]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
MFV 2.0-rc2
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static __exclusive_cache_line u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A", 
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A", 
167     "Total amount of available swap storage.");
168
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179
180 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184
185 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189
190 /* bits from overcommit */
191 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
192 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
193 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
194
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198         uint64_t newval;
199         u_long value = *(u_long *)arg1;
200
201         newval = ((uint64_t)value) << PAGE_SHIFT;
202         return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204
205 static bool
206 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
207 {
208         struct uidinfo *uip;
209         u_long prev;
210
211         uip = cred->cr_ruidinfo;
212
213         prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
214         if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
215             prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
216             priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
217                 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
218                 KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
219                 return (false);
220         }
221         return (true);
222 }
223
224 static void
225 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
226 {
227         struct uidinfo *uip;
228 #ifdef INVARIANTS
229         u_long prev;
230 #endif
231
232         uip = cred->cr_ruidinfo;
233
234 #ifdef INVARIANTS
235         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
236         KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
237 #else
238         atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245         struct uidinfo *uip;
246
247         uip = cred->cr_ruidinfo;
248         atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254
255         return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261         u_long r, s, prev, pincr;
262 #ifdef RACCT
263         int error;
264 #endif
265         int oc;
266         static int curfail;
267         static struct timeval lastfail;
268
269         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
270             (uintmax_t)incr));
271
272 #ifdef RACCT
273         if (RACCT_ENABLED()) {
274                 PROC_LOCK(curproc);
275                 error = racct_add(curproc, RACCT_SWAP, incr);
276                 PROC_UNLOCK(curproc);
277                 if (error != 0)
278                         return (false);
279         }
280 #endif
281
282         pincr = atop(incr);
283         prev = atomic_fetchadd_long(&swap_reserved, pincr);
284         r = prev + pincr;
285         s = swap_total;
286         oc = atomic_load_int(&overcommit);
287         if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288                 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289                     vm_wire_count();
290         }
291         if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292             priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
295                 goto out_error;
296         }
297
298         if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
299                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
300                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
301                 goto out_error;
302         }
303
304         return (true);
305
306 out_error:
307         if (ppsratecheck(&lastfail, &curfail, 1)) {
308                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
309                     cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
310         }
311 #ifdef RACCT
312         if (RACCT_ENABLED()) {
313                 PROC_LOCK(curproc);
314                 racct_sub(curproc, RACCT_SWAP, incr);
315                 PROC_UNLOCK(curproc);
316         }
317 #endif
318
319         return (false);
320 }
321
322 void
323 swap_reserve_force(vm_ooffset_t incr)
324 {
325         u_long pincr;
326
327         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
328             (uintmax_t)incr));
329
330 #ifdef RACCT
331         if (RACCT_ENABLED()) {
332                 PROC_LOCK(curproc);
333                 racct_add_force(curproc, RACCT_SWAP, incr);
334                 PROC_UNLOCK(curproc);
335         }
336 #endif
337         pincr = atop(incr);
338         atomic_add_long(&swap_reserved, pincr);
339         swap_reserve_force_rlimit(pincr, curthread->td_ucred);
340 }
341
342 void
343 swap_release(vm_ooffset_t decr)
344 {
345         struct ucred *cred;
346
347         PROC_LOCK(curproc);
348         cred = curproc->p_ucred;
349         swap_release_by_cred(decr, cred);
350         PROC_UNLOCK(curproc);
351 }
352
353 void
354 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
355 {
356         u_long pdecr;
357 #ifdef INVARIANTS
358         u_long prev;
359 #endif
360
361         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
362             (uintmax_t)decr));
363
364         pdecr = atop(decr);
365 #ifdef INVARIANTS
366         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
367         KASSERT(prev >= pdecr, ("swap_reserved < decr"));
368 #else
369         atomic_subtract_long(&swap_reserved, pdecr);
370 #endif
371
372         swap_release_by_cred_rlimit(pdecr, cred);
373 #ifdef RACCT
374         if (racct_enable)
375                 racct_sub_cred(cred, RACCT_SWAP, decr);
376 #endif
377 }
378
379 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
380 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
381 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
382 static int nsw_wcount_async;    /* limit async write buffers */
383 static int nsw_wcount_async_max;/* assigned maximum                     */
384 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
385
386 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
387 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
388     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
389     "Maximum running async swap ops");
390 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
391 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
392     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
393     "Swap Fragmentation Info");
394
395 static struct sx sw_alloc_sx;
396
397 /*
398  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
399  * of searching a named list by hashing it just a little.
400  */
401
402 #define NOBJLISTS               8
403
404 #define NOBJLIST(handle)        \
405         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
406
407 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
408 static uma_zone_t swwbuf_zone;
409 static uma_zone_t swrbuf_zone;
410 static uma_zone_t swblk_zone;
411 static uma_zone_t swpctrie_zone;
412
413 /*
414  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
415  * calls hooked from other parts of the VM system and do not appear here.
416  * (see vm/swap_pager.h).
417  */
418 static vm_object_t
419                 swap_pager_alloc(void *handle, vm_ooffset_t size,
420                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
421 static void     swap_pager_dealloc(vm_object_t object);
422 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
423     int *);
424 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
425     int *, pgo_getpages_iodone_t, void *);
426 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
427 static boolean_t
428                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
429 static void     swap_pager_init(void);
430 static void     swap_pager_unswapped(vm_page_t);
431 static void     swap_pager_swapoff(struct swdevt *sp);
432 static void     swap_pager_update_writecount(vm_object_t object,
433     vm_offset_t start, vm_offset_t end);
434 static void     swap_pager_release_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436
437 struct pagerops swappagerops = {
438         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
439         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
440         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
441         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
442         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
443         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
444         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
445         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
446         .pgo_update_writecount = swap_pager_update_writecount,
447         .pgo_release_writecount = swap_pager_release_writecount,
448 };
449
450 /*
451  * swap_*() routines are externally accessible.  swp_*() routines are
452  * internal.
453  */
454 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
455 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
456
457 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
458     "Maximum size of a swap block in pages");
459
460 static void     swp_sizecheck(void);
461 static void     swp_pager_async_iodone(struct buf *bp);
462 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
463 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
464 static int      swapongeom(struct vnode *);
465 static int      swaponvp(struct thread *, struct vnode *, u_long);
466 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
467
468 /*
469  * Swap bitmap functions
470  */
471 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
472 static daddr_t  swp_pager_getswapspace(int *npages);
473
474 /*
475  * Metadata functions
476  */
477 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
478 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
479 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
480     vm_pindex_t pindex, vm_pindex_t count);
481 static void swp_pager_meta_free_all(vm_object_t);
482 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
483
484 static void
485 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
486 {
487
488         *start = SWAPBLK_NONE;
489         *num = 0;
490 }
491
492 static void
493 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
494 {
495
496         if (*start + *num == addr) {
497                 (*num)++;
498         } else {
499                 swp_pager_freeswapspace(*start, *num);
500                 *start = addr;
501                 *num = 1;
502         }
503 }
504
505 static void *
506 swblk_trie_alloc(struct pctrie *ptree)
507 {
508
509         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
510             M_USE_RESERVE : 0)));
511 }
512
513 static void
514 swblk_trie_free(struct pctrie *ptree, void *node)
515 {
516
517         uma_zfree(swpctrie_zone, node);
518 }
519
520 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
521
522 /*
523  * SWP_SIZECHECK() -    update swap_pager_full indication
524  *
525  *      update the swap_pager_almost_full indication and warn when we are
526  *      about to run out of swap space, using lowat/hiwat hysteresis.
527  *
528  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
529  *
530  *      No restrictions on call
531  *      This routine may not block.
532  */
533 static void
534 swp_sizecheck(void)
535 {
536
537         if (swap_pager_avail < nswap_lowat) {
538                 if (swap_pager_almost_full == 0) {
539                         printf("swap_pager: out of swap space\n");
540                         swap_pager_almost_full = 1;
541                 }
542         } else {
543                 swap_pager_full = 0;
544                 if (swap_pager_avail > nswap_hiwat)
545                         swap_pager_almost_full = 0;
546         }
547 }
548
549 /*
550  * SWAP_PAGER_INIT() -  initialize the swap pager!
551  *
552  *      Expected to be started from system init.  NOTE:  This code is run
553  *      before much else so be careful what you depend on.  Most of the VM
554  *      system has yet to be initialized at this point.
555  */
556 static void
557 swap_pager_init(void)
558 {
559         /*
560          * Initialize object lists
561          */
562         int i;
563
564         for (i = 0; i < NOBJLISTS; ++i)
565                 TAILQ_INIT(&swap_pager_object_list[i]);
566         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
567         sx_init(&sw_alloc_sx, "swspsx");
568         sx_init(&swdev_syscall_lock, "swsysc");
569 }
570
571 /*
572  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
573  *
574  *      Expected to be started from pageout process once, prior to entering
575  *      its main loop.
576  */
577 void
578 swap_pager_swap_init(void)
579 {
580         unsigned long n, n2;
581
582         /*
583          * Number of in-transit swap bp operations.  Don't
584          * exhaust the pbufs completely.  Make sure we
585          * initialize workable values (0 will work for hysteresis
586          * but it isn't very efficient).
587          *
588          * The nsw_cluster_max is constrained by the bp->b_pages[]
589          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
590          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
591          * constrained by the swap device interleave stripe size.
592          *
593          * Currently we hardwire nsw_wcount_async to 4.  This limit is
594          * designed to prevent other I/O from having high latencies due to
595          * our pageout I/O.  The value 4 works well for one or two active swap
596          * devices but is probably a little low if you have more.  Even so,
597          * a higher value would probably generate only a limited improvement
598          * with three or four active swap devices since the system does not
599          * typically have to pageout at extreme bandwidths.   We will want
600          * at least 2 per swap devices, and 4 is a pretty good value if you
601          * have one NFS swap device due to the command/ack latency over NFS.
602          * So it all works out pretty well.
603          */
604         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
605
606         nsw_wcount_async = 4;
607         nsw_wcount_async_max = nsw_wcount_async;
608         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
609
610         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
611         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
612
613         /*
614          * Initialize our zone, taking the user's requested size or
615          * estimating the number we need based on the number of pages
616          * in the system.
617          */
618         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
619             vm_cnt.v_page_count / 2;
620         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
621             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
622         if (swpctrie_zone == NULL)
623                 panic("failed to create swap pctrie zone.");
624         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
625             NULL, NULL, _Alignof(struct swblk) - 1, 0);
626         if (swblk_zone == NULL)
627                 panic("failed to create swap blk zone.");
628         n2 = n;
629         do {
630                 if (uma_zone_reserve_kva(swblk_zone, n))
631                         break;
632                 /*
633                  * if the allocation failed, try a zone two thirds the
634                  * size of the previous attempt.
635                  */
636                 n -= ((n + 2) / 3);
637         } while (n > 0);
638
639         /*
640          * Often uma_zone_reserve_kva() cannot reserve exactly the
641          * requested size.  Account for the difference when
642          * calculating swap_maxpages.
