]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Implement pci_enable_msi() and pci_disable_msi() in the LinuxKPI.
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/eventhandler.h>
83 #include <sys/fcntl.h>
84 #include <sys/lock.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/malloc.h>
89 #include <sys/pctrie.h>
90 #include <sys/priv.h>
91 #include <sys/proc.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/systm.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES         PCTRIE_COUNT
134
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142         vm_pindex_t     p;
143         daddr_t         d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;  /* Allocate from here next */
150 static int nswapdev;            /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
153
154 static u_long swap_reserved;
155 static u_long swap_total;
156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
158     &swap_reserved, 0, sysctl_page_shift, "A", 
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
161     &swap_total, 0, sysctl_page_shift, "A", 
162     "Total amount of available swap storage.");
163
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
166     "Configure virtual memory overcommit behavior. See tuning(7) "
167     "for details.");
168 static unsigned long swzone;
169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
170     "Actual size of swap metadata zone");
171 static unsigned long swap_maxpages;
172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
173     "Maximum amount of swap supported");
174
175 /* bits from overcommit */
176 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
177 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
178 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
179
180 static int
181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
182 {
183         uint64_t newval;
184         u_long value = *(u_long *)arg1;
185
186         newval = ((uint64_t)value) << PAGE_SHIFT;
187         return (sysctl_handle_64(oidp, &newval, 0, req));
188 }
189
190 int
191 swap_reserve(vm_ooffset_t incr)
192 {
193
194         return (swap_reserve_by_cred(incr, curthread->td_ucred));
195 }
196
197 int
198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
199 {
200         u_long r, s, prev, pincr;
201         int res, error;
202         static int curfail;
203         static struct timeval lastfail;
204         struct uidinfo *uip;
205
206         uip = cred->cr_ruidinfo;
207
208         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
209             (uintmax_t)incr));
210
211 #ifdef RACCT
212         if (racct_enable) {
213                 PROC_LOCK(curproc);
214                 error = racct_add(curproc, RACCT_SWAP, incr);
215                 PROC_UNLOCK(curproc);
216                 if (error != 0)
217                         return (0);
218         }
219 #endif
220
221         pincr = atop(incr);
222         res = 0;
223         prev = atomic_fetchadd_long(&swap_reserved, pincr);
224         r = prev + pincr;
225         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
226                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
227                     vm_wire_count();
228         } else
229                 s = 0;
230         s += swap_total;
231         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
232             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
233                 res = 1;
234         } else {
235                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
236                 if (prev < pincr)
237                         panic("swap_reserved < incr on overcommit fail");
238         }
239         if (res) {
240                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
241                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
242                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
243                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
244                         res = 0;
245                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
246                         if (prev < pincr)
247                                 panic("uip->ui_vmsize < incr on overcommit fail");
248                 }
249         }
250         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
251                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
252                     uip->ui_uid, curproc->p_pid, incr);
253         }
254
255 #ifdef RACCT
256         if (racct_enable && !res) {
257                 PROC_LOCK(curproc);
258                 racct_sub(curproc, RACCT_SWAP, incr);
259                 PROC_UNLOCK(curproc);
260         }
261 #endif
262
263         return (res);
264 }
265
266 void
267 swap_reserve_force(vm_ooffset_t incr)
268 {
269         struct uidinfo *uip;
270         u_long pincr;
271
272         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
273             (uintmax_t)incr));
274
275         PROC_LOCK(curproc);
276 #ifdef RACCT
277         if (racct_enable)
278                 racct_add_force(curproc, RACCT_SWAP, incr);
279 #endif
280         pincr = atop(incr);
281         atomic_add_long(&swap_reserved, pincr);
282         uip = curproc->p_ucred->cr_ruidinfo;
283         atomic_add_long(&uip->ui_vmsize, pincr);
284         PROC_UNLOCK(curproc);
285 }
286
287 void
288 swap_release(vm_ooffset_t decr)
289 {
290         struct ucred *cred;
291
292         PROC_LOCK(curproc);
293         cred = curproc->p_ucred;
294         swap_release_by_cred(decr, cred);
295         PROC_UNLOCK(curproc);
296 }
297
298 void
299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
300 {
301         u_long prev, pdecr;
302         struct uidinfo *uip;
303
304         uip = cred->cr_ruidinfo;
305
306         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
307             (uintmax_t)decr));
308
309         pdecr = atop(decr);
310         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
311         if (prev < pdecr)
312                 panic("swap_reserved < decr");
313
314         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
315         if (prev < pdecr)
316                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
317 #ifdef RACCT
318         if (racct_enable)
319                 racct_sub_cred(cred, RACCT_SWAP, decr);
320 #endif
321 }
322
323 #define SWM_POP         0x01    /* pop out                      */
324
325 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
327 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
328 static int nsw_wcount_async;    /* limit async write buffers */
329 static int nsw_wcount_async_max;/* assigned maximum                     */
330 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
331
332 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
333 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
334     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
335     "Maximum running async swap ops");
336 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
337 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
338     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
339     "Swap Fragmentation Info");
340
341 static struct sx sw_alloc_sx;
342
343 /*
344  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
345  * of searching a named list by hashing it just a little.
346  */
347
348 #define NOBJLISTS               8
349
350 #define NOBJLIST(handle)        \
351         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
352
353 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
354 static uma_zone_t swwbuf_zone;
355 static uma_zone_t swrbuf_zone;
356 static uma_zone_t swblk_zone;
357 static uma_zone_t swpctrie_zone;
358
359 /*
360  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
361  * calls hooked from other parts of the VM system and do not appear here.
362  * (see vm/swap_pager.h).
363  */
364 static vm_object_t
365                 swap_pager_alloc(void *handle, vm_ooffset_t size,
366                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
367 static void     swap_pager_dealloc(vm_object_t object);
368 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
369     int *);
370 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
371     int *, pgo_getpages_iodone_t, void *);
372 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
373 static boolean_t
374                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
375 static void     swap_pager_init(void);
376 static void     swap_pager_unswapped(vm_page_t);
377 static void     swap_pager_swapoff(struct swdevt *sp);
378
379 struct pagerops swappagerops = {
380         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
381         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
382         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
383         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
384         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
385         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
386         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
387         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
388 };
389
390 /*
391  * swap_*() routines are externally accessible.  swp_*() routines are
392  * internal.
393  */
394 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
395 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
396
397 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
398     "Maximum size of a swap block in pages");
399
400 static void     swp_sizecheck(void);
401 static void     swp_pager_async_iodone(struct buf *bp);
402 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
403 static int      swapongeom(struct vnode *);
404 static int      swaponvp(struct thread *, struct vnode *, u_long);
405 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
406
407 /*
408  * Swap bitmap functions
409  */
410 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
411 static daddr_t  swp_pager_getswapspace(int *npages, int limit);
412
413 /*
414  * Metadata functions
415  */
416 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
417 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
418 static void swp_pager_meta_free_all(vm_object_t);
419 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
420
421 static void
422 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
423 {
424
425         *start = SWAPBLK_NONE;
426         *num = 0;
427 }
428
429 static void
430 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
431 {
432
433         if (*start + *num == addr) {
434                 (*num)++;
435         } else {
436                 swp_pager_freeswapspace(*start, *num);
437                 *start = addr;
438                 *num = 1;
439         }
440 }
441
442 static void *
443 swblk_trie_alloc(struct pctrie *ptree)
444 {
445
446         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
447             M_USE_RESERVE : 0)));
448 }
449
450 static void
451 swblk_trie_free(struct pctrie *ptree, void *node)
452 {
453
454         uma_zfree(swpctrie_zone, node);
455 }
456
457 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
458
459 /*
460  * SWP_SIZECHECK() -    update swap_pager_full indication
461  *
462  *      update the swap_pager_almost_full indication and warn when we are
463  *      about to run out of swap space, using lowat/hiwat hysteresis.
464  *
465  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
466  *
467  *      No restrictions on call
468  *      This routine may not block.
469  */
470 static void
471 swp_sizecheck(void)
472 {
473
474         if (swap_pager_avail < nswap_lowat) {
475                 if (swap_pager_almost_full == 0) {
476                         printf("swap_pager: out of swap space\n");
477                         swap_pager_almost_full = 1;
478                 }
479         } else {
480                 swap_pager_full = 0;
481                 if (swap_pager_avail > nswap_hiwat)
482                         swap_pager_almost_full = 0;
483         }
484 }
485
486 /*
487  * SWAP_PAGER_INIT() -  initialize the swap pager!
488  *
489  *      Expected to be started from system init.  NOTE:  This code is run
490  *      before much else so be careful what you depend on.  Most of the VM
491  *      system has yet to be initialized at this point.
492  */
493 static void
494 swap_pager_init(void)
495 {
496         /*
497          * Initialize object lists
498          */
499         int i;
500
501         for (i = 0; i < NOBJLISTS; ++i)
502                 TAILQ_INIT(&swap_pager_object_list[i]);
503         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
504         sx_init(&sw_alloc_sx, "swspsx");
505         sx_init(&swdev_syscall_lock, "swsysc");
506 }
507
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *      Expected to be started from pageout process once, prior to entering
512  *      its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517         unsigned long n, n2;
518
519         /*
520          * Number of in-transit swap bp operations.  Don't
521          * exhaust the pbufs completely.  Make sure we
522          * initialize workable values (0 will work for hysteresis
523          * but it isn't very efficient).
524          *
525          * The nsw_cluster_max is constrained by the bp->b_pages[]
526          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
527          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528          * constrained by the swap device interleave stripe size.
529          *
530          * Currently we hardwire nsw_wcount_async to 4.  This limit is
531          * designed to prevent other I/O from having high latencies due to
532          * our pageout I/O.  The value 4 works well for one or two active swap
533          * devices but is probably a little low if you have more.  Even so,
534          * a higher value would probably generate only a limited improvement
535          * with three or four active swap devices since the system does not
536          * typically have to pageout at extreme bandwidths.   We will want
537          * at least 2 per swap devices, and 4 is a pretty good value if you
538          * have one NFS swap device due to the command/ack latency over NFS.
539          * So it all works out pretty well.
540          */
541         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
542
543         nsw_wcount_async = 4;
544         nsw_wcount_async_max = nsw_wcount_async;
545         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
546
547         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
548         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
549
550         /*
551          * Initialize our zone, taking the user's requested size or
552          * estimating the number we need based on the number of pages
553          * in the system.
554          */
555         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
556             vm_cnt.v_page_count / 2;
557         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
558             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
559         if (swpctrie_zone == NULL)
560                 panic("failed to create swap pctrie zone.");
561         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
562             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
563         if (swblk_zone == NULL)
564                 panic("failed to create swap blk zone.");
565         n2 = n;
566         do {
567                 if (uma_zone_reserve_kva(swblk_zone, n))
568                         break;
569                 /*
570                  * if the allocation failed, try a zone two thirds the
571                  * size of the previous attempt.
