]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Merge ^/head r358263 through r358268.
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD, 0, "VM swap stats");
160
161 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
162     &swap_reserved, 0, sysctl_page_shift, "A", 
163     "Amount of swap storage needed to back all allocated anonymous memory.");
164 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
165     &swap_total, 0, sysctl_page_shift, "A", 
166     "Total amount of available swap storage.");
167
168 static int overcommit = 0;
169 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
170     "Configure virtual memory overcommit behavior. See tuning(7) "
171     "for details.");
172 static unsigned long swzone;
173 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
174     "Actual size of swap metadata zone");
175 static unsigned long swap_maxpages;
176 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
177     "Maximum amount of swap supported");
178
179 static counter_u64_t swap_free_deferred;
180 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
181     CTLFLAG_RD, &swap_free_deferred,
182     "Number of pages that deferred freeing swap space");
183
184 static counter_u64_t swap_free_completed;
185 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
186     CTLFLAG_RD, &swap_free_completed,
187     "Number of deferred frees completed");
188
189 /* bits from overcommit */
190 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
191 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
192 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
193
194 static int
195 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
196 {
197         uint64_t newval;
198         u_long value = *(u_long *)arg1;
199
200         newval = ((uint64_t)value) << PAGE_SHIFT;
201         return (sysctl_handle_64(oidp, &newval, 0, req));
202 }
203
204 int
205 swap_reserve(vm_ooffset_t incr)
206 {
207
208         return (swap_reserve_by_cred(incr, curthread->td_ucred));
209 }
210
211 int
212 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
213 {
214         u_long r, s, prev, pincr;
215         int res, error;
216         static int curfail;
217         static struct timeval lastfail;
218         struct uidinfo *uip;
219
220         uip = cred->cr_ruidinfo;
221
222         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
223             (uintmax_t)incr));
224
225 #ifdef RACCT
226         if (racct_enable) {
227                 PROC_LOCK(curproc);
228                 error = racct_add(curproc, RACCT_SWAP, incr);
229                 PROC_UNLOCK(curproc);
230                 if (error != 0)
231                         return (0);
232         }
233 #endif
234
235         pincr = atop(incr);
236         res = 0;
237         prev = atomic_fetchadd_long(&swap_reserved, pincr);
238         r = prev + pincr;
239         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
240                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
241                     vm_wire_count();
242         } else
243                 s = 0;
244         s += swap_total;
245         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
246             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
247                 res = 1;
248         } else {
249                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
250                 if (prev < pincr)
251                         panic("swap_reserved < incr on overcommit fail");
252         }
253         if (res) {
254                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
255                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
256                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
257                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
258                         res = 0;
259                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
260                         if (prev < pincr)
261                                 panic("uip->ui_vmsize < incr on overcommit fail");
262                 }
263         }
264         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
265                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
266                     uip->ui_uid, curproc->p_pid, incr);
267         }
268
269 #ifdef RACCT
270         if (racct_enable && !res) {
271                 PROC_LOCK(curproc);
272                 racct_sub(curproc, RACCT_SWAP, incr);
273                 PROC_UNLOCK(curproc);
274         }
275 #endif
276
277         return (res);
278 }
279
280 void
281 swap_reserve_force(vm_ooffset_t incr)
282 {
283         struct uidinfo *uip;
284         u_long pincr;
285
286         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
287             (uintmax_t)incr));
288
289         PROC_LOCK(curproc);
290 #ifdef RACCT
291         if (racct_enable)
292                 racct_add_force(curproc, RACCT_SWAP, incr);
293 #endif
294         pincr = atop(incr);
295         atomic_add_long(&swap_reserved, pincr);
296         uip = curproc->p_ucred->cr_ruidinfo;
297         atomic_add_long(&uip->ui_vmsize, pincr);
298         PROC_UNLOCK(curproc);
299 }
300
301 void
302 swap_release(vm_ooffset_t decr)
303 {
304         struct ucred *cred;
305
306         PROC_LOCK(curproc);
307         cred = curproc->p_ucred;
308         swap_release_by_cred(decr, cred);
309         PROC_UNLOCK(curproc);
310 }
311
312 void
313 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
314 {
315         u_long prev, pdecr;
316         struct uidinfo *uip;
317
318         uip = cred->cr_ruidinfo;
319
320         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
321             (uintmax_t)decr));
322
323         pdecr = atop(decr);
324         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
325         if (prev < pdecr)
326                 panic("swap_reserved < decr");
327
328         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
329         if (prev < pdecr)
330                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
331 #ifdef RACCT
332         if (racct_enable)
333                 racct_sub_cred(cred, RACCT_SWAP, decr);
334 #endif
335 }
336
337 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
338 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
339 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
340 static int nsw_wcount_async;    /* limit async write buffers */
341 static int nsw_wcount_async_max;/* assigned maximum                     */
342 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
343
344 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
345 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
346     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
347     "Maximum running async swap ops");
348 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
349 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
350     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
351     "Swap Fragmentation Info");
352
353 static struct sx sw_alloc_sx;
354
355 /*
356  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
357  * of searching a named list by hashing it just a little.
358  */
359
360 #define NOBJLISTS               8
361
362 #define NOBJLIST(handle)        \
363         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
364
365 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
366 static uma_zone_t swwbuf_zone;
367 static uma_zone_t swrbuf_zone;
368 static uma_zone_t swblk_zone;
369 static uma_zone_t swpctrie_zone;
370
371 /*
372  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
373  * calls hooked from other parts of the VM system and do not appear here.
374  * (see vm/swap_pager.h).
375  */
376 static vm_object_t
377                 swap_pager_alloc(void *handle, vm_ooffset_t size,
378                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
379 static void     swap_pager_dealloc(vm_object_t object);
380 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
381     int *);
382 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
383     int *, pgo_getpages_iodone_t, void *);
384 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
385 static boolean_t
386                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
387 static void     swap_pager_init(void);
388 static void     swap_pager_unswapped(vm_page_t);
389 static void     swap_pager_swapoff(struct swdevt *sp);
390 static void     swap_pager_update_writecount(vm_object_t object,
391     vm_offset_t start, vm_offset_t end);
392 static void     swap_pager_release_writecount(vm_object_t object,
393     vm_offset_t start, vm_offset_t end);
394
395 struct pagerops swappagerops = {
396         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
397         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
398         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
399         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
400         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
401         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
402         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
403         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
404         .pgo_update_writecount = swap_pager_update_writecount,
405         .pgo_release_writecount = swap_pager_release_writecount,
406 };
407
408 /*
409  * swap_*() routines are externally accessible.  swp_*() routines are
410  * internal.
411  */
412 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
413 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
414
415 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
416     "Maximum size of a swap block in pages");
417
418 static void     swp_sizecheck(void);
419 static void     swp_pager_async_iodone(struct buf *bp);
420 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
421 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
422 static int      swapongeom(struct vnode *);
423 static int      swaponvp(struct thread *, struct vnode *, u_long);
424 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
425
426 /*
427  * Swap bitmap functions
428  */
429 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
430 static daddr_t  swp_pager_getswapspace(int *npages);
431
432 /*
433  * Metadata functions
434  */
435 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
436 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
437 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
438     vm_pindex_t pindex, vm_pindex_t count);
439 static void swp_pager_meta_free_all(vm_object_t);
440 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
441
442 static void
443 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
444 {
445
446         *start = SWAPBLK_NONE;
447         *num = 0;
448 }
449
450 static void
451 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
452 {
453
454         if (*start + *num == addr) {
455                 (*num)++;
456         } else {
457                 swp_pager_freeswapspace(*start, *num);
458                 *start = addr;
459                 *num = 1;
460         }
461 }
462
463 static void *
464 swblk_trie_alloc(struct pctrie *ptree)
465 {
466
467         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
468             M_USE_RESERVE : 0)));
469 }
470
471 static void
472 swblk_trie_free(struct pctrie *ptree, void *node)
473 {
474
475         uma_zfree(swpctrie_zone, node);
476 }
477
478 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
479
480 /*
481  * SWP_SIZECHECK() -    update swap_pager_full indication
482  *
483  *      update the swap_pager_almost_full indication and warn when we are
484  *      about to run out of swap space, using lowat/hiwat hysteresis.
485  *
486  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
487  *
488  *      No restrictions on call
489  *      This routine may not block.
490  */
491 static void
492 swp_sizecheck(void)
493 {
494
495         if (swap_pager_avail < nswap_lowat) {
496                 if (swap_pager_almost_full == 0) {
497                         printf("swap_pager: out of swap space\n");
498                         swap_pager_almost_full = 1;
499                 }
500         } else {
501                 swap_pager_full = 0;
502                 if (swap_pager_avail > nswap_hiwat)
503                         swap_pager_almost_full = 0;
504         }
505 }
506
507 /*
508  * SWAP_PAGER_INIT() -  initialize the swap pager!
509  *
510  *      Expected to be started from system init.  NOTE:  This code is run
511  *      before much else so be careful what you depend on.  Most of the VM
512  *      system has yet to be initialized at this point.
513  */
514 static void
515 swap_pager_init(void)
516 {
517         /*
518          * Initialize object lists
519          */
520         int i;
521
522         for (i = 0; i < NOBJLISTS; ++i)
523                 TAILQ_INIT(&swap_pager_object_list[i]);
524         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
525         sx_init(&sw_alloc_sx, "swspsx");
526         sx_init(&swdev_syscall_lock, "swsysc");
527 }
528
529 static void
530 swap_pager_counters(void)
531 {
532
533         swap_free_deferred = counter_u64_alloc(M_WAITOK);
534         swap_free_completed = counter_u64_alloc(M_WAITOK);
535 }
536 SYSINIT(swap_counters, SI_SUB_CPU, SI_ORDER_ANY, swap_pager_counters, NULL);
537
538 /*
539  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
540  *
541  *      Expected to be started from pageout process once, prior to entering
542  *      its main loop.
543  */
544 void
545 swap_pager_swap_init(void)
546 {
547         unsigned long n, n2;
548
549         /*
550          * Number of in-transit swap bp operations.  Don't
551          * exhaust the pbufs completely.  Make sure we
552          * initialize workable values (0 will work for hysteresis
553          * but it isn't very efficient).
554          *
555          * The nsw_cluster_max is constrained by the bp->b_pages[]
556          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
557          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
558          * constrained by the swap device interleave stripe size.
559          *
560          * Currently we hardwire nsw_wcount_async to 4.  This limit is
561          * designed to prevent other I/O from having high latencies due to
562          * our pageout I/O.  The value 4 works well for one or two active swap
563          * devices but is probably a little low if you have more.  Even so,
564          * a higher value would probably generate only a limited improvement
565          * with three or four active swap devices since the system does not
566          * typically have to pageout at extreme bandwidths.   We will want
567          * at least 2 per swap devices, and 4 is a pretty good value if you
568          * have one NFS swap device due to the command/ack latency over NFS.
569          * So it all works out pretty well.
570          */
571         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
572
573         nsw_wcount_async = 4;
574         nsw_wcount_async_max = nsw_wcount_async;
575         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
576
577         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
578         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
579
580         /*
581          * Initialize our zone, taking the user's requested size or
582          * estimating the number we need based on the number of pages
583          * in the system.
