]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Callers of swp_pager_getswapspace get either as many blocks as they
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/priv.h>
81 #include <sys/proc.h>
82 #include <sys/bio.h>
83 #include <sys/buf.h>
84 #include <sys/disk.h>
85 #include <sys/fcntl.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/vnode.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/racct.h>
92 #include <sys/resource.h>
93 #include <sys/resourcevar.h>
94 #include <sys/rwlock.h>
95 #include <sys/sbuf.h>
96 #include <sys/sysctl.h>
97 #include <sys/sysproto.h>
98 #include <sys/blist.h>
99 #include <sys/lock.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102
103 #include <security/mac/mac_framework.h>
104
105 #include <vm/vm.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_pageout.h>
113 #include <vm/vm_param.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 #include <geom/geom.h>
119
120 /*
121  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
122  * The 64-page limit is due to the radix code (kern/subr_blist.c).
123  */
124 #ifndef MAX_PAGEOUT_CLUSTER
125 #define MAX_PAGEOUT_CLUSTER     32
126 #endif
127
128 #if !defined(SWB_NPAGES)
129 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
130 #endif
131
132 #define SWAP_META_PAGES         PCTRIE_COUNT
133
134 /*
135  * A swblk structure maps each page index within a
136  * SWAP_META_PAGES-aligned and sized range to the address of an
137  * on-disk swap block (or SWAPBLK_NONE). The collection of these
138  * mappings for an entire vm object is implemented as a pc-trie.
139  */
140 struct swblk {
141         vm_pindex_t     p;
142         daddr_t         d[SWAP_META_PAGES];
143 };
144
145 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
146 static struct mtx sw_dev_mtx;
147 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
148 static struct swdevt *swdevhd;  /* Allocate from here next */
149 static int nswapdev;            /* Number of swap devices */
150 int swap_pager_avail;
151 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
152
153 static u_long swap_reserved;
154 static u_long swap_total;
155 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
156 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
157     &swap_reserved, 0, sysctl_page_shift, "A", 
158     "Amount of swap storage needed to back all allocated anonymous memory.");
159 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
160     &swap_total, 0, sysctl_page_shift, "A", 
161     "Total amount of available swap storage.");
162
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173
174 /* bits from overcommit */
175 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
176 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
177 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
178
179 static int
180 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
181 {
182         uint64_t newval;
183         u_long value = *(u_long *)arg1;
184
185         newval = ((uint64_t)value) << PAGE_SHIFT;
186         return (sysctl_handle_64(oidp, &newval, 0, req));
187 }
188
189 int
190 swap_reserve(vm_ooffset_t incr)
191 {
192
193         return (swap_reserve_by_cred(incr, curthread->td_ucred));
194 }
195
196 int
197 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
198 {
199         u_long r, s, prev, pincr;
200         int res, error;
201         static int curfail;
202         static struct timeval lastfail;
203         struct uidinfo *uip;
204
205         uip = cred->cr_ruidinfo;
206
207         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
208             (uintmax_t)incr));
209
210 #ifdef RACCT
211         if (racct_enable) {
212                 PROC_LOCK(curproc);
213                 error = racct_add(curproc, RACCT_SWAP, incr);
214                 PROC_UNLOCK(curproc);
215                 if (error != 0)
216                         return (0);
217         }
218 #endif
219
220         pincr = atop(incr);
221         res = 0;
222         prev = atomic_fetchadd_long(&swap_reserved, pincr);
223         r = prev + pincr;
224         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
225                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
226                     vm_wire_count();
227         } else
228                 s = 0;
229         s += swap_total;
230         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
231             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
232                 res = 1;
233         } else {
234                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
235                 if (prev < pincr)
236                         panic("swap_reserved < incr on overcommit fail");
237         }
238         if (res) {
239                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
240                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
241                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
242                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
243                         res = 0;
244                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
245                         if (prev < pincr)
246                                 panic("uip->ui_vmsize < incr on overcommit fail");
247                 }
248         }
249         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
250                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
251                     uip->ui_uid, curproc->p_pid, incr);
252         }
253
254 #ifdef RACCT
255         if (racct_enable && !res) {
256                 PROC_LOCK(curproc);
257                 racct_sub(curproc, RACCT_SWAP, incr);
258                 PROC_UNLOCK(curproc);
259         }
260 #endif
261
262         return (res);
263 }
264
265 void
266 swap_reserve_force(vm_ooffset_t incr)
267 {
268         struct uidinfo *uip;
269         u_long pincr;
270
271         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
272             (uintmax_t)incr));
273
274         PROC_LOCK(curproc);
275 #ifdef RACCT
276         if (racct_enable)
277                 racct_add_force(curproc, RACCT_SWAP, incr);
278 #endif
279         pincr = atop(incr);
280         atomic_add_long(&swap_reserved, pincr);
281         uip = curproc->p_ucred->cr_ruidinfo;
282         atomic_add_long(&uip->ui_vmsize, pincr);
283         PROC_UNLOCK(curproc);
284 }
285
286 void
287 swap_release(vm_ooffset_t decr)
288 {
289         struct ucred *cred;
290
291         PROC_LOCK(curproc);
292         cred = curproc->p_ucred;
293         swap_release_by_cred(decr, cred);
294         PROC_UNLOCK(curproc);
295 }
296
297 void
298 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
299 {
300         u_long prev, pdecr;
301         struct uidinfo *uip;
302
303         uip = cred->cr_ruidinfo;
304
305         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
306             (uintmax_t)decr));
307
308         pdecr = atop(decr);
309         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
310         if (prev < pdecr)
311                 panic("swap_reserved < decr");
312
313         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
314         if (prev < pdecr)
315                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
316 #ifdef RACCT
317         if (racct_enable)
318                 racct_sub_cred(cred, RACCT_SWAP, decr);
319 #endif
320 }
321
322 #define SWM_POP         0x01    /* pop out                      */
323
324 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
325 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
326 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
327 static int nsw_wcount_async;    /* limit async write buffers */
328 static int nsw_wcount_async_max;/* assigned maximum                     */
329 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
330
331 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
332 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
333     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
334     "Maximum running async swap ops");
335 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
336 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
337     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
338     "Swap Fragmentation Info");
339
340 static struct sx sw_alloc_sx;
341
342 /*
343  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
344  * of searching a named list by hashing it just a little.
345  */
346
347 #define NOBJLISTS               8
348
349 #define NOBJLIST(handle)        \
350         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
351
352 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
353 static uma_zone_t swwbuf_zone;
354 static uma_zone_t swrbuf_zone;
355 static uma_zone_t swblk_zone;
356 static uma_zone_t swpctrie_zone;
357
358 /*
359  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
360  * calls hooked from other parts of the VM system and do not appear here.
361  * (see vm/swap_pager.h).
362  */
363 static vm_object_t
364                 swap_pager_alloc(void *handle, vm_ooffset_t size,
365                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
366 static void     swap_pager_dealloc(vm_object_t object);
367 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
368     int *);
369 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
370     int *, pgo_getpages_iodone_t, void *);
371 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
372 static boolean_t
373                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
374 static void     swap_pager_init(void);
375 static void     swap_pager_unswapped(vm_page_t);
376 static void     swap_pager_swapoff(struct swdevt *sp);
377
378 struct pagerops swappagerops = {
379         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
380         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
381         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
382         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
383         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
384         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
385         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
386         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
387 };
388
389 /*
390  * swap_*() routines are externally accessible.  swp_*() routines are
391  * internal.
392  */
393 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
394 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
395
396 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
397     "Maximum size of a swap block in pages");
398
399 static void     swp_sizecheck(void);
400 static void     swp_pager_async_iodone(struct buf *bp);
401 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
402 static int      swapongeom(struct vnode *);
403 static int      swaponvp(struct thread *, struct vnode *, u_long);
404 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
405
406 /*
407  * Swap bitmap functions
408  */
409 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
410 static daddr_t  swp_pager_getswapspace(int *npages, int limit);
411
412 /*
413  * Metadata functions
414  */
415 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
416 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
417 static void swp_pager_meta_free_all(vm_object_t);
418 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
419
420 static void
421 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
422 {
423
424         *start = SWAPBLK_NONE;
425         *num = 0;
426 }
427
428 static void
429 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
430 {
431
432         if (*start + *num == addr) {
433                 (*num)++;
434         } else {
435                 swp_pager_freeswapspace(*start, *num);
436                 *start = addr;
437                 *num = 1;
438         }
439 }
440
441 static void *
442 swblk_trie_alloc(struct pctrie *ptree)
443 {
444
445         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
446             M_USE_RESERVE : 0)));
447 }
448
449 static void
450 swblk_trie_free(struct pctrie *ptree, void *node)
451 {
452
453         uma_zfree(swpctrie_zone, node);
454 }
455
456 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
457
458 /*
459  * SWP_SIZECHECK() -    update swap_pager_full indication
460  *
461  *      update the swap_pager_almost_full indication and warn when we are
462  *      about to run out of swap space, using lowat/hiwat hysteresis.
463  *
464  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
465  *
466  *      No restrictions on call
467  *      This routine may not block.
468  */
469 static void
470 swp_sizecheck(void)
471 {
472
473         if (swap_pager_avail < nswap_lowat) {
474                 if (swap_pager_almost_full == 0) {
475                         printf("swap_pager: out of swap space\n");
476                         swap_pager_almost_full = 1;
477                 }
478         } else {
479                 swap_pager_full = 0;
480                 if (swap_pager_avail > nswap_hiwat)
481                         swap_pager_almost_full = 0;
482         }
483 }
484
485 /*
486  * SWAP_PAGER_INIT() -  initialize the swap pager!
487  *
488  *      Expected to be started from system init.  NOTE:  This code is run
489  *      before much else so be careful what you depend on.  Most of the VM
490  *      system has yet to be initialized at this point.
491  */
492 static void
493 swap_pager_init(void)
494 {
495         /*
496          * Initialize object lists
497          */
498         int i;
499
500         for (i = 0; i < NOBJLISTS; ++i)
501                 TAILQ_INIT(&swap_pager_object_list[i]);
502         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
503         sx_init(&sw_alloc_sx, "swspsx");
504         sx_init(&swdev_syscall_lock, "swsysc");
505 }
506
507 /*
508  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
509  *
510  *      Expected to be started from pageout process once, prior to entering
511  *      its main loop.
512  */
513 void
514 swap_pager_swap_init(void)
515 {
516         unsigned long n, n2;
517
518         /*
519          * Number of in-transit swap bp operations.  Don't
520          * exhaust the pbufs completely.  Make sure we
521          * initialize workable values (0 will work for hysteresis
522          * but it isn't very efficient).
523          *
524          * The nsw_cluster_max is constrained by the bp->b_pages[]
525          * array (MAXPHYS/PAGE_SIZE) and our locally defined
526          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
527          * constrained by the swap device interleave stripe size.
