]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
MFV: r362286
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A", 
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A", 
167     "Total amount of available swap storage.");
168
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179
180 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184
185 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189
190 /* bits from overcommit */
191 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
192 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
193 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
194
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198         uint64_t newval;
199         u_long value = *(u_long *)arg1;
200
201         newval = ((uint64_t)value) << PAGE_SHIFT;
202         return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204
205 int
206 swap_reserve(vm_ooffset_t incr)
207 {
208
209         return (swap_reserve_by_cred(incr, curthread->td_ucred));
210 }
211
212 int
213 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
214 {
215         u_long r, s, prev, pincr;
216         int res, error;
217         static int curfail;
218         static struct timeval lastfail;
219         struct uidinfo *uip;
220
221         uip = cred->cr_ruidinfo;
222
223         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
224             (uintmax_t)incr));
225
226 #ifdef RACCT
227         if (racct_enable) {
228                 PROC_LOCK(curproc);
229                 error = racct_add(curproc, RACCT_SWAP, incr);
230                 PROC_UNLOCK(curproc);
231                 if (error != 0)
232                         return (0);
233         }
234 #endif
235
236         pincr = atop(incr);
237         res = 0;
238         prev = atomic_fetchadd_long(&swap_reserved, pincr);
239         r = prev + pincr;
240         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
241                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
242                     vm_wire_count();
243         } else
244                 s = 0;
245         s += swap_total;
246         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
247             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
248                 res = 1;
249         } else {
250                 prev = atomic_fetchadd_long(&swap_reserved, -pincr);
251                 if (prev < pincr)
252                         panic("swap_reserved < incr on overcommit fail");
253         }
254         if (res) {
255                 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
256                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
257                     prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
258                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
259                         res = 0;
260                         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
261                         if (prev < pincr)
262                                 panic("uip->ui_vmsize < incr on overcommit fail");
263                 }
264         }
265         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
266                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
267                     uip->ui_uid, curproc->p_pid, incr);
268         }
269
270 #ifdef RACCT
271         if (racct_enable && !res) {
272                 PROC_LOCK(curproc);
273                 racct_sub(curproc, RACCT_SWAP, incr);
274                 PROC_UNLOCK(curproc);
275         }
276 #endif
277
278         return (res);
279 }
280
281 void
282 swap_reserve_force(vm_ooffset_t incr)
283 {
284         struct uidinfo *uip;
285         u_long pincr;
286
287         KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
288             (uintmax_t)incr));
289
290         PROC_LOCK(curproc);
291 #ifdef RACCT
292         if (racct_enable)
293                 racct_add_force(curproc, RACCT_SWAP, incr);
294 #endif
295         pincr = atop(incr);
296         atomic_add_long(&swap_reserved, pincr);
297         uip = curproc->p_ucred->cr_ruidinfo;
298         atomic_add_long(&uip->ui_vmsize, pincr);
299         PROC_UNLOCK(curproc);
300 }
301
302 void
303 swap_release(vm_ooffset_t decr)
304 {
305         struct ucred *cred;
306
307         PROC_LOCK(curproc);
308         cred = curproc->p_ucred;
309         swap_release_by_cred(decr, cred);
310         PROC_UNLOCK(curproc);
311 }
312
313 void
314 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
315 {
316         u_long prev, pdecr;
317         struct uidinfo *uip;
318
319         uip = cred->cr_ruidinfo;
320
321         KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
322             (uintmax_t)decr));
323
324         pdecr = atop(decr);
325         prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
326         if (prev < pdecr)
327                 panic("swap_reserved < decr");
328
329         prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
330         if (prev < pdecr)
331                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
332 #ifdef RACCT
333         if (racct_enable)
334                 racct_sub_cred(cred, RACCT_SWAP, decr);
335 #endif
336 }
337
338 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
339 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
340 static struct mtx swbuf_mtx;    /* to sync nsw_wcount_async */
341 static int nsw_wcount_async;    /* limit async write buffers */
342 static int nsw_wcount_async_max;/* assigned maximum                     */
343 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
344
345 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
346 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
347     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
348     "Maximum running async swap ops");
349 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
350 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
351     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
352     "Swap Fragmentation Info");
353
354 static struct sx sw_alloc_sx;
355
356 /*
357  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
358  * of searching a named list by hashing it just a little.
359  */
360
361 #define NOBJLISTS               8
362
363 #define NOBJLIST(handle)        \
364         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
365
366 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
367 static uma_zone_t swwbuf_zone;
368 static uma_zone_t swrbuf_zone;
369 static uma_zone_t swblk_zone;
370 static uma_zone_t swpctrie_zone;
371
372 /*
373  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
374  * calls hooked from other parts of the VM system and do not appear here.
