]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Merge libc++ trunk r351319, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/priv.h>
81 #include <sys/proc.h>
82 #include <sys/bio.h>
83 #include <sys/buf.h>
84 #include <sys/disk.h>
85 #include <sys/fcntl.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/vnode.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/racct.h>
92 #include <sys/resource.h>
93 #include <sys/resourcevar.h>
94 #include <sys/rwlock.h>
95 #include <sys/sbuf.h>
96 #include <sys/sysctl.h>
97 #include <sys/sysproto.h>
98 #include <sys/blist.h>
99 #include <sys/lock.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102
103 #include <security/mac/mac_framework.h>
104
105 #include <vm/vm.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_pageout.h>
113 #include <vm/vm_param.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 #include <geom/geom.h>
119
120 /*
121  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
122  * The 64-page limit is due to the radix code (kern/subr_blist.c).
123  */
124 #ifndef MAX_PAGEOUT_CLUSTER
125 #define MAX_PAGEOUT_CLUSTER     32
126 #endif
127
128 #if !defined(SWB_NPAGES)
129 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
130 #endif
131
132 #define SWAP_META_PAGES         PCTRIE_COUNT
133
134 /*
135  * A swblk structure maps each page index within a
136  * SWAP_META_PAGES-aligned and sized range to the address of an
137  * on-disk swap block (or SWAPBLK_NONE). The collection of these
138  * mappings for an entire vm object is implemented as a pc-trie.
139  */
140 struct swblk {
141         vm_pindex_t     p;
142         daddr_t         d[SWAP_META_PAGES];
143 };
144
145 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
146 static struct mtx sw_dev_mtx;
147 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
148 static struct swdevt *swdevhd;  /* Allocate from here next */
149 static int nswapdev;            /* Number of swap devices */
150 int swap_pager_avail;
151 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
152
153 static u_long swap_reserved;
154 static u_long swap_total;
155 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
156 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
157     &swap_reserved, 0, sysctl_page_shift, "A", 
158     "Amount of swap storage needed to back all allocated anonymous memory.");
159 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
160     &swap_total, 0, sysctl_page_shift, "A", 
161     "Total amount of available swap storage.");
162
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173
174 /* bits from overcommit */
175 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
176 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
177 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
178
179 static int
180 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
181 {
182         uint64_t newval;
183         u_long value = *(u_long *)arg1;
184
185         newval = ((uint64_t)value) << PAGE_SHIFT;
186         return (sysctl_handle_64(oidp, &newval, 0, req));
187 }
188
189 int
190 swap_reserve(vm_ooffset_t incr)
191 {
192
193         return (swap_reserve_by_cred(incr, curthread->td_ucred));
194 }
195
196 int
197 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
198 {
199         u_long r, s, prev, pincr;
200         int res, error;
201         static int curfail;
202         static struct timeval lastfail;
203         struct uidinfo *uip;
204
205         uip = cred->cr_ruidinfo;
206
207         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
208             (uintmax_t)incr));
209
210 #ifdef RACCT
211         if (racct_enable) {
212                 PROC_LOCK(curproc);
213                 error = racct_add(curproc, RACCT_SWAP, incr);
214                 PROC_UNLOCK(curproc);
215                 if (error != 0)
216                         return (0);
217         }
218 #endif
219
220         pincr = atop(incr);
221         res = 0;
222         prev = atomic_fetchadd_long(&swap_reserved, pincr);
223         r = prev + pincr;
224         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
225                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
226                     vm_wire_count();
227         } else
228                 s = 0;
229         s += swap_total;
230         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
231             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
232                 res = 1;
233         } else {
234                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
235                 if (prev < pincr)
236                         panic("swap_reserved < incr on overcommit fail");
237         }
238         if (res) {
239                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
240                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
241                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
242                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
243                         res = 0;
244                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
245                         if (prev < pincr)
246                                 panic("uip->ui_vmsize < incr on overcommit fail");
247                 }
248         }
249         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
250                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
251                     uip->ui_uid, curproc->p_pid, incr);
252         }
253
254 #ifdef RACCT
255         if (racct_enable && !res) {
256                 PROC_LOCK(curproc);
257                 racct_sub(curproc, RACCT_SWAP, incr);
258                 PROC_UNLOCK(curproc);
259         }
260 #endif
261
262         return (res);
263 }
264
265 void
266 swap_reserve_force(vm_ooffset_t incr)
267 {
268         struct uidinfo *uip;
269         u_long pincr;
270
271         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
272             (uintmax_t)incr));
273
274         PROC_LOCK(curproc);
275 #ifdef RACCT
276         if (racct_enable)
277                 racct_add_force(curproc, RACCT_SWAP, incr);
278 #endif
279         pincr = atop(incr);
280         atomic_add_long(&swap_reserved, pincr);
281         uip = curproc->p_ucred->cr_ruidinfo;
282         atomic_add_long(&uip->ui_vmsize, pincr);
283         PROC_UNLOCK(curproc);
284 }
285
286 void
287 swap_release(vm_ooffset_t decr)
288 {
289         struct ucred *cred;
290
291         PROC_LOCK(curproc);
292         cred = curproc->p_ucred;
293         swap_release_by_cred(decr, cred);
294         PROC_UNLOCK(curproc);
295 }
296
297 void
298 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
299 {
300         u_long prev, pdecr;
301         struct uidinfo *uip;
302
303         uip = cred->cr_ruidinfo;
304
305         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
306             (uintmax_t)decr));
307
308         pdecr = atop(decr);
309         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
310         if (prev < pdecr)
311                 panic("swap_reserved < decr");
312
313         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
314         if (prev < pdecr)
315                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
316 #ifdef RACCT
317         if (racct_enable)
318                 racct_sub_cred(cred, RACCT_SWAP, decr);
319 #endif
320 }
321
322 #define SWM_POP         0x01    /* pop out                      */
323
324 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
325 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
326 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
327 static int nsw_wcount_async;    /* limit async write buffers */
328 static int nsw_wcount_async_max;/* assigned maximum                     */
329 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
330
331 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
332 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
333     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
334     "Maximum running async swap ops");
335 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
336 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
337     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
338     "Swap Fragmentation Info");
339
340 static struct sx sw_alloc_sx;
341
342 /*
343  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
344  * of searching a named list by hashing it just a little.
345  */
346
347 #define NOBJLISTS               8
348
349 #define NOBJLIST(handle)        \
350         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
351
352 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
353 static uma_zone_t swwbuf_zone;
354 static uma_zone_t swrbuf_zone;
355 static uma_zone_t swblk_zone;
356 static uma_zone_t swpctrie_zone;
357
358 /*
359  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
360  * calls hooked from other parts of the VM system and do not appear here.
361  * (see vm/swap_pager.h).
362  */
363 static vm_object_t
364                 swap_pager_alloc(void *handle, vm_ooffset_t size,
365                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
366 static void     swap_pager_dealloc(vm_object_t object);
367 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
368     int *);
369 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
370     int *, pgo_getpages_iodone_t, void *);
371 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
372 static boolean_t
373                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
374 static void     swap_pager_init(void);
375 static void     swap_pager_unswapped(vm_page_t);
376 static void     swap_pager_swapoff(struct swdevt *sp);
377
378 struct pagerops swappagerops = {
379         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
380         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
381         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
382         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
383         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
384         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
385         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
386         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
387 };
388
389 /*
390  * swap_*() routines are externally accessible.  swp_*() routines are
391  * internal.
392  */
393 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
394 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
395
396 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
397     "Maximum size of a swap block in pages");
398
399 static void     swp_sizecheck(void);
400 static void     swp_pager_async_iodone(struct buf *bp);
401 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
402 static int      swapongeom(struct vnode *);
403 static int      swaponvp(struct thread *, struct vnode *, u_long);
404 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
405
406 /*
407  * Swap bitmap functions
408  */
409 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
410 static daddr_t  swp_pager_getswapspace(int npages);
411
412 /*
413  * Metadata functions
414  */
415 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
416 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
417 static void swp_pager_meta_free_all(vm_object_t);
418 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
419
420 static void
421 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
422 {
423
424         *start = SWAPBLK_NONE;
425         *num = 0;
426 }
427
428 static void
429 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
430 {
431
432         if (*start + *num == addr) {
433                 (*num)++;
434         } else {
435                 swp_pager_freeswapspace(*start, *num);
436                 *start = addr;
437                 *num = 1;
438         }
439 }
440
441 static void *
442 swblk_trie_alloc(struct pctrie *ptree)
443 {
444
445         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
446             M_USE_RESERVE : 0)));
447 }
448
449 static void
450 swblk_trie_free(struct pctrie *ptree, void *node)
451 {
452
453         uma_zfree(swpctrie_zone, node);
454 }
455
456 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
457
458 /*
459  * SWP_SIZECHECK() -    update swap_pager_full indication
460  *
461  *      update the swap_pager_almost_full indication and warn when we are
462  *      about to run out of swap space, using lowat/hiwat hysteresis.
463  *
464  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
465  *
466  *      No restrictions on call
467  *      This routine may not block.
468  */
469 static void
470 swp_sizecheck(void)
471 {
472
473         if (swap_pager_avail < nswap_lowat) {
474                 if (swap_pager_almost_full == 0) {
475                         printf("swap_pager: out of swap space\n");
476                         swap_pager_almost_full = 1;
477                 }
478         } else {
479                 swap_pager_full = 0;
480                 if (swap_pager_avail > nswap_hiwat)
481                         swap_pager_almost_full = 0;
482         }
483 }
484
485 /*
486  * SWAP_PAGER_INIT() -  initialize the swap pager!
487  *
488  *      Expected to be started from system init.  NOTE:  This code is run
489  *      before much else so be careful what you depend on.  Most of the VM
490  *      system has yet to be initialized at this point.
491  */
492 static void
493 swap_pager_init(void)
494 {
495         /*
496          * Initialize object lists
497          */
498         int i;
499
500         for (i = 0; i < NOBJLISTS; ++i)
501                 TAILQ_INIT(&swap_pager_object_list[i]);
502         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
503         sx_init(&sw_alloc_sx, "swspsx");
504         sx_init(&swdev_syscall_lock, "swsysc");
505 }
506
507 /*
508  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
509  *
510  *      Expected to be started from pageout process once, prior to entering
511  *      its main loop.
512  */
513 void
514 swap_pager_swap_init(void)
515 {
516         unsigned long n, n2;
517
518         /*
519          * Number of in-transit swap bp operations.  Don't
520          * exhaust the pbufs completely.  Make sure we
521          * initialize workable values (0 will work for hysteresis
522          * but it isn't very efficient).
523          *
524          * The nsw_cluster_max is constrained by the bp->b_pages[]
525          * array (MAXPHYS/PAGE_SIZE) and our locally defined
526          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
527          * constrained by the swap device interleave stripe size.