643          */
644         n = uma_zone_get_max(swblk_zone);
645
646         if (n < n2)
647                 printf("Swap blk zone entries changed from %lu to %lu.\n",
648                     n2, n);
649         /* absolute maximum we can handle assuming 100% efficiency */
650         swap_maxpages = n * SWAP_META_PAGES;
651         swzone = n * sizeof(struct swblk);
652         if (!uma_zone_reserve_kva(swpctrie_zone, n))
653                 printf("Cannot reserve swap pctrie zone, "
654                     "reduce kern.maxswzone.\n");
655 }
656
657 static vm_object_t
658 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
659     vm_ooffset_t offset)
660 {
661         vm_object_t object;
662
663         if (cred != NULL) {
664                 if (!swap_reserve_by_cred(size, cred))
665                         return (NULL);
666                 crhold(cred);
667         }
668
669         /*
670          * The un_pager.swp.swp_blks trie is initialized by
671          * vm_object_allocate() to ensure the correct order of
672          * visibility to other threads.
673          */
674         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
675             PAGE_MASK + size));
676
677         object->un_pager.swp.writemappings = 0;
678         object->handle = handle;
679         if (cred != NULL) {
680                 object->cred = cred;
681                 object->charge = size;
682         }
683         return (object);
684 }
685
686 /*
687  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
688  *                      its metadata structures.
689  *
690  *      This routine is called from the mmap and fork code to create a new
691  *      OBJT_SWAP object.
692  *
693  *      This routine must ensure that no live duplicate is created for
694  *      the named object request, which is protected against by
695  *      holding the sw_alloc_sx lock in case handle != NULL.
696  */
697 static vm_object_t
698 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
699     vm_ooffset_t offset, struct ucred *cred)
700 {
701         vm_object_t object;
702
703         if (handle != NULL) {
704                 /*
705                  * Reference existing named region or allocate new one.  There
706                  * should not be a race here against swp_pager_meta_build()
707                  * as called from vm_page_remove() in regards to the lookup
708                  * of the handle.
709                  */
710                 sx_xlock(&sw_alloc_sx);
711                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
712                 if (object == NULL) {
713                         object = swap_pager_alloc_init(handle, cred, size,
714                             offset);
715                         if (object != NULL) {
716                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
717                                     object, pager_object_list);
718                         }
719                 }
720                 sx_xunlock(&sw_alloc_sx);
721         } else {
722                 object = swap_pager_alloc_init(handle, cred, size, offset);
723         }
724         return (object);
725 }
726
727 /*
728  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
729  *
730  *      The swap backing for the object is destroyed.  The code is
731  *      designed such that we can reinstantiate it later, but this
732  *      routine is typically called only when the entire object is
733  *      about to be destroyed.
734  *
735  *      The object must be locked.
736  */
737 static void
738 swap_pager_dealloc(vm_object_t object)
739 {
740
741         VM_OBJECT_ASSERT_WLOCKED(object);
742         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
743
744         /*
745          * Remove from list right away so lookups will fail if we block for
746          * pageout completion.
747          */
748         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
749                 VM_OBJECT_WUNLOCK(object);
750                 sx_xlock(&sw_alloc_sx);
751                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
752                     pager_object_list);
753                 sx_xunlock(&sw_alloc_sx);
754                 VM_OBJECT_WLOCK(object);
755         }
756
757         vm_object_pip_wait(object, "swpdea");
758
759         /*
760          * Free all remaining metadata.  We only bother to free it from
761          * the swap meta data.  We do not attempt to free swapblk's still
762          * associated with vm_page_t's for this object.  We do not care
763          * if paging is still in progress on some objects.
764          */
765         swp_pager_meta_free_all(object);
766         object->handle = NULL;
767         object->type = OBJT_DEAD;
768 }
769
770 /************************************************************************
771  *                      SWAP PAGER BITMAP ROUTINES                      *
772  ************************************************************************/
773
774 /*
775  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
776  *
777  *      Allocate swap for up to the requested number of pages.  The
778  *      starting swap block number (a page index) is returned or
779  *      SWAPBLK_NONE if the allocation failed.
780  *
781  *      Also has the side effect of advising that somebody made a mistake
782  *      when they configured swap and didn't configure enough.
783  *
784  *      This routine may not sleep.
785  *
786  *      We allocate in round-robin fashion from the configured devices.
787  */
788 static daddr_t
789 swp_pager_getswapspace(int *io_npages)
790 {
791         daddr_t blk;
792         struct swdevt *sp;
793         int mpages, npages;
794
795         KASSERT(*io_npages >= 1,
796             ("%s: npages not positive", __func__));
797         blk = SWAPBLK_NONE;
798         mpages = *io_npages;
799         npages = imin(BLIST_MAX_ALLOC, mpages);
800         mtx_lock(&sw_dev_mtx);
801         sp = swdevhd;
802         while (!TAILQ_EMPTY(&swtailq)) {
803                 if (sp == NULL)
804                         sp = TAILQ_FIRST(&swtailq);
805                 if ((sp->sw_flags & SW_CLOSING) == 0)
806                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
807                 if (blk != SWAPBLK_NONE)
808                         break;
809                 sp = TAILQ_NEXT(sp, sw_list);
810                 if (swdevhd == sp) {
811                         if (npages == 1)
812                                 break;
813                         mpages = npages - 1;
814                         npages >>= 1;
815                 }
816         }
817         if (blk != SWAPBLK_NONE) {
818                 *io_npages = npages;
819                 blk += sp->sw_first;
820                 sp->sw_used += npages;
821                 swap_pager_avail -= npages;
822                 swp_sizecheck();
823                 swdevhd = TAILQ_NEXT(sp, sw_list);
824         } else {
825                 if (swap_pager_full != 2) {
826                         printf("swp_pager_getswapspace(%d): failed\n",
827                             *io_npages);
828                         swap_pager_full = 2;
829                         swap_pager_almost_full = 1;
830                 }
831                 swdevhd = NULL;
832         }
833         mtx_unlock(&sw_dev_mtx);
834         return (blk);
835 }
836
837 static bool
838 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
839 {
840
841         return (blk >= sp->sw_first && blk < sp->sw_end);
842 }
843
844 static void
845 swp_pager_strategy(struct buf *bp)
846 {
847         struct swdevt *sp;
848
849         mtx_lock(&sw_dev_mtx);
850         TAILQ_FOREACH(sp, &swtailq, sw_list) {
851                 if (swp_pager_isondev(bp->b_blkno, sp)) {
852                         mtx_unlock(&sw_dev_mtx);
853                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
854                             unmapped_buf_allowed) {
855                                 bp->b_data = unmapped_buf;
856                                 bp->b_offset = 0;
857                         } else {
858                                 pmap_qenter((vm_offset_t)bp->b_data,
859                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
860                         }
861                         sp->sw_strategy(bp, sp);
862                         return;
863                 }
864         }
865         panic("Swapdev not found");
866 }
867
868 /*
869  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
870  *
871  *      This routine returns the specified swap blocks back to the bitmap.
872  *
873  *      This routine may not sleep.
874  */
875 static void
876 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
877 {
878         struct swdevt *sp;
879
880         if (npages == 0)
881                 return;
882         mtx_lock(&sw_dev_mtx);
883         TAILQ_FOREACH(sp, &swtailq, sw_list) {
884                 if (swp_pager_isondev(blk, sp)) {
885                         sp->sw_used -= npages;
886                         /*
887                          * If we are attempting to stop swapping on
888                          * this device, we don't want to mark any
889                          * blocks free lest they be reused.
890                          */
891                         if ((sp->sw_flags & SW_CLOSING) == 0) {
892                                 blist_free(sp->sw_blist, blk - sp->sw_first,
893                                     npages);
894                                 swap_pager_avail += npages;
895                                 swp_sizecheck();
896                         }
897                         mtx_unlock(&sw_dev_mtx);
898                         return;
899                 }
900         }
901         panic("Swapdev not found");
902 }
903
904 /*
905  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
906  */
907 static int
908 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
909 {
910         struct sbuf sbuf;
911         struct swdevt *sp;
912         const char *devname;
913         int error;
914
915         error = sysctl_wire_old_buffer(req, 0);
916         if (error != 0)
917                 return (error);
918         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
919         mtx_lock(&sw_dev_mtx);
920         TAILQ_FOREACH(sp, &swtailq, sw_list) {
921                 if (vn_isdisk(sp->sw_vp))
922                         devname = devtoname(sp->sw_vp->v_rdev);
923                 else
924                         devname = "[file]";
925                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
926                 blist_stats(sp->sw_blist, &sbuf);
927         }
928         mtx_unlock(&sw_dev_mtx);
929         error = sbuf_finish(&sbuf);
930         sbuf_delete(&sbuf);
931         return (error);
932 }
933
934 /*
935  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
936  *                              range within an object.
937  *
938  *      This is a globally accessible routine.
939  *
940  *      This routine removes swapblk assignments from swap metadata.
941  *
942  *      The external callers of this routine typically have already destroyed
943  *      or renamed vm_page_t's associated with this range in the object so
944  *      we should be ok.
945  *
946  *      The object must be locked.
947  */
948 void
949 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
950 {
951
952         swp_pager_meta_free(object, start, size);
953 }
954
955 /*
956  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
957  *
958  *      Assigns swap blocks to the specified range within the object.  The
959  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
960  *
961  *      Returns 0 on success, -1 on failure.
962  */
963 int
964 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
965 {
966         daddr_t addr, blk, n_free, s_free;
967         int i, j, n;
968
969         swp_pager_init_freerange(&s_free, &n_free);
970         VM_OBJECT_WLOCK(object);
971         for (i = 0; i < size; i += n) {
972                 n = size - i;
973                 blk = swp_pager_getswapspace(&n);
974                 if (blk == SWAPBLK_NONE) {
975                         swp_pager_meta_free(object, start, i);
976                         VM_OBJECT_WUNLOCK(object);
977                         return (-1);
978                 }
979                 for (j = 0; j < n; ++j) {
980                         addr = swp_pager_meta_build(object,
981                             start + i + j, blk + j);
982                         if (addr != SWAPBLK_NONE)
983                                 swp_pager_update_freerange(&s_free, &n_free,
984                                     addr);
985                 }
986         }
987         swp_pager_freeswapspace(s_free, n_free);
988         VM_OBJECT_WUNLOCK(object);
989         return (0);
990 }
991
992 static bool
993 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
994     vm_pindex_t pindex, daddr_t addr)
995 {
996         daddr_t dstaddr;
997
998         KASSERT(srcobject->type == OBJT_SWAP,
999             ("%s: Srcobject not swappable", __func__));
1000         if (dstobject->type == OBJT_SWAP &&
1001             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1002                 /* Caller should destroy the source block. */
1003                 return (false);
1004         }
1005
1006         /*
1007          * Destination has no swapblk and is not resident, transfer source.
1008          * swp_pager_meta_build() can sleep.