572                  */
573                 n -= ((n + 2) / 3);
574         } while (n > 0);
575
576         /*
577          * Often uma_zone_reserve_kva() cannot reserve exactly the
578          * requested size.  Account for the difference when
579          * calculating swap_maxpages.
580          */
581         n = uma_zone_get_max(swblk_zone);
582
583         if (n < n2)
584                 printf("Swap blk zone entries changed from %lu to %lu.\n",
585                     n2, n);
586         swap_maxpages = n * SWAP_META_PAGES;
587         swzone = n * sizeof(struct swblk);
588         if (!uma_zone_reserve_kva(swpctrie_zone, n))
589                 printf("Cannot reserve swap pctrie zone, "
590                     "reduce kern.maxswzone.\n");
591 }
592
593 static vm_object_t
594 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
595     vm_ooffset_t offset)
596 {
597         vm_object_t object;
598
599         if (cred != NULL) {
600                 if (!swap_reserve_by_cred(size, cred))
601                         return (NULL);
602                 crhold(cred);
603         }
604
605         /*
606          * The un_pager.swp.swp_blks trie is initialized by
607          * vm_object_allocate() to ensure the correct order of
608          * visibility to other threads.
609          */
610         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
611             PAGE_MASK + size));
612
613         object->handle = handle;
614         if (cred != NULL) {
615                 object->cred = cred;
616                 object->charge = size;
617         }
618         return (object);
619 }
620
621 /*
622  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
623  *                      its metadata structures.
624  *
625  *      This routine is called from the mmap and fork code to create a new
626  *      OBJT_SWAP object.
627  *
628  *      This routine must ensure that no live duplicate is created for
629  *      the named object request, which is protected against by
630  *      holding the sw_alloc_sx lock in case handle != NULL.
631  */
632 static vm_object_t
633 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
634     vm_ooffset_t offset, struct ucred *cred)
635 {
636         vm_object_t object;
637
638         if (handle != NULL) {
639                 /*
640                  * Reference existing named region or allocate new one.  There
641                  * should not be a race here against swp_pager_meta_build()
642                  * as called from vm_page_remove() in regards to the lookup
643                  * of the handle.
644                  */
645                 sx_xlock(&sw_alloc_sx);
646                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
647                 if (object == NULL) {
648                         object = swap_pager_alloc_init(handle, cred, size,
649                             offset);
650                         if (object != NULL) {
651                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
652                                     object, pager_object_list);
653                         }
654                 }
655                 sx_xunlock(&sw_alloc_sx);
656         } else {
657                 object = swap_pager_alloc_init(handle, cred, size, offset);
658         }
659         return (object);
660 }
661
662 /*
663  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
664  *
665  *      The swap backing for the object is destroyed.  The code is
666  *      designed such that we can reinstantiate it later, but this
667  *      routine is typically called only when the entire object is
668  *      about to be destroyed.
669  *
670  *      The object must be locked.
671  */
672 static void
673 swap_pager_dealloc(vm_object_t object)
674 {
675
676         VM_OBJECT_ASSERT_WLOCKED(object);
677         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
678
679         /*
680          * Remove from list right away so lookups will fail if we block for
681          * pageout completion.
682          */
683         if (object->handle != NULL) {
684                 VM_OBJECT_WUNLOCK(object);
685                 sx_xlock(&sw_alloc_sx);
686                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
687                     pager_object_list);
688                 sx_xunlock(&sw_alloc_sx);
689                 VM_OBJECT_WLOCK(object);
690         }
691
692         vm_object_pip_wait(object, "swpdea");
693
694         /*
695          * Free all remaining metadata.  We only bother to free it from
696          * the swap meta data.  We do not attempt to free swapblk's still
697          * associated with vm_page_t's for this object.  We do not care
698          * if paging is still in progress on some objects.
699          */
700         swp_pager_meta_free_all(object);
701         object->handle = NULL;
702         object->type = OBJT_DEAD;
703 }
704
705 /************************************************************************
706  *                      SWAP PAGER BITMAP ROUTINES                      *
707  ************************************************************************/
708
709 /*
710  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
711  *
712  *      Allocate swap for up to the requested number of pages, and at
713  *      least a minimum number of pages.  The starting swap block number
714  *      (a page index) is returned or SWAPBLK_NONE if the allocation
715  *      failed.
716  *
717  *      Also has the side effect of advising that somebody made a mistake
718  *      when they configured swap and didn't configure enough.
719  *
720  *      This routine may not sleep.
721  *
722  *      We allocate in round-robin fashion from the configured devices.
723  */
724 static daddr_t
725 swp_pager_getswapspace(int *io_npages, int limit)
726 {
727         daddr_t blk;
728         struct swdevt *sp;
729         int mpages, npages;
730
731         blk = SWAPBLK_NONE;
732         mpages = *io_npages;
733         npages = imin(BLIST_MAX_ALLOC, mpages);
734         mtx_lock(&sw_dev_mtx);
735         sp = swdevhd;
736         while (!TAILQ_EMPTY(&swtailq)) {
737                 if (sp == NULL)
738                         sp = TAILQ_FIRST(&swtailq);
739                 if ((sp->sw_flags & SW_CLOSING) == 0)
740                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
741                 if (blk != SWAPBLK_NONE)
742                         break;
743                 sp = TAILQ_NEXT(sp, sw_list);
744                 if (swdevhd == sp) {
745                         if (npages <= limit)
746                                 break;
747                         mpages = npages - 1;
748                         npages >>= 1;
749                 }
750         }
751         if (blk != SWAPBLK_NONE) {
752                 *io_npages = npages;
753                 blk += sp->sw_first;
754                 sp->sw_used += npages;
755                 swap_pager_avail -= npages;
756                 swp_sizecheck();
757                 swdevhd = TAILQ_NEXT(sp, sw_list);
758         } else {
759                 if (swap_pager_full != 2) {
760                         printf("swp_pager_getswapspace(%d): failed\n",
761                             *io_npages);
762                         swap_pager_full = 2;
763                         swap_pager_almost_full = 1;
764                 }
765                 swdevhd = NULL;
766         }
767         mtx_unlock(&sw_dev_mtx);
768         return (blk);
769 }
770
771 static bool
772 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
773 {
774
775         return (blk >= sp->sw_first && blk < sp->sw_end);
776 }
777
778 static void
779 swp_pager_strategy(struct buf *bp)
780 {
781         struct swdevt *sp;
782
783         mtx_lock(&sw_dev_mtx);
784         TAILQ_FOREACH(sp, &swtailq, sw_list) {
785                 if (swp_pager_isondev(bp->b_blkno, sp)) {
786                         mtx_unlock(&sw_dev_mtx);
787                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
788                             unmapped_buf_allowed) {
789                                 bp->b_data = unmapped_buf;
790                                 bp->b_offset = 0;
791                         } else {
792                                 pmap_qenter((vm_offset_t)bp->b_data,
793                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
794                         }
795                         sp->sw_strategy(bp, sp);
796                         return;
797                 }
798         }
799         panic("Swapdev not found");
800 }
801
802
803 /*
804  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
805  *
806  *      This routine returns the specified swap blocks back to the bitmap.
807  *
808  *      This routine may not sleep.
809  */
810 static void
811 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
812 {
813         struct swdevt *sp;
814
815         if (npages == 0)
816                 return;
817         mtx_lock(&sw_dev_mtx);
818         TAILQ_FOREACH(sp, &swtailq, sw_list) {
819                 if (swp_pager_isondev(blk, sp)) {
820                         sp->sw_used -= npages;
821                         /*
822                          * If we are attempting to stop swapping on
823                          * this device, we don't want to mark any
824                          * blocks free lest they be reused.
825                          */
826                         if ((sp->sw_flags & SW_CLOSING) == 0) {
827                                 blist_free(sp->sw_blist, blk - sp->sw_first,
828                                     npages);
829                                 swap_pager_avail += npages;
830                                 swp_sizecheck();
831                         }
832                         mtx_unlock(&sw_dev_mtx);
833                         return;
834                 }
835         }
836         panic("Swapdev not found");
837 }
838
839 /*
840  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
841  */
842 static int
843 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
844 {
845         struct sbuf sbuf;
846         struct swdevt *sp;
847         const char *devname;
848         int error;
849
850         error = sysctl_wire_old_buffer(req, 0);
851         if (error != 0)
852                 return (error);
853         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
854         mtx_lock(&sw_dev_mtx);
855         TAILQ_FOREACH(sp, &swtailq, sw_list) {
856                 if (vn_isdisk(sp->sw_vp, NULL))
857                         devname = devtoname(sp->sw_vp->v_rdev);
858                 else
859                         devname = "[file]";
860                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
861                 blist_stats(sp->sw_blist, &sbuf);
862         }
863         mtx_unlock(&sw_dev_mtx);
864         error = sbuf_finish(&sbuf);
865         sbuf_delete(&sbuf);
866         return (error);
867 }
868
869 /*
870  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
871  *                              range within an object.
872  *
873  *      This is a globally accessible routine.
874  *
875  *      This routine removes swapblk assignments from swap metadata.
876  *
877  *      The external callers of this routine typically have already destroyed
878  *      or renamed vm_page_t's associated with this range in the object so
879  *      we should be ok.
880  *
881  *      The object must be locked.
882  */
883 void
884 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
885 {
886
887         swp_pager_meta_free(object, start, size);
888 }
889
890 /*
891  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
892  *
893  *      Assigns swap blocks to the specified range within the object.  The
894  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
895  *
896  *      Returns 0 on success, -1 on failure.
897  */
898 int
899 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
900 {
901         daddr_t addr, blk, n_free, s_free;
902         int i, j, n;
903
904         swp_pager_init_freerange(&s_free, &n_free);
905         VM_OBJECT_WLOCK(object);
906         for (i = 0; i < size; i += n) {
907                 n = size - i;
908                 blk = swp_pager_getswapspace(&n, 1);
909                 if (blk == SWAPBLK_NONE) {
910                         swp_pager_meta_free(object, start, i);
911                         VM_OBJECT_WUNLOCK(object);
912                         return (-1);
913                 }
914                 for (j = 0; j < n; ++j) {
915                         addr = swp_pager_meta_build(object,
916                             start + i + j, blk + j);
917                         if (addr != SWAPBLK_NONE)
918                                 swp_pager_update_freerange(&s_free, &n_free,
919                                     addr);
920                 }
921         }
922         swp_pager_freeswapspace(s_free, n_free);
923         VM_OBJECT_WUNLOCK(object);
924         return (0);
925 }
926
927 /*
928  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
929  *                      and destroy the source.
930  *
931  *      Copy any valid swapblks from the source to the destination.  In
932  *      cases where both the source and destination have a valid swapblk,
933  *      we keep the destination's.
934  *
935  *      This routine is allowed to sleep.  It may sleep allocating metadata
936  *      indirectly through swp_pager_meta_build() or if paging is still in
937  *      progress on the source.
