]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Remove some remaining references to VM_ALLOC_NOOBJ
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/limits.h>
86 #include <sys/lock.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/priv.h>
93 #include <sys/proc.h>
94 #include <sys/racct.h>
95 #include <sys/resource.h>
96 #include <sys/resourcevar.h>
97 #include <sys/rwlock.h>
98 #include <sys/sbuf.h>
99 #include <sys/sysctl.h>
100 #include <sys/sysproto.h>
101 #include <sys/systm.h>
102 #include <sys/sx.h>
103 #include <sys/user.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106
107 #include <security/mac/mac_framework.h>
108
109 #include <vm/vm.h>
110 #include <vm/pmap.h>
111 #include <vm/vm_map.h>
112 #include <vm/vm_kern.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_param.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/uma.h>
121
122 #include <geom/geom.h>
123
124 /*
125  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
126  * The 64-page limit is due to the radix code (kern/subr_blist.c).
127  */
128 #ifndef MAX_PAGEOUT_CLUSTER
129 #define MAX_PAGEOUT_CLUSTER     32
130 #endif
131
132 #if !defined(SWB_NPAGES)
133 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
134 #endif
135
136 #define SWAP_META_PAGES         PCTRIE_COUNT
137
138 /*
139  * A swblk structure maps each page index within a
140  * SWAP_META_PAGES-aligned and sized range to the address of an
141  * on-disk swap block (or SWAPBLK_NONE). The collection of these
142  * mappings for an entire vm object is implemented as a pc-trie.
143  */
144 struct swblk {
145         vm_pindex_t     p;
146         daddr_t         d[SWAP_META_PAGES];
147 };
148
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;  /* Allocate from here next */
153 static int nswapdev;            /* Number of swap devices */
154 int swap_pager_avail;
155 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
156
157 static __exclusive_cache_line u_long swap_reserved;
158 static u_long swap_total;
159 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
160
161 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
162     "VM swap stats");
163
164 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
165     &swap_reserved, 0, sysctl_page_shift, "A", 
166     "Amount of swap storage needed to back all allocated anonymous memory.");
167 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
168     &swap_total, 0, sysctl_page_shift, "A", 
169     "Total amount of available swap storage.");
170
171 static int overcommit = 0;
172 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
173     "Configure virtual memory overcommit behavior. See tuning(7) "
174     "for details.");
175 static unsigned long swzone;
176 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
177     "Actual size of swap metadata zone");
178 static unsigned long swap_maxpages;
179 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
180     "Maximum amount of swap supported");
181
182 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
183 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
184     CTLFLAG_RD, &swap_free_deferred,
185     "Number of pages that deferred freeing swap space");
186
187 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
188 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
189     CTLFLAG_RD, &swap_free_completed,
190     "Number of deferred frees completed");
191
192 /* bits from overcommit */
193 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
194 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
195 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
196
197 static int
198 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
199 {
200         uint64_t newval;
201         u_long value = *(u_long *)arg1;
202
203         newval = ((uint64_t)value) << PAGE_SHIFT;
204         return (sysctl_handle_64(oidp, &newval, 0, req));
205 }
206
207 static bool
208 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
209 {
210         struct uidinfo *uip;
211         u_long prev;
212
213         uip = cred->cr_ruidinfo;
214
215         prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
216         if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
217             prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
218             priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
219                 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
220                 KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
221                 return (false);
222         }
223         return (true);
224 }
225
226 static void
227 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
228 {
229         struct uidinfo *uip;
230 #ifdef INVARIANTS
231         u_long prev;
232 #endif
233
234         uip = cred->cr_ruidinfo;
235
236 #ifdef INVARIANTS
237         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
238         KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
239 #else
240         atomic_subtract_long(&uip->ui_vmsize, pdecr);
241 #endif
242 }
243
244 static void
245 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
246 {
247         struct uidinfo *uip;
248
249         uip = cred->cr_ruidinfo;
250         atomic_add_long(&uip->ui_vmsize, pincr);
251 }
252
253 bool
254 swap_reserve(vm_ooffset_t incr)
255 {
256
257         return (swap_reserve_by_cred(incr, curthread->td_ucred));
258 }
259
260 bool
261 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
262 {
263         u_long r, s, prev, pincr;
264 #ifdef RACCT
265         int error;
266 #endif
267         int oc;
268         static int curfail;
269         static struct timeval lastfail;
270
271         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
272             (uintmax_t)incr));
273
274 #ifdef RACCT
275         if (RACCT_ENABLED()) {
276                 PROC_LOCK(curproc);
277                 error = racct_add(curproc, RACCT_SWAP, incr);
278                 PROC_UNLOCK(curproc);
279                 if (error != 0)
280                         return (false);
281         }
282 #endif
283
284         pincr = atop(incr);
285         prev = atomic_fetchadd_long(&swap_reserved, pincr);
286         r = prev + pincr;
287         s = swap_total;
288         oc = atomic_load_int(&overcommit);
289         if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
290                 s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
291                     vm_wire_count();
292         }
293         if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
294             priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
295                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
296                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
297                 goto out_error;
298         }
299
300         if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
301                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
302                 KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
303                 goto out_error;
304         }
305
306         return (true);
307
308 out_error:
309         if (ppsratecheck(&lastfail, &curfail, 1)) {
310                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
311                     cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
312         }
313 #ifdef RACCT
314         if (RACCT_ENABLED()) {
315                 PROC_LOCK(curproc);
316                 racct_sub(curproc, RACCT_SWAP, incr);
317                 PROC_UNLOCK(curproc);
318         }
319 #endif
320
321         return (false);
322 }
323
324 void
325 swap_reserve_force(vm_ooffset_t incr)
326 {
327         u_long pincr;
328
329         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
330             (uintmax_t)incr));
331
332 #ifdef RACCT
333         if (RACCT_ENABLED()) {
334                 PROC_LOCK(curproc);
335                 racct_add_force(curproc, RACCT_SWAP, incr);
336                 PROC_UNLOCK(curproc);
337         }
338 #endif
339         pincr = atop(incr);
340         atomic_add_long(&swap_reserved, pincr);
341         swap_reserve_force_rlimit(pincr, curthread->td_ucred);
342 }
343
344 void
345 swap_release(vm_ooffset_t decr)
346 {
347         struct ucred *cred;
348
349         PROC_LOCK(curproc);
350         cred = curproc->p_ucred;
351         swap_release_by_cred(decr, cred);
352         PROC_UNLOCK(curproc);
353 }
354
355 void
356 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
357 {
358         u_long pdecr;
359 #ifdef INVARIANTS
360         u_long prev;
361 #endif
362
363         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
364             (uintmax_t)decr));
365
366         pdecr = atop(decr);
367 #ifdef INVARIANTS
368         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
369         KASSERT(prev >= pdecr, ("swap_reserved < decr"));
370 #else
371         atomic_subtract_long(&swap_reserved, pdecr);
372 #endif
373
374         swap_release_by_cred_rlimit(pdecr, cred);
375 #ifdef RACCT
376         if (racct_enable)
377                 racct_sub_cred(cred, RACCT_SWAP, decr);
378 #endif
379 }
380
381 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
382 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
383 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
384 static int nsw_wcount_async;    /* limit async write buffers */
385 static int nsw_wcount_async_max;/* assigned maximum                     */
386 int nsw_cluster_max;            /* maximum VOP I/O allowed              */
387
388 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
389 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
390     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
391     "Maximum running async swap ops");
392 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
393 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
394     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
395     "Swap Fragmentation Info");
396
397 static struct sx sw_alloc_sx;
398
399 /*
400  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
401  * of searching a named list by hashing it just a little.
402  */
403
404 #define NOBJLISTS               8
405
406 #define NOBJLIST(handle)        \
407         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
408
409 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
410 static uma_zone_t swwbuf_zone;
411 static uma_zone_t swrbuf_zone;
412 static uma_zone_t swblk_zone;
413 static uma_zone_t swpctrie_zone;
414
415 /*
416  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
417  * calls hooked from other parts of the VM system and do not appear here.
418  * (see vm/swap_pager.h).
419  */
420 static vm_object_t
421                 swap_pager_alloc(void *handle, vm_ooffset_t size,
422                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
423 static void     swap_pager_dealloc(vm_object_t object);
424 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
425     int *);
426 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
427     int *, pgo_getpages_iodone_t, void *);
428 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
429 static boolean_t
430                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
431 static void     swap_pager_init(void);
432 static void     swap_pager_unswapped(vm_page_t);
433 static void     swap_pager_swapoff(struct swdevt *sp);
434 static void     swap_pager_update_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436 static void     swap_pager_release_writecount(vm_object_t object,
437     vm_offset_t start, vm_offset_t end);
438 static void     swap_pager_freespace(vm_object_t object, vm_pindex_t start,
439     vm_size_t size);
440
441 const struct pagerops swappagerops = {
442         .pgo_kvme_type = KVME_TYPE_SWAP,
443         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
444         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object */
445         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object */
446         .pgo_getpages = swap_pager_getpages,    /* pagein */
447         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
448         .pgo_putpages = swap_pager_putpages,    /* pageout */
449         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page */
450         .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
451         .pgo_update_writecount = swap_pager_update_writecount,
452         .pgo_release_writecount = swap_pager_release_writecount,
453         .pgo_freespace = swap_pager_freespace,
454 };
455
456 /*
457  * swap_*() routines are externally accessible.  swp_*() routines are
458  * internal.
459  */
460 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
461 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
462
463 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
464     "Maximum size of a swap block in pages");
465
466 static void     swp_sizecheck(void);
467 static void     swp_pager_async_iodone(struct buf *bp);
468 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
469 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
470 static int      swapongeom(struct vnode *);
471 static int      swaponvp(struct thread *, struct vnode *, u_long);
472 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
473
474 /*
475  * Swap bitmap functions
476  */
477 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
478 static daddr_t  swp_pager_getswapspace(int *npages);
479
480 /*
481  * Metadata functions
482  */
483 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
484 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
485 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
486     vm_pindex_t pindex, vm_pindex_t count);
487 static void swp_pager_meta_free_all(vm_object_t);
488 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
489
490 static void
491 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
492 {
493
494         *start = SWAPBLK_NONE;
495         *num = 0;
496 }
497
498 static void
499 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
500 {
501
502         if (*start + *num == addr) {
503                 (*num)++;
504         } else {
505                 swp_pager_freeswapspace(*start, *num);
506                 *start = addr;
507                 *num = 1;
508         }
509 }
510
511 static void *
512 swblk_trie_alloc(struct pctrie *ptree)
513 {
514
515         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
516             M_USE_RESERVE : 0)));
517 }
518
519 static void
520 swblk_trie_free(struct pctrie *ptree, void *node)
521 {
522
523         uma_zfree(swpctrie_zone, node);
524 }
525
526 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
527
528 /*
529  * SWP_SIZECHECK() -    update swap_pager_full indication
530  *
531  *      update the swap_pager_almost_full indication and warn when we are
532  *      about to run out of swap space, using lowat/hiwat hysteresis.
533  *
534  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
535  *
536  *      No restrictions on call
537  *      This routine may not block.
538  */
539 static void
540 swp_sizecheck(void)
541 {
542
543         if (swap_pager_avail < nswap_lowat) {
544                 if (swap_pager_almost_full == 0) {
545                         printf("swap_pager: out of swap space\n");
546                         swap_pager_almost_full = 1;
547                 }
548         } else {
549                 swap_pager_full = 0;
550                 if (swap_pager_avail > nswap_hiwat)
551                         swap_pager_almost_full = 0;
552         }
553 }
554
555 /*
556  * SWAP_PAGER_INIT() -  initialize the swap pager!