584          */
585         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
586             vm_cnt.v_page_count / 2;
587         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
588             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
589         if (swpctrie_zone == NULL)
590                 panic("failed to create swap pctrie zone.");
591         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
592             NULL, NULL, _Alignof(struct swblk) - 1, 0);
593         if (swblk_zone == NULL)
594                 panic("failed to create swap blk zone.");
595         n2 = n;
596         do {
597                 if (uma_zone_reserve_kva(swblk_zone, n))
598                         break;
599                 /*
600                  * if the allocation failed, try a zone two thirds the
601                  * size of the previous attempt.
602                  */
603                 n -= ((n + 2) / 3);
604         } while (n > 0);
605
606         /*
607          * Often uma_zone_reserve_kva() cannot reserve exactly the
608          * requested size.  Account for the difference when
609          * calculating swap_maxpages.
610          */
611         n = uma_zone_get_max(swblk_zone);
612
613         if (n < n2)
614                 printf("Swap blk zone entries changed from %lu to %lu.\n",
615                     n2, n);
616         /* absolute maximum we can handle assuming 100% efficiency */
617         swap_maxpages = n * SWAP_META_PAGES;
618         swzone = n * sizeof(struct swblk);
619         if (!uma_zone_reserve_kva(swpctrie_zone, n))
620                 printf("Cannot reserve swap pctrie zone, "
621                     "reduce kern.maxswzone.\n");
622 }
623
624 static vm_object_t
625 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
626     vm_ooffset_t offset)
627 {
628         vm_object_t object;
629
630         if (cred != NULL) {
631                 if (!swap_reserve_by_cred(size, cred))
632                         return (NULL);
633                 crhold(cred);
634         }
635
636         /*
637          * The un_pager.swp.swp_blks trie is initialized by
638          * vm_object_allocate() to ensure the correct order of
639          * visibility to other threads.
640          */
641         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
642             PAGE_MASK + size));
643
644         object->un_pager.swp.writemappings = 0;
645         object->handle = handle;
646         if (cred != NULL) {
647                 object->cred = cred;
648                 object->charge = size;
649         }
650         return (object);
651 }
652
653 /*
654  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
655  *                      its metadata structures.
656  *
657  *      This routine is called from the mmap and fork code to create a new
658  *      OBJT_SWAP object.
659  *
660  *      This routine must ensure that no live duplicate is created for
661  *      the named object request, which is protected against by
662  *      holding the sw_alloc_sx lock in case handle != NULL.
663  */
664 static vm_object_t
665 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
666     vm_ooffset_t offset, struct ucred *cred)
667 {
668         vm_object_t object;
669
670         if (handle != NULL) {
671                 /*
672                  * Reference existing named region or allocate new one.  There
673                  * should not be a race here against swp_pager_meta_build()
674                  * as called from vm_page_remove() in regards to the lookup
675                  * of the handle.
676                  */
677                 sx_xlock(&sw_alloc_sx);
678                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
679                 if (object == NULL) {
680                         object = swap_pager_alloc_init(handle, cred, size,
681                             offset);
682                         if (object != NULL) {
683                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
684                                     object, pager_object_list);
685                         }
686                 }
687                 sx_xunlock(&sw_alloc_sx);
688         } else {
689                 object = swap_pager_alloc_init(handle, cred, size, offset);
690         }
691         return (object);
692 }
693
694 /*
695  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
696  *
697  *      The swap backing for the object is destroyed.  The code is
698  *      designed such that we can reinstantiate it later, but this
699  *      routine is typically called only when the entire object is
700  *      about to be destroyed.
701  *
702  *      The object must be locked.
703  */
704 static void
705 swap_pager_dealloc(vm_object_t object)
706 {
707
708         VM_OBJECT_ASSERT_WLOCKED(object);
709         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
710
711         /*
712          * Remove from list right away so lookups will fail if we block for
713          * pageout completion.
714          */
715         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
716                 VM_OBJECT_WUNLOCK(object);
717                 sx_xlock(&sw_alloc_sx);
718                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
719                     pager_object_list);
720                 sx_xunlock(&sw_alloc_sx);
721                 VM_OBJECT_WLOCK(object);
722         }
723
724         vm_object_pip_wait(object, "swpdea");
725
726         /*
727          * Free all remaining metadata.  We only bother to free it from
728          * the swap meta data.  We do not attempt to free swapblk's still
729          * associated with vm_page_t's for this object.  We do not care
730          * if paging is still in progress on some objects.
731          */
732         swp_pager_meta_free_all(object);
733         object->handle = NULL;
734         object->type = OBJT_DEAD;
735 }
736
737 /************************************************************************
738  *                      SWAP PAGER BITMAP ROUTINES                      *
739  ************************************************************************/
740
741 /*
742  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
743  *
744  *      Allocate swap for up to the requested number of pages.  The
745  *      starting swap block number (a page index) is returned or
746  *      SWAPBLK_NONE if the allocation failed.
747  *
748  *      Also has the side effect of advising that somebody made a mistake
749  *      when they configured swap and didn't configure enough.
750  *
751  *      This routine may not sleep.
752  *
753  *      We allocate in round-robin fashion from the configured devices.
754  */
755 static daddr_t
756 swp_pager_getswapspace(int *io_npages)
757 {
758         daddr_t blk;
759         struct swdevt *sp;
760         int mpages, npages;
761
762         KASSERT(*io_npages >= 1,
763             ("%s: npages not positive", __func__));
764         blk = SWAPBLK_NONE;
765         mpages = *io_npages;
766         npages = imin(BLIST_MAX_ALLOC, mpages);
767         mtx_lock(&sw_dev_mtx);
768         sp = swdevhd;
769         while (!TAILQ_EMPTY(&swtailq)) {
770                 if (sp == NULL)
771                         sp = TAILQ_FIRST(&swtailq);
772                 if ((sp->sw_flags & SW_CLOSING) == 0)
773                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
774                 if (blk != SWAPBLK_NONE)
775                         break;
776                 sp = TAILQ_NEXT(sp, sw_list);
777                 if (swdevhd == sp) {
778                         if (npages == 1)
779                                 break;
780                         mpages = npages - 1;
781                         npages >>= 1;
782                 }
783         }
784         if (blk != SWAPBLK_NONE) {
785                 *io_npages = npages;
786                 blk += sp->sw_first;
787                 sp->sw_used += npages;
788                 swap_pager_avail -= npages;
789                 swp_sizecheck();
790                 swdevhd = TAILQ_NEXT(sp, sw_list);
791         } else {
792                 if (swap_pager_full != 2) {
793                         printf("swp_pager_getswapspace(%d): failed\n",
794                             *io_npages);
795                         swap_pager_full = 2;
796                         swap_pager_almost_full = 1;
797                 }
798                 swdevhd = NULL;
799         }
800         mtx_unlock(&sw_dev_mtx);
801         return (blk);
802 }
803
804 static bool
805 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
806 {
807
808         return (blk >= sp->sw_first && blk < sp->sw_end);
809 }
810
811 static void
812 swp_pager_strategy(struct buf *bp)
813 {
814         struct swdevt *sp;
815
816         mtx_lock(&sw_dev_mtx);
817         TAILQ_FOREACH(sp, &swtailq, sw_list) {
818                 if (swp_pager_isondev(bp->b_blkno, sp)) {
819                         mtx_unlock(&sw_dev_mtx);
820                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
821                             unmapped_buf_allowed) {
822                                 bp->b_data = unmapped_buf;
823                                 bp->b_offset = 0;
824                         } else {
825                                 pmap_qenter((vm_offset_t)bp->b_data,
826                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
827                         }
828                         sp->sw_strategy(bp, sp);
829                         return;
830                 }
831         }
832         panic("Swapdev not found");
833 }
834
835
836 /*
837  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
838  *
839  *      This routine returns the specified swap blocks back to the bitmap.
840  *
841  *      This routine may not sleep.
842  */
843 static void
844 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
845 {
846         struct swdevt *sp;
847
848         if (npages == 0)
849                 return;
850         mtx_lock(&sw_dev_mtx);
851         TAILQ_FOREACH(sp, &swtailq, sw_list) {
852                 if (swp_pager_isondev(blk, sp)) {
853                         sp->sw_used -= npages;
854                         /*
855                          * If we are attempting to stop swapping on
856                          * this device, we don't want to mark any
857                          * blocks free lest they be reused.
858                          */
859                         if ((sp->sw_flags & SW_CLOSING) == 0) {
860                                 blist_free(sp->sw_blist, blk - sp->sw_first,
861                                     npages);
862                                 swap_pager_avail += npages;
863                                 swp_sizecheck();
864                         }
865                         mtx_unlock(&sw_dev_mtx);
866                         return;
867                 }
868         }
869         panic("Swapdev not found");
870 }
871
872 /*
873  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
874  */
875 static int
876 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
877 {
878         struct sbuf sbuf;
879         struct swdevt *sp;
880         const char *devname;
881         int error;
882
883         error = sysctl_wire_old_buffer(req, 0);
884         if (error != 0)
885                 return (error);
886         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
887         mtx_lock(&sw_dev_mtx);
888         TAILQ_FOREACH(sp, &swtailq, sw_list) {
889                 if (vn_isdisk(sp->sw_vp, NULL))
890                         devname = devtoname(sp->sw_vp->v_rdev);
891                 else
892                         devname = "[file]";
893                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
894                 blist_stats(sp->sw_blist, &sbuf);
895         }
896         mtx_unlock(&sw_dev_mtx);
897         error = sbuf_finish(&sbuf);
898         sbuf_delete(&sbuf);
899         return (error);
900 }
901
902 /*
903  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
904  *                              range within an object.
905  *
906  *      This is a globally accessible routine.
907  *
908  *      This routine removes swapblk assignments from swap metadata.
909  *
910  *      The external callers of this routine typically have already destroyed
911  *      or renamed vm_page_t's associated with this range in the object so
912  *      we should be ok.
913  *
914  *      The object must be locked.
915  */
916 void
917 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
918 {
919
920         swp_pager_meta_free(object, start, size);
921 }
922
923 /*
924  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
925  *
926  *      Assigns swap blocks to the specified range within the object.  The
927  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
928  *
929  *      Returns 0 on success, -1 on failure.
930  */
931 int
932 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
933 {
934         daddr_t addr, blk, n_free, s_free;
935         int i, j, n;
936
937         swp_pager_init_freerange(&s_free, &n_free);
938         VM_OBJECT_WLOCK(object);
939         for (i = 0; i < size; i += n) {
940                 n = size - i;
941                 blk = swp_pager_getswapspace(&n);
942                 if (blk == SWAPBLK_NONE) {
943                         swp_pager_meta_free(object, start, i);
944                         VM_OBJECT_WUNLOCK(object);
945                         return (-1);
946                 }
947                 for (j = 0; j < n; ++j) {
948                         addr = swp_pager_meta_build(object,
949                             start + i + j, blk + j);
950                         if (addr != SWAPBLK_NONE)
951                                 swp_pager_update_freerange(&s_free, &n_free,
952                                     addr);
953                 }
954         }
955         swp_pager_freeswapspace(s_free, n_free);
956         VM_OBJECT_WUNLOCK(object);
957         return (0);
958 }
959
960 static bool
961 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
962     vm_pindex_t pindex, daddr_t addr)
963 {
964         daddr_t dstaddr;
965
966         KASSERT(srcobject->type == OBJT_SWAP,
967             ("%s: Srcobject not swappable", __func__));
968         if (dstobject->type == OBJT_SWAP &&
969             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
970                 /* Caller should destroy the source block. */
971                 return (false);
972         }
973
974         /*
975          * Destination has no swapblk and is not resident, transfer source.