1009          */
1010         VM_OBJECT_WUNLOCK(srcobject);
1011         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1012         KASSERT(dstaddr == SWAPBLK_NONE,
1013             ("Unexpected destination swapblk"));
1014         VM_OBJECT_WLOCK(srcobject);
1015
1016         return (true);
1017 }
1018
1019 /*
1020  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1021  *                      and destroy the source.
1022  *
1023  *      Copy any valid swapblks from the source to the destination.  In
1024  *      cases where both the source and destination have a valid swapblk,
1025  *      we keep the destination's.
1026  *
1027  *      This routine is allowed to sleep.  It may sleep allocating metadata
1028  *      indirectly through swp_pager_meta_build().
1029  *
1030  *      The source object contains no vm_page_t's (which is just as well)
1031  *
1032  *      The source object is of type OBJT_SWAP.
1033  *
1034  *      The source and destination objects must be locked.
1035  *      Both object locks may temporarily be released.
1036  */
1037 void
1038 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1039     vm_pindex_t offset, int destroysource)
1040 {
1041
1042         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1043         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1044
1045         /*
1046          * If destroysource is set, we remove the source object from the
1047          * swap_pager internal queue now.
1048          */
1049         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1050             srcobject->handle != NULL) {
1051                 VM_OBJECT_WUNLOCK(srcobject);
1052                 VM_OBJECT_WUNLOCK(dstobject);
1053                 sx_xlock(&sw_alloc_sx);
1054                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1055                     pager_object_list);
1056                 sx_xunlock(&sw_alloc_sx);
1057                 VM_OBJECT_WLOCK(dstobject);
1058                 VM_OBJECT_WLOCK(srcobject);
1059         }
1060
1061         /*
1062          * Transfer source to destination.
1063          */
1064         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1065
1066         /*
1067          * Free left over swap blocks in source.
1068          *
1069          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1070          * double-remove the object from the swap queues.
1071          */
1072         if (destroysource) {
1073                 swp_pager_meta_free_all(srcobject);
1074                 /*
1075                  * Reverting the type is not necessary, the caller is going
1076                  * to destroy srcobject directly, but I'm doing it here
1077                  * for consistency since we've removed the object from its
1078                  * queues.
1079                  */
1080                 srcobject->type = OBJT_DEFAULT;
1081         }
1082 }
1083
1084 /*
1085  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1086  *                              the requested page.
1087  *
1088  *      We determine whether good backing store exists for the requested
1089  *      page and return TRUE if it does, FALSE if it doesn't.
1090  *
1091  *      If TRUE, we also try to determine how much valid, contiguous backing
1092  *      store exists before and after the requested page.
1093  */
1094 static boolean_t
1095 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1096     int *after)
1097 {
1098         daddr_t blk, blk0;
1099         int i;
1100
1101         VM_OBJECT_ASSERT_LOCKED(object);
1102         KASSERT(object->type == OBJT_SWAP,
1103             ("%s: object not swappable", __func__));
1104
1105         /*
1106          * do we have good backing store at the requested index ?
1107          */
1108         blk0 = swp_pager_meta_lookup(object, pindex);
1109         if (blk0 == SWAPBLK_NONE) {
1110                 if (before)
1111                         *before = 0;
1112                 if (after)
1113                         *after = 0;
1114                 return (FALSE);
1115         }
1116
1117         /*
1118          * find backwards-looking contiguous good backing store
1119          */
1120         if (before != NULL) {
1121                 for (i = 1; i < SWB_NPAGES; i++) {
1122                         if (i > pindex)
1123                                 break;
1124                         blk = swp_pager_meta_lookup(object, pindex - i);
1125                         if (blk != blk0 - i)
1126                                 break;
1127                 }
1128                 *before = i - 1;
1129         }
1130
1131         /*
1132          * find forward-looking contiguous good backing store
1133          */
1134         if (after != NULL) {
1135                 for (i = 1; i < SWB_NPAGES; i++) {
1136                         blk = swp_pager_meta_lookup(object, pindex + i);
1137                         if (blk != blk0 + i)
1138                                 break;
1139                 }
1140                 *after = i - 1;
1141         }
1142         return (TRUE);
1143 }
1144
1145 /*
1146  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1147  *
1148  *      This removes any associated swap backing store, whether valid or
1149  *      not, from the page.
1150  *
1151  *      This routine is typically called when a page is made dirty, at
1152  *      which point any associated swap can be freed.  MADV_FREE also
1153  *      calls us in a special-case situation
1154  *
1155  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1156  *      should make the page dirty before calling this routine.  This routine
1157  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1158  *      depends on it.
1159  *
1160  *      This routine may not sleep.
1161  *
1162  *      The object containing the page may be locked.
1163  */
1164 static void
1165 swap_pager_unswapped(vm_page_t m)
1166 {
1167         struct swblk *sb;
1168         vm_object_t obj;
1169
1170         /*
1171          * Handle enqueing deferred frees first.  If we do not have the
1172          * object lock we wait for the page daemon to clear the space.
1173          */
1174         obj = m->object;
1175         if (!VM_OBJECT_WOWNED(obj)) {
1176                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1177                 /*
1178                  * The caller is responsible for synchronization but we
1179                  * will harmlessly handle races.  This is typically provided
1180                  * by only calling unswapped() when a page transitions from
1181                  * clean to dirty.
1182                  */
1183                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1184                     PGA_SWAP_SPACE) {
1185                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1186                         counter_u64_add(swap_free_deferred, 1);
1187                 }
1188                 return;
1189         }
1190         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1191                 counter_u64_add(swap_free_completed, 1);
1192         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1193
1194         /*
1195          * The meta data only exists if the object is OBJT_SWAP
1196          * and even then might not be allocated yet.
1197          */
1198         KASSERT(m->object->type == OBJT_SWAP,
1199             ("Free object not swappable"));
1200
1201         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1202             rounddown(m->pindex, SWAP_META_PAGES));
1203         if (sb == NULL)
1204                 return;
1205         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1206                 return;
1207         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1208         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1209         swp_pager_free_empty_swblk(m->object, sb);
1210 }
1211
1212 /*
1213  * swap_pager_getpages() - bring pages in from swap
1214  *
1215  *      Attempt to page in the pages in array "ma" of length "count".  The
1216  *      caller may optionally specify that additional pages preceding and
1217  *      succeeding the specified range be paged in.  The number of such pages
1218  *      is returned in the "rbehind" and "rahead" parameters, and they will
1219  *      be in the inactive queue upon return.
1220  *
1221  *      The pages in "ma" must be busied and will remain busied upon return.
1222  */
1223 static int
1224 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1225     int *rbehind, int *rahead)
1226 {
1227         struct buf *bp;
1228         vm_page_t bm, mpred, msucc, p;
1229         vm_pindex_t pindex;
1230         daddr_t blk;
1231         int i, maxahead, maxbehind, reqcount;
1232
1233         VM_OBJECT_ASSERT_WLOCKED(object);
1234         reqcount = count;
1235
1236         KASSERT(object->type == OBJT_SWAP,
1237             ("%s: object not swappable", __func__));
1238         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1239                 VM_OBJECT_WUNLOCK(object);
1240                 return (VM_PAGER_FAIL);
1241         }
1242
1243         KASSERT(reqcount - 1 <= maxahead,
1244             ("page count %d extends beyond swap block", reqcount));
1245
1246         /*
1247          * Do not transfer any pages other than those that are xbusied
1248          * when running during a split or collapse operation.  This
1249          * prevents clustering from re-creating pages which are being
1250          * moved into another object.
1251          */
1252         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1253                 maxahead = reqcount - 1;
1254                 maxbehind = 0;
1255         }
1256
1257         /*
1258          * Clip the readahead and readbehind ranges to exclude resident pages.
1259          */
1260         if (rahead != NULL) {
1261                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1262                 pindex = ma[reqcount - 1]->pindex;
1263                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1264                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1265                         *rahead = msucc->pindex - pindex - 1;
1266         }
1267         if (rbehind != NULL) {
1268                 *rbehind = imin(*rbehind, maxbehind);
1269                 pindex = ma[0]->pindex;
1270                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1271                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1272                         *rbehind = pindex - mpred->pindex - 1;
1273         }
1274
1275         bm = ma[0];
1276         for (i = 0; i < count; i++)
1277                 ma[i]->oflags |= VPO_SWAPINPROG;
1278
1279         /*
1280          * Allocate readahead and readbehind pages.
1281          */
1282         if (rbehind != NULL) {
1283                 for (i = 1; i <= *rbehind; i++) {
1284                         p = vm_page_alloc(object, ma[0]->pindex - i,
1285                             VM_ALLOC_NORMAL);
1286                         if (p == NULL)
1287                                 break;
1288                         p->oflags |= VPO_SWAPINPROG;
1289                         bm = p;
1290                 }
1291                 *rbehind = i - 1;
1292         }
1293         if (rahead != NULL) {
1294                 for (i = 0; i < *rahead; i++) {
1295                         p = vm_page_alloc(object,
1296                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1297                         if (p == NULL)
1298                                 break;
1299                         p->oflags |= VPO_SWAPINPROG;
1300                 }
1301                 *rahead = i;
1302         }
1303         if (rbehind != NULL)
1304                 count += *rbehind;
1305         if (rahead != NULL)
1306                 count += *rahead;
1307
1308         vm_object_pip_add(object, count);
1309
1310         pindex = bm->pindex;
1311         blk = swp_pager_meta_lookup(object, pindex);
1312         KASSERT(blk != SWAPBLK_NONE,
1313             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1314
1315         VM_OBJECT_WUNLOCK(object);
1316         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1317         /* Pages cannot leave the object while busy. */
1318         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1319                 MPASS(p->pindex == bm->pindex + i);
1320                 bp->b_pages[i] = p;
1321         }
1322
1323         bp->b_flags |= B_PAGING;
1324         bp->b_iocmd = BIO_READ;
1325         bp->b_iodone = swp_pager_async_iodone;
1326         bp->b_rcred = crhold(thread0.td_ucred);
1327         bp->b_wcred = crhold(thread0.td_ucred);
1328         bp->b_blkno = blk;
1329         bp->b_bcount = PAGE_SIZE * count;
1330         bp->b_bufsize = PAGE_SIZE * count;
1331         bp->b_npages = count;
1332         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1333         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1334
1335         VM_CNT_INC(v_swapin);
1336         VM_CNT_ADD(v_swappgsin, count);
1337
1338         /*
1339          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1340          * this point because we automatically release it on completion.
1341          * Instead, we look at the one page we are interested in which we
1342          * still hold a lock on even through the I/O completion.
1343          *
1344          * The other pages in our ma[] array are also released on completion,
1345          * so we cannot assume they are valid anymore either.
1346          *
1347          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1348          */
1349         BUF_KERNPROC(bp);
1350         swp_pager_strategy(bp);
1351
1352         /*
1353          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1354          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1355          * is set in the metadata for each page in the request.