557  *
558  *      Expected to be started from system init.  NOTE:  This code is run
559  *      before much else so be careful what you depend on.  Most of the VM
560  *      system has yet to be initialized at this point.
561  */
562 static void
563 swap_pager_init(void)
564 {
565         /*
566          * Initialize object lists
567          */
568         int i;
569
570         for (i = 0; i < NOBJLISTS; ++i)
571                 TAILQ_INIT(&swap_pager_object_list[i]);
572         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
573         sx_init(&sw_alloc_sx, "swspsx");
574         sx_init(&swdev_syscall_lock, "swsysc");
575
576         /*
577          * The nsw_cluster_max is constrained by the bp->b_pages[]
578          * array, which has maxphys / PAGE_SIZE entries, and our locally
579          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
580          * constrained by the swap device interleave stripe size.
581          *
582          * Initialized early so that GEOM_ELI can see it.
583          */
584         nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
585 }
586
587 /*
588  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
589  *
590  *      Expected to be started from pageout process once, prior to entering
591  *      its main loop.
592  */
593 void
594 swap_pager_swap_init(void)
595 {
596         unsigned long n, n2;
597
598         /*
599          * Number of in-transit swap bp operations.  Don't
600          * exhaust the pbufs completely.  Make sure we
601          * initialize workable values (0 will work for hysteresis
602          * but it isn't very efficient).
603          *
604          * Currently we hardwire nsw_wcount_async to 4.  This limit is
605          * designed to prevent other I/O from having high latencies due to
606          * our pageout I/O.  The value 4 works well for one or two active swap
607          * devices but is probably a little low if you have more.  Even so,
608          * a higher value would probably generate only a limited improvement
609          * with three or four active swap devices since the system does not
610          * typically have to pageout at extreme bandwidths.   We will want
611          * at least 2 per swap devices, and 4 is a pretty good value if you
612          * have one NFS swap device due to the command/ack latency over NFS.
613          * So it all works out pretty well.
614          *
615          * nsw_cluster_max is initialized in swap_pager_init().
616          */
617
618         nsw_wcount_async = 4;
619         nsw_wcount_async_max = nsw_wcount_async;
620         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
621
622         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
623         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
624
625         /*
626          * Initialize our zone, taking the user's requested size or
627          * estimating the number we need based on the number of pages
628          * in the system.
629          */
630         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
631             vm_cnt.v_page_count / 2;
632         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
633             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
634         if (swpctrie_zone == NULL)
635                 panic("failed to create swap pctrie zone.");
636         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
637             NULL, NULL, _Alignof(struct swblk) - 1, 0);
638         if (swblk_zone == NULL)
639                 panic("failed to create swap blk zone.");
640         n2 = n;
641         do {
642                 if (uma_zone_reserve_kva(swblk_zone, n))
643                         break;
644                 /*
645                  * if the allocation failed, try a zone two thirds the
646                  * size of the previous attempt.
647                  */
648                 n -= ((n + 2) / 3);
649         } while (n > 0);
650
651         /*
652          * Often uma_zone_reserve_kva() cannot reserve exactly the
653          * requested size.  Account for the difference when
654          * calculating swap_maxpages.
655          */
656         n = uma_zone_get_max(swblk_zone);
657
658         if (n < n2)
659                 printf("Swap blk zone entries changed from %lu to %lu.\n",
660                     n2, n);
661         /* absolute maximum we can handle assuming 100% efficiency */
662         swap_maxpages = n * SWAP_META_PAGES;
663         swzone = n * sizeof(struct swblk);
664         if (!uma_zone_reserve_kva(swpctrie_zone, n))
665                 printf("Cannot reserve swap pctrie zone, "
666                     "reduce kern.maxswzone.\n");
667 }
668
669 bool
670 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
671     vm_ooffset_t size, vm_ooffset_t offset)
672 {
673         if (cred != NULL) {
674                 if (!swap_reserve_by_cred(size, cred))
675                         return (false);
676                 crhold(cred);
677         }
678
679         object->un_pager.swp.writemappings = 0;
680         object->handle = handle;
681         if (cred != NULL) {
682                 object->cred = cred;
683                 object->charge = size;
684         }
685         return (true);
686 }
687
688 static vm_object_t
689 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
690     vm_ooffset_t size, vm_ooffset_t offset)
691 {
692         vm_object_t object;
693
694         /*
695          * The un_pager.swp.swp_blks trie is initialized by
696          * vm_object_allocate() to ensure the correct order of
697          * visibility to other threads.
698          */
699         object = vm_object_allocate(otype, OFF_TO_IDX(offset +
700             PAGE_MASK + size));
701
702         if (!swap_pager_init_object(object, handle, cred, size, offset)) {
703                 vm_object_deallocate(object);
704                 return (NULL);
705         }
706         return (object);
707 }
708
709 /*
710  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
711  *                      its metadata structures.
712  *
713  *      This routine is called from the mmap and fork code to create a new
714  *      OBJT_SWAP object.
715  *
716  *      This routine must ensure that no live duplicate is created for
717  *      the named object request, which is protected against by
718  *      holding the sw_alloc_sx lock in case handle != NULL.
719  */
720 static vm_object_t
721 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
722     vm_ooffset_t offset, struct ucred *cred)
723 {
724         vm_object_t object;
725
726         if (handle != NULL) {
727                 /*
728                  * Reference existing named region or allocate new one.  There
729                  * should not be a race here against swp_pager_meta_build()
730                  * as called from vm_page_remove() in regards to the lookup
731                  * of the handle.
732                  */
733                 sx_xlock(&sw_alloc_sx);
734                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
735                 if (object == NULL) {
736                         object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
737                             size, offset);
738                         if (object != NULL) {
739                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
740                                     object, pager_object_list);
741                         }
742                 }
743                 sx_xunlock(&sw_alloc_sx);
744         } else {
745                 object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
746                     size, offset);
747         }
748         return (object);
749 }
750
751 /*
752  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
753  *
754  *      The swap backing for the object is destroyed.  The code is
755  *      designed such that we can reinstantiate it later, but this
756  *      routine is typically called only when the entire object is
757  *      about to be destroyed.
758  *
759  *      The object must be locked.
760  */
761 static void
762 swap_pager_dealloc(vm_object_t object)
763 {
764
765         VM_OBJECT_ASSERT_WLOCKED(object);
766         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
767
768         /*
769          * Remove from list right away so lookups will fail if we block for
770          * pageout completion.
771          */
772         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
773                 VM_OBJECT_WUNLOCK(object);
774                 sx_xlock(&sw_alloc_sx);
775                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
776                     pager_object_list);
777                 sx_xunlock(&sw_alloc_sx);
778                 VM_OBJECT_WLOCK(object);
779         }
780
781         vm_object_pip_wait(object, "swpdea");
782
783         /*
784          * Free all remaining metadata.  We only bother to free it from
785          * the swap meta data.  We do not attempt to free swapblk's still
786          * associated with vm_page_t's for this object.  We do not care
787          * if paging is still in progress on some objects.
788          */
789         swp_pager_meta_free_all(object);
790         object->handle = NULL;
791         object->type = OBJT_DEAD;
792         vm_object_clear_flag(object, OBJ_SWAP);
793 }
794
795 /************************************************************************
796  *                      SWAP PAGER BITMAP ROUTINES                      *
797  ************************************************************************/
798
799 /*
800  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
801  *
802  *      Allocate swap for up to the requested number of pages.  The
803  *      starting swap block number (a page index) is returned or
804  *      SWAPBLK_NONE if the allocation failed.
805  *
806  *      Also has the side effect of advising that somebody made a mistake
807  *      when they configured swap and didn't configure enough.
808  *
809  *      This routine may not sleep.
810  *
811  *      We allocate in round-robin fashion from the configured devices.
812  */
813 static daddr_t
814 swp_pager_getswapspace(int *io_npages)
815 {
816         daddr_t blk;
817         struct swdevt *sp;
818         int mpages, npages;
819
820         KASSERT(*io_npages >= 1,
821             ("%s: npages not positive", __func__));
822         blk = SWAPBLK_NONE;
823         mpages = *io_npages;
824         npages = imin(BLIST_MAX_ALLOC, mpages);
825         mtx_lock(&sw_dev_mtx);
826         sp = swdevhd;
827         while (!TAILQ_EMPTY(&swtailq)) {
828                 if (sp == NULL)
829                         sp = TAILQ_FIRST(&swtailq);
830                 if ((sp->sw_flags & SW_CLOSING) == 0)
831                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
832                 if (blk != SWAPBLK_NONE)
833                         break;
834                 sp = TAILQ_NEXT(sp, sw_list);
835                 if (swdevhd == sp) {
836                         if (npages == 1)
837                                 break;
838                         mpages = npages - 1;
839                         npages >>= 1;
840                 }
841         }
842         if (blk != SWAPBLK_NONE) {
843                 *io_npages = npages;
844                 blk += sp->sw_first;
845                 sp->sw_used += npages;
846                 swap_pager_avail -= npages;
847                 swp_sizecheck();
848                 swdevhd = TAILQ_NEXT(sp, sw_list);
849         } else {
850                 if (swap_pager_full != 2) {
851                         printf("swp_pager_getswapspace(%d): failed\n",
852                             *io_npages);
853                         swap_pager_full = 2;
854                         swap_pager_almost_full = 1;
855                 }
856                 swdevhd = NULL;
857         }
858         mtx_unlock(&sw_dev_mtx);
859         return (blk);
860 }
861
862 static bool
863 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
864 {
865
866         return (blk >= sp->sw_first && blk < sp->sw_end);
867 }
868
869 static void
870 swp_pager_strategy(struct buf *bp)
871 {
872         struct swdevt *sp;
873
874         mtx_lock(&sw_dev_mtx);
875         TAILQ_FOREACH(sp, &swtailq, sw_list) {
876                 if (swp_pager_isondev(bp->b_blkno, sp)) {
877                         mtx_unlock(&sw_dev_mtx);
878                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
879                             unmapped_buf_allowed) {
880                                 bp->b_data = unmapped_buf;
881                                 bp->b_offset = 0;
882                         } else {
883                                 pmap_qenter((vm_offset_t)bp->b_data,
884                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
885                         }
886                         sp->sw_strategy(bp, sp);
887                         return;
888                 }
889         }
890         panic("Swapdev not found");
891 }
892
893 /*
894  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
895  *
896  *      This routine returns the specified swap blocks back to the bitmap.
897  *
898  *      This routine may not sleep.
899  */
900 static void
901 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
902 {
903         struct swdevt *sp;
904
905         if (npages == 0)
906                 return;
907         mtx_lock(&sw_dev_mtx);
908         TAILQ_FOREACH(sp, &swtailq, sw_list) {
909                 if (swp_pager_isondev(blk, sp)) {
910                         sp->sw_used -= npages;
911                         /*
912                          * If we are attempting to stop swapping on
913                          * this device, we don't want to mark any
914                          * blocks free lest they be reused.
915                          */
916                         if ((sp->sw_flags & SW_CLOSING) == 0) {
917                                 blist_free(sp->sw_blist, blk - sp->sw_first,
918                                     npages);
919                                 swap_pager_avail += npages;
920                                 swp_sizecheck();
921                         }
922                         mtx_unlock(&sw_dev_mtx);
923                         return;
924                 }
925         }
926         panic("Swapdev not found");
927 }
928
929 /*
930  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
931  */
932 static int
933 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
934 {
935         struct sbuf sbuf;
936         struct swdevt *sp;
937         const char *devname;
938         int error;
939
940         error = sysctl_wire_old_buffer(req, 0);
941         if (error != 0)
942                 return (error);
943         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
944         mtx_lock(&sw_dev_mtx);
945         TAILQ_FOREACH(sp, &swtailq, sw_list) {
946                 if (vn_isdisk(sp->sw_vp))
947                         devname = devtoname(sp->sw_vp->v_rdev);
948                 else
949                         devname = "[file]";
950                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
951                 blist_stats(sp->sw_blist, &sbuf);
952         }
953         mtx_unlock(&sw_dev_mtx);
954         error = sbuf_finish(&sbuf);
955         sbuf_delete(&sbuf);
956         return (error);
957 }
958
959 /*
960  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
961  *                              range within an object.
