]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Add UPDATING entry and bump version
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_swap.h"
75 #include "opt_vm.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/conf.h>
80 #include <sys/kernel.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/bio.h>
84 #include <sys/buf.h>
85 #include <sys/disk.h>
86 #include <sys/disklabel.h>
87 #include <sys/fcntl.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/vnode.h>
91 #include <sys/malloc.h>
92 #include <sys/pctrie.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/blist.h>
101 #include <sys/lock.h>
102 #include <sys/sx.h>
103 #include <sys/vmmeter.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
159     &swap_reserved, 0, sysctl_page_shift, "A", 
160     "Amount of swap storage needed to back all allocated anonymous memory.");
161 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
162     &swap_total, 0, sysctl_page_shift, "A", 
163     "Total amount of available swap storage.");
164
165 static int overcommit = 0;
166 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
167     "Configure virtual memory overcommit behavior. See tuning(7) "
168     "for details.");
169 static unsigned long swzone;
170 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
171     "Actual size of swap metadata zone");
172 static unsigned long swap_maxpages;
173 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
174     "Maximum amount of swap supported");
175
176 /* bits from overcommit */
177 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
178 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
179 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
180
181 static int
182 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
183 {
184         uint64_t newval;
185         u_long value = *(u_long *)arg1;
186
187         newval = ((uint64_t)value) << PAGE_SHIFT;
188         return (sysctl_handle_64(oidp, &newval, 0, req));
189 }
190
191 int
192 swap_reserve(vm_ooffset_t incr)
193 {
194
195         return (swap_reserve_by_cred(incr, curthread->td_ucred));
196 }
197
198 int
199 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
200 {
201         u_long r, s, prev, pincr;
202         int res, error;
203         static int curfail;
204         static struct timeval lastfail;
205         struct uidinfo *uip;
206
207         uip = cred->cr_ruidinfo;
208
209         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
210             (uintmax_t)incr));
211
212 #ifdef RACCT
213         if (racct_enable) {
214                 PROC_LOCK(curproc);
215                 error = racct_add(curproc, RACCT_SWAP, incr);
216                 PROC_UNLOCK(curproc);
217                 if (error != 0)
218                         return (0);
219         }
220 #endif
221
222         pincr = atop(incr);
223         res = 0;
224         prev = atomic_fetchadd_long(&swap_reserved, pincr);
225         r = prev + pincr;
226         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
227                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
228                     vm_wire_count();
229         } else
230                 s = 0;
231         s += swap_total;
232         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
233             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
234                 res = 1;
235         } else {
236                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
237                 if (prev < pincr)
238                         panic("swap_reserved < incr on overcommit fail");
239         }
240         if (res) {
241                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
242                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
243                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
244                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
245                         res = 0;
246                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
247                         if (prev < pincr)
248                                 panic("uip->ui_vmsize < incr on overcommit fail");
249                 }
250         }
251         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
252                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
253                     uip->ui_uid, curproc->p_pid, incr);
254         }
255
256 #ifdef RACCT
257         if (racct_enable && !res) {
258                 PROC_LOCK(curproc);
259                 racct_sub(curproc, RACCT_SWAP, incr);
260                 PROC_UNLOCK(curproc);
261         }
262 #endif
263
264         return (res);
265 }
266
267 void
268 swap_reserve_force(vm_ooffset_t incr)
269 {
270         struct uidinfo *uip;
271         u_long pincr;
272
273         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
274             (uintmax_t)incr));
275
276         PROC_LOCK(curproc);
277 #ifdef RACCT
278         if (racct_enable)
279                 racct_add_force(curproc, RACCT_SWAP, incr);
280 #endif
281         pincr = atop(incr);
282         atomic_add_long(&swap_reserved, pincr);
283         uip = curproc->p_ucred->cr_ruidinfo;
284         atomic_add_long(&uip->ui_vmsize, pincr);
285         PROC_UNLOCK(curproc);
286 }
287
288 void
289 swap_release(vm_ooffset_t decr)
290 {
291         struct ucred *cred;
292
293         PROC_LOCK(curproc);
294         cred = curproc->p_ucred;
295         swap_release_by_cred(decr, cred);
296         PROC_UNLOCK(curproc);
297 }
298
299 void
300 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
301 {
302         u_long prev, pdecr;
303         struct uidinfo *uip;
304
305         uip = cred->cr_ruidinfo;
306
307         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
308             (uintmax_t)decr));
309
310         pdecr = atop(decr);
311         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
312         if (prev < pdecr)
313                 panic("swap_reserved < decr");
314
315         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
316         if (prev < pdecr)
317                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
318 #ifdef RACCT
319         if (racct_enable)
320                 racct_sub_cred(cred, RACCT_SWAP, decr);
321 #endif
322 }
323
324 #define SWM_POP         0x01    /* pop out                      */
325
326 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
327 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
328 static int nsw_rcount;          /* free read buffers                    */
329 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
330 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
331 static int nsw_wcount_async_max;/* assigned maximum                     */
332 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
333
334 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
335 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
336     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
337     "Maximum running async swap ops");
338 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
339 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
340     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
341     "Swap Fragmentation Info");
342
343 static struct sx sw_alloc_sx;
344
345 /*
346  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
347  * of searching a named list by hashing it just a little.
348  */
349
350 #define NOBJLISTS               8
351
352 #define NOBJLIST(handle)        \
353         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
354
355 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
356 static uma_zone_t swblk_zone;
357 static uma_zone_t swpctrie_zone;
358
359 /*
360  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
361  * calls hooked from other parts of the VM system and do not appear here.
362  * (see vm/swap_pager.h).
363  */
364 static vm_object_t
365                 swap_pager_alloc(void *handle, vm_ooffset_t size,
366                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
367 static void     swap_pager_dealloc(vm_object_t object);
368 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
369     int *);
370 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
371     int *, pgo_getpages_iodone_t, void *);
372 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
373 static boolean_t
374                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
375 static void     swap_pager_init(void);
376 static void     swap_pager_unswapped(vm_page_t);
377 static void     swap_pager_swapoff(struct swdevt *sp);
378
379 struct pagerops swappagerops = {
380         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
381         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
382         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
383         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
384         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
385         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
386         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
387         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
388 };
389
390 /*
391  * swap_*() routines are externally accessible.  swp_*() routines are
392  * internal.
393  */
394 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
395 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
396
397 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
398     "Maximum size of a swap block in pages");
399
400 static void     swp_sizecheck(void);
401 static void     swp_pager_async_iodone(struct buf *bp);
402 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
403 static int      swapongeom(struct vnode *);
404 static int      swaponvp(struct thread *, struct vnode *, u_long);
405 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
406
407 /*
408  * Swap bitmap functions
409  */
410 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
411 static daddr_t  swp_pager_getswapspace(int npages);
412
413 /*
414  * Metadata functions
415  */
416 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
417 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
418 static void swp_pager_meta_free_all(vm_object_t);
419 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
420
421 static void
422 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
423 {
424
425         *start = SWAPBLK_NONE;
426         *num = 0;
427 }
428
429 static void
430 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
431 {
432
433         if (*start + *num == addr) {
434                 (*num)++;
435         } else {
436                 swp_pager_freeswapspace(*start, *num);
437                 *start = addr;
438                 *num = 1;
439         }
440 }
441
442 static void *
443 swblk_trie_alloc(struct pctrie *ptree)
444 {
445
446         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
447             M_USE_RESERVE : 0)));
448 }
449
450 static void
451 swblk_trie_free(struct pctrie *ptree, void *node)
452 {
453
454         uma_zfree(swpctrie_zone, node);
455 }
456
457 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
458
459 /*
460  * SWP_SIZECHECK() -    update swap_pager_full indication
461  *
462  *      update the swap_pager_almost_full indication and warn when we are
463  *      about to run out of swap space, using lowat/hiwat hysteresis.
464  *
465  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
466  *
467  *      No restrictions on call
468  *      This routine may not block.
469  */
470 static void
471 swp_sizecheck(void)
472 {
473
474         if (swap_pager_avail < nswap_lowat) {
475                 if (swap_pager_almost_full == 0) {
476                         printf("swap_pager: out of swap space\n");
477                         swap_pager_almost_full = 1;
478                 }
479         } else {
480                 swap_pager_full = 0;
481                 if (swap_pager_avail > nswap_hiwat)
482                         swap_pager_almost_full = 0;
483         }
484 }
485
486 /*
487  * SWAP_PAGER_INIT() -  initialize the swap pager!
488  *
489  *      Expected to be started from system init.  NOTE:  This code is run
490  *      before much else so be careful what you depend on.  Most of the VM
491  *      system has yet to be initialized at this point.
492  */
493 static void
494 swap_pager_init(void)
495 {
496         /*
497          * Initialize object lists
498          */
499         int i;
500
501         for (i = 0; i < NOBJLISTS; ++i)
502                 TAILQ_INIT(&swap_pager_object_list[i]);
503         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
504         sx_init(&sw_alloc_sx, "swspsx");
505         sx_init(&swdev_syscall_lock, "swsysc");
506 }
507
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *      Expected to be started from pageout process once, prior to entering
512  *      its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517         unsigned long n, n2;
518
519         /*
520          * Number of in-transit swap bp operations.  Don't
521          * exhaust the pbufs completely.  Make sure we
522          * initialize workable values (0 will work for hysteresis
523          * but it isn't very efficient).
524          *
525          * The nsw_cluster_max is constrained by the bp->b_pages[]
526          * array (MAXPHYS/PAGE_SIZE) and our locally defined
527          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528          * constrained by the swap device interleave stripe size.
529          *
530          * Currently we hardwire nsw_wcount_async to 4.  This limit is
531          * designed to prevent other I/O from having high latencies due to
532          * our pageout I/O.  The value 4 works well for one or two active swap
533          * devices but is probably a little low if you have more.  Even so,
534          * a higher value would probably generate only a limited improvement
535          * with three or four active swap devices since the system does not
536          * typically have to pageout at extreme bandwidths.   We will want
537          * at least 2 per swap devices, and 4 is a pretty good value if you
538          * have one NFS swap device due to the command/ack latency over NFS.
539          * So it all works out pretty well.
540          */
541         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
542
543         mtx_lock(&pbuf_mtx);
544         nsw_rcount = (nswbuf + 1) / 2;
545         nsw_wcount_sync = (nswbuf + 3) / 4;
546         nsw_wcount_async = 4;
547         nsw_wcount_async_max = nsw_wcount_async;
548         mtx_unlock(&pbuf_mtx);
549
550         /*
551          * Initialize our zone, taking the user's requested size or
552          * estimating the number we need based on the number of pages
553          * in the system.
554          */
555         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
556             vm_cnt.v_page_count / 2;
557         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
558             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
559         if (swpctrie_zone == NULL)
560                 panic("failed to create swap pctrie zone.");
561         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
562             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
563         if (swblk_zone == NULL)
564                 panic("failed to create swap blk zone.");
565         n2 = n;
566         do {
567                 if (uma_zone_reserve_kva(swblk_zone, n))
568                         break;
569                 /*
570                  * if the allocation failed, try a zone two thirds the
571                  * size of the previous attempt.