938  *
939  *      The source object contains no vm_page_t's (which is just as well)
940  *
941  *      The source object is of type OBJT_SWAP.
942  *
943  *      The source and destination objects must be locked.
944  *      Both object locks may temporarily be released.
945  */
946 void
947 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
948     vm_pindex_t offset, int destroysource)
949 {
950         vm_pindex_t i;
951         daddr_t dstaddr, n_free, s_free, srcaddr;
952
953         VM_OBJECT_ASSERT_WLOCKED(srcobject);
954         VM_OBJECT_ASSERT_WLOCKED(dstobject);
955
956         /*
957          * If destroysource is set, we remove the source object from the
958          * swap_pager internal queue now.
959          */
960         if (destroysource && srcobject->handle != NULL) {
961                 vm_object_pip_add(srcobject, 1);
962                 VM_OBJECT_WUNLOCK(srcobject);
963                 vm_object_pip_add(dstobject, 1);
964                 VM_OBJECT_WUNLOCK(dstobject);
965                 sx_xlock(&sw_alloc_sx);
966                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
967                     pager_object_list);
968                 sx_xunlock(&sw_alloc_sx);
969                 VM_OBJECT_WLOCK(dstobject);
970                 vm_object_pip_wakeup(dstobject);
971                 VM_OBJECT_WLOCK(srcobject);
972                 vm_object_pip_wakeup(srcobject);
973         }
974
975         /*
976          * Transfer source to destination.
977          */
978         swp_pager_init_freerange(&s_free, &n_free);
979         for (i = 0; i < dstobject->size; ++i) {
980                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
981                 if (srcaddr == SWAPBLK_NONE)
982                         continue;
983                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
984                 if (dstaddr != SWAPBLK_NONE) {
985                         /*
986                          * Destination has valid swapblk or it is represented
987                          * by a resident page.  We destroy the source block.
988                          */
989                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
990                         continue;
991                 }
992
993                 /*
994                  * Destination has no swapblk and is not resident,
995                  * copy source.
996                  *
997                  * swp_pager_meta_build() can sleep.
998                  */
999                 vm_object_pip_add(srcobject, 1);
1000                 VM_OBJECT_WUNLOCK(srcobject);
1001                 vm_object_pip_add(dstobject, 1);
1002                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
1003                 KASSERT(dstaddr == SWAPBLK_NONE,
1004                     ("Unexpected destination swapblk"));
1005                 vm_object_pip_wakeup(dstobject);
1006                 VM_OBJECT_WLOCK(srcobject);
1007                 vm_object_pip_wakeup(srcobject);
1008         }
1009         swp_pager_freeswapspace(s_free, n_free);
1010
1011         /*
1012          * Free left over swap blocks in source.
1013          *
1014          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1015          * double-remove the object from the swap queues.
1016          */
1017         if (destroysource) {
1018                 swp_pager_meta_free_all(srcobject);
1019                 /*
1020                  * Reverting the type is not necessary, the caller is going
1021                  * to destroy srcobject directly, but I'm doing it here
1022                  * for consistency since we've removed the object from its
1023                  * queues.
1024                  */
1025                 srcobject->type = OBJT_DEFAULT;
1026         }
1027 }
1028
1029 /*
1030  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1031  *                              the requested page.
1032  *
1033  *      We determine whether good backing store exists for the requested
1034  *      page and return TRUE if it does, FALSE if it doesn't.
1035  *
1036  *      If TRUE, we also try to determine how much valid, contiguous backing
1037  *      store exists before and after the requested page.
1038  */
1039 static boolean_t
1040 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1041     int *after)
1042 {
1043         daddr_t blk, blk0;
1044         int i;
1045
1046         VM_OBJECT_ASSERT_LOCKED(object);
1047
1048         /*
1049          * do we have good backing store at the requested index ?
1050          */
1051         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1052         if (blk0 == SWAPBLK_NONE) {
1053                 if (before)
1054                         *before = 0;
1055                 if (after)
1056                         *after = 0;
1057                 return (FALSE);
1058         }
1059
1060         /*
1061          * find backwards-looking contiguous good backing store
1062          */
1063         if (before != NULL) {
1064                 for (i = 1; i < SWB_NPAGES; i++) {
1065                         if (i > pindex)
1066                                 break;
1067                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1068                         if (blk != blk0 - i)
1069                                 break;
1070                 }
1071                 *before = i - 1;
1072         }
1073
1074         /*
1075          * find forward-looking contiguous good backing store
1076          */
1077         if (after != NULL) {
1078                 for (i = 1; i < SWB_NPAGES; i++) {
1079                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1080                         if (blk != blk0 + i)
1081                                 break;
1082                 }
1083                 *after = i - 1;
1084         }
1085         return (TRUE);
1086 }
1087
1088 /*
1089  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1090  *
1091  *      This removes any associated swap backing store, whether valid or
1092  *      not, from the page.
1093  *
1094  *      This routine is typically called when a page is made dirty, at
1095  *      which point any associated swap can be freed.  MADV_FREE also
1096  *      calls us in a special-case situation
1097  *
1098  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1099  *      should make the page dirty before calling this routine.  This routine
1100  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1101  *      depends on it.
1102  *
1103  *      This routine may not sleep.
1104  *
1105  *      The object containing the page must be locked.
1106  */
1107 static void
1108 swap_pager_unswapped(vm_page_t m)
1109 {
1110         daddr_t srcaddr;
1111
1112         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1113         if (srcaddr != SWAPBLK_NONE)
1114                 swp_pager_freeswapspace(srcaddr, 1);
1115 }
1116
1117 /*
1118  * swap_pager_getpages() - bring pages in from swap
1119  *
1120  *      Attempt to page in the pages in array "ma" of length "count".  The
1121  *      caller may optionally specify that additional pages preceding and
1122  *      succeeding the specified range be paged in.  The number of such pages
1123  *      is returned in the "rbehind" and "rahead" parameters, and they will
1124  *      be in the inactive queue upon return.
1125  *
1126  *      The pages in "ma" must be busied and will remain busied upon return.
1127  */
1128 static int
1129 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1130     int *rahead)
1131 {
1132         struct buf *bp;
1133         vm_page_t bm, mpred, msucc, p;
1134         vm_pindex_t pindex;
1135         daddr_t blk;
1136         int i, maxahead, maxbehind, reqcount;
1137
1138         reqcount = count;
1139
1140         /*
1141          * Determine the final number of read-behind pages and
1142          * allocate them BEFORE releasing the object lock.  Otherwise,
1143          * there can be a problematic race with vm_object_split().
1144          * Specifically, vm_object_split() might first transfer pages
1145          * that precede ma[0] in the current object to a new object,
1146          * and then this function incorrectly recreates those pages as
1147          * read-behind pages in the current object.
1148          */
1149         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1150                 return (VM_PAGER_FAIL);
1151
1152         /*
1153          * Clip the readahead and readbehind ranges to exclude resident pages.
1154          */
1155         if (rahead != NULL) {
1156                 KASSERT(reqcount - 1 <= maxahead,
1157                     ("page count %d extends beyond swap block", reqcount));
1158                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1159                 pindex = ma[reqcount - 1]->pindex;
1160                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1161                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1162                         *rahead = msucc->pindex - pindex - 1;
1163         }
1164         if (rbehind != NULL) {
1165                 *rbehind = imin(*rbehind, maxbehind);
1166                 pindex = ma[0]->pindex;
1167                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1168                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1169                         *rbehind = pindex - mpred->pindex - 1;
1170         }
1171
1172         bm = ma[0];
1173         for (i = 0; i < count; i++)
1174                 ma[i]->oflags |= VPO_SWAPINPROG;
1175
1176         /*
1177          * Allocate readahead and readbehind pages.
1178          */
1179         if (rbehind != NULL) {
1180                 for (i = 1; i <= *rbehind; i++) {
1181                         p = vm_page_alloc(object, ma[0]->pindex - i,
1182                             VM_ALLOC_NORMAL);
1183                         if (p == NULL)
1184                                 break;
1185                         p->oflags |= VPO_SWAPINPROG;
1186                         bm = p;
1187                 }
1188                 *rbehind = i - 1;
1189         }
1190         if (rahead != NULL) {
1191                 for (i = 0; i < *rahead; i++) {
1192                         p = vm_page_alloc(object,
1193                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1194                         if (p == NULL)
1195                                 break;
1196                         p->oflags |= VPO_SWAPINPROG;
1197                 }
1198                 *rahead = i;
1199         }
1200         if (rbehind != NULL)
1201                 count += *rbehind;
1202         if (rahead != NULL)
1203                 count += *rahead;
1204
1205         vm_object_pip_add(object, count);
1206
1207         pindex = bm->pindex;
1208         blk = swp_pager_meta_ctl(object, pindex, 0);
1209         KASSERT(blk != SWAPBLK_NONE,
1210             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1211
1212         VM_OBJECT_WUNLOCK(object);
1213         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1214         /* Pages cannot leave the object while busy. */
1215         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1216                 MPASS(p->pindex == bm->pindex + i);
1217                 bp->b_pages[i] = p;
1218         }
1219
1220         bp->b_flags |= B_PAGING;
1221         bp->b_iocmd = BIO_READ;
1222         bp->b_iodone = swp_pager_async_iodone;
1223         bp->b_rcred = crhold(thread0.td_ucred);
1224         bp->b_wcred = crhold(thread0.td_ucred);
1225         bp->b_blkno = blk;
1226         bp->b_bcount = PAGE_SIZE * count;
1227         bp->b_bufsize = PAGE_SIZE * count;
1228         bp->b_npages = count;
1229         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1230         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1231
1232         VM_CNT_INC(v_swapin);
1233         VM_CNT_ADD(v_swappgsin, count);
1234
1235         /*
1236          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1237          * this point because we automatically release it on completion.
1238          * Instead, we look at the one page we are interested in which we
1239          * still hold a lock on even through the I/O completion.
1240          *
1241          * The other pages in our ma[] array are also released on completion,
1242          * so we cannot assume they are valid anymore either.
1243          *
1244          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1245          */
1246         BUF_KERNPROC(bp);
1247         swp_pager_strategy(bp);
1248
1249         /*
1250          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1251          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1252          * is set in the metadata for each page in the request.
1253          */
1254         VM_OBJECT_WLOCK(object);
1255         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1256                 ma[0]->oflags |= VPO_SWAPSLEEP;
1257                 VM_CNT_INC(v_intrans);
1258                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1259                     "swread", hz * 20)) {
1260                         printf(
1261 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1262                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1263                 }
1264         }
1265
1266         /*
1267          * If we had an unrecoverable read error pages will not be valid.
1268          */
1269         for (i = 0; i < reqcount; i++)
1270                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1271                         return (VM_PAGER_ERROR);
1272
1273         return (VM_PAGER_OK);
1274
1275         /*
1276          * A final note: in a low swap situation, we cannot deallocate swap
1277          * and mark a page dirty here because the caller is likely to mark
1278          * the page clean when we return, causing the page to possibly revert
1279          * to all-zero's later.