528          *
529          * Currently we hardwire nsw_wcount_async to 4.  This limit is
530          * designed to prevent other I/O from having high latencies due to
531          * our pageout I/O.  The value 4 works well for one or two active swap
532          * devices but is probably a little low if you have more.  Even so,
533          * a higher value would probably generate only a limited improvement
534          * with three or four active swap devices since the system does not
535          * typically have to pageout at extreme bandwidths.   We will want
536          * at least 2 per swap devices, and 4 is a pretty good value if you
537          * have one NFS swap device due to the command/ack latency over NFS.
538          * So it all works out pretty well.
539          */
540         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
541
542         nsw_wcount_async = 4;
543         nsw_wcount_async_max = nsw_wcount_async;
544         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
545
546         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
547         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
548
549         /*
550          * Initialize our zone, taking the user's requested size or
551          * estimating the number we need based on the number of pages
552          * in the system.
553          */
554         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
555             vm_cnt.v_page_count / 2;
556         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
557             pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
558         if (swpctrie_zone == NULL)
559                 panic("failed to create swap pctrie zone.");
560         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
561             NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
562         if (swblk_zone == NULL)
563                 panic("failed to create swap blk zone.");
564         n2 = n;
565         do {
566                 if (uma_zone_reserve_kva(swblk_zone, n))
567                         break;
568                 /*
569                  * if the allocation failed, try a zone two thirds the
570                  * size of the previous attempt.
571                  */
572                 n -= ((n + 2) / 3);
573         } while (n > 0);
574
575         /*
576          * Often uma_zone_reserve_kva() cannot reserve exactly the
577          * requested size.  Account for the difference when
578          * calculating swap_maxpages.
579          */
580         n = uma_zone_get_max(swblk_zone);
581
582         if (n < n2)
583                 printf("Swap blk zone entries changed from %lu to %lu.\n",
584                     n2, n);
585         swap_maxpages = n * SWAP_META_PAGES;
586         swzone = n * sizeof(struct swblk);
587         if (!uma_zone_reserve_kva(swpctrie_zone, n))
588                 printf("Cannot reserve swap pctrie zone, "
589                     "reduce kern.maxswzone.\n");
590 }
591
592 static vm_object_t
593 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
594     vm_ooffset_t offset)
595 {
596         vm_object_t object;
597
598         if (cred != NULL) {
599                 if (!swap_reserve_by_cred(size, cred))
600                         return (NULL);
601                 crhold(cred);
602         }
603
604         /*
605          * The un_pager.swp.swp_blks trie is initialized by
606          * vm_object_allocate() to ensure the correct order of
607          * visibility to other threads.
608          */
609         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
610             PAGE_MASK + size));
611
612         object->handle = handle;
613         if (cred != NULL) {
614                 object->cred = cred;
615                 object->charge = size;
616         }
617         return (object);
618 }
619
620 /*
621  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
622  *                      its metadata structures.
623  *
624  *      This routine is called from the mmap and fork code to create a new
625  *      OBJT_SWAP object.
626  *
627  *      This routine must ensure that no live duplicate is created for
628  *      the named object request, which is protected against by
629  *      holding the sw_alloc_sx lock in case handle != NULL.
630  */
631 static vm_object_t
632 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
633     vm_ooffset_t offset, struct ucred *cred)
634 {
635         vm_object_t object;
636
637         if (handle != NULL) {
638                 /*
639                  * Reference existing named region or allocate new one.  There
640                  * should not be a race here against swp_pager_meta_build()
641                  * as called from vm_page_remove() in regards to the lookup
642                  * of the handle.
643                  */
644                 sx_xlock(&sw_alloc_sx);
645                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
646                 if (object == NULL) {
647                         object = swap_pager_alloc_init(handle, cred, size,
648                             offset);
649                         if (object != NULL) {
650                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
651                                     object, pager_object_list);
652                         }
653                 }
654                 sx_xunlock(&sw_alloc_sx);
655         } else {
656                 object = swap_pager_alloc_init(handle, cred, size, offset);
657         }
658         return (object);
659 }
660
661 /*
662  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
663  *
664  *      The swap backing for the object is destroyed.  The code is
665  *      designed such that we can reinstantiate it later, but this
666  *      routine is typically called only when the entire object is
667  *      about to be destroyed.
668  *
669  *      The object must be locked.
670  */
671 static void
672 swap_pager_dealloc(vm_object_t object)
673 {
674
675         VM_OBJECT_ASSERT_WLOCKED(object);
676         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
677
678         /*
679          * Remove from list right away so lookups will fail if we block for
680          * pageout completion.
681          */
682         if (object->handle != NULL) {
683                 VM_OBJECT_WUNLOCK(object);
684                 sx_xlock(&sw_alloc_sx);
685                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
686                     pager_object_list);
687                 sx_xunlock(&sw_alloc_sx);
688                 VM_OBJECT_WLOCK(object);
689         }
690
691         vm_object_pip_wait(object, "swpdea");
692
693         /*
694          * Free all remaining metadata.  We only bother to free it from
695          * the swap meta data.  We do not attempt to free swapblk's still
696          * associated with vm_page_t's for this object.  We do not care
697          * if paging is still in progress on some objects.
698          */
699         swp_pager_meta_free_all(object);
700         object->handle = NULL;
701         object->type = OBJT_DEAD;
702 }
703
704 /************************************************************************
705  *                      SWAP PAGER BITMAP ROUTINES                      *
706  ************************************************************************/
707
708 /*
709  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
710  *
711  *      Allocate swap for the requested number of pages.  The starting
712  *      swap block number (a page index) is returned or SWAPBLK_NONE
713  *      if the allocation failed.
714  *
715  *      Also has the side effect of advising that somebody made a mistake
716  *      when they configured swap and didn't configure enough.
717  *
718  *      This routine may not sleep.
719  *
720  *      We allocate in round-robin fashion from the configured devices.
721  */
722 static daddr_t
723 swp_pager_getswapspace(int npages)
724 {
725         daddr_t blk;
726         struct swdevt *sp;
727         int i;
728
729         blk = SWAPBLK_NONE;
730         mtx_lock(&sw_dev_mtx);
731         sp = swdevhd;
732         for (i = 0; i < nswapdev; i++) {
733                 if (sp == NULL)
734                         sp = TAILQ_FIRST(&swtailq);
735                 if (!(sp->sw_flags & SW_CLOSING)) {
736                         blk = blist_alloc(sp->sw_blist, npages);
737                         if (blk != SWAPBLK_NONE) {
738                                 blk += sp->sw_first;
739                                 sp->sw_used += npages;
740                                 swap_pager_avail -= npages;
741                                 swp_sizecheck();
742                                 swdevhd = TAILQ_NEXT(sp, sw_list);
743                                 goto done;
744                         }
745                 }
746                 sp = TAILQ_NEXT(sp, sw_list);
747         }
748         if (swap_pager_full != 2) {
749                 printf("swap_pager_getswapspace(%d): failed\n", npages);
750                 swap_pager_full = 2;
751                 swap_pager_almost_full = 1;
752         }
753         swdevhd = NULL;
754 done:
755         mtx_unlock(&sw_dev_mtx);
756         return (blk);
757 }
758
759 static bool
760 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
761 {
762
763         return (blk >= sp->sw_first && blk < sp->sw_end);
764 }
765
766 static void
767 swp_pager_strategy(struct buf *bp)
768 {
769         struct swdevt *sp;
770
771         mtx_lock(&sw_dev_mtx);
772         TAILQ_FOREACH(sp, &swtailq, sw_list) {
773                 if (swp_pager_isondev(bp->b_blkno, sp)) {
774                         mtx_unlock(&sw_dev_mtx);
775                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
776                             unmapped_buf_allowed) {
777                                 bp->b_data = unmapped_buf;
778                                 bp->b_offset = 0;
779                         } else {
780                                 pmap_qenter((vm_offset_t)bp->b_data,
781                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
782                         }
783                         sp->sw_strategy(bp, sp);
784                         return;
785                 }
786         }
787         panic("Swapdev not found");
788 }
789
790
791 /*
792  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
793  *
794  *      This routine returns the specified swap blocks back to the bitmap.
795  *
796  *      This routine may not sleep.
797  */
798 static void
799 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
800 {
801         struct swdevt *sp;
802
803         if (npages == 0)
804                 return;
805         mtx_lock(&sw_dev_mtx);
806         TAILQ_FOREACH(sp, &swtailq, sw_list) {
807                 if (swp_pager_isondev(blk, sp)) {
808                         sp->sw_used -= npages;
809                         /*
810                          * If we are attempting to stop swapping on
811                          * this device, we don't want to mark any
812                          * blocks free lest they be reused.
813                          */
814                         if ((sp->sw_flags & SW_CLOSING) == 0) {
815                                 blist_free(sp->sw_blist, blk - sp->sw_first,
816                                     npages);
817                                 swap_pager_avail += npages;
818                                 swp_sizecheck();
819                         }
820                         mtx_unlock(&sw_dev_mtx);
821                         return;
822                 }
823         }
824         panic("Swapdev not found");
825 }
826
827 /*
828  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
829  */
830 static int
831 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
832 {
833         struct sbuf sbuf;
834         struct swdevt *sp;
835         const char *devname;
836         int error;
837
838         error = sysctl_wire_old_buffer(req, 0);
839         if (error != 0)
840                 return (error);
841         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
842         mtx_lock(&sw_dev_mtx);
843         TAILQ_FOREACH(sp, &swtailq, sw_list) {
844                 if (vn_isdisk(sp->sw_vp, NULL))
845                         devname = devtoname(sp->sw_vp->v_rdev);
846                 else
847                         devname = "[file]";
848                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
849                 blist_stats(sp->sw_blist, &sbuf);
850         }
851         mtx_unlock(&sw_dev_mtx);
852         error = sbuf_finish(&sbuf);
853         sbuf_delete(&sbuf);
854         return (error);
855 }
856
857 /*
858  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
859  *                              range within an object.
860  *
861  *      This is a globally accessible routine.
862  *
863  *      This routine removes swapblk assignments from swap metadata.
864  *
865  *      The external callers of this routine typically have already destroyed
866  *      or renamed vm_page_t's associated with this range in the object so
867  *      we should be ok.
868  *
869  *      The object must be locked.
870  */
871 void
872 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
873 {
874
875         swp_pager_meta_free(object, start, size);
876 }
877
878 /*
879  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
880  *
881  *      Assigns swap blocks to the specified range within the object.  The
882  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
883  *
884  *      Returns 0 on success, -1 on failure.