962  *
963  *      This routine removes swapblk assignments from swap metadata.
964  *
965  *      The external callers of this routine typically have already destroyed
966  *      or renamed vm_page_t's associated with this range in the object so
967  *      we should be ok.
968  *
969  *      The object must be locked.
970  */
971 static void
972 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
973 {
974
975         swp_pager_meta_free(object, start, size);
976 }
977
978 /*
979  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
980  *
981  *      Assigns swap blocks to the specified range within the object.  The
982  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
983  *
984  *      Returns 0 on success, -1 on failure.
985  */
986 int
987 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
988 {
989         daddr_t addr, blk, n_free, s_free;
990         vm_pindex_t i, j;
991         int n;
992
993         swp_pager_init_freerange(&s_free, &n_free);
994         VM_OBJECT_WLOCK(object);
995         for (i = 0; i < size; i += n) {
996                 n = MIN(size - i, INT_MAX);
997                 blk = swp_pager_getswapspace(&n);
998                 if (blk == SWAPBLK_NONE) {
999                         swp_pager_meta_free(object, start, i);
1000                         VM_OBJECT_WUNLOCK(object);
1001                         return (-1);
1002                 }
1003                 for (j = 0; j < n; ++j) {
1004                         addr = swp_pager_meta_build(object,
1005                             start + i + j, blk + j);
1006                         if (addr != SWAPBLK_NONE)
1007                                 swp_pager_update_freerange(&s_free, &n_free,
1008                                     addr);
1009                 }
1010         }
1011         swp_pager_freeswapspace(s_free, n_free);
1012         VM_OBJECT_WUNLOCK(object);
1013         return (0);
1014 }
1015
1016 static bool
1017 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1018     vm_pindex_t pindex, daddr_t addr)
1019 {
1020         daddr_t dstaddr;
1021
1022         KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1023             ("%s: Srcobject not swappable", __func__));
1024         if ((dstobject->flags & OBJ_SWAP) != 0 &&
1025             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1026                 /* Caller should destroy the source block. */
1027                 return (false);
1028         }
1029
1030         /*
1031          * Destination has no swapblk and is not resident, transfer source.
1032          * swp_pager_meta_build() can sleep.
1033          */
1034         VM_OBJECT_WUNLOCK(srcobject);
1035         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1036         KASSERT(dstaddr == SWAPBLK_NONE,
1037             ("Unexpected destination swapblk"));
1038         VM_OBJECT_WLOCK(srcobject);
1039
1040         return (true);
1041 }
1042
1043 /*
1044  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1045  *                      and destroy the source.
1046  *
1047  *      Copy any valid swapblks from the source to the destination.  In
1048  *      cases where both the source and destination have a valid swapblk,
1049  *      we keep the destination's.
1050  *
1051  *      This routine is allowed to sleep.  It may sleep allocating metadata
1052  *      indirectly through swp_pager_meta_build().
1053  *
1054  *      The source object contains no vm_page_t's (which is just as well)
1055  *
1056  *      The source object is of type OBJT_SWAP.
1057  *
1058  *      The source and destination objects must be locked.
1059  *      Both object locks may temporarily be released.
1060  */
1061 void
1062 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1063     vm_pindex_t offset, int destroysource)
1064 {
1065
1066         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1067         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1068
1069         /*
1070          * If destroysource is set, we remove the source object from the
1071          * swap_pager internal queue now.
1072          */
1073         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1074             srcobject->handle != NULL) {
1075                 VM_OBJECT_WUNLOCK(srcobject);
1076                 VM_OBJECT_WUNLOCK(dstobject);
1077                 sx_xlock(&sw_alloc_sx);
1078                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1079                     pager_object_list);
1080                 sx_xunlock(&sw_alloc_sx);
1081                 VM_OBJECT_WLOCK(dstobject);
1082                 VM_OBJECT_WLOCK(srcobject);
1083         }
1084
1085         /*
1086          * Transfer source to destination.
1087          */
1088         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1089
1090         /*
1091          * Free left over swap blocks in source.
1092          *
1093          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1094          * double-remove the object from the swap queues.
1095          */
1096         if (destroysource) {
1097                 swp_pager_meta_free_all(srcobject);
1098                 /*
1099                  * Reverting the type is not necessary, the caller is going
1100                  * to destroy srcobject directly, but I'm doing it here
1101                  * for consistency since we've removed the object from its
1102                  * queues.
1103                  */
1104                 srcobject->type = OBJT_DEFAULT;
1105                 vm_object_clear_flag(srcobject, OBJ_SWAP);
1106         }
1107 }
1108
1109 /*
1110  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1111  *                              the requested page.
1112  *
1113  *      We determine whether good backing store exists for the requested
1114  *      page and return TRUE if it does, FALSE if it doesn't.
1115  *
1116  *      If TRUE, we also try to determine how much valid, contiguous backing
1117  *      store exists before and after the requested page.
1118  */
1119 static boolean_t
1120 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1121     int *after)
1122 {
1123         daddr_t blk, blk0;
1124         int i;
1125
1126         VM_OBJECT_ASSERT_LOCKED(object);
1127         KASSERT((object->flags & OBJ_SWAP) != 0,
1128             ("%s: object not swappable", __func__));
1129
1130         /*
1131          * do we have good backing store at the requested index ?
1132          */
1133         blk0 = swp_pager_meta_lookup(object, pindex);
1134         if (blk0 == SWAPBLK_NONE) {
1135                 if (before)
1136                         *before = 0;
1137                 if (after)
1138                         *after = 0;
1139                 return (FALSE);
1140         }
1141
1142         /*
1143          * find backwards-looking contiguous good backing store
1144          */
1145         if (before != NULL) {
1146                 for (i = 1; i < SWB_NPAGES; i++) {
1147                         if (i > pindex)
1148                                 break;
1149                         blk = swp_pager_meta_lookup(object, pindex - i);
1150                         if (blk != blk0 - i)
1151                                 break;
1152                 }
1153                 *before = i - 1;
1154         }
1155
1156         /*
1157          * find forward-looking contiguous good backing store
1158          */
1159         if (after != NULL) {
1160                 for (i = 1; i < SWB_NPAGES; i++) {
1161                         blk = swp_pager_meta_lookup(object, pindex + i);
1162                         if (blk != blk0 + i)
1163                                 break;
1164                 }
1165                 *after = i - 1;
1166         }
1167         return (TRUE);
1168 }
1169
1170 /*
1171  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1172  *
1173  *      This removes any associated swap backing store, whether valid or
1174  *      not, from the page.
1175  *
1176  *      This routine is typically called when a page is made dirty, at
1177  *      which point any associated swap can be freed.  MADV_FREE also
1178  *      calls us in a special-case situation
1179  *
1180  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1181  *      should make the page dirty before calling this routine.  This routine
1182  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1183  *      depends on it.
1184  *
1185  *      This routine may not sleep.
1186  *
1187  *      The object containing the page may be locked.
1188  */
1189 static void
1190 swap_pager_unswapped(vm_page_t m)
1191 {
1192         struct swblk *sb;
1193         vm_object_t obj;
1194
1195         /*
1196          * Handle enqueing deferred frees first.  If we do not have the
1197          * object lock we wait for the page daemon to clear the space.
1198          */
1199         obj = m->object;
1200         if (!VM_OBJECT_WOWNED(obj)) {
1201                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1202                 /*
1203                  * The caller is responsible for synchronization but we
1204                  * will harmlessly handle races.  This is typically provided
1205                  * by only calling unswapped() when a page transitions from
1206                  * clean to dirty.
1207                  */
1208                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1209                     PGA_SWAP_SPACE) {
1210                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1211                         counter_u64_add(swap_free_deferred, 1);
1212                 }
1213                 return;
1214         }
1215         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1216                 counter_u64_add(swap_free_completed, 1);
1217         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1218
1219         /*
1220          * The meta data only exists if the object is OBJT_SWAP
1221          * and even then might not be allocated yet.
1222          */
1223         KASSERT((m->object->flags & OBJ_SWAP) != 0,
1224             ("Free object not swappable"));
1225
1226         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1227             rounddown(m->pindex, SWAP_META_PAGES));
1228         if (sb == NULL)
1229                 return;
1230         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1231                 return;
1232         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1233         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1234         swp_pager_free_empty_swblk(m->object, sb);
1235 }
1236
1237 /*
1238  * swap_pager_getpages() - bring pages in from swap
1239  *
1240  *      Attempt to page in the pages in array "ma" of length "count".  The
1241  *      caller may optionally specify that additional pages preceding and
1242  *      succeeding the specified range be paged in.  The number of such pages
1243  *      is returned in the "rbehind" and "rahead" parameters, and they will
1244  *      be in the inactive queue upon return.
1245  *
1246  *      The pages in "ma" must be busied and will remain busied upon return.
1247  */
1248 static int
1249 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1250     int *rbehind, int *rahead)
1251 {
1252         struct buf *bp;
1253         vm_page_t bm, mpred, msucc, p;
1254         vm_pindex_t pindex;
1255         daddr_t blk;
1256         int i, maxahead, maxbehind, reqcount;
1257
1258         VM_OBJECT_ASSERT_WLOCKED(object);
1259         reqcount = count;
1260
1261         KASSERT((object->flags & OBJ_SWAP) != 0,
1262             ("%s: object not swappable", __func__));
1263         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1264                 VM_OBJECT_WUNLOCK(object);
1265                 return (VM_PAGER_FAIL);
1266         }
1267
1268         KASSERT(reqcount - 1 <= maxahead,
1269             ("page count %d extends beyond swap block", reqcount));
1270
1271         /*
1272          * Do not transfer any pages other than those that are xbusied
1273          * when running during a split or collapse operation.  This
1274          * prevents clustering from re-creating pages which are being
1275          * moved into another object.
1276          */
1277         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1278                 maxahead = reqcount - 1;
1279                 maxbehind = 0;
1280         }
1281
1282         /*
1283          * Clip the readahead and readbehind ranges to exclude resident pages.
1284          */
1285         if (rahead != NULL) {
1286                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1287                 pindex = ma[reqcount - 1]->pindex;
1288                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1289                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1290                         *rahead = msucc->pindex - pindex - 1;
1291         }
1292         if (rbehind != NULL) {
1293                 *rbehind = imin(*rbehind, maxbehind);
1294                 pindex = ma[0]->pindex;
1295                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1296                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1297                         *rbehind = pindex - mpred->pindex - 1;
1298         }
1299
1300         bm = ma[0];
1301         for (i = 0; i < count; i++)
1302                 ma[i]->oflags |= VPO_SWAPINPROG;
1303
1304         /*
1305          * Allocate readahead and readbehind pages.