528          *
529          * Currently we hardwire nsw_wcount_async to 4.  This limit is
530          * designed to prevent other I/O from having high latencies due to
531          * our pageout I/O.  The value 4 works well for one or two active swap
532          * devices but is probably a little low if you have more.  Even so,
533          * a higher value would probably generate only a limited improvement
534          * with three or four active swap devices since the system does not
535          * typically have to pageout at extreme bandwidths.   We will want
536          * at least 2 per swap devices, and 4 is a pretty good value if you
537          * have one NFS swap device due to the command/ack latency over NFS.
538          * So it all works out pretty well.
539          */
540         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
541
542         nsw_wcount_async = 4;
543         nsw_wcount_async_max = nsw_wcount_async;
544         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
545
546         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
547         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
548
549         /*
550          * Initialize our zone, taking the user's requested size or
551          * estimating the number we need based on the number of pages
552          * in the system.
553          */
554         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
555             vm_cnt.v_page_count / 2;
556         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
557             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
558         if (swpctrie_zone == NULL)
559                 panic("failed to create swap pctrie zone.");
560         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
561             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
562         if (swblk_zone == NULL)
563                 panic("failed to create swap blk zone.");
564         n2 = n;
565         do {
566                 if (uma_zone_reserve_kva(swblk_zone, n))
567                         break;
568                 /*
569                  * if the allocation failed, try a zone two thirds the
570                  * size of the previous attempt.
571                  */
572                 n -= ((n + 2) / 3);
573         } while (n > 0);
574
575         /*
576          * Often uma_zone_reserve_kva() cannot reserve exactly the
577          * requested size.  Account for the difference when
578          * calculating swap_maxpages.
579          */
580         n = uma_zone_get_max(swblk_zone);
581
582         if (n < n2)
583                 printf("Swap blk zone entries changed from %lu to %lu.\n",
584                     n2, n);
585         swap_maxpages = n * SWAP_META_PAGES;
586         swzone = n * sizeof(struct swblk);
587         if (!uma_zone_reserve_kva(swpctrie_zone, n))
588                 printf("Cannot reserve swap pctrie zone, "
589                     "reduce kern.maxswzone.\n");
590 }
591
592 static vm_object_t
593 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
594     vm_ooffset_t offset)
595 {
596         vm_object_t object;
597
598         if (cred != NULL) {
599                 if (!swap_reserve_by_cred(size, cred))
600                         return (NULL);
601                 crhold(cred);
602         }
603
604         /*
605          * The un_pager.swp.swp_blks trie is initialized by
606          * vm_object_allocate() to ensure the correct order of
607          * visibility to other threads.
608          */
609         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
610             PAGE_MASK + size));
611
612         object->handle = handle;
613         if (cred != NULL) {
614                 object->cred = cred;
615                 object->charge = size;
616         }
617         return (object);
618 }
619
620 /*
621  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
622  *                      its metadata structures.
623  *
624  *      This routine is called from the mmap and fork code to create a new
625  *      OBJT_SWAP object.
626  *
627  *      This routine must ensure that no live duplicate is created for
628  *      the named object request, which is protected against by
629  *      holding the sw_alloc_sx lock in case handle != NULL.
630  */
631 static vm_object_t
632 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
633     vm_ooffset_t offset, struct ucred *cred)
634 {
635         vm_object_t object;
636
637         if (handle != NULL) {
638                 /*
639                  * Reference existing named region or allocate new one.  There
640                  * should not be a race here against swp_pager_meta_build()
641                  * as called from vm_page_remove() in regards to the lookup
642                  * of the handle.
643                  */
644                 sx_xlock(&sw_alloc_sx);
645                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
646                 if (object == NULL) {
647                         object = swap_pager_alloc_init(handle, cred, size,
648                             offset);
649                         if (object != NULL) {
650                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
651                                     object, pager_object_list);
652                         }
653                 }
654                 sx_xunlock(&sw_alloc_sx);
655         } else {
656                 object = swap_pager_alloc_init(handle, cred, size, offset);
657         }
658         return (object);
659 }
660
661 /*
662  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
663  *
664  *      The swap backing for the object is destroyed.  The code is
665  *      designed such that we can reinstantiate it later, but this
666  *      routine is typically called only when the entire object is
667  *      about to be destroyed.
668  *
669  *      The object must be locked.
670  */
671 static void
672 swap_pager_dealloc(vm_object_t object)
673 {
674
675         VM_OBJECT_ASSERT_WLOCKED(object);
676         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
677
678         /*
679          * Remove from list right away so lookups will fail if we block for
680          * pageout completion.
681          */
682         if (object->handle != NULL) {
683                 VM_OBJECT_WUNLOCK(object);
684                 sx_xlock(&sw_alloc_sx);
685                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
686                     pager_object_list);
687                 sx_xunlock(&sw_alloc_sx);
688                 VM_OBJECT_WLOCK(object);
689         }
690
691         vm_object_pip_wait(object, "swpdea");
692
693         /*
694          * Free all remaining metadata.  We only bother to free it from
695          * the swap meta data.  We do not attempt to free swapblk's still
696          * associated with vm_page_t's for this object.  We do not care
697          * if paging is still in progress on some objects.
698          */
699         swp_pager_meta_free_all(object);
700         object->handle = NULL;
701         object->type = OBJT_DEAD;
702 }
703
704 /************************************************************************
705  *                      SWAP PAGER BITMAP ROUTINES                      *
706  ************************************************************************/
707
708 /*
709  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
710  *
711  *      Allocate swap for up to the requested number of pages, and at
712  *      least a minimum number of pages.  The starting swap block number
713  *      (a page index) is returned or SWAPBLK_NONE if the allocation
714  *      failed.
715  *
716  *      Also has the side effect of advising that somebody made a mistake
717  *      when they configured swap and didn't configure enough.
718  *
719  *      This routine may not sleep.
720  *
721  *      We allocate in round-robin fashion from the configured devices.
722  */
723 static daddr_t
724 swp_pager_getswapspace(int *io_npages, int limit)
725 {
726         daddr_t blk;
727         struct swdevt *sp;
728         int npages;
729
730         blk = SWAPBLK_NONE;
731         npages = *io_npages;
732         mtx_lock(&sw_dev_mtx);
733         sp = swdevhd;
734         while (!TAILQ_EMPTY(&swtailq)) {
735                 if (sp == NULL)
736                         sp = TAILQ_FIRST(&swtailq);
737                 if ((sp->sw_flags & SW_CLOSING) == 0)
738                         blk = blist_alloc(sp->sw_blist, npages);
739                 if (blk != SWAPBLK_NONE)
740                         break;
741                 sp = TAILQ_NEXT(sp, sw_list);
742                 if (swdevhd == sp) {
743                         if (npages <= limit)
744                                 break;
745                         npages >>= 1;
746                 }
747         }
748         if (blk != SWAPBLK_NONE) {
749                 *io_npages = npages;
750                 blk += sp->sw_first;
751                 sp->sw_used += npages;
752                 swap_pager_avail -= npages;
753                 swp_sizecheck();
754                 swdevhd = TAILQ_NEXT(sp, sw_list);
755         } else {
756                 if (swap_pager_full != 2) {
757                         printf("swp_pager_getswapspace(%d): failed\n",
758                             *io_npages);
759                         swap_pager_full = 2;
760                         swap_pager_almost_full = 1;
761                 }
762                 swdevhd = NULL;
763         }
764         mtx_unlock(&sw_dev_mtx);
765         return (blk);
766 }
767
768 static bool
769 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
770 {
771
772         return (blk >= sp->sw_first && blk < sp->sw_end);
773 }
774
775 static void
776 swp_pager_strategy(struct buf *bp)
777 {
778         struct swdevt *sp;
779
780         mtx_lock(&sw_dev_mtx);
781         TAILQ_FOREACH(sp, &swtailq, sw_list) {
782                 if (swp_pager_isondev(bp->b_blkno, sp)) {
783                         mtx_unlock(&sw_dev_mtx);
784                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
785                             unmapped_buf_allowed) {
786                                 bp->b_data = unmapped_buf;
787                                 bp->b_offset = 0;
788                         } else {
789                                 pmap_qenter((vm_offset_t)bp->b_data,
790                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
791                         }
792                         sp->sw_strategy(bp, sp);
793                         return;
794                 }
795         }
796         panic("Swapdev not found");
797 }
798
799
800 /*
801  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
802  *
803  *      This routine returns the specified swap blocks back to the bitmap.
804  *
805  *      This routine may not sleep.
806  */
807 static void
808 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
809 {
810         struct swdevt *sp;
811
812         if (npages == 0)
813                 return;
814         mtx_lock(&sw_dev_mtx);
815         TAILQ_FOREACH(sp, &swtailq, sw_list) {
816                 if (swp_pager_isondev(blk, sp)) {
817                         sp->sw_used -= npages;
818                         /*
819                          * If we are attempting to stop swapping on
820                          * this device, we don't want to mark any
821                          * blocks free lest they be reused.
822                          */
823                         if ((sp->sw_flags & SW_CLOSING) == 0) {
824                                 blist_free(sp->sw_blist, blk - sp->sw_first,
825                                     npages);
826                                 swap_pager_avail += npages;
827                                 swp_sizecheck();
828                         }
829                         mtx_unlock(&sw_dev_mtx);
830                         return;
831                 }
832         }
833         panic("Swapdev not found");
834 }
835
836 /*
837  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
838  */
839 static int
840 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
841 {
842         struct sbuf sbuf;
843         struct swdevt *sp;
844         const char *devname;
845         int error;
846
847         error = sysctl_wire_old_buffer(req, 0);
848         if (error != 0)
849                 return (error);
850         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
851         mtx_lock(&sw_dev_mtx);
852         TAILQ_FOREACH(sp, &swtailq, sw_list) {
853                 if (vn_isdisk(sp->sw_vp, NULL))
854                         devname = devtoname(sp->sw_vp->v_rdev);
855                 else
856                         devname = "[file]";
857                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
858                 blist_stats(sp->sw_blist, &sbuf);
859         }
860         mtx_unlock(&sw_dev_mtx);
861         error = sbuf_finish(&sbuf);
862         sbuf_delete(&sbuf);
863         return (error);
864 }
865
866 /*
867  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
868  *                              range within an object.
869  *
870  *      This is a globally accessible routine.
871  *
872  *      This routine removes swapblk assignments from swap metadata.
873  *
874  *      The external callers of this routine typically have already destroyed
875  *      or renamed vm_page_t's associated with this range in the object so
876  *      we should be ok.
877  *
878  *      The object must be locked.
879  */
880 void
881 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
882 {
883
884         swp_pager_meta_free(object, start, size);
885 }
886
887 /*
888  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
889  *
890  *      Assigns swap blocks to the specified range within the object.  The
891  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
892  *
893  *      Returns 0 on success, -1 on failure.