572                  */
573                 n -= ((n + 2) / 3);
574         } while (n > 0);
575
576         /*
577          * Often uma_zone_reserve_kva() cannot reserve exactly the
578          * requested size.  Account for the difference when
579          * calculating swap_maxpages.
580          */
581         n = uma_zone_get_max(swblk_zone);
582
583         if (n < n2)
584                 printf("Swap blk zone entries changed from %lu to %lu.\n",
585                     n2, n);
586         swap_maxpages = n * SWAP_META_PAGES;
587         swzone = n * sizeof(struct swblk);
588         if (!uma_zone_reserve_kva(swpctrie_zone, n))
589                 printf("Cannot reserve swap pctrie zone, "
590                     "reduce kern.maxswzone.\n");
591 }
592
593 static vm_object_t
594 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
595     vm_ooffset_t offset)
596 {
597         vm_object_t object;
598
599         if (cred != NULL) {
600                 if (!swap_reserve_by_cred(size, cred))
601                         return (NULL);
602                 crhold(cred);
603         }
604
605         /*
606          * The un_pager.swp.swp_blks trie is initialized by
607          * vm_object_allocate() to ensure the correct order of
608          * visibility to other threads.
609          */
610         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
611             PAGE_MASK + size));
612
613         object->handle = handle;
614         if (cred != NULL) {
615                 object->cred = cred;
616                 object->charge = size;
617         }
618         return (object);
619 }
620
621 /*
622  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
623  *                      its metadata structures.
624  *
625  *      This routine is called from the mmap and fork code to create a new
626  *      OBJT_SWAP object.
627  *
628  *      This routine must ensure that no live duplicate is created for
629  *      the named object request, which is protected against by
630  *      holding the sw_alloc_sx lock in case handle != NULL.
631  */
632 static vm_object_t
633 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
634     vm_ooffset_t offset, struct ucred *cred)
635 {
636         vm_object_t object;
637
638         if (handle != NULL) {
639                 /*
640                  * Reference existing named region or allocate new one.  There
641                  * should not be a race here against swp_pager_meta_build()
642                  * as called from vm_page_remove() in regards to the lookup
643                  * of the handle.
644                  */
645                 sx_xlock(&sw_alloc_sx);
646                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
647                 if (object == NULL) {
648                         object = swap_pager_alloc_init(handle, cred, size,
649                             offset);
650                         if (object != NULL) {
651                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
652                                     object, pager_object_list);
653                         }
654                 }
655                 sx_xunlock(&sw_alloc_sx);
656         } else {
657                 object = swap_pager_alloc_init(handle, cred, size, offset);
658         }
659         return (object);
660 }
661
662 /*
663  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
664  *
665  *      The swap backing for the object is destroyed.  The code is
666  *      designed such that we can reinstantiate it later, but this
667  *      routine is typically called only when the entire object is
668  *      about to be destroyed.
669  *
670  *      The object must be locked.
671  */
672 static void
673 swap_pager_dealloc(vm_object_t object)
674 {
675
676         VM_OBJECT_ASSERT_WLOCKED(object);
677         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
678
679         /*
680          * Remove from list right away so lookups will fail if we block for
681          * pageout completion.
682          */
683         if (object->handle != NULL) {
684                 VM_OBJECT_WUNLOCK(object);
685                 sx_xlock(&sw_alloc_sx);
686                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
687                     pager_object_list);
688                 sx_xunlock(&sw_alloc_sx);
689                 VM_OBJECT_WLOCK(object);
690         }
691
692         vm_object_pip_wait(object, "swpdea");
693
694         /*
695          * Free all remaining metadata.  We only bother to free it from
696          * the swap meta data.  We do not attempt to free swapblk's still
697          * associated with vm_page_t's for this object.  We do not care
698          * if paging is still in progress on some objects.
699          */
700         swp_pager_meta_free_all(object);
701         object->handle = NULL;
702         object->type = OBJT_DEAD;
703 }
704
705 /************************************************************************
706  *                      SWAP PAGER BITMAP ROUTINES                      *
707  ************************************************************************/
708
709 /*
710  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
711  *
712  *      Allocate swap for the requested number of pages.  The starting
713  *      swap block number (a page index) is returned or SWAPBLK_NONE
714  *      if the allocation failed.
715  *
716  *      Also has the side effect of advising that somebody made a mistake
717  *      when they configured swap and didn't configure enough.
718  *
719  *      This routine may not sleep.
720  *
721  *      We allocate in round-robin fashion from the configured devices.
722  */
723 static daddr_t
724 swp_pager_getswapspace(int npages)
725 {
726         daddr_t blk;
727         struct swdevt *sp;
728         int i;
729
730         blk = SWAPBLK_NONE;
731         mtx_lock(&sw_dev_mtx);
732         sp = swdevhd;
733         for (i = 0; i < nswapdev; i++) {
734                 if (sp == NULL)
735                         sp = TAILQ_FIRST(&swtailq);
736                 if (!(sp->sw_flags & SW_CLOSING)) {
737                         blk = blist_alloc(sp->sw_blist, npages);
738                         if (blk != SWAPBLK_NONE) {
739                                 blk += sp->sw_first;
740                                 sp->sw_used += npages;
741                                 swap_pager_avail -= npages;
742                                 swp_sizecheck();
743                                 swdevhd = TAILQ_NEXT(sp, sw_list);
744                                 goto done;
745                         }
746                 }
747                 sp = TAILQ_NEXT(sp, sw_list);
748         }
749         if (swap_pager_full != 2) {
750                 printf("swap_pager_getswapspace(%d): failed\n", npages);
751                 swap_pager_full = 2;
752                 swap_pager_almost_full = 1;
753         }
754         swdevhd = NULL;
755 done:
756         mtx_unlock(&sw_dev_mtx);
757         return (blk);
758 }
759
760 static int
761 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
762 {
763
764         return (blk >= sp->sw_first && blk < sp->sw_end);
765 }
766
767 static void
768 swp_pager_strategy(struct buf *bp)
769 {
770         struct swdevt *sp;
771
772         mtx_lock(&sw_dev_mtx);
773         TAILQ_FOREACH(sp, &swtailq, sw_list) {
774                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
775                         mtx_unlock(&sw_dev_mtx);
776                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
777                             unmapped_buf_allowed) {
778                                 bp->b_data = unmapped_buf;
779                                 bp->b_offset = 0;
780                         } else {
781                                 pmap_qenter((vm_offset_t)bp->b_data,
782                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
783                         }
784                         sp->sw_strategy(bp, sp);
785                         return;
786                 }
787         }
788         panic("Swapdev not found");
789 }
790
791
792 /*
793  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
794  *
795  *      This routine returns the specified swap blocks back to the bitmap.
796  *
797  *      This routine may not sleep.
798  */
799 static void
800 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
801 {
802         struct swdevt *sp;
803
804         if (npages == 0)
805                 return;
806         mtx_lock(&sw_dev_mtx);
807         TAILQ_FOREACH(sp, &swtailq, sw_list) {
808                 if (blk >= sp->sw_first && blk < sp->sw_end) {
809                         sp->sw_used -= npages;
810                         /*
811                          * If we are attempting to stop swapping on
812                          * this device, we don't want to mark any
813                          * blocks free lest they be reused.
814                          */
815                         if ((sp->sw_flags & SW_CLOSING) == 0) {
816                                 blist_free(sp->sw_blist, blk - sp->sw_first,
817                                     npages);
818                                 swap_pager_avail += npages;
819                                 swp_sizecheck();
820                         }
821                         mtx_unlock(&sw_dev_mtx);
822                         return;
823                 }
824         }
825         panic("Swapdev not found");
826 }
827
828 /*
829  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
830  */
831 static int
832 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
833 {
834         struct sbuf sbuf;
835         struct swdevt *sp;
836         const char *devname;
837         int error;
838
839         error = sysctl_wire_old_buffer(req, 0);
840         if (error != 0)
841                 return (error);
842         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
843         mtx_lock(&sw_dev_mtx);
844         TAILQ_FOREACH(sp, &swtailq, sw_list) {
845                 if (vn_isdisk(sp->sw_vp, NULL))
846                         devname = devtoname(sp->sw_vp->v_rdev);
847                 else
848                         devname = "[file]";
849                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
850                 blist_stats(sp->sw_blist, &sbuf);
851         }
852         mtx_unlock(&sw_dev_mtx);
853         error = sbuf_finish(&sbuf);
854         sbuf_delete(&sbuf);
855         return (error);
856 }
857
858 /*
859  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
860  *                              range within an object.
861  *
862  *      This is a globally accessible routine.
863  *
864  *      This routine removes swapblk assignments from swap metadata.
865  *
866  *      The external callers of this routine typically have already destroyed
867  *      or renamed vm_page_t's associated with this range in the object so
868  *      we should be ok.
869  *
870  *      The object must be locked.
871  */
872 void
873 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
874 {
875
876         swp_pager_meta_free(object, start, size);
877 }
878
879 /*
880  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
881  *
882  *      Assigns swap blocks to the specified range within the object.  The
883  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
884  *
885  *      Returns 0 on success, -1 on failure.
886  */
887 int
888 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
889 {
890         int n = 0;
891         daddr_t blk = SWAPBLK_NONE;
892         vm_pindex_t beg = start;        /* save start index */
893         daddr_t addr, n_free, s_free;
894
895         swp_pager_init_freerange(&s_free, &n_free);
896         VM_OBJECT_WLOCK(object);
897         while (size) {
898                 if (n == 0) {
899                         n = BLIST_MAX_ALLOC;
900                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
901                                 n >>= 1;
902                                 if (n == 0) {
903                                         swp_pager_meta_free(object, beg, start - beg);
904                                         VM_OBJECT_WUNLOCK(object);
905                                         return (-1);
906                                 }
907                         }
908                 }
909                 addr = swp_pager_meta_build(object, start, blk);
910                 if (addr != SWAPBLK_NONE)
911                         swp_pager_update_freerange(&s_free, &n_free, addr);
912                 --size;
913                 ++start;
914                 ++blk;
915                 --n;
916         }
917         swp_pager_freeswapspace(s_free, n_free);
918         swp_pager_meta_free(object, start, n);
919         VM_OBJECT_WUNLOCK(object);
920         return (0);
921 }
922
923 /*
924  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
925  *                      and destroy the source.
926  *
927  *      Copy any valid swapblks from the source to the destination.  In
928  *      cases where both the source and destination have a valid swapblk,
929  *      we keep the destination's.
930  *
931  *      This routine is allowed to sleep.  It may sleep allocating metadata
932  *      indirectly through swp_pager_meta_build() or if paging is still in
933  *      progress on the source.
934  *
935  *      The source object contains no vm_page_t's (which is just as well)
936  *
937  *      The source object is of type OBJT_SWAP.
