VM_CNT_INC(v_swapin);
1305         VM_CNT_ADD(v_swappgsin, count);
1306
1307         /*
1308          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1309          * this point because we automatically release it on completion.
1310          * Instead, we look at the one page we are interested in which we
1311          * still hold a lock on even through the I/O completion.
1312          *
1313          * The other pages in our ma[] array are also released on completion,
1314          * so we cannot assume they are valid anymore either.
1315          *
1316          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1317          */
1318         BUF_KERNPROC(bp);
1319         swp_pager_strategy(bp);
1320
1321         /*
1322          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1323          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1324          * is set in the metadata for each page in the request.
1325          */
1326         VM_OBJECT_WLOCK(object);
1327         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1328                 ma[0]->oflags |= VPO_SWAPSLEEP;
1329                 VM_CNT_INC(v_intrans);
1330                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1331                     "swread", hz * 20)) {
1332                         printf(
1333 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1334                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1335                 }
1336         }
1337
1338         /*
1339          * If we had an unrecoverable read error pages will not be valid.
1340          */
1341         for (i = 0; i < reqcount; i++)
1342                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1343                         return (VM_PAGER_ERROR);
1344
1345         return (VM_PAGER_OK);
1346
1347         /*
1348          * A final note: in a low swap situation, we cannot deallocate swap
1349          * and mark a page dirty here because the caller is likely to mark
1350          * the page clean when we return, causing the page to possibly revert
1351          * to all-zero's later.
1352          */
1353 }
1354
1355 /*
1356  *      swap_pager_getpages_async():
1357  *
1358  *      Right now this is emulation of asynchronous operation on top of
1359  *      swap_pager_getpages().
1360  */
1361 static int
1362 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1363     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1364 {
1365         int r, error;
1366
1367         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1368         VM_OBJECT_WUNLOCK(object);
1369         switch (r) {
1370         case VM_PAGER_OK:
1371                 error = 0;
1372                 break;
1373         case VM_PAGER_ERROR:
1374                 error = EIO;
1375                 break;
1376         case VM_PAGER_FAIL:
1377                 error = EINVAL;
1378                 break;
1379         default:
1380                 panic("unhandled swap_pager_getpages() error %d", r);
1381         }
1382         (iodone)(arg, ma, count, error);
1383         VM_OBJECT_WLOCK(object);
1384
1385         return (r);
1386 }
1387
1388 /*
1389  *      swap_pager_putpages:
1390  *
1391  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1392  *
1393  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1394  *      are automatically converted to SWAP objects.
1395  *
1396  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1397  *      vm_page reservation system coupled with properly written VFS devices
1398  *      should ensure that no low-memory deadlock occurs.  This is an area
1399  *      which needs work.
1400  *
1401  *      The parent has N vm_object_pip_add() references prior to
1402  *      calling us and will remove references for rtvals[] that are
1403  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1404  *      completion.
1405  *
1406  *      The parent has soft-busy'd the pages it passes us and will unbusy
1407  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1408  *      We need to unbusy the rest on I/O completion.
1409  */
1410 static void
1411 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1412     int flags, int *rtvals)
1413 {
1414         struct buf *bp;
1415         daddr_t addr, blk, n_free, s_free;
1416         vm_page_t mreq;
1417         int i, j, n;
1418         bool async;
1419
1420         KASSERT(count == 0 || ma[0]->object == object,
1421             ("%s: object mismatch %p/%p",
1422             __func__, object, ma[0]->object));
1423
1424         /*
1425          * Step 1
1426          *
1427          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1428          */
1429         if (object->type != OBJT_SWAP) {
1430                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1431                 KASSERT(addr == SWAPBLK_NONE,
1432                     ("unexpected object swap block"));
1433         }
1434         VM_OBJECT_WUNLOCK(object);
1435         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1436         swp_pager_init_freerange(&s_free, &n_free);
1437
1438         /*
1439          * Step 2
1440          *
1441          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1442          * The page is left dirty until the pageout operation completes
1443          * successfully.
1444          */
1445         for (i = 0; i < count; i += n) {
1446                 /* Maximum I/O size is limited by maximum swap block size. */
1447                 n = min(count - i, nsw_cluster_max);
1448
1449                 /* Get a block of swap of size up to size n. */
1450                 blk = swp_pager_getswapspace(&n, 4);
1451                 if (blk == SWAPBLK_NONE) {
1452                         for (j = 0; j < n; ++j)
1453                                 rtvals[i + j] = VM_PAGER_FAIL;
1454                         continue;
1455                 }
1456
1457                 /*
1458                  * All I/O parameters have been satisfied.  Build the I/O
1459                  * request and assign the swap space.
1460                  */
1461                 if (async) {
1462                         mtx_lock(&swbuf_mtx);
1463                         while (nsw_wcount_async == 0)
1464                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1465                                     "swbufa", 0);
1466                         nsw_wcount_async--;
1467                         mtx_unlock(&swbuf_mtx);
1468                 }
1469                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1470                 if (async)
1471                         bp->b_flags = B_ASYNC;
1472                 bp->b_flags |= B_PAGING;
1473                 bp->b_iocmd = BIO_WRITE;
1474
1475                 bp->b_rcred = crhold(thread0.td_ucred);
1476                 bp->b_wcred = crhold(thread0.td_ucred);
1477                 bp->b_bcount = PAGE_SIZE * n;
1478                 bp->b_bufsize = PAGE_SIZE * n;
1479                 bp->b_blkno = blk;
1480
1481                 VM_OBJECT_WLOCK(object);
1482                 for (j = 0; j < n; ++j) {
1483                         mreq = ma[i + j];
1484                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1485                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1486                             blk + j);
1487                         if (addr != SWAPBLK_NONE)
1488                                 swp_pager_update_freerange(&s_free, &n_free,
1489                                     addr);
1490                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1491                         mreq->oflags |= VPO_SWAPINPROG;
1492                         bp->b_pages[j] = mreq;
1493                 }
1494                 VM_OBJECT_WUNLOCK(object);
1495                 bp->b_npages = n;
1496                 /*
1497                  * Must set dirty range for NFS to work.
1498                  */
1499                 bp->b_dirtyoff = 0;
1500                 bp->b_dirtyend = bp->b_bcount;
1501
1502                 VM_CNT_INC(v_swapout);
1503                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1504
1505                 /*
1506                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1507                  * can call the async completion routine at the end of a
1508                  * synchronous I/O operation.  Otherwise, our caller would
1509                  * perform duplicate unbusy and wakeup operations on the page
1510                  * and object, respectively.
1511                  */
1512                 for (j = 0; j < n; j++)
1513                         rtvals[i + j] = VM_PAGER_PEND;
1514
1515                 /*
1516                  * asynchronous
1517                  *
1518                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1519                  */
1520                 if (async) {
1521                         bp->b_iodone = swp_pager_async_iodone;
1522                         BUF_KERNPROC(bp);
1523                         swp_pager_strategy(bp);
1524                         continue;
1525                 }
1526
1527                 /*
1528                  * synchronous
1529                  *
1530                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1531                  */
1532                 bp->b_iodone = bdone;
1533                 swp_pager_strategy(bp);
1534
1535                 /*
1536                  * Wait for the sync I/O to complete.