894  */
895 int
896 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
897 {
898         daddr_t addr, blk, n_free, s_free;
899         int i, j, n;
900
901         swp_pager_init_freerange(&s_free, &n_free);
902         VM_OBJECT_WLOCK(object);
903         for (i = 0; i < size; i += n) {
904                 n = min(BLIST_MAX_ALLOC, size - i);
905                 blk = swp_pager_getswapspace(&n, 1);
906                 if (blk == SWAPBLK_NONE) {
907                         swp_pager_meta_free(object, start, i);
908                         VM_OBJECT_WUNLOCK(object);
909                         return (-1);
910                 }
911                 for (j = 0; j < n; ++j) {
912                         addr = swp_pager_meta_build(object,
913                             start + i + j, blk + j);
914                         if (addr != SWAPBLK_NONE)
915                                 swp_pager_update_freerange(&s_free, &n_free,
916                                     addr);
917                 }
918         }
919         swp_pager_freeswapspace(s_free, n_free);
920         VM_OBJECT_WUNLOCK(object);
921         return (0);
922 }
923
924 /*
925  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
926  *                      and destroy the source.
927  *
928  *      Copy any valid swapblks from the source to the destination.  In
929  *      cases where both the source and destination have a valid swapblk,
930  *      we keep the destination's.
931  *
932  *      This routine is allowed to sleep.  It may sleep allocating metadata
933  *      indirectly through swp_pager_meta_build() or if paging is still in
934  *      progress on the source.
935  *
936  *      The source object contains no vm_page_t's (which is just as well)
937  *
938  *      The source object is of type OBJT_SWAP.
939  *
940  *      The source and destination objects must be locked.
941  *      Both object locks may temporarily be released.
942  */
943 void
944 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
945     vm_pindex_t offset, int destroysource)
946 {
947         vm_pindex_t i;
948         daddr_t dstaddr, n_free, s_free, srcaddr;
949
950         VM_OBJECT_ASSERT_WLOCKED(srcobject);
951         VM_OBJECT_ASSERT_WLOCKED(dstobject);
952
953         /*
954          * If destroysource is set, we remove the source object from the
955          * swap_pager internal queue now.
956          */
957         if (destroysource && srcobject->handle != NULL) {
958                 vm_object_pip_add(srcobject, 1);
959                 VM_OBJECT_WUNLOCK(srcobject);
960                 vm_object_pip_add(dstobject, 1);
961                 VM_OBJECT_WUNLOCK(dstobject);
962                 sx_xlock(&sw_alloc_sx);
963                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
964                     pager_object_list);
965                 sx_xunlock(&sw_alloc_sx);
966                 VM_OBJECT_WLOCK(dstobject);
967                 vm_object_pip_wakeup(dstobject);
968                 VM_OBJECT_WLOCK(srcobject);
969                 vm_object_pip_wakeup(srcobject);
970         }
971
972         /*
973          * Transfer source to destination.
974          */
975         swp_pager_init_freerange(&s_free, &n_free);
976         for (i = 0; i < dstobject->size; ++i) {
977                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
978                 if (srcaddr == SWAPBLK_NONE)
979                         continue;
980                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
981                 if (dstaddr != SWAPBLK_NONE) {
982                         /*
983                          * Destination has valid swapblk or it is represented
984                          * by a resident page.  We destroy the source block.
985                          */
986                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
987                         continue;
988                 }
989
990                 /*
991                  * Destination has no swapblk and is not resident,
992                  * copy source.
993                  *
994                  * swp_pager_meta_build() can sleep.
995                  */
996                 vm_object_pip_add(srcobject, 1);
997                 VM_OBJECT_WUNLOCK(srcobject);
998                 vm_object_pip_add(dstobject, 1);
999                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
1000                 KASSERT(dstaddr == SWAPBLK_NONE,
1001                     ("Unexpected destination swapblk"));
1002                 vm_object_pip_wakeup(dstobject);
1003                 VM_OBJECT_WLOCK(srcobject);
1004                 vm_object_pip_wakeup(srcobject);
1005         }
1006         swp_pager_freeswapspace(s_free, n_free);
1007
1008         /*
1009          * Free left over swap blocks in source.
1010          *
1011          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1012          * double-remove the object from the swap queues.
1013          */
1014         if (destroysource) {
1015                 swp_pager_meta_free_all(srcobject);
1016                 /*
1017                  * Reverting the type is not necessary, the caller is going
1018                  * to destroy srcobject directly, but I'm doing it here
1019                  * for consistency since we've removed the object from its
1020                  * queues.
1021                  */
1022                 srcobject->type = OBJT_DEFAULT;
1023         }
1024 }
1025
1026 /*
1027  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1028  *                              the requested page.
1029  *
1030  *      We determine whether good backing store exists for the requested
1031  *      page and return TRUE if it does, FALSE if it doesn't.
1032  *
1033  *      If TRUE, we also try to determine how much valid, contiguous backing
1034  *      store exists before and after the requested page.
1035  */
1036 static boolean_t
1037 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1038     int *after)
1039 {
1040         daddr_t blk, blk0;
1041         int i;
1042
1043         VM_OBJECT_ASSERT_LOCKED(object);
1044
1045         /*
1046          * do we have good backing store at the requested index ?
1047          */
1048         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1049         if (blk0 == SWAPBLK_NONE) {
1050                 if (before)
1051                         *before = 0;
1052                 if (after)
1053                         *after = 0;
1054                 return (FALSE);
1055         }
1056
1057         /*
1058          * find backwards-looking contiguous good backing store
1059          */
1060         if (before != NULL) {
1061                 for (i = 1; i < SWB_NPAGES; i++) {
1062                         if (i > pindex)
1063                                 break;
1064                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1065                         if (blk != blk0 - i)
1066                                 break;
1067                 }
1068                 *before = i - 1;
1069         }
1070
1071         /*
1072          * find forward-looking contiguous good backing store
1073          */
1074         if (after != NULL) {
1075                 for (i = 1; i < SWB_NPAGES; i++) {
1076                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1077                         if (blk != blk0 + i)
1078                                 break;
1079                 }
1080                 *after = i - 1;
1081         }
1082         return (TRUE);
1083 }
1084
1085 /*
1086  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1087  *
1088  *      This removes any associated swap backing store, whether valid or
1089  *      not, from the page.
1090  *
1091  *      This routine is typically called when a page is made dirty, at
1092  *      which point any associated swap can be freed.  MADV_FREE also
1093  *      calls us in a special-case situation
1094  *
1095  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1096  *      should make the page dirty before calling this routine.  This routine
1097  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1098  *      depends on it.
1099  *
1100  *      This routine may not sleep.
1101  *
1102  *      The object containing the page must be locked.
1103  */
1104 static void
1105 swap_pager_unswapped(vm_page_t m)
1106 {
1107         daddr_t srcaddr;
1108
1109         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1110         if (srcaddr != SWAPBLK_NONE)
1111                 swp_pager_freeswapspace(srcaddr, 1);
1112 }
1113
1114 /*
1115  * swap_pager_getpages() - bring pages in from swap
1116  *
1117  *      Attempt to page in the pages in array "ma" of length "count".  The
1118  *      caller may optionally specify that additional pages preceding and
1119  *      succeeding the specified range be paged in.  The number of such pages
1120  *      is returned in the "rbehind" and "rahead" parameters, and they will
1121  *      be in the inactive queue upon return.
1122  *
1123  *      The pages in "ma" must be busied and will remain busied upon return.
1124  */
1125 static int
1126 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1127     int *rahead)
1128 {
1129         struct buf *bp;
1130         vm_page_t bm, mpred, msucc, p;
1131         vm_pindex_t pindex;
1132         daddr_t blk;
1133         int i, maxahead, maxbehind, reqcount;
1134
1135         reqcount = count;
1136
1137         /*
1138          * Determine the final number of read-behind pages and
1139          * allocate them BEFORE releasing the object lock.  Otherwise,
1140          * there can be a problematic race with vm_object_split().
1141          * Specifically, vm_object_split() might first transfer pages
1142          * that precede ma[0] in the current object to a new object,
1143          * and then this function incorrectly recreates those pages as
1144          * read-behind pages in the current object.
1145          */
1146         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1147                 return (VM_PAGER_FAIL);
1148
1149         /*
1150          * Clip the readahead and readbehind ranges to exclude resident pages.
1151          */
1152         if (rahead != NULL) {
1153                 KASSERT(reqcount - 1 <= maxahead,
1154                     ("page count %d extends beyond swap block", reqcount));
1155                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1156                 pindex = ma[reqcount - 1]->pindex;
1157                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1158                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1159                         *rahead = msucc->pindex - pindex - 1;
1160         }
1161         if (rbehind != NULL) {
1162                 *rbehind = imin(*rbehind, maxbehind);
1163                 pindex = ma[0]->pindex;
1164                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1165                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1166                         *rbehind = pindex - mpred->pindex - 1;
1167         }
1168
1169         bm = ma[0];
1170         for (i = 0; i < count; i++)
1171                 ma[i]->oflags |= VPO_SWAPINPROG;
1172
1173         /*
1174          * Allocate readahead and readbehind pages.
1175          */
1176         if (rbehind != NULL) {
1177                 for (i = 1; i <= *rbehind; i++) {
1178                         p = vm_page_alloc(object, ma[0]->pindex - i,
1179                             VM_ALLOC_NORMAL);
1180                         if (p == NULL)
1181                                 break;
1182                         p->oflags |= VPO_SWAPINPROG;
1183                         bm = p;
1184                 }
1185                 *rbehind = i - 1;
1186         }
1187         if (rahead != NULL) {
1188                 for (i = 0; i < *rahead; i++) {
1189                         p = vm_page_alloc(object,
1190                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1191                         if (p == NULL)
1192                                 break;
1193                         p->oflags |= VPO_SWAPINPROG;
1194                 }
1195                 *rahead = i;
1196         }
1197         if (rbehind != NULL)
1198                 count += *rbehind;
1199         if (rahead != NULL)
1200                 count += *rahead;
1201
1202         vm_object_pip_add(object, count);
1203
1204         pindex = bm->pindex;
1205         blk = swp_pager_meta_ctl(object, pindex, 0);
1206         KASSERT(blk != SWAPBLK_NONE,
1207             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1208
1209         VM_OBJECT_WUNLOCK(object);
1210         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1211         /* Pages cannot leave the object while busy. */
1212         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1213                 MPASS(p->pindex == bm->pindex + i);
1214                 bp->b_pages[i] = p;
1215         }
1216
1217         bp->b_flags |= B_PAGING;
1218         bp->b_iocmd = BIO_READ;
1219         bp->b_iodone = swp_pager_async_iodone;
1220         bp->b_rcred = crhold(thread0.td_ucred);
1221         bp->b_wcred = crhold(thread0.td_ucred);
1222         bp->b_blkno = blk;
1223         bp->b_bcount = PAGE_SIZE * count;
1224         bp->b_bufsize = PAGE_SIZE * count;
1225         bp->b_npages = count;
1226         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1227         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1228
1229         VM_CNT_INC(v_swapin);
1230         VM_CNT_ADD(v_swappgsin, count);
1231
1232         /*
1233          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1234          * this point because we automatically release it on completion.