1356          */
1357         VM_OBJECT_WLOCK(object);
1358         /* This could be implemented more efficiently with aflags */
1359         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1360                 ma[0]->oflags |= VPO_SWAPSLEEP;
1361                 VM_CNT_INC(v_intrans);
1362                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1363                     "swread", hz * 20)) {
1364                         printf(
1365 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1366                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1367                 }
1368         }
1369         VM_OBJECT_WUNLOCK(object);
1370
1371         /*
1372          * If we had an unrecoverable read error pages will not be valid.
1373          */
1374         for (i = 0; i < reqcount; i++)
1375                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1376                         return (VM_PAGER_ERROR);
1377
1378         return (VM_PAGER_OK);
1379
1380         /*
1381          * A final note: in a low swap situation, we cannot deallocate swap
1382          * and mark a page dirty here because the caller is likely to mark
1383          * the page clean when we return, causing the page to possibly revert
1384          * to all-zero's later.
1385          */
1386 }
1387
1388 static int
1389 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1390     int *rbehind, int *rahead)
1391 {
1392
1393         VM_OBJECT_WLOCK(object);
1394         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1395 }
1396
1397 /*
1398  *      swap_pager_getpages_async():
1399  *
1400  *      Right now this is emulation of asynchronous operation on top of
1401  *      swap_pager_getpages().
1402  */
1403 static int
1404 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1405     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1406 {
1407         int r, error;
1408
1409         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1410         switch (r) {
1411         case VM_PAGER_OK:
1412                 error = 0;
1413                 break;
1414         case VM_PAGER_ERROR:
1415                 error = EIO;
1416                 break;
1417         case VM_PAGER_FAIL:
1418                 error = EINVAL;
1419                 break;
1420         default:
1421                 panic("unhandled swap_pager_getpages() error %d", r);
1422         }
1423         (iodone)(arg, ma, count, error);
1424
1425         return (r);
1426 }
1427
1428 /*
1429  *      swap_pager_putpages:
1430  *
1431  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1432  *
1433  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1434  *      are automatically converted to SWAP objects.
1435  *
1436  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1437  *      vm_page reservation system coupled with properly written VFS devices
1438  *      should ensure that no low-memory deadlock occurs.  This is an area
1439  *      which needs work.
1440  *
1441  *      The parent has N vm_object_pip_add() references prior to
1442  *      calling us and will remove references for rtvals[] that are
1443  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1444  *      completion.
1445  *
1446  *      The parent has soft-busy'd the pages it passes us and will unbusy
1447  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1448  *      We need to unbusy the rest on I/O completion.
1449  */
1450 static void
1451 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1452     int flags, int *rtvals)
1453 {
1454         struct buf *bp;
1455         daddr_t addr, blk, n_free, s_free;
1456         vm_page_t mreq;
1457         int i, j, n;
1458         bool async;
1459
1460         KASSERT(count == 0 || ma[0]->object == object,
1461             ("%s: object mismatch %p/%p",
1462             __func__, object, ma[0]->object));
1463
1464         /*
1465          * Step 1
1466          *
1467          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1468          */
1469         if (object->type != OBJT_SWAP) {
1470                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1471                 KASSERT(addr == SWAPBLK_NONE,
1472                     ("unexpected object swap block"));
1473         }
1474         VM_OBJECT_WUNLOCK(object);
1475         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1476         swp_pager_init_freerange(&s_free, &n_free);
1477
1478         /*
1479          * Step 2
1480          *
1481          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1482          * The page is left dirty until the pageout operation completes
1483          * successfully.
1484          */
1485         for (i = 0; i < count; i += n) {
1486                 /* Maximum I/O size is limited by maximum swap block size. */
1487                 n = min(count - i, nsw_cluster_max);
1488
1489                 if (async) {
1490                         mtx_lock(&swbuf_mtx);
1491                         while (nsw_wcount_async == 0)
1492                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1493                                     "swbufa", 0);
1494                         nsw_wcount_async--;
1495                         mtx_unlock(&swbuf_mtx);
1496                 }
1497
1498                 /* Get a block of swap of size up to size n. */
1499                 VM_OBJECT_WLOCK(object);
1500                 blk = swp_pager_getswapspace(&n);
1501                 if (blk == SWAPBLK_NONE) {
1502                         VM_OBJECT_WUNLOCK(object);
1503                         mtx_lock(&swbuf_mtx);
1504                         if (++nsw_wcount_async == 1)
1505                                 wakeup(&nsw_wcount_async);
1506                         mtx_unlock(&swbuf_mtx);
1507                         for (j = 0; j < n; ++j)
1508                                 rtvals[i + j] = VM_PAGER_FAIL;
1509                         continue;
1510                 }
1511                 for (j = 0; j < n; ++j) {
1512                         mreq = ma[i + j];
1513                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1514                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1515                             blk + j);
1516                         if (addr != SWAPBLK_NONE)
1517                                 swp_pager_update_freerange(&s_free, &n_free,
1518                                     addr);
1519                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1520                         mreq->oflags |= VPO_SWAPINPROG;
1521                 }
1522                 VM_OBJECT_WUNLOCK(object);
1523
1524                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1525                 if (async)
1526                         bp->b_flags = B_ASYNC;
1527                 bp->b_flags |= B_PAGING;
1528                 bp->b_iocmd = BIO_WRITE;
1529
1530                 bp->b_rcred = crhold(thread0.td_ucred);
1531                 bp->b_wcred = crhold(thread0.td_ucred);
1532                 bp->b_bcount = PAGE_SIZE * n;
1533                 bp->b_bufsize = PAGE_SIZE * n;
1534                 bp->b_blkno = blk;
1535                 for (j = 0; j < n; j++)
1536                         bp->b_pages[j] = ma[i + j];
1537                 bp->b_npages = n;
1538
1539                 /*
1540                  * Must set dirty range for NFS to work.
1541                  */
1542                 bp->b_dirtyoff = 0;
1543                 bp->b_dirtyend = bp->b_bcount;
1544
1545                 VM_CNT_INC(v_swapout);
1546                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1547
1548                 /*
1549                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1550                  * can call the async completion routine at the end of a
1551                  * synchronous I/O operation.  Otherwise, our caller would
1552                  * perform duplicate unbusy and wakeup operations on the page
1553                  * and object, respectively.
1554                  */
1555                 for (j = 0; j < n; j++)
1556                         rtvals[i + j] = VM_PAGER_PEND;
1557
1558                 /*
1559                  * asynchronous
1560                  *
1561                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1562                  */
1563                 if (async) {
1564                         bp->b_iodone = swp_pager_async_iodone;
1565                         BUF_KERNPROC(bp);
1566                         swp_pager_strategy(bp);
1567                         continue;
1568                 }
1569
1570                 /*
1571                  * synchronous
1572                  *
1573                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1574                  */
1575                 bp->b_iodone = bdone;
1576                 swp_pager_strategy(bp);
1577
1578                 /*
1579                  * Wait for the sync I/O to complete.
1580                  */
1581                 bwait(bp, PVM, "swwrt");
1582
1583                 /*
1584                  * Now that we are through with the bp, we can call the
1585                  * normal async completion, which frees everything up.
1586                  */
1587                 swp_pager_async_iodone(bp);
1588         }
1589         swp_pager_freeswapspace(s_free, n_free);
1590         VM_OBJECT_WLOCK(object);
1591 }
1592
1593 /*
1594  *      swp_pager_async_iodone:
1595  *
1596  *      Completion routine for asynchronous reads and writes from/to swap.
1597  *      Also called manually by synchronous code to finish up a bp.
1598  *
1599  *      This routine may not sleep.
1600  */
1601 static void
1602 swp_pager_async_iodone(struct buf *bp)
1603 {
1604         int i;
1605         vm_object_t object = NULL;
1606
1607         /*
1608          * Report error - unless we ran out of memory, in which case
1609          * we've already logged it in swapgeom_strategy().
1610          */
1611         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1612                 printf(
1613                     "swap_pager: I/O error - %s failed; blkno %ld,"
1614                         "size %ld, error %d\n",
1615                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1616                     (long)bp->b_blkno,
1617                     (long)bp->b_bcount,
1618                     bp->b_error
1619                 );
1620         }
1621
1622         /*
1623          * remove the mapping for kernel virtual
1624          */
1625         if (buf_mapped(bp))
1626                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1627         else
1628                 bp->b_data = bp->b_kvabase;
1629
1630         if (bp->b_npages) {
1631                 object = bp->b_pages[0]->object;
1632                 VM_OBJECT_WLOCK(object);
1633         }
1634
1635         /*
1636          * cleanup pages.  If an error occurs writing to swap, we are in
1637          * very serious trouble.  If it happens to be a disk error, though,
1638          * we may be able to recover by reassigning the swap later on.  So
1639          * in this case we remove the m->swapblk assignment for the page
1640          * but do not free it in the rlist.  The errornous block(s) are thus
1641          * never reallocated as swap.  Redirty the page and continue.
1642          */
1643         for (i = 0; i < bp->b_npages; ++i) {
1644                 vm_page_t m = bp->b_pages[i];
1645
1646                 m->oflags &= ~VPO_SWAPINPROG;
1647                 if (m->oflags & VPO_SWAPSLEEP) {
1648                         m->oflags &= ~VPO_SWAPSLEEP;
1649                         wakeup(&object->handle);
1650                 }
1651
1652                 /* We always have space after I/O, successful or not. */
1653                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1654
1655                 if (bp->b_ioflags & BIO_ERROR) {
1656                         /*
1657                          * If an error occurs I'd love to throw the swapblk
1658                          * away without freeing it back to swapspace, so it
1659                          * can never be used again.  But I can't from an
1660                          * interrupt.
1661                          */
1662                         if (bp->b_iocmd == BIO_READ) {
1663                                 /*
1664                                  * NOTE: for reads, m->dirty will probably
1665                                  * be overridden by the original caller of
1666                                  * getpages so don't play cute tricks here.
1667                                  */
1668                                 vm_page_invalid(m);
1669                         } else {
1670                                 /*
1671                                  * If a write error occurs, reactivate page
1672                                  * so it doesn't clog the inactive list,
1673                                  * then finish the I/O.
1674                                  */
1675                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1676
1677                                 /* PQ_UNSWAPPABLE? */
1678                                 vm_page_activate(m);
1679                                 vm_page_sunbusy(m);
1680                         }
1681                 } else if (bp->b_iocmd == BIO_READ) {
1682                         /*
1683                          * NOTE: for reads, m->dirty will probably be
1684                          * overridden by the original caller of getpages so
1685                          * we cannot set them in order to free the underlying
1686                          * swap in a low-swap situation.  I don't think we'd
1687                          * want to do that anyway, but it was an optimization
1688                          * that existed in the old swapper for a time before
1689                          * it got ripped out due to precisely this problem.