1537                  */
1538                 bwait(bp, PVM, "swwrt");
1539
1540                 /*
1541                  * Now that we are through with the bp, we can call the
1542                  * normal async completion, which frees everything up.
1543                  */
1544                 swp_pager_async_iodone(bp);
1545         }
1546         swp_pager_freeswapspace(s_free, n_free);
1547         VM_OBJECT_WLOCK(object);
1548 }
1549
1550 /*
1551  *      swp_pager_async_iodone:
1552  *
1553  *      Completion routine for asynchronous reads and writes from/to swap.
1554  *      Also called manually by synchronous code to finish up a bp.
1555  *
1556  *      This routine may not sleep.
1557  */
1558 static void
1559 swp_pager_async_iodone(struct buf *bp)
1560 {
1561         int i;
1562         vm_object_t object = NULL;
1563
1564         /*
1565          * Report error - unless we ran out of memory, in which case
1566          * we've already logged it in swapgeom_strategy().
1567          */
1568         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1569                 printf(
1570                     "swap_pager: I/O error - %s failed; blkno %ld,"
1571                         "size %ld, error %d\n",
1572                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1573                     (long)bp->b_blkno,
1574                     (long)bp->b_bcount,
1575                     bp->b_error
1576                 );
1577         }
1578
1579         /*
1580          * remove the mapping for kernel virtual
1581          */
1582         if (buf_mapped(bp))
1583                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1584         else
1585                 bp->b_data = bp->b_kvabase;
1586
1587         if (bp->b_npages) {
1588                 object = bp->b_pages[0]->object;
1589                 VM_OBJECT_WLOCK(object);
1590         }
1591
1592         /*
1593          * cleanup pages.  If an error occurs writing to swap, we are in
1594          * very serious trouble.  If it happens to be a disk error, though,
1595          * we may be able to recover by reassigning the swap later on.  So
1596          * in this case we remove the m->swapblk assignment for the page
1597          * but do not free it in the rlist.  The errornous block(s) are thus
1598          * never reallocated as swap.  Redirty the page and continue.
1599          */
1600         for (i = 0; i < bp->b_npages; ++i) {
1601                 vm_page_t m = bp->b_pages[i];
1602
1603                 m->oflags &= ~VPO_SWAPINPROG;
1604                 if (m->oflags & VPO_SWAPSLEEP) {
1605                         m->oflags &= ~VPO_SWAPSLEEP;
1606                         wakeup(&object->handle);
1607                 }
1608
1609                 /* We always have space after I/O, successful or not. */
1610                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1611
1612                 if (bp->b_ioflags & BIO_ERROR) {
1613                         /*
1614                          * If an error occurs I'd love to throw the swapblk
1615                          * away without freeing it back to swapspace, so it
1616                          * can never be used again.  But I can't from an
1617                          * interrupt.
1618                          */
1619                         if (bp->b_iocmd == BIO_READ) {
1620                                 /*
1621                                  * NOTE: for reads, m->dirty will probably
1622                                  * be overridden by the original caller of
1623                                  * getpages so don't play cute tricks here.
1624                                  */
1625                                 vm_page_invalid(m);
1626                         } else {
1627                                 /*
1628                                  * If a write error occurs, reactivate page
1629                                  * so it doesn't clog the inactive list,
1630                                  * then finish the I/O.
1631                                  */
1632                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1633                                 /* PQ_UNSWAPPABLE? */
1634                                 vm_page_lock(m);
1635                                 vm_page_activate(m);
1636                                 vm_page_unlock(m);
1637                                 vm_page_sunbusy(m);
1638                         }
1639                 } else if (bp->b_iocmd == BIO_READ) {
1640                         /*
1641                          * NOTE: for reads, m->dirty will probably be
1642                          * overridden by the original caller of getpages so
1643                          * we cannot set them in order to free the underlying
1644                          * swap in a low-swap situation.  I don't think we'd
1645                          * want to do that anyway, but it was an optimization
1646                          * that existed in the old swapper for a time before
1647                          * it got ripped out due to precisely this problem.
1648                          */
1649                         KASSERT(!pmap_page_is_mapped(m),
1650                             ("swp_pager_async_iodone: page %p is mapped", m));
1651                         KASSERT(m->dirty == 0,
1652                             ("swp_pager_async_iodone: page %p is dirty", m));
1653
1654                         vm_page_valid(m);
1655                         if (i < bp->b_pgbefore ||
1656                             i >= bp->b_npages - bp->b_pgafter)
1657                                 vm_page_readahead_finish(m);
1658                 } else {
1659                         /*
1660                          * For write success, clear the dirty
1661                          * status, then finish the I/O ( which decrements the
1662                          * busy count and possibly wakes waiter's up ).
1663                          * A page is only written to swap after a period of
1664                          * inactivity.  Therefore, we do not expect it to be
1665                          * reused.
1666                          */
1667                         KASSERT(!pmap_page_is_write_mapped(m),
1668                             ("swp_pager_async_iodone: page %p is not write"
1669                             " protected", m));
1670                         vm_page_undirty(m);
1671                         vm_page_lock(m);
1672                         vm_page_deactivate_noreuse(m);
1673                         vm_page_unlock(m);
1674                         vm_page_sunbusy(m);
1675                 }
1676         }
1677
1678         /*
1679          * adjust pip.  NOTE: the original parent may still have its own
1680          * pip refs on the object.
1681          */
1682         if (object != NULL) {
1683                 vm_object_pip_wakeupn(object, bp->b_npages);
1684                 VM_OBJECT_WUNLOCK(object);
1685         }
1686
1687         /*
1688          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1689          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1690          * trigger a KASSERT in relpbuf().
1691          */
1692         if (bp->b_vp) {
1693                     bp->b_vp = NULL;
1694                     bp->b_bufobj = NULL;
1695         }
1696         /*
1697          * release the physical I/O buffer
1698          */
1699         if (bp->b_flags & B_ASYNC) {
1700                 mtx_lock(&swbuf_mtx);
1701                 if (++nsw_wcount_async == 1)
1702                         wakeup(&nsw_wcount_async);
1703                 mtx_unlock(&swbuf_mtx);
1704         }
1705         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1706 }
1707
1708 int
1709 swap_pager_nswapdev(void)
1710 {
1711
1712         return (nswapdev);
1713 }
1714
1715 static void
1716 swp_pager_force_dirty(vm_page_t m)
1717 {
1718
1719         vm_page_dirty(m);
1720 #ifdef INVARIANTS
1721         vm_page_lock(m);
1722         if (!vm_page_wired(m) && m->a.queue == PQ_NONE)
1723                 panic("page %p is neither wired nor queued", m);
1724         vm_page_unlock(m);
1725 #endif
1726         vm_page_xunbusy(m);
1727         swap_pager_unswapped(m);
1728 }
1729
1730 static void
1731 swp_pager_force_launder(vm_page_t m)
1732 {
1733
1734         vm_page_dirty(m);
1735         vm_page_lock(m);
1736         vm_page_launder(m);
1737         vm_page_unlock(m);
1738         vm_page_xunbusy(m);
1739         swap_pager_unswapped(m);
1740 }
1741
1742 /*
1743  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1744  *
1745  *      This routine dissociates pages starting at the given index within an
1746  *      object from their backing store, paging them in if they do not reside
1747  *      in memory.  Pages that are paged in are marked dirty and placed in the
1748  *      laundry queue.  Pages are marked dirty because they no longer have
1749  *      backing store.  They are placed in the laundry queue because they have
1750  *      not been accessed recently.  Otherwise, they would already reside in
1751  *      memory.