885  */
886 int
887 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
888 {
889         int n = 0;
890         daddr_t blk = SWAPBLK_NONE;
891         vm_pindex_t beg = start;        /* save start index */
892         daddr_t addr, n_free, s_free;
893
894         swp_pager_init_freerange(&s_free, &n_free);
895         VM_OBJECT_WLOCK(object);
896         while (size) {
897                 if (n == 0) {
898                         n = BLIST_MAX_ALLOC;
899                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
900                                 n >>= 1;
901                                 if (n == 0) {
902                                         swp_pager_meta_free(object, beg, start - beg);
903                                         VM_OBJECT_WUNLOCK(object);
904                                         return (-1);
905                                 }
906                         }
907                 }
908                 addr = swp_pager_meta_build(object, start, blk);
909                 if (addr != SWAPBLK_NONE)
910                         swp_pager_update_freerange(&s_free, &n_free, addr);
911                 --size;
912                 ++start;
913                 ++blk;
914                 --n;
915         }
916         swp_pager_freeswapspace(s_free, n_free);
917         swp_pager_meta_free(object, start, n);
918         VM_OBJECT_WUNLOCK(object);
919         return (0);
920 }
921
922 /*
923  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
924  *                      and destroy the source.
925  *
926  *      Copy any valid swapblks from the source to the destination.  In
927  *      cases where both the source and destination have a valid swapblk,
928  *      we keep the destination's.
929  *
930  *      This routine is allowed to sleep.  It may sleep allocating metadata
931  *      indirectly through swp_pager_meta_build() or if paging is still in
932  *      progress on the source.
933  *
934  *      The source object contains no vm_page_t's (which is just as well)
935  *
936  *      The source object is of type OBJT_SWAP.
937  *
938  *      The source and destination objects must be locked.
939  *      Both object locks may temporarily be released.
940  */
941 void
942 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
943     vm_pindex_t offset, int destroysource)
944 {
945         vm_pindex_t i;
946         daddr_t dstaddr, n_free, s_free, srcaddr;
947
948         VM_OBJECT_ASSERT_WLOCKED(srcobject);
949         VM_OBJECT_ASSERT_WLOCKED(dstobject);
950
951         /*
952          * If destroysource is set, we remove the source object from the
953          * swap_pager internal queue now.
954          */
955         if (destroysource && srcobject->handle != NULL) {
956                 vm_object_pip_add(srcobject, 1);
957                 VM_OBJECT_WUNLOCK(srcobject);
958                 vm_object_pip_add(dstobject, 1);
959                 VM_OBJECT_WUNLOCK(dstobject);
960                 sx_xlock(&sw_alloc_sx);
961                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
962                     pager_object_list);
963                 sx_xunlock(&sw_alloc_sx);
964                 VM_OBJECT_WLOCK(dstobject);
965                 vm_object_pip_wakeup(dstobject);
966                 VM_OBJECT_WLOCK(srcobject);
967                 vm_object_pip_wakeup(srcobject);
968         }
969
970         /*
971          * Transfer source to destination.
972          */
973         swp_pager_init_freerange(&s_free, &n_free);
974         for (i = 0; i < dstobject->size; ++i) {
975                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
976                 if (srcaddr == SWAPBLK_NONE)
977                         continue;
978                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
979                 if (dstaddr != SWAPBLK_NONE) {
980                         /*
981                          * Destination has valid swapblk or it is represented
982                          * by a resident page.  We destroy the source block.
983                          */
984                         swp_pager_update_freerange(&s_free, &n_free, srcaddr);
985                         continue;
986                 }
987
988                 /*
989                  * Destination has no swapblk and is not resident,
990                  * copy source.
991                  *
992                  * swp_pager_meta_build() can sleep.
993                  */
994                 vm_object_pip_add(srcobject, 1);
995                 VM_OBJECT_WUNLOCK(srcobject);
996                 vm_object_pip_add(dstobject, 1);
997                 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
998                 KASSERT(dstaddr == SWAPBLK_NONE,
999                     ("Unexpected destination swapblk"));
1000                 vm_object_pip_wakeup(dstobject);
1001                 VM_OBJECT_WLOCK(srcobject);
1002                 vm_object_pip_wakeup(srcobject);
1003         }
1004         swp_pager_freeswapspace(s_free, n_free);
1005
1006         /*
1007          * Free left over swap blocks in source.
1008          *
1009          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1010          * double-remove the object from the swap queues.
1011          */
1012         if (destroysource) {
1013                 swp_pager_meta_free_all(srcobject);
1014                 /*
1015                  * Reverting the type is not necessary, the caller is going
1016                  * to destroy srcobject directly, but I'm doing it here
1017                  * for consistency since we've removed the object from its
1018                  * queues.
1019                  */
1020                 srcobject->type = OBJT_DEFAULT;
1021         }
1022 }
1023
1024 /*
1025  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1026  *                              the requested page.
1027  *
1028  *      We determine whether good backing store exists for the requested
1029  *      page and return TRUE if it does, FALSE if it doesn't.
1030  *
1031  *      If TRUE, we also try to determine how much valid, contiguous backing
1032  *      store exists before and after the requested page.
1033  */
1034 static boolean_t
1035 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1036     int *after)
1037 {
1038         daddr_t blk, blk0;
1039         int i;
1040
1041         VM_OBJECT_ASSERT_LOCKED(object);
1042
1043         /*
1044          * do we have good backing store at the requested index ?
1045          */
1046         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1047         if (blk0 == SWAPBLK_NONE) {
1048                 if (before)
1049                         *before = 0;
1050                 if (after)
1051                         *after = 0;
1052                 return (FALSE);
1053         }
1054
1055         /*
1056          * find backwards-looking contiguous good backing store
1057          */
1058         if (before != NULL) {
1059                 for (i = 1; i < SWB_NPAGES; i++) {
1060                         if (i > pindex)
1061                                 break;
1062                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1063                         if (blk != blk0 - i)
1064                                 break;
1065                 }
1066                 *before = i - 1;
1067         }
1068
1069         /*
1070          * find forward-looking contiguous good backing store
1071          */
1072         if (after != NULL) {
1073                 for (i = 1; i < SWB_NPAGES; i++) {
1074                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1075                         if (blk != blk0 + i)
1076                                 break;
1077                 }
1078                 *after = i - 1;
1079         }
1080         return (TRUE);
1081 }
1082
1083 /*
1084  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1085  *
1086  *      This removes any associated swap backing store, whether valid or
1087  *      not, from the page.
1088  *
1089  *      This routine is typically called when a page is made dirty, at
1090  *      which point any associated swap can be freed.  MADV_FREE also
1091  *      calls us in a special-case situation
1092  *
1093  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1094  *      should make the page dirty before calling this routine.  This routine
1095  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1096  *      depends on it.
1097  *
1098  *      This routine may not sleep.
1099  *
1100  *      The object containing the page must be locked.
1101  */
1102 static void
1103 swap_pager_unswapped(vm_page_t m)
1104 {
1105         daddr_t srcaddr;
1106
1107         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1108         if (srcaddr != SWAPBLK_NONE)
1109                 swp_pager_freeswapspace(srcaddr, 1);
1110 }
1111
1112 /*
1113  * swap_pager_getpages() - bring pages in from swap
1114  *
1115  *      Attempt to page in the pages in array "ma" of length "count".  The
1116  *      caller may optionally specify that additional pages preceding and
1117  *      succeeding the specified range be paged in.  The number of such pages
1118  *      is returned in the "rbehind" and "rahead" parameters, and they will
1119  *      be in the inactive queue upon return.
1120  *
1121  *      The pages in "ma" must be busied and will remain busied upon return.
1122  */
1123 static int
1124 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1125     int *rahead)
1126 {
1127         struct buf *bp;
1128         vm_page_t bm, mpred, msucc, p;
1129         vm_pindex_t pindex;
1130         daddr_t blk;
1131         int i, maxahead, maxbehind, reqcount;
1132
1133         reqcount = count;
1134
1135         /*
1136          * Determine the final number of read-behind pages and
1137          * allocate them BEFORE releasing the object lock.  Otherwise,
1138          * there can be a problematic race with vm_object_split().
1139          * Specifically, vm_object_split() might first transfer pages
1140          * that precede ma[0] in the current object to a new object,
1141          * and then this function incorrectly recreates those pages as
1142          * read-behind pages in the current object.
1143          */
1144         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1145                 return (VM_PAGER_FAIL);
1146
1147         /*
1148          * Clip the readahead and readbehind ranges to exclude resident pages.
1149          */
1150         if (rahead != NULL) {
1151                 KASSERT(reqcount - 1 <= maxahead,
1152                     ("page count %d extends beyond swap block", reqcount));
1153                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1154                 pindex = ma[reqcount - 1]->pindex;
1155                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1156                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1157                         *rahead = msucc->pindex - pindex - 1;
1158         }
1159         if (rbehind != NULL) {
1160                 *rbehind = imin(*rbehind, maxbehind);
1161                 pindex = ma[0]->pindex;
1162                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1163                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1164                         *rbehind = pindex - mpred->pindex - 1;
1165         }
1166
1167         bm = ma[0];
1168         for (i = 0; i < count; i++)
1169                 ma[i]->oflags |= VPO_SWAPINPROG;
1170
1171         /*
1172          * Allocate readahead and readbehind pages.
1173          */
1174         if (rbehind != NULL) {
1175                 for (i = 1; i <= *rbehind; i++) {
1176                         p = vm_page_alloc(object, ma[0]->pindex - i,
1177                             VM_ALLOC_NORMAL);
1178                         if (p == NULL)
1179                                 break;
1180                         p->oflags |= VPO_SWAPINPROG;
1181                         bm = p;
1182                 }
1183                 *rbehind = i - 1;
1184         }
1185         if (rahead != NULL) {
1186                 for (i = 0; i < *rahead; i++) {
1187                         p = vm_page_alloc(object,
1188                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1189                         if (p == NULL)
1190                                 break;
1191                         p->oflags |= VPO_SWAPINPROG;
1192                 }
1193                 *rahead = i;
1194         }
1195         if (rbehind != NULL)
1196                 count += *rbehind;
1197         if (rahead != NULL)
1198                 count += *rahead;
1199
1200         vm_object_pip_add(object, count);
1201
1202         pindex = bm->pindex;
1203         blk = swp_pager_meta_ctl(object, pindex, 0);
1204         KASSERT(blk != SWAPBLK_NONE,
1205             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1206
1207         VM_OBJECT_WUNLOCK(object);
1208         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1209         /* Pages cannot leave the object while busy. */
1210         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1211                 MPASS(p->pindex == bm->pindex + i);
1212                 bp->b_pages[i] = p;
1213         }
1214
1215         bp->b_flags |= B_PAGING;
1216         bp->b_iocmd = BIO_READ;
1217         bp->b_iodone = swp_pager_async_iodone;
1218         bp->b_rcred = crhold(thread0.td_ucred);
1219         bp->b_wcred = crhold(thread0.td_ucred);
1220         bp->b_blkno = blk;
1221         bp->b_bcount = PAGE_SIZE * count;
1222         bp->b_bufsize = PAGE_SIZE * count;
1223         bp->b_npages = count;
1224         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1225         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1226
1227         VM_CNT_INC(v_swapin);
1228         VM_CNT_ADD(v_swappgsin, count);
1229
1230         /*
1231          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1232          * this point because we automatically release it on completion.