1235          * Instead, we look at the one page we are interested in which we
1236          * still hold a lock on even through the I/O completion.
1237          *
1238          * The other pages in our ma[] array are also released on completion,
1239          * so we cannot assume they are valid anymore either.
1240          *
1241          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1242          */
1243         BUF_KERNPROC(bp);
1244         swp_pager_strategy(bp);
1245
1246         /*
1247          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1248          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1249          * is set in the metadata for each page in the request.
1250          */
1251         VM_OBJECT_WLOCK(object);
1252         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1253                 ma[0]->oflags |= VPO_SWAPSLEEP;
1254                 VM_CNT_INC(v_intrans);
1255                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1256                     "swread", hz * 20)) {
1257                         printf(
1258 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1259                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1260                 }
1261         }
1262
1263         /*
1264          * If we had an unrecoverable read error pages will not be valid.
1265          */
1266         for (i = 0; i < reqcount; i++)
1267                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1268                         return (VM_PAGER_ERROR);
1269
1270         return (VM_PAGER_OK);
1271
1272         /*
1273          * A final note: in a low swap situation, we cannot deallocate swap
1274          * and mark a page dirty here because the caller is likely to mark
1275          * the page clean when we return, causing the page to possibly revert
1276          * to all-zero's later.
1277          */
1278 }
1279
1280 /*
1281  *      swap_pager_getpages_async():
1282  *
1283  *      Right now this is emulation of asynchronous operation on top of
1284  *      swap_pager_getpages().
1285  */
1286 static int
1287 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1288     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1289 {
1290         int r, error;
1291
1292         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1293         VM_OBJECT_WUNLOCK(object);
1294         switch (r) {
1295         case VM_PAGER_OK:
1296                 error = 0;
1297                 break;
1298         case VM_PAGER_ERROR:
1299                 error = EIO;
1300                 break;
1301         case VM_PAGER_FAIL:
1302                 error = EINVAL;
1303                 break;
1304         default:
1305                 panic("unhandled swap_pager_getpages() error %d", r);
1306         }
1307         (iodone)(arg, ma, count, error);
1308         VM_OBJECT_WLOCK(object);
1309
1310         return (r);
1311 }
1312
1313 /*
1314  *      swap_pager_putpages:
1315  *
1316  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1317  *
1318  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1319  *      are automatically converted to SWAP objects.
1320  *
1321  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1322  *      vm_page reservation system coupled with properly written VFS devices
1323  *      should ensure that no low-memory deadlock occurs.  This is an area
1324  *      which needs work.
1325  *
1326  *      The parent has N vm_object_pip_add() references prior to
1327  *      calling us and will remove references for rtvals[] that are
1328  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1329  *      completion.
1330  *
1331  *      The parent has soft-busy'd the pages it passes us and will unbusy
1332  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1333  *      We need to unbusy the rest on I/O completion.
1334  */
1335 static void
1336 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1337     int flags, int *rtvals)
1338 {
1339         int i, n;
1340         boolean_t sync;
1341         daddr_t addr, n_free, s_free;
1342
1343         swp_pager_init_freerange(&s_free, &n_free);
1344         if (count && ma[0]->object != object) {
1345                 panic("swap_pager_putpages: object mismatch %p/%p",
1346                     object,
1347                     ma[0]->object
1348                 );
1349         }
1350
1351         /*
1352          * Step 1
1353          *
1354          * Turn object into OBJT_SWAP
1355          * check for bogus sysops
1356          * force sync if not pageout process
1357          */
1358         if (object->type != OBJT_SWAP) {
1359                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1360                 KASSERT(addr == SWAPBLK_NONE,
1361                     ("unexpected object swap block"));
1362         }
1363         VM_OBJECT_WUNLOCK(object);
1364
1365         n = 0;
1366         if (curproc != pageproc)
1367                 sync = TRUE;
1368         else
1369                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1370
1371         /*
1372          * Step 2
1373          *
1374          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1375          * The page is left dirty until the pageout operation completes
1376          * successfully.
1377          */
1378         for (i = 0; i < count; i += n) {
1379                 int j;
1380                 struct buf *bp;
1381                 daddr_t blk;
1382
1383                 /*
1384                  * Maximum I/O size is limited by a number of factors.
1385                  */
1386                 n = min(BLIST_MAX_ALLOC, count - i);
1387                 n = min(n, nsw_cluster_max);
1388
1389                 /* Get a block of swap of size up to size n. */
1390                 blk = swp_pager_getswapspace(&n, 4);
1391                 if (blk == SWAPBLK_NONE) {
1392                         for (j = 0; j < n; ++j)
1393                                 rtvals[i+j] = VM_PAGER_FAIL;
1394                         continue;
1395                 }
1396
1397                 /*
1398                  * All I/O parameters have been satisfied, build the I/O
1399                  * request and assign the swap space.
1400                  */
1401                 if (sync != TRUE) {
1402                         mtx_lock(&swbuf_mtx);
1403                         while (nsw_wcount_async == 0)
1404                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1405                                     "swbufa", 0);
1406                         nsw_wcount_async--;
1407                         mtx_unlock(&swbuf_mtx);
1408                 }
1409                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1410                 if (sync != TRUE)
1411                         bp->b_flags = B_ASYNC;
1412                 bp->b_flags |= B_PAGING;
1413                 bp->b_iocmd = BIO_WRITE;
1414
1415                 bp->b_rcred = crhold(thread0.td_ucred);
1416                 bp->b_wcred = crhold(thread0.td_ucred);
1417                 bp->b_bcount = PAGE_SIZE * n;
1418                 bp->b_bufsize = PAGE_SIZE * n;
1419                 bp->b_blkno = blk;
1420
1421                 VM_OBJECT_WLOCK(object);
1422                 for (j = 0; j < n; ++j) {
1423                         vm_page_t mreq = ma[i+j];
1424
1425                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1426                             blk + j);
1427                         if (addr != SWAPBLK_NONE)
1428                                 swp_pager_update_freerange(&s_free, &n_free,
1429                                     addr);
1430                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1431                         mreq->oflags |= VPO_SWAPINPROG;
1432                         bp->b_pages[j] = mreq;
1433                 }
1434                 VM_OBJECT_WUNLOCK(object);
1435                 bp->b_npages = n;
1436                 /*
1437                  * Must set dirty range for NFS to work.
1438                  */
1439                 bp->b_dirtyoff = 0;
1440                 bp->b_dirtyend = bp->b_bcount;
1441
1442                 VM_CNT_INC(v_swapout);
1443                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1444
1445                 /*
1446                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1447                  * can call the async completion routine at the end of a
1448                  * synchronous I/O operation.  Otherwise, our caller would
1449                  * perform duplicate unbusy and wakeup operations on the page
1450                  * and object, respectively.
1451                  */
1452                 for (j = 0; j < n; j++)
1453                         rtvals[i + j] = VM_PAGER_PEND;
1454
1455                 /*
1456                  * asynchronous
1457                  *
1458                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1459                  */
1460                 if (sync == FALSE) {
1461                         bp->b_iodone = swp_pager_async_iodone;
1462                         BUF_KERNPROC(bp);
1463                         swp_pager_strategy(bp);
1464                         continue;
1465                 }
1466
1467                 /*
1468                  * synchronous
1469                  *
1470                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1471                  */
1472                 bp->b_iodone = bdone;
1473                 swp_pager_strategy(bp);
1474
1475                 /*
1476                  * Wait for the sync I/O to complete.
1477                  */
1478                 bwait(bp, PVM, "swwrt");
1479
1480                 /*
1481                  * Now that we are through with the bp, we can call the
1482                  * normal async completion, which frees everything up.
1483                  */
1484                 swp_pager_async_iodone(bp);
1485         }
1486         VM_OBJECT_WLOCK(object);
1487         swp_pager_freeswapspace(s_free, n_free);
1488 }
1489
1490 /*
1491  *      swp_pager_async_iodone:
1492  *
1493  *      Completion routine for asynchronous reads and writes from/to swap.
1494  *      Also called manually by synchronous code to finish up a bp.
1495  *
1496  *      This routine may not sleep.
1497  */
1498 static void
1499 swp_pager_async_iodone(struct buf *bp)
1500 {
1501         int i;
1502         vm_object_t object = NULL;
1503
1504         /*
1505          * Report error - unless we ran out of memory, in which case
1506          * we've already logged it in swapgeom_strategy().
1507          */
1508         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1509                 printf(
1510                     "swap_pager: I/O error - %s failed; blkno %ld,"
1511                         "size %ld, error %d\n",
1512                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1513                     (long)bp->b_blkno,
1514                     (long)bp->b_bcount,
1515                     bp->b_error
1516                 );
1517         }
1518
1519         /*
1520          * remove the mapping for kernel virtual
1521          */
1522         if (buf_mapped(bp))
1523                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1524         else
1525                 bp->b_data = bp->b_kvabase;
1526
1527         if (bp->b_npages) {
1528                 object = bp->b_pages[0]->object;
1529                 VM_OBJECT_WLOCK(object);
1530         }
1531
1532         /*
1533          * cleanup pages.  If an error occurs writing to swap, we are in
1534          * very serious trouble.  If it happens to be a disk error, though,
1535          * we may be able to recover by reassigning the swap later on.  So
1536          * in this case we remove the m->swapblk assignment for the page
1537          * but do not free it in the rlist.  The errornous block(s) are thus
1538          * never reallocated as swap.  Redirty the page and continue.
1539          */
1540         for (i = 0; i < bp->b_npages; ++i) {
1541                 vm_page_t m = bp->b_pages[i];
1542
1543                 m->oflags &= ~VPO_SWAPINPROG;
1544                 if (m->oflags & VPO_SWAPSLEEP) {
1545                         m->oflags &= ~VPO_SWAPSLEEP;
1546                         wakeup(&object->paging_in_progress);
1547                 }
1548
1549                 if (bp->b_ioflags & BIO_ERROR) {
1550                         /*
1551                          * If an error occurs I'd love to throw the swapblk
1552                          * away without freeing it back to swapspace, so it
1553                          * can never be used again.  But I can't from an
1554                          * interrupt.
1555                          */
1556                         if (bp->b_iocmd == BIO_READ) {
1557                                 /*
1558                                  * NOTE: for reads, m->dirty will probably
1559                                  * be overridden by the original caller of
1560                                  * getpages so don't play cute tricks here.