1752  */
1753 static void
1754 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1755 {
1756         vm_page_t ma[npages];
1757         int i, j;
1758
1759         KASSERT(npages > 0, ("%s: No pages", __func__));
1760         KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1761             ("%s: Too many pages: %d", __func__, npages));
1762         KASSERT(object->type == OBJT_SWAP,
1763             ("%s: Object not swappable", __func__));
1764         vm_object_pip_add(object, npages);
1765         vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1766         for (i = j = 0;; i++) {
1767                 /* Count nonresident pages, to page-in all at once. */
1768                 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1769                         continue;
1770                 if (j < i) {
1771                         /* Page-in nonresident pages. Mark for laundering. */
1772                         if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1773                             NULL) != VM_PAGER_OK)
1774                                 panic("%s: read from swap failed", __func__);
1775                         do {
1776                                 swp_pager_force_launder(ma[j]);
1777                         } while (++j < i);
1778                 }
1779                 if (i == npages)
1780                         break;
1781                 /* Mark dirty a resident page. */
1782                 swp_pager_force_dirty(ma[j++]);
1783         }
1784         vm_object_pip_wakeupn(object, npages);
1785 }
1786
1787 /*
1788  *      swap_pager_swapoff_object:
1789  *
1790  *      Page in all of the pages that have been paged out for an object
1791  *      to a swap device.
1792  */
1793 static void
1794 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1795 {
1796         struct swblk *sb;
1797         vm_pindex_t pi, s_pindex;
1798         daddr_t blk, n_blks, s_blk;
1799         int i;
1800
1801         KASSERT(object->type == OBJT_SWAP,
1802             ("%s: Object not swappable", __func__));
1803         n_blks = 0;
1804         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1805             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1806                 for (i = 0; i < SWAP_META_PAGES; i++) {
1807                         blk = sb->d[i];
1808                         if (!swp_pager_isondev(blk, sp))
1809                                 blk = SWAPBLK_NONE;
1810
1811                         /*
1812                          * If there are no blocks/pages accumulated, start a new
1813                          * accumulation here.
1814                          */
1815                         if (n_blks == 0) {
1816                                 if (blk != SWAPBLK_NONE) {
1817                                         s_blk = blk;
1818                                         s_pindex = sb->p + i;
1819                                         n_blks = 1;
1820                                 }
1821                                 continue;
1822                         }
1823
1824                         /*
1825                          * If the accumulation can be extended without breaking
1826                          * the sequence of consecutive blocks and pages that
1827                          * swp_pager_force_pagein() depends on, do so.
1828                          */
1829                         if (n_blks < MAXPHYS / PAGE_SIZE &&
1830                             s_blk + n_blks == blk &&
1831                             s_pindex + n_blks == sb->p + i) {
1832                                 ++n_blks;
1833                                 continue;
1834                         }
1835
1836                         /*
1837                          * The sequence of consecutive blocks and pages cannot
1838                          * be extended, so page them all in here.  Then,
1839                          * because doing so involves releasing and reacquiring
1840                          * a lock that protects the swap block pctrie, do not
1841                          * rely on the current swap block.  Break this loop and
1842                          * re-fetch the same pindex from the pctrie again.
1843                          */
1844                         swp_pager_force_pagein(object, s_pindex, n_blks);
1845                         n_blks = 0;
1846                         break;
1847                 }
1848                 if (i == SWAP_META_PAGES)
1849                         pi = sb->p + SWAP_META_PAGES;
1850         }
1851         if (n_blks > 0)
1852                 swp_pager_force_pagein(object, s_pindex, n_blks);
1853 }
1854
1855 /*
1856  *      swap_pager_swapoff:
1857  *
1858  *      Page in all of the pages that have been paged out to the
1859  *      given device.  The corresponding blocks in the bitmap must be
1860  *      marked as allocated and the device must be flagged SW_CLOSING.
1861  *      There may be no processes swapped out to the device.
1862  *
1863  *      This routine may block.
1864  */
1865 static void
1866 swap_pager_swapoff(struct swdevt *sp)
1867 {
1868         vm_object_t object;
1869         int retries;
1870
1871         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1872
1873         retries = 0;
1874 full_rescan:
1875         mtx_lock(&vm_object_list_mtx);
1876         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1877                 if (object->type != OBJT_SWAP)
1878                         continue;
1879                 mtx_unlock(&vm_object_list_mtx);
1880                 /* Depends on type-stability. */
1881                 VM_OBJECT_WLOCK(object);
1882
1883                 /*
1884                  * Dead objects are eventually terminated on their own.
1885                  */
1886                 if ((object->flags & OBJ_DEAD) != 0)
1887                         goto next_obj;
1888
1889                 /*
1890                  * Sync with fences placed after pctrie
1891                  * initialization.  We must not access pctrie below
1892                  * unless we checked that our object is swap and not
1893                  * dead.
1894                  */
1895                 atomic_thread_fence_acq();
1896                 if (object->type != OBJT_SWAP)
1897                         goto next_obj;
1898
1899                 swap_pager_swapoff_object(sp, object);
1900 next_obj:
1901                 VM_OBJECT_WUNLOCK(object);
1902                 mtx_lock(&vm_object_list_mtx);
1903         }
1904         mtx_unlock(&vm_object_list_mtx);
1905
1906         if (sp->sw_used) {
1907                 /*
1908                  * Objects may be locked or paging to the device being
1909                  * removed, so we will miss their pages and need to
1910                  * make another pass.  We have marked this device as
1911                  * SW_CLOSING, so the activity should finish soon.
1912                  */
1913                 retries++;
1914                 if (retries > 100) {
1915                         panic("swapoff: failed to locate %d swap blocks",
1916                             sp->sw_used);
1917                 }
1918                 pause("swpoff", hz / 20);
1919                 goto full_rescan;
1920         }
1921         EVENTHANDLER_INVOKE(swapoff, sp);
1922 }
1923
1924 /************************************************************************
1925  *                              SWAP META DATA                          *
1926  ************************************************************************
1927  *
1928  *      These routines manipulate the swap metadata stored in the
1929  *      OBJT_SWAP object.
1930  *
1931  *      Swap metadata is implemented with a global hash and not directly
1932  *      linked into the object.  Instead the object simply contains
1933  *      appropriate tracking counters.
1934  */
1935
1936 /*
1937  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1938  */
1939 static bool
1940 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1941 {
1942         int i;
1943
1944         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1945         for (i = start; i < limit; i++) {
1946                 if (sb->d[i] != SWAPBLK_NONE)
1947                         return (false);
1948         }
1949         return (true);
1950 }
1951
1952 /*
1953  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1954  *
1955  *  Nothing is done if the block is still in use.
1956  */
1957 static void
1958 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1959 {
1960
1961         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1962                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1963                 uma_zfree(swblk_zone, sb);
1964         }
1965 }
1966    
1967 /*
1968  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1969  *
1970  *      We first convert the object to a swap object if it is a default
1971  *      object.