976          * swp_pager_meta_build() can sleep.
977          */
978         VM_OBJECT_WUNLOCK(srcobject);
979         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
980         KASSERT(dstaddr == SWAPBLK_NONE,
981             ("Unexpected destination swapblk"));
982         VM_OBJECT_WLOCK(srcobject);
983
984         return (true);
985 }
986
987 /*
988  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
989  *                      and destroy the source.
990  *
991  *      Copy any valid swapblks from the source to the destination.  In
992  *      cases where both the source and destination have a valid swapblk,
993  *      we keep the destination's.
994  *
995  *      This routine is allowed to sleep.  It may sleep allocating metadata
996  *      indirectly through swp_pager_meta_build().
997  *
998  *      The source object contains no vm_page_t's (which is just as well)
999  *
1000  *      The source object is of type OBJT_SWAP.
1001  *
1002  *      The source and destination objects must be locked.
1003  *      Both object locks may temporarily be released.
1004  */
1005 void
1006 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1007     vm_pindex_t offset, int destroysource)
1008 {
1009
1010         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1011         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1012
1013         /*
1014          * If destroysource is set, we remove the source object from the
1015          * swap_pager internal queue now.
1016          */
1017         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1018             srcobject->handle != NULL) {
1019                 VM_OBJECT_WUNLOCK(srcobject);
1020                 VM_OBJECT_WUNLOCK(dstobject);
1021                 sx_xlock(&sw_alloc_sx);
1022                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1023                     pager_object_list);
1024                 sx_xunlock(&sw_alloc_sx);
1025                 VM_OBJECT_WLOCK(dstobject);
1026                 VM_OBJECT_WLOCK(srcobject);
1027         }
1028
1029         /*
1030          * Transfer source to destination.
1031          */
1032         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1033
1034         /*
1035          * Free left over swap blocks in source.
1036          *
1037          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1038          * double-remove the object from the swap queues.
1039          */
1040         if (destroysource) {
1041                 swp_pager_meta_free_all(srcobject);
1042                 /*
1043                  * Reverting the type is not necessary, the caller is going
1044                  * to destroy srcobject directly, but I'm doing it here
1045                  * for consistency since we've removed the object from its
1046                  * queues.
1047                  */
1048                 srcobject->type = OBJT_DEFAULT;
1049         }
1050 }
1051
1052 /*
1053  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1054  *                              the requested page.
1055  *
1056  *      We determine whether good backing store exists for the requested
1057  *      page and return TRUE if it does, FALSE if it doesn't.
1058  *
1059  *      If TRUE, we also try to determine how much valid, contiguous backing
1060  *      store exists before and after the requested page.
1061  */
1062 static boolean_t
1063 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1064     int *after)
1065 {
1066         daddr_t blk, blk0;
1067         int i;
1068
1069         VM_OBJECT_ASSERT_LOCKED(object);
1070         KASSERT(object->type == OBJT_SWAP,
1071             ("%s: object not swappable", __func__));
1072
1073         /*
1074          * do we have good backing store at the requested index ?
1075          */
1076         blk0 = swp_pager_meta_lookup(object, pindex);
1077         if (blk0 == SWAPBLK_NONE) {
1078                 if (before)
1079                         *before = 0;
1080                 if (after)
1081                         *after = 0;
1082                 return (FALSE);
1083         }
1084
1085         /*
1086          * find backwards-looking contiguous good backing store
1087          */
1088         if (before != NULL) {
1089                 for (i = 1; i < SWB_NPAGES; i++) {
1090                         if (i > pindex)
1091                                 break;
1092                         blk = swp_pager_meta_lookup(object, pindex - i);
1093                         if (blk != blk0 - i)
1094                                 break;
1095                 }
1096                 *before = i - 1;
1097         }
1098
1099         /*
1100          * find forward-looking contiguous good backing store
1101          */
1102         if (after != NULL) {
1103                 for (i = 1; i < SWB_NPAGES; i++) {
1104                         blk = swp_pager_meta_lookup(object, pindex + i);
1105                         if (blk != blk0 + i)
1106                                 break;
1107                 }
1108                 *after = i - 1;
1109         }
1110         return (TRUE);
1111 }
1112
1113 /*
1114  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1115  *
1116  *      This removes any associated swap backing store, whether valid or
1117  *      not, from the page.
1118  *
1119  *      This routine is typically called when a page is made dirty, at
1120  *      which point any associated swap can be freed.  MADV_FREE also
1121  *      calls us in a special-case situation
1122  *
1123  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1124  *      should make the page dirty before calling this routine.  This routine
1125  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1126  *      depends on it.
1127  *
1128  *      This routine may not sleep.
1129  *
1130  *      The object containing the page may be locked.
1131  */
1132 static void
1133 swap_pager_unswapped(vm_page_t m)
1134 {
1135         struct swblk *sb;
1136         vm_object_t obj;
1137
1138         /*
1139          * Handle enqueing deferred frees first.  If we do not have the
1140          * object lock we wait for the page daemon to clear the space.
1141          */
1142         obj = m->object;
1143         if (!VM_OBJECT_WOWNED(obj)) {
1144                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1145                 /*
1146                  * The caller is responsible for synchronization but we
1147                  * will harmlessly handle races.  This is typically provided
1148                  * by only calling unswapped() when a page transitions from
1149                  * clean to dirty.
1150                  */
1151                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1152                     PGA_SWAP_SPACE) {
1153                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1154                         counter_u64_add(swap_free_deferred, 1);
1155                 }
1156                 return;
1157         }
1158         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1159                 counter_u64_add(swap_free_completed, 1);
1160         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1161
1162         /*
1163          * The meta data only exists if the object is OBJT_SWAP
1164          * and even then might not be allocated yet.
1165          */
1166         KASSERT(m->object->type == OBJT_SWAP,
1167             ("Free object not swappable"));
1168
1169         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1170             rounddown(m->pindex, SWAP_META_PAGES));
1171         if (sb == NULL)
1172                 return;
1173         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1174                 return;
1175         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1176         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1177         swp_pager_free_empty_swblk(m->object, sb);
1178 }
1179
1180 /*
1181  * swap_pager_getpages() - bring pages in from swap
1182  *
1183  *      Attempt to page in the pages in array "ma" of length "count".  The
1184  *      caller may optionally specify that additional pages preceding and
1185  *      succeeding the specified range be paged in.  The number of such pages
1186  *      is returned in the "rbehind" and "rahead" parameters, and they will
1187  *      be in the inactive queue upon return.
1188  *
1189  *      The pages in "ma" must be busied and will remain busied upon return.
1190  */
1191 static int
1192 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1193     int *rbehind, int *rahead)
1194 {
1195         struct buf *bp;
1196         vm_page_t bm, mpred, msucc, p;
1197         vm_pindex_t pindex;
1198         daddr_t blk;
1199         int i, maxahead, maxbehind, reqcount;
1200
1201         VM_OBJECT_ASSERT_WLOCKED(object);
1202         reqcount = count;
1203
1204         KASSERT(object->type == OBJT_SWAP,
1205             ("%s: object not swappable", __func__));
1206         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1207                 VM_OBJECT_WUNLOCK(object);
1208                 return (VM_PAGER_FAIL);
1209         }
1210
1211         KASSERT(reqcount - 1 <= maxahead,
1212             ("page count %d extends beyond swap block", reqcount));
1213
1214         /*
1215          * Do not transfer any pages other than those that are xbusied
1216          * when running during a split or collapse operation.  This
1217          * prevents clustering from re-creating pages which are being
1218          * moved into another object.
1219          */
1220         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1221                 maxahead = reqcount - 1;
1222                 maxbehind = 0;
1223         }
1224
1225         /*
1226          * Clip the readahead and readbehind ranges to exclude resident pages.
1227          */
1228         if (rahead != NULL) {
1229                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1230                 pindex = ma[reqcount - 1]->pindex;
1231                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1232                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1233                         *rahead = msucc->pindex - pindex - 1;
1234         }
1235         if (rbehind != NULL) {
1236                 *rbehind = imin(*rbehind, maxbehind);
1237                 pindex = ma[0]->pindex;
1238                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1239                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1240                         *rbehind = pindex - mpred->pindex - 1;
1241         }
1242
1243         bm = ma[0];
1244         for (i = 0; i < count; i++)
1245                 ma[i]->oflags |= VPO_SWAPINPROG;
1246
1247         /*
1248          * Allocate readahead and readbehind pages.
1249          */
1250         if (rbehind != NULL) {
1251                 for (i = 1; i <= *rbehind; i++) {
1252                         p = vm_page_alloc(object, ma[0]->pindex - i,
1253                             VM_ALLOC_NORMAL);
1254                         if (p == NULL)
1255                                 break;
1256                         p->oflags |= VPO_SWAPINPROG;
1257                         bm = p;
1258                 }
1259                 *rbehind = i - 1;
1260         }
1261         if (rahead != NULL) {
1262                 for (i = 0; i < *rahead; i++) {
1263                         p = vm_page_alloc(object,
1264                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1265                         if (p == NULL)
1266                                 break;
1267                         p->oflags |= VPO_SWAPINPROG;
1268                 }
1269                 *rahead = i;
1270         }
1271         if (rbehind != NULL)
1272                 count += *rbehind;
1273         if (rahead != NULL)
1274                 count += *rahead;
1275
1276         vm_object_pip_add(object, count);
1277
1278         pindex = bm->pindex;
1279         blk = swp_pager_meta_lookup(object, pindex);
1280         KASSERT(blk != SWAPBLK_NONE,
1281             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1282
1283         VM_OBJECT_WUNLOCK(object);
1284         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1285         /* Pages cannot leave the object while busy. */
1286         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1287                 MPASS(p->pindex == bm->pindex + i);
1288                 bp->b_pages[i] = p;
1289         }
1290
1291         bp->b_flags |= B_PAGING;
1292         bp->b_iocmd = BIO_READ;
1293         bp->b_iodone = swp_pager_async_iodone;
1294         bp->b_rcred = crhold(thread0.td_ucred);
1295         bp->b_wcred = crhold(thread0.td_ucred);
1296         bp->b_blkno = blk;
1297         bp->b_bcount = PAGE_SIZE * count;
1298         bp->b_bufsize = PAGE_SIZE * count;
1299         bp->b_npages = count;
1300         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1301         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1302
1303         VM_CNT_INC(v_swapin);
1304         VM_CNT_ADD(v_swappgsin, count);
1305
1306         /*
1307          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1308          * this point because we automatically release it on completion.
1309          * Instead, we look at the one page we are interested in which we
1310          * still hold a lock on even through the I/O completion.