1233          * Instead, we look at the one page we are interested in which we
1234          * still hold a lock on even through the I/O completion.
1235          *
1236          * The other pages in our ma[] array are also released on completion,
1237          * so we cannot assume they are valid anymore either.
1238          *
1239          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1240          */
1241         BUF_KERNPROC(bp);
1242         swp_pager_strategy(bp);
1243
1244         /*
1245          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1246          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1247          * is set in the metadata for each page in the request.
1248          */
1249         VM_OBJECT_WLOCK(object);
1250         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1251                 ma[0]->oflags |= VPO_SWAPSLEEP;
1252                 VM_CNT_INC(v_intrans);
1253                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1254                     "swread", hz * 20)) {
1255                         printf(
1256 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1257                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1258                 }
1259         }
1260
1261         /*
1262          * If we had an unrecoverable read error pages will not be valid.
1263          */
1264         for (i = 0; i < reqcount; i++)
1265                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1266                         return (VM_PAGER_ERROR);
1267
1268         return (VM_PAGER_OK);
1269
1270         /*
1271          * A final note: in a low swap situation, we cannot deallocate swap
1272          * and mark a page dirty here because the caller is likely to mark
1273          * the page clean when we return, causing the page to possibly revert
1274          * to all-zero's later.
1275          */
1276 }
1277
1278 /*
1279  *      swap_pager_getpages_async():
1280  *
1281  *      Right now this is emulation of asynchronous operation on top of
1282  *      swap_pager_getpages().
1283  */
1284 static int
1285 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1286     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1287 {
1288         int r, error;
1289
1290         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1291         VM_OBJECT_WUNLOCK(object);
1292         switch (r) {
1293         case VM_PAGER_OK:
1294                 error = 0;
1295                 break;
1296         case VM_PAGER_ERROR:
1297                 error = EIO;
1298                 break;
1299         case VM_PAGER_FAIL:
1300                 error = EINVAL;
1301                 break;
1302         default:
1303                 panic("unhandled swap_pager_getpages() error %d", r);
1304         }
1305         (iodone)(arg, ma, count, error);
1306         VM_OBJECT_WLOCK(object);
1307
1308         return (r);
1309 }
1310
1311 /*
1312  *      swap_pager_putpages:
1313  *
1314  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1315  *
1316  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1317  *      are automatically converted to SWAP objects.
1318  *
1319  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1320  *      vm_page reservation system coupled with properly written VFS devices
1321  *      should ensure that no low-memory deadlock occurs.  This is an area
1322  *      which needs work.
1323  *
1324  *      The parent has N vm_object_pip_add() references prior to
1325  *      calling us and will remove references for rtvals[] that are
1326  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1327  *      completion.
1328  *
1329  *      The parent has soft-busy'd the pages it passes us and will unbusy
1330  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1331  *      We need to unbusy the rest on I/O completion.
1332  */
1333 static void
1334 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1335     int flags, int *rtvals)
1336 {
1337         int i, n;
1338         boolean_t sync;
1339         daddr_t addr, n_free, s_free;
1340
1341         swp_pager_init_freerange(&s_free, &n_free);
1342         if (count && ma[0]->object != object) {
1343                 panic("swap_pager_putpages: object mismatch %p/%p",
1344                     object,
1345                     ma[0]->object
1346                 );
1347         }
1348
1349         /*
1350          * Step 1
1351          *
1352          * Turn object into OBJT_SWAP
1353          * check for bogus sysops
1354          * force sync if not pageout process
1355          */
1356         if (object->type != OBJT_SWAP) {
1357                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1358                 KASSERT(addr == SWAPBLK_NONE,
1359                     ("unexpected object swap block"));
1360         }
1361         VM_OBJECT_WUNLOCK(object);
1362
1363         n = 0;
1364         if (curproc != pageproc)
1365                 sync = TRUE;
1366         else
1367                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1368
1369         /*
1370          * Step 2
1371          *
1372          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1373          * The page is left dirty until the pageout operation completes
1374          * successfully.
1375          */
1376         for (i = 0; i < count; i += n) {
1377                 int j;
1378                 struct buf *bp;
1379                 daddr_t blk;
1380
1381                 /*
1382                  * Maximum I/O size is limited by a number of factors.
1383                  */
1384                 n = min(BLIST_MAX_ALLOC, count - i);
1385                 n = min(n, nsw_cluster_max);
1386
1387                 /*
1388                  * Get biggest block of swap we can.  If we fail, fall
1389                  * back and try to allocate a smaller block.  Don't go
1390                  * overboard trying to allocate space if it would overly
1391                  * fragment swap.
1392                  */
1393                 while (
1394                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1395                     n > 4
1396                 ) {
1397                         n >>= 1;
1398                 }
1399                 if (blk == SWAPBLK_NONE) {
1400                         for (j = 0; j < n; ++j)
1401                                 rtvals[i+j] = VM_PAGER_FAIL;
1402                         continue;
1403                 }
1404
1405                 /*
1406                  * All I/O parameters have been satisfied, build the I/O
1407                  * request and assign the swap space.
1408                  */
1409                 if (sync != TRUE) {
1410                         mtx_lock(&swbuf_mtx);
1411                         while (nsw_wcount_async == 0)
1412                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1413                                     "swbufa", 0);
1414                         nsw_wcount_async--;
1415                         mtx_unlock(&swbuf_mtx);
1416                 }
1417                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1418                 if (sync != TRUE)
1419                         bp->b_flags = B_ASYNC;
1420                 bp->b_flags |= B_PAGING;
1421                 bp->b_iocmd = BIO_WRITE;
1422
1423                 bp->b_rcred = crhold(thread0.td_ucred);
1424                 bp->b_wcred = crhold(thread0.td_ucred);
1425                 bp->b_bcount = PAGE_SIZE * n;
1426                 bp->b_bufsize = PAGE_SIZE * n;
1427                 bp->b_blkno = blk;
1428
1429                 VM_OBJECT_WLOCK(object);
1430                 for (j = 0; j < n; ++j) {
1431                         vm_page_t mreq = ma[i+j];
1432
1433                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1434                             blk + j);
1435                         if (addr != SWAPBLK_NONE)
1436                                 swp_pager_update_freerange(&s_free, &n_free,
1437                                     addr);
1438                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1439                         mreq->oflags |= VPO_SWAPINPROG;
1440                         bp->b_pages[j] = mreq;
1441                 }
1442                 VM_OBJECT_WUNLOCK(object);
1443                 bp->b_npages = n;
1444                 /*
1445                  * Must set dirty range for NFS to work.
1446                  */
1447                 bp->b_dirtyoff = 0;
1448                 bp->b_dirtyend = bp->b_bcount;
1449
1450                 VM_CNT_INC(v_swapout);
1451                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1452
1453                 /*
1454                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1455                  * can call the async completion routine at the end of a
1456                  * synchronous I/O operation.  Otherwise, our caller would
1457                  * perform duplicate unbusy and wakeup operations on the page
1458                  * and object, respectively.
1459                  */
1460                 for (j = 0; j < n; j++)
1461                         rtvals[i + j] = VM_PAGER_PEND;
1462
1463                 /*
1464                  * asynchronous
1465                  *
1466                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1467                  */
1468                 if (sync == FALSE) {
1469                         bp->b_iodone = swp_pager_async_iodone;
1470                         BUF_KERNPROC(bp);
1471                         swp_pager_strategy(bp);
1472                         continue;
1473                 }
1474
1475                 /*
1476                  * synchronous
1477                  *
1478                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1479                  */
1480                 bp->b_iodone = bdone;
1481                 swp_pager_strategy(bp);
1482
1483                 /*
1484                  * Wait for the sync I/O to complete.
1485                  */
1486                 bwait(bp, PVM, "swwrt");
1487
1488                 /*
1489                  * Now that we are through with the bp, we can call the
1490                  * normal async completion, which frees everything up.
1491                  */
1492                 swp_pager_async_iodone(bp);
1493         }
1494         VM_OBJECT_WLOCK(object);
1495         swp_pager_freeswapspace(s_free, n_free);
1496 }
1497
1498 /*
1499  *      swp_pager_async_iodone:
1500  *
1501  *      Completion routine for asynchronous reads and writes from/to swap.
1502  *      Also called manually by synchronous code to finish up a bp.
1503  *
1504  *      This routine may not sleep.
1505  */
1506 static void
1507 swp_pager_async_iodone(struct buf *bp)
1508 {
1509         int i;
1510         vm_object_t object = NULL;
1511
1512         /*
1513          * report error
1514          */
1515         if (bp->b_ioflags & BIO_ERROR) {
1516                 printf(
1517                     "swap_pager: I/O error - %s failed; blkno %ld,"
1518                         "size %ld, error %d\n",
1519                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1520                     (long)bp->b_blkno,
1521                     (long)bp->b_bcount,
1522                     bp->b_error
1523                 );
1524         }
1525
1526         /*
1527          * remove the mapping for kernel virtual
1528          */
1529         if (buf_mapped(bp))
1530                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1531         else
1532                 bp->b_data = bp->b_kvabase;
1533
1534         if (bp->b_npages) {
1535                 object = bp->b_pages[0]->object;
1536                 VM_OBJECT_WLOCK(object);
1537         }
1538
1539         /*
1540          * cleanup pages.  If an error occurs writing to swap, we are in
1541          * very serious trouble.  If it happens to be a disk error, though,
1542          * we may be able to recover by reassigning the swap later on.  So
1543          * in this case we remove the m->swapblk assignment for the page
1544          * but do not free it in the rlist.  The errornous block(s) are thus
1545          * never reallocated as swap.  Redirty the page and continue.
1546          */
1547         for (i = 0; i < bp->b_npages; ++i) {
1548                 vm_page_t m = bp->b_pages[i];
1549
1550                 m->oflags &= ~VPO_SWAPINPROG;
1551                 if (m->oflags & VPO_SWAPSLEEP) {
1552                         m->oflags &= ~VPO_SWAPSLEEP;
1553                         wakeup(&object->paging_in_progress);
1554                 }
1555
1556                 if (bp->b_ioflags & BIO_ERROR) {
1557                         /*
1558                          * If an error occurs I'd love to throw the swapblk
1559                          * away without freeing it back to swapspace, so it
1560                          * can never be used again.  But I can't from an
1561                          * interrupt.