1972  *
1973  *      The specified swapblk is added to the object's swap metadata.  If
1974  *      the swapblk is not valid, it is freed instead.  Any previously
1975  *      assigned swapblk is returned.
1976  */
1977 static daddr_t
1978 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1979 {
1980         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1981         struct swblk *sb, *sb1;
1982         vm_pindex_t modpi, rdpi;
1983         daddr_t prev_swapblk;
1984         int error, i;
1985
1986         VM_OBJECT_ASSERT_WLOCKED(object);
1987
1988         /*
1989          * Convert default object to swap object if necessary
1990          */
1991         if (object->type != OBJT_SWAP) {
1992                 pctrie_init(&object->un_pager.swp.swp_blks);
1993
1994                 /*
1995                  * Ensure that swap_pager_swapoff()'s iteration over
1996                  * object_list does not see a garbage pctrie.
1997                  */
1998                 atomic_thread_fence_rel();
1999
2000                 object->type = OBJT_SWAP;
2001                 object->un_pager.swp.writemappings = 0;
2002                 KASSERT((object->flags & OBJ_ANON) != 0 ||
2003                     object->handle == NULL,
2004                     ("default pager %p with handle %p",
2005                     object, object->handle));
2006         }
2007
2008         rdpi = rounddown(pindex, SWAP_META_PAGES);
2009         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2010         if (sb == NULL) {
2011                 if (swapblk == SWAPBLK_NONE)
2012                         return (SWAPBLK_NONE);
2013                 for (;;) {
2014                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2015                             pageproc ? M_USE_RESERVE : 0));
2016                         if (sb != NULL) {
2017                                 sb->p = rdpi;
2018                                 for (i = 0; i < SWAP_META_PAGES; i++)
2019                                         sb->d[i] = SWAPBLK_NONE;
2020                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2021                                     1, 0))
2022                                         printf("swblk zone ok\n");
2023                                 break;
2024                         }
2025                         VM_OBJECT_WUNLOCK(object);
2026                         if (uma_zone_exhausted(swblk_zone)) {
2027                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2028                                     0, 1))
2029                                         printf("swap blk zone exhausted, "
2030                                             "increase kern.maxswzone\n");
2031                                 vm_pageout_oom(VM_OOM_SWAPZ);
2032                                 pause("swzonxb", 10);
2033                         } else
2034                                 uma_zwait(swblk_zone);
2035                         VM_OBJECT_WLOCK(object);
2036                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2037                             rdpi);
2038                         if (sb != NULL)
2039                                 /*
2040                                  * Somebody swapped out a nearby page,
2041                                  * allocating swblk at the rdpi index,
2042                                  * while we dropped the object lock.
2043                                  */
2044                                 goto allocated;
2045                 }
2046                 for (;;) {
2047                         error = SWAP_PCTRIE_INSERT(
2048                             &object->un_pager.swp.swp_blks, sb);
2049                         if (error == 0) {
2050                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2051                                     1, 0))
2052                                         printf("swpctrie zone ok\n");
2053                                 break;
2054                         }
2055                         VM_OBJECT_WUNLOCK(object);
2056                         if (uma_zone_exhausted(swpctrie_zone)) {
2057                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2058                                     0, 1))
2059                                         printf("swap pctrie zone exhausted, "
2060                                             "increase kern.maxswzone\n");
2061                                 vm_pageout_oom(VM_OOM_SWAPZ);
2062                                 pause("swzonxp", 10);
2063                         } else
2064                                 uma_zwait(swpctrie_zone);
2065                         VM_OBJECT_WLOCK(object);
2066                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2067                             rdpi);
2068                         if (sb1 != NULL) {
2069                                 uma_zfree(swblk_zone, sb);
2070                                 sb = sb1;
2071                                 goto allocated;
2072                         }
2073                 }
2074         }
2075 allocated:
2076         MPASS(sb->p == rdpi);
2077
2078         modpi = pindex % SWAP_META_PAGES;
2079         /* Return prior contents of metadata. */
2080         prev_swapblk = sb->d[modpi];
2081         /* Enter block into metadata. */
2082         sb->d[modpi] = swapblk;
2083
2084         /*
2085          * Free the swblk if we end up with the empty page run.
2086          */
2087         if (swapblk == SWAPBLK_NONE)
2088             swp_pager_free_empty_swblk(object, sb);
2089         return (prev_swapblk);
2090 }
2091
2092 /*
2093  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2094  * metadata, or transfer it into dstobject.
2095  *
2096  *      This routine will free swap metadata structures as they are cleaned
2097  *      out.
2098  */
2099 static void
2100 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2101     vm_pindex_t pindex, vm_pindex_t count)
2102 {
2103         struct swblk *sb;
2104         daddr_t n_free, s_free;
2105         vm_pindex_t offset, last;
2106         int i, limit, start;
2107
2108         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2109         if (srcobject->type != OBJT_SWAP || count == 0)
2110                 return;
2111
2112         swp_pager_init_freerange(&s_free, &n_free);
2113         offset = pindex;
2114         last = pindex + count;
2115         for (;;) {
2116                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2117                     rounddown(pindex, SWAP_META_PAGES));
2118                 if (sb == NULL || sb->p >= last)
2119                         break;
2120                 start = pindex > sb->p ? pindex - sb->p : 0;
2121                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2122                     SWAP_META_PAGES;
2123                 for (i = start; i < limit; i++) {
2124                         if (sb->d[i] == SWAPBLK_NONE)
2125                                 continue;
2126                         if (dstobject == NULL ||
2127                             !swp_pager_xfer_source(srcobject, dstobject, 
2128                             sb->p + i - offset, sb->d[i])) {
2129                                 swp_pager_update_freerange(&s_free, &n_free,
2130                                     sb->d[i]);
2131                         }
2132                         sb->d[i] = SWAPBLK_NONE;
2133                 }
2134                 pindex = sb->p + SWAP_META_PAGES;
2135                 if (swp_pager_swblk_empty(sb, 0, start) &&
2136                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2137                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2138                             sb->p);
2139                         uma_zfree(swblk_zone, sb);
2140                 }
2141         }
2142         swp_pager_freeswapspace(s_free, n_free);
2143 }
2144
2145 /*
2146  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2147  *
2148  *      The requested range of blocks is freed, with any associated swap
2149  *      returned to the swap bitmap.
2150  *
2151  *      This routine will free swap metadata structures as they are cleaned
2152  *      out.  This routine does *NOT* operate on swap metadata associated
2153  *      with resident pages.
2154  */
2155 static void
2156 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2157 {
2158         swp_pager_meta_transfer(object, NULL, pindex, count);
2159 }
2160
2161 /*
2162  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2163  *
2164  *      This routine locates and destroys all swap metadata associated with
2165  *      an object.