375  * (see vm/swap_pager.h).
376  */
377 static vm_object_t
378                 swap_pager_alloc(void *handle, vm_ooffset_t size,
379                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
380 static void     swap_pager_dealloc(vm_object_t object);
381 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
382     int *);
383 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
384     int *, pgo_getpages_iodone_t, void *);
385 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
386 static boolean_t
387                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
388 static void     swap_pager_init(void);
389 static void     swap_pager_unswapped(vm_page_t);
390 static void     swap_pager_swapoff(struct swdevt *sp);
391 static void     swap_pager_update_writecount(vm_object_t object,
392     vm_offset_t start, vm_offset_t end);
393 static void     swap_pager_release_writecount(vm_object_t object,
394     vm_offset_t start, vm_offset_t end);
395
396 struct pagerops swappagerops = {
397         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
398         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
399         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
400         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
401         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
402         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
403         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
404         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
405         .pgo_update_writecount = swap_pager_update_writecount,
406         .pgo_release_writecount = swap_pager_release_writecount,
407 };
408
409 /*
410  * swap_*() routines are externally accessible.  swp_*() routines are
411  * internal.
412  */
413 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
414 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
415
416 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
417     "Maximum size of a swap block in pages");
418
419 static void     swp_sizecheck(void);
420 static void     swp_pager_async_iodone(struct buf *bp);
421 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
422 static void     swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
423 static int      swapongeom(struct vnode *);
424 static int      swaponvp(struct thread *, struct vnode *, u_long);
425 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
426
427 /*
428  * Swap bitmap functions
429  */
430 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
431 static daddr_t  swp_pager_getswapspace(int *npages);
432
433 /*
434  * Metadata functions
435  */
436 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
437 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
438 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
439     vm_pindex_t pindex, vm_pindex_t count);
440 static void swp_pager_meta_free_all(vm_object_t);
441 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
442
443 static void
444 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
445 {
446
447         *start = SWAPBLK_NONE;
448         *num = 0;
449 }
450
451 static void
452 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
453 {
454
455         if (*start + *num == addr) {
456                 (*num)++;
457         } else {
458                 swp_pager_freeswapspace(*start, *num);
459                 *start = addr;
460                 *num = 1;
461         }
462 }
463
464 static void *
465 swblk_trie_alloc(struct pctrie *ptree)
466 {
467
468         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
469             M_USE_RESERVE : 0)));
470 }
471
472 static void
473 swblk_trie_free(struct pctrie *ptree, void *node)
474 {
475
476         uma_zfree(swpctrie_zone, node);
477 }
478
479 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
480
481 /*
482  * SWP_SIZECHECK() -    update swap_pager_full indication
483  *
484  *      update the swap_pager_almost_full indication and warn when we are
485  *      about to run out of swap space, using lowat/hiwat hysteresis.
486  *
487  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
488  *
489  *      No restrictions on call
490  *      This routine may not block.
491  */
492 static void
493 swp_sizecheck(void)
494 {
495
496         if (swap_pager_avail < nswap_lowat) {
497                 if (swap_pager_almost_full == 0) {
498                         printf("swap_pager: out of swap space\n");
499                         swap_pager_almost_full = 1;
500                 }
501         } else {
502                 swap_pager_full = 0;
503                 if (swap_pager_avail > nswap_hiwat)
504                         swap_pager_almost_full = 0;
505         }
506 }
507
508 /*
509  * SWAP_PAGER_INIT() -  initialize the swap pager!
510  *
511  *      Expected to be started from system init.  NOTE:  This code is run
512  *      before much else so be careful what you depend on.  Most of the VM
513  *      system has yet to be initialized at this point.
514  */
515 static void
516 swap_pager_init(void)
517 {
518         /*
519          * Initialize object lists
520          */
521         int i;
522
523         for (i = 0; i < NOBJLISTS; ++i)
524                 TAILQ_INIT(&swap_pager_object_list[i]);
525         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
526         sx_init(&sw_alloc_sx, "swspsx");
527         sx_init(&swdev_syscall_lock, "swsysc");
528 }
529
530 /*
531  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
532  *
533  *      Expected to be started from pageout process once, prior to entering
534  *      its main loop.
535  */
536 void
537 swap_pager_swap_init(void)
538 {
539         unsigned long n, n2;
540
541         /*
542          * Number of in-transit swap bp operations.  Don't
543          * exhaust the pbufs completely.  Make sure we
544          * initialize workable values (0 will work for hysteresis
545          * but it isn't very efficient).