1562                          */
1563                         if (bp->b_iocmd == BIO_READ) {
1564                                 /*
1565                                  * NOTE: for reads, m->dirty will probably
1566                                  * be overridden by the original caller of
1567                                  * getpages so don't play cute tricks here.
1568                                  */
1569                                 m->valid = 0;
1570                         } else {
1571                                 /*
1572                                  * If a write error occurs, reactivate page
1573                                  * so it doesn't clog the inactive list,
1574                                  * then finish the I/O.
1575                                  */
1576                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1577                                 vm_page_lock(m);
1578                                 vm_page_activate(m);
1579                                 vm_page_unlock(m);
1580                                 vm_page_sunbusy(m);
1581                         }
1582                 } else if (bp->b_iocmd == BIO_READ) {
1583                         /*
1584                          * NOTE: for reads, m->dirty will probably be
1585                          * overridden by the original caller of getpages so
1586                          * we cannot set them in order to free the underlying
1587                          * swap in a low-swap situation.  I don't think we'd
1588                          * want to do that anyway, but it was an optimization
1589                          * that existed in the old swapper for a time before
1590                          * it got ripped out due to precisely this problem.
1591                          */
1592                         KASSERT(!pmap_page_is_mapped(m),
1593                             ("swp_pager_async_iodone: page %p is mapped", m));
1594                         KASSERT(m->dirty == 0,
1595                             ("swp_pager_async_iodone: page %p is dirty", m));
1596
1597                         m->valid = VM_PAGE_BITS_ALL;
1598                         if (i < bp->b_pgbefore ||
1599                             i >= bp->b_npages - bp->b_pgafter)
1600                                 vm_page_readahead_finish(m);
1601                 } else {
1602                         /*
1603                          * For write success, clear the dirty
1604                          * status, then finish the I/O ( which decrements the
1605                          * busy count and possibly wakes waiter's up ).
1606                          * A page is only written to swap after a period of
1607                          * inactivity.  Therefore, we do not expect it to be
1608                          * reused.
1609                          */
1610                         KASSERT(!pmap_page_is_write_mapped(m),
1611                             ("swp_pager_async_iodone: page %p is not write"
1612                             " protected", m));
1613                         vm_page_undirty(m);
1614                         vm_page_lock(m);
1615                         vm_page_deactivate_noreuse(m);
1616                         vm_page_unlock(m);
1617                         vm_page_sunbusy(m);
1618                 }
1619         }
1620
1621         /*
1622          * adjust pip.  NOTE: the original parent may still have its own
1623          * pip refs on the object.
1624          */
1625         if (object != NULL) {
1626                 vm_object_pip_wakeupn(object, bp->b_npages);
1627                 VM_OBJECT_WUNLOCK(object);
1628         }
1629
1630         /*
1631          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1632          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1633          * trigger a KASSERT in relpbuf().
1634          */
1635         if (bp->b_vp) {
1636                     bp->b_vp = NULL;
1637                     bp->b_bufobj = NULL;
1638         }
1639         /*
1640          * release the physical I/O buffer
1641          */
1642         if (bp->b_flags & B_ASYNC) {
1643                 mtx_lock(&swbuf_mtx);
1644                 if (++nsw_wcount_async == 1)
1645                         wakeup(&nsw_wcount_async);
1646                 mtx_unlock(&swbuf_mtx);
1647         }
1648         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1649 }
1650
1651 int
1652 swap_pager_nswapdev(void)
1653 {
1654
1655         return (nswapdev);
1656 }
1657
1658 /*
1659  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1660  *
1661  *      This routine dissociates the page at the given index within an object
1662  *      from its backing store, paging it in if it does not reside in memory.
1663  *      If the page is paged in, it is marked dirty and placed in the laundry
1664  *      queue.  The page is marked dirty because it no longer has backing
1665  *      store.  It is placed in the laundry queue because it has not been
1666  *      accessed recently.  Otherwise, it would already reside in memory.
1667  *
1668  *      We also attempt to swap in all other pages in the swap block.
1669  *      However, we only guarantee that the one at the specified index is
1670  *      paged in.
1671  *
1672  *      XXX - The code to page the whole block in doesn't work, so we
1673  *            revert to the one-by-one behavior for now.  Sigh.
1674  */
1675 static inline void
1676 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1677 {
1678         vm_page_t m;
1679
1680         vm_object_pip_add(object, 1);
1681         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1682         if (m->valid == VM_PAGE_BITS_ALL) {
1683                 vm_object_pip_wakeup(object);
1684                 vm_page_dirty(m);
1685 #ifdef INVARIANTS
1686                 vm_page_lock(m);
1687                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1688                         panic("page %p is neither wired nor queued", m);
1689                 vm_page_unlock(m);
1690 #endif
1691                 vm_page_xunbusy(m);
1692                 vm_pager_page_unswapped(m);
1693                 return;
1694         }
1695
1696         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1697                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1698         vm_object_pip_wakeup(object);
1699         vm_page_dirty(m);
1700         vm_page_lock(m);
1701         vm_page_launder(m);
1702         vm_page_unlock(m);
1703         vm_page_xunbusy(m);
1704         vm_pager_page_unswapped(m);
1705 }
1706
1707 /*
1708  *      swap_pager_swapoff:
1709  *
1710  *      Page in all of the pages that have been paged out to the
1711  *      given device.  The corresponding blocks in the bitmap must be
1712  *      marked as allocated and the device must be flagged SW_CLOSING.
1713  *      There may be no processes swapped out to the device.
1714  *
1715  *      This routine may block.
1716  */
1717 static void
1718 swap_pager_swapoff(struct swdevt *sp)
1719 {
1720         struct swblk *sb;
1721         vm_object_t object;
1722         vm_pindex_t pi;
1723         int i, retries;
1724
1725         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1726
1727         retries = 0;
1728 full_rescan:
1729         mtx_lock(&vm_object_list_mtx);
1730         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1731                 if (object->type != OBJT_SWAP)
1732                         continue;
1733                 mtx_unlock(&vm_object_list_mtx);
1734                 /* Depends on type-stability. */
1735                 VM_OBJECT_WLOCK(object);
1736
1737                 /*
1738                  * Dead objects are eventually terminated on their own.
1739                  */
1740                 if ((object->flags & OBJ_DEAD) != 0)
1741                         goto next_obj;
1742
1743                 /*
1744                  * Sync with fences placed after pctrie
1745                  * initialization.  We must not access pctrie below
1746                  * unless we checked that our object is swap and not
1747                  * dead.
1748                  */
1749                 atomic_thread_fence_acq();
1750                 if (object->type != OBJT_SWAP)
1751                         goto next_obj;
1752
1753                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1754                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1755                         pi = sb->p + SWAP_META_PAGES;
1756                         for (i = 0; i < SWAP_META_PAGES; i++) {
1757                                 if (sb->d[i] == SWAPBLK_NONE)
1758                                         continue;
1759                                 if (swp_pager_isondev(sb->d[i], sp))
1760                                         swp_pager_force_pagein(object,
1761                                             sb->p + i);
1762                         }
1763                 }
1764 next_obj:
1765                 VM_OBJECT_WUNLOCK(object);
1766                 mtx_lock(&vm_object_list_mtx);
1767         }
1768         mtx_unlock(&vm_object_list_mtx);
1769
1770         if (sp->sw_used) {
1771                 /*
1772                  * Objects may be locked or paging to the device being
1773                  * removed, so we will miss their pages and need to
1774                  * make another pass.  We have marked this device as
1775                  * SW_CLOSING, so the activity should finish soon.
1776                  */
1777                 retries++;
1778                 if (retries > 100) {
1779                         panic("swapoff: failed to locate %d swap blocks",
1780                             sp->sw_used);
1781                 }
1782                 pause("swpoff", hz / 20);
1783                 goto full_rescan;
1784         }
1785         EVENTHANDLER_INVOKE(swapoff, sp);
1786 }
1787
1788 /************************************************************************
1789  *                              SWAP META DATA                          *
1790  ************************************************************************
1791  *
1792  *      These routines manipulate the swap metadata stored in the
1793  *      OBJT_SWAP object.
1794  *
1795  *      Swap metadata is implemented with a global hash and not directly
1796  *      linked into the object.  Instead the object simply contains
1797  *      appropriate tracking counters.
1798  */
1799
1800 /*
1801  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1802  */
1803 static bool
1804 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1805 {
1806         int i;
1807
1808         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1809         for (i = start; i < limit; i++) {
1810                 if (sb->d[i] != SWAPBLK_NONE)
1811                         return (false);
1812         }
1813         return (true);
1814 }
1815    
1816 /*
1817  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1818  *
1819  *      We first convert the object to a swap object if it is a default
1820  *      object.
1821  *
1822  *      The specified swapblk is added to the object's swap metadata.  If
1823  *      the swapblk is not valid, it is freed instead.  Any previously
1824  *      assigned swapblk is returned.
1825  */
1826 static daddr_t
1827 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1828 {
1829         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1830         struct swblk *sb, *sb1;
1831         vm_pindex_t modpi, rdpi;
1832         daddr_t prev_swapblk;
1833         int error, i;
1834
1835         VM_OBJECT_ASSERT_WLOCKED(object);
1836
1837         /*
1838          * Convert default object to swap object if necessary
1839          */
1840         if (object->type != OBJT_SWAP) {
1841                 pctrie_init(&object->un_pager.swp.swp_blks);
1842
1843                 /*
1844                  * Ensure that swap_pager_swapoff()'s iteration over
1845                  * object_list does not see a garbage pctrie.
1846                  */
1847                 atomic_thread_fence_rel();
1848
1849                 object->type = OBJT_SWAP;
1850                 KASSERT(object->handle == NULL, ("default pager with handle"));
1851         }
1852
1853         rdpi = rounddown(pindex, SWAP_META_PAGES);
1854         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1855         if (sb == NULL) {
1856                 if (swapblk == SWAPBLK_NONE)
1857                         return (SWAPBLK_NONE);
1858                 for (;;) {
1859                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1860                             pageproc ? M_USE_RESERVE : 0));
1861                         if (sb != NULL) {
1862                                 sb->p = rdpi;
1863                                 for (i = 0; i < SWAP_META_PAGES; i++)
1864                                         sb->d[i] = SWAPBLK_NONE;
1865                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1866                                     1, 0))
1867                                         printf("swblk zone ok\n");
1868                                 break;
1869                         }
1870                         VM_OBJECT_WUNLOCK(object);
1871                         if (uma_zone_exhausted(swblk_zone)) {
1872                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1873                                     0, 1))
1874                                         printf("swap blk zone exhausted, "
1875                                             "increase kern.maxswzone\n");
1876                                 vm_pageout_oom(VM_OOM_SWAPZ);
1877                                 pause("swzonxb", 10);
1878                         } else
1879                                 uma_zwait(swblk_zone);
1880                         VM_OBJECT_WLOCK(object);
1881                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1882                             rdpi);
1883                         if (sb != NULL)
1884                                 /*
1885                                  * Somebody swapped out a nearby page,
1886                                  * allocating swblk at the rdpi index,
1887                                  * while we dropped the object lock.