1690                          */
1691                         KASSERT(!pmap_page_is_mapped(m),
1692                             ("swp_pager_async_iodone: page %p is mapped", m));
1693                         KASSERT(m->dirty == 0,
1694                             ("swp_pager_async_iodone: page %p is dirty", m));
1695
1696                         vm_page_valid(m);
1697                         if (i < bp->b_pgbefore ||
1698                             i >= bp->b_npages - bp->b_pgafter)
1699                                 vm_page_readahead_finish(m);
1700                 } else {
1701                         /*
1702                          * For write success, clear the dirty
1703                          * status, then finish the I/O ( which decrements the
1704                          * busy count and possibly wakes waiter's up ).
1705                          * A page is only written to swap after a period of
1706                          * inactivity.  Therefore, we do not expect it to be
1707                          * reused.
1708                          */
1709                         KASSERT(!pmap_page_is_write_mapped(m),
1710                             ("swp_pager_async_iodone: page %p is not write"
1711                             " protected", m));
1712                         vm_page_undirty(m);
1713                         vm_page_deactivate_noreuse(m);
1714                         vm_page_sunbusy(m);
1715                 }
1716         }
1717
1718         /*
1719          * adjust pip.  NOTE: the original parent may still have its own
1720          * pip refs on the object.
1721          */
1722         if (object != NULL) {
1723                 vm_object_pip_wakeupn(object, bp->b_npages);
1724                 VM_OBJECT_WUNLOCK(object);
1725         }
1726
1727         /*
1728          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1729          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1730          * trigger a KASSERT in relpbuf().
1731          */
1732         if (bp->b_vp) {
1733                     bp->b_vp = NULL;
1734                     bp->b_bufobj = NULL;
1735         }
1736         /*
1737          * release the physical I/O buffer
1738          */
1739         if (bp->b_flags & B_ASYNC) {
1740                 mtx_lock(&swbuf_mtx);
1741                 if (++nsw_wcount_async == 1)
1742                         wakeup(&nsw_wcount_async);
1743                 mtx_unlock(&swbuf_mtx);
1744         }
1745         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1746 }
1747
1748 int
1749 swap_pager_nswapdev(void)
1750 {
1751
1752         return (nswapdev);
1753 }
1754
1755 static void
1756 swp_pager_force_dirty(vm_page_t m)
1757 {
1758
1759         vm_page_dirty(m);
1760         swap_pager_unswapped(m);
1761         vm_page_launder(m);
1762 }
1763
1764 /*
1765  *      swap_pager_swapoff_object:
1766  *
1767  *      Page in all of the pages that have been paged out for an object
1768  *      to a swap device.
1769  */
1770 static void
1771 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1772 {
1773         struct swblk *sb;
1774         vm_page_t m;
1775         vm_pindex_t pi;
1776         daddr_t blk;
1777         int i, nv, rahead, rv;
1778
1779         KASSERT(object->type == OBJT_SWAP,
1780             ("%s: Object not swappable", __func__));
1781
1782         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1783             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1784                 if ((object->flags & OBJ_DEAD) != 0) {
1785                         /*
1786                          * Make sure that pending writes finish before
1787                          * returning.
1788                          */
1789                         vm_object_pip_wait(object, "swpoff");
1790                         swp_pager_meta_free_all(object);
1791                         break;
1792                 }
1793                 for (i = 0; i < SWAP_META_PAGES; i++) {
1794                         /*
1795                          * Count the number of contiguous valid blocks.
1796                          */
1797                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1798                                 blk = sb->d[i + nv];
1799                                 if (!swp_pager_isondev(blk, sp) ||
1800                                     blk == SWAPBLK_NONE)
1801                                         break;
1802                         }
1803                         if (nv == 0)
1804                                 continue;
1805
1806                         /*
1807                          * Look for a page corresponding to the first
1808                          * valid block and ensure that any pending paging
1809                          * operations on it are complete.  If the page is valid,
1810                          * mark it dirty and free the swap block.  Try to batch
1811                          * this operation since it may cause sp to be freed,
1812                          * meaning that we must restart the scan.  Avoid busying
1813                          * valid pages since we may block forever on kernel
1814                          * stack pages.
1815                          */
1816                         m = vm_page_lookup(object, sb->p + i);
1817                         if (m == NULL) {
1818                                 m = vm_page_alloc(object, sb->p + i,
1819                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1820                                 if (m == NULL)
1821                                         break;
1822                         } else {
1823                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1824                                         m->oflags |= VPO_SWAPSLEEP;
1825                                         VM_OBJECT_SLEEP(object, &object->handle,
1826                                             PSWP, "swpoff", 0);
1827                                         break;
1828                                 }
1829                                 if (vm_page_all_valid(m)) {
1830                                         do {
1831                                                 swp_pager_force_dirty(m);
1832                                         } while (--nv > 0 &&
1833                                             (m = vm_page_next(m)) != NULL &&
1834                                             vm_page_all_valid(m) &&
1835                                             (m->oflags & VPO_SWAPINPROG) == 0);
1836                                         break;
1837                                 }
1838                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1839                                         break;
1840                         }
1841
1842                         vm_object_pip_add(object, 1);
1843                         rahead = SWAP_META_PAGES;
1844                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1845                             &rahead);
1846                         if (rv != VM_PAGER_OK)
1847                                 panic("%s: read from swap failed: %d",
1848                                     __func__, rv);
1849                         vm_object_pip_wakeupn(object, 1);
1850                         VM_OBJECT_WLOCK(object);
1851                         vm_page_xunbusy(m);
1852
1853                         /*
1854                          * The object lock was dropped so we must restart the
1855                          * scan of this swap block.  Pages paged in during this
1856                          * iteration will be marked dirty in a future iteration.
1857                          */
1858                         break;
1859                 }
1860                 if (i == SWAP_META_PAGES)
1861                         pi = sb->p + SWAP_META_PAGES;
1862         }
1863 }
1864
1865 /*
1866  *      swap_pager_swapoff:
1867  *
1868  *      Page in all of the pages that have been paged out to the
1869  *      given device.  The corresponding blocks in the bitmap must be
1870  *      marked as allocated and the device must be flagged SW_CLOSING.
1871  *      There may be no processes swapped out to the device.
1872  *
1873  *      This routine may block.
1874  */
1875 static void
1876 swap_pager_swapoff(struct swdevt *sp)
1877 {
1878         vm_object_t object;
1879         int retries;
1880
1881         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1882
1883         retries = 0;
1884 full_rescan:
1885         mtx_lock(&vm_object_list_mtx);
1886         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1887                 if (object->type != OBJT_SWAP)
1888                         continue;
1889                 mtx_unlock(&vm_object_list_mtx);
1890                 /* Depends on type-stability. */
1891                 VM_OBJECT_WLOCK(object);
1892
1893                 /*
1894                  * Dead objects are eventually terminated on their own.
1895                  */
1896                 if ((object->flags & OBJ_DEAD) != 0)
1897                         goto next_obj;
1898
1899                 /*
1900                  * Sync with fences placed after pctrie
1901                  * initialization.  We must not access pctrie below
1902                  * unless we checked that our object is swap and not
1903                  * dead.
1904                  */
1905                 atomic_thread_fence_acq();
1906                 if (object->type != OBJT_SWAP)
1907                         goto next_obj;
1908
1909                 swap_pager_swapoff_object(sp, object);
1910 next_obj:
1911                 VM_OBJECT_WUNLOCK(object);
1912                 mtx_lock(&vm_object_list_mtx);
1913         }
1914         mtx_unlock(&vm_object_list_mtx);
1915
1916         if (sp->sw_used) {
1917                 /*
1918                  * Objects may be locked or paging to the device being
1919                  * removed, so we will miss their pages and need to
1920                  * make another pass.  We have marked this device as
1921                  * SW_CLOSING, so the activity should finish soon.
1922                  */
1923                 retries++;
1924                 if (retries > 100) {
1925                         panic("swapoff: failed to locate %d swap blocks",
1926                             sp->sw_used);
1927                 }
1928                 pause("swpoff", hz / 20);
1929                 goto full_rescan;
1930         }
1931         EVENTHANDLER_INVOKE(swapoff, sp);
1932 }
1933
1934 /************************************************************************
1935  *                              SWAP META DATA                          *
1936  ************************************************************************
1937  *
1938  *      These routines manipulate the swap metadata stored in the
1939  *      OBJT_SWAP object.
1940  *
1941  *      Swap metadata is implemented with a global hash and not directly
1942  *      linked into the object.  Instead the object simply contains
1943  *      appropriate tracking counters.
1944  */
1945
1946 /*
1947  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1948  */
1949 static bool
1950 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1951 {
1952         int i;
1953
1954         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1955         for (i = start; i < limit; i++) {
1956                 if (sb->d[i] != SWAPBLK_NONE)
1957                         return (false);
1958         }
1959         return (true);
1960 }
1961
1962 /*
1963  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1964  *
1965  *  Nothing is done if the block is still in use.
1966  */
1967 static void
1968 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1969 {
1970
1971         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1972                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1973                 uma_zfree(swblk_zone, sb);
1974         }
1975 }
1976    
1977 /*
1978  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1979  *
1980  *      We first convert the object to a swap object if it is a default
1981  *      object.
1982  *
1983  *      The specified swapblk is added to the object's swap metadata.  If
1984  *      the swapblk is not valid, it is freed instead.  Any previously
1985  *      assigned swapblk is returned.
1986  */
1987 static daddr_t
1988 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1989 {
1990         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1991         struct swblk *sb, *sb1;
1992         vm_pindex_t modpi, rdpi;
1993         daddr_t prev_swapblk;
1994         int error, i;
1995
1996         VM_OBJECT_ASSERT_WLOCKED(object);
1997
1998         /*
1999          * Convert default object to swap object if necessary
2000          */
2001         if (object->type != OBJT_SWAP) {
2002                 pctrie_init(&object->un_pager.swp.swp_blks);
2003
2004                 /*
2005                  * Ensure that swap_pager_swapoff()'s iteration over
2006                  * object_list does not see a garbage pctrie.
2007                  */
2008                 atomic_thread_fence_rel();
2009
2010                 object->type = OBJT_SWAP;
2011                 object->un_pager.swp.writemappings = 0;
2012                 KASSERT((object->flags & OBJ_ANON) != 0 ||
2013                     object->handle == NULL,
2014                     ("default pager %p with handle %p",
2015                     object, object->handle));
2016         }
2017
2018         rdpi = rounddown(pindex, SWAP_META_PAGES);
2019         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2020         if (sb == NULL) {
2021                 if (swapblk == SWAPBLK_NONE)
2022                         return (SWAPBLK_NONE);
2023                 for (;;) {
2024                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2025                             pageproc ? M_USE_RESERVE : 0));
2026                         if (sb != NULL) {
2027                                 sb->p = rdpi;
2028                                 for (i = 0; i < SWAP_META_PAGES; i++)
2029                                         sb->d[i] = SWAPBLK_NONE;
2030                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2031                                     1, 0))
2032                                         printf("swblk zone ok\n");
2033                                 break;
2034                         }
2035                         VM_OBJECT_WUNLOCK(object);
2036                         if (uma_zone_exhausted(swblk_zone)) {
2037                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2038                                     0, 1))
2039                                         printf("swap blk zone exhausted, "
2040                                             "increase kern.maxswzone\n");
2041                                 vm_pageout_oom(VM_OOM_SWAPZ);
2042                                 pause("swzonxb", 10);
2043                         } else
2044                                 uma_zwait(swblk_zone);
2045                         VM_OBJECT_WLOCK(object);
2046                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2047                             rdpi);
2048                         if (sb != NULL)
2049                                 /*
2050                                  * Somebody swapped out a nearby page,
2051                                  * allocating swblk at the rdpi index,
2052                                  * while we dropped the object lock.