1306          */
1307         if (rbehind != NULL) {
1308                 for (i = 1; i <= *rbehind; i++) {
1309                         p = vm_page_alloc(object, ma[0]->pindex - i,
1310                             VM_ALLOC_NORMAL);
1311                         if (p == NULL)
1312                                 break;
1313                         p->oflags |= VPO_SWAPINPROG;
1314                         bm = p;
1315                 }
1316                 *rbehind = i - 1;
1317         }
1318         if (rahead != NULL) {
1319                 for (i = 0; i < *rahead; i++) {
1320                         p = vm_page_alloc(object,
1321                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1322                         if (p == NULL)
1323                                 break;
1324                         p->oflags |= VPO_SWAPINPROG;
1325                 }
1326                 *rahead = i;
1327         }
1328         if (rbehind != NULL)
1329                 count += *rbehind;
1330         if (rahead != NULL)
1331                 count += *rahead;
1332
1333         vm_object_pip_add(object, count);
1334
1335         pindex = bm->pindex;
1336         blk = swp_pager_meta_lookup(object, pindex);
1337         KASSERT(blk != SWAPBLK_NONE,
1338             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1339
1340         VM_OBJECT_WUNLOCK(object);
1341         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1342         MPASS((bp->b_flags & B_MAXPHYS) != 0);
1343         /* Pages cannot leave the object while busy. */
1344         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1345                 MPASS(p->pindex == bm->pindex + i);
1346                 bp->b_pages[i] = p;
1347         }
1348
1349         bp->b_flags |= B_PAGING;
1350         bp->b_iocmd = BIO_READ;
1351         bp->b_iodone = swp_pager_async_iodone;
1352         bp->b_rcred = crhold(thread0.td_ucred);
1353         bp->b_wcred = crhold(thread0.td_ucred);
1354         bp->b_blkno = blk;
1355         bp->b_bcount = PAGE_SIZE * count;
1356         bp->b_bufsize = PAGE_SIZE * count;
1357         bp->b_npages = count;
1358         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1359         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1360
1361         VM_CNT_INC(v_swapin);
1362         VM_CNT_ADD(v_swappgsin, count);
1363
1364         /*
1365          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1366          * this point because we automatically release it on completion.
1367          * Instead, we look at the one page we are interested in which we
1368          * still hold a lock on even through the I/O completion.
1369          *
1370          * The other pages in our ma[] array are also released on completion,
1371          * so we cannot assume they are valid anymore either.
1372          *
1373          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1374          */
1375         BUF_KERNPROC(bp);
1376         swp_pager_strategy(bp);
1377
1378         /*
1379          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1380          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1381          * is set in the metadata for each page in the request.
1382          */
1383         VM_OBJECT_WLOCK(object);
1384         /* This could be implemented more efficiently with aflags */
1385         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1386                 ma[0]->oflags |= VPO_SWAPSLEEP;
1387                 VM_CNT_INC(v_intrans);
1388                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1389                     "swread", hz * 20)) {
1390                         printf(
1391 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1392                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1393                 }
1394         }
1395         VM_OBJECT_WUNLOCK(object);
1396
1397         /*
1398          * If we had an unrecoverable read error pages will not be valid.
1399          */
1400         for (i = 0; i < reqcount; i++)
1401                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1402                         return (VM_PAGER_ERROR);
1403
1404         return (VM_PAGER_OK);
1405
1406         /*
1407          * A final note: in a low swap situation, we cannot deallocate swap
1408          * and mark a page dirty here because the caller is likely to mark
1409          * the page clean when we return, causing the page to possibly revert
1410          * to all-zero's later.
1411          */
1412 }
1413
1414 static int
1415 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1416     int *rbehind, int *rahead)
1417 {
1418
1419         VM_OBJECT_WLOCK(object);
1420         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1421 }
1422
1423 /*
1424  *      swap_pager_getpages_async():
1425  *
1426  *      Right now this is emulation of asynchronous operation on top of
1427  *      swap_pager_getpages().
1428  */
1429 static int
1430 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1431     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1432 {
1433         int r, error;
1434
1435         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1436         switch (r) {
1437         case VM_PAGER_OK:
1438                 error = 0;
1439                 break;
1440         case VM_PAGER_ERROR:
1441                 error = EIO;
1442                 break;
1443         case VM_PAGER_FAIL:
1444                 error = EINVAL;
1445                 break;
1446         default:
1447                 panic("unhandled swap_pager_getpages() error %d", r);
1448         }
1449         (iodone)(arg, ma, count, error);
1450
1451         return (r);
1452 }
1453
1454 /*
1455  *      swap_pager_putpages:
1456  *
1457  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1458  *
1459  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1460  *      are automatically converted to SWAP objects.
1461  *
1462  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1463  *      vm_page reservation system coupled with properly written VFS devices
1464  *      should ensure that no low-memory deadlock occurs.  This is an area
1465  *      which needs work.
1466  *
1467  *      The parent has N vm_object_pip_add() references prior to
1468  *      calling us and will remove references for rtvals[] that are
1469  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1470  *      completion.
1471  *
1472  *      The parent has soft-busy'd the pages it passes us and will unbusy
1473  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1474  *      We need to unbusy the rest on I/O completion.
1475  */
1476 static void
1477 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1478     int flags, int *rtvals)
1479 {
1480         struct buf *bp;
1481         daddr_t addr, blk, n_free, s_free;
1482         vm_page_t mreq;
1483         int i, j, n;
1484         bool async;
1485
1486         KASSERT(count == 0 || ma[0]->object == object,
1487             ("%s: object mismatch %p/%p",
1488             __func__, object, ma[0]->object));
1489
1490         /*
1491          * Step 1
1492          *
1493          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1494          */
1495         if ((object->flags & OBJ_SWAP) == 0) {
1496                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1497                 KASSERT(addr == SWAPBLK_NONE,
1498                     ("unexpected object swap block"));
1499         }
1500         VM_OBJECT_WUNLOCK(object);
1501         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1502         swp_pager_init_freerange(&s_free, &n_free);
1503
1504         /*
1505          * Step 2
1506          *
1507          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1508          * The page is left dirty until the pageout operation completes
1509          * successfully.
1510          */
1511         for (i = 0; i < count; i += n) {
1512                 /* Maximum I/O size is limited by maximum swap block size. */
1513                 n = min(count - i, nsw_cluster_max);
1514
1515                 if (async) {
1516                         mtx_lock(&swbuf_mtx);
1517                         while (nsw_wcount_async == 0)
1518                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1519                                     "swbufa", 0);
1520                         nsw_wcount_async--;
1521                         mtx_unlock(&swbuf_mtx);
1522                 }
1523
1524                 /* Get a block of swap of size up to size n. */
1525                 VM_OBJECT_WLOCK(object);
1526                 blk = swp_pager_getswapspace(&n);
1527                 if (blk == SWAPBLK_NONE) {
1528                         VM_OBJECT_WUNLOCK(object);
1529                         mtx_lock(&swbuf_mtx);
1530                         if (++nsw_wcount_async == 1)
1531                                 wakeup(&nsw_wcount_async);
1532                         mtx_unlock(&swbuf_mtx);
1533                         for (j = 0; j < n; ++j)
1534                                 rtvals[i + j] = VM_PAGER_FAIL;
1535                         continue;
1536                 }
1537                 for (j = 0; j < n; ++j) {
1538                         mreq = ma[i + j];
1539                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1540                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1541                             blk + j);
1542                         if (addr != SWAPBLK_NONE)
1543                                 swp_pager_update_freerange(&s_free, &n_free,
1544                                     addr);
1545                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1546                         mreq->oflags |= VPO_SWAPINPROG;
1547                 }
1548                 VM_OBJECT_WUNLOCK(object);
1549
1550                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1551                 MPASS((bp->b_flags & B_MAXPHYS) != 0);
1552                 if (async)
1553                         bp->b_flags |= B_ASYNC;
1554                 bp->b_flags |= B_PAGING;
1555                 bp->b_iocmd = BIO_WRITE;
1556
1557                 bp->b_rcred = crhold(thread0.td_ucred);
1558                 bp->b_wcred = crhold(thread0.td_ucred);
1559                 bp->b_bcount = PAGE_SIZE * n;
1560                 bp->b_bufsize = PAGE_SIZE * n;
1561                 bp->b_blkno = blk;
1562                 for (j = 0; j < n; j++)
1563                         bp->b_pages[j] = ma[i + j];
1564                 bp->b_npages = n;
1565
1566                 /*
1567                  * Must set dirty range for NFS to work.
1568                  */
1569                 bp->b_dirtyoff = 0;
1570                 bp->b_dirtyend = bp->b_bcount;
1571
1572                 VM_CNT_INC(v_swapout);
1573                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1574
1575                 /*
1576                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1577                  * can call the async completion routine at the end of a
1578                  * synchronous I/O operation.  Otherwise, our caller would
1579                  * perform duplicate unbusy and wakeup operations on the page
1580                  * and object, respectively.
1581                  */
1582                 for (j = 0; j < n; j++)
1583                         rtvals[i + j] = VM_PAGER_PEND;
1584
1585                 /*
1586                  * asynchronous
1587                  *
1588                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1589                  */
1590                 if (async) {
1591                         bp->b_iodone = swp_pager_async_iodone;
1592                         BUF_KERNPROC(bp);
1593                         swp_pager_strategy(bp);
1594                         continue;
1595                 }
1596
1597                 /*
1598                  * synchronous
1599                  *
1600                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1601                  */
1602                 bp->b_iodone = bdone;
1603                 swp_pager_strategy(bp);
1604
1605                 /*
1606                  * Wait for the sync I/O to complete.
1607                  */
1608                 bwait(bp, PVM, "swwrt");
1609
1610                 /*
1611                  * Now that we are through with the bp, we can call the
1612                  * normal async completion, which frees everything up.
1613                  */
1614                 swp_pager_async_iodone(bp);
1615         }
1616         swp_pager_freeswapspace(s_free, n_free);
1617         VM_OBJECT_WLOCK(object);
1618 }
1619
1620 /*
1621  *      swp_pager_async_iodone:
1622  *
1623  *      Completion routine for asynchronous reads and writes from/to swap.
1624  *      Also called manually by synchronous code to finish up a bp.
1625  *
1626  *      This routine may not sleep.
1627  */
1628 static void
1629 swp_pager_async_iodone(struct buf *bp)
1630 {
1631         int i;
1632         vm_object_t object = NULL;
1633
1634         /*
1635          * Report error - unless we ran out of memory, in which case
1636          * we've already logged it in swapgeom_strategy().
1637          */
1638         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1639                 printf(
1640                     "swap_pager: I/O error - %s failed; blkno %ld,"
1641                         "size %ld, error %d\n",
1642                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1643                     (long)bp->b_blkno,
1644                     (long)bp->b_bcount,
1645                     bp->b_error
1646                 );
1647         }
1648
1649         /*
1650          * remove the mapping for kernel virtual
1651          */
1652         if (buf_mapped(bp))
1653                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1654         else
1655                 bp->b_data = bp->b_kvabase;
1656
1657         if (bp->b_npages) {
1658                 object = bp->b_pages[0]->object;
1659                 VM_OBJECT_WLOCK(object);
1660         }
1661
1662         /*
1663          * cleanup pages.  If an error occurs writing to swap, we are in
1664          * very serious trouble.  If it happens to be a disk error, though,
1665          * we may be able to recover by reassigning the swap later on.  So
1666          * in this case we remove the m->swapblk assignment for the page
1667          * but do not free it in the rlist.  The errornous block(s) are thus
1668          * never reallocated as swap.  Redirty the page and continue.
1669          */
1670         for (i = 0; i < bp->b_npages; ++i) {
1671                 vm_page_t m = bp->b_pages[i];
1672
1673                 m->oflags &= ~VPO_SWAPINPROG;
1674                 if (m->oflags & VPO_SWAPSLEEP) {
1675                         m->oflags &= ~VPO_SWAPSLEEP;
1676                         wakeup(&object->handle);
1677                 }
1678
1679                 /* We always have space after I/O, successful or not. */
1680                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1681
1682                 if (bp->b_ioflags & BIO_ERROR) {
1683                         /*
1684                          * If an error occurs I'd love to throw the swapblk
1685                          * away without freeing it back to swapspace, so it
1686                          * can never be used again.  But I can't from an
1687                          * interrupt.