546          *
547          * The nsw_cluster_max is constrained by the bp->b_pages[]
548          * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
549          * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
550          * constrained by the swap device interleave stripe size.
551          *
552          * Currently we hardwire nsw_wcount_async to 4.  This limit is
553          * designed to prevent other I/O from having high latencies due to
554          * our pageout I/O.  The value 4 works well for one or two active swap
555          * devices but is probably a little low if you have more.  Even so,
556          * a higher value would probably generate only a limited improvement
557          * with three or four active swap devices since the system does not
558          * typically have to pageout at extreme bandwidths.   We will want
559          * at least 2 per swap devices, and 4 is a pretty good value if you
560          * have one NFS swap device due to the command/ack latency over NFS.
561          * So it all works out pretty well.
562          */
563         nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
564
565         nsw_wcount_async = 4;
566         nsw_wcount_async_max = nsw_wcount_async;
567         mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
568
569         swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
570         swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
571
572         /*
573          * Initialize our zone, taking the user's requested size or
574          * estimating the number we need based on the number of pages
575          * in the system.
576          */
577         n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
578             vm_cnt.v_page_count / 2;
579         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
580             pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
581         if (swpctrie_zone == NULL)
582                 panic("failed to create swap pctrie zone.");
583         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
584             NULL, NULL, _Alignof(struct swblk) - 1, 0);
585         if (swblk_zone == NULL)
586                 panic("failed to create swap blk zone.");
587         n2 = n;
588         do {
589                 if (uma_zone_reserve_kva(swblk_zone, n))
590                         break;
591                 /*
592                  * if the allocation failed, try a zone two thirds the
593                  * size of the previous attempt.
594                  */
595                 n -= ((n + 2) / 3);
596         } while (n > 0);
597
598         /*
599          * Often uma_zone_reserve_kva() cannot reserve exactly the
600          * requested size.  Account for the difference when
601          * calculating swap_maxpages.
602          */
603         n = uma_zone_get_max(swblk_zone);
604
605         if (n < n2)
606                 printf("Swap blk zone entries changed from %lu to %lu.\n",
607                     n2, n);
608         /* absolute maximum we can handle assuming 100% efficiency */
609         swap_maxpages = n * SWAP_META_PAGES;
610         swzone = n * sizeof(struct swblk);
611         if (!uma_zone_reserve_kva(swpctrie_zone, n))
612                 printf("Cannot reserve swap pctrie zone, "
613                     "reduce kern.maxswzone.\n");
614 }
615
616 static vm_object_t
617 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
618     vm_ooffset_t offset)
619 {
620         vm_object_t object;
621
622         if (cred != NULL) {
623                 if (!swap_reserve_by_cred(size, cred))
624                         return (NULL);
625                 crhold(cred);
626         }
627
628         /*
629          * The un_pager.swp.swp_blks trie is initialized by
630          * vm_object_allocate() to ensure the correct order of
631          * visibility to other threads.
632          */
633         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
634             PAGE_MASK + size));
635
636         object->un_pager.swp.writemappings = 0;
637         object->handle = handle;
638         if (cred != NULL) {
639                 object->cred = cred;
640                 object->charge = size;
641         }
642         return (object);
643 }
644
645 /*
646  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
647  *                      its metadata structures.
648  *
649  *      This routine is called from the mmap and fork code to create a new
650  *      OBJT_SWAP object.
651  *
652  *      This routine must ensure that no live duplicate is created for
653  *      the named object request, which is protected against by
654  *      holding the sw_alloc_sx lock in case handle != NULL.
655  */
656 static vm_object_t
657 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
658     vm_ooffset_t offset, struct ucred *cred)
659 {
660         vm_object_t object;
661
662         if (handle != NULL) {
663                 /*
664                  * Reference existing named region or allocate new one.  There
665                  * should not be a race here against swp_pager_meta_build()
666                  * as called from vm_page_remove() in regards to the lookup
667                  * of the handle.
668                  */
669                 sx_xlock(&sw_alloc_sx);
670                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
671                 if (object == NULL) {
672                         object = swap_pager_alloc_init(handle, cred, size,
673                             offset);
674                         if (object != NULL) {
675                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
676                                     object, pager_object_list);
677                         }
678                 }
679                 sx_xunlock(&sw_alloc_sx);
680         } else {
681                 object = swap_pager_alloc_init(handle, cred, size, offset);
682         }
683         return (object);
684 }
685
686 /*
687  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
688  *
689  *      The swap backing for the object is destroyed.  The code is
690  *      designed such that we can reinstantiate it later, but this
691  *      routine is typically called only when the entire object is
692  *      about to be destroyed.