2053                                  */
2054                                 goto allocated;
2055                 }
2056                 for (;;) {
2057                         error = SWAP_PCTRIE_INSERT(
2058                             &object->un_pager.swp.swp_blks, sb);
2059                         if (error == 0) {
2060                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2061                                     1, 0))
2062                                         printf("swpctrie zone ok\n");
2063                                 break;
2064                         }
2065                         VM_OBJECT_WUNLOCK(object);
2066                         if (uma_zone_exhausted(swpctrie_zone)) {
2067                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2068                                     0, 1))
2069                                         printf("swap pctrie zone exhausted, "
2070                                             "increase kern.maxswzone\n");
2071                                 vm_pageout_oom(VM_OOM_SWAPZ);
2072                                 pause("swzonxp", 10);
2073                         } else
2074                                 uma_zwait(swpctrie_zone);
2075                         VM_OBJECT_WLOCK(object);
2076                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2077                             rdpi);
2078                         if (sb1 != NULL) {
2079                                 uma_zfree(swblk_zone, sb);
2080                                 sb = sb1;
2081                                 goto allocated;
2082                         }
2083                 }
2084         }
2085 allocated:
2086         MPASS(sb->p == rdpi);
2087
2088         modpi = pindex % SWAP_META_PAGES;
2089         /* Return prior contents of metadata. */
2090         prev_swapblk = sb->d[modpi];
2091         /* Enter block into metadata. */
2092         sb->d[modpi] = swapblk;
2093
2094         /*
2095          * Free the swblk if we end up with the empty page run.
2096          */
2097         if (swapblk == SWAPBLK_NONE)
2098                 swp_pager_free_empty_swblk(object, sb);
2099         return (prev_swapblk);
2100 }
2101
2102 /*
2103  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2104  * metadata, or transfer it into dstobject.
2105  *
2106  *      This routine will free swap metadata structures as they are cleaned
2107  *      out.
2108  */
2109 static void
2110 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2111     vm_pindex_t pindex, vm_pindex_t count)
2112 {
2113         struct swblk *sb;
2114         daddr_t n_free, s_free;
2115         vm_pindex_t offset, last;
2116         int i, limit, start;
2117
2118         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2119         if (srcobject->type != OBJT_SWAP || count == 0)
2120                 return;
2121
2122         swp_pager_init_freerange(&s_free, &n_free);
2123         offset = pindex;
2124         last = pindex + count;
2125         for (;;) {
2126                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2127                     rounddown(pindex, SWAP_META_PAGES));
2128                 if (sb == NULL || sb->p >= last)
2129                         break;
2130                 start = pindex > sb->p ? pindex - sb->p : 0;
2131                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2132                     SWAP_META_PAGES;
2133                 for (i = start; i < limit; i++) {
2134                         if (sb->d[i] == SWAPBLK_NONE)
2135                                 continue;
2136                         if (dstobject == NULL ||
2137                             !swp_pager_xfer_source(srcobject, dstobject, 
2138                             sb->p + i - offset, sb->d[i])) {
2139                                 swp_pager_update_freerange(&s_free, &n_free,
2140                                     sb->d[i]);
2141                         }
2142                         sb->d[i] = SWAPBLK_NONE;
2143                 }
2144                 pindex = sb->p + SWAP_META_PAGES;
2145                 if (swp_pager_swblk_empty(sb, 0, start) &&
2146                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2147                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2148                             sb->p);
2149                         uma_zfree(swblk_zone, sb);
2150                 }
2151         }
2152         swp_pager_freeswapspace(s_free, n_free);
2153 }
2154
2155 /*
2156  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2157  *
2158  *      The requested range of blocks is freed, with any associated swap
2159  *      returned to the swap bitmap.
2160  *
2161  *      This routine will free swap metadata structures as they are cleaned
2162  *      out.  This routine does *NOT* operate on swap metadata associated
2163  *      with resident pages.
2164  */
2165 static void
2166 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2167 {
2168         swp_pager_meta_transfer(object, NULL, pindex, count);
2169 }
2170
2171 /*
2172  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2173  *
2174  *      This routine locates and destroys all swap metadata associated with
2175  *      an object.
2176  */
2177 static void
2178 swp_pager_meta_free_all(vm_object_t object)
2179 {
2180         struct swblk *sb;
2181         daddr_t n_free, s_free;
2182         vm_pindex_t pindex;
2183         int i;
2184
2185         VM_OBJECT_ASSERT_WLOCKED(object);
2186         if (object->type != OBJT_SWAP)
2187                 return;
2188
2189         swp_pager_init_freerange(&s_free, &n_free);
2190         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2191             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2192                 pindex = sb->p + SWAP_META_PAGES;
2193                 for (i = 0; i < SWAP_META_PAGES; i++) {
2194                         if (sb->d[i] == SWAPBLK_NONE)
2195                                 continue;
2196                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2197                 }
2198                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2199                 uma_zfree(swblk_zone, sb);
2200         }
2201         swp_pager_freeswapspace(s_free, n_free);
2202 }
2203
2204 /*
2205  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2206  *
2207  *      This routine is capable of looking up, or removing swapblk
2208  *      assignments in the swap meta data.  It returns the swapblk being
2209  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2210  *
2211  *      When acting on a busy resident page and paging is in progress, we
2212  *      have to wait until paging is complete but otherwise can act on the
2213  *      busy page.
2214  */
2215 static daddr_t
2216 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2217 {
2218         struct swblk *sb;
2219
2220         VM_OBJECT_ASSERT_LOCKED(object);
2221
2222         /*
2223          * The meta data only exists if the object is OBJT_SWAP
2224          * and even then might not be allocated yet.
2225          */
2226         KASSERT(object->type == OBJT_SWAP,
2227             ("Lookup object not swappable"));
2228
2229         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2230             rounddown(pindex, SWAP_META_PAGES));
2231         if (sb == NULL)
2232                 return (SWAPBLK_NONE);
2233         return (sb->d[pindex % SWAP_META_PAGES]);
2234 }
2235
2236 /*
2237  * Returns the least page index which is greater than or equal to the
2238  * parameter pindex and for which there is a swap block allocated.
2239  * Returns object's size if the object's type is not swap or if there
2240  * are no allocated swap blocks for the object after the requested
2241  * pindex.
2242  */
2243 vm_pindex_t
2244 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2245 {
2246         struct swblk *sb;
2247         int i;
2248
2249         VM_OBJECT_ASSERT_LOCKED(object);
2250         if (object->type != OBJT_SWAP)
2251                 return (object->size);
2252
2253         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2254             rounddown(pindex, SWAP_META_PAGES));
2255         if (sb == NULL)
2256                 return (object->size);
2257         if (sb->p < pindex) {
2258                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2259                         if (sb->d[i] != SWAPBLK_NONE)
2260                                 return (sb->p + i);
2261                 }
2262                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2263                     roundup(pindex, SWAP_META_PAGES));
2264                 if (sb == NULL)
2265                         return (object->size);
2266         }
2267         for (i = 0; i < SWAP_META_PAGES; i++) {
2268                 if (sb->d[i] != SWAPBLK_NONE)
2269                         return (sb->p + i);
2270         }
2271
2272         /*
2273          * We get here if a swblk is present in the trie but it
2274          * doesn't map any blocks.
2275          */
2276         MPASS(0);
2277         return (object->size);
2278 }
2279
2280 /*
2281  * System call swapon(name) enables swapping on device name,
2282  * which must be in the swdevsw.  Return EBUSY
2283  * if already swapping on this device.
2284  */
2285 #ifndef _SYS_SYSPROTO_H_
2286 struct swapon_args {
2287         char *name;
2288 };
2289 #endif
2290
2291 /*
2292  * MPSAFE
2293  */
2294 /* ARGSUSED */
2295 int
2296 sys_swapon(struct thread *td, struct swapon_args *uap)
2297 {
2298         struct vattr attr;
2299         struct vnode *vp;
2300         struct nameidata nd;
2301         int error;
2302
2303         error = priv_check(td, PRIV_SWAPON);
2304         if (error)
2305                 return (error);
2306
2307         sx_xlock(&swdev_syscall_lock);
2308
2309         /*
2310          * Swap metadata may not fit in the KVM if we have physical
2311          * memory of >1GB.
2312          */
2313         if (swblk_zone == NULL) {
2314                 error = ENOMEM;
2315                 goto done;
2316         }
2317
2318         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2319             uap->name, td);
2320         error = namei(&nd);
2321         if (error)
2322                 goto done;
2323
2324         NDFREE(&nd, NDF_ONLY_PNBUF);
2325         vp = nd.ni_vp;
2326
2327         if (vn_isdisk_error(vp, &error)) {
2328                 error = swapongeom(vp);
2329         } else if (vp->v_type == VREG &&
2330             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2331             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2332                 /*
2333                  * Allow direct swapping to NFS regular files in the same
2334                  * way that nfs_mountroot() sets up diskless swapping.
2335                  */
2336                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2337         }
2338
2339         if (error)
2340                 vrele(vp);
2341 done:
2342         sx_xunlock(&swdev_syscall_lock);
2343         return (error);
2344 }
2345
2346 /*
2347  * Check that the total amount of swap currently configured does not
2348  * exceed half the theoretical maximum.  If it does, print a warning
2349  * message.
2350  */
2351 static void
2352 swapon_check_swzone(void)
2353 {
2354
2355         /* recommend using no more than half that amount */
2356         if (swap_total > swap_maxpages / 2) {
2357                 printf("warning: total configured swap (%lu pages) "
2358                     "exceeds maximum recommended amount (%lu pages).\n",
2359                     swap_total, swap_maxpages / 2);
2360                 printf("warning: increase kern.maxswzone "
2361                     "or reduce amount of swap.\n");
2362         }
2363 }
2364
2365 static void
2366 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2367     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2368 {
2369         struct swdevt *sp, *tsp;
2370         daddr_t dvbase;
2371
2372         /*
2373          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2374          * First chop nblks off to page-align it, then convert.
2375          *
2376          * sw->sw_nblks is in page-sized chunks now too.