1280          */
1281 }
1282
1283 /*
1284  *      swap_pager_getpages_async():
1285  *
1286  *      Right now this is emulation of asynchronous operation on top of
1287  *      swap_pager_getpages().
1288  */
1289 static int
1290 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1291     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1292 {
1293         int r, error;
1294
1295         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1296         VM_OBJECT_WUNLOCK(object);
1297         switch (r) {
1298         case VM_PAGER_OK:
1299                 error = 0;
1300                 break;
1301         case VM_PAGER_ERROR:
1302                 error = EIO;
1303                 break;
1304         case VM_PAGER_FAIL:
1305                 error = EINVAL;
1306                 break;
1307         default:
1308                 panic("unhandled swap_pager_getpages() error %d", r);
1309         }
1310         (iodone)(arg, ma, count, error);
1311         VM_OBJECT_WLOCK(object);
1312
1313         return (r);
1314 }
1315
1316 /*
1317  *      swap_pager_putpages:
1318  *
1319  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1320  *
1321  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1322  *      are automatically converted to SWAP objects.
1323  *
1324  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1325  *      vm_page reservation system coupled with properly written VFS devices
1326  *      should ensure that no low-memory deadlock occurs.  This is an area
1327  *      which needs work.
1328  *
1329  *      The parent has N vm_object_pip_add() references prior to
1330  *      calling us and will remove references for rtvals[] that are
1331  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1332  *      completion.
1333  *
1334  *      The parent has soft-busy'd the pages it passes us and will unbusy
1335  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1336  *      We need to unbusy the rest on I/O completion.
1337  */
1338 static void
1339 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1340     int flags, int *rtvals)
1341 {
1342         struct buf *bp;
1343         daddr_t addr, blk, n_free, s_free;
1344         vm_page_t mreq;
1345         int i, j, n;
1346         bool async;
1347
1348         KASSERT(count == 0 || ma[0]->object == object,
1349             ("%s: object mismatch %p/%p",
1350             __func__, object, ma[0]->object));
1351
1352         /*
1353          * Step 1
1354          *
1355          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1356          */
1357         if (object->type != OBJT_SWAP) {
1358                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1359                 KASSERT(addr == SWAPBLK_NONE,
1360                     ("unexpected object swap block"));
1361         }
1362         VM_OBJECT_WUNLOCK(object);
1363         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1364         swp_pager_init_freerange(&s_free, &n_free);
1365
1366         /*
1367          * Step 2
1368          *
1369          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1370          * The page is left dirty until the pageout operation completes
1371          * successfully.
1372          */
1373         for (i = 0; i < count; i += n) {
1374                 /* Maximum I/O size is limited by maximum swap block size. */
1375                 n = min(count - i, nsw_cluster_max);
1376
1377                 /* Get a block of swap of size up to size n. */
1378                 blk = swp_pager_getswapspace(&n, 4);
1379                 if (blk == SWAPBLK_NONE) {
1380                         for (j = 0; j < n; ++j)
1381                                 rtvals[i + j] = VM_PAGER_FAIL;
1382                         continue;
1383                 }
1384
1385                 /*
1386                  * All I/O parameters have been satisfied.  Build the I/O
1387                  * request and assign the swap space.
1388                  */
1389                 if (async) {
1390                         mtx_lock(&swbuf_mtx);
1391                         while (nsw_wcount_async == 0)
1392                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1393                                     "swbufa", 0);
1394                         nsw_wcount_async--;
1395                         mtx_unlock(&swbuf_mtx);
1396                 }
1397                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1398                 if (async)
1399                         bp->b_flags = B_ASYNC;
1400                 bp->b_flags |= B_PAGING;
1401                 bp->b_iocmd = BIO_WRITE;
1402
1403                 bp->b_rcred = crhold(thread0.td_ucred);
1404                 bp->b_wcred = crhold(thread0.td_ucred);
1405                 bp->b_bcount = PAGE_SIZE * n;
1406                 bp->b_bufsize = PAGE_SIZE * n;
1407                 bp->b_blkno = blk;
1408
1409                 VM_OBJECT_WLOCK(object);
1410                 for (j = 0; j < n; ++j) {
1411                         mreq = ma[i + j];
1412                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1413                             blk + j);
1414                         if (addr != SWAPBLK_NONE)
1415                                 swp_pager_update_freerange(&s_free, &n_free,
1416                                     addr);
1417                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1418                         mreq->oflags |= VPO_SWAPINPROG;
1419                         bp->b_pages[j] = mreq;
1420                 }
1421                 VM_OBJECT_WUNLOCK(object);
1422                 bp->b_npages = n;
1423                 /*
1424                  * Must set dirty range for NFS to work.
1425                  */
1426                 bp->b_dirtyoff = 0;
1427                 bp->b_dirtyend = bp->b_bcount;
1428
1429                 VM_CNT_INC(v_swapout);
1430                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1431
1432                 /*
1433                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1434                  * can call the async completion routine at the end of a
1435                  * synchronous I/O operation.  Otherwise, our caller would
1436                  * perform duplicate unbusy and wakeup operations on the page
1437                  * and object, respectively.
1438                  */
1439                 for (j = 0; j < n; j++)
1440                         rtvals[i + j] = VM_PAGER_PEND;
1441
1442                 /*
1443                  * asynchronous
1444                  *
1445                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1446                  */
1447                 if (async) {
1448                         bp->b_iodone = swp_pager_async_iodone;
1449                         BUF_KERNPROC(bp);
1450                         swp_pager_strategy(bp);
1451                         continue;
1452                 }
1453
1454                 /*
1455                  * synchronous
1456                  *
1457                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1458                  */
1459                 bp->b_iodone = bdone;
1460                 swp_pager_strategy(bp);
1461
1462                 /*
1463                  * Wait for the sync I/O to complete.
1464                  */
1465                 bwait(bp, PVM, "swwrt");
1466
1467                 /*
1468                  * Now that we are through with the bp, we can call the
1469                  * normal async completion, which frees everything up.
1470                  */
1471                 swp_pager_async_iodone(bp);
1472         }
1473         swp_pager_freeswapspace(s_free, n_free);
1474         VM_OBJECT_WLOCK(object);
1475 }
1476
1477 /*
1478  *      swp_pager_async_iodone:
1479  *
1480  *      Completion routine for asynchronous reads and writes from/to swap.
1481  *      Also called manually by synchronous code to finish up a bp.
1482  *
1483  *      This routine may not sleep.
1484  */
1485 static void
1486 swp_pager_async_iodone(struct buf *bp)
1487 {
1488         int i;
1489         vm_object_t object = NULL;
1490
1491         /*
1492          * Report error - unless we ran out of memory, in which case
1493          * we've already logged it in swapgeom_strategy().
1494          */
1495         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1496                 printf(
1497                     "swap_pager: I/O error - %s failed; blkno %ld,"
1498                         "size %ld, error %d\n",
1499                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1500                     (long)bp->b_blkno,
1501                     (long)bp->b_bcount,
1502                     bp->b_error
1503                 );
1504         }
1505
1506         /*
1507          * remove the mapping for kernel virtual
1508          */
1509         if (buf_mapped(bp))
1510                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1511         else
1512                 bp->b_data = bp->b_kvabase;
1513
1514         if (bp->b_npages) {
1515                 object = bp->b_pages[0]->object;
1516                 VM_OBJECT_WLOCK(object);
1517         }
1518
1519         /*
1520          * cleanup pages.  If an error occurs writing to swap, we are in
1521          * very serious trouble.  If it happens to be a disk error, though,
1522          * we may be able to recover by reassigning the swap later on.  So
1523          * in this case we remove the m->swapblk assignment for the page
1524          * but do not free it in the rlist.  The errornous block(s) are thus
1525          * never reallocated as swap.  Redirty the page and continue.
1526          */
1527         for (i = 0; i < bp->b_npages; ++i) {
1528                 vm_page_t m = bp->b_pages[i];
1529
1530                 m->oflags &= ~VPO_SWAPINPROG;
1531                 if (m->oflags & VPO_SWAPSLEEP) {
1532                         m->oflags &= ~VPO_SWAPSLEEP;
1533                         wakeup(&object->paging_in_progress);
1534                 }
1535
1536                 if (bp->b_ioflags & BIO_ERROR) {
1537                         /*
1538                          * If an error occurs I'd love to throw the swapblk
1539                          * away without freeing it back to swapspace, so it
1540                          * can never be used again.  But I can't from an
1541                          * interrupt.
1542                          */
1543                         if (bp->b_iocmd == BIO_READ) {
1544                                 /*
1545                                  * NOTE: for reads, m->dirty will probably
1546                                  * be overridden by the original caller of
1547                                  * getpages so don't play cute tricks here.
1548                                  */
1549                                 m->valid = 0;
1550                         } else {
1551                                 /*
1552                                  * If a write error occurs, reactivate page
1553                                  * so it doesn't clog the inactive list,
1554                                  * then finish the I/O.
1555                                  */
1556                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1557                                 vm_page_lock(m);
1558                                 vm_page_activate(m);
1559                                 vm_page_unlock(m);
1560                                 vm_page_sunbusy(m);
1561                         }
1562                 } else if (bp->b_iocmd == BIO_READ) {
1563                         /*
1564                          * NOTE: for reads, m->dirty will probably be
1565                          * overridden by the original caller of getpages so
1566                          * we cannot set them in order to free the underlying
1567                          * swap in a low-swap situation.  I don't think we'd
1568                          * want to do that anyway, but it was an optimization
1569                          * that existed in the old swapper for a time before
1570                          * it got ripped out due to precisely this problem.
1571                          */
1572                         KASSERT(!pmap_page_is_mapped(m),
1573                             ("swp_pager_async_iodone: page %p is mapped", m));
1574                         KASSERT(m->dirty == 0,
1575                             ("swp_pager_async_iodone: page %p is dirty", m));
1576
1577                         m->valid = VM_PAGE_BITS_ALL;
1578                         if (i < bp->b_pgbefore ||
1579                             i >= bp->b_npages - bp->b_pgafter)
1580                                 vm_page_readahead_finish(m);
1581                 } else {
1582                         /*
1583                          * For write success, clear the dirty
1584                          * status, then finish the I/O ( which decrements the
1585                          * busy count and possibly wakes waiter's up ).
1586                          * A page is only written to swap after a period of
1587                          * inactivity.  Therefore, we do not expect it to be
1588                          * reused.
1589                          */
1590                         KASSERT(!pmap_page_is_write_mapped(m),
1591                             ("swp_pager_async_iodone: page %p is not write"
1592                             " protected", m));
1593                         vm_page_undirty(m);
1594                         vm_page_lock(m);
1595                         vm_page_deactivate_noreuse(m);
1596                         vm_page_unlock(m);
1597                         vm_page_sunbusy(m);
1598                 }
1599         }
1600
1601         /*
1602          * adjust pip.  NOTE: the original parent may still have its own
1603          * pip refs on the object.