938  *
939  *      The source and destination objects must be locked.
940  *      Both object locks may temporarily be released.
941  */
942 void
943 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
944     vm_pindex_t offset, int destroysource)
945 {
946         vm_pindex_t i;
947         daddr_t dstaddr, n_free, s_free, srcaddr;
948
949         VM_OBJECT_ASSERT_WLOCKED(srcobject);
950         VM_OBJECT_ASSERT_WLOCKED(dstobject);
951
952         /*
953          * If destroysource is set, we remove the source object from the
954          * swap_pager internal queue now.
955          */
956         if (destroysource && srcobject->handle != NULL) {
957                 vm_object_pip_add(srcobject, 1);
958                 VM_OBJECT_WUNLOCK(srcobject);
959                 vm_object_pip_add(dstobject, 1);
960                 VM_OBJECT_WUNLOCK(dstobject);
961                 sx_xlock(&sw_alloc_sx);
962                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
963                     pager_object_list);
964                 sx_xunlock(&sw_alloc_sx);
965                 VM_OBJECT_WLOCK(dstobject);
966                 vm_object_pip_wakeup(dstobject);
967                 VM_OBJECT_WLOCK(srcobject);
968                 vm_object_pip_wakeup(srcobject);
969         }
970
971         /*
972          * Transfer source to destination.
973          */
974         swp_pager_init_freerange(&s_free, &n_free);
975         for (i = 0; i < dstobject->size; ++i) {
976                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
977                 if (srcaddr == SWAPBLK_NONE)
978                         continue;
979                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
980                 if (dstaddr != SWAPBLK_NONE) {
981                         /*
982                          * Destination has valid swapblk or it is represented
983                          * by a resident page.  We destroy the source block.
984                          */
985                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
986                         continue;
987                 }
988
989                 /*
990                  * Destination has no swapblk and is not resident,
991                  * copy source.
992                  *
993                  * swp_pager_meta_build() can sleep.
994                  */
995                 vm_object_pip_add(srcobject, 1);
996                 VM_OBJECT_WUNLOCK(srcobject);
997                 vm_object_pip_add(dstobject, 1);
998                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
999                 KASSERT(dstaddr == SWAPBLK_NONE,
1000                     ("Unexpected destination swapblk"));
1001                 vm_object_pip_wakeup(dstobject);
1002                 VM_OBJECT_WLOCK(srcobject);
1003                 vm_object_pip_wakeup(srcobject);
1004         }
1005         swp_pager_freeswapspace(s_free, n_free);
1006
1007         /*
1008          * Free left over swap blocks in source.
1009          *
1010          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1011          * double-remove the object from the swap queues.
1012          */
1013         if (destroysource) {
1014                 swp_pager_meta_free_all(srcobject);
1015                 /*
1016                  * Reverting the type is not necessary, the caller is going
1017                  * to destroy srcobject directly, but I'm doing it here
1018                  * for consistency since we've removed the object from its
1019                  * queues.
1020                  */
1021                 srcobject->type = OBJT_DEFAULT;
1022         }
1023 }
1024
1025 /*
1026  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1027  *                              the requested page.
1028  *
1029  *      We determine whether good backing store exists for the requested
1030  *      page and return TRUE if it does, FALSE if it doesn't.
1031  *
1032  *      If TRUE, we also try to determine how much valid, contiguous backing
1033  *      store exists before and after the requested page.
1034  */
1035 static boolean_t
1036 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1037     int *after)
1038 {
1039         daddr_t blk, blk0;
1040         int i;
1041
1042         VM_OBJECT_ASSERT_LOCKED(object);
1043
1044         /*
1045          * do we have good backing store at the requested index ?
1046          */
1047         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1048         if (blk0 == SWAPBLK_NONE) {
1049                 if (before)
1050                         *before = 0;
1051                 if (after)
1052                         *after = 0;
1053                 return (FALSE);
1054         }
1055
1056         /*
1057          * find backwards-looking contiguous good backing store
1058          */
1059         if (before != NULL) {
1060                 for (i = 1; i < SWB_NPAGES; i++) {
1061                         if (i > pindex)
1062                                 break;
1063                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1064                         if (blk != blk0 - i)
1065                                 break;
1066                 }
1067                 *before = i - 1;
1068         }
1069
1070         /*
1071          * find forward-looking contiguous good backing store
1072          */
1073         if (after != NULL) {
1074                 for (i = 1; i < SWB_NPAGES; i++) {
1075                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1076                         if (blk != blk0 + i)
1077                                 break;
1078                 }
1079                 *after = i - 1;
1080         }
1081         return (TRUE);
1082 }
1083
1084 /*
1085  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1086  *
1087  *      This removes any associated swap backing store, whether valid or
1088  *      not, from the page.
1089  *
1090  *      This routine is typically called when a page is made dirty, at
1091  *      which point any associated swap can be freed.  MADV_FREE also
1092  *      calls us in a special-case situation
1093  *
1094  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1095  *      should make the page dirty before calling this routine.  This routine
1096  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1097  *      depends on it.
1098  *
1099  *      This routine may not sleep.
1100  *
1101  *      The object containing the page must be locked.
1102  */
1103 static void
1104 swap_pager_unswapped(vm_page_t m)
1105 {
1106         daddr_t srcaddr;
1107
1108         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1109         if (srcaddr != SWAPBLK_NONE)
1110                 swp_pager_freeswapspace(srcaddr, 1);
1111 }
1112
1113 /*
1114  * swap_pager_getpages() - bring pages in from swap
1115  *
1116  *      Attempt to page in the pages in array "ma" of length "count".  The
1117  *      caller may optionally specify that additional pages preceding and
1118  *      succeeding the specified range be paged in.  The number of such pages
1119  *      is returned in the "rbehind" and "rahead" parameters, and they will
1120  *      be in the inactive queue upon return.
1121  *
1122  *      The pages in "ma" must be busied and will remain busied upon return.
1123  */
1124 static int
1125 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1126     int *rahead)
1127 {
1128         struct buf *bp;
1129         vm_page_t bm, mpred, msucc, p;
1130         vm_pindex_t pindex;
1131         daddr_t blk;
1132         int i, maxahead, maxbehind, reqcount;
1133
1134         reqcount = count;
1135
1136         /*
1137          * Determine the final number of read-behind pages and
1138          * allocate them BEFORE releasing the object lock.  Otherwise,
1139          * there can be a problematic race with vm_object_split().
1140          * Specifically, vm_object_split() might first transfer pages
1141          * that precede ma[0] in the current object to a new object,
1142          * and then this function incorrectly recreates those pages as
1143          * read-behind pages in the current object.
1144          */
1145         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1146                 return (VM_PAGER_FAIL);
1147
1148         /*
1149          * Clip the readahead and readbehind ranges to exclude resident pages.
1150          */
1151         if (rahead != NULL) {
1152                 KASSERT(reqcount - 1 <= maxahead,
1153                     ("page count %d extends beyond swap block", reqcount));
1154                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1155                 pindex = ma[reqcount - 1]->pindex;
1156                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1157                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1158                         *rahead = msucc->pindex - pindex - 1;
1159         }
1160         if (rbehind != NULL) {
1161                 *rbehind = imin(*rbehind, maxbehind);
1162                 pindex = ma[0]->pindex;
1163                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1164                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1165                         *rbehind = pindex - mpred->pindex - 1;
1166         }
1167
1168         bm = ma[0];
1169         for (i = 0; i < count; i++)
1170                 ma[i]->oflags |= VPO_SWAPINPROG;
1171
1172         /*
1173          * Allocate readahead and readbehind pages.
1174          */
1175         if (rbehind != NULL) {
1176                 for (i = 1; i <= *rbehind; i++) {
1177                         p = vm_page_alloc(object, ma[0]->pindex - i,
1178                             VM_ALLOC_NORMAL);
1179                         if (p == NULL)
1180                                 break;
1181                         p->oflags |= VPO_SWAPINPROG;
1182                         bm = p;
1183                 }
1184                 *rbehind = i - 1;
1185         }
1186         if (rahead != NULL) {
1187                 for (i = 0; i < *rahead; i++) {
1188                         p = vm_page_alloc(object,
1189                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1190                         if (p == NULL)
1191                                 break;
1192                         p->oflags |= VPO_SWAPINPROG;
1193                 }
1194                 *rahead = i;
1195         }
1196         if (rbehind != NULL)
1197                 count += *rbehind;
1198         if (rahead != NULL)
1199                 count += *rahead;
1200
1201         vm_object_pip_add(object, count);
1202
1203         pindex = bm->pindex;
1204         blk = swp_pager_meta_ctl(object, pindex, 0);
1205         KASSERT(blk != SWAPBLK_NONE,
1206             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1207
1208         VM_OBJECT_WUNLOCK(object);
1209         bp = getpbuf(&nsw_rcount);
1210         /* Pages cannot leave the object while busy. */
1211         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1212                 MPASS(p->pindex == bm->pindex + i);
1213                 bp->b_pages[i] = p;
1214         }
1215
1216         bp->b_flags |= B_PAGING;
1217         bp->b_iocmd = BIO_READ;
1218         bp->b_iodone = swp_pager_async_iodone;
1219         bp->b_rcred = crhold(thread0.td_ucred);
1220         bp->b_wcred = crhold(thread0.td_ucred);
1221         bp->b_blkno = blk;
1222         bp->b_bcount = PAGE_SIZE * count;
1223         bp->b_bufsize = PAGE_SIZE * count;
1224         bp->b_npages = count;
1225         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1226         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1227
1228         VM_CNT_INC(v_swapin);
1229         VM_CNT_ADD(v_swappgsin, count);
1230
1231         /*
1232          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1233          * this point because we automatically release it on completion.
1234          * Instead, we look at the one page we are interested in which we
1235          * still hold a lock on even through the I/O completion.
1236          *
1237          * The other pages in our ma[] array are also released on completion,
1238          * so we cannot assume they are valid anymore either.
1239          *
1240          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1241          */
1242         BUF_KERNPROC(bp);
1243         swp_pager_strategy(bp);
1244
1245         /*
1246          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1247          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1248          * is set in the metadata for each page in the request.
1249          */
1250         VM_OBJECT_WLOCK(object);
1251         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1252                 ma[0]->oflags |= VPO_SWAPSLEEP;
1253                 VM_CNT_INC(v_intrans);
1254                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1255                     "swread", hz * 20)) {
1256                         printf(
1257 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1258                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1259                 }
1260         }
1261
1262         /*
1263          * If we had an unrecoverable read error pages will not be valid.
1264          */
1265         for (i = 0; i < reqcount; i++)
1266                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1267                         return (VM_PAGER_ERROR);
1268
1269         return (VM_PAGER_OK);
1270
1271         /*
1272          * A final note: in a low swap situation, we cannot deallocate swap
1273          * and mark a page dirty here because the caller is likely to mark
1274          * the page clean when we return, causing the page to possibly revert
1275          * to all-zero's later.