2377          */
2378         nblks &= ~(ctodb(1) - 1);
2379         nblks = dbtoc(nblks);
2380
2381         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2382         sp->sw_blist = blist_create(nblks, M_WAITOK);
2383         sp->sw_vp = vp;
2384         sp->sw_id = id;
2385         sp->sw_dev = dev;
2386         sp->sw_nblks = nblks;
2387         sp->sw_used = 0;
2388         sp->sw_strategy = strategy;
2389         sp->sw_close = close;
2390         sp->sw_flags = flags;
2391
2392         /*
2393          * Do not free the first blocks in order to avoid overwriting
2394          * any bsd label at the front of the partition
2395          */
2396         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2397             nblks - howmany(BBSIZE, PAGE_SIZE));
2398
2399         dvbase = 0;
2400         mtx_lock(&sw_dev_mtx);
2401         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2402                 if (tsp->sw_end >= dvbase) {
2403                         /*
2404                          * We put one uncovered page between the devices
2405                          * in order to definitively prevent any cross-device
2406                          * I/O requests
2407                          */
2408                         dvbase = tsp->sw_end + 1;
2409                 }
2410         }
2411         sp->sw_first = dvbase;
2412         sp->sw_end = dvbase + nblks;
2413         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2414         nswapdev++;
2415         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2416         swap_total += nblks;
2417         swapon_check_swzone();
2418         swp_sizecheck();
2419         mtx_unlock(&sw_dev_mtx);
2420         EVENTHANDLER_INVOKE(swapon, sp);
2421 }
2422
2423 /*
2424  * SYSCALL: swapoff(devname)
2425  *
2426  * Disable swapping on the given device.
2427  *
2428  * XXX: Badly designed system call: it should use a device index
2429  * rather than filename as specification.  We keep sw_vp around
2430  * only to make this work.
2431  */
2432 #ifndef _SYS_SYSPROTO_H_
2433 struct swapoff_args {
2434         char *name;
2435 };
2436 #endif
2437
2438 /*
2439  * MPSAFE
2440  */
2441 /* ARGSUSED */
2442 int
2443 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2444 {
2445         struct vnode *vp;
2446         struct nameidata nd;
2447         struct swdevt *sp;
2448         int error;
2449
2450         error = priv_check(td, PRIV_SWAPOFF);
2451         if (error)
2452                 return (error);
2453
2454         sx_xlock(&swdev_syscall_lock);
2455
2456         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2457             td);
2458         error = namei(&nd);
2459         if (error)
2460                 goto done;
2461         NDFREE(&nd, NDF_ONLY_PNBUF);
2462         vp = nd.ni_vp;
2463
2464         mtx_lock(&sw_dev_mtx);
2465         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2466                 if (sp->sw_vp == vp)
2467                         break;
2468         }
2469         mtx_unlock(&sw_dev_mtx);
2470         if (sp == NULL) {
2471                 error = EINVAL;
2472                 goto done;
2473         }
2474         error = swapoff_one(sp, td->td_ucred);
2475 done:
2476         sx_xunlock(&swdev_syscall_lock);
2477         return (error);
2478 }
2479
2480 static int
2481 swapoff_one(struct swdevt *sp, struct ucred *cred)
2482 {
2483         u_long nblks;
2484 #ifdef MAC
2485         int error;
2486 #endif
2487
2488         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2489 #ifdef MAC
2490         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2491         error = mac_system_check_swapoff(cred, sp->sw_vp);
2492         (void) VOP_UNLOCK(sp->sw_vp);
2493         if (error != 0)
2494                 return (error);
2495 #endif
2496         nblks = sp->sw_nblks;
2497
2498         /*
2499          * We can turn off this swap device safely only if the
2500          * available virtual memory in the system will fit the amount
2501          * of data we will have to page back in, plus an epsilon so
2502          * the system doesn't become critically low on swap space.
2503          */
2504         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2505                 return (ENOMEM);
2506
2507         /*
2508          * Prevent further allocations on this device.
2509          */
2510         mtx_lock(&sw_dev_mtx);
2511         sp->sw_flags |= SW_CLOSING;
2512         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2513         swap_total -= nblks;
2514         mtx_unlock(&sw_dev_mtx);
2515
2516         /*
2517          * Page in the contents of the device and close it.
2518          */
2519         swap_pager_swapoff(sp);
2520
2521         sp->sw_close(curthread, sp);
2522         mtx_lock(&sw_dev_mtx);
2523         sp->sw_id = NULL;
2524         TAILQ_REMOVE(&swtailq, sp, sw_list);
2525         nswapdev--;
2526         if (nswapdev == 0) {
2527                 swap_pager_full = 2;
2528                 swap_pager_almost_full = 1;
2529         }
2530         if (swdevhd == sp)
2531                 swdevhd = NULL;
2532         mtx_unlock(&sw_dev_mtx);
2533         blist_destroy(sp->sw_blist);
2534         free(sp, M_VMPGDATA);
2535         return (0);
2536 }
2537
2538 void
2539 swapoff_all(void)
2540 {
2541         struct swdevt *sp, *spt;
2542         const char *devname;
2543         int error;
2544
2545         sx_xlock(&swdev_syscall_lock);
2546
2547         mtx_lock(&sw_dev_mtx);
2548         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2549                 mtx_unlock(&sw_dev_mtx);
2550                 if (vn_isdisk(sp->sw_vp))
2551                         devname = devtoname(sp->sw_vp->v_rdev);
2552                 else
2553                         devname = "[file]";
2554                 error = swapoff_one(sp, thread0.td_ucred);
2555                 if (error != 0) {
2556                         printf("Cannot remove swap device %s (error=%d), "
2557                             "skipping.\n", devname, error);
2558                 } else if (bootverbose) {
2559                         printf("Swap device %s removed.\n", devname);
2560                 }
2561                 mtx_lock(&sw_dev_mtx);
2562         }
2563         mtx_unlock(&sw_dev_mtx);
2564
2565         sx_xunlock(&swdev_syscall_lock);
2566 }
2567
2568 void
2569 swap_pager_status(int *total, int *used)
2570 {
2571
2572         *total = swap_total;
2573         *used = swap_total - swap_pager_avail -
2574             nswapdev * howmany(BBSIZE, PAGE_SIZE);
2575 }
2576
2577 int
2578 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2579 {
2580         struct swdevt *sp;
2581         const char *tmp_devname;
2582         int error, n;
2583
2584         n = 0;
2585         error = ENOENT;
2586         mtx_lock(&sw_dev_mtx);
2587         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2588                 if (n != name) {
2589                         n++;
2590                         continue;
2591                 }
2592                 xs->xsw_version = XSWDEV_VERSION;
2593                 xs->xsw_dev = sp->sw_dev;
2594                 xs->xsw_flags = sp->sw_flags;
2595                 xs->xsw_nblks = sp->sw_nblks;
2596                 xs->xsw_used = sp->sw_used;
2597                 if (devname != NULL) {
2598                         if (vn_isdisk(sp->sw_vp))
2599                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2600                         else
2601                                 tmp_devname = "[file]";
2602                         strncpy(devname, tmp_devname, len);
2603                 }
2604                 error = 0;
2605                 break;
2606         }
2607         mtx_unlock(&sw_dev_mtx);
2608         return (error);
2609 }
2610
2611 #if defined(COMPAT_FREEBSD11)
2612 #define XSWDEV_VERSION_11       1
2613 struct xswdev11 {
2614         u_int   xsw_version;
2615         uint32_t xsw_dev;
2616         int     xsw_flags;
2617         int     xsw_nblks;
2618         int     xsw_used;
2619 };
2620 #endif
2621
2622 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2623 struct xswdev32 {
2624         u_int   xsw_version;
2625         u_int   xsw_dev1, xsw_dev2;
2626         int     xsw_flags;
2627         int     xsw_nblks;
2628         int     xsw_used;
2629 };
2630 #endif
2631
2632 static int
2633 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2634 {
2635         struct xswdev xs;
2636 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2637         struct xswdev32 xs32;
2638 #endif
2639 #if defined(COMPAT_FREEBSD11)
2640         struct xswdev11 xs11;
2641 #endif
2642         int error;
2643
2644         if (arg2 != 1)                  /* name length */
2645                 return (EINVAL);
2646         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2647         if (error != 0)
2648                 return (error);
2649 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2650         if (req->oldlen == sizeof(xs32)) {
2651                 xs32.xsw_version = XSWDEV_VERSION;
2652                 xs32.xsw_dev1 = xs.xsw_dev;
2653                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2654                 xs32.xsw_flags = xs.xsw_flags;
2655                 xs32.xsw_nblks = xs.xsw_nblks;
2656                 xs32.xsw_used = xs.xsw_used;
2657                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2658                 return (error);
2659         }
2660 #endif
2661 #if defined(COMPAT_FREEBSD11)
2662         if (req->oldlen == sizeof(xs11)) {
2663                 xs11.xsw_version = XSWDEV_VERSION_11;
2664                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2665                 xs11.xsw_flags = xs.xsw_flags;
2666                 xs11.xsw_nblks = xs.xsw_nblks;
2667                 xs11.xsw_used = xs.xsw_used;
2668                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2669                 return (error);
2670         }
2671 #endif
2672         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2673         return (error);
2674 }
2675
2676 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2677     "Number of swap devices");
2678 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2679     sysctl_vm_swap_info,
2680     "Swap statistics by device");
2681
2682 /*
2683  * Count the approximate swap usage in pages for a vmspace.  The
2684  * shadowed or not yet copied on write swap blocks are not accounted.
2685  * The map must be locked.
2686  */
2687 long
2688 vmspace_swap_count(struct vmspace *vmspace)
2689 {
2690         vm_map_t map;
2691         vm_map_entry_t cur;
2692         vm_object_t object;
2693         struct swblk *sb;
2694         vm_pindex_t e, pi;
2695         long count;
2696         int i;
2697
2698         map = &vmspace->vm_map;
2699         count = 0;
2700
2701         VM_MAP_ENTRY_FOREACH(cur, map) {
2702                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2703                         continue;
2704                 object = cur->object.vm_object;
2705                 if (object == NULL || object->type != OBJT_SWAP)
2706                         continue;
2707                 VM_OBJECT_RLOCK(object);
2708                 if (object->type != OBJT_SWAP)
2709                         goto unlock;
2710                 pi = OFF_TO_IDX(cur->offset);
2711                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2712                 for (;; pi = sb->p + SWAP_META_PAGES) {
2713                         sb = SWAP_PCTRIE_LOOKUP_GE(
2714                             &object->un_pager.swp.swp_blks, pi);
2715                         if (sb == NULL || sb->p >= e)
2716                                 break;
2717                         for (i = 0; i < SWAP_META_PAGES; i++) {
2718                                 if (sb->p + i < e &&
2719                                     sb->d[i] != SWAPBLK_NONE)
2720                                         count++;
2721                         }
2722                 }
2723 unlock:
2724                 VM_OBJECT_RUNLOCK(object);
2725         }
2726         return (count);
2727 }
2728
2729 /*
2730  * GEOM backend
2731  *
2732  * Swapping onto disk devices.