1688                          */
1689                         if (bp->b_iocmd == BIO_READ) {
1690                                 /*
1691                                  * NOTE: for reads, m->dirty will probably
1692                                  * be overridden by the original caller of
1693                                  * getpages so don't play cute tricks here.
1694                                  */
1695                                 vm_page_invalid(m);
1696                         } else {
1697                                 /*
1698                                  * If a write error occurs, reactivate page
1699                                  * so it doesn't clog the inactive list,
1700                                  * then finish the I/O.
1701                                  */
1702                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1703
1704                                 /* PQ_UNSWAPPABLE? */
1705                                 vm_page_activate(m);
1706                                 vm_page_sunbusy(m);
1707                         }
1708                 } else if (bp->b_iocmd == BIO_READ) {
1709                         /*
1710                          * NOTE: for reads, m->dirty will probably be
1711                          * overridden by the original caller of getpages so
1712                          * we cannot set them in order to free the underlying
1713                          * swap in a low-swap situation.  I don't think we'd
1714                          * want to do that anyway, but it was an optimization
1715                          * that existed in the old swapper for a time before
1716                          * it got ripped out due to precisely this problem.
1717                          */
1718                         KASSERT(!pmap_page_is_mapped(m),
1719                             ("swp_pager_async_iodone: page %p is mapped", m));
1720                         KASSERT(m->dirty == 0,
1721                             ("swp_pager_async_iodone: page %p is dirty", m));
1722
1723                         vm_page_valid(m);
1724                         if (i < bp->b_pgbefore ||
1725                             i >= bp->b_npages - bp->b_pgafter)
1726                                 vm_page_readahead_finish(m);
1727                 } else {
1728                         /*
1729                          * For write success, clear the dirty
1730                          * status, then finish the I/O ( which decrements the
1731                          * busy count and possibly wakes waiter's up ).
1732                          * A page is only written to swap after a period of
1733                          * inactivity.  Therefore, we do not expect it to be
1734                          * reused.
1735                          */
1736                         KASSERT(!pmap_page_is_write_mapped(m),
1737                             ("swp_pager_async_iodone: page %p is not write"
1738                             " protected", m));
1739                         vm_page_undirty(m);
1740                         vm_page_deactivate_noreuse(m);
1741                         vm_page_sunbusy(m);
1742                 }
1743         }
1744
1745         /*
1746          * adjust pip.  NOTE: the original parent may still have its own
1747          * pip refs on the object.
1748          */
1749         if (object != NULL) {
1750                 vm_object_pip_wakeupn(object, bp->b_npages);
1751                 VM_OBJECT_WUNLOCK(object);
1752         }
1753
1754         /*
1755          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1756          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1757          * trigger a KASSERT in relpbuf().
1758          */
1759         if (bp->b_vp) {
1760                     bp->b_vp = NULL;
1761                     bp->b_bufobj = NULL;
1762         }
1763         /*
1764          * release the physical I/O buffer
1765          */
1766         if (bp->b_flags & B_ASYNC) {
1767                 mtx_lock(&swbuf_mtx);
1768                 if (++nsw_wcount_async == 1)
1769                         wakeup(&nsw_wcount_async);
1770                 mtx_unlock(&swbuf_mtx);
1771         }
1772         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1773 }
1774
1775 int
1776 swap_pager_nswapdev(void)
1777 {
1778
1779         return (nswapdev);
1780 }
1781
1782 static void
1783 swp_pager_force_dirty(vm_page_t m)
1784 {
1785
1786         vm_page_dirty(m);
1787         swap_pager_unswapped(m);
1788         vm_page_launder(m);
1789 }
1790
1791 u_long
1792 swap_pager_swapped_pages(vm_object_t object)
1793 {
1794         struct swblk *sb;
1795         vm_pindex_t pi;
1796         u_long res;
1797         int i;
1798
1799         VM_OBJECT_ASSERT_LOCKED(object);
1800         if ((object->flags & OBJ_SWAP) == 0)
1801                 return (0);
1802
1803         for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1804             &object->un_pager.swp.swp_blks, pi)) != NULL;
1805             pi = sb->p + SWAP_META_PAGES) {
1806                 for (i = 0; i < SWAP_META_PAGES; i++) {
1807                         if (sb->d[i] != SWAPBLK_NONE)
1808                                 res++;
1809                 }
1810         }
1811         return (res);
1812 }
1813
1814 /*
1815  *      swap_pager_swapoff_object:
1816  *
1817  *      Page in all of the pages that have been paged out for an object
1818  *      to a swap device.
1819  */
1820 static void
1821 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1822 {
1823         struct swblk *sb;
1824         vm_page_t m;
1825         vm_pindex_t pi;
1826         daddr_t blk;
1827         int i, nv, rahead, rv;
1828
1829         KASSERT((object->flags & OBJ_SWAP) != 0,
1830             ("%s: Object not swappable", __func__));
1831
1832         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1833             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1834                 if ((object->flags & OBJ_DEAD) != 0) {
1835                         /*
1836                          * Make sure that pending writes finish before
1837                          * returning.
1838                          */
1839                         vm_object_pip_wait(object, "swpoff");
1840                         swp_pager_meta_free_all(object);
1841                         break;
1842                 }
1843                 for (i = 0; i < SWAP_META_PAGES; i++) {
1844                         /*
1845                          * Count the number of contiguous valid blocks.
1846                          */
1847                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1848                                 blk = sb->d[i + nv];
1849                                 if (!swp_pager_isondev(blk, sp) ||
1850                                     blk == SWAPBLK_NONE)
1851                                         break;
1852                         }
1853                         if (nv == 0)
1854                                 continue;
1855
1856                         /*
1857                          * Look for a page corresponding to the first
1858                          * valid block and ensure that any pending paging
1859                          * operations on it are complete.  If the page is valid,
1860                          * mark it dirty and free the swap block.  Try to batch
1861                          * this operation since it may cause sp to be freed,
1862                          * meaning that we must restart the scan.  Avoid busying
1863                          * valid pages since we may block forever on kernel
1864                          * stack pages.
1865                          */
1866                         m = vm_page_lookup(object, sb->p + i);
1867                         if (m == NULL) {
1868                                 m = vm_page_alloc(object, sb->p + i,
1869                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1870                                 if (m == NULL)
1871                                         break;
1872                         } else {
1873                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1874                                         m->oflags |= VPO_SWAPSLEEP;
1875                                         VM_OBJECT_SLEEP(object, &object->handle,
1876                                             PSWP, "swpoff", 0);
1877                                         break;
1878                                 }
1879                                 if (vm_page_all_valid(m)) {
1880                                         do {
1881                                                 swp_pager_force_dirty(m);
1882                                         } while (--nv > 0 &&
1883                                             (m = vm_page_next(m)) != NULL &&
1884                                             vm_page_all_valid(m) &&
1885                                             (m->oflags & VPO_SWAPINPROG) == 0);
1886                                         break;
1887                                 }
1888                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1889                                         break;
1890                         }
1891
1892                         vm_object_pip_add(object, 1);
1893                         rahead = SWAP_META_PAGES;
1894                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1895                             &rahead);
1896                         if (rv != VM_PAGER_OK)
1897                                 panic("%s: read from swap failed: %d",
1898                                     __func__, rv);
1899                         vm_object_pip_wakeupn(object, 1);
1900                         VM_OBJECT_WLOCK(object);
1901                         vm_page_xunbusy(m);
1902
1903                         /*
1904                          * The object lock was dropped so we must restart the
1905                          * scan of this swap block.  Pages paged in during this
1906                          * iteration will be marked dirty in a future iteration.
1907                          */
1908                         break;
1909                 }
1910                 if (i == SWAP_META_PAGES)
1911                         pi = sb->p + SWAP_META_PAGES;
1912         }
1913 }
1914
1915 /*
1916  *      swap_pager_swapoff:
1917  *
1918  *      Page in all of the pages that have been paged out to the
1919  *      given device.  The corresponding blocks in the bitmap must be
1920  *      marked as allocated and the device must be flagged SW_CLOSING.
1921  *      There may be no processes swapped out to the device.
1922  *
1923  *      This routine may block.
1924  */
1925 static void
1926 swap_pager_swapoff(struct swdevt *sp)
1927 {
1928         vm_object_t object;
1929         int retries;
1930
1931         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1932
1933         retries = 0;
1934 full_rescan:
1935         mtx_lock(&vm_object_list_mtx);
1936         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1937                 if ((object->flags & OBJ_SWAP) == 0)
1938                         continue;
1939                 mtx_unlock(&vm_object_list_mtx);
1940                 /* Depends on type-stability. */
1941                 VM_OBJECT_WLOCK(object);
1942
1943                 /*
1944                  * Dead objects are eventually terminated on their own.
1945                  */
1946                 if ((object->flags & OBJ_DEAD) != 0)
1947                         goto next_obj;
1948
1949                 /*
1950                  * Sync with fences placed after pctrie
1951                  * initialization.  We must not access pctrie below
1952                  * unless we checked that our object is swap and not
1953                  * dead.
1954                  */
1955                 atomic_thread_fence_acq();
1956                 if ((object->flags & OBJ_SWAP) == 0)
1957                         goto next_obj;
1958
1959                 swap_pager_swapoff_object(sp, object);
1960 next_obj:
1961                 VM_OBJECT_WUNLOCK(object);
1962                 mtx_lock(&vm_object_list_mtx);
1963         }
1964         mtx_unlock(&vm_object_list_mtx);
1965
1966         if (sp->sw_used) {
1967                 /*
1968                  * Objects may be locked or paging to the device being
1969                  * removed, so we will miss their pages and need to
1970                  * make another pass.  We have marked this device as
1971                  * SW_CLOSING, so the activity should finish soon.
1972                  */
1973                 retries++;
1974                 if (retries > 100) {
1975                         panic("swapoff: failed to locate %d swap blocks",
1976                             sp->sw_used);
1977                 }
1978                 pause("swpoff", hz / 20);
1979                 goto full_rescan;
1980         }
1981         EVENTHANDLER_INVOKE(swapoff, sp);
1982 }
1983
1984 /************************************************************************
1985  *                              SWAP META DATA                          *
1986  ************************************************************************
1987  *
1988  *      These routines manipulate the swap metadata stored in the
1989  *      OBJT_SWAP object.
1990  *
1991  *      Swap metadata is implemented with a global hash and not directly
1992  *      linked into the object.  Instead the object simply contains
1993  *      appropriate tracking counters.
1994  */
1995
1996 /*
1997  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1998  */
1999 static bool
2000 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
2001 {
2002         int i;
2003
2004         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
2005         for (i = start; i < limit; i++) {
2006                 if (sb->d[i] != SWAPBLK_NONE)
2007                         return (false);
2008         }
2009         return (true);
2010 }
2011
2012 /*
2013  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2014  *
2015  *  Nothing is done if the block is still in use.
2016  */
2017 static void
2018 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2019 {
2020
2021         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2022                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2023                 uma_zfree(swblk_zone, sb);
2024         }
2025 }
2026    
2027 /*
2028  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
2029  *
2030  *      We first convert the object to a swap object if it is a default
2031  *      object.
2032  *
2033  *      The specified swapblk is added to the object's swap metadata.  If
2034  *      the swapblk is not valid, it is freed instead.  Any previously
2035  *      assigned swapblk is returned.