1561                                  */
1562                                 m->valid = 0;
1563                         } else {
1564                                 /*
1565                                  * If a write error occurs, reactivate page
1566                                  * so it doesn't clog the inactive list,
1567                                  * then finish the I/O.
1568                                  */
1569                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1570                                 vm_page_lock(m);
1571                                 vm_page_activate(m);
1572                                 vm_page_unlock(m);
1573                                 vm_page_sunbusy(m);
1574                         }
1575                 } else if (bp->b_iocmd == BIO_READ) {
1576                         /*
1577                          * NOTE: for reads, m->dirty will probably be
1578                          * overridden by the original caller of getpages so
1579                          * we cannot set them in order to free the underlying
1580                          * swap in a low-swap situation.  I don't think we'd
1581                          * want to do that anyway, but it was an optimization
1582                          * that existed in the old swapper for a time before
1583                          * it got ripped out due to precisely this problem.
1584                          */
1585                         KASSERT(!pmap_page_is_mapped(m),
1586                             ("swp_pager_async_iodone: page %p is mapped", m));
1587                         KASSERT(m->dirty == 0,
1588                             ("swp_pager_async_iodone: page %p is dirty", m));
1589
1590                         m->valid = VM_PAGE_BITS_ALL;
1591                         if (i < bp->b_pgbefore ||
1592                             i >= bp->b_npages - bp->b_pgafter)
1593                                 vm_page_readahead_finish(m);
1594                 } else {
1595                         /*
1596                          * For write success, clear the dirty
1597                          * status, then finish the I/O ( which decrements the
1598                          * busy count and possibly wakes waiter's up ).
1599                          * A page is only written to swap after a period of
1600                          * inactivity.  Therefore, we do not expect it to be
1601                          * reused.
1602                          */
1603                         KASSERT(!pmap_page_is_write_mapped(m),
1604                             ("swp_pager_async_iodone: page %p is not write"
1605                             " protected", m));
1606                         vm_page_undirty(m);
1607                         vm_page_lock(m);
1608                         vm_page_deactivate_noreuse(m);
1609                         vm_page_unlock(m);
1610                         vm_page_sunbusy(m);
1611                 }
1612         }
1613
1614         /*
1615          * adjust pip.  NOTE: the original parent may still have its own
1616          * pip refs on the object.
1617          */
1618         if (object != NULL) {
1619                 vm_object_pip_wakeupn(object, bp->b_npages);
1620                 VM_OBJECT_WUNLOCK(object);
1621         }
1622
1623         /*
1624          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1625          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1626          * trigger a KASSERT in relpbuf().
1627          */
1628         if (bp->b_vp) {
1629                     bp->b_vp = NULL;
1630                     bp->b_bufobj = NULL;
1631         }
1632         /*
1633          * release the physical I/O buffer
1634          */
1635         if (bp->b_flags & B_ASYNC) {
1636                 mtx_lock(&swbuf_mtx);
1637                 if (++nsw_wcount_async == 1)
1638                         wakeup(&nsw_wcount_async);
1639                 mtx_unlock(&swbuf_mtx);
1640         }
1641         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1642 }
1643
1644 int
1645 swap_pager_nswapdev(void)
1646 {
1647
1648         return (nswapdev);
1649 }
1650
1651 /*
1652  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1653  *
1654  *      This routine dissociates the page at the given index within an object
1655  *      from its backing store, paging it in if it does not reside in memory.
1656  *      If the page is paged in, it is marked dirty and placed in the laundry
1657  *      queue.  The page is marked dirty because it no longer has backing
1658  *      store.  It is placed in the laundry queue because it has not been
1659  *      accessed recently.  Otherwise, it would already reside in memory.
1660  *
1661  *      We also attempt to swap in all other pages in the swap block.
1662  *      However, we only guarantee that the one at the specified index is
1663  *      paged in.
1664  *
1665  *      XXX - The code to page the whole block in doesn't work, so we
1666  *            revert to the one-by-one behavior for now.  Sigh.
1667  */
1668 static inline void
1669 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1670 {
1671         vm_page_t m;
1672
1673         vm_object_pip_add(object, 1);
1674         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1675         if (m->valid == VM_PAGE_BITS_ALL) {
1676                 vm_object_pip_wakeup(object);
1677                 vm_page_dirty(m);
1678 #ifdef INVARIANTS
1679                 vm_page_lock(m);
1680                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1681                         panic("page %p is neither wired nor queued", m);
1682                 vm_page_unlock(m);
1683 #endif
1684                 vm_page_xunbusy(m);
1685                 vm_pager_page_unswapped(m);
1686                 return;
1687         }
1688
1689         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1690                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1691         vm_object_pip_wakeup(object);
1692         vm_page_dirty(m);
1693         vm_page_lock(m);
1694         vm_page_launder(m);
1695         vm_page_unlock(m);
1696         vm_page_xunbusy(m);
1697         vm_pager_page_unswapped(m);
1698 }
1699
1700 /*
1701  *      swap_pager_swapoff:
1702  *
1703  *      Page in all of the pages that have been paged out to the
1704  *      given device.  The corresponding blocks in the bitmap must be
1705  *      marked as allocated and the device must be flagged SW_CLOSING.
1706  *      There may be no processes swapped out to the device.
1707  *
1708  *      This routine may block.
1709  */
1710 static void
1711 swap_pager_swapoff(struct swdevt *sp)
1712 {
1713         struct swblk *sb;
1714         vm_object_t object;
1715         vm_pindex_t pi;
1716         int i, retries;
1717
1718         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1719
1720         retries = 0;
1721 full_rescan:
1722         mtx_lock(&vm_object_list_mtx);
1723         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1724                 if (object->type != OBJT_SWAP)
1725                         continue;
1726                 mtx_unlock(&vm_object_list_mtx);
1727                 /* Depends on type-stability. */
1728                 VM_OBJECT_WLOCK(object);
1729
1730                 /*
1731                  * Dead objects are eventually terminated on their own.
1732                  */
1733                 if ((object->flags & OBJ_DEAD) != 0)
1734                         goto next_obj;
1735
1736                 /*
1737                  * Sync with fences placed after pctrie
1738                  * initialization.  We must not access pctrie below
1739                  * unless we checked that our object is swap and not
1740                  * dead.
1741                  */
1742                 atomic_thread_fence_acq();
1743                 if (object->type != OBJT_SWAP)
1744                         goto next_obj;
1745
1746                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1747                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1748                         pi = sb->p + SWAP_META_PAGES;
1749                         for (i = 0; i < SWAP_META_PAGES; i++) {
1750                                 if (sb->d[i] == SWAPBLK_NONE)
1751                                         continue;
1752                                 if (swp_pager_isondev(sb->d[i], sp))
1753                                         swp_pager_force_pagein(object,
1754                                             sb->p + i);
1755                         }
1756                 }
1757 next_obj:
1758                 VM_OBJECT_WUNLOCK(object);
1759                 mtx_lock(&vm_object_list_mtx);
1760         }
1761         mtx_unlock(&vm_object_list_mtx);
1762
1763         if (sp->sw_used) {
1764                 /*
1765                  * Objects may be locked or paging to the device being
1766                  * removed, so we will miss their pages and need to
1767                  * make another pass.  We have marked this device as
1768                  * SW_CLOSING, so the activity should finish soon.
1769                  */
1770                 retries++;
1771                 if (retries > 100) {
1772                         panic("swapoff: failed to locate %d swap blocks",
1773                             sp->sw_used);
1774                 }
1775                 pause("swpoff", hz / 20);
1776                 goto full_rescan;
1777         }
1778         EVENTHANDLER_INVOKE(swapoff, sp);
1779 }
1780
1781 /************************************************************************
1782  *                              SWAP META DATA                          *
1783  ************************************************************************
1784  *
1785  *      These routines manipulate the swap metadata stored in the
1786  *      OBJT_SWAP object.
1787  *
1788  *      Swap metadata is implemented with a global hash and not directly
1789  *      linked into the object.  Instead the object simply contains
1790  *      appropriate tracking counters.
1791  */
1792
1793 /*
1794  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1795  */
1796 static bool
1797 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1798 {
1799         int i;
1800
1801         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1802         for (i = start; i < limit; i++) {
1803                 if (sb->d[i] != SWAPBLK_NONE)
1804                         return (false);
1805         }
1806         return (true);
1807 }
1808    
1809 /*
1810  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1811  *
1812  *      We first convert the object to a swap object if it is a default
1813  *      object.
1814  *
1815  *      The specified swapblk is added to the object's swap metadata.  If
1816  *      the swapblk is not valid, it is freed instead.  Any previously
1817  *      assigned swapblk is returned.
1818  */
1819 static daddr_t
1820 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1821 {
1822         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1823         struct swblk *sb, *sb1;
1824         vm_pindex_t modpi, rdpi;
1825         daddr_t prev_swapblk;
1826         int error, i;
1827
1828         VM_OBJECT_ASSERT_WLOCKED(object);
1829
1830         /*
1831          * Convert default object to swap object if necessary
1832          */
1833         if (object->type != OBJT_SWAP) {
1834                 pctrie_init(&object->un_pager.swp.swp_blks);
1835
1836                 /*
1837                  * Ensure that swap_pager_swapoff()'s iteration over
1838                  * object_list does not see a garbage pctrie.
1839                  */
1840                 atomic_thread_fence_rel();
1841
1842                 object->type = OBJT_SWAP;
1843                 KASSERT(object->handle == NULL, ("default pager with handle"));
1844         }
1845
1846         rdpi = rounddown(pindex, SWAP_META_PAGES);
1847         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1848         if (sb == NULL) {
1849                 if (swapblk == SWAPBLK_NONE)
1850                         return (SWAPBLK_NONE);
1851                 for (;;) {
1852                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1853                             pageproc ? M_USE_RESERVE : 0));
1854                         if (sb != NULL) {
1855                                 sb->p = rdpi;
1856                                 for (i = 0; i < SWAP_META_PAGES; i++)
1857                                         sb->d[i] = SWAPBLK_NONE;
1858                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1859                                     1, 0))
1860                                         printf("swblk zone ok\n");
1861                                 break;
1862                         }
1863                         VM_OBJECT_WUNLOCK(object);
1864                         if (uma_zone_exhausted(swblk_zone)) {
1865                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1866                                     0, 1))
1867                                         printf("swap blk zone exhausted, "
1868                                             "increase kern.maxswzone\n");
1869                                 vm_pageout_oom(VM_OOM_SWAPZ);
1870                                 pause("swzonxb", 10);
1871                         } else
1872                                 uma_zwait(swblk_zone);
1873                         VM_OBJECT_WLOCK(object);
1874                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1875                             rdpi);
1876                         if (sb != NULL)
1877                                 /*
1878                                  * Somebody swapped out a nearby page,
1879                                  * allocating swblk at the rdpi index,
1880                                  * while we dropped the object lock.