1604          */
1605         if (object != NULL) {
1606                 vm_object_pip_wakeupn(object, bp->b_npages);
1607                 VM_OBJECT_WUNLOCK(object);
1608         }
1609
1610         /*
1611          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1612          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1613          * trigger a KASSERT in relpbuf().
1614          */
1615         if (bp->b_vp) {
1616                     bp->b_vp = NULL;
1617                     bp->b_bufobj = NULL;
1618         }
1619         /*
1620          * release the physical I/O buffer
1621          */
1622         if (bp->b_flags & B_ASYNC) {
1623                 mtx_lock(&swbuf_mtx);
1624                 if (++nsw_wcount_async == 1)
1625                         wakeup(&nsw_wcount_async);
1626                 mtx_unlock(&swbuf_mtx);
1627         }
1628         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1629 }
1630
1631 int
1632 swap_pager_nswapdev(void)
1633 {
1634
1635         return (nswapdev);
1636 }
1637
1638 static void
1639 swp_pager_force_dirty(vm_page_t m)
1640 {
1641
1642         vm_page_dirty(m);
1643 #ifdef INVARIANTS
1644         vm_page_lock(m);
1645         if (!vm_page_wired(m) && m->queue == PQ_NONE)
1646                 panic("page %p is neither wired nor queued", m);
1647         vm_page_unlock(m);
1648 #endif
1649         vm_page_xunbusy(m);
1650         swap_pager_unswapped(m);
1651 }
1652
1653 static void
1654 swp_pager_force_launder(vm_page_t m)
1655 {
1656
1657         vm_page_dirty(m);
1658         vm_page_lock(m);
1659         vm_page_launder(m);
1660         vm_page_unlock(m);
1661         vm_page_xunbusy(m);
1662         swap_pager_unswapped(m);
1663 }
1664
1665 /*
1666  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1667  *
1668  *      This routine dissociates pages starting at the given index within an
1669  *      object from their backing store, paging them in if they do not reside
1670  *      in memory.  Pages that are paged in are marked dirty and placed in the
1671  *      laundry queue.  Pages are marked dirty because they no longer have
1672  *      backing store.  They are placed in the laundry queue because they have
1673  *      not been accessed recently.  Otherwise, they would already reside in
1674  *      memory.
1675  */
1676 static void
1677 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1678 {
1679         vm_page_t ma[npages];
1680         int i, j;
1681
1682         KASSERT(npages > 0, ("%s: No pages", __func__));
1683         KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1684             ("%s: Too many pages: %d", __func__, npages));
1685         vm_object_pip_add(object, npages);
1686         vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1687         for (i = j = 0;; i++) {
1688                 /* Count nonresident pages, to page-in all at once. */
1689                 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1690                         continue;
1691                 if (j < i) {
1692                         /* Page-in nonresident pages. Mark for laundering. */
1693                         if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1694                             NULL) != VM_PAGER_OK)
1695                                 panic("%s: read from swap failed", __func__);
1696                         do {
1697                                 swp_pager_force_launder(ma[j]);
1698                         } while (++j < i);
1699                 }
1700                 if (i == npages)
1701                         break;
1702                 /* Mark dirty a resident page. */
1703                 swp_pager_force_dirty(ma[j++]);
1704         }
1705         vm_object_pip_wakeupn(object, npages);
1706 }
1707
1708 /*
1709  *      swap_pager_swapoff_object:
1710  *
1711  *      Page in all of the pages that have been paged out for an object
1712  *      to a swap device.
1713  */
1714 static void
1715 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1716 {
1717         struct swblk *sb;
1718         vm_pindex_t pi, s_pindex;
1719         daddr_t blk, n_blks, s_blk;
1720         int i;
1721
1722         n_blks = 0;
1723         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1724             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1725                 for (i = 0; i < SWAP_META_PAGES; i++) {
1726                         blk = sb->d[i];
1727                         if (!swp_pager_isondev(blk, sp))
1728                                 blk = SWAPBLK_NONE;
1729
1730                         /*
1731                          * If there are no blocks/pages accumulated, start a new
1732                          * accumulation here.
1733                          */
1734                         if (n_blks == 0) {
1735                                 if (blk != SWAPBLK_NONE) {
1736                                         s_blk = blk;
1737                                         s_pindex = sb->p + i;
1738                                         n_blks = 1;
1739                                 }
1740                                 continue;
1741                         }
1742
1743                         /*
1744                          * If the accumulation can be extended without breaking
1745                          * the sequence of consecutive blocks and pages that
1746                          * swp_pager_force_pagein() depends on, do so.
1747                          */
1748                         if (n_blks < MAXPHYS / PAGE_SIZE &&
1749                             s_blk + n_blks == blk &&
1750                             s_pindex + n_blks == sb->p + i) {
1751                                 ++n_blks;
1752                                 continue;
1753                         }
1754
1755                         /*
1756                          * The sequence of consecutive blocks and pages cannot
1757                          * be extended, so page them all in here.  Then,
1758                          * because doing so involves releasing and reacquiring
1759                          * a lock that protects the swap block pctrie, do not
1760                          * rely on the current swap block.  Break this loop and
1761                          * re-fetch the same pindex from the pctrie again.
1762                          */
1763                         swp_pager_force_pagein(object, s_pindex, n_blks);
1764                         n_blks = 0;
1765                         break;
1766                 }
1767                 if (i == SWAP_META_PAGES)
1768                         pi = sb->p + SWAP_META_PAGES;
1769         }
1770         if (n_blks > 0)
1771                 swp_pager_force_pagein(object, s_pindex, n_blks);
1772 }
1773
1774 /*
1775  *      swap_pager_swapoff:
1776  *
1777  *      Page in all of the pages that have been paged out to the
1778  *      given device.  The corresponding blocks in the bitmap must be
1779  *      marked as allocated and the device must be flagged SW_CLOSING.
1780  *      There may be no processes swapped out to the device.
1781  *
1782  *      This routine may block.
1783  */
1784 static void
1785 swap_pager_swapoff(struct swdevt *sp)
1786 {
1787         vm_object_t object;
1788         int retries;
1789
1790         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1791
1792         retries = 0;
1793 full_rescan:
1794         mtx_lock(&vm_object_list_mtx);
1795         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1796                 if (object->type != OBJT_SWAP)
1797                         continue;
1798                 mtx_unlock(&vm_object_list_mtx);
1799                 /* Depends on type-stability. */
1800                 VM_OBJECT_WLOCK(object);
1801
1802                 /*
1803                  * Dead objects are eventually terminated on their own.
1804                  */
1805                 if ((object->flags & OBJ_DEAD) != 0)
1806                         goto next_obj;
1807
1808                 /*
1809                  * Sync with fences placed after pctrie
1810                  * initialization.  We must not access pctrie below
1811                  * unless we checked that our object is swap and not
1812                  * dead.
1813                  */
1814                 atomic_thread_fence_acq();
1815                 if (object->type != OBJT_SWAP)
1816                         goto next_obj;
1817
1818                 swap_pager_swapoff_object(sp, object);
1819 next_obj:
1820                 VM_OBJECT_WUNLOCK(object);
1821                 mtx_lock(&vm_object_list_mtx);
1822         }
1823         mtx_unlock(&vm_object_list_mtx);
1824
1825         if (sp->sw_used) {
1826                 /*
1827                  * Objects may be locked or paging to the device being
1828                  * removed, so we will miss their pages and need to
1829                  * make another pass.  We have marked this device as
1830                  * SW_CLOSING, so the activity should finish soon.
1831                  */
1832                 retries++;
1833                 if (retries > 100) {
1834                         panic("swapoff: failed to locate %d swap blocks",
1835                             sp->sw_used);
1836                 }
1837                 pause("swpoff", hz / 20);
1838                 goto full_rescan;
1839         }
1840         EVENTHANDLER_INVOKE(swapoff, sp);
1841 }
1842
1843 /************************************************************************
1844  *                              SWAP META DATA                          *
1845  ************************************************************************
1846  *
1847  *      These routines manipulate the swap metadata stored in the
1848  *      OBJT_SWAP object.
1849  *
1850  *      Swap metadata is implemented with a global hash and not directly
1851  *      linked into the object.  Instead the object simply contains
1852  *      appropriate tracking counters.
1853  */
1854
1855 /*
1856  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1857  */
1858 static bool
1859 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1860 {
1861         int i;
1862
1863         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1864         for (i = start; i < limit; i++) {
1865                 if (sb->d[i] != SWAPBLK_NONE)
1866                         return (false);
1867         }
1868         return (true);
1869 }
1870    
1871 /*
1872  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1873  *
1874  *      We first convert the object to a swap object if it is a default
1875  *      object.
1876  *
1877  *      The specified swapblk is added to the object's swap metadata.  If
1878  *      the swapblk is not valid, it is freed instead.  Any previously
1879  *      assigned swapblk is returned.
1880  */
1881 static daddr_t
1882 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1883 {
1884         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1885         struct swblk *sb, *sb1;
1886         vm_pindex_t modpi, rdpi;
1887         daddr_t prev_swapblk;
1888         int error, i;
1889
1890         VM_OBJECT_ASSERT_WLOCKED(object);
1891
1892         /*
1893          * Convert default object to swap object if necessary
1894          */
1895         if (object->type != OBJT_SWAP) {
1896                 pctrie_init(&object->un_pager.swp.swp_blks);
1897
1898                 /*
1899                  * Ensure that swap_pager_swapoff()'s iteration over
1900                  * object_list does not see a garbage pctrie.
1901                  */
1902                 atomic_thread_fence_rel();
1903
1904                 object->type = OBJT_SWAP;
1905                 KASSERT(object->handle == NULL, ("default pager with handle"));
1906         }
1907
1908         rdpi = rounddown(pindex, SWAP_META_PAGES);
1909         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1910         if (sb == NULL) {
1911                 if (swapblk == SWAPBLK_NONE)
1912                         return (SWAPBLK_NONE);
1913                 for (;;) {
1914                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1915                             pageproc ? M_USE_RESERVE : 0));
1916                         if (sb != NULL) {
1917                                 sb->p = rdpi;
1918                                 for (i = 0; i < SWAP_META_PAGES; i++)
1919                                         sb->d[i] = SWAPBLK_NONE;
1920                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1921                                     1, 0))
1922                                         printf("swblk zone ok\n");
1923                                 break;
1924                         }
1925                         VM_OBJECT_WUNLOCK(object);
1926                         if (uma_zone_exhausted(swblk_zone)) {
1927                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1928                                     0, 1))
1929                                         printf("swap blk zone exhausted, "
1930                                             "increase kern.maxswzone\n");
1931                                 vm_pageout_oom(VM_OOM_SWAPZ);
1932                                 pause("swzonxb", 10);
1933                         } else
1934                                 uma_zwait(swblk_zone);
1935                         VM_OBJECT_WLOCK(object);
1936                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1937                             rdpi);
1938                         if (sb != NULL)
1939                                 /*
1940                                  * Somebody swapped out a nearby page,
1941                                  * allocating swblk at the rdpi index,
1942                                  * while we dropped the object lock.