2166  */
2167 static void
2168 swp_pager_meta_free_all(vm_object_t object)
2169 {
2170         struct swblk *sb;
2171         daddr_t n_free, s_free;
2172         vm_pindex_t pindex;
2173         int i;
2174
2175         VM_OBJECT_ASSERT_WLOCKED(object);
2176         if (object->type != OBJT_SWAP)
2177                 return;
2178
2179         swp_pager_init_freerange(&s_free, &n_free);
2180         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2181             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2182                 pindex = sb->p + SWAP_META_PAGES;
2183                 for (i = 0; i < SWAP_META_PAGES; i++) {
2184                         if (sb->d[i] == SWAPBLK_NONE)
2185                                 continue;
2186                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2187                 }
2188                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2189                 uma_zfree(swblk_zone, sb);
2190         }
2191         swp_pager_freeswapspace(s_free, n_free);
2192 }
2193
2194 /*
2195  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2196  *
2197  *      This routine is capable of looking up, or removing swapblk
2198  *      assignments in the swap meta data.  It returns the swapblk being
2199  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2200  *
2201  *      When acting on a busy resident page and paging is in progress, we
2202  *      have to wait until paging is complete but otherwise can act on the
2203  *      busy page.
2204  */
2205 static daddr_t
2206 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2207 {
2208         struct swblk *sb;
2209
2210         VM_OBJECT_ASSERT_LOCKED(object);
2211
2212         /*
2213          * The meta data only exists if the object is OBJT_SWAP
2214          * and even then might not be allocated yet.
2215          */
2216         KASSERT(object->type == OBJT_SWAP,
2217             ("Lookup object not swappable"));
2218
2219         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2220             rounddown(pindex, SWAP_META_PAGES));
2221         if (sb == NULL)
2222                 return (SWAPBLK_NONE);
2223         return (sb->d[pindex % SWAP_META_PAGES]);
2224 }
2225
2226 /*
2227  * Returns the least page index which is greater than or equal to the
2228  * parameter pindex and for which there is a swap block allocated.
2229  * Returns object's size if the object's type is not swap or if there
2230  * are no allocated swap blocks for the object after the requested
2231  * pindex.
2232  */
2233 vm_pindex_t
2234 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2235 {
2236         struct swblk *sb;
2237         int i;
2238
2239         VM_OBJECT_ASSERT_LOCKED(object);
2240         if (object->type != OBJT_SWAP)
2241                 return (object->size);
2242
2243         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2244             rounddown(pindex, SWAP_META_PAGES));
2245         if (sb == NULL)
2246                 return (object->size);
2247         if (sb->p < pindex) {
2248                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2249                         if (sb->d[i] != SWAPBLK_NONE)
2250                                 return (sb->p + i);
2251                 }
2252                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2253                     roundup(pindex, SWAP_META_PAGES));
2254                 if (sb == NULL)
2255                         return (object->size);
2256         }
2257         for (i = 0; i < SWAP_META_PAGES; i++) {
2258                 if (sb->d[i] != SWAPBLK_NONE)
2259                         return (sb->p + i);
2260         }
2261
2262         /*
2263          * We get here if a swblk is present in the trie but it
2264          * doesn't map any blocks.
2265          */
2266         MPASS(0);
2267         return (object->size);
2268 }
2269
2270 /*
2271  * System call swapon(name) enables swapping on device name,
2272  * which must be in the swdevsw.  Return EBUSY
2273  * if already swapping on this device.
2274  */
2275 #ifndef _SYS_SYSPROTO_H_
2276 struct swapon_args {
2277         char *name;
2278 };
2279 #endif
2280
2281 /*
2282  * MPSAFE
2283  */
2284 /* ARGSUSED */
2285 int
2286 sys_swapon(struct thread *td, struct swapon_args *uap)
2287 {
2288         struct vattr attr;
2289         struct vnode *vp;
2290         struct nameidata nd;
2291         int error;
2292
2293         error = priv_check(td, PRIV_SWAPON);
2294         if (error)
2295                 return (error);
2296
2297         sx_xlock(&swdev_syscall_lock);
2298
2299         /*
2300          * Swap metadata may not fit in the KVM if we have physical
2301          * memory of >1GB.
2302          */
2303         if (swblk_zone == NULL) {
2304                 error = ENOMEM;
2305                 goto done;
2306         }
2307
2308         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2309             uap->name, td);
2310         error = namei(&nd);
2311         if (error)
2312                 goto done;
2313
2314         NDFREE(&nd, NDF_ONLY_PNBUF);
2315         vp = nd.ni_vp;
2316
2317         if (vn_isdisk(vp, &error)) {
2318                 error = swapongeom(vp);
2319         } else if (vp->v_type == VREG &&
2320             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2321             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2322                 /*
2323                  * Allow direct swapping to NFS regular files in the same
2324                  * way that nfs_mountroot() sets up diskless swapping.
2325                  */
2326                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2327         }
2328
2329         if (error)
2330                 vrele(vp);
2331 done:
2332         sx_xunlock(&swdev_syscall_lock);
2333         return (error);
2334 }
2335
2336 /*
2337  * Check that the total amount of swap currently configured does not
2338  * exceed half the theoretical maximum.  If it does, print a warning
2339  * message.
2340  */
2341 static void
2342 swapon_check_swzone(void)
2343 {
2344
2345         /* recommend using no more than half that amount */
2346         if (swap_total > swap_maxpages / 2) {
2347                 printf("warning: total configured swap (%lu pages) "
2348                     "exceeds maximum recommended amount (%lu pages).\n",
2349                     swap_total, swap_maxpages / 2);
2350                 printf("warning: increase kern.maxswzone "
2351                     "or reduce amount of swap.\n");
2352         }
2353 }
2354
2355 static void
2356 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2357     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2358 {
2359         struct swdevt *sp, *tsp;
2360         swblk_t dvbase;
2361         u_long mblocks;
2362
2363         /*
2364          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2365          * First chop nblks off to page-align it, then convert.
2366          *
2367          * sw->sw_nblks is in page-sized chunks now too.
2368          */
2369         nblks &= ~(ctodb(1) - 1);
2370         nblks = dbtoc(nblks);
2371
2372         /*
2373          * If we go beyond this, we get overflows in the radix
2374          * tree bitmap code.
2375          */
2376         mblocks = 0x40000000 / BLIST_META_RADIX;
2377         if (nblks > mblocks) {
2378                 printf(
2379     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2380                     mblocks / 1024 / 1024 * PAGE_SIZE);
2381                 nblks = mblocks;
2382         }
2383
2384         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2385         sp->sw_vp = vp;
2386         sp->sw_id = id;
2387         sp->sw_dev = dev;
2388         sp->sw_nblks = nblks;
2389         sp->sw_used = 0;
2390         sp->sw_strategy = strategy;
2391         sp->sw_close = close;
2392         sp->sw_flags = flags;
2393
2394         sp->sw_blist = blist_create(nblks, M_WAITOK);
2395         /*
2396          * Do not free the first blocks in order to avoid overwriting
2397          * any bsd label at the front of the partition
2398          */
2399         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2400             nblks - howmany(BBSIZE, PAGE_SIZE));
2401
2402         dvbase = 0;
2403         mtx_lock(&sw_dev_mtx);
2404         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2405                 if (tsp->sw_end >= dvbase) {
2406                         /*
2407                          * We put one uncovered page between the devices
2408                          * in order to definitively prevent any cross-device
2409                          * I/O requests
2410                          */
2411                         dvbase = tsp->sw_end + 1;
2412                 }
2413         }
2414         sp->sw_first = dvbase;
2415         sp->sw_end = dvbase + nblks;
2416         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2417         nswapdev++;
2418         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2419         swap_total += nblks;
2420         swapon_check_swzone();
2421         swp_sizecheck();
2422         mtx_unlock(&sw_dev_mtx);
2423         EVENTHANDLER_INVOKE(swapon, sp);
2424 }
2425
2426 /*
2427  * SYSCALL: swapoff(devname)
2428  *
2429  * Disable swapping on the given device.