1881                                  */
1882                                 goto allocated;
1883                 }
1884                 for (;;) {
1885                         error = SWAP_PCTRIE_INSERT(
1886                             &object->un_pager.swp.swp_blks, sb);
1887                         if (error == 0) {
1888                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1889                                     1, 0))
1890                                         printf("swpctrie zone ok\n");
1891                                 break;
1892                         }
1893                         VM_OBJECT_WUNLOCK(object);
1894                         if (uma_zone_exhausted(swpctrie_zone)) {
1895                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1896                                     0, 1))
1897                                         printf("swap pctrie zone exhausted, "
1898                                             "increase kern.maxswzone\n");
1899                                 vm_pageout_oom(VM_OOM_SWAPZ);
1900                                 pause("swzonxp", 10);
1901                         } else
1902                                 uma_zwait(swpctrie_zone);
1903                         VM_OBJECT_WLOCK(object);
1904                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1905                             rdpi);
1906                         if (sb1 != NULL) {
1907                                 uma_zfree(swblk_zone, sb);
1908                                 sb = sb1;
1909                                 goto allocated;
1910                         }
1911                 }
1912         }
1913 allocated:
1914         MPASS(sb->p == rdpi);
1915
1916         modpi = pindex % SWAP_META_PAGES;
1917         /* Return prior contents of metadata. */
1918         prev_swapblk = sb->d[modpi];
1919         /* Enter block into metadata. */
1920         sb->d[modpi] = swapblk;
1921
1922         /*
1923          * Free the swblk if we end up with the empty page run.
1924          */
1925         if (swapblk == SWAPBLK_NONE &&
1926             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1927                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1928                 uma_zfree(swblk_zone, sb);
1929         }
1930         return (prev_swapblk);
1931 }
1932
1933 /*
1934  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1935  *
1936  *      The requested range of blocks is freed, with any associated swap
1937  *      returned to the swap bitmap.
1938  *
1939  *      This routine will free swap metadata structures as they are cleaned
1940  *      out.  This routine does *NOT* operate on swap metadata associated
1941  *      with resident pages.
1942  */
1943 static void
1944 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1945 {
1946         struct swblk *sb;
1947         daddr_t n_free, s_free;
1948         vm_pindex_t last;
1949         int i, limit, start;
1950
1951         VM_OBJECT_ASSERT_WLOCKED(object);
1952         if (object->type != OBJT_SWAP || count == 0)
1953                 return;
1954
1955         swp_pager_init_freerange(&s_free, &n_free);
1956         last = pindex + count;
1957         for (;;) {
1958                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1959                     rounddown(pindex, SWAP_META_PAGES));
1960                 if (sb == NULL || sb->p >= last)
1961                         break;
1962                 start = pindex > sb->p ? pindex - sb->p : 0;
1963                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1964                     SWAP_META_PAGES;
1965                 for (i = start; i < limit; i++) {
1966                         if (sb->d[i] == SWAPBLK_NONE)
1967                                 continue;
1968                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
1969                         sb->d[i] = SWAPBLK_NONE;
1970                 }
1971                 pindex = sb->p + SWAP_META_PAGES;
1972                 if (swp_pager_swblk_empty(sb, 0, start) &&
1973                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1974                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1975                             sb->p);
1976                         uma_zfree(swblk_zone, sb);
1977                 }
1978         }
1979         swp_pager_freeswapspace(s_free, n_free);
1980 }
1981
1982 /*
1983  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1984  *
1985  *      This routine locates and destroys all swap metadata associated with
1986  *      an object.
1987  */
1988 static void
1989 swp_pager_meta_free_all(vm_object_t object)
1990 {
1991         struct swblk *sb;
1992         daddr_t n_free, s_free;
1993         vm_pindex_t pindex;
1994         int i;
1995
1996         VM_OBJECT_ASSERT_WLOCKED(object);
1997         if (object->type != OBJT_SWAP)
1998                 return;
1999
2000         swp_pager_init_freerange(&s_free, &n_free);
2001         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2002             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2003                 pindex = sb->p + SWAP_META_PAGES;
2004                 for (i = 0; i < SWAP_META_PAGES; i++) {
2005                         if (sb->d[i] == SWAPBLK_NONE)
2006                                 continue;
2007                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2008                 }
2009                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2010                 uma_zfree(swblk_zone, sb);
2011         }
2012         swp_pager_freeswapspace(s_free, n_free);
2013 }
2014
2015 /*
2016  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2017  *
2018  *      This routine is capable of looking up, or removing swapblk
2019  *      assignments in the swap meta data.  It returns the swapblk being
2020  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2021  *
2022  *      When acting on a busy resident page and paging is in progress, we
2023  *      have to wait until paging is complete but otherwise can act on the
2024  *      busy page.
2025  *
2026  *      SWM_POP         remove from meta data but do not free it
2027  */
2028 static daddr_t
2029 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2030 {
2031         struct swblk *sb;
2032         daddr_t r1;
2033
2034         if ((flags & SWM_POP) != 0)
2035                 VM_OBJECT_ASSERT_WLOCKED(object);
2036         else
2037                 VM_OBJECT_ASSERT_LOCKED(object);
2038
2039         /*
2040          * The meta data only exists if the object is OBJT_SWAP
2041          * and even then might not be allocated yet.
2042          */
2043         if (object->type != OBJT_SWAP)
2044                 return (SWAPBLK_NONE);
2045
2046         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2047             rounddown(pindex, SWAP_META_PAGES));
2048         if (sb == NULL)
2049                 return (SWAPBLK_NONE);
2050         r1 = sb->d[pindex % SWAP_META_PAGES];
2051         if (r1 == SWAPBLK_NONE)
2052                 return (SWAPBLK_NONE);
2053         if ((flags & SWM_POP) != 0) {
2054                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2055                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2056                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2057                             rounddown(pindex, SWAP_META_PAGES));
2058                         uma_zfree(swblk_zone, sb);
2059                 }
2060         }
2061         return (r1);
2062 }
2063
2064 /*
2065  * Returns the least page index which is greater than or equal to the
2066  * parameter pindex and for which there is a swap block allocated.
2067  * Returns object's size if the object's type is not swap or if there
2068  * are no allocated swap blocks for the object after the requested
2069  * pindex.
2070  */
2071 vm_pindex_t
2072 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2073 {
2074         struct swblk *sb;
2075         int i;
2076
2077         VM_OBJECT_ASSERT_LOCKED(object);
2078         if (object->type != OBJT_SWAP)
2079                 return (object->size);
2080
2081         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2082             rounddown(pindex, SWAP_META_PAGES));
2083         if (sb == NULL)
2084                 return (object->size);
2085         if (sb->p < pindex) {
2086                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2087                         if (sb->d[i] != SWAPBLK_NONE)
2088                                 return (sb->p + i);
2089                 }
2090                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2091                     roundup(pindex, SWAP_META_PAGES));
2092                 if (sb == NULL)
2093                         return (object->size);
2094         }
2095         for (i = 0; i < SWAP_META_PAGES; i++) {
2096                 if (sb->d[i] != SWAPBLK_NONE)
2097                         return (sb->p + i);
2098         }
2099
2100         /*
2101          * We get here if a swblk is present in the trie but it
2102          * doesn't map any blocks.
2103          */
2104         MPASS(0);
2105         return (object->size);
2106 }
2107
2108 /*
2109  * System call swapon(name) enables swapping on device name,
2110  * which must be in the swdevsw.  Return EBUSY
2111  * if already swapping on this device.
2112  */
2113 #ifndef _SYS_SYSPROTO_H_
2114 struct swapon_args {
2115         char *name;
2116 };
2117 #endif
2118
2119 /*
2120  * MPSAFE
2121  */
2122 /* ARGSUSED */
2123 int
2124 sys_swapon(struct thread *td, struct swapon_args *uap)
2125 {
2126         struct vattr attr;
2127         struct vnode *vp;
2128         struct nameidata nd;
2129         int error;
2130
2131         error = priv_check(td, PRIV_SWAPON);
2132         if (error)
2133                 return (error);
2134
2135         sx_xlock(&swdev_syscall_lock);
2136
2137         /*
2138          * Swap metadata may not fit in the KVM if we have physical
2139          * memory of >1GB.
2140          */
2141         if (swblk_zone == NULL) {
2142                 error = ENOMEM;
2143                 goto done;
2144         }
2145
2146         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2147             uap->name, td);
2148         error = namei(&nd);
2149         if (error)
2150                 goto done;
2151
2152         NDFREE(&nd, NDF_ONLY_PNBUF);
2153         vp = nd.ni_vp;
2154
2155         if (vn_isdisk(vp, &error)) {
2156                 error = swapongeom(vp);
2157         } else if (vp->v_type == VREG &&
2158             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2159             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2160                 /*
2161                  * Allow direct swapping to NFS regular files in the same
2162                  * way that nfs_mountroot() sets up diskless swapping.
2163                  */
2164                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2165         }
2166
2167         if (error)
2168                 vrele(vp);
2169 done:
2170         sx_xunlock(&swdev_syscall_lock);
2171         return (error);
2172 }
2173
2174 /*
2175  * Check that the total amount of swap currently configured does not
2176  * exceed half the theoretical maximum.  If it does, print a warning
2177  * message.
2178  */
2179 static void
2180 swapon_check_swzone(void)
2181 {
2182         unsigned long maxpages, npages;
2183
2184         npages = swap_total;
2185         /* absolute maximum we can handle assuming 100% efficiency */
2186         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2187
2188         /* recommend using no more than half that amount */
2189         if (npages > maxpages / 2) {
2190                 printf("warning: total configured swap (%lu pages) "
2191                     "exceeds maximum recommended amount (%lu pages).\n",
2192                     npages, maxpages / 2);
2193                 printf("warning: increase kern.maxswzone "
2194                     "or reduce amount of swap.\n");
2195         }
2196 }
2197
2198 static void
2199 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2200     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2201 {
2202         struct swdevt *sp, *tsp;
2203         swblk_t dvbase;
2204         u_long mblocks;
2205
2206         /*
2207          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2208          * First chop nblks off to page-align it, then convert.
2209          *
2210          * sw->sw_nblks is in page-sized chunks now too.
2211          */
2212         nblks &= ~(ctodb(1) - 1);
2213         nblks = dbtoc(nblks);
2214
2215         /*
2216          * If we go beyond this, we get overflows in the radix
2217          * tree bitmap code.