1888                                  */
1889                                 goto allocated;
1890                 }
1891                 for (;;) {
1892                         error = SWAP_PCTRIE_INSERT(
1893                             &object->un_pager.swp.swp_blks, sb);
1894                         if (error == 0) {
1895                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1896                                     1, 0))
1897                                         printf("swpctrie zone ok\n");
1898                                 break;
1899                         }
1900                         VM_OBJECT_WUNLOCK(object);
1901                         if (uma_zone_exhausted(swpctrie_zone)) {
1902                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1903                                     0, 1))
1904                                         printf("swap pctrie zone exhausted, "
1905                                             "increase kern.maxswzone\n");
1906                                 vm_pageout_oom(VM_OOM_SWAPZ);
1907                                 pause("swzonxp", 10);
1908                         } else
1909                                 uma_zwait(swpctrie_zone);
1910                         VM_OBJECT_WLOCK(object);
1911                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1912                             rdpi);
1913                         if (sb1 != NULL) {
1914                                 uma_zfree(swblk_zone, sb);
1915                                 sb = sb1;
1916                                 goto allocated;
1917                         }
1918                 }
1919         }
1920 allocated:
1921         MPASS(sb->p == rdpi);
1922
1923         modpi = pindex % SWAP_META_PAGES;
1924         /* Return prior contents of metadata. */
1925         prev_swapblk = sb->d[modpi];
1926         /* Enter block into metadata. */
1927         sb->d[modpi] = swapblk;
1928
1929         /*
1930          * Free the swblk if we end up with the empty page run.
1931          */
1932         if (swapblk == SWAPBLK_NONE &&
1933             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1934                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1935                 uma_zfree(swblk_zone, sb);
1936         }
1937         return (prev_swapblk);
1938 }
1939
1940 /*
1941  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1942  *
1943  *      The requested range of blocks is freed, with any associated swap
1944  *      returned to the swap bitmap.
1945  *
1946  *      This routine will free swap metadata structures as they are cleaned
1947  *      out.  This routine does *NOT* operate on swap metadata associated
1948  *      with resident pages.
1949  */
1950 static void
1951 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1952 {
1953         struct swblk *sb;
1954         daddr_t n_free, s_free;
1955         vm_pindex_t last;
1956         int i, limit, start;
1957
1958         VM_OBJECT_ASSERT_WLOCKED(object);
1959         if (object->type != OBJT_SWAP || count == 0)
1960                 return;
1961
1962         swp_pager_init_freerange(&s_free, &n_free);
1963         last = pindex + count;
1964         for (;;) {
1965                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1966                     rounddown(pindex, SWAP_META_PAGES));
1967                 if (sb == NULL || sb->p >= last)
1968                         break;
1969                 start = pindex > sb->p ? pindex - sb->p : 0;
1970                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1971                     SWAP_META_PAGES;
1972                 for (i = start; i < limit; i++) {
1973                         if (sb->d[i] == SWAPBLK_NONE)
1974                                 continue;
1975                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
1976                         sb->d[i] = SWAPBLK_NONE;
1977                 }
1978                 pindex = sb->p + SWAP_META_PAGES;
1979                 if (swp_pager_swblk_empty(sb, 0, start) &&
1980                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1981                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1982                             sb->p);
1983                         uma_zfree(swblk_zone, sb);
1984                 }
1985         }
1986         swp_pager_freeswapspace(s_free, n_free);
1987 }
1988
1989 /*
1990  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1991  *
1992  *      This routine locates and destroys all swap metadata associated with
1993  *      an object.
1994  */
1995 static void
1996 swp_pager_meta_free_all(vm_object_t object)
1997 {
1998         struct swblk *sb;
1999         daddr_t n_free, s_free;
2000         vm_pindex_t pindex;
2001         int i;
2002
2003         VM_OBJECT_ASSERT_WLOCKED(object);
2004         if (object->type != OBJT_SWAP)
2005                 return;
2006
2007         swp_pager_init_freerange(&s_free, &n_free);
2008         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2009             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2010                 pindex = sb->p + SWAP_META_PAGES;
2011                 for (i = 0; i < SWAP_META_PAGES; i++) {
2012                         if (sb->d[i] == SWAPBLK_NONE)
2013                                 continue;
2014                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2015                 }
2016                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2017                 uma_zfree(swblk_zone, sb);
2018         }
2019         swp_pager_freeswapspace(s_free, n_free);
2020 }
2021
2022 /*
2023  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2024  *
2025  *      This routine is capable of looking up, or removing swapblk
2026  *      assignments in the swap meta data.  It returns the swapblk being
2027  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2028  *
2029  *      When acting on a busy resident page and paging is in progress, we
2030  *      have to wait until paging is complete but otherwise can act on the
2031  *      busy page.
2032  *
2033  *      SWM_POP         remove from meta data but do not free it
2034  */
2035 static daddr_t
2036 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2037 {
2038         struct swblk *sb;
2039         daddr_t r1;
2040
2041         if ((flags & SWM_POP) != 0)
2042                 VM_OBJECT_ASSERT_WLOCKED(object);
2043         else
2044                 VM_OBJECT_ASSERT_LOCKED(object);
2045
2046         /*
2047          * The meta data only exists if the object is OBJT_SWAP
2048          * and even then might not be allocated yet.
2049          */
2050         if (object->type != OBJT_SWAP)
2051                 return (SWAPBLK_NONE);
2052
2053         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2054             rounddown(pindex, SWAP_META_PAGES));
2055         if (sb == NULL)
2056                 return (SWAPBLK_NONE);
2057         r1 = sb->d[pindex % SWAP_META_PAGES];
2058         if (r1 == SWAPBLK_NONE)
2059                 return (SWAPBLK_NONE);
2060         if ((flags & SWM_POP) != 0) {
2061                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2062                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2063                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2064                             rounddown(pindex, SWAP_META_PAGES));
2065                         uma_zfree(swblk_zone, sb);
2066                 }
2067         }
2068         return (r1);
2069 }
2070
2071 /*
2072  * Returns the least page index which is greater than or equal to the
2073  * parameter pindex and for which there is a swap block allocated.
2074  * Returns object's size if the object's type is not swap or if there
2075  * are no allocated swap blocks for the object after the requested
2076  * pindex.
2077  */
2078 vm_pindex_t
2079 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2080 {
2081         struct swblk *sb;
2082         int i;
2083
2084         VM_OBJECT_ASSERT_LOCKED(object);
2085         if (object->type != OBJT_SWAP)
2086                 return (object->size);
2087
2088         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2089             rounddown(pindex, SWAP_META_PAGES));
2090         if (sb == NULL)
2091                 return (object->size);
2092         if (sb->p < pindex) {
2093                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2094                         if (sb->d[i] != SWAPBLK_NONE)
2095                                 return (sb->p + i);
2096                 }
2097                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2098                     roundup(pindex, SWAP_META_PAGES));
2099                 if (sb == NULL)
2100                         return (object->size);
2101         }
2102         for (i = 0; i < SWAP_META_PAGES; i++) {
2103                 if (sb->d[i] != SWAPBLK_NONE)
2104                         return (sb->p + i);
2105         }
2106
2107         /*
2108          * We get here if a swblk is present in the trie but it
2109          * doesn't map any blocks.
2110          */
2111         MPASS(0);
2112         return (object->size);
2113 }
2114
2115 /*
2116  * System call swapon(name) enables swapping on device name,
2117  * which must be in the swdevsw.  Return EBUSY
2118  * if already swapping on this device.
2119  */
2120 #ifndef _SYS_SYSPROTO_H_
2121 struct swapon_args {
2122         char *name;
2123 };
2124 #endif
2125
2126 /*
2127  * MPSAFE
2128  */
2129 /* ARGSUSED */
2130 int
2131 sys_swapon(struct thread *td, struct swapon_args *uap)
2132 {
2133         struct vattr attr;
2134         struct vnode *vp;
2135         struct nameidata nd;
2136         int error;
2137
2138         error = priv_check(td, PRIV_SWAPON);
2139         if (error)
2140                 return (error);
2141
2142         sx_xlock(&swdev_syscall_lock);
2143
2144         /*
2145          * Swap metadata may not fit in the KVM if we have physical
2146          * memory of >1GB.
2147          */
2148         if (swblk_zone == NULL) {
2149                 error = ENOMEM;
2150                 goto done;
2151         }
2152
2153         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2154             uap->name, td);
2155         error = namei(&nd);
2156         if (error)
2157                 goto done;
2158
2159         NDFREE(&nd, NDF_ONLY_PNBUF);
2160         vp = nd.ni_vp;
2161
2162         if (vn_isdisk(vp, &error)) {
2163                 error = swapongeom(vp);
2164         } else if (vp->v_type == VREG &&
2165             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2166             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2167                 /*
2168                  * Allow direct swapping to NFS regular files in the same
2169                  * way that nfs_mountroot() sets up diskless swapping.
2170                  */
2171                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2172         }
2173
2174         if (error)
2175                 vrele(vp);
2176 done:
2177         sx_xunlock(&swdev_syscall_lock);
2178         return (error);
2179 }
2180
2181 /*
2182  * Check that the total amount of swap currently configured does not
2183  * exceed half the theoretical maximum.  If it does, print a warning
2184  * message.
2185  */
2186 static void
2187 swapon_check_swzone(void)
2188 {
2189         unsigned long maxpages, npages;
2190
2191         npages = swap_total;
2192         /* absolute maximum we can handle assuming 100% efficiency */
2193         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2194
2195         /* recommend using no more than half that amount */
2196         if (npages > maxpages / 2) {
2197                 printf("warning: total configured swap (%lu pages) "
2198                     "exceeds maximum recommended amount (%lu pages).\n",
2199                     npages, maxpages / 2);
2200                 printf("warning: increase kern.maxswzone "
2201                     "or reduce amount of swap.\n");
2202         }
2203 }
2204
2205 static void
2206 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2207     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2208 {
2209         struct swdevt *sp, *tsp;
2210         swblk_t dvbase;
2211         u_long mblocks;
2212
2213         /*
2214          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2215          * First chop nblks off to page-align it, then convert.