2430  *
2431  * XXX: Badly designed system call: it should use a device index
2432  * rather than filename as specification.  We keep sw_vp around
2433  * only to make this work.
2434  */
2435 #ifndef _SYS_SYSPROTO_H_
2436 struct swapoff_args {
2437         char *name;
2438 };
2439 #endif
2440
2441 /*
2442  * MPSAFE
2443  */
2444 /* ARGSUSED */
2445 int
2446 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2447 {
2448         struct vnode *vp;
2449         struct nameidata nd;
2450         struct swdevt *sp;
2451         int error;
2452
2453         error = priv_check(td, PRIV_SWAPOFF);
2454         if (error)
2455                 return (error);
2456
2457         sx_xlock(&swdev_syscall_lock);
2458
2459         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2460             td);
2461         error = namei(&nd);
2462         if (error)
2463                 goto done;
2464         NDFREE(&nd, NDF_ONLY_PNBUF);
2465         vp = nd.ni_vp;
2466
2467         mtx_lock(&sw_dev_mtx);
2468         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2469                 if (sp->sw_vp == vp)
2470                         break;
2471         }
2472         mtx_unlock(&sw_dev_mtx);
2473         if (sp == NULL) {
2474                 error = EINVAL;
2475                 goto done;
2476         }
2477         error = swapoff_one(sp, td->td_ucred);
2478 done:
2479         sx_xunlock(&swdev_syscall_lock);
2480         return (error);
2481 }
2482
2483 static int
2484 swapoff_one(struct swdevt *sp, struct ucred *cred)
2485 {
2486         u_long nblks;
2487 #ifdef MAC
2488         int error;
2489 #endif
2490
2491         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2492 #ifdef MAC
2493         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2494         error = mac_system_check_swapoff(cred, sp->sw_vp);
2495         (void) VOP_UNLOCK(sp->sw_vp, 0);
2496         if (error != 0)
2497                 return (error);
2498 #endif
2499         nblks = sp->sw_nblks;
2500
2501         /*
2502          * We can turn off this swap device safely only if the
2503          * available virtual memory in the system will fit the amount
2504          * of data we will have to page back in, plus an epsilon so
2505          * the system doesn't become critically low on swap space.
2506          */
2507         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2508                 return (ENOMEM);
2509
2510         /*
2511          * Prevent further allocations on this device.
2512          */
2513         mtx_lock(&sw_dev_mtx);
2514         sp->sw_flags |= SW_CLOSING;
2515         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2516         swap_total -= nblks;
2517         mtx_unlock(&sw_dev_mtx);
2518
2519         /*
2520          * Page in the contents of the device and close it.
2521          */
2522         swap_pager_swapoff(sp);
2523
2524         sp->sw_close(curthread, sp);
2525         mtx_lock(&sw_dev_mtx);
2526         sp->sw_id = NULL;
2527         TAILQ_REMOVE(&swtailq, sp, sw_list);
2528         nswapdev--;
2529         if (nswapdev == 0) {
2530                 swap_pager_full = 2;
2531                 swap_pager_almost_full = 1;
2532         }
2533         if (swdevhd == sp)
2534                 swdevhd = NULL;
2535         mtx_unlock(&sw_dev_mtx);
2536         blist_destroy(sp->sw_blist);
2537         free(sp, M_VMPGDATA);
2538         return (0);
2539 }
2540
2541 void
2542 swapoff_all(void)
2543 {
2544         struct swdevt *sp, *spt;
2545         const char *devname;
2546         int error;
2547
2548         sx_xlock(&swdev_syscall_lock);
2549
2550         mtx_lock(&sw_dev_mtx);
2551         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2552                 mtx_unlock(&sw_dev_mtx);
2553                 if (vn_isdisk(sp->sw_vp, NULL))
2554                         devname = devtoname(sp->sw_vp->v_rdev);
2555                 else
2556                         devname = "[file]";
2557                 error = swapoff_one(sp, thread0.td_ucred);
2558                 if (error != 0) {
2559                         printf("Cannot remove swap device %s (error=%d), "
2560                             "skipping.\n", devname, error);
2561                 } else if (bootverbose) {
2562                         printf("Swap device %s removed.\n", devname);
2563                 }
2564                 mtx_lock(&sw_dev_mtx);
2565         }
2566         mtx_unlock(&sw_dev_mtx);
2567
2568         sx_xunlock(&swdev_syscall_lock);
2569 }
2570
2571 void
2572 swap_pager_status(int *total, int *used)
2573 {
2574         struct swdevt *sp;
2575
2576         *total = 0;
2577         *used = 0;
2578         mtx_lock(&sw_dev_mtx);
2579         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2580                 *total += sp->sw_nblks;
2581                 *used += sp->sw_used;
2582         }
2583         mtx_unlock(&sw_dev_mtx);
2584 }
2585
2586 int
2587 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2588 {
2589         struct swdevt *sp;
2590         const char *tmp_devname;
2591         int error, n;
2592
2593         n = 0;
2594         error = ENOENT;
2595         mtx_lock(&sw_dev_mtx);
2596         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2597                 if (n != name) {
2598                         n++;
2599                         continue;
2600                 }
2601                 xs->xsw_version = XSWDEV_VERSION;
2602                 xs->xsw_dev = sp->sw_dev;
2603                 xs->xsw_flags = sp->sw_flags;
2604                 xs->xsw_nblks = sp->sw_nblks;
2605                 xs->xsw_used = sp->sw_used;
2606                 if (devname != NULL) {
2607                         if (vn_isdisk(sp->sw_vp, NULL))
2608                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2609                         else
2610                                 tmp_devname = "[file]";
2611                         strncpy(devname, tmp_devname, len);
2612                 }
2613                 error = 0;
2614                 break;
2615         }
2616         mtx_unlock(&sw_dev_mtx);
2617         return (error);
2618 }
2619
2620 #if defined(COMPAT_FREEBSD11)
2621 #define XSWDEV_VERSION_11       1
2622 struct xswdev11 {
2623         u_int   xsw_version;
2624         uint32_t xsw_dev;
2625         int     xsw_flags;
2626         int     xsw_nblks;
2627         int     xsw_used;
2628 };
2629 #endif
2630
2631 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2632 struct xswdev32 {
2633         u_int   xsw_version;
2634         u_int   xsw_dev1, xsw_dev2;
2635         int     xsw_flags;
2636         int     xsw_nblks;
2637         int     xsw_used;
2638 };
2639 #endif
2640
2641 static int
2642 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2643 {
2644         struct xswdev xs;
2645 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2646         struct xswdev32 xs32;
2647 #endif
2648 #if defined(COMPAT_FREEBSD11)
2649         struct xswdev11 xs11;
2650 #endif
2651         int error;
2652
2653         if (arg2 != 1)                  /* name length */
2654                 return (EINVAL);
2655         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2656         if (error != 0)
2657                 return (error);
2658 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2659         if (req->oldlen == sizeof(xs32)) {
2660                 xs32.xsw_version = XSWDEV_VERSION;
2661                 xs32.xsw_dev1 = xs.xsw_dev;
2662                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2663                 xs32.xsw_flags = xs.xsw_flags;
2664                 xs32.xsw_nblks = xs.xsw_nblks;
2665                 xs32.xsw_used = xs.xsw_used;
2666                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2667                 return (error);
2668         }
2669 #endif
2670 #if defined(COMPAT_FREEBSD11)
2671         if (req->oldlen == sizeof(xs11)) {
2672                 xs11.xsw_version = XSWDEV_VERSION_11;
2673                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2674                 xs11.xsw_flags = xs.xsw_flags;
2675                 xs11.xsw_nblks = xs.xsw_nblks;
2676                 xs11.xsw_used = xs.xsw_used;
2677                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2678                 return (error);
2679         }
2680 #endif
2681         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2682         return (error);
2683 }
2684
2685 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2686     "Number of swap devices");
2687 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2688     sysctl_vm_swap_info,
2689     "Swap statistics by device");
2690
2691 /*
2692  * Count the approximate swap usage in pages for a vmspace.  The
2693  * shadowed or not yet copied on write swap blocks are not accounted.