693  *
694  *      The object must be locked.
695  */
696 static void
697 swap_pager_dealloc(vm_object_t object)
698 {
699
700         VM_OBJECT_ASSERT_WLOCKED(object);
701         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
702
703         /*
704          * Remove from list right away so lookups will fail if we block for
705          * pageout completion.
706          */
707         if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
708                 VM_OBJECT_WUNLOCK(object);
709                 sx_xlock(&sw_alloc_sx);
710                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
711                     pager_object_list);
712                 sx_xunlock(&sw_alloc_sx);
713                 VM_OBJECT_WLOCK(object);
714         }
715
716         vm_object_pip_wait(object, "swpdea");
717
718         /*
719          * Free all remaining metadata.  We only bother to free it from
720          * the swap meta data.  We do not attempt to free swapblk's still
721          * associated with vm_page_t's for this object.  We do not care
722          * if paging is still in progress on some objects.
723          */
724         swp_pager_meta_free_all(object);
725         object->handle = NULL;
726         object->type = OBJT_DEAD;
727 }
728
729 /************************************************************************
730  *                      SWAP PAGER BITMAP ROUTINES                      *
731  ************************************************************************/
732
733 /*
734  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
735  *
736  *      Allocate swap for up to the requested number of pages.  The
737  *      starting swap block number (a page index) is returned or
738  *      SWAPBLK_NONE if the allocation failed.
739  *
740  *      Also has the side effect of advising that somebody made a mistake
741  *      when they configured swap and didn't configure enough.
742  *
743  *      This routine may not sleep.
744  *
745  *      We allocate in round-robin fashion from the configured devices.
746  */
747 static daddr_t
748 swp_pager_getswapspace(int *io_npages)
749 {
750         daddr_t blk;
751         struct swdevt *sp;
752         int mpages, npages;
753
754         KASSERT(*io_npages >= 1,
755             ("%s: npages not positive", __func__));
756         blk = SWAPBLK_NONE;
757         mpages = *io_npages;
758         npages = imin(BLIST_MAX_ALLOC, mpages);
759         mtx_lock(&sw_dev_mtx);
760         sp = swdevhd;
761         while (!TAILQ_EMPTY(&swtailq)) {
762                 if (sp == NULL)
763                         sp = TAILQ_FIRST(&swtailq);
764                 if ((sp->sw_flags & SW_CLOSING) == 0)
765                         blk = blist_alloc(sp->sw_blist, &npages, mpages);
766                 if (blk != SWAPBLK_NONE)
767                         break;
768                 sp = TAILQ_NEXT(sp, sw_list);
769                 if (swdevhd == sp) {
770                         if (npages == 1)
771                                 break;
772                         mpages = npages - 1;
773                         npages >>= 1;
774                 }
775         }
776         if (blk != SWAPBLK_NONE) {
777                 *io_npages = npages;
778                 blk += sp->sw_first;
779                 sp->sw_used += npages;
780                 swap_pager_avail -= npages;
781                 swp_sizecheck();
782                 swdevhd = TAILQ_NEXT(sp, sw_list);
783         } else {
784                 if (swap_pager_full != 2) {
785                         printf("swp_pager_getswapspace(%d): failed\n",
786                             *io_npages);
787                         swap_pager_full = 2;
788                         swap_pager_almost_full = 1;
789                 }
790                 swdevhd = NULL;
791         }
792         mtx_unlock(&sw_dev_mtx);
793         return (blk);
794 }
795
796 static bool
797 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
798 {
799
800         return (blk >= sp->sw_first && blk < sp->sw_end);
801 }
802
803 static void
804 swp_pager_strategy(struct buf *bp)
805 {
806         struct swdevt *sp;
807
808         mtx_lock(&sw_dev_mtx);
809         TAILQ_FOREACH(sp, &swtailq, sw_list) {
810                 if (swp_pager_isondev(bp->b_blkno, sp)) {
811                         mtx_unlock(&sw_dev_mtx);
812                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
813                             unmapped_buf_allowed) {
814                                 bp->b_data = unmapped_buf;
815                                 bp->b_offset = 0;
816                         } else {
817                                 pmap_qenter((vm_offset_t)bp->b_data,
818                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
819                         }
820                         sp->sw_strategy(bp, sp);
821                         return;
822                 }
823         }
824         panic("Swapdev not found");
825 }
826
827
828 /*
829  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
830  *
831  *      This routine returns the specified swap blocks back to the bitmap.
832  *
833  *      This routine may not sleep.