2216          *
2217          * sw->sw_nblks is in page-sized chunks now too.
2218          */
2219         nblks &= ~(ctodb(1) - 1);
2220         nblks = dbtoc(nblks);
2221
2222         /*
2223          * If we go beyond this, we get overflows in the radix
2224          * tree bitmap code.
2225          */
2226         mblocks = 0x40000000 / BLIST_META_RADIX;
2227         if (nblks > mblocks) {
2228                 printf(
2229     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2230                     mblocks / 1024 / 1024 * PAGE_SIZE);
2231                 nblks = mblocks;
2232         }
2233
2234         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2235         sp->sw_vp = vp;
2236         sp->sw_id = id;
2237         sp->sw_dev = dev;
2238         sp->sw_flags = 0;
2239         sp->sw_nblks = nblks;
2240         sp->sw_used = 0;
2241         sp->sw_strategy = strategy;
2242         sp->sw_close = close;
2243         sp->sw_flags = flags;
2244
2245         sp->sw_blist = blist_create(nblks, M_WAITOK);
2246         /*
2247          * Do not free the first two block in order to avoid overwriting
2248          * any bsd label at the front of the partition
2249          */
2250         blist_free(sp->sw_blist, 2, nblks - 2);
2251
2252         dvbase = 0;
2253         mtx_lock(&sw_dev_mtx);
2254         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2255                 if (tsp->sw_end >= dvbase) {
2256                         /*
2257                          * We put one uncovered page between the devices
2258                          * in order to definitively prevent any cross-device
2259                          * I/O requests
2260                          */
2261                         dvbase = tsp->sw_end + 1;
2262                 }
2263         }
2264         sp->sw_first = dvbase;
2265         sp->sw_end = dvbase + nblks;
2266         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2267         nswapdev++;
2268         swap_pager_avail += nblks - 2;
2269         swap_total += nblks;
2270         swapon_check_swzone();
2271         swp_sizecheck();
2272         mtx_unlock(&sw_dev_mtx);
2273         EVENTHANDLER_INVOKE(swapon, sp);
2274 }
2275
2276 /*
2277  * SYSCALL: swapoff(devname)
2278  *
2279  * Disable swapping on the given device.
2280  *
2281  * XXX: Badly designed system call: it should use a device index
2282  * rather than filename as specification.  We keep sw_vp around
2283  * only to make this work.
2284  */
2285 #ifndef _SYS_SYSPROTO_H_
2286 struct swapoff_args {
2287         char *name;
2288 };
2289 #endif
2290
2291 /*
2292  * MPSAFE
2293  */
2294 /* ARGSUSED */
2295 int
2296 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2297 {
2298         struct vnode *vp;
2299         struct nameidata nd;
2300         struct swdevt *sp;
2301         int error;
2302
2303         error = priv_check(td, PRIV_SWAPOFF);
2304         if (error)
2305                 return (error);
2306
2307         sx_xlock(&swdev_syscall_lock);
2308
2309         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2310             td);
2311         error = namei(&nd);
2312         if (error)
2313                 goto done;
2314         NDFREE(&nd, NDF_ONLY_PNBUF);
2315         vp = nd.ni_vp;
2316
2317         mtx_lock(&sw_dev_mtx);
2318         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2319                 if (sp->sw_vp == vp)
2320                         break;
2321         }
2322         mtx_unlock(&sw_dev_mtx);
2323         if (sp == NULL) {
2324                 error = EINVAL;
2325                 goto done;
2326         }
2327         error = swapoff_one(sp, td->td_ucred);
2328 done:
2329         sx_xunlock(&swdev_syscall_lock);
2330         return (error);
2331 }
2332
2333 static int
2334 swapoff_one(struct swdevt *sp, struct ucred *cred)
2335 {
2336         u_long nblks;
2337 #ifdef MAC
2338         int error;
2339 #endif
2340
2341         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2342 #ifdef MAC
2343         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2344         error = mac_system_check_swapoff(cred, sp->sw_vp);
2345         (void) VOP_UNLOCK(sp->sw_vp, 0);
2346         if (error != 0)
2347                 return (error);
2348 #endif
2349         nblks = sp->sw_nblks;
2350
2351         /*
2352          * We can turn off this swap device safely only if the
2353          * available virtual memory in the system will fit the amount
2354          * of data we will have to page back in, plus an epsilon so
2355          * the system doesn't become critically low on swap space.
2356          */
2357         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2358                 return (ENOMEM);
2359
2360         /*
2361          * Prevent further allocations on this device.
2362          */
2363         mtx_lock(&sw_dev_mtx);
2364         sp->sw_flags |= SW_CLOSING;
2365         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2366         swap_total -= nblks;
2367         mtx_unlock(&sw_dev_mtx);
2368
2369         /*
2370          * Page in the contents of the device and close it.
2371          */
2372         swap_pager_swapoff(sp);
2373
2374         sp->sw_close(curthread, sp);
2375         mtx_lock(&sw_dev_mtx);
2376         sp->sw_id = NULL;
2377         TAILQ_REMOVE(&swtailq, sp, sw_list);
2378         nswapdev--;
2379         if (nswapdev == 0) {
2380                 swap_pager_full = 2;
2381                 swap_pager_almost_full = 1;
2382         }
2383         if (swdevhd == sp)
2384                 swdevhd = NULL;
2385         mtx_unlock(&sw_dev_mtx);
2386         blist_destroy(sp->sw_blist);
2387         free(sp, M_VMPGDATA);
2388         return (0);
2389 }
2390
2391 void
2392 swapoff_all(void)
2393 {
2394         struct swdevt *sp, *spt;
2395         const char *devname;
2396         int error;
2397
2398         sx_xlock(&swdev_syscall_lock);
2399
2400         mtx_lock(&sw_dev_mtx);
2401         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2402                 mtx_unlock(&sw_dev_mtx);
2403                 if (vn_isdisk(sp->sw_vp, NULL))
2404                         devname = devtoname(sp->sw_vp->v_rdev);
2405                 else
2406                         devname = "[file]";
2407                 error = swapoff_one(sp, thread0.td_ucred);
2408                 if (error != 0) {
2409                         printf("Cannot remove swap device %s (error=%d), "
2410                             "skipping.\n", devname, error);
2411                 } else if (bootverbose) {
2412                         printf("Swap device %s removed.\n", devname);
2413                 }
2414                 mtx_lock(&sw_dev_mtx);
2415         }
2416         mtx_unlock(&sw_dev_mtx);
2417
2418         sx_xunlock(&swdev_syscall_lock);
2419 }
2420
2421 void
2422 swap_pager_status(int *total, int *used)
2423 {
2424         struct swdevt *sp;
2425
2426         *total = 0;
2427         *used = 0;
2428         mtx_lock(&sw_dev_mtx);
2429         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2430                 *total += sp->sw_nblks;
2431                 *used += sp->sw_used;
2432         }
2433         mtx_unlock(&sw_dev_mtx);
2434 }
2435
2436 int
2437 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2438 {
2439         struct swdevt *sp;
2440         const char *tmp_devname;
2441         int error, n;
2442
2443         n = 0;
2444         error = ENOENT;
2445         mtx_lock(&sw_dev_mtx);
2446         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2447                 if (n != name) {
2448                         n++;
2449                         continue;
2450                 }
2451                 xs->xsw_version = XSWDEV_VERSION;
2452                 xs->xsw_dev = sp->sw_dev;
2453                 xs->xsw_flags = sp->sw_flags;
2454                 xs->xsw_nblks = sp->sw_nblks;
2455                 xs->xsw_used = sp->sw_used;
2456                 if (devname != NULL) {
2457                         if (vn_isdisk(sp->sw_vp, NULL))
2458                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2459                         else
2460                                 tmp_devname = "[file]";
2461                         strncpy(devname, tmp_devname, len);
2462                 }
2463                 error = 0;
2464                 break;
2465         }
2466         mtx_unlock(&sw_dev_mtx);
2467         return (error);
2468 }
2469
2470 #if defined(COMPAT_FREEBSD11)
2471 #define XSWDEV_VERSION_11       1
2472 struct xswdev11 {
2473         u_int   xsw_version;
2474         uint32_t xsw_dev;
2475         int     xsw_flags;
2476         int     xsw_nblks;
2477         int     xsw_used;
2478 };
2479 #endif
2480
2481 static int
2482 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2483 {
2484         struct xswdev xs;
2485 #if defined(COMPAT_FREEBSD11)
2486         struct xswdev11 xs11;
2487 #endif
2488         int error;
2489
2490         if (arg2 != 1)                  /* name length */
2491                 return (EINVAL);
2492         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2493         if (error != 0)
2494                 return (error);
2495 #if defined(COMPAT_FREEBSD11)
2496         if (req->oldlen == sizeof(xs11)) {
2497                 xs11.xsw_version = XSWDEV_VERSION_11;
2498                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2499                 xs11.xsw_flags = xs.xsw_flags;
2500                 xs11.xsw_nblks = xs.xsw_nblks;
2501                 xs11.xsw_used = xs.xsw_used;
2502                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2503         } else
2504 #endif
2505                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2506         return (error);
2507 }
2508
2509 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2510     "Number of swap devices");
2511 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2512     sysctl_vm_swap_info,
2513     "Swap statistics by device");
2514
2515 /*
2516  * Count the approximate swap usage in pages for a vmspace.  The
2517  * shadowed or not yet copied on write swap blocks are not accounted.
2518  * The map must be locked.
2519  */
2520 long
2521 vmspace_swap_count(struct vmspace *vmspace)
2522 {
2523         vm_map_t map;
2524         vm_map_entry_t cur;
2525         vm_object_t object;
2526         struct swblk *sb;
2527         vm_pindex_t e, pi;
2528         long count;
2529         int i;
2530
2531         map = &vmspace->vm_map;
2532         count = 0;
2533
2534         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2535                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2536                         continue;
2537                 object = cur->object.vm_object;
2538                 if (object == NULL || object->type != OBJT_SWAP)
2539                         continue;
2540                 VM_OBJECT_RLOCK(object);
2541                 if (object->type != OBJT_SWAP)
2542                         goto unlock;
2543                 pi = OFF_TO_IDX(cur->offset);
2544                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2545                 for (;; pi = sb->p + SWAP_META_PAGES) {
2546                         sb = SWAP_PCTRIE_LOOKUP_GE(
2547                             &object->un_pager.swp.swp_blks, pi);
2548                         if (sb == NULL || sb->p >= e)
2549                                 break;
2550                         for (i = 0; i < SWAP_META_PAGES; i++) {
2551                                 if (sb->p + i < e &&
2552                                     sb->d[i] != SWAPBLK_NONE)
2553                                         count++;
2554                         }
2555                 }
2556 unlock:
2557                 VM_OBJECT_RUNLOCK(object);
2558         }
2559         return (count);
2560 }
2561
2562 /*
2563  * GEOM backend
2564  *
2565  * Swapping onto disk devices.