2036  */
2037 static daddr_t
2038 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2039 {
2040         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2041         struct swblk *sb, *sb1;
2042         vm_pindex_t modpi, rdpi;
2043         daddr_t prev_swapblk;
2044         int error, i;
2045
2046         VM_OBJECT_ASSERT_WLOCKED(object);
2047
2048         /*
2049          * Convert default object to swap object if necessary
2050          */
2051         if ((object->flags & OBJ_SWAP) == 0) {
2052                 pctrie_init(&object->un_pager.swp.swp_blks);
2053
2054                 /*
2055                  * Ensure that swap_pager_swapoff()'s iteration over
2056                  * object_list does not see a garbage pctrie.
2057                  */
2058                 atomic_thread_fence_rel();
2059
2060                 object->type = OBJT_SWAP;
2061                 vm_object_set_flag(object, OBJ_SWAP);
2062                 object->un_pager.swp.writemappings = 0;
2063                 KASSERT((object->flags & OBJ_ANON) != 0 ||
2064                     object->handle == NULL,
2065                     ("default pager %p with handle %p",
2066                     object, object->handle));
2067         }
2068
2069         rdpi = rounddown(pindex, SWAP_META_PAGES);
2070         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2071         if (sb == NULL) {
2072                 if (swapblk == SWAPBLK_NONE)
2073                         return (SWAPBLK_NONE);
2074                 for (;;) {
2075                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2076                             pageproc ? M_USE_RESERVE : 0));
2077                         if (sb != NULL) {
2078                                 sb->p = rdpi;
2079                                 for (i = 0; i < SWAP_META_PAGES; i++)
2080                                         sb->d[i] = SWAPBLK_NONE;
2081                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2082                                     1, 0))
2083                                         printf("swblk zone ok\n");
2084                                 break;
2085                         }
2086                         VM_OBJECT_WUNLOCK(object);
2087                         if (uma_zone_exhausted(swblk_zone)) {
2088                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2089                                     0, 1))
2090                                         printf("swap blk zone exhausted, "
2091                                             "increase kern.maxswzone\n");
2092                                 vm_pageout_oom(VM_OOM_SWAPZ);
2093                                 pause("swzonxb", 10);
2094                         } else
2095                                 uma_zwait(swblk_zone);
2096                         VM_OBJECT_WLOCK(object);
2097                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2098                             rdpi);
2099                         if (sb != NULL)
2100                                 /*
2101                                  * Somebody swapped out a nearby page,
2102                                  * allocating swblk at the rdpi index,
2103                                  * while we dropped the object lock.
2104                                  */
2105                                 goto allocated;
2106                 }
2107                 for (;;) {
2108                         error = SWAP_PCTRIE_INSERT(
2109                             &object->un_pager.swp.swp_blks, sb);
2110                         if (error == 0) {
2111                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2112                                     1, 0))
2113                                         printf("swpctrie zone ok\n");
2114                                 break;
2115                         }
2116                         VM_OBJECT_WUNLOCK(object);
2117                         if (uma_zone_exhausted(swpctrie_zone)) {
2118                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2119                                     0, 1))
2120                                         printf("swap pctrie zone exhausted, "
2121                                             "increase kern.maxswzone\n");
2122                                 vm_pageout_oom(VM_OOM_SWAPZ);
2123                                 pause("swzonxp", 10);
2124                         } else
2125                                 uma_zwait(swpctrie_zone);
2126                         VM_OBJECT_WLOCK(object);
2127                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2128                             rdpi);
2129                         if (sb1 != NULL) {
2130                                 uma_zfree(swblk_zone, sb);
2131                                 sb = sb1;
2132                                 goto allocated;
2133                         }
2134                 }
2135         }
2136 allocated:
2137         MPASS(sb->p == rdpi);
2138
2139         modpi = pindex % SWAP_META_PAGES;
2140         /* Return prior contents of metadata. */
2141         prev_swapblk = sb->d[modpi];
2142         /* Enter block into metadata. */
2143         sb->d[modpi] = swapblk;
2144
2145         /*
2146          * Free the swblk if we end up with the empty page run.
2147          */
2148         if (swapblk == SWAPBLK_NONE)
2149                 swp_pager_free_empty_swblk(object, sb);
2150         return (prev_swapblk);
2151 }
2152
2153 /*
2154  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2155  * metadata, or transfer it into dstobject.
2156  *
2157  *      This routine will free swap metadata structures as they are cleaned
2158  *      out.
2159  */
2160 static void
2161 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2162     vm_pindex_t pindex, vm_pindex_t count)
2163 {
2164         struct swblk *sb;
2165         daddr_t n_free, s_free;
2166         vm_pindex_t offset, last;
2167         int i, limit, start;
2168
2169         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2170         if ((srcobject->flags & OBJ_SWAP) == 0 || count == 0)
2171                 return;
2172
2173         swp_pager_init_freerange(&s_free, &n_free);
2174         offset = pindex;
2175         last = pindex + count;
2176         for (;;) {
2177                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2178                     rounddown(pindex, SWAP_META_PAGES));
2179                 if (sb == NULL || sb->p >= last)
2180                         break;
2181                 start = pindex > sb->p ? pindex - sb->p : 0;
2182                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2183                     SWAP_META_PAGES;
2184                 for (i = start; i < limit; i++) {
2185                         if (sb->d[i] == SWAPBLK_NONE)
2186                                 continue;
2187                         if (dstobject == NULL ||
2188                             !swp_pager_xfer_source(srcobject, dstobject, 
2189                             sb->p + i - offset, sb->d[i])) {
2190                                 swp_pager_update_freerange(&s_free, &n_free,
2191                                     sb->d[i]);
2192                         }
2193                         sb->d[i] = SWAPBLK_NONE;
2194                 }
2195                 pindex = sb->p + SWAP_META_PAGES;
2196                 if (swp_pager_swblk_empty(sb, 0, start) &&
2197                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2198                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2199                             sb->p);
2200                         uma_zfree(swblk_zone, sb);
2201                 }
2202         }
2203         swp_pager_freeswapspace(s_free, n_free);
2204 }
2205
2206 /*
2207  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2208  *
2209  *      The requested range of blocks is freed, with any associated swap
2210  *      returned to the swap bitmap.
2211  *
2212  *      This routine will free swap metadata structures as they are cleaned
2213  *      out.  This routine does *NOT* operate on swap metadata associated
2214  *      with resident pages.
2215  */
2216 static void
2217 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2218 {
2219         swp_pager_meta_transfer(object, NULL, pindex, count);
2220 }
2221
2222 /*
2223  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2224  *
2225  *      This routine locates and destroys all swap metadata associated with
2226  *      an object.
2227  */
2228 static void
2229 swp_pager_meta_free_all(vm_object_t object)
2230 {
2231         struct swblk *sb;
2232         daddr_t n_free, s_free;
2233         vm_pindex_t pindex;
2234         int i;
2235
2236         VM_OBJECT_ASSERT_WLOCKED(object);
2237         if ((object->flags & OBJ_SWAP) == 0)
2238                 return;
2239
2240         swp_pager_init_freerange(&s_free, &n_free);
2241         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2242             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2243                 pindex = sb->p + SWAP_META_PAGES;
2244                 for (i = 0; i < SWAP_META_PAGES; i++) {
2245                         if (sb->d[i] == SWAPBLK_NONE)
2246                                 continue;
2247                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2248                 }
2249                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2250                 uma_zfree(swblk_zone, sb);
2251         }
2252         swp_pager_freeswapspace(s_free, n_free);
2253 }
2254
2255 /*
2256  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2257  *
2258  *      This routine is capable of looking up, or removing swapblk
2259  *      assignments in the swap meta data.  It returns the swapblk being
2260  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2261  *
2262  *      When acting on a busy resident page and paging is in progress, we
2263  *      have to wait until paging is complete but otherwise can act on the
2264  *      busy page.
2265  */
2266 static daddr_t
2267 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2268 {
2269         struct swblk *sb;
2270
2271         VM_OBJECT_ASSERT_LOCKED(object);
2272
2273         /*
2274          * The meta data only exists if the object is OBJT_SWAP
2275          * and even then might not be allocated yet.
2276          */
2277         KASSERT((object->flags & OBJ_SWAP) != 0,
2278             ("Lookup object not swappable"));
2279
2280         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2281             rounddown(pindex, SWAP_META_PAGES));
2282         if (sb == NULL)
2283                 return (SWAPBLK_NONE);
2284         return (sb->d[pindex % SWAP_META_PAGES]);
2285 }
2286
2287 /*
2288  * Returns the least page index which is greater than or equal to the
2289  * parameter pindex and for which there is a swap block allocated.
2290  * Returns object's size if the object's type is not swap or if there
2291  * are no allocated swap blocks for the object after the requested
2292  * pindex.
2293  */
2294 vm_pindex_t
2295 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2296 {
2297         struct swblk *sb;
2298         int i;
2299
2300         VM_OBJECT_ASSERT_LOCKED(object);
2301         if ((object->flags & OBJ_SWAP) == 0)
2302                 return (object->size);
2303
2304         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2305             rounddown(pindex, SWAP_META_PAGES));
2306         if (sb == NULL)
2307                 return (object->size);
2308         if (sb->p < pindex) {
2309                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2310                         if (sb->d[i] != SWAPBLK_NONE)
2311                                 return (sb->p + i);
2312                 }
2313                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2314                     roundup(pindex, SWAP_META_PAGES));
2315                 if (sb == NULL)
2316                         return (object->size);
2317         }
2318         for (i = 0; i < SWAP_META_PAGES; i++) {
2319                 if (sb->d[i] != SWAPBLK_NONE)
2320                         return (sb->p + i);
2321         }
2322
2323         /*
2324          * We get here if a swblk is present in the trie but it
2325          * doesn't map any blocks.
2326          */
2327         MPASS(0);
2328         return (object->size);
2329 }
2330
2331 /*
2332  * System call swapon(name) enables swapping on device name,
2333  * which must be in the swdevsw.  Return EBUSY
2334  * if already swapping on this device.
2335  */
2336 #ifndef _SYS_SYSPROTO_H_
2337 struct swapon_args {
2338         char *name;
2339 };
2340 #endif
2341
2342 /*
2343  * MPSAFE
2344  */
2345 /* ARGSUSED */
2346 int
2347 sys_swapon(struct thread *td, struct swapon_args *uap)
2348 {
2349         struct vattr attr;
2350         struct vnode *vp;
2351         struct nameidata nd;
2352         int error;
2353
2354         error = priv_check(td, PRIV_SWAPON);
2355         if (error)
2356                 return (error);
2357
2358         sx_xlock(&swdev_syscall_lock);
2359
2360         /*
2361          * Swap metadata may not fit in the KVM if we have physical
2362          * memory of >1GB.
2363          */
2364         if (swblk_zone == NULL) {
2365                 error = ENOMEM;
2366                 goto done;
2367         }
2368
2369         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2370             uap->name, td);
2371         error = namei(&nd);
2372         if (error)
2373                 goto done;
2374
2375         NDFREE(&nd, NDF_ONLY_PNBUF);
2376         vp = nd.ni_vp;
2377
2378         if (vn_isdisk_error(vp, &error)) {
2379                 error = swapongeom(vp);
2380         } else if (vp->v_type == VREG &&
2381             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2382             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2383                 /*
2384                  * Allow direct swapping to NFS regular files in the same
2385                  * way that nfs_mountroot() sets up diskless swapping.
2386                  */
2387                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2388         }
2389
2390         if (error)
2391                 vrele(vp);
2392 done:
2393         sx_xunlock(&swdev_syscall_lock);
2394         return (error);
2395 }
2396
2397 /*
2398  * Check that the total amount of swap currently configured does not
2399  * exceed half the theoretical maximum.  If it does, print a warning
2400  * message.