834  */
835 static void
836 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
837 {
838         struct swdevt *sp;
839
840         if (npages == 0)
841                 return;
842         mtx_lock(&sw_dev_mtx);
843         TAILQ_FOREACH(sp, &swtailq, sw_list) {
844                 if (swp_pager_isondev(blk, sp)) {
845                         sp->sw_used -= npages;
846                         /*
847                          * If we are attempting to stop swapping on
848                          * this device, we don't want to mark any
849                          * blocks free lest they be reused.
850                          */
851                         if ((sp->sw_flags & SW_CLOSING) == 0) {
852                                 blist_free(sp->sw_blist, blk - sp->sw_first,
853                                     npages);
854                                 swap_pager_avail += npages;
855                                 swp_sizecheck();
856                         }
857                         mtx_unlock(&sw_dev_mtx);
858                         return;
859                 }
860         }
861         panic("Swapdev not found");
862 }
863
864 /*
865  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
866  */
867 static int
868 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
869 {
870         struct sbuf sbuf;
871         struct swdevt *sp;
872         const char *devname;
873         int error;
874
875         error = sysctl_wire_old_buffer(req, 0);
876         if (error != 0)
877                 return (error);
878         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
879         mtx_lock(&sw_dev_mtx);
880         TAILQ_FOREACH(sp, &swtailq, sw_list) {
881                 if (vn_isdisk(sp->sw_vp, NULL))
882                         devname = devtoname(sp->sw_vp->v_rdev);
883                 else
884                         devname = "[file]";
885                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
886                 blist_stats(sp->sw_blist, &sbuf);
887         }
888         mtx_unlock(&sw_dev_mtx);
889         error = sbuf_finish(&sbuf);
890         sbuf_delete(&sbuf);
891         return (error);
892 }
893
894 /*
895  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
896  *                              range within an object.
897  *
898  *      This is a globally accessible routine.
899  *
900  *      This routine removes swapblk assignments from swap metadata.
901  *
902  *      The external callers of this routine typically have already destroyed
903  *      or renamed vm_page_t's associated with this range in the object so
904  *      we should be ok.
905  *
906  *      The object must be locked.
907  */
908 void
909 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
910 {
911
912         swp_pager_meta_free(object, start, size);
913 }
914
915 /*
916  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
917  *
918  *      Assigns swap blocks to the specified range within the object.  The
919  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
920  *
921  *      Returns 0 on success, -1 on failure.
922  */
923 int
924 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
925 {
926         daddr_t addr, blk, n_free, s_free;
927         int i, j, n;
928
929         swp_pager_init_freerange(&s_free, &n_free);
930         VM_OBJECT_WLOCK(object);
931         for (i = 0; i < size; i += n) {
932                 n = size - i;
933                 blk = swp_pager_getswapspace(&n);
934                 if (blk == SWAPBLK_NONE) {
935                         swp_pager_meta_free(object, start, i);
936                         VM_OBJECT_WUNLOCK(object);
937                         return (-1);
938                 }
939                 for (j = 0; j < n; ++j) {
940                         addr = swp_pager_meta_build(object,
941                             start + i + j, blk + j);
942                         if (addr != SWAPBLK_NONE)
943                                 swp_pager_update_freerange(&s_free, &n_free,
944                                     addr);
945                 }
946         }
947         swp_pager_freeswapspace(s_free, n_free);
948         VM_OBJECT_WUNLOCK(object);
949         return (0);
950 }
951
952 static bool
953 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
954     vm_pindex_t pindex, daddr_t addr)
955 {
956         daddr_t dstaddr;
957
958         KASSERT(srcobject->type == OBJT_SWAP,
959             ("%s: Srcobject not swappable", __func__));
960         if (dstobject->type == OBJT_SWAP &&
961             swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
962                 /* Caller should destroy the source block. */
963                 return (false);
964         }
965
966         /*
967          * Destination has no swapblk and is not resident, transfer source.
968          * swp_pager_meta_build() can sleep.
969          */
970         VM_OBJECT_WUNLOCK(srcobject);
971         dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
972         KASSERT(dstaddr == SWAPBLK_NONE,
973             ("Unexpected destination swapblk"));
974         VM_OBJECT_WLOCK(srcobject);
975
976         return (true);
977 }
978
979 /*
980  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
981  *                      and destroy the source.
982  *
983  *      Copy any valid swapblks from the source to the destination.  In
984  *      cases where both the source and destination have a valid swapblk,
985  *      we keep the destination's.
986  *
987  *      This routine is allowed to sleep.  It may sleep allocating metadata
988  *      indirectly through swp_pager_meta_build().
989  *
990  *      The source object contains no vm_page_t's (which is just as well)
991  *
992  *      The source object is of type OBJT_SWAP.