1276          */
1277 }
1278
1279 /*
1280  *      swap_pager_getpages_async():
1281  *
1282  *      Right now this is emulation of asynchronous operation on top of
1283  *      swap_pager_getpages().
1284  */
1285 static int
1286 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1287     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1288 {
1289         int r, error;
1290
1291         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1292         VM_OBJECT_WUNLOCK(object);
1293         switch (r) {
1294         case VM_PAGER_OK:
1295                 error = 0;
1296                 break;
1297         case VM_PAGER_ERROR:
1298                 error = EIO;
1299                 break;
1300         case VM_PAGER_FAIL:
1301                 error = EINVAL;
1302                 break;
1303         default:
1304                 panic("unhandled swap_pager_getpages() error %d", r);
1305         }
1306         (iodone)(arg, ma, count, error);
1307         VM_OBJECT_WLOCK(object);
1308
1309         return (r);
1310 }
1311
1312 /*
1313  *      swap_pager_putpages:
1314  *
1315  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1316  *
1317  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1318  *      are automatically converted to SWAP objects.
1319  *
1320  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1321  *      vm_page reservation system coupled with properly written VFS devices
1322  *      should ensure that no low-memory deadlock occurs.  This is an area
1323  *      which needs work.
1324  *
1325  *      The parent has N vm_object_pip_add() references prior to
1326  *      calling us and will remove references for rtvals[] that are
1327  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1328  *      completion.
1329  *
1330  *      The parent has soft-busy'd the pages it passes us and will unbusy
1331  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1332  *      We need to unbusy the rest on I/O completion.
1333  */
1334 static void
1335 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1336     int flags, int *rtvals)
1337 {
1338         int i, n;
1339         boolean_t sync;
1340         daddr_t addr, n_free, s_free;
1341
1342         swp_pager_init_freerange(&s_free, &n_free);
1343         if (count && ma[0]->object != object) {
1344                 panic("swap_pager_putpages: object mismatch %p/%p",
1345                     object,
1346                     ma[0]->object
1347                 );
1348         }
1349
1350         /*
1351          * Step 1
1352          *
1353          * Turn object into OBJT_SWAP
1354          * check for bogus sysops
1355          * force sync if not pageout process
1356          */
1357         if (object->type != OBJT_SWAP) {
1358                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1359                 KASSERT(addr == SWAPBLK_NONE,
1360                     ("unexpected object swap block"));
1361         }
1362         VM_OBJECT_WUNLOCK(object);
1363
1364         n = 0;
1365         if (curproc != pageproc)
1366                 sync = TRUE;
1367         else
1368                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1369
1370         /*
1371          * Step 2
1372          *
1373          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1374          * The page is left dirty until the pageout operation completes
1375          * successfully.
1376          */
1377         for (i = 0; i < count; i += n) {
1378                 int j;
1379                 struct buf *bp;
1380                 daddr_t blk;
1381
1382                 /*
1383                  * Maximum I/O size is limited by a number of factors.
1384                  */
1385                 n = min(BLIST_MAX_ALLOC, count - i);
1386                 n = min(n, nsw_cluster_max);
1387
1388                 /*
1389                  * Get biggest block of swap we can.  If we fail, fall
1390                  * back and try to allocate a smaller block.  Don't go
1391                  * overboard trying to allocate space if it would overly
1392                  * fragment swap.
1393                  */
1394                 while (
1395                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1396                     n > 4
1397                 ) {
1398                         n >>= 1;
1399                 }
1400                 if (blk == SWAPBLK_NONE) {
1401                         for (j = 0; j < n; ++j)
1402                                 rtvals[i+j] = VM_PAGER_FAIL;
1403                         continue;
1404                 }
1405
1406                 /*
1407                  * All I/O parameters have been satisfied, build the I/O
1408                  * request and assign the swap space.
1409                  */
1410                 if (sync == TRUE) {
1411                         bp = getpbuf(&nsw_wcount_sync);
1412                 } else {
1413                         bp = getpbuf(&nsw_wcount_async);
1414                         bp->b_flags = B_ASYNC;
1415                 }
1416                 bp->b_flags |= B_PAGING;
1417                 bp->b_iocmd = BIO_WRITE;
1418
1419                 bp->b_rcred = crhold(thread0.td_ucred);
1420                 bp->b_wcred = crhold(thread0.td_ucred);
1421                 bp->b_bcount = PAGE_SIZE * n;
1422                 bp->b_bufsize = PAGE_SIZE * n;
1423                 bp->b_blkno = blk;
1424
1425                 VM_OBJECT_WLOCK(object);
1426                 for (j = 0; j < n; ++j) {
1427                         vm_page_t mreq = ma[i+j];
1428
1429                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1430                             blk + j);
1431                         if (addr != SWAPBLK_NONE)
1432                                 swp_pager_update_freerange(&s_free, &n_free,
1433                                     addr);
1434                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1435                         mreq->oflags |= VPO_SWAPINPROG;
1436                         bp->b_pages[j] = mreq;
1437                 }
1438                 VM_OBJECT_WUNLOCK(object);
1439                 bp->b_npages = n;
1440                 /*
1441                  * Must set dirty range for NFS to work.
1442                  */
1443                 bp->b_dirtyoff = 0;
1444                 bp->b_dirtyend = bp->b_bcount;
1445
1446                 VM_CNT_INC(v_swapout);
1447                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1448
1449                 /*
1450                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1451                  * can call the async completion routine at the end of a
1452                  * synchronous I/O operation.  Otherwise, our caller would
1453                  * perform duplicate unbusy and wakeup operations on the page
1454                  * and object, respectively.
1455                  */
1456                 for (j = 0; j < n; j++)
1457                         rtvals[i + j] = VM_PAGER_PEND;
1458
1459                 /*
1460                  * asynchronous
1461                  *
1462                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1463                  */
1464                 if (sync == FALSE) {
1465                         bp->b_iodone = swp_pager_async_iodone;
1466                         BUF_KERNPROC(bp);
1467                         swp_pager_strategy(bp);
1468                         continue;
1469                 }
1470
1471                 /*
1472                  * synchronous
1473                  *
1474                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1475                  */
1476                 bp->b_iodone = bdone;
1477                 swp_pager_strategy(bp);
1478
1479                 /*
1480                  * Wait for the sync I/O to complete.
1481                  */
1482                 bwait(bp, PVM, "swwrt");
1483
1484                 /*
1485                  * Now that we are through with the bp, we can call the
1486                  * normal async completion, which frees everything up.
1487                  */
1488                 swp_pager_async_iodone(bp);
1489         }
1490         VM_OBJECT_WLOCK(object);
1491         swp_pager_freeswapspace(s_free, n_free);
1492 }
1493
1494 /*
1495  *      swp_pager_async_iodone:
1496  *
1497  *      Completion routine for asynchronous reads and writes from/to swap.
1498  *      Also called manually by synchronous code to finish up a bp.
1499  *
1500  *      This routine may not sleep.
1501  */
1502 static void
1503 swp_pager_async_iodone(struct buf *bp)
1504 {
1505         int i;
1506         vm_object_t object = NULL;
1507
1508         /*
1509          * report error
1510          */
1511         if (bp->b_ioflags & BIO_ERROR) {
1512                 printf(
1513                     "swap_pager: I/O error - %s failed; blkno %ld,"
1514                         "size %ld, error %d\n",
1515                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1516                     (long)bp->b_blkno,
1517                     (long)bp->b_bcount,
1518                     bp->b_error
1519                 );
1520         }
1521
1522         /*
1523          * remove the mapping for kernel virtual
1524          */
1525         if (buf_mapped(bp))
1526                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1527         else
1528                 bp->b_data = bp->b_kvabase;
1529
1530         if (bp->b_npages) {
1531                 object = bp->b_pages[0]->object;
1532                 VM_OBJECT_WLOCK(object);
1533         }
1534
1535         /*
1536          * cleanup pages.  If an error occurs writing to swap, we are in
1537          * very serious trouble.  If it happens to be a disk error, though,
1538          * we may be able to recover by reassigning the swap later on.  So
1539          * in this case we remove the m->swapblk assignment for the page
1540          * but do not free it in the rlist.  The errornous block(s) are thus
1541          * never reallocated as swap.  Redirty the page and continue.
1542          */
1543         for (i = 0; i < bp->b_npages; ++i) {
1544                 vm_page_t m = bp->b_pages[i];
1545
1546                 m->oflags &= ~VPO_SWAPINPROG;
1547                 if (m->oflags & VPO_SWAPSLEEP) {
1548                         m->oflags &= ~VPO_SWAPSLEEP;
1549                         wakeup(&object->paging_in_progress);
1550                 }
1551
1552                 if (bp->b_ioflags & BIO_ERROR) {
1553                         /*
1554                          * If an error occurs I'd love to throw the swapblk
1555                          * away without freeing it back to swapspace, so it
1556                          * can never be used again.  But I can't from an
1557                          * interrupt.
1558                          */
1559                         if (bp->b_iocmd == BIO_READ) {
1560                                 /*
1561                                  * NOTE: for reads, m->dirty will probably
1562                                  * be overridden by the original caller of
1563                                  * getpages so don't play cute tricks here.
1564                                  */
1565                                 m->valid = 0;
1566                         } else {
1567                                 /*
1568                                  * If a write error occurs, reactivate page
1569                                  * so it doesn't clog the inactive list,
1570                                  * then finish the I/O.
1571                                  */
1572                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1573                                 vm_page_lock(m);
1574                                 vm_page_activate(m);
1575                                 vm_page_unlock(m);
1576                                 vm_page_sunbusy(m);
1577                         }
1578                 } else if (bp->b_iocmd == BIO_READ) {
1579                         /*
1580                          * NOTE: for reads, m->dirty will probably be
1581                          * overridden by the original caller of getpages so
1582                          * we cannot set them in order to free the underlying
1583                          * swap in a low-swap situation.  I don't think we'd
1584                          * want to do that anyway, but it was an optimization
1585                          * that existed in the old swapper for a time before
1586                          * it got ripped out due to precisely this problem.
1587                          */
1588                         KASSERT(!pmap_page_is_mapped(m),
1589                             ("swp_pager_async_iodone: page %p is mapped", m));
1590                         KASSERT(m->dirty == 0,
1591                             ("swp_pager_async_iodone: page %p is dirty", m));
1592
1593                         m->valid = VM_PAGE_BITS_ALL;
1594                         if (i < bp->b_pgbefore ||
1595                             i >= bp->b_npages - bp->b_pgafter)
1596                                 vm_page_readahead_finish(m);
1597                 } else {
1598                         /*
1599                          * For write success, clear the dirty
1600                          * status, then finish the I/O ( which decrements the
1601                          * busy count and possibly wakes waiter's up ).
1602                          * A page is only written to swap after a period of
1603                          * inactivity.  Therefore, we do not expect it to be
1604                          * reused.