1943                                  */
1944                                 goto allocated;
1945                 }
1946                 for (;;) {
1947                         error = SWAP_PCTRIE_INSERT(
1948                             &object->un_pager.swp.swp_blks, sb);
1949                         if (error == 0) {
1950                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1951                                     1, 0))
1952                                         printf("swpctrie zone ok\n");
1953                                 break;
1954                         }
1955                         VM_OBJECT_WUNLOCK(object);
1956                         if (uma_zone_exhausted(swpctrie_zone)) {
1957                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1958                                     0, 1))
1959                                         printf("swap pctrie zone exhausted, "
1960                                             "increase kern.maxswzone\n");
1961                                 vm_pageout_oom(VM_OOM_SWAPZ);
1962                                 pause("swzonxp", 10);
1963                         } else
1964                                 uma_zwait(swpctrie_zone);
1965                         VM_OBJECT_WLOCK(object);
1966                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1967                             rdpi);
1968                         if (sb1 != NULL) {
1969                                 uma_zfree(swblk_zone, sb);
1970                                 sb = sb1;
1971                                 goto allocated;
1972                         }
1973                 }
1974         }
1975 allocated:
1976         MPASS(sb->p == rdpi);
1977
1978         modpi = pindex % SWAP_META_PAGES;
1979         /* Return prior contents of metadata. */
1980         prev_swapblk = sb->d[modpi];
1981         /* Enter block into metadata. */
1982         sb->d[modpi] = swapblk;
1983
1984         /*
1985          * Free the swblk if we end up with the empty page run.
1986          */
1987         if (swapblk == SWAPBLK_NONE &&
1988             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1989                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1990                 uma_zfree(swblk_zone, sb);
1991         }
1992         return (prev_swapblk);
1993 }
1994
1995 /*
1996  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1997  *
1998  *      The requested range of blocks is freed, with any associated swap
1999  *      returned to the swap bitmap.
2000  *
2001  *      This routine will free swap metadata structures as they are cleaned
2002  *      out.  This routine does *NOT* operate on swap metadata associated
2003  *      with resident pages.
2004  */
2005 static void
2006 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2007 {
2008         struct swblk *sb;
2009         daddr_t n_free, s_free;
2010         vm_pindex_t last;
2011         int i, limit, start;
2012
2013         VM_OBJECT_ASSERT_WLOCKED(object);
2014         if (object->type != OBJT_SWAP || count == 0)
2015                 return;
2016
2017         swp_pager_init_freerange(&s_free, &n_free);
2018         last = pindex + count;
2019         for (;;) {
2020                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2021                     rounddown(pindex, SWAP_META_PAGES));
2022                 if (sb == NULL || sb->p >= last)
2023                         break;
2024                 start = pindex > sb->p ? pindex - sb->p : 0;
2025                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2026                     SWAP_META_PAGES;
2027                 for (i = start; i < limit; i++) {
2028                         if (sb->d[i] == SWAPBLK_NONE)
2029                                 continue;
2030                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2031                         sb->d[i] = SWAPBLK_NONE;
2032                 }
2033                 pindex = sb->p + SWAP_META_PAGES;
2034                 if (swp_pager_swblk_empty(sb, 0, start) &&
2035                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2036                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2037                             sb->p);
2038                         uma_zfree(swblk_zone, sb);
2039                 }
2040         }
2041         swp_pager_freeswapspace(s_free, n_free);
2042 }
2043
2044 /*
2045  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2046  *
2047  *      This routine locates and destroys all swap metadata associated with
2048  *      an object.
2049  */
2050 static void
2051 swp_pager_meta_free_all(vm_object_t object)
2052 {
2053         struct swblk *sb;
2054         daddr_t n_free, s_free;
2055         vm_pindex_t pindex;
2056         int i;
2057
2058         VM_OBJECT_ASSERT_WLOCKED(object);
2059         if (object->type != OBJT_SWAP)
2060                 return;
2061
2062         swp_pager_init_freerange(&s_free, &n_free);
2063         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2064             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2065                 pindex = sb->p + SWAP_META_PAGES;
2066                 for (i = 0; i < SWAP_META_PAGES; i++) {
2067                         if (sb->d[i] == SWAPBLK_NONE)
2068                                 continue;
2069                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2070                 }
2071                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2072                 uma_zfree(swblk_zone, sb);
2073         }
2074         swp_pager_freeswapspace(s_free, n_free);
2075 }
2076
2077 /*
2078  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2079  *
2080  *      This routine is capable of looking up, or removing swapblk
2081  *      assignments in the swap meta data.  It returns the swapblk being
2082  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2083  *
2084  *      When acting on a busy resident page and paging is in progress, we
2085  *      have to wait until paging is complete but otherwise can act on the
2086  *      busy page.
2087  *
2088  *      SWM_POP         remove from meta data but do not free it
2089  */
2090 static daddr_t
2091 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2092 {
2093         struct swblk *sb;
2094         daddr_t r1;
2095
2096         if ((flags & SWM_POP) != 0)
2097                 VM_OBJECT_ASSERT_WLOCKED(object);
2098         else
2099                 VM_OBJECT_ASSERT_LOCKED(object);
2100
2101         /*
2102          * The meta data only exists if the object is OBJT_SWAP
2103          * and even then might not be allocated yet.
2104          */
2105         if (object->type != OBJT_SWAP)
2106                 return (SWAPBLK_NONE);
2107
2108         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2109             rounddown(pindex, SWAP_META_PAGES));
2110         if (sb == NULL)
2111                 return (SWAPBLK_NONE);
2112         r1 = sb->d[pindex % SWAP_META_PAGES];
2113         if (r1 == SWAPBLK_NONE)
2114                 return (SWAPBLK_NONE);
2115         if ((flags & SWM_POP) != 0) {
2116                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2117                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2118                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2119                             rounddown(pindex, SWAP_META_PAGES));
2120                         uma_zfree(swblk_zone, sb);
2121                 }
2122         }
2123         return (r1);
2124 }
2125
2126 /*
2127  * Returns the least page index which is greater than or equal to the
2128  * parameter pindex and for which there is a swap block allocated.
2129  * Returns object's size if the object's type is not swap or if there
2130  * are no allocated swap blocks for the object after the requested
2131  * pindex.
2132  */
2133 vm_pindex_t
2134 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2135 {
2136         struct swblk *sb;
2137         int i;
2138
2139         VM_OBJECT_ASSERT_LOCKED(object);
2140         if (object->type != OBJT_SWAP)
2141                 return (object->size);
2142
2143         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2144             rounddown(pindex, SWAP_META_PAGES));
2145         if (sb == NULL)
2146                 return (object->size);
2147         if (sb->p < pindex) {
2148                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2149                         if (sb->d[i] != SWAPBLK_NONE)
2150                                 return (sb->p + i);
2151                 }
2152                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2153                     roundup(pindex, SWAP_META_PAGES));
2154                 if (sb == NULL)
2155                         return (object->size);
2156         }
2157         for (i = 0; i < SWAP_META_PAGES; i++) {
2158                 if (sb->d[i] != SWAPBLK_NONE)
2159                         return (sb->p + i);
2160         }
2161
2162         /*
2163          * We get here if a swblk is present in the trie but it
2164          * doesn't map any blocks.
2165          */
2166         MPASS(0);
2167         return (object->size);
2168 }
2169
2170 /*
2171  * System call swapon(name) enables swapping on device name,
2172  * which must be in the swdevsw.  Return EBUSY
2173  * if already swapping on this device.
2174  */
2175 #ifndef _SYS_SYSPROTO_H_
2176 struct swapon_args {
2177         char *name;
2178 };
2179 #endif
2180
2181 /*
2182  * MPSAFE
2183  */
2184 /* ARGSUSED */
2185 int
2186 sys_swapon(struct thread *td, struct swapon_args *uap)
2187 {
2188         struct vattr attr;
2189         struct vnode *vp;
2190         struct nameidata nd;
2191         int error;
2192
2193         error = priv_check(td, PRIV_SWAPON);
2194         if (error)
2195                 return (error);
2196
2197         sx_xlock(&swdev_syscall_lock);
2198
2199         /*
2200          * Swap metadata may not fit in the KVM if we have physical
2201          * memory of >1GB.
2202          */
2203         if (swblk_zone == NULL) {
2204                 error = ENOMEM;
2205                 goto done;
2206         }
2207
2208         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2209             uap->name, td);
2210         error = namei(&nd);
2211         if (error)
2212                 goto done;
2213
2214         NDFREE(&nd, NDF_ONLY_PNBUF);
2215         vp = nd.ni_vp;
2216
2217         if (vn_isdisk(vp, &error)) {
2218                 error = swapongeom(vp);
2219         } else if (vp->v_type == VREG &&
2220             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2221             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2222                 /*
2223                  * Allow direct swapping to NFS regular files in the same
2224                  * way that nfs_mountroot() sets up diskless swapping.
2225                  */
2226                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2227         }
2228
2229         if (error)
2230                 vrele(vp);
2231 done:
2232         sx_xunlock(&swdev_syscall_lock);
2233         return (error);
2234 }
2235
2236 /*
2237  * Check that the total amount of swap currently configured does not
2238  * exceed half the theoretical maximum.  If it does, print a warning
2239  * message.
2240  */
2241 static void
2242 swapon_check_swzone(void)
2243 {
2244         unsigned long maxpages, npages;
2245
2246         npages = swap_total;
2247         /* absolute maximum we can handle assuming 100% efficiency */
2248         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2249
2250         /* recommend using no more than half that amount */
2251         if (npages > maxpages / 2) {
2252                 printf("warning: total configured swap (%lu pages) "
2253                     "exceeds maximum recommended amount (%lu pages).\n",
2254                     npages, maxpages / 2);
2255                 printf("warning: increase kern.maxswzone "
2256                     "or reduce amount of swap.\n");
2257         }
2258 }
2259
2260 static void
2261 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2262     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2263 {
2264         struct swdevt *sp, *tsp;
2265         swblk_t dvbase;
2266         u_long mblocks;
2267
2268         /*
2269          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2270          * First chop nblks off to page-align it, then convert.
2271          *
2272          * sw->sw_nblks is in page-sized chunks now too.
2273          */
2274         nblks &= ~(ctodb(1) - 1);
2275         nblks = dbtoc(nblks);
2276
2277         /*
2278          * If we go beyond this, we get overflows in the radix
2279          * tree bitmap code.