993  *
994  *      The source and destination objects must be locked.
995  *      Both object locks may temporarily be released.
996  */
997 void
998 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
999     vm_pindex_t offset, int destroysource)
1000 {
1001
1002         VM_OBJECT_ASSERT_WLOCKED(srcobject);
1003         VM_OBJECT_ASSERT_WLOCKED(dstobject);
1004
1005         /*
1006          * If destroysource is set, we remove the source object from the
1007          * swap_pager internal queue now.
1008          */
1009         if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1010             srcobject->handle != NULL) {
1011                 VM_OBJECT_WUNLOCK(srcobject);
1012                 VM_OBJECT_WUNLOCK(dstobject);
1013                 sx_xlock(&sw_alloc_sx);
1014                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1015                     pager_object_list);
1016                 sx_xunlock(&sw_alloc_sx);
1017                 VM_OBJECT_WLOCK(dstobject);
1018                 VM_OBJECT_WLOCK(srcobject);
1019         }
1020
1021         /*
1022          * Transfer source to destination.
1023          */
1024         swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1025
1026         /*
1027          * Free left over swap blocks in source.
1028          *
1029          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1030          * double-remove the object from the swap queues.
1031          */
1032         if (destroysource) {
1033                 swp_pager_meta_free_all(srcobject);
1034                 /*
1035                  * Reverting the type is not necessary, the caller is going
1036                  * to destroy srcobject directly, but I'm doing it here
1037                  * for consistency since we've removed the object from its
1038                  * queues.
1039                  */
1040                 srcobject->type = OBJT_DEFAULT;
1041         }
1042 }
1043
1044 /*
1045  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1046  *                              the requested page.
1047  *
1048  *      We determine whether good backing store exists for the requested
1049  *      page and return TRUE if it does, FALSE if it doesn't.
1050  *
1051  *      If TRUE, we also try to determine how much valid, contiguous backing
1052  *      store exists before and after the requested page.
1053  */
1054 static boolean_t
1055 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1056     int *after)
1057 {
1058         daddr_t blk, blk0;
1059         int i;
1060
1061         VM_OBJECT_ASSERT_LOCKED(object);
1062         KASSERT(object->type == OBJT_SWAP,
1063             ("%s: object not swappable", __func__));
1064
1065         /*
1066          * do we have good backing store at the requested index ?
1067          */
1068         blk0 = swp_pager_meta_lookup(object, pindex);
1069         if (blk0 == SWAPBLK_NONE) {
1070                 if (before)
1071                         *before = 0;
1072                 if (after)
1073                         *after = 0;
1074                 return (FALSE);
1075         }
1076
1077         /*
1078          * find backwards-looking contiguous good backing store
1079          */
1080         if (before != NULL) {
1081                 for (i = 1; i < SWB_NPAGES; i++) {
1082                         if (i > pindex)
1083                                 break;
1084                         blk = swp_pager_meta_lookup(object, pindex - i);
1085                         if (blk != blk0 - i)
1086                                 break;
1087                 }
1088                 *before = i - 1;
1089         }
1090
1091         /*
1092          * find forward-looking contiguous good backing store
1093          */
1094         if (after != NULL) {
1095                 for (i = 1; i < SWB_NPAGES; i++) {
1096                         blk = swp_pager_meta_lookup(object, pindex + i);
1097                         if (blk != blk0 + i)
1098                                 break;
1099                 }
1100                 *after = i - 1;
1101         }
1102         return (TRUE);
1103 }
1104
1105 /*
1106  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1107  *
1108  *      This removes any associated swap backing store, whether valid or
1109  *      not, from the page.
1110  *
1111  *      This routine is typically called when a page is made dirty, at
1112  *      which point any associated swap can be freed.  MADV_FREE also
1113  *      calls us in a special-case situation
1114  *
1115  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1116  *      should make the page dirty before calling this routine.  This routine
1117  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1118  *      depends on it.
1119  *
1120  *      This routine may not sleep.
1121  *
1122  *      The object containing the page may be locked.
1123  */
1124 static void
1125 swap_pager_unswapped(vm_page_t m)
1126 {
1127         struct swblk *sb;
1128         vm_object_t obj;
1129
1130         /*
1131          * Handle enqueing deferred frees first.  If we do not have the
1132          * object lock we wait for the page daemon to clear the space.
1133          */
1134         obj = m->object;
1135         if (!VM_OBJECT_WOWNED(obj)) {
1136                 VM_PAGE_OBJECT_BUSY_ASSERT(m);
1137                 /*
1138                  * The caller is responsible for synchronization but we
1139                  * will harmlessly handle races.  This is typically provided
1140                  * by only calling unswapped() when a page transitions from
1141                  * clean to dirty.