1311          *
1312          * The other pages in our ma[] array are also released on completion,
1313          * so we cannot assume they are valid anymore either.
1314          *
1315          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1316          */
1317         BUF_KERNPROC(bp);
1318         swp_pager_strategy(bp);
1319
1320         /*
1321          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1322          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1323          * is set in the metadata for each page in the request.
1324          */
1325         VM_OBJECT_WLOCK(object);
1326         /* This could be implemented more efficiently with aflags */
1327         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1328                 ma[0]->oflags |= VPO_SWAPSLEEP;
1329                 VM_CNT_INC(v_intrans);
1330                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1331                     "swread", hz * 20)) {
1332                         printf(
1333 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1334                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1335                 }
1336         }
1337         VM_OBJECT_WUNLOCK(object);
1338
1339         /*
1340          * If we had an unrecoverable read error pages will not be valid.
1341          */
1342         for (i = 0; i < reqcount; i++)
1343                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1344                         return (VM_PAGER_ERROR);
1345
1346         return (VM_PAGER_OK);
1347
1348         /*
1349          * A final note: in a low swap situation, we cannot deallocate swap
1350          * and mark a page dirty here because the caller is likely to mark
1351          * the page clean when we return, causing the page to possibly revert
1352          * to all-zero's later.
1353          */
1354 }
1355
1356 static int
1357 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1358     int *rbehind, int *rahead)
1359 {
1360
1361         VM_OBJECT_WLOCK(object);
1362         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1363 }
1364
1365 /*
1366  *      swap_pager_getpages_async():
1367  *
1368  *      Right now this is emulation of asynchronous operation on top of
1369  *      swap_pager_getpages().
1370  */
1371 static int
1372 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1373     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1374 {
1375         int r, error;
1376
1377         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1378         switch (r) {
1379         case VM_PAGER_OK:
1380                 error = 0;
1381                 break;
1382         case VM_PAGER_ERROR:
1383                 error = EIO;
1384                 break;
1385         case VM_PAGER_FAIL:
1386                 error = EINVAL;
1387                 break;
1388         default:
1389                 panic("unhandled swap_pager_getpages() error %d", r);
1390         }
1391         (iodone)(arg, ma, count, error);
1392
1393         return (r);
1394 }
1395
1396 /*
1397  *      swap_pager_putpages:
1398  *
1399  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1400  *
1401  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1402  *      are automatically converted to SWAP objects.
1403  *
1404  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1405  *      vm_page reservation system coupled with properly written VFS devices
1406  *      should ensure that no low-memory deadlock occurs.  This is an area
1407  *      which needs work.
1408  *
1409  *      The parent has N vm_object_pip_add() references prior to
1410  *      calling us and will remove references for rtvals[] that are
1411  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1412  *      completion.
1413  *
1414  *      The parent has soft-busy'd the pages it passes us and will unbusy
1415  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1416  *      We need to unbusy the rest on I/O completion.
1417  */
1418 static void
1419 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1420     int flags, int *rtvals)
1421 {
1422         struct buf *bp;
1423         daddr_t addr, blk, n_free, s_free;
1424         vm_page_t mreq;
1425         int i, j, n;
1426         bool async;
1427
1428         KASSERT(count == 0 || ma[0]->object == object,
1429             ("%s: object mismatch %p/%p",
1430             __func__, object, ma[0]->object));
1431
1432         /*
1433          * Step 1
1434          *
1435          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1436          */
1437         if (object->type != OBJT_SWAP) {
1438                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1439                 KASSERT(addr == SWAPBLK_NONE,
1440                     ("unexpected object swap block"));
1441         }
1442         VM_OBJECT_WUNLOCK(object);
1443         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1444         swp_pager_init_freerange(&s_free, &n_free);
1445
1446         /*
1447          * Step 2
1448          *
1449          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1450          * The page is left dirty until the pageout operation completes
1451          * successfully.
1452          */
1453         for (i = 0; i < count; i += n) {
1454                 /* Maximum I/O size is limited by maximum swap block size. */
1455                 n = min(count - i, nsw_cluster_max);
1456
1457                 if (async) {
1458                         mtx_lock(&swbuf_mtx);
1459                         while (nsw_wcount_async == 0)
1460                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1461                                     "swbufa", 0);
1462                         nsw_wcount_async--;
1463                         mtx_unlock(&swbuf_mtx);
1464                 }
1465
1466                 /* Get a block of swap of size up to size n. */
1467                 VM_OBJECT_WLOCK(object);
1468                 blk = swp_pager_getswapspace(&n);
1469                 if (blk == SWAPBLK_NONE) {
1470                         VM_OBJECT_WUNLOCK(object);
1471                         mtx_lock(&swbuf_mtx);
1472                         if (++nsw_wcount_async == 1)
1473                                 wakeup(&nsw_wcount_async);
1474                         mtx_unlock(&swbuf_mtx);
1475                         for (j = 0; j < n; ++j)
1476                                 rtvals[i + j] = VM_PAGER_FAIL;
1477                         continue;
1478                 }
1479                 for (j = 0; j < n; ++j) {
1480                         mreq = ma[i + j];
1481                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1482                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1483                             blk + j);
1484                         if (addr != SWAPBLK_NONE)
1485                                 swp_pager_update_freerange(&s_free, &n_free,
1486                                     addr);
1487                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1488                         mreq->oflags |= VPO_SWAPINPROG;
1489                 }
1490                 VM_OBJECT_WUNLOCK(object);
1491
1492                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1493                 if (async)
1494                         bp->b_flags = B_ASYNC;
1495                 bp->b_flags |= B_PAGING;
1496                 bp->b_iocmd = BIO_WRITE;
1497
1498                 bp->b_rcred = crhold(thread0.td_ucred);
1499                 bp->b_wcred = crhold(thread0.td_ucred);
1500                 bp->b_bcount = PAGE_SIZE * n;
1501                 bp->b_bufsize = PAGE_SIZE * n;
1502                 bp->b_blkno = blk;
1503                 for (j = 0; j < n; j++)
1504                         bp->b_pages[j] = ma[i + j];
1505                 bp->b_npages = n;
1506
1507                 /*
1508                  * Must set dirty range for NFS to work.
1509                  */
1510                 bp->b_dirtyoff = 0;
1511                 bp->b_dirtyend = bp->b_bcount;
1512
1513                 VM_CNT_INC(v_swapout);
1514                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1515
1516                 /*
1517                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1518                  * can call the async completion routine at the end of a
1519                  * synchronous I/O operation.  Otherwise, our caller would
1520                  * perform duplicate unbusy and wakeup operations on the page
1521                  * and object, respectively.
1522                  */
1523                 for (j = 0; j < n; j++)
1524                         rtvals[i + j] = VM_PAGER_PEND;
1525
1526                 /*
1527                  * asynchronous
1528                  *
1529                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1530                  */
1531                 if (async) {
1532                         bp->b_iodone = swp_pager_async_iodone;
1533                         BUF_KERNPROC(bp);
1534                         swp_pager_strategy(bp);
1535                         continue;
1536                 }
1537
1538                 /*
1539                  * synchronous
1540                  *
1541                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1542                  */
1543                 bp->b_iodone = bdone;
1544                 swp_pager_strategy(bp);
1545
1546                 /*
1547                  * Wait for the sync I/O to complete.
1548                  */
1549                 bwait(bp, PVM, "swwrt");
1550
1551                 /*
1552                  * Now that we are through with the bp, we can call the
1553                  * normal async completion, which frees everything up.
1554                  */
1555                 swp_pager_async_iodone(bp);
1556         }
1557         swp_pager_freeswapspace(s_free, n_free);
1558         VM_OBJECT_WLOCK(object);
1559 }
1560
1561 /*
1562  *      swp_pager_async_iodone:
1563  *
1564  *      Completion routine for asynchronous reads and writes from/to swap.
1565  *      Also called manually by synchronous code to finish up a bp.
1566  *
1567  *      This routine may not sleep.
1568  */
1569 static void
1570 swp_pager_async_iodone(struct buf *bp)
1571 {
1572         int i;
1573         vm_object_t object = NULL;
1574
1575         /*
1576          * Report error - unless we ran out of memory, in which case
1577          * we've already logged it in swapgeom_strategy().
1578          */
1579         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1580                 printf(
1581                     "swap_pager: I/O error - %s failed; blkno %ld,"
1582                         "size %ld, error %d\n",
1583                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1584                     (long)bp->b_blkno,
1585                     (long)bp->b_bcount,
1586                     bp->b_error
1587                 );
1588         }
1589
1590         /*
1591          * remove the mapping for kernel virtual
1592          */
1593         if (buf_mapped(bp))
1594                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1595         else
1596                 bp->b_data = bp->b_kvabase;
1597
1598         if (bp->b_npages) {
1599                 object = bp->b_pages[0]->object;
1600                 VM_OBJECT_WLOCK(object);
1601         }
1602
1603         /*
1604          * cleanup pages.  If an error occurs writing to swap, we are in
1605          * very serious trouble.  If it happens to be a disk error, though,
1606          * we may be able to recover by reassigning the swap later on.  So
1607          * in this case we remove the m->swapblk assignment for the page
1608          * but do not free it in the rlist.  The errornous block(s) are thus
1609          * never reallocated as swap.  Redirty the page and continue.
1610          */
1611         for (i = 0; i < bp->b_npages; ++i) {
1612                 vm_page_t m = bp->b_pages[i];
1613
1614                 m->oflags &= ~VPO_SWAPINPROG;
1615                 if (m->oflags & VPO_SWAPSLEEP) {
1616                         m->oflags &= ~VPO_SWAPSLEEP;
1617                         wakeup(&object->handle);
1618                 }
1619
1620                 /* We always have space after I/O, successful or not. */
1621                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1622
1623                 if (bp->b_ioflags & BIO_ERROR) {
1624                         /*
1625                          * If an error occurs I'd love to throw the swapblk
1626                          * away without freeing it back to swapspace, so it
1627                          * can never be used again.  But I can't from an
1628                          * interrupt.
1629                          */
1630                         if (bp->b_iocmd == BIO_READ) {
1631                                 /*
1632                                  * NOTE: for reads, m->dirty will probably
1633                                  * be overridden by the original caller of
1634                                  * getpages so don't play cute tricks here.
1635                                  */
1636                                 vm_page_invalid(m);
1637                         } else {
1638                                 /*
1639                                  * If a write error occurs, reactivate page
1640                                  * so it doesn't clog the inactive list,
1641                                  * then finish the I/O.
1642                                  */
1643                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1644
1645                                 /* PQ_UNSWAPPABLE? */
1646                                 vm_page_activate(m);
1647                                 vm_page_sunbusy(m);
1648                         }
1649                 } else if (bp->b_iocmd == BIO_READ) {
1650                         /*
1651                          * NOTE: for reads, m->dirty will probably be
1652                          * overridden by the original caller of getpages so
1653                          * we cannot set them in order to free the underlying
1654                          * swap in a low-swap situation.  I don't think we'd
1655                          * want to do that anyway, but it was an optimization
1656                          * that existed in the old swapper for a time before
1657                          * it got ripped out due to precisely this problem.