2733  *
2734  */
2735
2736 static g_orphan_t swapgeom_orphan;
2737
2738 static struct g_class g_swap_class = {
2739         .name = "SWAP",
2740         .version = G_VERSION,
2741         .orphan = swapgeom_orphan,
2742 };
2743
2744 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2745
2746 static void
2747 swapgeom_close_ev(void *arg, int flags)
2748 {
2749         struct g_consumer *cp;
2750
2751         cp = arg;
2752         g_access(cp, -1, -1, 0);
2753         g_detach(cp);
2754         g_destroy_consumer(cp);
2755 }
2756
2757 /*
2758  * Add a reference to the g_consumer for an inflight transaction.
2759  */
2760 static void
2761 swapgeom_acquire(struct g_consumer *cp)
2762 {
2763
2764         mtx_assert(&sw_dev_mtx, MA_OWNED);
2765         cp->index++;
2766 }
2767
2768 /*
2769  * Remove a reference from the g_consumer.  Post a close event if all
2770  * references go away, since the function might be called from the
2771  * biodone context.
2772  */
2773 static void
2774 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2775 {
2776
2777         mtx_assert(&sw_dev_mtx, MA_OWNED);
2778         cp->index--;
2779         if (cp->index == 0) {
2780                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2781                         sp->sw_id = NULL;
2782         }
2783 }
2784
2785 static void
2786 swapgeom_done(struct bio *bp2)
2787 {
2788         struct swdevt *sp;
2789         struct buf *bp;
2790         struct g_consumer *cp;
2791
2792         bp = bp2->bio_caller2;
2793         cp = bp2->bio_from;
2794         bp->b_ioflags = bp2->bio_flags;
2795         if (bp2->bio_error)
2796                 bp->b_ioflags |= BIO_ERROR;
2797         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2798         bp->b_error = bp2->bio_error;
2799         bp->b_caller1 = NULL;
2800         bufdone(bp);
2801         sp = bp2->bio_caller1;
2802         mtx_lock(&sw_dev_mtx);
2803         swapgeom_release(cp, sp);
2804         mtx_unlock(&sw_dev_mtx);
2805         g_destroy_bio(bp2);
2806 }
2807
2808 static void
2809 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2810 {
2811         struct bio *bio;
2812         struct g_consumer *cp;
2813
2814         mtx_lock(&sw_dev_mtx);
2815         cp = sp->sw_id;
2816         if (cp == NULL) {
2817                 mtx_unlock(&sw_dev_mtx);
2818                 bp->b_error = ENXIO;
2819                 bp->b_ioflags |= BIO_ERROR;
2820                 bufdone(bp);
2821                 return;
2822         }
2823         swapgeom_acquire(cp);
2824         mtx_unlock(&sw_dev_mtx);
2825         if (bp->b_iocmd == BIO_WRITE)
2826                 bio = g_new_bio();
2827         else
2828                 bio = g_alloc_bio();
2829         if (bio == NULL) {
2830                 mtx_lock(&sw_dev_mtx);
2831                 swapgeom_release(cp, sp);
2832                 mtx_unlock(&sw_dev_mtx);
2833                 bp->b_error = ENOMEM;
2834                 bp->b_ioflags |= BIO_ERROR;
2835                 printf("swap_pager: cannot allocate bio\n");
2836                 bufdone(bp);
2837                 return;
2838         }
2839
2840         bp->b_caller1 = bio;
2841         bio->bio_caller1 = sp;
2842         bio->bio_caller2 = bp;
2843         bio->bio_cmd = bp->b_iocmd;
2844         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2845         bio->bio_length = bp->b_bcount;
2846         bio->bio_done = swapgeom_done;
2847         if (!buf_mapped(bp)) {
2848                 bio->bio_ma = bp->b_pages;
2849                 bio->bio_data = unmapped_buf;
2850                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2851                 bio->bio_ma_n = bp->b_npages;
2852                 bio->bio_flags |= BIO_UNMAPPED;
2853         } else {
2854                 bio->bio_data = bp->b_data;
2855                 bio->bio_ma = NULL;
2856         }
2857         g_io_request(bio, cp);
2858         return;
2859 }
2860
2861 static void
2862 swapgeom_orphan(struct g_consumer *cp)
2863 {
2864         struct swdevt *sp;
2865         int destroy;
2866
2867         mtx_lock(&sw_dev_mtx);
2868         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2869                 if (sp->sw_id == cp) {
2870                         sp->sw_flags |= SW_CLOSING;
2871                         break;
2872                 }
2873         }
2874         /*
2875          * Drop reference we were created with. Do directly since we're in a
2876          * special context where we don't have to queue the call to
2877          * swapgeom_close_ev().
2878          */
2879         cp->index--;
2880         destroy = ((sp != NULL) && (cp->index == 0));
2881         if (destroy)
2882                 sp->sw_id = NULL;
2883         mtx_unlock(&sw_dev_mtx);
2884         if (destroy)
2885                 swapgeom_close_ev(cp, 0);
2886 }
2887
2888 static void
2889 swapgeom_close(struct thread *td, struct swdevt *sw)
2890 {
2891         struct g_consumer *cp;
2892
2893         mtx_lock(&sw_dev_mtx);
2894         cp = sw->sw_id;
2895         sw->sw_id = NULL;
2896         mtx_unlock(&sw_dev_mtx);
2897
2898         /*
2899          * swapgeom_close() may be called from the biodone context,
2900          * where we cannot perform topology changes.  Delegate the
2901          * work to the events thread.
2902          */
2903         if (cp != NULL)
2904                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2905 }
2906
2907 static int
2908 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2909 {
2910         struct g_provider *pp;
2911         struct g_consumer *cp;
2912         static struct g_geom *gp;
2913         struct swdevt *sp;
2914         u_long nblks;
2915         int error;
2916
2917         pp = g_dev_getprovider(dev);
2918         if (pp == NULL)
2919                 return (ENODEV);
2920         mtx_lock(&sw_dev_mtx);
2921         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2922                 cp = sp->sw_id;
2923                 if (cp != NULL && cp->provider == pp) {
2924                         mtx_unlock(&sw_dev_mtx);
2925                         return (EBUSY);
2926                 }
2927         }
2928         mtx_unlock(&sw_dev_mtx);
2929         if (gp == NULL)
2930                 gp = g_new_geomf(&g_swap_class, "swap");
2931         cp = g_new_consumer(gp);
2932         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2933         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2934         g_attach(cp, pp);
2935         /*
2936          * XXX: Every time you think you can improve the margin for
2937          * footshooting, somebody depends on the ability to do so:
2938          * savecore(8) wants to write to our swapdev so we cannot
2939          * set an exclusive count :-(
2940          */
2941         error = g_access(cp, 1, 1, 0);
2942         if (error != 0) {
2943                 g_detach(cp);
2944                 g_destroy_consumer(cp);
2945                 return (error);
2946         }
2947         nblks = pp->mediasize / DEV_BSIZE;
2948         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2949             swapgeom_close, dev2udev(dev),
2950             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2951         return (0);
2952 }
2953
2954 static int
2955 swapongeom(struct vnode *vp)
2956 {
2957         int error;
2958
2959         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2960         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2961                 error = ENOENT;
2962         } else {
2963                 g_topology_lock();
2964                 error = swapongeom_locked(vp->v_rdev, vp);
2965                 g_topology_unlock();
2966         }
2967         VOP_UNLOCK(vp);
2968         return (error);
2969 }
2970
2971 /*
2972  * VNODE backend
2973  *
2974  * This is used mainly for network filesystem (read: probably only tested
2975  * with NFS) swapfiles.
2976  *
2977  */
2978
2979 static void
2980 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2981 {
2982         struct vnode *vp2;
2983
2984         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2985
2986         vp2 = sp->sw_id;
2987         vhold(vp2);
2988         if (bp->b_iocmd == BIO_WRITE) {
2989                 if (bp->b_bufobj)
2990                         bufobj_wdrop(bp->b_bufobj);
2991                 bufobj_wref(&vp2->v_bufobj);
2992         }
2993         if (bp->b_bufobj != &vp2->v_bufobj)
2994                 bp->b_bufobj = &vp2->v_bufobj;
2995         bp->b_vp = vp2;
2996         bp->b_iooffset = dbtob(bp->b_blkno);
2997         bstrategy(bp);
2998         return;
2999 }
3000
3001 static void
3002 swapdev_close(struct thread *td, struct swdevt *sp)
3003 {
3004
3005         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3006         vrele(sp->sw_vp);
3007 }
3008
3009 static int
3010 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3011 {
3012         struct swdevt *sp;
3013         int error;
3014
3015         if (nblks == 0)
3016                 return (ENXIO);
3017         mtx_lock(&sw_dev_mtx);
3018         TAILQ_FOREACH(sp, &swtailq, sw_list) {
3019                 if (sp->sw_id == vp) {
3020                         mtx_unlock(&sw_dev_mtx);
3021                         return (EBUSY);
3022                 }
3023         }
3024         mtx_unlock(&sw_dev_mtx);
3025
3026         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3027 #ifdef MAC
3028         error = mac_system_check_swapon(td->td_ucred, vp);
3029         if (error == 0)
3030 #endif
3031                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3032         (void) VOP_UNLOCK(vp);
3033         if (error)
3034                 return (error);
3035
3036         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3037             NODEV, 0);
3038         return (0);
3039 }
3040
3041 static int
3042 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3043 {
3044         int error, new, n;
3045
3046         new = nsw_wcount_async_max;
3047         error = sysctl_handle_int(oidp, &new, 0, req);
3048         if (error != 0 || req->newptr == NULL)
3049                 return (error);
3050
3051         if (new > nswbuf / 2 || new < 1)
3052                 return (EINVAL);
3053
3054         mtx_lock(&swbuf_mtx);
3055         while (nsw_wcount_async_max != new) {
3056                 /*
3057                  * Adjust difference.  If the current async count is too low,
3058                  * we will need to sqeeze our update slowly in.  Sleep with a
3059                  * higher priority than getpbuf() to finish faster.
3060                  */
3061                 n = new - nsw_wcount_async_max;
3062                 if (nsw_wcount_async + n >= 0) {
3063                         nsw_wcount_async += n;
3064                         nsw_wcount_async_max += n;
3065                         wakeup(&nsw_wcount_async);
3066                 } else {
3067                         nsw_wcount_async_max -= nsw_wcount_async;
3068                         nsw_wcount_async = 0;
3069                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3070                             "swpsysctl", 0);
3071                 }
3072         }
3073         mtx_unlock(&swbuf_mtx);
3074
3075         return (0);
3076 }
3077
3078 static void
3079 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3080     vm_offset_t end)
3081 {
3082
3083         VM_OBJECT_WLOCK(object);
3084         KASSERT((object->flags & OBJ_ANON) == 0,
3085             ("Splittable object with writecount"));
3086         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3087         VM_OBJECT_WUNLOCK(object);
3088 }
3089
3090 static void
3091 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3092     vm_offset_t end)
3093 {
3094
3095         VM_OBJECT_WLOCK(object);
3096         KASSERT((object->flags & OBJ_ANON) == 0,
3097             ("Splittable object with writecount"));
3098         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3099         VM_OBJECT_WUNLOCK(object);
3100 }