1142                  */
1143                 if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1144                     PGA_SWAP_SPACE) {
1145                         vm_page_aflag_set(m, PGA_SWAP_FREE);
1146                         counter_u64_add(swap_free_deferred, 1);
1147                 }
1148                 return;
1149         }
1150         if ((m->a.flags & PGA_SWAP_FREE) != 0)
1151                 counter_u64_add(swap_free_completed, 1);
1152         vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1153
1154         /*
1155          * The meta data only exists if the object is OBJT_SWAP
1156          * and even then might not be allocated yet.
1157          */
1158         KASSERT(m->object->type == OBJT_SWAP,
1159             ("Free object not swappable"));
1160
1161         sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1162             rounddown(m->pindex, SWAP_META_PAGES));
1163         if (sb == NULL)
1164                 return;
1165         if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1166                 return;
1167         swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1168         sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1169         swp_pager_free_empty_swblk(m->object, sb);
1170 }
1171
1172 /*
1173  * swap_pager_getpages() - bring pages in from swap
1174  *
1175  *      Attempt to page in the pages in array "ma" of length "count".  The
1176  *      caller may optionally specify that additional pages preceding and
1177  *      succeeding the specified range be paged in.  The number of such pages
1178  *      is returned in the "rbehind" and "rahead" parameters, and they will
1179  *      be in the inactive queue upon return.
1180  *
1181  *      The pages in "ma" must be busied and will remain busied upon return.
1182  */
1183 static int
1184 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1185     int *rbehind, int *rahead)
1186 {
1187         struct buf *bp;
1188         vm_page_t bm, mpred, msucc, p;
1189         vm_pindex_t pindex;
1190         daddr_t blk;
1191         int i, maxahead, maxbehind, reqcount;
1192
1193         VM_OBJECT_ASSERT_WLOCKED(object);
1194         reqcount = count;
1195
1196         KASSERT(object->type == OBJT_SWAP,
1197             ("%s: object not swappable", __func__));
1198         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1199                 VM_OBJECT_WUNLOCK(object);
1200                 return (VM_PAGER_FAIL);
1201         }
1202
1203         KASSERT(reqcount - 1 <= maxahead,
1204             ("page count %d extends beyond swap block", reqcount));
1205
1206         /*
1207          * Do not transfer any pages other than those that are xbusied
1208          * when running during a split or collapse operation.  This
1209          * prevents clustering from re-creating pages which are being
1210          * moved into another object.
1211          */
1212         if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1213                 maxahead = reqcount - 1;
1214                 maxbehind = 0;
1215         }
1216
1217         /*
1218          * Clip the readahead and readbehind ranges to exclude resident pages.
1219          */
1220         if (rahead != NULL) {
1221                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1222                 pindex = ma[reqcount - 1]->pindex;
1223                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1224                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1225                         *rahead = msucc->pindex - pindex - 1;
1226         }
1227         if (rbehind != NULL) {
1228                 *rbehind = imin(*rbehind, maxbehind);
1229                 pindex = ma[0]->pindex;
1230                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1231                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1232                         *rbehind = pindex - mpred->pindex - 1;
1233         }
1234
1235         bm = ma[0];
1236         for (i = 0; i < count; i++)
1237                 ma[i]->oflags |= VPO_SWAPINPROG;
1238
1239         /*
1240          * Allocate readahead and readbehind pages.
1241          */
1242         if (rbehind != NULL) {
1243                 for (i = 1; i <= *rbehind; i++) {
1244                         p = vm_page_alloc(object, ma[0]->pindex - i,
1245                             VM_ALLOC_NORMAL);
1246                         if (p == NULL)
1247                                 break;
1248                         p->oflags |= VPO_SWAPINPROG;
1249                         bm = p;
1250                 }
1251                 *rbehind = i - 1;
1252         }
1253         if (rahead != NULL) {
1254                 for (i = 0; i < *rahead; i++) {
1255                         p = vm_page_alloc(object,
1256                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1257                         if (p == NULL)
1258                                 break;
1259                         p->oflags |= VPO_SWAPINPROG;
1260                 }
1261                 *rahead = i;
1262         }
1263         if (rbehind != NULL)
1264                 count += *rbehind;
1265         if (rahead != NULL)
1266                 count += *rahead;
1267
1268         vm_object_pip_add(object, count);
1269
1270         pindex = bm->pindex;
1271         blk = swp_pager_meta_lookup(object, pindex);
1272         KASSERT(blk != SWAPBLK_NONE,
1273             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1274
1275         VM_OBJECT_WUNLOCK(object);
1276         bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1277         /* Pages cannot leave the object while busy. */
1278         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1279                 MPASS(p->pindex == bm->pindex + i);
1280                 bp->b_pages[i] = p;
1281         }
1282
1283         bp->b_flags |= B_PAGING;
1284         bp->b_iocmd = BIO_READ;
1285         bp->b_iodone = swp_pager_async_iodone;
1286         bp->b_rcred = crhold(thread0.td_ucred);
1287         bp->b_wcred = crhold(thread0.td_ucred);
1288         bp->b_blkno = blk;
1289         bp->b_bcount = PAGE_SIZE * count;
1290         bp->b_bufsize = PAGE_SIZE * count;
1291         bp->b_npages = count;
1292         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1293         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1294
1295         VM_CNT_INC(v_swapin);
1296         VM_CNT_ADD(v_swappgsin, count);
1297
1298         /*
1299          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1300          * this point because we automatically release it on completion.