1605                          */
1606                         KASSERT(!pmap_page_is_write_mapped(m),
1607                             ("swp_pager_async_iodone: page %p is not write"
1608                             " protected", m));
1609                         vm_page_undirty(m);
1610                         vm_page_lock(m);
1611                         vm_page_deactivate_noreuse(m);
1612                         vm_page_unlock(m);
1613                         vm_page_sunbusy(m);
1614                 }
1615         }
1616
1617         /*
1618          * adjust pip.  NOTE: the original parent may still have its own
1619          * pip refs on the object.
1620          */
1621         if (object != NULL) {
1622                 vm_object_pip_wakeupn(object, bp->b_npages);
1623                 VM_OBJECT_WUNLOCK(object);
1624         }
1625
1626         /*
1627          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1628          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1629          * trigger a KASSERT in relpbuf().
1630          */
1631         if (bp->b_vp) {
1632                     bp->b_vp = NULL;
1633                     bp->b_bufobj = NULL;
1634         }
1635         /*
1636          * release the physical I/O buffer
1637          */
1638         relpbuf(
1639             bp,
1640             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1641                 ((bp->b_flags & B_ASYNC) ?
1642                     &nsw_wcount_async :
1643                     &nsw_wcount_sync
1644                 )
1645             )
1646         );
1647 }
1648
1649 int
1650 swap_pager_nswapdev(void)
1651 {
1652
1653         return (nswapdev);
1654 }
1655
1656 static void
1657 swp_pager_force_dirty(vm_page_t m)
1658 {
1659
1660         vm_page_dirty(m);
1661 #ifdef INVARIANTS
1662         vm_page_lock(m);
1663         if (!vm_page_wired(m) && m->queue == PQ_NONE)
1664                 panic("page %p is neither wired nor queued", m);
1665         vm_page_unlock(m);
1666 #endif
1667         vm_page_xunbusy(m);
1668         swap_pager_unswapped(m);
1669 }
1670
1671 static void
1672 swp_pager_force_launder(vm_page_t m)
1673 {
1674
1675         vm_page_dirty(m);
1676         vm_page_lock(m);
1677         vm_page_launder(m);
1678         vm_page_unlock(m);
1679         vm_page_xunbusy(m);
1680         swap_pager_unswapped(m);
1681 }
1682
1683 /*
1684  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1685  *
1686  *      This routine dissociates pages starting at the given index within an
1687  *      object from their backing store, paging them in if they do not reside
1688  *      in memory.  Pages that are paged in are marked dirty and placed in the
1689  *      laundry queue.  Pages are marked dirty because they no longer have
1690  *      backing store.  They are placed in the laundry queue because they have
1691  *      not been accessed recently.  Otherwise, they would already reside in
1692  *      memory.
1693  */
1694 static void
1695 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1696 {
1697         vm_page_t ma[npages];
1698         int i, j;
1699
1700         KASSERT(npages > 0, ("%s: No pages", __func__));
1701         KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1702             ("%s: Too many pages: %d", __func__, npages));
1703         vm_object_pip_add(object, npages);
1704         vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1705         for (i = j = 0;; i++) {
1706                 /* Count nonresident pages, to page-in all at once. */
1707                 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1708                         continue;
1709                 if (j < i) {
1710                         /* Page-in nonresident pages. Mark for laundering. */
1711                         if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1712                             NULL) != VM_PAGER_OK)
1713                                 panic("%s: read from swap failed", __func__);
1714                         do {
1715                                 swp_pager_force_launder(ma[j]);
1716                         } while (++j < i);
1717                 }
1718                 if (i == npages)
1719                         break;
1720                 /* Mark dirty a resident page. */
1721                 swp_pager_force_dirty(ma[j++]);
1722         }
1723         vm_object_pip_wakeupn(object, npages);
1724 }
1725
1726 /*
1727  *      swap_pager_swapoff_object:
1728  *
1729  *      Page in all of the pages that have been paged out for an object
1730  *      to a swap device.
1731  */
1732 static void
1733 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1734 {
1735         struct swblk *sb;
1736         vm_pindex_t pi, s_pindex;
1737         daddr_t blk, n_blks, s_blk;
1738         int i;
1739
1740         n_blks = 0;
1741         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1742             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1743                 for (i = 0; i < SWAP_META_PAGES; i++) {
1744                         blk = sb->d[i];
1745                         if (!swp_pager_isondev(blk, sp))
1746                                 blk = SWAPBLK_NONE;
1747
1748                         /*
1749                          * If there are no blocks/pages accumulated, start a new
1750                          * accumulation here.
1751                          */
1752                         if (n_blks == 0) {
1753                                 if (blk != SWAPBLK_NONE) {
1754                                         s_blk = blk;
1755                                         s_pindex = sb->p + i;
1756                                         n_blks = 1;
1757                                 }
1758                                 continue;
1759                         }
1760
1761                         /*
1762                          * If the accumulation can be extended without breaking
1763                          * the sequence of consecutive blocks and pages that
1764                          * swp_pager_force_pagein() depends on, do so.
1765                          */
1766                         if (n_blks < MAXPHYS / PAGE_SIZE &&
1767                             s_blk + n_blks == blk &&
1768                             s_pindex + n_blks == sb->p + i) {
1769                                 ++n_blks;
1770                                 continue;
1771                         }
1772
1773                         /*
1774                          * The sequence of consecutive blocks and pages cannot
1775                          * be extended, so page them all in here.  Then,
1776                          * because doing so involves releasing and reacquiring
1777                          * a lock that protects the swap block pctrie, do not
1778                          * rely on the current swap block.  Break this loop and
1779                          * re-fetch the same pindex from the pctrie again.
1780                          */
1781                         swp_pager_force_pagein(object, s_pindex, n_blks);
1782                         n_blks = 0;
1783                         break;
1784                 }
1785                 if (i == SWAP_META_PAGES)
1786                         pi = sb->p + SWAP_META_PAGES;
1787         }
1788         if (n_blks > 0)
1789                 swp_pager_force_pagein(object, s_pindex, n_blks);
1790 }
1791
1792 /*
1793  *      swap_pager_swapoff:
1794  *
1795  *      Page in all of the pages that have been paged out to the
1796  *      given device.  The corresponding blocks in the bitmap must be
1797  *      marked as allocated and the device must be flagged SW_CLOSING.
1798  *      There may be no processes swapped out to the device.
1799  *
1800  *      This routine may block.
1801  */
1802 static void
1803 swap_pager_swapoff(struct swdevt *sp)
1804 {
1805         vm_object_t object;
1806         int retries;
1807
1808         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1809
1810         retries = 0;
1811 full_rescan:
1812         mtx_lock(&vm_object_list_mtx);
1813         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1814                 if (object->type != OBJT_SWAP)
1815                         continue;
1816                 mtx_unlock(&vm_object_list_mtx);
1817                 /* Depends on type-stability. */
1818                 VM_OBJECT_WLOCK(object);
1819
1820                 /*
1821                  * Dead objects are eventually terminated on their own.
1822                  */
1823                 if ((object->flags & OBJ_DEAD) != 0)
1824                         goto next_obj;
1825
1826                 /*
1827                  * Sync with fences placed after pctrie
1828                  * initialization.  We must not access pctrie below
1829                  * unless we checked that our object is swap and not
1830                  * dead.
1831                  */
1832                 atomic_thread_fence_acq();
1833                 if (object->type != OBJT_SWAP)
1834                         goto next_obj;
1835
1836                 swap_pager_swapoff_object(sp, object);
1837 next_obj:
1838                 VM_OBJECT_WUNLOCK(object);
1839                 mtx_lock(&vm_object_list_mtx);
1840         }
1841         mtx_unlock(&vm_object_list_mtx);
1842
1843         if (sp->sw_used) {
1844                 /*
1845                  * Objects may be locked or paging to the device being
1846                  * removed, so we will miss their pages and need to
1847                  * make another pass.  We have marked this device as
1848                  * SW_CLOSING, so the activity should finish soon.
1849                  */
1850                 retries++;
1851                 if (retries > 100) {
1852                         panic("swapoff: failed to locate %d swap blocks",
1853                             sp->sw_used);
1854                 }
1855                 pause("swpoff", hz / 20);
1856                 goto full_rescan;
1857         }
1858         EVENTHANDLER_INVOKE(swapoff, sp);
1859 }
1860
1861 /************************************************************************
1862  *                              SWAP META DATA                          *
1863  ************************************************************************
1864  *
1865  *      These routines manipulate the swap metadata stored in the
1866  *      OBJT_SWAP object.
1867  *
1868  *      Swap metadata is implemented with a global hash and not directly
1869  *      linked into the object.  Instead the object simply contains
1870  *      appropriate tracking counters.
1871  */
1872
1873 /*
1874  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1875  */
1876 static bool
1877 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1878 {
1879         int i;
1880
1881         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1882         for (i = start; i < limit; i++) {
1883                 if (sb->d[i] != SWAPBLK_NONE)
1884                         return (false);
1885         }
1886         return (true);
1887 }
1888    
1889 /*
1890  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1891  *
1892  *      We first convert the object to a swap object if it is a default
1893  *      object.
1894  *
1895  *      The specified swapblk is added to the object's swap metadata.  If
1896  *      the swapblk is not valid, it is freed instead.  Any previously
1897  *      assigned swapblk is returned.
1898  */
1899 static daddr_t
1900 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1901 {
1902         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1903         struct swblk *sb, *sb1;
1904         vm_pindex_t modpi, rdpi;
1905         daddr_t prev_swapblk;
1906         int error, i;
1907
1908         VM_OBJECT_ASSERT_WLOCKED(object);
1909
1910         /*
1911          * Convert default object to swap object if necessary
1912          */
1913         if (object->type != OBJT_SWAP) {
1914                 pctrie_init(&object->un_pager.swp.swp_blks);
1915
1916                 /*
1917                  * Ensure that swap_pager_swapoff()'s iteration over
1918                  * object_list does not see a garbage pctrie.
1919                  */
1920                 atomic_thread_fence_rel();
1921
1922                 object->type = OBJT_SWAP;
1923                 KASSERT(object->handle == NULL, ("default pager with handle"));
1924         }
1925
1926         rdpi = rounddown(pindex, SWAP_META_PAGES);
1927         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1928         if (sb == NULL) {
1929                 if (swapblk == SWAPBLK_NONE)
1930                         return (SWAPBLK_NONE);
1931                 for (;;) {
1932                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1933                             pageproc ? M_USE_RESERVE : 0));
1934                         if (sb != NULL) {
1935                                 sb->p = rdpi;
1936                                 for (i = 0; i < SWAP_META_PAGES; i++)
1937                                         sb->d[i] = SWAPBLK_NONE;
1938                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1939                                     1, 0))
1940                                         printf("swblk zone ok\n");
1941                                 break;
1942                         }
1943                         VM_OBJECT_WUNLOCK(object);
1944                         if (uma_zone_exhausted(swblk_zone)) {
1945                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1946                                     0, 1))
1947                                         printf("swap blk zone exhausted, "
1948                                             "increase kern.maxswzone\n");
1949                                 vm_pageout_oom(VM_OOM_SWAPZ);
1950                                 pause("swzonxb", 10);
1951                         } else
1952                                 uma_zwait(swblk_zone);
1953                         VM_OBJECT_WLOCK(object);
1954                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1955                             rdpi);
1956                         if (sb != NULL)
1957                                 /*
1958                                  * Somebody swapped out a nearby page,
1959                                  * allocating swblk at the rdpi index,
1960                                  * while we dropped the object lock.