2401  */
2402 static void
2403 swapon_check_swzone(void)
2404 {
2405
2406         /* recommend using no more than half that amount */
2407         if (swap_total > swap_maxpages / 2) {
2408                 printf("warning: total configured swap (%lu pages) "
2409                     "exceeds maximum recommended amount (%lu pages).\n",
2410                     swap_total, swap_maxpages / 2);
2411                 printf("warning: increase kern.maxswzone "
2412                     "or reduce amount of swap.\n");
2413         }
2414 }
2415
2416 static void
2417 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2418     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2419 {
2420         struct swdevt *sp, *tsp;
2421         daddr_t dvbase;
2422
2423         /*
2424          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2425          * First chop nblks off to page-align it, then convert.
2426          *
2427          * sw->sw_nblks is in page-sized chunks now too.
2428          */
2429         nblks &= ~(ctodb(1) - 1);
2430         nblks = dbtoc(nblks);
2431
2432         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2433         sp->sw_blist = blist_create(nblks, M_WAITOK);
2434         sp->sw_vp = vp;
2435         sp->sw_id = id;
2436         sp->sw_dev = dev;
2437         sp->sw_nblks = nblks;
2438         sp->sw_used = 0;
2439         sp->sw_strategy = strategy;
2440         sp->sw_close = close;
2441         sp->sw_flags = flags;
2442
2443         /*
2444          * Do not free the first blocks in order to avoid overwriting
2445          * any bsd label at the front of the partition
2446          */
2447         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2448             nblks - howmany(BBSIZE, PAGE_SIZE));
2449
2450         dvbase = 0;
2451         mtx_lock(&sw_dev_mtx);
2452         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2453                 if (tsp->sw_end >= dvbase) {
2454                         /*
2455                          * We put one uncovered page between the devices
2456                          * in order to definitively prevent any cross-device
2457                          * I/O requests
2458                          */
2459                         dvbase = tsp->sw_end + 1;
2460                 }
2461         }
2462         sp->sw_first = dvbase;
2463         sp->sw_end = dvbase + nblks;
2464         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2465         nswapdev++;
2466         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2467         swap_total += nblks;
2468         swapon_check_swzone();
2469         swp_sizecheck();
2470         mtx_unlock(&sw_dev_mtx);
2471         EVENTHANDLER_INVOKE(swapon, sp);
2472 }
2473
2474 /*
2475  * SYSCALL: swapoff(devname)
2476  *
2477  * Disable swapping on the given device.
2478  *
2479  * XXX: Badly designed system call: it should use a device index
2480  * rather than filename as specification.  We keep sw_vp around
2481  * only to make this work.
2482  */
2483 #ifndef _SYS_SYSPROTO_H_
2484 struct swapoff_args {
2485         char *name;
2486 };
2487 #endif
2488
2489 /*
2490  * MPSAFE
2491  */
2492 /* ARGSUSED */
2493 int
2494 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2495 {
2496         struct vnode *vp;
2497         struct nameidata nd;
2498         struct swdevt *sp;
2499         int error;
2500
2501         error = priv_check(td, PRIV_SWAPOFF);
2502         if (error)
2503                 return (error);
2504
2505         sx_xlock(&swdev_syscall_lock);
2506
2507         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2508             td);
2509         error = namei(&nd);
2510         if (error)
2511                 goto done;
2512         NDFREE(&nd, NDF_ONLY_PNBUF);
2513         vp = nd.ni_vp;
2514
2515         mtx_lock(&sw_dev_mtx);
2516         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2517                 if (sp->sw_vp == vp)
2518                         break;
2519         }
2520         mtx_unlock(&sw_dev_mtx);
2521         if (sp == NULL) {
2522                 error = EINVAL;
2523                 goto done;
2524         }
2525         error = swapoff_one(sp, td->td_ucred);
2526 done:
2527         sx_xunlock(&swdev_syscall_lock);
2528         return (error);
2529 }
2530
2531 static int
2532 swapoff_one(struct swdevt *sp, struct ucred *cred)
2533 {
2534         u_long nblks;
2535 #ifdef MAC
2536         int error;
2537 #endif
2538
2539         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2540 #ifdef MAC
2541         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2542         error = mac_system_check_swapoff(cred, sp->sw_vp);
2543         (void) VOP_UNLOCK(sp->sw_vp);
2544         if (error != 0)
2545                 return (error);
2546 #endif
2547         nblks = sp->sw_nblks;
2548
2549         /*
2550          * We can turn off this swap device safely only if the
2551          * available virtual memory in the system will fit the amount
2552          * of data we will have to page back in, plus an epsilon so
2553          * the system doesn't become critically low on swap space.
2554          */
2555         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2556                 return (ENOMEM);
2557
2558         /*
2559          * Prevent further allocations on this device.
2560          */
2561         mtx_lock(&sw_dev_mtx);
2562         sp->sw_flags |= SW_CLOSING;
2563         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2564         swap_total -= nblks;
2565         mtx_unlock(&sw_dev_mtx);
2566
2567         /*
2568          * Page in the contents of the device and close it.
2569          */
2570         swap_pager_swapoff(sp);
2571
2572         sp->sw_close(curthread, sp);
2573         mtx_lock(&sw_dev_mtx);
2574         sp->sw_id = NULL;
2575         TAILQ_REMOVE(&swtailq, sp, sw_list);
2576         nswapdev--;
2577         if (nswapdev == 0) {
2578                 swap_pager_full = 2;
2579                 swap_pager_almost_full = 1;
2580         }
2581         if (swdevhd == sp)
2582                 swdevhd = NULL;
2583         mtx_unlock(&sw_dev_mtx);
2584         blist_destroy(sp->sw_blist);
2585         free(sp, M_VMPGDATA);
2586         return (0);
2587 }
2588
2589 void
2590 swapoff_all(void)
2591 {
2592         struct swdevt *sp, *spt;
2593         const char *devname;
2594         int error;
2595
2596         sx_xlock(&swdev_syscall_lock);
2597
2598         mtx_lock(&sw_dev_mtx);
2599         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2600                 mtx_unlock(&sw_dev_mtx);
2601                 if (vn_isdisk(sp->sw_vp))
2602                         devname = devtoname(sp->sw_vp->v_rdev);
2603                 else
2604                         devname = "[file]";
2605                 error = swapoff_one(sp, thread0.td_ucred);
2606                 if (error != 0) {
2607                         printf("Cannot remove swap device %s (error=%d), "
2608                             "skipping.\n", devname, error);
2609                 } else if (bootverbose) {
2610                         printf("Swap device %s removed.\n", devname);
2611                 }
2612                 mtx_lock(&sw_dev_mtx);
2613         }
2614         mtx_unlock(&sw_dev_mtx);
2615
2616         sx_xunlock(&swdev_syscall_lock);
2617 }
2618
2619 void
2620 swap_pager_status(int *total, int *used)
2621 {
2622
2623         *total = swap_total;
2624         *used = swap_total - swap_pager_avail -
2625             nswapdev * howmany(BBSIZE, PAGE_SIZE);
2626 }
2627
2628 int
2629 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2630 {
2631         struct swdevt *sp;
2632         const char *tmp_devname;
2633         int error, n;
2634
2635         n = 0;
2636         error = ENOENT;
2637         mtx_lock(&sw_dev_mtx);
2638         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2639                 if (n != name) {
2640                         n++;
2641                         continue;
2642                 }
2643                 xs->xsw_version = XSWDEV_VERSION;
2644                 xs->xsw_dev = sp->sw_dev;
2645                 xs->xsw_flags = sp->sw_flags;
2646                 xs->xsw_nblks = sp->sw_nblks;
2647                 xs->xsw_used = sp->sw_used;
2648                 if (devname != NULL) {
2649                         if (vn_isdisk(sp->sw_vp))
2650                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2651                         else
2652                                 tmp_devname = "[file]";
2653                         strncpy(devname, tmp_devname, len);
2654                 }
2655                 error = 0;
2656                 break;
2657         }
2658         mtx_unlock(&sw_dev_mtx);
2659         return (error);
2660 }
2661
2662 #if defined(COMPAT_FREEBSD11)
2663 #define XSWDEV_VERSION_11       1
2664 struct xswdev11 {
2665         u_int   xsw_version;
2666         uint32_t xsw_dev;
2667         int     xsw_flags;
2668         int     xsw_nblks;
2669         int     xsw_used;
2670 };
2671 #endif
2672
2673 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2674 struct xswdev32 {
2675         u_int   xsw_version;
2676         u_int   xsw_dev1, xsw_dev2;
2677         int     xsw_flags;
2678         int     xsw_nblks;
2679         int     xsw_used;
2680 };
2681 #endif
2682
2683 static int
2684 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2685 {
2686         struct xswdev xs;
2687 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2688         struct xswdev32 xs32;
2689 #endif
2690 #if defined(COMPAT_FREEBSD11)
2691         struct xswdev11 xs11;
2692 #endif
2693         int error;
2694
2695         if (arg2 != 1)                  /* name length */
2696                 return (EINVAL);
2697
2698         memset(&xs, 0, sizeof(xs));
2699         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2700         if (error != 0)
2701                 return (error);
2702 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2703         if (req->oldlen == sizeof(xs32)) {
2704                 memset(&xs32, 0, sizeof(xs32));
2705                 xs32.xsw_version = XSWDEV_VERSION;
2706                 xs32.xsw_dev1 = xs.xsw_dev;
2707                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2708                 xs32.xsw_flags = xs.xsw_flags;
2709                 xs32.xsw_nblks = xs.xsw_nblks;
2710                 xs32.xsw_used = xs.xsw_used;
2711                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2712                 return (error);
2713         }
2714 #endif
2715 #if defined(COMPAT_FREEBSD11)
2716         if (req->oldlen == sizeof(xs11)) {
2717                 memset(&xs11, 0, sizeof(xs11));
2718                 xs11.xsw_version = XSWDEV_VERSION_11;
2719                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2720                 xs11.xsw_flags = xs.xsw_flags;
2721                 xs11.xsw_nblks = xs.xsw_nblks;
2722                 xs11.xsw_used = xs.xsw_used;
2723                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2724                 return (error);
2725         }
2726 #endif
2727         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2728         return (error);
2729 }
2730
2731 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2732     "Number of swap devices");
2733 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2734     sysctl_vm_swap_info,
2735     "Swap statistics by device");
2736
2737 /*
2738  * Count the approximate swap usage in pages for a vmspace.  The
2739  * shadowed or not yet copied on write swap blocks are not accounted.
2740  * The map must be locked.
2741  */
2742 long
2743 vmspace_swap_count(struct vmspace *vmspace)
2744 {
2745         vm_map_t map;
2746         vm_map_entry_t cur;
2747         vm_object_t object;
2748         struct swblk *sb;
2749         vm_pindex_t e, pi;
2750         long count;
2751         int i;
2752
2753         map = &vmspace->vm_map;
2754         count = 0;
2755
2756         VM_MAP_ENTRY_FOREACH(cur, map) {
2757                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2758                         continue;
2759                 object = cur->object.vm_object;
2760                 if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2761                         continue;
2762                 VM_OBJECT_RLOCK(object);
2763                 if ((object->flags & OBJ_SWAP) == 0)
2764                         goto unlock;
2765                 pi = OFF_TO_IDX(cur->offset);
2766                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2767                 for (;; pi = sb->p + SWAP_META_PAGES) {
2768                         sb = SWAP_PCTRIE_LOOKUP_GE(
2769                             &object->un_pager.swp.swp_blks, pi);
2770                         if (sb == NULL || sb->p >= e)
2771                                 break;
2772                         for (i = 0; i < SWAP_META_PAGES; i++) {
2773                                 if (sb->p + i < e &&
2774                                     sb->d[i] != SWAPBLK_NONE)
2775                                         count++;
2776                         }
2777                 }
2778 unlock:
2779                 VM_OBJECT_RUNLOCK(object);
2780         }
2781         return (count);
2782 }
2783
2784 /*
2785  * GEOM backend
2786  *
2787  * Swapping onto disk devices.