2280          */
2281         mblocks = 0x40000000 / BLIST_META_RADIX;
2282         if (nblks > mblocks) {
2283                 printf(
2284     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2285                     mblocks / 1024 / 1024 * PAGE_SIZE);
2286                 nblks = mblocks;
2287         }
2288
2289         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2290         sp->sw_vp = vp;
2291         sp->sw_id = id;
2292         sp->sw_dev = dev;
2293         sp->sw_nblks = nblks;
2294         sp->sw_used = 0;
2295         sp->sw_strategy = strategy;
2296         sp->sw_close = close;
2297         sp->sw_flags = flags;
2298
2299         sp->sw_blist = blist_create(nblks, M_WAITOK);
2300         /*
2301          * Do not free the first two block in order to avoid overwriting
2302          * any bsd label at the front of the partition
2303          */
2304         blist_free(sp->sw_blist, 2, nblks - 2);
2305
2306         dvbase = 0;
2307         mtx_lock(&sw_dev_mtx);
2308         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2309                 if (tsp->sw_end >= dvbase) {
2310                         /*
2311                          * We put one uncovered page between the devices
2312                          * in order to definitively prevent any cross-device
2313                          * I/O requests
2314                          */
2315                         dvbase = tsp->sw_end + 1;
2316                 }
2317         }
2318         sp->sw_first = dvbase;
2319         sp->sw_end = dvbase + nblks;
2320         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2321         nswapdev++;
2322         swap_pager_avail += nblks - 2;
2323         swap_total += nblks;
2324         swapon_check_swzone();
2325         swp_sizecheck();
2326         mtx_unlock(&sw_dev_mtx);
2327         EVENTHANDLER_INVOKE(swapon, sp);
2328 }
2329
2330 /*
2331  * SYSCALL: swapoff(devname)
2332  *
2333  * Disable swapping on the given device.
2334  *
2335  * XXX: Badly designed system call: it should use a device index
2336  * rather than filename as specification.  We keep sw_vp around
2337  * only to make this work.
2338  */
2339 #ifndef _SYS_SYSPROTO_H_
2340 struct swapoff_args {
2341         char *name;
2342 };
2343 #endif
2344
2345 /*
2346  * MPSAFE
2347  */
2348 /* ARGSUSED */
2349 int
2350 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2351 {
2352         struct vnode *vp;
2353         struct nameidata nd;
2354         struct swdevt *sp;
2355         int error;
2356
2357         error = priv_check(td, PRIV_SWAPOFF);
2358         if (error)
2359                 return (error);
2360
2361         sx_xlock(&swdev_syscall_lock);
2362
2363         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2364             td);
2365         error = namei(&nd);
2366         if (error)
2367                 goto done;
2368         NDFREE(&nd, NDF_ONLY_PNBUF);
2369         vp = nd.ni_vp;
2370
2371         mtx_lock(&sw_dev_mtx);
2372         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2373                 if (sp->sw_vp == vp)
2374                         break;
2375         }
2376         mtx_unlock(&sw_dev_mtx);
2377         if (sp == NULL) {
2378                 error = EINVAL;
2379                 goto done;
2380         }
2381         error = swapoff_one(sp, td->td_ucred);
2382 done:
2383         sx_xunlock(&swdev_syscall_lock);
2384         return (error);
2385 }
2386
2387 static int
2388 swapoff_one(struct swdevt *sp, struct ucred *cred)
2389 {
2390         u_long nblks;
2391 #ifdef MAC
2392         int error;
2393 #endif
2394
2395         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2396 #ifdef MAC
2397         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2398         error = mac_system_check_swapoff(cred, sp->sw_vp);
2399         (void) VOP_UNLOCK(sp->sw_vp, 0);
2400         if (error != 0)
2401                 return (error);
2402 #endif
2403         nblks = sp->sw_nblks;
2404
2405         /*
2406          * We can turn off this swap device safely only if the
2407          * available virtual memory in the system will fit the amount
2408          * of data we will have to page back in, plus an epsilon so
2409          * the system doesn't become critically low on swap space.
2410          */
2411         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2412                 return (ENOMEM);
2413
2414         /*
2415          * Prevent further allocations on this device.
2416          */
2417         mtx_lock(&sw_dev_mtx);
2418         sp->sw_flags |= SW_CLOSING;
2419         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2420         swap_total -= nblks;
2421         mtx_unlock(&sw_dev_mtx);
2422
2423         /*
2424          * Page in the contents of the device and close it.
2425          */
2426         swap_pager_swapoff(sp);
2427
2428         sp->sw_close(curthread, sp);
2429         mtx_lock(&sw_dev_mtx);
2430         sp->sw_id = NULL;
2431         TAILQ_REMOVE(&swtailq, sp, sw_list);
2432         nswapdev--;
2433         if (nswapdev == 0) {
2434                 swap_pager_full = 2;
2435                 swap_pager_almost_full = 1;
2436         }
2437         if (swdevhd == sp)
2438                 swdevhd = NULL;
2439         mtx_unlock(&sw_dev_mtx);
2440         blist_destroy(sp->sw_blist);
2441         free(sp, M_VMPGDATA);
2442         return (0);
2443 }
2444
2445 void
2446 swapoff_all(void)
2447 {
2448         struct swdevt *sp, *spt;
2449         const char *devname;
2450         int error;
2451
2452         sx_xlock(&swdev_syscall_lock);
2453
2454         mtx_lock(&sw_dev_mtx);
2455         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2456                 mtx_unlock(&sw_dev_mtx);
2457                 if (vn_isdisk(sp->sw_vp, NULL))
2458                         devname = devtoname(sp->sw_vp->v_rdev);
2459                 else
2460                         devname = "[file]";
2461                 error = swapoff_one(sp, thread0.td_ucred);
2462                 if (error != 0) {
2463                         printf("Cannot remove swap device %s (error=%d), "
2464                             "skipping.\n", devname, error);
2465                 } else if (bootverbose) {
2466                         printf("Swap device %s removed.\n", devname);
2467                 }
2468                 mtx_lock(&sw_dev_mtx);
2469         }
2470         mtx_unlock(&sw_dev_mtx);
2471
2472         sx_xunlock(&swdev_syscall_lock);
2473 }
2474
2475 void
2476 swap_pager_status(int *total, int *used)
2477 {
2478         struct swdevt *sp;
2479
2480         *total = 0;
2481         *used = 0;
2482         mtx_lock(&sw_dev_mtx);
2483         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2484                 *total += sp->sw_nblks;
2485                 *used += sp->sw_used;
2486         }
2487         mtx_unlock(&sw_dev_mtx);
2488 }
2489
2490 int
2491 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2492 {
2493         struct swdevt *sp;
2494         const char *tmp_devname;
2495         int error, n;
2496
2497         n = 0;
2498         error = ENOENT;
2499         mtx_lock(&sw_dev_mtx);
2500         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2501                 if (n != name) {
2502                         n++;
2503                         continue;
2504                 }
2505                 xs->xsw_version = XSWDEV_VERSION;
2506                 xs->xsw_dev = sp->sw_dev;
2507                 xs->xsw_flags = sp->sw_flags;
2508                 xs->xsw_nblks = sp->sw_nblks;
2509                 xs->xsw_used = sp->sw_used;
2510                 if (devname != NULL) {
2511                         if (vn_isdisk(sp->sw_vp, NULL))
2512                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2513                         else
2514                                 tmp_devname = "[file]";
2515                         strncpy(devname, tmp_devname, len);
2516                 }
2517                 error = 0;
2518                 break;
2519         }
2520         mtx_unlock(&sw_dev_mtx);
2521         return (error);
2522 }
2523
2524 #if defined(COMPAT_FREEBSD11)
2525 #define XSWDEV_VERSION_11       1
2526 struct xswdev11 {
2527         u_int   xsw_version;
2528         uint32_t xsw_dev;
2529         int     xsw_flags;
2530         int     xsw_nblks;
2531         int     xsw_used;
2532 };
2533 #endif
2534
2535 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2536 struct xswdev32 {
2537         u_int   xsw_version;
2538         u_int   xsw_dev1, xsw_dev2;
2539         int     xsw_flags;
2540         int     xsw_nblks;
2541         int     xsw_used;
2542 };
2543 #endif
2544
2545 static int
2546 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2547 {
2548         struct xswdev xs;
2549 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2550         struct xswdev32 xs32;
2551 #endif
2552 #if defined(COMPAT_FREEBSD11)
2553         struct xswdev11 xs11;
2554 #endif
2555         int error;
2556
2557         if (arg2 != 1)                  /* name length */
2558                 return (EINVAL);
2559         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2560         if (error != 0)
2561                 return (error);
2562 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2563         if (req->oldlen == sizeof(xs32)) {
2564                 xs32.xsw_version = XSWDEV_VERSION;
2565                 xs32.xsw_dev1 = xs.xsw_dev;
2566                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2567                 xs32.xsw_flags = xs.xsw_flags;
2568                 xs32.xsw_nblks = xs.xsw_nblks;
2569                 xs32.xsw_used = xs.xsw_used;
2570                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2571                 return (error);
2572         }
2573 #endif
2574 #if defined(COMPAT_FREEBSD11)
2575         if (req->oldlen == sizeof(xs11)) {
2576                 xs11.xsw_version = XSWDEV_VERSION_11;
2577                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2578                 xs11.xsw_flags = xs.xsw_flags;
2579                 xs11.xsw_nblks = xs.xsw_nblks;
2580                 xs11.xsw_used = xs.xsw_used;
2581                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2582                 return (error);
2583         }
2584 #endif
2585         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2586         return (error);
2587 }
2588
2589 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2590     "Number of swap devices");
2591 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2592     sysctl_vm_swap_info,
2593     "Swap statistics by device");
2594
2595 /*
2596  * Count the approximate swap usage in pages for a vmspace.  The
2597  * shadowed or not yet copied on write swap blocks are not accounted.
2598  * The map must be locked.
2599  */
2600 long
2601 vmspace_swap_count(struct vmspace *vmspace)
2602 {
2603         vm_map_t map;
2604         vm_map_entry_t cur;
2605         vm_object_t object;
2606         struct swblk *sb;
2607         vm_pindex_t e, pi;
2608         long count;
2609         int i;
2610
2611         map = &vmspace->vm_map;
2612         count = 0;
2613
2614         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2615                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2616                         continue;
2617                 object = cur->object.vm_object;
2618                 if (object == NULL || object->type != OBJT_SWAP)
2619                         continue;
2620                 VM_OBJECT_RLOCK(object);
2621                 if (object->type != OBJT_SWAP)
2622                         goto unlock;
2623                 pi = OFF_TO_IDX(cur->offset);
2624                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2625                 for (;; pi = sb->p + SWAP_META_PAGES) {
2626                         sb = SWAP_PCTRIE_LOOKUP_GE(
2627                             &object->un_pager.swp.swp_blks, pi);
2628                         if (sb == NULL || sb->p >= e)
2629                                 break;
2630                         for (i = 0; i < SWAP_META_PAGES; i++) {
2631                                 if (sb->p + i < e &&
2632                                     sb->d[i] != SWAPBLK_NONE)
2633                                         count++;
2634                         }
2635                 }
2636 unlock:
2637                 VM_OBJECT_RUNLOCK(object);
2638         }
2639         return (count);
2640 }
2641
2642 /*
2643  * GEOM backend
2644  *
2645  * Swapping onto disk devices.