1658                          */
1659                         KASSERT(!pmap_page_is_mapped(m),
1660                             ("swp_pager_async_iodone: page %p is mapped", m));
1661                         KASSERT(m->dirty == 0,
1662                             ("swp_pager_async_iodone: page %p is dirty", m));
1663
1664                         vm_page_valid(m);
1665                         if (i < bp->b_pgbefore ||
1666                             i >= bp->b_npages - bp->b_pgafter)
1667                                 vm_page_readahead_finish(m);
1668                 } else {
1669                         /*
1670                          * For write success, clear the dirty
1671                          * status, then finish the I/O ( which decrements the
1672                          * busy count and possibly wakes waiter's up ).
1673                          * A page is only written to swap after a period of
1674                          * inactivity.  Therefore, we do not expect it to be
1675                          * reused.
1676                          */
1677                         KASSERT(!pmap_page_is_write_mapped(m),
1678                             ("swp_pager_async_iodone: page %p is not write"
1679                             " protected", m));
1680                         vm_page_undirty(m);
1681                         vm_page_deactivate_noreuse(m);
1682                         vm_page_sunbusy(m);
1683                 }
1684         }
1685
1686         /*
1687          * adjust pip.  NOTE: the original parent may still have its own
1688          * pip refs on the object.
1689          */
1690         if (object != NULL) {
1691                 vm_object_pip_wakeupn(object, bp->b_npages);
1692                 VM_OBJECT_WUNLOCK(object);
1693         }
1694
1695         /*
1696          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1697          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1698          * trigger a KASSERT in relpbuf().
1699          */
1700         if (bp->b_vp) {
1701                     bp->b_vp = NULL;
1702                     bp->b_bufobj = NULL;
1703         }
1704         /*
1705          * release the physical I/O buffer
1706          */
1707         if (bp->b_flags & B_ASYNC) {
1708                 mtx_lock(&swbuf_mtx);
1709                 if (++nsw_wcount_async == 1)
1710                         wakeup(&nsw_wcount_async);
1711                 mtx_unlock(&swbuf_mtx);
1712         }
1713         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1714 }
1715
1716 int
1717 swap_pager_nswapdev(void)
1718 {
1719
1720         return (nswapdev);
1721 }
1722
1723 static void
1724 swp_pager_force_dirty(vm_page_t m)
1725 {
1726
1727         vm_page_dirty(m);
1728         swap_pager_unswapped(m);
1729         vm_page_launder(m);
1730 }
1731
1732 /*
1733  *      swap_pager_swapoff_object:
1734  *
1735  *      Page in all of the pages that have been paged out for an object
1736  *      to a swap device.
1737  */
1738 static void
1739 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1740 {
1741         struct swblk *sb;
1742         vm_page_t m;
1743         vm_pindex_t pi;
1744         daddr_t blk;
1745         int i, nv, rahead, rv;
1746
1747         KASSERT(object->type == OBJT_SWAP,
1748             ("%s: Object not swappable", __func__));
1749
1750         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1751             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1752                 if ((object->flags & OBJ_DEAD) != 0) {
1753                         /*
1754                          * Make sure that pending writes finish before
1755                          * returning.
1756                          */
1757                         vm_object_pip_wait(object, "swpoff");
1758                         swp_pager_meta_free_all(object);
1759                         break;
1760                 }
1761                 for (i = 0; i < SWAP_META_PAGES; i++) {
1762                         /*
1763                          * Count the number of contiguous valid blocks.
1764                          */
1765                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1766                                 blk = sb->d[i + nv];
1767                                 if (!swp_pager_isondev(blk, sp) ||
1768                                     blk == SWAPBLK_NONE)
1769                                         break;
1770                         }
1771                         if (nv == 0)
1772                                 continue;
1773
1774                         /*
1775                          * Look for a page corresponding to the first
1776                          * valid block and ensure that any pending paging
1777                          * operations on it are complete.  If the page is valid,
1778                          * mark it dirty and free the swap block.  Try to batch
1779                          * this operation since it may cause sp to be freed,
1780                          * meaning that we must restart the scan.  Avoid busying
1781                          * valid pages since we may block forever on kernel
1782                          * stack pages.
1783                          */
1784                         m = vm_page_lookup(object, sb->p + i);
1785                         if (m == NULL) {
1786                                 m = vm_page_alloc(object, sb->p + i,
1787                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1788                                 if (m == NULL)
1789                                         break;
1790                         } else {
1791                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1792                                         m->oflags |= VPO_SWAPSLEEP;
1793                                         VM_OBJECT_SLEEP(object, &object->handle,
1794                                             PSWP, "swpoff", 0);
1795                                         break;
1796                                 }
1797                                 if (vm_page_all_valid(m)) {
1798                                         do {
1799                                                 swp_pager_force_dirty(m);
1800                                         } while (--nv > 0 &&
1801                                             (m = vm_page_next(m)) != NULL &&
1802                                             vm_page_all_valid(m) &&
1803                                             (m->oflags & VPO_SWAPINPROG) == 0);
1804                                         break;
1805                                 }
1806                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1807                                         break;
1808                         }
1809
1810                         vm_object_pip_add(object, 1);
1811                         rahead = SWAP_META_PAGES;
1812                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1813                             &rahead);
1814                         if (rv != VM_PAGER_OK)
1815                                 panic("%s: read from swap failed: %d",
1816                                     __func__, rv);
1817                         vm_object_pip_wakeupn(object, 1);
1818                         VM_OBJECT_WLOCK(object);
1819                         vm_page_xunbusy(m);
1820
1821                         /*
1822                          * The object lock was dropped so we must restart the
1823                          * scan of this swap block.  Pages paged in during this
1824                          * iteration will be marked dirty in a future iteration.
1825                          */
1826                         break;
1827                 }
1828                 if (i == SWAP_META_PAGES)
1829                         pi = sb->p + SWAP_META_PAGES;
1830         }
1831 }
1832
1833 /*
1834  *      swap_pager_swapoff:
1835  *
1836  *      Page in all of the pages that have been paged out to the
1837  *      given device.  The corresponding blocks in the bitmap must be
1838  *      marked as allocated and the device must be flagged SW_CLOSING.
1839  *      There may be no processes swapped out to the device.
1840  *
1841  *      This routine may block.
1842  */
1843 static void
1844 swap_pager_swapoff(struct swdevt *sp)
1845 {
1846         vm_object_t object;
1847         int retries;
1848
1849         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1850
1851         retries = 0;
1852 full_rescan:
1853         mtx_lock(&vm_object_list_mtx);
1854         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1855                 if (object->type != OBJT_SWAP)
1856                         continue;
1857                 mtx_unlock(&vm_object_list_mtx);
1858                 /* Depends on type-stability. */
1859                 VM_OBJECT_WLOCK(object);
1860
1861                 /*
1862                  * Dead objects are eventually terminated on their own.
1863                  */
1864                 if ((object->flags & OBJ_DEAD) != 0)
1865                         goto next_obj;
1866
1867                 /*
1868                  * Sync with fences placed after pctrie
1869                  * initialization.  We must not access pctrie below
1870                  * unless we checked that our object is swap and not
1871                  * dead.
1872                  */
1873                 atomic_thread_fence_acq();
1874                 if (object->type != OBJT_SWAP)
1875                         goto next_obj;
1876
1877                 swap_pager_swapoff_object(sp, object);
1878 next_obj:
1879                 VM_OBJECT_WUNLOCK(object);
1880                 mtx_lock(&vm_object_list_mtx);
1881         }
1882         mtx_unlock(&vm_object_list_mtx);
1883
1884         if (sp->sw_used) {
1885                 /*
1886                  * Objects may be locked or paging to the device being
1887                  * removed, so we will miss their pages and need to
1888                  * make another pass.  We have marked this device as
1889                  * SW_CLOSING, so the activity should finish soon.
1890                  */
1891                 retries++;
1892                 if (retries > 100) {
1893                         panic("swapoff: failed to locate %d swap blocks",
1894                             sp->sw_used);
1895                 }
1896                 pause("swpoff", hz / 20);
1897                 goto full_rescan;
1898         }
1899         EVENTHANDLER_INVOKE(swapoff, sp);
1900 }
1901
1902 /************************************************************************
1903  *                              SWAP META DATA                          *
1904  ************************************************************************
1905  *
1906  *      These routines manipulate the swap metadata stored in the
1907  *      OBJT_SWAP object.
1908  *
1909  *      Swap metadata is implemented with a global hash and not directly
1910  *      linked into the object.  Instead the object simply contains
1911  *      appropriate tracking counters.
1912  */
1913
1914 /*
1915  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1916  */
1917 static bool
1918 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1919 {
1920         int i;
1921
1922         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1923         for (i = start; i < limit; i++) {
1924                 if (sb->d[i] != SWAPBLK_NONE)
1925                         return (false);
1926         }
1927         return (true);
1928 }
1929
1930 /*
1931  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1932  *
1933  *  Nothing is done if the block is still in use.
1934  */
1935 static void
1936 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1937 {
1938
1939         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1940                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1941                 uma_zfree(swblk_zone, sb);
1942         }
1943 }
1944    
1945 /*
1946  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1947  *
1948  *      We first convert the object to a swap object if it is a default
1949  *      object.
1950  *
1951  *      The specified swapblk is added to the object's swap metadata.  If
1952  *      the swapblk is not valid, it is freed instead.  Any previously
1953  *      assigned swapblk is returned.
1954  */
1955 static daddr_t
1956 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1957 {
1958         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1959         struct swblk *sb, *sb1;
1960         vm_pindex_t modpi, rdpi;
1961         daddr_t prev_swapblk;
1962         int error, i;
1963
1964         VM_OBJECT_ASSERT_WLOCKED(object);
1965
1966         /*
1967          * Convert default object to swap object if necessary
1968          */
1969         if (object->type != OBJT_SWAP) {
1970                 pctrie_init(&object->un_pager.swp.swp_blks);
1971
1972                 /*
1973                  * Ensure that swap_pager_swapoff()'s iteration over
1974                  * object_list does not see a garbage pctrie.
1975                  */
1976                 atomic_thread_fence_rel();
1977
1978                 object->type = OBJT_SWAP;
1979                 object->un_pager.swp.writemappings = 0;
1980                 KASSERT((object->flags & OBJ_ANON) != 0 ||
1981                     object->handle == NULL,
1982                     ("default pager %p with handle %p",
1983                     object, object->handle));
1984         }
1985
1986         rdpi = rounddown(pindex, SWAP_META_PAGES);
1987         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1988         if (sb == NULL) {
1989                 if (swapblk == SWAPBLK_NONE)
1990                         return (SWAPBLK_NONE);
1991                 for (;;) {
1992                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1993                             pageproc ? M_USE_RESERVE : 0));
1994                         if (sb != NULL) {
1995                                 sb->p = rdpi;
1996                                 for (i = 0; i < SWAP_META_PAGES; i++)
1997                                         sb->d[i] = SWAPBLK_NONE;
1998                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1999                                     1, 0))
2000                                         printf("swblk zone ok\n");
2001                                 break;
2002                         }
2003                         VM_OBJECT_WUNLOCK(object);
2004                         if (uma_zone_exhausted(swblk_zone)) {
2005                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
2006                                     0, 1))
2007                                         printf("swap blk zone exhausted, "
2008                                             "increase kern.maxswzone\n");
2009                                 vm_pageout_oom(VM_OOM_SWAPZ);
2010                                 pause("swzonxb", 10);
2011                         } else
2012                                 uma_zwait(swblk_zone);
2013                         VM_OBJECT_WLOCK(object);
2014                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2015                             rdpi);
2016                         if (sb != NULL)
2017                                 /*
2018                                  * Somebody swapped out a nearby page,
2019                                  * allocating swblk at the rdpi index,
2020                                  * while we dropped the object lock.