2694  * The map must be locked.
2695  */
2696 long
2697 vmspace_swap_count(struct vmspace *vmspace)
2698 {
2699         vm_map_t map;
2700         vm_map_entry_t cur;
2701         vm_object_t object;
2702         struct swblk *sb;
2703         vm_pindex_t e, pi;
2704         long count;
2705         int i;
2706
2707         map = &vmspace->vm_map;
2708         count = 0;
2709
2710         VM_MAP_ENTRY_FOREACH(cur, map) {
2711                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2712                         continue;
2713                 object = cur->object.vm_object;
2714                 if (object == NULL || object->type != OBJT_SWAP)
2715                         continue;
2716                 VM_OBJECT_RLOCK(object);
2717                 if (object->type != OBJT_SWAP)
2718                         goto unlock;
2719                 pi = OFF_TO_IDX(cur->offset);
2720                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2721                 for (;; pi = sb->p + SWAP_META_PAGES) {
2722                         sb = SWAP_PCTRIE_LOOKUP_GE(
2723                             &object->un_pager.swp.swp_blks, pi);
2724                         if (sb == NULL || sb->p >= e)
2725                                 break;
2726                         for (i = 0; i < SWAP_META_PAGES; i++) {
2727                                 if (sb->p + i < e &&
2728                                     sb->d[i] != SWAPBLK_NONE)
2729                                         count++;
2730                         }
2731                 }
2732 unlock:
2733                 VM_OBJECT_RUNLOCK(object);
2734         }
2735         return (count);
2736 }
2737
2738 /*
2739  * GEOM backend
2740  *
2741  * Swapping onto disk devices.
2742  *
2743  */
2744
2745 static g_orphan_t swapgeom_orphan;
2746
2747 static struct g_class g_swap_class = {
2748         .name = "SWAP",
2749         .version = G_VERSION,
2750         .orphan = swapgeom_orphan,
2751 };
2752
2753 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2754
2755
2756 static void
2757 swapgeom_close_ev(void *arg, int flags)
2758 {
2759         struct g_consumer *cp;
2760
2761         cp = arg;
2762         g_access(cp, -1, -1, 0);
2763         g_detach(cp);
2764         g_destroy_consumer(cp);
2765 }
2766
2767 /*
2768  * Add a reference to the g_consumer for an inflight transaction.
2769  */
2770 static void
2771 swapgeom_acquire(struct g_consumer *cp)
2772 {
2773
2774         mtx_assert(&sw_dev_mtx, MA_OWNED);
2775         cp->index++;
2776 }
2777
2778 /*
2779  * Remove a reference from the g_consumer.  Post a close event if all
2780  * references go away, since the function might be called from the
2781  * biodone context.
2782  */
2783 static void
2784 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2785 {
2786
2787         mtx_assert(&sw_dev_mtx, MA_OWNED);
2788         cp->index--;
2789         if (cp->index == 0) {
2790                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2791                         sp->sw_id = NULL;
2792         }
2793 }
2794
2795 static void
2796 swapgeom_done(struct bio *bp2)
2797 {
2798         struct swdevt *sp;
2799         struct buf *bp;
2800         struct g_consumer *cp;
2801
2802         bp = bp2->bio_caller2;
2803         cp = bp2->bio_from;
2804         bp->b_ioflags = bp2->bio_flags;
2805         if (bp2->bio_error)
2806                 bp->b_ioflags |= BIO_ERROR;
2807         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2808         bp->b_error = bp2->bio_error;
2809         bp->b_caller1 = NULL;
2810         bufdone(bp);
2811         sp = bp2->bio_caller1;
2812         mtx_lock(&sw_dev_mtx);
2813         swapgeom_release(cp, sp);
2814         mtx_unlock(&sw_dev_mtx);
2815         g_destroy_bio(bp2);
2816 }
2817
2818 static void
2819 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2820 {
2821         struct bio *bio;
2822         struct g_consumer *cp;
2823
2824         mtx_lock(&sw_dev_mtx);
2825         cp = sp->sw_id;
2826         if (cp == NULL) {
2827                 mtx_unlock(&sw_dev_mtx);
2828                 bp->b_error = ENXIO;
2829                 bp->b_ioflags |= BIO_ERROR;
2830                 bufdone(bp);
2831                 return;
2832         }
2833         swapgeom_acquire(cp);
2834         mtx_unlock(&sw_dev_mtx);
2835         if (bp->b_iocmd == BIO_WRITE)
2836                 bio = g_new_bio();
2837         else
2838                 bio = g_alloc_bio();
2839         if (bio == NULL) {
2840                 mtx_lock(&sw_dev_mtx);
2841                 swapgeom_release(cp, sp);
2842                 mtx_unlock(&sw_dev_mtx);
2843                 bp->b_error = ENOMEM;
2844                 bp->b_ioflags |= BIO_ERROR;
2845                 printf("swap_pager: cannot allocate bio\n");
2846                 bufdone(bp);
2847                 return;
2848         }
2849
2850         bp->b_caller1 = bio;
2851         bio->bio_caller1 = sp;
2852         bio->bio_caller2 = bp;
2853         bio->bio_cmd = bp->b_iocmd;
2854         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2855         bio->bio_length = bp->b_bcount;
2856         bio->bio_done = swapgeom_done;
2857         if (!buf_mapped(bp)) {
2858                 bio->bio_ma = bp->b_pages;
2859                 bio->bio_data = unmapped_buf;
2860                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2861                 bio->bio_ma_n = bp->b_npages;
2862                 bio->bio_flags |= BIO_UNMAPPED;
2863         } else {
2864                 bio->bio_data = bp->b_data;
2865                 bio->bio_ma = NULL;
2866         }
2867         g_io_request(bio, cp);
2868         return;
2869 }
2870
2871 static void
2872 swapgeom_orphan(struct g_consumer *cp)
2873 {
2874         struct swdevt *sp;
2875         int destroy;
2876
2877         mtx_lock(&sw_dev_mtx);
2878         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2879                 if (sp->sw_id == cp) {
2880                         sp->sw_flags |= SW_CLOSING;
2881                         break;
2882                 }
2883         }
2884         /*
2885          * Drop reference we were created with. Do directly since we're in a
2886          * special context where we don't have to queue the call to
2887          * swapgeom_close_ev().