1961                                  */
1962                                 goto allocated;
1963                 }
1964                 for (;;) {
1965                         error = SWAP_PCTRIE_INSERT(
1966                             &object->un_pager.swp.swp_blks, sb);
1967                         if (error == 0) {
1968                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1969                                     1, 0))
1970                                         printf("swpctrie zone ok\n");
1971                                 break;
1972                         }
1973                         VM_OBJECT_WUNLOCK(object);
1974                         if (uma_zone_exhausted(swpctrie_zone)) {
1975                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1976                                     0, 1))
1977                                         printf("swap pctrie zone exhausted, "
1978                                             "increase kern.maxswzone\n");
1979                                 vm_pageout_oom(VM_OOM_SWAPZ);
1980                                 pause("swzonxp", 10);
1981                         } else
1982                                 uma_zwait(swpctrie_zone);
1983                         VM_OBJECT_WLOCK(object);
1984                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1985                             rdpi);
1986                         if (sb1 != NULL) {
1987                                 uma_zfree(swblk_zone, sb);
1988                                 sb = sb1;
1989                                 goto allocated;
1990                         }
1991                 }
1992         }
1993 allocated:
1994         MPASS(sb->p == rdpi);
1995
1996         modpi = pindex % SWAP_META_PAGES;
1997         /* Return prior contents of metadata. */
1998         prev_swapblk = sb->d[modpi];
1999         /* Enter block into metadata. */
2000         sb->d[modpi] = swapblk;
2001
2002         /*
2003          * Free the swblk if we end up with the empty page run.
2004          */
2005         if (swapblk == SWAPBLK_NONE &&
2006             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2007                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
2008                 uma_zfree(swblk_zone, sb);
2009         }
2010         return (prev_swapblk);
2011 }
2012
2013 /*
2014  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2015  *
2016  *      The requested range of blocks is freed, with any associated swap
2017  *      returned to the swap bitmap.
2018  *
2019  *      This routine will free swap metadata structures as they are cleaned
2020  *      out.  This routine does *NOT* operate on swap metadata associated
2021  *      with resident pages.
2022  */
2023 static void
2024 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2025 {
2026         struct swblk *sb;
2027         daddr_t n_free, s_free;
2028         vm_pindex_t last;
2029         int i, limit, start;
2030
2031         VM_OBJECT_ASSERT_WLOCKED(object);
2032         if (object->type != OBJT_SWAP || count == 0)
2033                 return;
2034
2035         swp_pager_init_freerange(&s_free, &n_free);
2036         last = pindex + count;
2037         for (;;) {
2038                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2039                     rounddown(pindex, SWAP_META_PAGES));
2040                 if (sb == NULL || sb->p >= last)
2041                         break;
2042                 start = pindex > sb->p ? pindex - sb->p : 0;
2043                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2044                     SWAP_META_PAGES;
2045                 for (i = start; i < limit; i++) {
2046                         if (sb->d[i] == SWAPBLK_NONE)
2047                                 continue;
2048                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2049                         sb->d[i] = SWAPBLK_NONE;
2050                 }
2051                 pindex = sb->p + SWAP_META_PAGES;
2052                 if (swp_pager_swblk_empty(sb, 0, start) &&
2053                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2054                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2055                             sb->p);
2056                         uma_zfree(swblk_zone, sb);
2057                 }
2058         }
2059         swp_pager_freeswapspace(s_free, n_free);
2060 }
2061
2062 /*
2063  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2064  *
2065  *      This routine locates and destroys all swap metadata associated with
2066  *      an object.
2067  */
2068 static void
2069 swp_pager_meta_free_all(vm_object_t object)
2070 {
2071         struct swblk *sb;
2072         daddr_t n_free, s_free;
2073         vm_pindex_t pindex;
2074         int i;
2075
2076         VM_OBJECT_ASSERT_WLOCKED(object);
2077         if (object->type != OBJT_SWAP)
2078                 return;
2079
2080         swp_pager_init_freerange(&s_free, &n_free);
2081         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2082             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2083                 pindex = sb->p + SWAP_META_PAGES;
2084                 for (i = 0; i < SWAP_META_PAGES; i++) {
2085                         if (sb->d[i] == SWAPBLK_NONE)
2086                                 continue;
2087                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2088                 }
2089                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2090                 uma_zfree(swblk_zone, sb);
2091         }
2092         swp_pager_freeswapspace(s_free, n_free);
2093 }
2094
2095 /*
2096  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2097  *
2098  *      This routine is capable of looking up, or removing swapblk
2099  *      assignments in the swap meta data.  It returns the swapblk being
2100  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2101  *
2102  *      When acting on a busy resident page and paging is in progress, we
2103  *      have to wait until paging is complete but otherwise can act on the
2104  *      busy page.
2105  *
2106  *      SWM_POP         remove from meta data but do not free it
2107  */
2108 static daddr_t
2109 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2110 {
2111         struct swblk *sb;
2112         daddr_t r1;
2113
2114         if ((flags & SWM_POP) != 0)
2115                 VM_OBJECT_ASSERT_WLOCKED(object);
2116         else
2117                 VM_OBJECT_ASSERT_LOCKED(object);
2118
2119         /*
2120          * The meta data only exists if the object is OBJT_SWAP
2121          * and even then might not be allocated yet.
2122          */
2123         if (object->type != OBJT_SWAP)
2124                 return (SWAPBLK_NONE);
2125
2126         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2127             rounddown(pindex, SWAP_META_PAGES));
2128         if (sb == NULL)
2129                 return (SWAPBLK_NONE);
2130         r1 = sb->d[pindex % SWAP_META_PAGES];
2131         if (r1 == SWAPBLK_NONE)
2132                 return (SWAPBLK_NONE);
2133         if ((flags & SWM_POP) != 0) {
2134                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2135                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2136                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2137                             rounddown(pindex, SWAP_META_PAGES));
2138                         uma_zfree(swblk_zone, sb);
2139                 }
2140         }
2141         return (r1);
2142 }
2143
2144 /*
2145  * Returns the least page index which is greater than or equal to the
2146  * parameter pindex and for which there is a swap block allocated.
2147  * Returns object's size if the object's type is not swap or if there
2148  * are no allocated swap blocks for the object after the requested
2149  * pindex.
2150  */
2151 vm_pindex_t
2152 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2153 {
2154         struct swblk *sb;
2155         int i;
2156
2157         VM_OBJECT_ASSERT_LOCKED(object);
2158         if (object->type != OBJT_SWAP)
2159                 return (object->size);
2160
2161         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2162             rounddown(pindex, SWAP_META_PAGES));
2163         if (sb == NULL)
2164                 return (object->size);
2165         if (sb->p < pindex) {
2166                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2167                         if (sb->d[i] != SWAPBLK_NONE)
2168                                 return (sb->p + i);
2169                 }
2170                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2171                     roundup(pindex, SWAP_META_PAGES));
2172                 if (sb == NULL)
2173                         return (object->size);
2174         }
2175         for (i = 0; i < SWAP_META_PAGES; i++) {
2176                 if (sb->d[i] != SWAPBLK_NONE)
2177                         return (sb->p + i);
2178         }
2179
2180         /*
2181          * We get here if a swblk is present in the trie but it
2182          * doesn't map any blocks.
2183          */
2184         MPASS(0);
2185         return (object->size);
2186 }
2187
2188 /*
2189  * System call swapon(name) enables swapping on device name,
2190  * which must be in the swdevsw.  Return EBUSY
2191  * if already swapping on this device.
2192  */
2193 #ifndef _SYS_SYSPROTO_H_
2194 struct swapon_args {
2195         char *name;
2196 };
2197 #endif
2198
2199 /*
2200  * MPSAFE
2201  */
2202 /* ARGSUSED */
2203 int
2204 sys_swapon(struct thread *td, struct swapon_args *uap)
2205 {
2206         struct vattr attr;
2207         struct vnode *vp;
2208         struct nameidata nd;
2209         int error;
2210
2211         error = priv_check(td, PRIV_SWAPON);
2212         if (error)
2213                 return (error);
2214
2215         sx_xlock(&swdev_syscall_lock);
2216
2217         /*
2218          * Swap metadata may not fit in the KVM if we have physical
2219          * memory of >1GB.
2220          */
2221         if (swblk_zone == NULL) {
2222                 error = ENOMEM;
2223                 goto done;
2224         }
2225
2226         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2227             uap->name, td);
2228         error = namei(&nd);
2229         if (error)
2230                 goto done;
2231
2232         NDFREE(&nd, NDF_ONLY_PNBUF);
2233         vp = nd.ni_vp;
2234
2235         if (vn_isdisk(vp, &error)) {
2236                 error = swapongeom(vp);
2237         } else if (vp->v_type == VREG &&
2238             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2239             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2240                 /*
2241                  * Allow direct swapping to NFS regular files in the same
2242                  * way that nfs_mountroot() sets up diskless swapping.
2243                  */
2244                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2245         }
2246
2247         if (error)
2248                 vrele(vp);
2249 done:
2250         sx_xunlock(&swdev_syscall_lock);
2251         return (error);
2252 }
2253
2254 /*
2255  * Check that the total amount of swap currently configured does not
2256  * exceed half the theoretical maximum.  If it does, print a warning
2257  * message.
2258  */
2259 static void
2260 swapon_check_swzone(void)
2261 {
2262         unsigned long maxpages, npages;
2263
2264         npages = swap_total;
2265         /* absolute maximum we can handle assuming 100% efficiency */
2266         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2267
2268         /* recommend using no more than half that amount */
2269         if (npages > maxpages / 2) {
2270                 printf("warning: total configured swap (%lu pages) "
2271                     "exceeds maximum recommended amount (%lu pages).\n",
2272                     npages, maxpages / 2);
2273                 printf("warning: increase kern.maxswzone "
2274                     "or reduce amount of swap.\n");
2275         }
2276 }
2277
2278 static void
2279 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2280     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2281 {
2282         struct swdevt *sp, *tsp;
2283         swblk_t dvbase;
2284         u_long mblocks;
2285
2286         /*
2287          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2288          * First chop nblks off to page-align it, then convert.
2289          *
2290          * sw->sw_nblks is in page-sized chunks now too.
2291          */
2292         nblks &= ~(ctodb(1) - 1);
2293         nblks = dbtoc(nblks);
2294
2295         /*
2296          * If we go beyond this, we get overflows in the radix
2297          * tree bitmap code.