2021                                  */
2022                                 goto allocated;
2023                 }
2024                 for (;;) {
2025                         error = SWAP_PCTRIE_INSERT(
2026                             &object->un_pager.swp.swp_blks, sb);
2027                         if (error == 0) {
2028                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2029                                     1, 0))
2030                                         printf("swpctrie zone ok\n");
2031                                 break;
2032                         }
2033                         VM_OBJECT_WUNLOCK(object);
2034                         if (uma_zone_exhausted(swpctrie_zone)) {
2035                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2036                                     0, 1))
2037                                         printf("swap pctrie zone exhausted, "
2038                                             "increase kern.maxswzone\n");
2039                                 vm_pageout_oom(VM_OOM_SWAPZ);
2040                                 pause("swzonxp", 10);
2041                         } else
2042                                 uma_zwait(swpctrie_zone);
2043                         VM_OBJECT_WLOCK(object);
2044                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2045                             rdpi);
2046                         if (sb1 != NULL) {
2047                                 uma_zfree(swblk_zone, sb);
2048                                 sb = sb1;
2049                                 goto allocated;
2050                         }
2051                 }
2052         }
2053 allocated:
2054         MPASS(sb->p == rdpi);
2055
2056         modpi = pindex % SWAP_META_PAGES;
2057         /* Return prior contents of metadata. */
2058         prev_swapblk = sb->d[modpi];
2059         /* Enter block into metadata. */
2060         sb->d[modpi] = swapblk;
2061
2062         /*
2063          * Free the swblk if we end up with the empty page run.
2064          */
2065         if (swapblk == SWAPBLK_NONE)
2066                 swp_pager_free_empty_swblk(object, sb);
2067         return (prev_swapblk);
2068 }
2069
2070 /*
2071  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2072  * metadata, or transfer it into dstobject.
2073  *
2074  *      This routine will free swap metadata structures as they are cleaned
2075  *      out.
2076  */
2077 static void
2078 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2079     vm_pindex_t pindex, vm_pindex_t count)
2080 {
2081         struct swblk *sb;
2082         daddr_t n_free, s_free;
2083         vm_pindex_t offset, last;
2084         int i, limit, start;
2085
2086         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2087         if (srcobject->type != OBJT_SWAP || count == 0)
2088                 return;
2089
2090         swp_pager_init_freerange(&s_free, &n_free);
2091         offset = pindex;
2092         last = pindex + count;
2093         for (;;) {
2094                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2095                     rounddown(pindex, SWAP_META_PAGES));
2096                 if (sb == NULL || sb->p >= last)
2097                         break;
2098                 start = pindex > sb->p ? pindex - sb->p : 0;
2099                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2100                     SWAP_META_PAGES;
2101                 for (i = start; i < limit; i++) {
2102                         if (sb->d[i] == SWAPBLK_NONE)
2103                                 continue;
2104                         if (dstobject == NULL ||
2105                             !swp_pager_xfer_source(srcobject, dstobject, 
2106                             sb->p + i - offset, sb->d[i])) {
2107                                 swp_pager_update_freerange(&s_free, &n_free,
2108                                     sb->d[i]);
2109                         }
2110                         sb->d[i] = SWAPBLK_NONE;
2111                 }
2112                 pindex = sb->p + SWAP_META_PAGES;
2113                 if (swp_pager_swblk_empty(sb, 0, start) &&
2114                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2115                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2116                             sb->p);
2117                         uma_zfree(swblk_zone, sb);
2118                 }
2119         }
2120         swp_pager_freeswapspace(s_free, n_free);
2121 }
2122
2123 /*
2124  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2125  *
2126  *      The requested range of blocks is freed, with any associated swap
2127  *      returned to the swap bitmap.
2128  *
2129  *      This routine will free swap metadata structures as they are cleaned
2130  *      out.  This routine does *NOT* operate on swap metadata associated
2131  *      with resident pages.
2132  */
2133 static void
2134 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2135 {
2136         swp_pager_meta_transfer(object, NULL, pindex, count);
2137 }
2138
2139 /*
2140  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2141  *
2142  *      This routine locates and destroys all swap metadata associated with
2143  *      an object.
2144  */
2145 static void
2146 swp_pager_meta_free_all(vm_object_t object)
2147 {
2148         struct swblk *sb;
2149         daddr_t n_free, s_free;
2150         vm_pindex_t pindex;
2151         int i;
2152
2153         VM_OBJECT_ASSERT_WLOCKED(object);
2154         if (object->type != OBJT_SWAP)
2155                 return;
2156
2157         swp_pager_init_freerange(&s_free, &n_free);
2158         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2159             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2160                 pindex = sb->p + SWAP_META_PAGES;
2161                 for (i = 0; i < SWAP_META_PAGES; i++) {
2162                         if (sb->d[i] == SWAPBLK_NONE)
2163                                 continue;
2164                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2165                 }
2166                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2167                 uma_zfree(swblk_zone, sb);
2168         }
2169         swp_pager_freeswapspace(s_free, n_free);
2170 }
2171
2172 /*
2173  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2174  *
2175  *      This routine is capable of looking up, or removing swapblk
2176  *      assignments in the swap meta data.  It returns the swapblk being
2177  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2178  *
2179  *      When acting on a busy resident page and paging is in progress, we
2180  *      have to wait until paging is complete but otherwise can act on the
2181  *      busy page.
2182  */
2183 static daddr_t
2184 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2185 {
2186         struct swblk *sb;
2187
2188         VM_OBJECT_ASSERT_LOCKED(object);
2189
2190         /*
2191          * The meta data only exists if the object is OBJT_SWAP
2192          * and even then might not be allocated yet.
2193          */
2194         KASSERT(object->type == OBJT_SWAP,
2195             ("Lookup object not swappable"));
2196
2197         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2198             rounddown(pindex, SWAP_META_PAGES));
2199         if (sb == NULL)
2200                 return (SWAPBLK_NONE);
2201         return (sb->d[pindex % SWAP_META_PAGES]);
2202 }
2203
2204 /*
2205  * Returns the least page index which is greater than or equal to the
2206  * parameter pindex and for which there is a swap block allocated.
2207  * Returns object's size if the object's type is not swap or if there
2208  * are no allocated swap blocks for the object after the requested
2209  * pindex.
2210  */
2211 vm_pindex_t
2212 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2213 {
2214         struct swblk *sb;
2215         int i;
2216
2217         VM_OBJECT_ASSERT_LOCKED(object);
2218         if (object->type != OBJT_SWAP)
2219                 return (object->size);
2220
2221         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2222             rounddown(pindex, SWAP_META_PAGES));
2223         if (sb == NULL)
2224                 return (object->size);
2225         if (sb->p < pindex) {
2226                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2227                         if (sb->d[i] != SWAPBLK_NONE)
2228                                 return (sb->p + i);
2229                 }
2230                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2231                     roundup(pindex, SWAP_META_PAGES));
2232                 if (sb == NULL)
2233                         return (object->size);
2234         }
2235         for (i = 0; i < SWAP_META_PAGES; i++) {
2236                 if (sb->d[i] != SWAPBLK_NONE)
2237                         return (sb->p + i);
2238         }
2239
2240         /*
2241          * We get here if a swblk is present in the trie but it
2242          * doesn't map any blocks.
2243          */
2244         MPASS(0);
2245         return (object->size);
2246 }
2247
2248 /*
2249  * System call swapon(name) enables swapping on device name,
2250  * which must be in the swdevsw.  Return EBUSY
2251  * if already swapping on this device.
2252  */
2253 #ifndef _SYS_SYSPROTO_H_
2254 struct swapon_args {
2255         char *name;
2256 };
2257 #endif
2258
2259 /*
2260  * MPSAFE
2261  */
2262 /* ARGSUSED */
2263 int
2264 sys_swapon(struct thread *td, struct swapon_args *uap)
2265 {
2266         struct vattr attr;
2267         struct vnode *vp;
2268         struct nameidata nd;
2269         int error;
2270
2271         error = priv_check(td, PRIV_SWAPON);
2272         if (error)
2273                 return (error);
2274
2275         sx_xlock(&swdev_syscall_lock);
2276
2277         /*
2278          * Swap metadata may not fit in the KVM if we have physical
2279          * memory of >1GB.
2280          */
2281         if (swblk_zone == NULL) {
2282                 error = ENOMEM;
2283                 goto done;
2284         }
2285
2286         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2287             uap->name, td);
2288         error = namei(&nd);
2289         if (error)
2290                 goto done;
2291
2292         NDFREE(&nd, NDF_ONLY_PNBUF);
2293         vp = nd.ni_vp;
2294
2295         if (vn_isdisk(vp, &error)) {
2296                 error = swapongeom(vp);
2297         } else if (vp->v_type == VREG &&
2298             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2299             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2300                 /*
2301                  * Allow direct swapping to NFS regular files in the same
2302                  * way that nfs_mountroot() sets up diskless swapping.
2303                  */
2304                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2305         }
2306
2307         if (error)
2308                 vrele(vp);
2309 done:
2310         sx_xunlock(&swdev_syscall_lock);
2311         return (error);
2312 }
2313
2314 /*
2315  * Check that the total amount of swap currently configured does not
2316  * exceed half the theoretical maximum.  If it does, print a warning
2317  * message.
2318  */
2319 static void
2320 swapon_check_swzone(void)
2321 {
2322
2323         /* recommend using no more than half that amount */
2324         if (swap_total > swap_maxpages / 2) {
2325                 printf("warning: total configured swap (%lu pages) "
2326                     "exceeds maximum recommended amount (%lu pages).\n",
2327                     swap_total, swap_maxpages / 2);
2328                 printf("warning: increase kern.maxswzone "
2329                     "or reduce amount of swap.\n");
2330         }
2331 }
2332
2333 static void
2334 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2335     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2336 {
2337         struct swdevt *sp, *tsp;
2338         daddr_t dvbase;
2339         u_long mblocks;
2340
2341         /*
2342          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2343          * First chop nblks off to page-align it, then convert.
2344          *
2345          * sw->sw_nblks is in page-sized chunks now too.
2346          */
2347         nblks &= ~(ctodb(1) - 1);
2348         nblks = dbtoc(nblks);
2349
2350         /*
2351          * If we go beyond this, we get overflows in the radix
2352          * tree bitmap code.