2218          */
2219         mblocks = 0x40000000 / BLIST_META_RADIX;
2220         if (nblks > mblocks) {
2221                 printf(
2222     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2223                     mblocks / 1024 / 1024 * PAGE_SIZE);
2224                 nblks = mblocks;
2225         }
2226
2227         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2228         sp->sw_vp = vp;
2229         sp->sw_id = id;
2230         sp->sw_dev = dev;
2231         sp->sw_flags = 0;
2232         sp->sw_nblks = nblks;
2233         sp->sw_used = 0;
2234         sp->sw_strategy = strategy;
2235         sp->sw_close = close;
2236         sp->sw_flags = flags;
2237
2238         sp->sw_blist = blist_create(nblks, M_WAITOK);
2239         /*
2240          * Do not free the first two block in order to avoid overwriting
2241          * any bsd label at the front of the partition
2242          */
2243         blist_free(sp->sw_blist, 2, nblks - 2);
2244
2245         dvbase = 0;
2246         mtx_lock(&sw_dev_mtx);
2247         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2248                 if (tsp->sw_end >= dvbase) {
2249                         /*
2250                          * We put one uncovered page between the devices
2251                          * in order to definitively prevent any cross-device
2252                          * I/O requests
2253                          */
2254                         dvbase = tsp->sw_end + 1;
2255                 }
2256         }
2257         sp->sw_first = dvbase;
2258         sp->sw_end = dvbase + nblks;
2259         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2260         nswapdev++;
2261         swap_pager_avail += nblks - 2;
2262         swap_total += nblks;
2263         swapon_check_swzone();
2264         swp_sizecheck();
2265         mtx_unlock(&sw_dev_mtx);
2266         EVENTHANDLER_INVOKE(swapon, sp);
2267 }
2268
2269 /*
2270  * SYSCALL: swapoff(devname)
2271  *
2272  * Disable swapping on the given device.
2273  *
2274  * XXX: Badly designed system call: it should use a device index
2275  * rather than filename as specification.  We keep sw_vp around
2276  * only to make this work.
2277  */
2278 #ifndef _SYS_SYSPROTO_H_
2279 struct swapoff_args {
2280         char *name;
2281 };
2282 #endif
2283
2284 /*
2285  * MPSAFE
2286  */
2287 /* ARGSUSED */
2288 int
2289 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2290 {
2291         struct vnode *vp;
2292         struct nameidata nd;
2293         struct swdevt *sp;
2294         int error;
2295
2296         error = priv_check(td, PRIV_SWAPOFF);
2297         if (error)
2298                 return (error);
2299
2300         sx_xlock(&swdev_syscall_lock);
2301
2302         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2303             td);
2304         error = namei(&nd);
2305         if (error)
2306                 goto done;
2307         NDFREE(&nd, NDF_ONLY_PNBUF);
2308         vp = nd.ni_vp;
2309
2310         mtx_lock(&sw_dev_mtx);
2311         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2312                 if (sp->sw_vp == vp)
2313                         break;
2314         }
2315         mtx_unlock(&sw_dev_mtx);
2316         if (sp == NULL) {
2317                 error = EINVAL;
2318                 goto done;
2319         }
2320         error = swapoff_one(sp, td->td_ucred);
2321 done:
2322         sx_xunlock(&swdev_syscall_lock);
2323         return (error);
2324 }
2325
2326 static int
2327 swapoff_one(struct swdevt *sp, struct ucred *cred)
2328 {
2329         u_long nblks;
2330 #ifdef MAC
2331         int error;
2332 #endif
2333
2334         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2335 #ifdef MAC
2336         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2337         error = mac_system_check_swapoff(cred, sp->sw_vp);
2338         (void) VOP_UNLOCK(sp->sw_vp, 0);
2339         if (error != 0)
2340                 return (error);
2341 #endif
2342         nblks = sp->sw_nblks;
2343
2344         /*
2345          * We can turn off this swap device safely only if the
2346          * available virtual memory in the system will fit the amount
2347          * of data we will have to page back in, plus an epsilon so
2348          * the system doesn't become critically low on swap space.
2349          */
2350         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2351                 return (ENOMEM);
2352
2353         /*
2354          * Prevent further allocations on this device.
2355          */
2356         mtx_lock(&sw_dev_mtx);
2357         sp->sw_flags |= SW_CLOSING;
2358         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2359         swap_total -= nblks;
2360         mtx_unlock(&sw_dev_mtx);
2361
2362         /*
2363          * Page in the contents of the device and close it.
2364          */
2365         swap_pager_swapoff(sp);
2366
2367         sp->sw_close(curthread, sp);
2368         mtx_lock(&sw_dev_mtx);
2369         sp->sw_id = NULL;
2370         TAILQ_REMOVE(&swtailq, sp, sw_list);
2371         nswapdev--;
2372         if (nswapdev == 0) {
2373                 swap_pager_full = 2;
2374                 swap_pager_almost_full = 1;
2375         }
2376         if (swdevhd == sp)
2377                 swdevhd = NULL;
2378         mtx_unlock(&sw_dev_mtx);
2379         blist_destroy(sp->sw_blist);
2380         free(sp, M_VMPGDATA);
2381         return (0);
2382 }
2383
2384 void
2385 swapoff_all(void)
2386 {
2387         struct swdevt *sp, *spt;
2388         const char *devname;
2389         int error;
2390
2391         sx_xlock(&swdev_syscall_lock);
2392
2393         mtx_lock(&sw_dev_mtx);
2394         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2395                 mtx_unlock(&sw_dev_mtx);
2396                 if (vn_isdisk(sp->sw_vp, NULL))
2397                         devname = devtoname(sp->sw_vp->v_rdev);
2398                 else
2399                         devname = "[file]";
2400                 error = swapoff_one(sp, thread0.td_ucred);
2401                 if (error != 0) {
2402                         printf("Cannot remove swap device %s (error=%d), "
2403                             "skipping.\n", devname, error);
2404                 } else if (bootverbose) {
2405                         printf("Swap device %s removed.\n", devname);
2406                 }
2407                 mtx_lock(&sw_dev_mtx);
2408         }
2409         mtx_unlock(&sw_dev_mtx);
2410
2411         sx_xunlock(&swdev_syscall_lock);
2412 }
2413
2414 void
2415 swap_pager_status(int *total, int *used)
2416 {
2417         struct swdevt *sp;
2418
2419         *total = 0;
2420         *used = 0;
2421         mtx_lock(&sw_dev_mtx);
2422         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2423                 *total += sp->sw_nblks;
2424                 *used += sp->sw_used;
2425         }
2426         mtx_unlock(&sw_dev_mtx);
2427 }
2428
2429 int
2430 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2431 {
2432         struct swdevt *sp;
2433         const char *tmp_devname;
2434         int error, n;
2435
2436         n = 0;
2437         error = ENOENT;
2438         mtx_lock(&sw_dev_mtx);
2439         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2440                 if (n != name) {
2441                         n++;
2442                         continue;
2443                 }
2444                 xs->xsw_version = XSWDEV_VERSION;
2445                 xs->xsw_dev = sp->sw_dev;
2446                 xs->xsw_flags = sp->sw_flags;
2447                 xs->xsw_nblks = sp->sw_nblks;
2448                 xs->xsw_used = sp->sw_used;
2449                 if (devname != NULL) {
2450                         if (vn_isdisk(sp->sw_vp, NULL))
2451                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2452                         else
2453                                 tmp_devname = "[file]";
2454                         strncpy(devname, tmp_devname, len);
2455                 }
2456                 error = 0;
2457                 break;
2458         }
2459         mtx_unlock(&sw_dev_mtx);
2460         return (error);
2461 }
2462
2463 #if defined(COMPAT_FREEBSD11)
2464 #define XSWDEV_VERSION_11       1
2465 struct xswdev11 {
2466         u_int   xsw_version;
2467         uint32_t xsw_dev;
2468         int     xsw_flags;
2469         int     xsw_nblks;
2470         int     xsw_used;
2471 };
2472 #endif
2473
2474 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2475 struct xswdev32 {
2476         u_int   xsw_version;
2477         u_int   xsw_dev1, xsw_dev2;
2478         int     xsw_flags;
2479         int     xsw_nblks;
2480         int     xsw_used;
2481 };
2482 #endif
2483
2484 static int
2485 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2486 {
2487         struct xswdev xs;
2488 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2489         struct xswdev32 xs32;
2490 #endif
2491 #if defined(COMPAT_FREEBSD11)
2492         struct xswdev11 xs11;
2493 #endif
2494         int error;
2495
2496         if (arg2 != 1)                  /* name length */
2497                 return (EINVAL);
2498         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2499         if (error != 0)
2500                 return (error);
2501 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2502         if (req->oldlen == sizeof(xs32)) {
2503                 xs32.xsw_version = XSWDEV_VERSION;
2504                 xs32.xsw_dev1 = xs.xsw_dev;
2505                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2506                 xs32.xsw_flags = xs.xsw_flags;
2507                 xs32.xsw_nblks = xs.xsw_nblks;
2508                 xs32.xsw_used = xs.xsw_used;
2509                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2510                 return (error);
2511         }
2512 #endif
2513 #if defined(COMPAT_FREEBSD11)
2514         if (req->oldlen == sizeof(xs11)) {
2515                 xs11.xsw_version = XSWDEV_VERSION_11;
2516                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2517                 xs11.xsw_flags = xs.xsw_flags;
2518                 xs11.xsw_nblks = xs.xsw_nblks;
2519                 xs11.xsw_used = xs.xsw_used;
2520                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2521                 return (error);
2522         }
2523 #endif
2524         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2525         return (error);
2526 }
2527
2528 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2529     "Number of swap devices");
2530 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2531     sysctl_vm_swap_info,
2532     "Swap statistics by device");
2533
2534 /*
2535  * Count the approximate swap usage in pages for a vmspace.  The
2536  * shadowed or not yet copied on write swap blocks are not accounted.
2537  * The map must be locked.
2538  */
2539 long
2540 vmspace_swap_count(struct vmspace *vmspace)
2541 {
2542         vm_map_t map;
2543         vm_map_entry_t cur;
2544         vm_object_t object;
2545         struct swblk *sb;
2546         vm_pindex_t e, pi;
2547         long count;
2548         int i;
2549
2550         map = &vmspace->vm_map;
2551         count = 0;
2552
2553         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2554                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2555                         continue;
2556                 object = cur->object.vm_object;
2557                 if (object == NULL || object->type != OBJT_SWAP)
2558                         continue;
2559                 VM_OBJECT_RLOCK(object);
2560                 if (object->type != OBJT_SWAP)
2561                         goto unlock;
2562                 pi = OFF_TO_IDX(cur->offset);
2563                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2564                 for (;; pi = sb->p + SWAP_META_PAGES) {
2565                         sb = SWAP_PCTRIE_LOOKUP_GE(
2566                             &object->un_pager.swp.swp_blks, pi);
2567                         if (sb == NULL || sb->p >= e)
2568                                 break;
2569                         for (i = 0; i < SWAP_META_PAGES; i++) {
2570                                 if (sb->p + i < e &&
2571                                     sb->d[i] != SWAPBLK_NONE)
2572                                         count++;
2573                         }
2574                 }
2575 unlock:
2576                 VM_OBJECT_RUNLOCK(object);
2577         }
2578         return (count);
2579 }
2580
2581 /*
2582  * GEOM backend
2583  *
2584  * Swapping onto disk devices.