2298          */
2299         mblocks = 0x40000000 / BLIST_META_RADIX;
2300         if (nblks > mblocks) {
2301                 printf(
2302     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2303                     mblocks / 1024 / 1024 * PAGE_SIZE);
2304                 nblks = mblocks;
2305         }
2306
2307         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2308         sp->sw_vp = vp;
2309         sp->sw_id = id;
2310         sp->sw_dev = dev;
2311         sp->sw_nblks = nblks;
2312         sp->sw_used = 0;
2313         sp->sw_strategy = strategy;
2314         sp->sw_close = close;
2315         sp->sw_flags = flags;
2316
2317         sp->sw_blist = blist_create(nblks, M_WAITOK);
2318         /*
2319          * Do not free the first blocks in order to avoid overwriting
2320          * any bsd label at the front of the partition
2321          */
2322         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2323             nblks - howmany(BBSIZE, PAGE_SIZE));
2324
2325         dvbase = 0;
2326         mtx_lock(&sw_dev_mtx);
2327         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2328                 if (tsp->sw_end >= dvbase) {
2329                         /*
2330                          * We put one uncovered page between the devices
2331                          * in order to definitively prevent any cross-device
2332                          * I/O requests
2333                          */
2334                         dvbase = tsp->sw_end + 1;
2335                 }
2336         }
2337         sp->sw_first = dvbase;
2338         sp->sw_end = dvbase + nblks;
2339         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2340         nswapdev++;
2341         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2342         swap_total += nblks;
2343         swapon_check_swzone();
2344         swp_sizecheck();
2345         mtx_unlock(&sw_dev_mtx);
2346         EVENTHANDLER_INVOKE(swapon, sp);
2347 }
2348
2349 /*
2350  * SYSCALL: swapoff(devname)
2351  *
2352  * Disable swapping on the given device.
2353  *
2354  * XXX: Badly designed system call: it should use a device index
2355  * rather than filename as specification.  We keep sw_vp around
2356  * only to make this work.
2357  */
2358 #ifndef _SYS_SYSPROTO_H_
2359 struct swapoff_args {
2360         char *name;
2361 };
2362 #endif
2363
2364 /*
2365  * MPSAFE
2366  */
2367 /* ARGSUSED */
2368 int
2369 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2370 {
2371         struct vnode *vp;
2372         struct nameidata nd;
2373         struct swdevt *sp;
2374         int error;
2375
2376         error = priv_check(td, PRIV_SWAPOFF);
2377         if (error)
2378                 return (error);
2379
2380         sx_xlock(&swdev_syscall_lock);
2381
2382         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2383             td);
2384         error = namei(&nd);
2385         if (error)
2386                 goto done;
2387         NDFREE(&nd, NDF_ONLY_PNBUF);
2388         vp = nd.ni_vp;
2389
2390         mtx_lock(&sw_dev_mtx);
2391         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2392                 if (sp->sw_vp == vp)
2393                         break;
2394         }
2395         mtx_unlock(&sw_dev_mtx);
2396         if (sp == NULL) {
2397                 error = EINVAL;
2398                 goto done;
2399         }
2400         error = swapoff_one(sp, td->td_ucred);
2401 done:
2402         sx_xunlock(&swdev_syscall_lock);
2403         return (error);
2404 }
2405
2406 static int
2407 swapoff_one(struct swdevt *sp, struct ucred *cred)
2408 {
2409         u_long nblks;
2410 #ifdef MAC
2411         int error;
2412 #endif
2413
2414         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2415 #ifdef MAC
2416         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2417         error = mac_system_check_swapoff(cred, sp->sw_vp);
2418         (void) VOP_UNLOCK(sp->sw_vp, 0);
2419         if (error != 0)
2420                 return (error);
2421 #endif
2422         nblks = sp->sw_nblks;
2423
2424         /*
2425          * We can turn off this swap device safely only if the
2426          * available virtual memory in the system will fit the amount
2427          * of data we will have to page back in, plus an epsilon so
2428          * the system doesn't become critically low on swap space.
2429          */
2430         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2431                 return (ENOMEM);
2432
2433         /*
2434          * Prevent further allocations on this device.
2435          */
2436         mtx_lock(&sw_dev_mtx);
2437         sp->sw_flags |= SW_CLOSING;
2438         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2439         swap_total -= nblks;
2440         mtx_unlock(&sw_dev_mtx);
2441
2442         /*
2443          * Page in the contents of the device and close it.
2444          */
2445         swap_pager_swapoff(sp);
2446
2447         sp->sw_close(curthread, sp);
2448         mtx_lock(&sw_dev_mtx);
2449         sp->sw_id = NULL;
2450         TAILQ_REMOVE(&swtailq, sp, sw_list);
2451         nswapdev--;
2452         if (nswapdev == 0) {
2453                 swap_pager_full = 2;
2454                 swap_pager_almost_full = 1;
2455         }
2456         if (swdevhd == sp)
2457                 swdevhd = NULL;
2458         mtx_unlock(&sw_dev_mtx);
2459         blist_destroy(sp->sw_blist);
2460         free(sp, M_VMPGDATA);
2461         return (0);
2462 }
2463
2464 void
2465 swapoff_all(void)
2466 {
2467         struct swdevt *sp, *spt;
2468         const char *devname;
2469         int error;
2470
2471         sx_xlock(&swdev_syscall_lock);
2472
2473         mtx_lock(&sw_dev_mtx);
2474         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2475                 mtx_unlock(&sw_dev_mtx);
2476                 if (vn_isdisk(sp->sw_vp, NULL))
2477                         devname = devtoname(sp->sw_vp->v_rdev);
2478                 else
2479                         devname = "[file]";
2480                 error = swapoff_one(sp, thread0.td_ucred);
2481                 if (error != 0) {
2482                         printf("Cannot remove swap device %s (error=%d), "
2483                             "skipping.\n", devname, error);
2484                 } else if (bootverbose) {
2485                         printf("Swap device %s removed.\n", devname);
2486                 }
2487                 mtx_lock(&sw_dev_mtx);
2488         }
2489         mtx_unlock(&sw_dev_mtx);
2490
2491         sx_xunlock(&swdev_syscall_lock);
2492 }
2493
2494 void
2495 swap_pager_status(int *total, int *used)
2496 {
2497         struct swdevt *sp;
2498
2499         *total = 0;
2500         *used = 0;
2501         mtx_lock(&sw_dev_mtx);
2502         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2503                 *total += sp->sw_nblks;
2504                 *used += sp->sw_used;
2505         }
2506         mtx_unlock(&sw_dev_mtx);
2507 }
2508
2509 int
2510 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2511 {
2512         struct swdevt *sp;
2513         const char *tmp_devname;
2514         int error, n;
2515
2516         n = 0;
2517         error = ENOENT;
2518         mtx_lock(&sw_dev_mtx);
2519         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2520                 if (n != name) {
2521                         n++;
2522                         continue;
2523                 }
2524                 xs->xsw_version = XSWDEV_VERSION;
2525                 xs->xsw_dev = sp->sw_dev;
2526                 xs->xsw_flags = sp->sw_flags;
2527                 xs->xsw_nblks = sp->sw_nblks;
2528                 xs->xsw_used = sp->sw_used;
2529                 if (devname != NULL) {
2530                         if (vn_isdisk(sp->sw_vp, NULL))
2531                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2532                         else
2533                                 tmp_devname = "[file]";
2534                         strncpy(devname, tmp_devname, len);
2535                 }
2536                 error = 0;
2537                 break;
2538         }
2539         mtx_unlock(&sw_dev_mtx);
2540         return (error);
2541 }
2542
2543 #if defined(COMPAT_FREEBSD11)
2544 #define XSWDEV_VERSION_11       1
2545 struct xswdev11 {
2546         u_int   xsw_version;
2547         uint32_t xsw_dev;
2548         int     xsw_flags;
2549         int     xsw_nblks;
2550         int     xsw_used;
2551 };
2552 #endif
2553
2554 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2555 struct xswdev32 {
2556         u_int   xsw_version;
2557         u_int   xsw_dev1, xsw_dev2;
2558         int     xsw_flags;
2559         int     xsw_nblks;
2560         int     xsw_used;
2561 };
2562 #endif
2563
2564 static int
2565 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2566 {
2567         struct xswdev xs;
2568 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2569         struct xswdev32 xs32;
2570 #endif
2571 #if defined(COMPAT_FREEBSD11)
2572         struct xswdev11 xs11;
2573 #endif
2574         int error;
2575
2576         if (arg2 != 1)                  /* name length */
2577                 return (EINVAL);
2578         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2579         if (error != 0)
2580                 return (error);
2581 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2582         if (req->oldlen == sizeof(xs32)) {
2583                 xs32.xsw_version = XSWDEV_VERSION;
2584                 xs32.xsw_dev1 = xs.xsw_dev;
2585                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2586                 xs32.xsw_flags = xs.xsw_flags;
2587                 xs32.xsw_nblks = xs.xsw_nblks;
2588                 xs32.xsw_used = xs.xsw_used;
2589                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2590                 return (error);
2591         }
2592 #endif
2593 #if defined(COMPAT_FREEBSD11)
2594         if (req->oldlen == sizeof(xs11)) {
2595                 xs11.xsw_version = XSWDEV_VERSION_11;
2596                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2597                 xs11.xsw_flags = xs.xsw_flags;
2598                 xs11.xsw_nblks = xs.xsw_nblks;
2599                 xs11.xsw_used = xs.xsw_used;
2600                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2601                 return (error);
2602         }
2603 #endif
2604         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2605         return (error);
2606 }
2607
2608 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2609     "Number of swap devices");
2610 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2611     sysctl_vm_swap_info,
2612     "Swap statistics by device");
2613
2614 /*
2615  * Count the approximate swap usage in pages for a vmspace.  The
2616  * shadowed or not yet copied on write swap blocks are not accounted.
2617  * The map must be locked.
2618  */
2619 long
2620 vmspace_swap_count(struct vmspace *vmspace)
2621 {
2622         vm_map_t map;
2623         vm_map_entry_t cur;
2624         vm_object_t object;
2625         struct swblk *sb;
2626         vm_pindex_t e, pi;
2627         long count;
2628         int i;
2629
2630         map = &vmspace->vm_map;
2631         count = 0;
2632
2633         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2634                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2635                         continue;
2636                 object = cur->object.vm_object;
2637                 if (object == NULL || object->type != OBJT_SWAP)
2638                         continue;
2639                 VM_OBJECT_RLOCK(object);
2640                 if (object->type != OBJT_SWAP)
2641                         goto unlock;
2642                 pi = OFF_TO_IDX(cur->offset);
2643                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2644                 for (;; pi = sb->p + SWAP_META_PAGES) {
2645                         sb = SWAP_PCTRIE_LOOKUP_GE(
2646                             &object->un_pager.swp.swp_blks, pi);
2647                         if (sb == NULL || sb->p >= e)
2648                                 break;
2649                         for (i = 0; i < SWAP_META_PAGES; i++) {
2650                                 if (sb->p + i < e &&
2651                                     sb->d[i] != SWAPBLK_NONE)
2652                                         count++;
2653                         }
2654                 }
2655 unlock:
2656                 VM_OBJECT_RUNLOCK(object);
2657         }
2658         return (count);
2659 }
2660
2661 /*
2662  * GEOM backend
2663  *
2664  * Swapping onto disk devices.