2788  *
2789  */
2790
2791 static g_orphan_t swapgeom_orphan;
2792
2793 static struct g_class g_swap_class = {
2794         .name = "SWAP",
2795         .version = G_VERSION,
2796         .orphan = swapgeom_orphan,
2797 };
2798
2799 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2800
2801 static void
2802 swapgeom_close_ev(void *arg, int flags)
2803 {
2804         struct g_consumer *cp;
2805
2806         cp = arg;
2807         g_access(cp, -1, -1, 0);
2808         g_detach(cp);
2809         g_destroy_consumer(cp);
2810 }
2811
2812 /*
2813  * Add a reference to the g_consumer for an inflight transaction.
2814  */
2815 static void
2816 swapgeom_acquire(struct g_consumer *cp)
2817 {
2818
2819         mtx_assert(&sw_dev_mtx, MA_OWNED);
2820         cp->index++;
2821 }
2822
2823 /*
2824  * Remove a reference from the g_consumer.  Post a close event if all
2825  * references go away, since the function might be called from the
2826  * biodone context.
2827  */
2828 static void
2829 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2830 {
2831
2832         mtx_assert(&sw_dev_mtx, MA_OWNED);
2833         cp->index--;
2834         if (cp->index == 0) {
2835                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2836                         sp->sw_id = NULL;
2837         }
2838 }
2839
2840 static void
2841 swapgeom_done(struct bio *bp2)
2842 {
2843         struct swdevt *sp;
2844         struct buf *bp;
2845         struct g_consumer *cp;
2846
2847         bp = bp2->bio_caller2;
2848         cp = bp2->bio_from;
2849         bp->b_ioflags = bp2->bio_flags;
2850         if (bp2->bio_error)
2851                 bp->b_ioflags |= BIO_ERROR;
2852         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2853         bp->b_error = bp2->bio_error;
2854         bp->b_caller1 = NULL;
2855         bufdone(bp);
2856         sp = bp2->bio_caller1;
2857         mtx_lock(&sw_dev_mtx);
2858         swapgeom_release(cp, sp);
2859         mtx_unlock(&sw_dev_mtx);
2860         g_destroy_bio(bp2);
2861 }
2862
2863 static void
2864 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2865 {
2866         struct bio *bio;
2867         struct g_consumer *cp;
2868
2869         mtx_lock(&sw_dev_mtx);
2870         cp = sp->sw_id;
2871         if (cp == NULL) {
2872                 mtx_unlock(&sw_dev_mtx);
2873                 bp->b_error = ENXIO;
2874                 bp->b_ioflags |= BIO_ERROR;
2875                 bufdone(bp);
2876                 return;
2877         }
2878         swapgeom_acquire(cp);
2879         mtx_unlock(&sw_dev_mtx);
2880         if (bp->b_iocmd == BIO_WRITE)
2881                 bio = g_new_bio();
2882         else
2883                 bio = g_alloc_bio();
2884         if (bio == NULL) {
2885                 mtx_lock(&sw_dev_mtx);
2886                 swapgeom_release(cp, sp);
2887                 mtx_unlock(&sw_dev_mtx);
2888                 bp->b_error = ENOMEM;
2889                 bp->b_ioflags |= BIO_ERROR;
2890                 printf("swap_pager: cannot allocate bio\n");
2891                 bufdone(bp);
2892                 return;
2893         }
2894
2895         bp->b_caller1 = bio;
2896         bio->bio_caller1 = sp;
2897         bio->bio_caller2 = bp;
2898         bio->bio_cmd = bp->b_iocmd;
2899         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2900         bio->bio_length = bp->b_bcount;
2901         bio->bio_done = swapgeom_done;
2902         bio->bio_flags |= BIO_SWAP;
2903         if (!buf_mapped(bp)) {
2904                 bio->bio_ma = bp->b_pages;
2905                 bio->bio_data = unmapped_buf;
2906                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2907                 bio->bio_ma_n = bp->b_npages;
2908                 bio->bio_flags |= BIO_UNMAPPED;
2909         } else {
2910                 bio->bio_data = bp->b_data;
2911                 bio->bio_ma = NULL;
2912         }
2913         g_io_request(bio, cp);
2914         return;
2915 }
2916
2917 static void
2918 swapgeom_orphan(struct g_consumer *cp)
2919 {
2920         struct swdevt *sp;
2921         int destroy;
2922
2923         mtx_lock(&sw_dev_mtx);
2924         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2925                 if (sp->sw_id == cp) {
2926                         sp->sw_flags |= SW_CLOSING;
2927                         break;
2928                 }
2929         }
2930         /*
2931          * Drop reference we were created with. Do directly since we're in a
2932          * special context where we don't have to queue the call to
2933          * swapgeom_close_ev().
2934          */
2935         cp->index--;
2936         destroy = ((sp != NULL) && (cp->index == 0));
2937         if (destroy)
2938                 sp->sw_id = NULL;
2939         mtx_unlock(&sw_dev_mtx);
2940         if (destroy)
2941                 swapgeom_close_ev(cp, 0);
2942 }
2943
2944 static void
2945 swapgeom_close(struct thread *td, struct swdevt *sw)
2946 {
2947         struct g_consumer *cp;
2948
2949         mtx_lock(&sw_dev_mtx);
2950         cp = sw->sw_id;
2951         sw->sw_id = NULL;
2952         mtx_unlock(&sw_dev_mtx);
2953
2954         /*
2955          * swapgeom_close() may be called from the biodone context,
2956          * where we cannot perform topology changes.  Delegate the
2957          * work to the events thread.
2958          */
2959         if (cp != NULL)
2960                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2961 }
2962
2963 static int
2964 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2965 {
2966         struct g_provider *pp;
2967         struct g_consumer *cp;
2968         static struct g_geom *gp;
2969         struct swdevt *sp;
2970         u_long nblks;
2971         int error;
2972
2973         pp = g_dev_getprovider(dev);
2974         if (pp == NULL)
2975                 return (ENODEV);
2976         mtx_lock(&sw_dev_mtx);
2977         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2978                 cp = sp->sw_id;
2979                 if (cp != NULL && cp->provider == pp) {
2980                         mtx_unlock(&sw_dev_mtx);
2981                         return (EBUSY);
2982                 }
2983         }
2984         mtx_unlock(&sw_dev_mtx);
2985         if (gp == NULL)
2986                 gp = g_new_geomf(&g_swap_class, "swap");
2987         cp = g_new_consumer(gp);
2988         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2989         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2990         g_attach(cp, pp);
2991         /*
2992          * XXX: Every time you think you can improve the margin for
2993          * footshooting, somebody depends on the ability to do so:
2994          * savecore(8) wants to write to our swapdev so we cannot
2995          * set an exclusive count :-(
2996          */
2997         error = g_access(cp, 1, 1, 0);
2998         if (error != 0) {
2999                 g_detach(cp);
3000                 g_destroy_consumer(cp);
3001                 return (error);
3002         }
3003         nblks = pp->mediasize / DEV_BSIZE;
3004         swaponsomething(vp, cp, nblks, swapgeom_strategy,
3005             swapgeom_close, dev2udev(dev),
3006             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3007         return (0);
3008 }
3009
3010 static int
3011 swapongeom(struct vnode *vp)
3012 {
3013         int error;
3014
3015         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3016         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3017                 error = ENOENT;
3018         } else {
3019                 g_topology_lock();
3020                 error = swapongeom_locked(vp->v_rdev, vp);
3021                 g_topology_unlock();
3022         }
3023         VOP_UNLOCK(vp);
3024         return (error);
3025 }
3026
3027 /*
3028  * VNODE backend
3029  *
3030  * This is used mainly for network filesystem (read: probably only tested
3031  * with NFS) swapfiles.
3032  *
3033  */
3034
3035 static void
3036 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3037 {
3038         struct vnode *vp2;
3039
3040         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3041
3042         vp2 = sp->sw_id;
3043         vhold(vp2);
3044         if (bp->b_iocmd == BIO_WRITE) {
3045                 if (bp->b_bufobj)
3046                         bufobj_wdrop(bp->b_bufobj);
3047                 bufobj_wref(&vp2->v_bufobj);
3048         }
3049         if (bp->b_bufobj != &vp2->v_bufobj)
3050                 bp->b_bufobj = &vp2->v_bufobj;
3051         bp->b_vp = vp2;
3052         bp->b_iooffset = dbtob(bp->b_blkno);
3053         bstrategy(bp);
3054         return;
3055 }
3056
3057 static void
3058 swapdev_close(struct thread *td, struct swdevt *sp)
3059 {
3060
3061         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3062         vrele(sp->sw_vp);
3063 }
3064
3065 static int
3066 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3067 {
3068         struct swdevt *sp;
3069         int error;
3070
3071         if (nblks == 0)
3072                 return (ENXIO);
3073         mtx_lock(&sw_dev_mtx);
3074         TAILQ_FOREACH(sp, &swtailq, sw_list) {
3075                 if (sp->sw_id == vp) {
3076                         mtx_unlock(&sw_dev_mtx);
3077                         return (EBUSY);
3078                 }
3079         }
3080         mtx_unlock(&sw_dev_mtx);
3081
3082         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3083 #ifdef MAC
3084         error = mac_system_check_swapon(td->td_ucred, vp);
3085         if (error == 0)
3086 #endif
3087                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3088         (void) VOP_UNLOCK(vp);
3089         if (error)
3090                 return (error);
3091
3092         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3093             NODEV, 0);
3094         return (0);
3095 }
3096
3097 static int
3098 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3099 {
3100         int error, new, n;
3101
3102         new = nsw_wcount_async_max;
3103         error = sysctl_handle_int(oidp, &new, 0, req);
3104         if (error != 0 || req->newptr == NULL)
3105                 return (error);
3106
3107         if (new > nswbuf / 2 || new < 1)
3108                 return (EINVAL);
3109
3110         mtx_lock(&swbuf_mtx);
3111         while (nsw_wcount_async_max != new) {
3112                 /*
3113                  * Adjust difference.  If the current async count is too low,
3114                  * we will need to sqeeze our update slowly in.  Sleep with a
3115                  * higher priority than getpbuf() to finish faster.
3116                  */
3117                 n = new - nsw_wcount_async_max;
3118                 if (nsw_wcount_async + n >= 0) {
3119                         nsw_wcount_async += n;
3120                         nsw_wcount_async_max += n;
3121                         wakeup(&nsw_wcount_async);
3122                 } else {
3123                         nsw_wcount_async_max -= nsw_wcount_async;
3124                         nsw_wcount_async = 0;
3125                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3126                             "swpsysctl", 0);
3127                 }
3128         }
3129         mtx_unlock(&swbuf_mtx);
3130
3131         return (0);
3132 }
3133
3134 static void
3135 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3136     vm_offset_t end)
3137 {
3138
3139         VM_OBJECT_WLOCK(object);
3140         KASSERT((object->flags & OBJ_ANON) == 0,
3141             ("Splittable object with writecount"));
3142         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3143         VM_OBJECT_WUNLOCK(object);
3144 }
3145
3146 static void
3147 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3148     vm_offset_t end)
3149 {
3150
3151         VM_OBJECT_WLOCK(object);
3152         KASSERT((object->flags & OBJ_ANON) == 0,
3153             ("Splittable object with writecount"));
3154         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3155         VM_OBJECT_WUNLOCK(object);
3156 }