2353          */
2354         mblocks = 0x40000000 / BLIST_META_RADIX;
2355         if (nblks > mblocks) {
2356                 printf(
2357     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2358                     mblocks / 1024 / 1024 * PAGE_SIZE);
2359                 nblks = mblocks;
2360         }
2361
2362         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2363         sp->sw_vp = vp;
2364         sp->sw_id = id;
2365         sp->sw_dev = dev;
2366         sp->sw_nblks = nblks;
2367         sp->sw_used = 0;
2368         sp->sw_strategy = strategy;
2369         sp->sw_close = close;
2370         sp->sw_flags = flags;
2371
2372         sp->sw_blist = blist_create(nblks, M_WAITOK);
2373         /*
2374          * Do not free the first blocks in order to avoid overwriting
2375          * any bsd label at the front of the partition
2376          */
2377         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2378             nblks - howmany(BBSIZE, PAGE_SIZE));
2379
2380         dvbase = 0;
2381         mtx_lock(&sw_dev_mtx);
2382         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2383                 if (tsp->sw_end >= dvbase) {
2384                         /*
2385                          * We put one uncovered page between the devices
2386                          * in order to definitively prevent any cross-device
2387                          * I/O requests
2388                          */
2389                         dvbase = tsp->sw_end + 1;
2390                 }
2391         }
2392         sp->sw_first = dvbase;
2393         sp->sw_end = dvbase + nblks;
2394         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2395         nswapdev++;
2396         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2397         swap_total += nblks;
2398         swapon_check_swzone();
2399         swp_sizecheck();
2400         mtx_unlock(&sw_dev_mtx);
2401         EVENTHANDLER_INVOKE(swapon, sp);
2402 }
2403
2404 /*
2405  * SYSCALL: swapoff(devname)
2406  *
2407  * Disable swapping on the given device.
2408  *
2409  * XXX: Badly designed system call: it should use a device index
2410  * rather than filename as specification.  We keep sw_vp around
2411  * only to make this work.
2412  */
2413 #ifndef _SYS_SYSPROTO_H_
2414 struct swapoff_args {
2415         char *name;
2416 };
2417 #endif
2418
2419 /*
2420  * MPSAFE
2421  */
2422 /* ARGSUSED */
2423 int
2424 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2425 {
2426         struct vnode *vp;
2427         struct nameidata nd;
2428         struct swdevt *sp;
2429         int error;
2430
2431         error = priv_check(td, PRIV_SWAPOFF);
2432         if (error)
2433                 return (error);
2434
2435         sx_xlock(&swdev_syscall_lock);
2436
2437         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2438             td);
2439         error = namei(&nd);
2440         if (error)
2441                 goto done;
2442         NDFREE(&nd, NDF_ONLY_PNBUF);
2443         vp = nd.ni_vp;
2444
2445         mtx_lock(&sw_dev_mtx);
2446         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2447                 if (sp->sw_vp == vp)
2448                         break;
2449         }
2450         mtx_unlock(&sw_dev_mtx);
2451         if (sp == NULL) {
2452                 error = EINVAL;
2453                 goto done;
2454         }
2455         error = swapoff_one(sp, td->td_ucred);
2456 done:
2457         sx_xunlock(&swdev_syscall_lock);
2458         return (error);
2459 }
2460
2461 static int
2462 swapoff_one(struct swdevt *sp, struct ucred *cred)
2463 {
2464         u_long nblks;
2465 #ifdef MAC
2466         int error;
2467 #endif
2468
2469         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2470 #ifdef MAC
2471         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2472         error = mac_system_check_swapoff(cred, sp->sw_vp);
2473         (void) VOP_UNLOCK(sp->sw_vp);
2474         if (error != 0)
2475                 return (error);
2476 #endif
2477         nblks = sp->sw_nblks;
2478
2479         /*
2480          * We can turn off this swap device safely only if the
2481          * available virtual memory in the system will fit the amount
2482          * of data we will have to page back in, plus an epsilon so
2483          * the system doesn't become critically low on swap space.
2484          */
2485         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2486                 return (ENOMEM);
2487
2488         /*
2489          * Prevent further allocations on this device.
2490          */
2491         mtx_lock(&sw_dev_mtx);
2492         sp->sw_flags |= SW_CLOSING;
2493         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2494         swap_total -= nblks;
2495         mtx_unlock(&sw_dev_mtx);
2496
2497         /*
2498          * Page in the contents of the device and close it.
2499          */
2500         swap_pager_swapoff(sp);
2501
2502         sp->sw_close(curthread, sp);
2503         mtx_lock(&sw_dev_mtx);
2504         sp->sw_id = NULL;
2505         TAILQ_REMOVE(&swtailq, sp, sw_list);
2506         nswapdev--;
2507         if (nswapdev == 0) {
2508                 swap_pager_full = 2;
2509                 swap_pager_almost_full = 1;
2510         }
2511         if (swdevhd == sp)
2512                 swdevhd = NULL;
2513         mtx_unlock(&sw_dev_mtx);
2514         blist_destroy(sp->sw_blist);
2515         free(sp, M_VMPGDATA);
2516         return (0);
2517 }
2518
2519 void
2520 swapoff_all(void)
2521 {
2522         struct swdevt *sp, *spt;
2523         const char *devname;
2524         int error;
2525
2526         sx_xlock(&swdev_syscall_lock);
2527
2528         mtx_lock(&sw_dev_mtx);
2529         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2530                 mtx_unlock(&sw_dev_mtx);
2531                 if (vn_isdisk(sp->sw_vp, NULL))
2532                         devname = devtoname(sp->sw_vp->v_rdev);
2533                 else
2534                         devname = "[file]";
2535                 error = swapoff_one(sp, thread0.td_ucred);
2536                 if (error != 0) {
2537                         printf("Cannot remove swap device %s (error=%d), "
2538                             "skipping.\n", devname, error);
2539                 } else if (bootverbose) {
2540                         printf("Swap device %s removed.\n", devname);
2541                 }
2542                 mtx_lock(&sw_dev_mtx);
2543         }
2544         mtx_unlock(&sw_dev_mtx);
2545
2546         sx_xunlock(&swdev_syscall_lock);
2547 }
2548
2549 void
2550 swap_pager_status(int *total, int *used)
2551 {
2552         struct swdevt *sp;
2553
2554         *total = 0;
2555         *used = 0;
2556         mtx_lock(&sw_dev_mtx);
2557         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2558                 *total += sp->sw_nblks;
2559                 *used += sp->sw_used;
2560         }
2561         mtx_unlock(&sw_dev_mtx);
2562 }
2563
2564 int
2565 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2566 {
2567         struct swdevt *sp;
2568         const char *tmp_devname;
2569         int error, n;
2570
2571         n = 0;
2572         error = ENOENT;
2573         mtx_lock(&sw_dev_mtx);
2574         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2575                 if (n != name) {
2576                         n++;
2577                         continue;
2578                 }
2579                 xs->xsw_version = XSWDEV_VERSION;
2580                 xs->xsw_dev = sp->sw_dev;
2581                 xs->xsw_flags = sp->sw_flags;
2582                 xs->xsw_nblks = sp->sw_nblks;
2583                 xs->xsw_used = sp->sw_used;
2584                 if (devname != NULL) {
2585                         if (vn_isdisk(sp->sw_vp, NULL))
2586                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2587                         else
2588                                 tmp_devname = "[file]";
2589                         strncpy(devname, tmp_devname, len);
2590                 }
2591                 error = 0;
2592                 break;
2593         }
2594         mtx_unlock(&sw_dev_mtx);
2595         return (error);
2596 }
2597
2598 #if defined(COMPAT_FREEBSD11)
2599 #define XSWDEV_VERSION_11       1
2600 struct xswdev11 {
2601         u_int   xsw_version;
2602         uint32_t xsw_dev;
2603         int     xsw_flags;
2604         int     xsw_nblks;
2605         int     xsw_used;
2606 };
2607 #endif
2608
2609 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2610 struct xswdev32 {
2611         u_int   xsw_version;
2612         u_int   xsw_dev1, xsw_dev2;
2613         int     xsw_flags;
2614         int     xsw_nblks;
2615         int     xsw_used;
2616 };
2617 #endif
2618
2619 static int
2620 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2621 {
2622         struct xswdev xs;
2623 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2624         struct xswdev32 xs32;
2625 #endif
2626 #if defined(COMPAT_FREEBSD11)
2627         struct xswdev11 xs11;
2628 #endif
2629         int error;
2630
2631         if (arg2 != 1)                  /* name length */
2632                 return (EINVAL);
2633         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2634         if (error != 0)
2635                 return (error);
2636 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2637         if (req->oldlen == sizeof(xs32)) {
2638                 xs32.xsw_version = XSWDEV_VERSION;
2639                 xs32.xsw_dev1 = xs.xsw_dev;
2640                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2641                 xs32.xsw_flags = xs.xsw_flags;
2642                 xs32.xsw_nblks = xs.xsw_nblks;
2643                 xs32.xsw_used = xs.xsw_used;
2644                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2645                 return (error);
2646         }
2647 #endif
2648 #if defined(COMPAT_FREEBSD11)
2649         if (req->oldlen == sizeof(xs11)) {
2650                 xs11.xsw_version = XSWDEV_VERSION_11;
2651                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2652                 xs11.xsw_flags = xs.xsw_flags;
2653                 xs11.xsw_nblks = xs.xsw_nblks;
2654                 xs11.xsw_used = xs.xsw_used;
2655                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2656                 return (error);
2657         }
2658 #endif
2659         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2660         return (error);
2661 }
2662
2663 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2664     "Number of swap devices");
2665 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2666     sysctl_vm_swap_info,
2667     "Swap statistics by device");
2668
2669 /*
2670  * Count the approximate swap usage in pages for a vmspace.  The
2671  * shadowed or not yet copied on write swap blocks are not accounted.
2672  * The map must be locked.
2673  */
2674 long
2675 vmspace_swap_count(struct vmspace *vmspace)
2676 {
2677         vm_map_t map;
2678         vm_map_entry_t cur;
2679         vm_object_t object;
2680         struct swblk *sb;
2681         vm_pindex_t e, pi;
2682         long count;
2683         int i;
2684
2685         map = &vmspace->vm_map;
2686         count = 0;
2687
2688         VM_MAP_ENTRY_FOREACH(cur, map) {
2689                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2690                         continue;
2691                 object = cur->object.vm_object;
2692                 if (object == NULL || object->type != OBJT_SWAP)
2693                         continue;
2694                 VM_OBJECT_RLOCK(object);
2695                 if (object->type != OBJT_SWAP)
2696                         goto unlock;
2697                 pi = OFF_TO_IDX(cur->offset);
2698                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2699                 for (;; pi = sb->p + SWAP_META_PAGES) {
2700                         sb = SWAP_PCTRIE_LOOKUP_GE(
2701                             &object->un_pager.swp.swp_blks, pi);
2702                         if (sb == NULL || sb->p >= e)
2703                                 break;
2704                         for (i = 0; i < SWAP_META_PAGES; i++) {
2705                                 if (sb->p + i < e &&
2706                                     sb->d[i] != SWAPBLK_NONE)
2707                                         count++;
2708                         }
2709                 }
2710 unlock:
2711                 VM_OBJECT_RUNLOCK(object);
2712         }
2713         return (count);
2714 }
2715
2716 /*
2717  * GEOM backend
2718  *
2719  * Swapping onto disk devices.