2665  *
2666  */
2667
2668 static g_orphan_t swapgeom_orphan;
2669
2670 static struct g_class g_swap_class = {
2671         .name = "SWAP",
2672         .version = G_VERSION,
2673         .orphan = swapgeom_orphan,
2674 };
2675
2676 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2677
2678
2679 static void
2680 swapgeom_close_ev(void *arg, int flags)
2681 {
2682         struct g_consumer *cp;
2683
2684         cp = arg;
2685         g_access(cp, -1, -1, 0);
2686         g_detach(cp);
2687         g_destroy_consumer(cp);
2688 }
2689
2690 /*
2691  * Add a reference to the g_consumer for an inflight transaction.
2692  */
2693 static void
2694 swapgeom_acquire(struct g_consumer *cp)
2695 {
2696
2697         mtx_assert(&sw_dev_mtx, MA_OWNED);
2698         cp->index++;
2699 }
2700
2701 /*
2702  * Remove a reference from the g_consumer.  Post a close event if all
2703  * references go away, since the function might be called from the
2704  * biodone context.
2705  */
2706 static void
2707 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2708 {
2709
2710         mtx_assert(&sw_dev_mtx, MA_OWNED);
2711         cp->index--;
2712         if (cp->index == 0) {
2713                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2714                         sp->sw_id = NULL;
2715         }
2716 }
2717
2718 static void
2719 swapgeom_done(struct bio *bp2)
2720 {
2721         struct swdevt *sp;
2722         struct buf *bp;
2723         struct g_consumer *cp;
2724
2725         bp = bp2->bio_caller2;
2726         cp = bp2->bio_from;
2727         bp->b_ioflags = bp2->bio_flags;
2728         if (bp2->bio_error)
2729                 bp->b_ioflags |= BIO_ERROR;
2730         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2731         bp->b_error = bp2->bio_error;
2732         bufdone(bp);
2733         sp = bp2->bio_caller1;
2734         mtx_lock(&sw_dev_mtx);
2735         swapgeom_release(cp, sp);
2736         mtx_unlock(&sw_dev_mtx);
2737         g_destroy_bio(bp2);
2738 }
2739
2740 static void
2741 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2742 {
2743         struct bio *bio;
2744         struct g_consumer *cp;
2745
2746         mtx_lock(&sw_dev_mtx);
2747         cp = sp->sw_id;
2748         if (cp == NULL) {
2749                 mtx_unlock(&sw_dev_mtx);
2750                 bp->b_error = ENXIO;
2751                 bp->b_ioflags |= BIO_ERROR;
2752                 bufdone(bp);
2753                 return;
2754         }
2755         swapgeom_acquire(cp);
2756         mtx_unlock(&sw_dev_mtx);
2757         if (bp->b_iocmd == BIO_WRITE)
2758                 bio = g_new_bio();
2759         else
2760                 bio = g_alloc_bio();
2761         if (bio == NULL) {
2762                 mtx_lock(&sw_dev_mtx);
2763                 swapgeom_release(cp, sp);
2764                 mtx_unlock(&sw_dev_mtx);
2765                 bp->b_error = ENOMEM;
2766                 bp->b_ioflags |= BIO_ERROR;
2767                 bufdone(bp);
2768                 return;
2769         }
2770
2771         bio->bio_caller1 = sp;
2772         bio->bio_caller2 = bp;
2773         bio->bio_cmd = bp->b_iocmd;
2774         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2775         bio->bio_length = bp->b_bcount;
2776         bio->bio_done = swapgeom_done;
2777         if (!buf_mapped(bp)) {
2778                 bio->bio_ma = bp->b_pages;
2779                 bio->bio_data = unmapped_buf;
2780                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2781                 bio->bio_ma_n = bp->b_npages;
2782                 bio->bio_flags |= BIO_UNMAPPED;
2783         } else {
2784                 bio->bio_data = bp->b_data;
2785                 bio->bio_ma = NULL;
2786         }
2787         g_io_request(bio, cp);
2788         return;
2789 }
2790
2791 static void
2792 swapgeom_orphan(struct g_consumer *cp)
2793 {
2794         struct swdevt *sp;
2795         int destroy;
2796
2797         mtx_lock(&sw_dev_mtx);
2798         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2799                 if (sp->sw_id == cp) {
2800                         sp->sw_flags |= SW_CLOSING;
2801                         break;
2802                 }
2803         }
2804         /*
2805          * Drop reference we were created with. Do directly since we're in a
2806          * special context where we don't have to queue the call to
2807          * swapgeom_close_ev().
2808          */
2809         cp->index--;
2810         destroy = ((sp != NULL) && (cp->index == 0));
2811         if (destroy)
2812                 sp->sw_id = NULL;
2813         mtx_unlock(&sw_dev_mtx);
2814         if (destroy)
2815                 swapgeom_close_ev(cp, 0);
2816 }
2817
2818 static void
2819 swapgeom_close(struct thread *td, struct swdevt *sw)
2820 {
2821         struct g_consumer *cp;
2822
2823         mtx_lock(&sw_dev_mtx);
2824         cp = sw->sw_id;
2825         sw->sw_id = NULL;
2826         mtx_unlock(&sw_dev_mtx);
2827
2828         /*
2829          * swapgeom_close() may be called from the biodone context,
2830          * where we cannot perform topology changes.  Delegate the
2831          * work to the events thread.
2832          */
2833         if (cp != NULL)
2834                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2835 }
2836
2837 static int
2838 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2839 {
2840         struct g_provider *pp;
2841         struct g_consumer *cp;
2842         static struct g_geom *gp;
2843         struct swdevt *sp;
2844         u_long nblks;
2845         int error;
2846
2847         pp = g_dev_getprovider(dev);
2848         if (pp == NULL)
2849                 return (ENODEV);
2850         mtx_lock(&sw_dev_mtx);
2851         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2852                 cp = sp->sw_id;
2853                 if (cp != NULL && cp->provider == pp) {
2854                         mtx_unlock(&sw_dev_mtx);
2855                         return (EBUSY);
2856                 }
2857         }
2858         mtx_unlock(&sw_dev_mtx);
2859         if (gp == NULL)
2860                 gp = g_new_geomf(&g_swap_class, "swap");
2861         cp = g_new_consumer(gp);
2862         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2863         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2864         g_attach(cp, pp);
2865         /*
2866          * XXX: Every time you think you can improve the margin for
2867          * footshooting, somebody depends on the ability to do so:
2868          * savecore(8) wants to write to our swapdev so we cannot
2869          * set an exclusive count :-(
2870          */
2871         error = g_access(cp, 1, 1, 0);
2872         if (error != 0) {
2873                 g_detach(cp);
2874                 g_destroy_consumer(cp);
2875                 return (error);
2876         }
2877         nblks = pp->mediasize / DEV_BSIZE;
2878         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2879             swapgeom_close, dev2udev(dev),
2880             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2881         return (0);
2882 }
2883
2884 static int
2885 swapongeom(struct vnode *vp)
2886 {
2887         int error;
2888
2889         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2890         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2891                 error = ENOENT;
2892         } else {
2893                 g_topology_lock();
2894                 error = swapongeom_locked(vp->v_rdev, vp);
2895                 g_topology_unlock();
2896         }
2897         VOP_UNLOCK(vp, 0);
2898         return (error);
2899 }
2900
2901 /*
2902  * VNODE backend
2903  *
2904  * This is used mainly for network filesystem (read: probably only tested
2905  * with NFS) swapfiles.
2906  *
2907  */
2908
2909 static void
2910 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2911 {
2912         struct vnode *vp2;
2913
2914         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2915
2916         vp2 = sp->sw_id;
2917         vhold(vp2);
2918         if (bp->b_iocmd == BIO_WRITE) {
2919                 if (bp->b_bufobj)
2920                         bufobj_wdrop(bp->b_bufobj);
2921                 bufobj_wref(&vp2->v_bufobj);
2922         }
2923         if (bp->b_bufobj != &vp2->v_bufobj)
2924                 bp->b_bufobj = &vp2->v_bufobj;
2925         bp->b_vp = vp2;
2926         bp->b_iooffset = dbtob(bp->b_blkno);
2927         bstrategy(bp);
2928         return;
2929 }
2930
2931 static void
2932 swapdev_close(struct thread *td, struct swdevt *sp)
2933 {
2934
2935         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2936         vrele(sp->sw_vp);
2937 }
2938
2939
2940 static int
2941 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2942 {
2943         struct swdevt *sp;
2944         int error;
2945
2946         if (nblks == 0)
2947                 return (ENXIO);
2948         mtx_lock(&sw_dev_mtx);
2949         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2950                 if (sp->sw_id == vp) {
2951                         mtx_unlock(&sw_dev_mtx);
2952                         return (EBUSY);
2953                 }
2954         }
2955         mtx_unlock(&sw_dev_mtx);
2956
2957         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2958 #ifdef MAC
2959         error = mac_system_check_swapon(td->td_ucred, vp);
2960         if (error == 0)
2961 #endif
2962                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2963         (void) VOP_UNLOCK(vp, 0);
2964         if (error)
2965                 return (error);
2966
2967         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2968             NODEV, 0);
2969         return (0);
2970 }
2971
2972 static int
2973 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2974 {
2975         int error, new, n;
2976
2977         new = nsw_wcount_async_max;
2978         error = sysctl_handle_int(oidp, &new, 0, req);
2979         if (error != 0 || req->newptr == NULL)
2980                 return (error);
2981
2982         if (new > nswbuf / 2 || new < 1)
2983                 return (EINVAL);
2984
2985         mtx_lock(&pbuf_mtx);
2986         while (nsw_wcount_async_max != new) {
2987                 /*
2988                  * Adjust difference.  If the current async count is too low,
2989                  * we will need to sqeeze our update slowly in.  Sleep with a
2990                  * higher priority than getpbuf() to finish faster.
2991                  */
2992                 n = new - nsw_wcount_async_max;
2993                 if (nsw_wcount_async + n >= 0) {
2994                         nsw_wcount_async += n;
2995                         nsw_wcount_async_max += n;
2996                         wakeup(&nsw_wcount_async);
2997                 } else {
2998                         nsw_wcount_async_max -= nsw_wcount_async;
2999                         nsw_wcount_async = 0;
3000                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
3001                             "swpsysctl", 0);
3002                 }
3003         }
3004         mtx_unlock(&pbuf_mtx);
3005
3006         return (0);
3007 }