2646  *
2647  */
2648
2649 static g_orphan_t swapgeom_orphan;
2650
2651 static struct g_class g_swap_class = {
2652         .name = "SWAP",
2653         .version = G_VERSION,
2654         .orphan = swapgeom_orphan,
2655 };
2656
2657 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2658
2659
2660 static void
2661 swapgeom_close_ev(void *arg, int flags)
2662 {
2663         struct g_consumer *cp;
2664
2665         cp = arg;
2666         g_access(cp, -1, -1, 0);
2667         g_detach(cp);
2668         g_destroy_consumer(cp);
2669 }
2670
2671 /*
2672  * Add a reference to the g_consumer for an inflight transaction.
2673  */
2674 static void
2675 swapgeom_acquire(struct g_consumer *cp)
2676 {
2677
2678         mtx_assert(&sw_dev_mtx, MA_OWNED);
2679         cp->index++;
2680 }
2681
2682 /*
2683  * Remove a reference from the g_consumer.  Post a close event if all
2684  * references go away, since the function might be called from the
2685  * biodone context.
2686  */
2687 static void
2688 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2689 {
2690
2691         mtx_assert(&sw_dev_mtx, MA_OWNED);
2692         cp->index--;
2693         if (cp->index == 0) {
2694                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2695                         sp->sw_id = NULL;
2696         }
2697 }
2698
2699 static void
2700 swapgeom_done(struct bio *bp2)
2701 {
2702         struct swdevt *sp;
2703         struct buf *bp;
2704         struct g_consumer *cp;
2705
2706         bp = bp2->bio_caller2;
2707         cp = bp2->bio_from;
2708         bp->b_ioflags = bp2->bio_flags;
2709         if (bp2->bio_error)
2710                 bp->b_ioflags |= BIO_ERROR;
2711         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2712         bp->b_error = bp2->bio_error;
2713         bp->b_caller1 = NULL;
2714         bufdone(bp);
2715         sp = bp2->bio_caller1;
2716         mtx_lock(&sw_dev_mtx);
2717         swapgeom_release(cp, sp);
2718         mtx_unlock(&sw_dev_mtx);
2719         g_destroy_bio(bp2);
2720 }
2721
2722 static void
2723 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2724 {
2725         struct bio *bio;
2726         struct g_consumer *cp;
2727
2728         mtx_lock(&sw_dev_mtx);
2729         cp = sp->sw_id;
2730         if (cp == NULL) {
2731                 mtx_unlock(&sw_dev_mtx);
2732                 bp->b_error = ENXIO;
2733                 bp->b_ioflags |= BIO_ERROR;
2734                 bufdone(bp);
2735                 return;
2736         }
2737         swapgeom_acquire(cp);
2738         mtx_unlock(&sw_dev_mtx);
2739         if (bp->b_iocmd == BIO_WRITE)
2740                 bio = g_new_bio();
2741         else
2742                 bio = g_alloc_bio();
2743         if (bio == NULL) {
2744                 mtx_lock(&sw_dev_mtx);
2745                 swapgeom_release(cp, sp);
2746                 mtx_unlock(&sw_dev_mtx);
2747                 bp->b_error = ENOMEM;
2748                 bp->b_ioflags |= BIO_ERROR;
2749                 printf("swap_pager: cannot allocate bio\n");
2750                 bufdone(bp);
2751                 return;
2752         }
2753
2754         bp->b_caller1 = bio;
2755         bio->bio_caller1 = sp;
2756         bio->bio_caller2 = bp;
2757         bio->bio_cmd = bp->b_iocmd;
2758         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2759         bio->bio_length = bp->b_bcount;
2760         bio->bio_done = swapgeom_done;
2761         if (!buf_mapped(bp)) {
2762                 bio->bio_ma = bp->b_pages;
2763                 bio->bio_data = unmapped_buf;
2764                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2765                 bio->bio_ma_n = bp->b_npages;
2766                 bio->bio_flags |= BIO_UNMAPPED;
2767         } else {
2768                 bio->bio_data = bp->b_data;
2769                 bio->bio_ma = NULL;
2770         }
2771         g_io_request(bio, cp);
2772         return;
2773 }
2774
2775 static void
2776 swapgeom_orphan(struct g_consumer *cp)
2777 {
2778         struct swdevt *sp;
2779         int destroy;
2780
2781         mtx_lock(&sw_dev_mtx);
2782         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2783                 if (sp->sw_id == cp) {
2784                         sp->sw_flags |= SW_CLOSING;
2785                         break;
2786                 }
2787         }
2788         /*
2789          * Drop reference we were created with. Do directly since we're in a
2790          * special context where we don't have to queue the call to
2791          * swapgeom_close_ev().
2792          */
2793         cp->index--;
2794         destroy = ((sp != NULL) && (cp->index == 0));
2795         if (destroy)
2796                 sp->sw_id = NULL;
2797         mtx_unlock(&sw_dev_mtx);
2798         if (destroy)
2799                 swapgeom_close_ev(cp, 0);
2800 }
2801
2802 static void
2803 swapgeom_close(struct thread *td, struct swdevt *sw)
2804 {
2805         struct g_consumer *cp;
2806
2807         mtx_lock(&sw_dev_mtx);
2808         cp = sw->sw_id;
2809         sw->sw_id = NULL;
2810         mtx_unlock(&sw_dev_mtx);
2811
2812         /*
2813          * swapgeom_close() may be called from the biodone context,
2814          * where we cannot perform topology changes.  Delegate the
2815          * work to the events thread.
2816          */
2817         if (cp != NULL)
2818                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2819 }
2820
2821 static int
2822 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2823 {
2824         struct g_provider *pp;
2825         struct g_consumer *cp;
2826         static struct g_geom *gp;
2827         struct swdevt *sp;
2828         u_long nblks;
2829         int error;
2830
2831         pp = g_dev_getprovider(dev);
2832         if (pp == NULL)
2833                 return (ENODEV);
2834         mtx_lock(&sw_dev_mtx);
2835         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2836                 cp = sp->sw_id;
2837                 if (cp != NULL && cp->provider == pp) {
2838                         mtx_unlock(&sw_dev_mtx);
2839                         return (EBUSY);
2840                 }
2841         }
2842         mtx_unlock(&sw_dev_mtx);
2843         if (gp == NULL)
2844                 gp = g_new_geomf(&g_swap_class, "swap");
2845         cp = g_new_consumer(gp);
2846         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2847         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2848         g_attach(cp, pp);
2849         /*
2850          * XXX: Every time you think you can improve the margin for
2851          * footshooting, somebody depends on the ability to do so:
2852          * savecore(8) wants to write to our swapdev so we cannot
2853          * set an exclusive count :-(
2854          */
2855         error = g_access(cp, 1, 1, 0);
2856         if (error != 0) {
2857                 g_detach(cp);
2858                 g_destroy_consumer(cp);
2859                 return (error);
2860         }
2861         nblks = pp->mediasize / DEV_BSIZE;
2862         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2863             swapgeom_close, dev2udev(dev),
2864             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2865         return (0);
2866 }
2867
2868 static int
2869 swapongeom(struct vnode *vp)
2870 {
2871         int error;
2872
2873         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2874         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2875                 error = ENOENT;
2876         } else {
2877                 g_topology_lock();
2878                 error = swapongeom_locked(vp->v_rdev, vp);
2879                 g_topology_unlock();
2880         }
2881         VOP_UNLOCK(vp, 0);
2882         return (error);
2883 }
2884
2885 /*
2886  * VNODE backend
2887  *
2888  * This is used mainly for network filesystem (read: probably only tested
2889  * with NFS) swapfiles.
2890  *
2891  */
2892
2893 static void
2894 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2895 {
2896         struct vnode *vp2;
2897
2898         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2899
2900         vp2 = sp->sw_id;
2901         vhold(vp2);
2902         if (bp->b_iocmd == BIO_WRITE) {
2903                 if (bp->b_bufobj)
2904                         bufobj_wdrop(bp->b_bufobj);
2905                 bufobj_wref(&vp2->v_bufobj);
2906         }
2907         if (bp->b_bufobj != &vp2->v_bufobj)
2908                 bp->b_bufobj = &vp2->v_bufobj;
2909         bp->b_vp = vp2;
2910         bp->b_iooffset = dbtob(bp->b_blkno);
2911         bstrategy(bp);
2912         return;
2913 }
2914
2915 static void
2916 swapdev_close(struct thread *td, struct swdevt *sp)
2917 {
2918
2919         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2920         vrele(sp->sw_vp);
2921 }
2922
2923
2924 static int
2925 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2926 {
2927         struct swdevt *sp;
2928         int error;
2929
2930         if (nblks == 0)
2931                 return (ENXIO);
2932         mtx_lock(&sw_dev_mtx);
2933         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2934                 if (sp->sw_id == vp) {
2935                         mtx_unlock(&sw_dev_mtx);
2936                         return (EBUSY);
2937                 }
2938         }
2939         mtx_unlock(&sw_dev_mtx);
2940
2941         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2942 #ifdef MAC
2943         error = mac_system_check_swapon(td->td_ucred, vp);
2944         if (error == 0)
2945 #endif
2946                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2947         (void) VOP_UNLOCK(vp, 0);
2948         if (error)
2949                 return (error);
2950
2951         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2952             NODEV, 0);
2953         return (0);
2954 }
2955
2956 static int
2957 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2958 {
2959         int error, new, n;
2960
2961         new = nsw_wcount_async_max;
2962         error = sysctl_handle_int(oidp, &new, 0, req);
2963         if (error != 0 || req->newptr == NULL)
2964                 return (error);
2965
2966         if (new > nswbuf / 2 || new < 1)
2967                 return (EINVAL);
2968
2969         mtx_lock(&swbuf_mtx);
2970         while (nsw_wcount_async_max != new) {
2971                 /*
2972                  * Adjust difference.  If the current async count is too low,
2973                  * we will need to sqeeze our update slowly in.  Sleep with a
2974                  * higher priority than getpbuf() to finish faster.
2975                  */
2976                 n = new - nsw_wcount_async_max;
2977                 if (nsw_wcount_async + n >= 0) {
2978                         nsw_wcount_async += n;
2979                         nsw_wcount_async_max += n;
2980                         wakeup(&nsw_wcount_async);
2981                 } else {
2982                         nsw_wcount_async_max -= nsw_wcount_async;
2983                         nsw_wcount_async = 0;
2984                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2985                             "swpsysctl", 0);
2986                 }
2987         }
2988         mtx_unlock(&swbuf_mtx);
2989
2990         return (0);
2991 }