2720  *
2721  */
2722
2723 static g_orphan_t swapgeom_orphan;
2724
2725 static struct g_class g_swap_class = {
2726         .name = "SWAP",
2727         .version = G_VERSION,
2728         .orphan = swapgeom_orphan,
2729 };
2730
2731 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2732
2733
2734 static void
2735 swapgeom_close_ev(void *arg, int flags)
2736 {
2737         struct g_consumer *cp;
2738
2739         cp = arg;
2740         g_access(cp, -1, -1, 0);
2741         g_detach(cp);
2742         g_destroy_consumer(cp);
2743 }
2744
2745 /*
2746  * Add a reference to the g_consumer for an inflight transaction.
2747  */
2748 static void
2749 swapgeom_acquire(struct g_consumer *cp)
2750 {
2751
2752         mtx_assert(&sw_dev_mtx, MA_OWNED);
2753         cp->index++;
2754 }
2755
2756 /*
2757  * Remove a reference from the g_consumer.  Post a close event if all
2758  * references go away, since the function might be called from the
2759  * biodone context.
2760  */
2761 static void
2762 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2763 {
2764
2765         mtx_assert(&sw_dev_mtx, MA_OWNED);
2766         cp->index--;
2767         if (cp->index == 0) {
2768                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2769                         sp->sw_id = NULL;
2770         }
2771 }
2772
2773 static void
2774 swapgeom_done(struct bio *bp2)
2775 {
2776         struct swdevt *sp;
2777         struct buf *bp;
2778         struct g_consumer *cp;
2779
2780         bp = bp2->bio_caller2;
2781         cp = bp2->bio_from;
2782         bp->b_ioflags = bp2->bio_flags;
2783         if (bp2->bio_error)
2784                 bp->b_ioflags |= BIO_ERROR;
2785         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2786         bp->b_error = bp2->bio_error;
2787         bp->b_caller1 = NULL;
2788         bufdone(bp);
2789         sp = bp2->bio_caller1;
2790         mtx_lock(&sw_dev_mtx);
2791         swapgeom_release(cp, sp);
2792         mtx_unlock(&sw_dev_mtx);
2793         g_destroy_bio(bp2);
2794 }
2795
2796 static void
2797 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2798 {
2799         struct bio *bio;
2800         struct g_consumer *cp;
2801
2802         mtx_lock(&sw_dev_mtx);
2803         cp = sp->sw_id;
2804         if (cp == NULL) {
2805                 mtx_unlock(&sw_dev_mtx);
2806                 bp->b_error = ENXIO;
2807                 bp->b_ioflags |= BIO_ERROR;
2808                 bufdone(bp);
2809                 return;
2810         }
2811         swapgeom_acquire(cp);
2812         mtx_unlock(&sw_dev_mtx);
2813         if (bp->b_iocmd == BIO_WRITE)
2814                 bio = g_new_bio();
2815         else
2816                 bio = g_alloc_bio();
2817         if (bio == NULL) {
2818                 mtx_lock(&sw_dev_mtx);
2819                 swapgeom_release(cp, sp);
2820                 mtx_unlock(&sw_dev_mtx);
2821                 bp->b_error = ENOMEM;
2822                 bp->b_ioflags |= BIO_ERROR;
2823                 printf("swap_pager: cannot allocate bio\n");
2824                 bufdone(bp);
2825                 return;
2826         }
2827
2828         bp->b_caller1 = bio;
2829         bio->bio_caller1 = sp;
2830         bio->bio_caller2 = bp;
2831         bio->bio_cmd = bp->b_iocmd;
2832         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2833         bio->bio_length = bp->b_bcount;
2834         bio->bio_done = swapgeom_done;
2835         if (!buf_mapped(bp)) {
2836                 bio->bio_ma = bp->b_pages;
2837                 bio->bio_data = unmapped_buf;
2838                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2839                 bio->bio_ma_n = bp->b_npages;
2840                 bio->bio_flags |= BIO_UNMAPPED;
2841         } else {
2842                 bio->bio_data = bp->b_data;
2843                 bio->bio_ma = NULL;
2844         }
2845         g_io_request(bio, cp);
2846         return;
2847 }
2848
2849 static void
2850 swapgeom_orphan(struct g_consumer *cp)
2851 {
2852         struct swdevt *sp;
2853         int destroy;
2854
2855         mtx_lock(&sw_dev_mtx);
2856         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2857                 if (sp->sw_id == cp) {
2858                         sp->sw_flags |= SW_CLOSING;
2859                         break;
2860                 }
2861         }
2862         /*
2863          * Drop reference we were created with. Do directly since we're in a
2864          * special context where we don't have to queue the call to
2865          * swapgeom_close_ev().
2866          */
2867         cp->index--;
2868         destroy = ((sp != NULL) && (cp->index == 0));
2869         if (destroy)
2870                 sp->sw_id = NULL;
2871         mtx_unlock(&sw_dev_mtx);
2872         if (destroy)
2873                 swapgeom_close_ev(cp, 0);
2874 }
2875
2876 static void
2877 swapgeom_close(struct thread *td, struct swdevt *sw)
2878 {
2879         struct g_consumer *cp;
2880
2881         mtx_lock(&sw_dev_mtx);
2882         cp = sw->sw_id;
2883         sw->sw_id = NULL;
2884         mtx_unlock(&sw_dev_mtx);
2885
2886         /*
2887          * swapgeom_close() may be called from the biodone context,
2888          * where we cannot perform topology changes.  Delegate the
2889          * work to the events thread.
2890          */
2891         if (cp != NULL)
2892                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2893 }
2894
2895 static int
2896 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2897 {
2898         struct g_provider *pp;
2899         struct g_consumer *cp;
2900         static struct g_geom *gp;
2901         struct swdevt *sp;
2902         u_long nblks;
2903         int error;
2904
2905         pp = g_dev_getprovider(dev);
2906         if (pp == NULL)
2907                 return (ENODEV);
2908         mtx_lock(&sw_dev_mtx);
2909         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2910                 cp = sp->sw_id;
2911                 if (cp != NULL && cp->provider == pp) {
2912                         mtx_unlock(&sw_dev_mtx);
2913                         return (EBUSY);
2914                 }
2915         }
2916         mtx_unlock(&sw_dev_mtx);
2917         if (gp == NULL)
2918                 gp = g_new_geomf(&g_swap_class, "swap");
2919         cp = g_new_consumer(gp);
2920         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2921         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2922         g_attach(cp, pp);
2923         /*
2924          * XXX: Every time you think you can improve the margin for
2925          * footshooting, somebody depends on the ability to do so:
2926          * savecore(8) wants to write to our swapdev so we cannot
2927          * set an exclusive count :-(
2928          */
2929         error = g_access(cp, 1, 1, 0);
2930         if (error != 0) {
2931                 g_detach(cp);
2932                 g_destroy_consumer(cp);
2933                 return (error);
2934         }
2935         nblks = pp->mediasize / DEV_BSIZE;
2936         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2937             swapgeom_close, dev2udev(dev),
2938             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2939         return (0);
2940 }
2941
2942 static int
2943 swapongeom(struct vnode *vp)
2944 {
2945         int error;
2946
2947         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2948         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2949                 error = ENOENT;
2950         } else {
2951                 g_topology_lock();
2952                 error = swapongeom_locked(vp->v_rdev, vp);
2953                 g_topology_unlock();
2954         }
2955         VOP_UNLOCK(vp);
2956         return (error);
2957 }
2958
2959 /*
2960  * VNODE backend
2961  *
2962  * This is used mainly for network filesystem (read: probably only tested
2963  * with NFS) swapfiles.
2964  *
2965  */
2966
2967 static void
2968 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2969 {
2970         struct vnode *vp2;
2971
2972         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2973
2974         vp2 = sp->sw_id;
2975         vhold(vp2);
2976         if (bp->b_iocmd == BIO_WRITE) {
2977                 if (bp->b_bufobj)
2978                         bufobj_wdrop(bp->b_bufobj);
2979                 bufobj_wref(&vp2->v_bufobj);
2980         }
2981         if (bp->b_bufobj != &vp2->v_bufobj)
2982                 bp->b_bufobj = &vp2->v_bufobj;
2983         bp->b_vp = vp2;
2984         bp->b_iooffset = dbtob(bp->b_blkno);
2985         bstrategy(bp);
2986         return;
2987 }
2988
2989 static void
2990 swapdev_close(struct thread *td, struct swdevt *sp)
2991 {
2992
2993         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2994         vrele(sp->sw_vp);
2995 }
2996
2997
2998 static int
2999 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3000 {
3001         struct swdevt *sp;
3002         int error;
3003
3004         if (nblks == 0)
3005                 return (ENXIO);
3006         mtx_lock(&sw_dev_mtx);
3007         TAILQ_FOREACH(sp, &swtailq, sw_list) {
3008                 if (sp->sw_id == vp) {
3009                         mtx_unlock(&sw_dev_mtx);
3010                         return (EBUSY);
3011                 }
3012         }
3013         mtx_unlock(&sw_dev_mtx);
3014
3015         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3016 #ifdef MAC
3017         error = mac_system_check_swapon(td->td_ucred, vp);
3018         if (error == 0)
3019 #endif
3020                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3021         (void) VOP_UNLOCK(vp);
3022         if (error)
3023                 return (error);
3024
3025         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3026             NODEV, 0);
3027         return (0);
3028 }
3029
3030 static int
3031 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3032 {
3033         int error, new, n;
3034
3035         new = nsw_wcount_async_max;
3036         error = sysctl_handle_int(oidp, &new, 0, req);
3037         if (error != 0 || req->newptr == NULL)
3038                 return (error);
3039
3040         if (new > nswbuf / 2 || new < 1)
3041                 return (EINVAL);
3042
3043         mtx_lock(&swbuf_mtx);
3044         while (nsw_wcount_async_max != new) {
3045                 /*
3046                  * Adjust difference.  If the current async count is too low,
3047                  * we will need to sqeeze our update slowly in.  Sleep with a
3048                  * higher priority than getpbuf() to finish faster.
3049                  */
3050                 n = new - nsw_wcount_async_max;
3051                 if (nsw_wcount_async + n >= 0) {
3052                         nsw_wcount_async += n;
3053                         nsw_wcount_async_max += n;
3054                         wakeup(&nsw_wcount_async);
3055                 } else {
3056                         nsw_wcount_async_max -= nsw_wcount_async;
3057                         nsw_wcount_async = 0;
3058                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3059                             "swpsysctl", 0);
3060                 }
3061         }
3062         mtx_unlock(&swbuf_mtx);
3063
3064         return (0);
3065 }
3066
3067 static void
3068 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3069     vm_offset_t end)
3070 {
3071
3072         VM_OBJECT_WLOCK(object);
3073         KASSERT((object->flags & OBJ_ANON) == 0,
3074             ("Splittable object with writecount"));
3075         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3076         VM_OBJECT_WUNLOCK(object);
3077 }
3078
3079 static void
3080 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3081     vm_offset_t end)
3082 {
3083
3084         VM_OBJECT_WLOCK(object);
3085         KASSERT((object->flags & OBJ_ANON) == 0,
3086             ("Splittable object with writecount"));
3087         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3088         VM_OBJECT_WUNLOCK(object);
3089 }