2888          */
2889         cp->index--;
2890         destroy = ((sp != NULL) && (cp->index == 0));
2891         if (destroy)
2892                 sp->sw_id = NULL;
2893         mtx_unlock(&sw_dev_mtx);
2894         if (destroy)
2895                 swapgeom_close_ev(cp, 0);
2896 }
2897
2898 static void
2899 swapgeom_close(struct thread *td, struct swdevt *sw)
2900 {
2901         struct g_consumer *cp;
2902
2903         mtx_lock(&sw_dev_mtx);
2904         cp = sw->sw_id;
2905         sw->sw_id = NULL;
2906         mtx_unlock(&sw_dev_mtx);
2907
2908         /*
2909          * swapgeom_close() may be called from the biodone context,
2910          * where we cannot perform topology changes.  Delegate the
2911          * work to the events thread.
2912          */
2913         if (cp != NULL)
2914                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2915 }
2916
2917 static int
2918 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2919 {
2920         struct g_provider *pp;
2921         struct g_consumer *cp;
2922         static struct g_geom *gp;
2923         struct swdevt *sp;
2924         u_long nblks;
2925         int error;
2926
2927         pp = g_dev_getprovider(dev);
2928         if (pp == NULL)
2929                 return (ENODEV);
2930         mtx_lock(&sw_dev_mtx);
2931         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2932                 cp = sp->sw_id;
2933                 if (cp != NULL && cp->provider == pp) {
2934                         mtx_unlock(&sw_dev_mtx);
2935                         return (EBUSY);
2936                 }
2937         }
2938         mtx_unlock(&sw_dev_mtx);
2939         if (gp == NULL)
2940                 gp = g_new_geomf(&g_swap_class, "swap");
2941         cp = g_new_consumer(gp);
2942         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2943         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2944         g_attach(cp, pp);
2945         /*
2946          * XXX: Every time you think you can improve the margin for
2947          * footshooting, somebody depends on the ability to do so:
2948          * savecore(8) wants to write to our swapdev so we cannot
2949          * set an exclusive count :-(
2950          */
2951         error = g_access(cp, 1, 1, 0);
2952         if (error != 0) {
2953                 g_detach(cp);
2954                 g_destroy_consumer(cp);
2955                 return (error);
2956         }
2957         nblks = pp->mediasize / DEV_BSIZE;
2958         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2959             swapgeom_close, dev2udev(dev),
2960             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2961         return (0);
2962 }
2963
2964 static int
2965 swapongeom(struct vnode *vp)
2966 {
2967         int error;
2968
2969         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2970         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2971                 error = ENOENT;
2972         } else {
2973                 g_topology_lock();
2974                 error = swapongeom_locked(vp->v_rdev, vp);
2975                 g_topology_unlock();
2976         }
2977         VOP_UNLOCK(vp, 0);
2978         return (error);
2979 }
2980
2981 /*
2982  * VNODE backend
2983  *
2984  * This is used mainly for network filesystem (read: probably only tested
2985  * with NFS) swapfiles.
2986  *
2987  */
2988
2989 static void
2990 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2991 {
2992         struct vnode *vp2;
2993
2994         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2995
2996         vp2 = sp->sw_id;
2997         vhold(vp2);
2998         if (bp->b_iocmd == BIO_WRITE) {
2999                 if (bp->b_bufobj)
3000                         bufobj_wdrop(bp->b_bufobj);
3001                 bufobj_wref(&vp2->v_bufobj);
3002         }
3003         if (bp->b_bufobj != &vp2->v_bufobj)
3004                 bp->b_bufobj = &vp2->v_bufobj;
3005         bp->b_vp = vp2;
3006         bp->b_iooffset = dbtob(bp->b_blkno);
3007         bstrategy(bp);
3008         return;
3009 }
3010
3011 static void
3012 swapdev_close(struct thread *td, struct swdevt *sp)
3013 {
3014
3015         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3016         vrele(sp->sw_vp);
3017 }
3018
3019
3020 static int
3021 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3022 {
3023         struct swdevt *sp;
3024         int error;
3025
3026         if (nblks == 0)
3027                 return (ENXIO);
3028         mtx_lock(&sw_dev_mtx);
3029         TAILQ_FOREACH(sp, &swtailq, sw_list) {
3030                 if (sp->sw_id == vp) {
3031                         mtx_unlock(&sw_dev_mtx);
3032                         return (EBUSY);
3033                 }
3034         }
3035         mtx_unlock(&sw_dev_mtx);
3036
3037         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3038 #ifdef MAC
3039         error = mac_system_check_swapon(td->td_ucred, vp);
3040         if (error == 0)
3041 #endif
3042                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3043         (void) VOP_UNLOCK(vp, 0);
3044         if (error)
3045                 return (error);
3046
3047         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3048             NODEV, 0);
3049         return (0);
3050 }
3051
3052 static int
3053 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3054 {
3055         int error, new, n;
3056
3057         new = nsw_wcount_async_max;
3058         error = sysctl_handle_int(oidp, &new, 0, req);
3059         if (error != 0 || req->newptr == NULL)
3060                 return (error);
3061
3062         if (new > nswbuf / 2 || new < 1)
3063                 return (EINVAL);
3064
3065         mtx_lock(&swbuf_mtx);
3066         while (nsw_wcount_async_max != new) {
3067                 /*
3068                  * Adjust difference.  If the current async count is too low,
3069                  * we will need to sqeeze our update slowly in.  Sleep with a
3070                  * higher priority than getpbuf() to finish faster.
3071                  */
3072                 n = new - nsw_wcount_async_max;
3073                 if (nsw_wcount_async + n >= 0) {
3074                         nsw_wcount_async += n;
3075                         nsw_wcount_async_max += n;
3076                         wakeup(&nsw_wcount_async);
3077                 } else {
3078                         nsw_wcount_async_max -= nsw_wcount_async;
3079                         nsw_wcount_async = 0;
3080                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3081                             "swpsysctl", 0);
3082                 }
3083         }
3084         mtx_unlock(&swbuf_mtx);
3085
3086         return (0);
3087 }
3088
3089 static void
3090 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3091     vm_offset_t end)
3092 {
3093
3094         VM_OBJECT_WLOCK(object);
3095         KASSERT((object->flags & OBJ_ANON) == 0,
3096             ("Splittable object with writecount"));
3097         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3098         VM_OBJECT_WUNLOCK(object);
3099 }
3100
3101 static void
3102 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3103     vm_offset_t end)
3104 {
3105
3106         VM_OBJECT_WLOCK(object);
3107         KASSERT((object->flags & OBJ_ANON) == 0,
3108             ("Splittable object with writecount"));
3109         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3110         VM_OBJECT_WUNLOCK(object);
3111 }