2566  *
2567  */
2568
2569 static g_orphan_t swapgeom_orphan;
2570
2571 static struct g_class g_swap_class = {
2572         .name = "SWAP",
2573         .version = G_VERSION,
2574         .orphan = swapgeom_orphan,
2575 };
2576
2577 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2578
2579
2580 static void
2581 swapgeom_close_ev(void *arg, int flags)
2582 {
2583         struct g_consumer *cp;
2584
2585         cp = arg;
2586         g_access(cp, -1, -1, 0);
2587         g_detach(cp);
2588         g_destroy_consumer(cp);
2589 }
2590
2591 /*
2592  * Add a reference to the g_consumer for an inflight transaction.
2593  */
2594 static void
2595 swapgeom_acquire(struct g_consumer *cp)
2596 {
2597
2598         mtx_assert(&sw_dev_mtx, MA_OWNED);
2599         cp->index++;
2600 }
2601
2602 /*
2603  * Remove a reference from the g_consumer.  Post a close event if all
2604  * references go away, since the function might be called from the
2605  * biodone context.
2606  */
2607 static void
2608 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2609 {
2610
2611         mtx_assert(&sw_dev_mtx, MA_OWNED);
2612         cp->index--;
2613         if (cp->index == 0) {
2614                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2615                         sp->sw_id = NULL;
2616         }
2617 }
2618
2619 static void
2620 swapgeom_done(struct bio *bp2)
2621 {
2622         struct swdevt *sp;
2623         struct buf *bp;
2624         struct g_consumer *cp;
2625
2626         bp = bp2->bio_caller2;
2627         cp = bp2->bio_from;
2628         bp->b_ioflags = bp2->bio_flags;
2629         if (bp2->bio_error)
2630                 bp->b_ioflags |= BIO_ERROR;
2631         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2632         bp->b_error = bp2->bio_error;
2633         bp->b_caller1 = NULL;
2634         bufdone(bp);
2635         sp = bp2->bio_caller1;
2636         mtx_lock(&sw_dev_mtx);
2637         swapgeom_release(cp, sp);
2638         mtx_unlock(&sw_dev_mtx);
2639         g_destroy_bio(bp2);
2640 }
2641
2642 static void
2643 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2644 {
2645         struct bio *bio;
2646         struct g_consumer *cp;
2647
2648         mtx_lock(&sw_dev_mtx);
2649         cp = sp->sw_id;
2650         if (cp == NULL) {
2651                 mtx_unlock(&sw_dev_mtx);
2652                 bp->b_error = ENXIO;
2653                 bp->b_ioflags |= BIO_ERROR;
2654                 bufdone(bp);
2655                 return;
2656         }
2657         swapgeom_acquire(cp);
2658         mtx_unlock(&sw_dev_mtx);
2659         if (bp->b_iocmd == BIO_WRITE)
2660                 bio = g_new_bio();
2661         else
2662                 bio = g_alloc_bio();
2663         if (bio == NULL) {
2664                 mtx_lock(&sw_dev_mtx);
2665                 swapgeom_release(cp, sp);
2666                 mtx_unlock(&sw_dev_mtx);
2667                 bp->b_error = ENOMEM;
2668                 bp->b_ioflags |= BIO_ERROR;
2669                 bufdone(bp);
2670                 return;
2671         }
2672
2673         bp->b_caller1 = bio;
2674         bio->bio_caller1 = sp;
2675         bio->bio_caller2 = bp;
2676         bio->bio_cmd = bp->b_iocmd;
2677         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2678         bio->bio_length = bp->b_bcount;
2679         bio->bio_done = swapgeom_done;
2680         if (!buf_mapped(bp)) {
2681                 bio->bio_ma = bp->b_pages;
2682                 bio->bio_data = unmapped_buf;
2683                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2684                 bio->bio_ma_n = bp->b_npages;
2685                 bio->bio_flags |= BIO_UNMAPPED;
2686         } else {
2687                 bio->bio_data = bp->b_data;
2688                 bio->bio_ma = NULL;
2689         }
2690         g_io_request(bio, cp);
2691         return;
2692 }
2693
2694 static void
2695 swapgeom_orphan(struct g_consumer *cp)
2696 {
2697         struct swdevt *sp;
2698         int destroy;
2699
2700         mtx_lock(&sw_dev_mtx);
2701         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2702                 if (sp->sw_id == cp) {
2703                         sp->sw_flags |= SW_CLOSING;
2704                         break;
2705                 }
2706         }
2707         /*
2708          * Drop reference we were created with. Do directly since we're in a
2709          * special context where we don't have to queue the call to
2710          * swapgeom_close_ev().
2711          */
2712         cp->index--;
2713         destroy = ((sp != NULL) && (cp->index == 0));
2714         if (destroy)
2715                 sp->sw_id = NULL;
2716         mtx_unlock(&sw_dev_mtx);
2717         if (destroy)
2718                 swapgeom_close_ev(cp, 0);
2719 }
2720
2721 static void
2722 swapgeom_close(struct thread *td, struct swdevt *sw)
2723 {
2724         struct g_consumer *cp;
2725
2726         mtx_lock(&sw_dev_mtx);
2727         cp = sw->sw_id;
2728         sw->sw_id = NULL;
2729         mtx_unlock(&sw_dev_mtx);
2730
2731         /*
2732          * swapgeom_close() may be called from the biodone context,
2733          * where we cannot perform topology changes.  Delegate the
2734          * work to the events thread.
2735          */
2736         if (cp != NULL)
2737                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2738 }
2739
2740 static int
2741 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2742 {
2743         struct g_provider *pp;
2744         struct g_consumer *cp;
2745         static struct g_geom *gp;
2746         struct swdevt *sp;
2747         u_long nblks;
2748         int error;
2749
2750         pp = g_dev_getprovider(dev);
2751         if (pp == NULL)
2752                 return (ENODEV);
2753         mtx_lock(&sw_dev_mtx);
2754         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2755                 cp = sp->sw_id;
2756                 if (cp != NULL && cp->provider == pp) {
2757                         mtx_unlock(&sw_dev_mtx);
2758                         return (EBUSY);
2759                 }
2760         }
2761         mtx_unlock(&sw_dev_mtx);
2762         if (gp == NULL)
2763                 gp = g_new_geomf(&g_swap_class, "swap");
2764         cp = g_new_consumer(gp);
2765         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2766         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2767         g_attach(cp, pp);
2768         /*
2769          * XXX: Every time you think you can improve the margin for
2770          * footshooting, somebody depends on the ability to do so:
2771          * savecore(8) wants to write to our swapdev so we cannot
2772          * set an exclusive count :-(
2773          */
2774         error = g_access(cp, 1, 1, 0);
2775         if (error != 0) {
2776                 g_detach(cp);
2777                 g_destroy_consumer(cp);
2778                 return (error);
2779         }
2780         nblks = pp->mediasize / DEV_BSIZE;
2781         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2782             swapgeom_close, dev2udev(dev),
2783             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2784         return (0);
2785 }
2786
2787 static int
2788 swapongeom(struct vnode *vp)
2789 {
2790         int error;
2791
2792         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2793         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2794                 error = ENOENT;
2795         } else {
2796                 g_topology_lock();
2797                 error = swapongeom_locked(vp->v_rdev, vp);
2798                 g_topology_unlock();
2799         }
2800         VOP_UNLOCK(vp, 0);
2801         return (error);
2802 }
2803
2804 /*
2805  * VNODE backend
2806  *
2807  * This is used mainly for network filesystem (read: probably only tested
2808  * with NFS) swapfiles.
2809  *
2810  */
2811
2812 static void
2813 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2814 {
2815         struct vnode *vp2;
2816
2817         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2818
2819         vp2 = sp->sw_id;
2820         vhold(vp2);
2821         if (bp->b_iocmd == BIO_WRITE) {
2822                 if (bp->b_bufobj)
2823                         bufobj_wdrop(bp->b_bufobj);
2824                 bufobj_wref(&vp2->v_bufobj);
2825         }
2826         if (bp->b_bufobj != &vp2->v_bufobj)
2827                 bp->b_bufobj = &vp2->v_bufobj;
2828         bp->b_vp = vp2;
2829         bp->b_iooffset = dbtob(bp->b_blkno);
2830         bstrategy(bp);
2831         return;
2832 }
2833
2834 static void
2835 swapdev_close(struct thread *td, struct swdevt *sp)
2836 {
2837
2838         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2839         vrele(sp->sw_vp);
2840 }
2841
2842
2843 static int
2844 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2845 {
2846         struct swdevt *sp;
2847         int error;
2848
2849         if (nblks == 0)
2850                 return (ENXIO);
2851         mtx_lock(&sw_dev_mtx);
2852         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2853                 if (sp->sw_id == vp) {
2854                         mtx_unlock(&sw_dev_mtx);
2855                         return (EBUSY);
2856                 }
2857         }
2858         mtx_unlock(&sw_dev_mtx);
2859
2860         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2861 #ifdef MAC
2862         error = mac_system_check_swapon(td->td_ucred, vp);
2863         if (error == 0)
2864 #endif
2865                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2866         (void) VOP_UNLOCK(vp, 0);
2867         if (error)
2868                 return (error);
2869
2870         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2871             NODEV, 0);
2872         return (0);
2873 }
2874
2875 static int
2876 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2877 {
2878         int error, new, n;
2879
2880         new = nsw_wcount_async_max;
2881         error = sysctl_handle_int(oidp, &new, 0, req);
2882         if (error != 0 || req->newptr == NULL)
2883                 return (error);
2884
2885         if (new > nswbuf / 2 || new < 1)
2886                 return (EINVAL);
2887
2888         mtx_lock(&swbuf_mtx);
2889         while (nsw_wcount_async_max != new) {
2890                 /*
2891                  * Adjust difference.  If the current async count is too low,
2892                  * we will need to sqeeze our update slowly in.  Sleep with a
2893                  * higher priority than getpbuf() to finish faster.
2894                  */
2895                 n = new - nsw_wcount_async_max;
2896                 if (nsw_wcount_async + n >= 0) {
2897                         nsw_wcount_async += n;
2898                         nsw_wcount_async_max += n;
2899                         wakeup(&nsw_wcount_async);
2900                 } else {
2901                         nsw_wcount_async_max -= nsw_wcount_async;
2902                         nsw_wcount_async = 0;
2903                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2904                             "swpsysctl", 0);
2905                 }
2906         }
2907         mtx_unlock(&swbuf_mtx);
2908
2909         return (0);
2910 }