2585  *
2586  */
2587
2588 static g_orphan_t swapgeom_orphan;
2589
2590 static struct g_class g_swap_class = {
2591         .name = "SWAP",
2592         .version = G_VERSION,
2593         .orphan = swapgeom_orphan,
2594 };
2595
2596 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2597
2598
2599 static void
2600 swapgeom_close_ev(void *arg, int flags)
2601 {
2602         struct g_consumer *cp;
2603
2604         cp = arg;
2605         g_access(cp, -1, -1, 0);
2606         g_detach(cp);
2607         g_destroy_consumer(cp);
2608 }
2609
2610 /*
2611  * Add a reference to the g_consumer for an inflight transaction.
2612  */
2613 static void
2614 swapgeom_acquire(struct g_consumer *cp)
2615 {
2616
2617         mtx_assert(&sw_dev_mtx, MA_OWNED);
2618         cp->index++;
2619 }
2620
2621 /*
2622  * Remove a reference from the g_consumer.  Post a close event if all
2623  * references go away, since the function might be called from the
2624  * biodone context.
2625  */
2626 static void
2627 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2628 {
2629
2630         mtx_assert(&sw_dev_mtx, MA_OWNED);
2631         cp->index--;
2632         if (cp->index == 0) {
2633                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2634                         sp->sw_id = NULL;
2635         }
2636 }
2637
2638 static void
2639 swapgeom_done(struct bio *bp2)
2640 {
2641         struct swdevt *sp;
2642         struct buf *bp;
2643         struct g_consumer *cp;
2644
2645         bp = bp2->bio_caller2;
2646         cp = bp2->bio_from;
2647         bp->b_ioflags = bp2->bio_flags;
2648         if (bp2->bio_error)
2649                 bp->b_ioflags |= BIO_ERROR;
2650         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2651         bp->b_error = bp2->bio_error;
2652         bp->b_caller1 = NULL;
2653         bufdone(bp);
2654         sp = bp2->bio_caller1;
2655         mtx_lock(&sw_dev_mtx);
2656         swapgeom_release(cp, sp);
2657         mtx_unlock(&sw_dev_mtx);
2658         g_destroy_bio(bp2);
2659 }
2660
2661 static void
2662 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2663 {
2664         struct bio *bio;
2665         struct g_consumer *cp;
2666
2667         mtx_lock(&sw_dev_mtx);
2668         cp = sp->sw_id;
2669         if (cp == NULL) {
2670                 mtx_unlock(&sw_dev_mtx);
2671                 bp->b_error = ENXIO;
2672                 bp->b_ioflags |= BIO_ERROR;
2673                 bufdone(bp);
2674                 return;
2675         }
2676         swapgeom_acquire(cp);
2677         mtx_unlock(&sw_dev_mtx);
2678         if (bp->b_iocmd == BIO_WRITE)
2679                 bio = g_new_bio();
2680         else
2681                 bio = g_alloc_bio();
2682         if (bio == NULL) {
2683                 mtx_lock(&sw_dev_mtx);
2684                 swapgeom_release(cp, sp);
2685                 mtx_unlock(&sw_dev_mtx);
2686                 bp->b_error = ENOMEM;
2687                 bp->b_ioflags |= BIO_ERROR;
2688                 printf("swap_pager: cannot allocate bio\n");
2689                 bufdone(bp);
2690                 return;
2691         }
2692
2693         bp->b_caller1 = bio;
2694         bio->bio_caller1 = sp;
2695         bio->bio_caller2 = bp;
2696         bio->bio_cmd = bp->b_iocmd;
2697         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2698         bio->bio_length = bp->b_bcount;
2699         bio->bio_done = swapgeom_done;
2700         if (!buf_mapped(bp)) {
2701                 bio->bio_ma = bp->b_pages;
2702                 bio->bio_data = unmapped_buf;
2703                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2704                 bio->bio_ma_n = bp->b_npages;
2705                 bio->bio_flags |= BIO_UNMAPPED;
2706         } else {
2707                 bio->bio_data = bp->b_data;
2708                 bio->bio_ma = NULL;
2709         }
2710         g_io_request(bio, cp);
2711         return;
2712 }
2713
2714 static void
2715 swapgeom_orphan(struct g_consumer *cp)
2716 {
2717         struct swdevt *sp;
2718         int destroy;
2719
2720         mtx_lock(&sw_dev_mtx);
2721         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2722                 if (sp->sw_id == cp) {
2723                         sp->sw_flags |= SW_CLOSING;
2724                         break;
2725                 }
2726         }
2727         /*
2728          * Drop reference we were created with. Do directly since we're in a
2729          * special context where we don't have to queue the call to
2730          * swapgeom_close_ev().
2731          */
2732         cp->index--;
2733         destroy = ((sp != NULL) && (cp->index == 0));
2734         if (destroy)
2735                 sp->sw_id = NULL;
2736         mtx_unlock(&sw_dev_mtx);
2737         if (destroy)
2738                 swapgeom_close_ev(cp, 0);
2739 }
2740
2741 static void
2742 swapgeom_close(struct thread *td, struct swdevt *sw)
2743 {
2744         struct g_consumer *cp;
2745
2746         mtx_lock(&sw_dev_mtx);
2747         cp = sw->sw_id;
2748         sw->sw_id = NULL;
2749         mtx_unlock(&sw_dev_mtx);
2750
2751         /*
2752          * swapgeom_close() may be called from the biodone context,
2753          * where we cannot perform topology changes.  Delegate the
2754          * work to the events thread.
2755          */
2756         if (cp != NULL)
2757                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2758 }
2759
2760 static int
2761 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2762 {
2763         struct g_provider *pp;
2764         struct g_consumer *cp;
2765         static struct g_geom *gp;
2766         struct swdevt *sp;
2767         u_long nblks;
2768         int error;
2769
2770         pp = g_dev_getprovider(dev);
2771         if (pp == NULL)
2772                 return (ENODEV);
2773         mtx_lock(&sw_dev_mtx);
2774         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2775                 cp = sp->sw_id;
2776                 if (cp != NULL && cp->provider == pp) {
2777                         mtx_unlock(&sw_dev_mtx);
2778                         return (EBUSY);
2779                 }
2780         }
2781         mtx_unlock(&sw_dev_mtx);
2782         if (gp == NULL)
2783                 gp = g_new_geomf(&g_swap_class, "swap");
2784         cp = g_new_consumer(gp);
2785         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2786         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2787         g_attach(cp, pp);
2788         /*
2789          * XXX: Every time you think you can improve the margin for
2790          * footshooting, somebody depends on the ability to do so:
2791          * savecore(8) wants to write to our swapdev so we cannot
2792          * set an exclusive count :-(
2793          */
2794         error = g_access(cp, 1, 1, 0);
2795         if (error != 0) {
2796                 g_detach(cp);
2797                 g_destroy_consumer(cp);
2798                 return (error);
2799         }
2800         nblks = pp->mediasize / DEV_BSIZE;
2801         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2802             swapgeom_close, dev2udev(dev),
2803             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2804         return (0);
2805 }
2806
2807 static int
2808 swapongeom(struct vnode *vp)
2809 {
2810         int error;
2811
2812         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2813         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2814                 error = ENOENT;
2815         } else {
2816                 g_topology_lock();
2817                 error = swapongeom_locked(vp->v_rdev, vp);
2818                 g_topology_unlock();
2819         }
2820         VOP_UNLOCK(vp, 0);
2821         return (error);
2822 }
2823
2824 /*
2825  * VNODE backend
2826  *
2827  * This is used mainly for network filesystem (read: probably only tested
2828  * with NFS) swapfiles.
2829  *
2830  */
2831
2832 static void
2833 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2834 {
2835         struct vnode *vp2;
2836
2837         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2838
2839         vp2 = sp->sw_id;
2840         vhold(vp2);
2841         if (bp->b_iocmd == BIO_WRITE) {
2842                 if (bp->b_bufobj)
2843                         bufobj_wdrop(bp->b_bufobj);
2844                 bufobj_wref(&vp2->v_bufobj);
2845         }
2846         if (bp->b_bufobj != &vp2->v_bufobj)
2847                 bp->b_bufobj = &vp2->v_bufobj;
2848         bp->b_vp = vp2;
2849         bp->b_iooffset = dbtob(bp->b_blkno);
2850         bstrategy(bp);
2851         return;
2852 }
2853
2854 static void
2855 swapdev_close(struct thread *td, struct swdevt *sp)
2856 {
2857
2858         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2859         vrele(sp->sw_vp);
2860 }
2861
2862
2863 static int
2864 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2865 {
2866         struct swdevt *sp;
2867         int error;
2868
2869         if (nblks == 0)
2870                 return (ENXIO);
2871         mtx_lock(&sw_dev_mtx);
2872         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2873                 if (sp->sw_id == vp) {
2874                         mtx_unlock(&sw_dev_mtx);
2875                         return (EBUSY);
2876                 }
2877         }
2878         mtx_unlock(&sw_dev_mtx);
2879
2880         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2881 #ifdef MAC
2882         error = mac_system_check_swapon(td->td_ucred, vp);
2883         if (error == 0)
2884 #endif
2885                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2886         (void) VOP_UNLOCK(vp, 0);
2887         if (error)
2888                 return (error);
2889
2890         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2891             NODEV, 0);
2892         return (0);
2893 }
2894
2895 static int
2896 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2897 {
2898         int error, new, n;
2899
2900         new = nsw_wcount_async_max;
2901         error = sysctl_handle_int(oidp, &new, 0, req);
2902         if (error != 0 || req->newptr == NULL)
2903                 return (error);
2904
2905         if (new > nswbuf / 2 || new < 1)
2906                 return (EINVAL);
2907
2908         mtx_lock(&swbuf_mtx);
2909         while (nsw_wcount_async_max != new) {
2910                 /*
2911                  * Adjust difference.  If the current async count is too low,
2912                  * we will need to sqeeze our update slowly in.  Sleep with a
2913                  * higher priority than getpbuf() to finish faster.
2914                  */
2915                 n = new - nsw_wcount_async_max;
2916                 if (nsw_wcount_async + n >= 0) {
2917                         nsw_wcount_async += n;
2918                         nsw_wcount_async_max += n;
2919                         wakeup(&nsw_wcount_async);
2920                 } else {
2921                         nsw_wcount_async_max -= nsw_wcount_async;
2922                         nsw_wcount_async = 0;
2923                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2924                             "swpsysctl", 0);
2925                 }
2926         }
2927         mtx_unlock(&swbuf_mtx);
2928
2929         return (0);
2930 }