1301          * Instead, we look at the one page we are interested in which we
1302          * still hold a lock on even through the I/O completion.
1303          *
1304          * The other pages in our ma[] array are also released on completion,
1305          * so we cannot assume they are valid anymore either.
1306          *
1307          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1308          */
1309         BUF_KERNPROC(bp);
1310         swp_pager_strategy(bp);
1311
1312         /*
1313          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1314          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1315          * is set in the metadata for each page in the request.
1316          */
1317         VM_OBJECT_WLOCK(object);
1318         /* This could be implemented more efficiently with aflags */
1319         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1320                 ma[0]->oflags |= VPO_SWAPSLEEP;
1321                 VM_CNT_INC(v_intrans);
1322                 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1323                     "swread", hz * 20)) {
1324                         printf(
1325 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1326                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1327                 }
1328         }
1329         VM_OBJECT_WUNLOCK(object);
1330
1331         /*
1332          * If we had an unrecoverable read error pages will not be valid.
1333          */
1334         for (i = 0; i < reqcount; i++)
1335                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1336                         return (VM_PAGER_ERROR);
1337
1338         return (VM_PAGER_OK);
1339
1340         /*
1341          * A final note: in a low swap situation, we cannot deallocate swap
1342          * and mark a page dirty here because the caller is likely to mark
1343          * the page clean when we return, causing the page to possibly revert
1344          * to all-zero's later.
1345          */
1346 }
1347
1348 static int
1349 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1350     int *rbehind, int *rahead)
1351 {
1352
1353         VM_OBJECT_WLOCK(object);
1354         return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1355 }
1356
1357 /*
1358  *      swap_pager_getpages_async():
1359  *
1360  *      Right now this is emulation of asynchronous operation on top of
1361  *      swap_pager_getpages().
1362  */
1363 static int
1364 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1365     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1366 {
1367         int r, error;
1368
1369         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1370         switch (r) {
1371         case VM_PAGER_OK:
1372                 error = 0;
1373                 break;
1374         case VM_PAGER_ERROR:
1375                 error = EIO;
1376                 break;
1377         case VM_PAGER_FAIL:
1378                 error = EINVAL;
1379                 break;
1380         default:
1381                 panic("unhandled swap_pager_getpages() error %d", r);
1382         }
1383         (iodone)(arg, ma, count, error);
1384
1385         return (r);
1386 }
1387
1388 /*
1389  *      swap_pager_putpages:
1390  *
1391  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1392  *
1393  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1394  *      are automatically converted to SWAP objects.
1395  *
1396  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1397  *      vm_page reservation system coupled with properly written VFS devices
1398  *      should ensure that no low-memory deadlock occurs.  This is an area
1399  *      which needs work.
1400  *
1401  *      The parent has N vm_object_pip_add() references prior to
1402  *      calling us and will remove references for rtvals[] that are
1403  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1404  *      completion.
1405  *
1406  *      The parent has soft-busy'd the pages it passes us and will unbusy
1407  *      those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1408  *      We need to unbusy the rest on I/O completion.
1409  */
1410 static void
1411 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1412     int flags, int *rtvals)
1413 {
1414         struct buf *bp;
1415         daddr_t addr, blk, n_free, s_free;
1416         vm_page_t mreq;
1417         int i, j, n;
1418         bool async;
1419
1420         KASSERT(count == 0 || ma[0]->object == object,
1421             ("%s: object mismatch %p/%p",
1422             __func__, object, ma[0]->object));
1423
1424         /*
1425          * Step 1
1426          *
1427          * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1428          */
1429         if (object->type != OBJT_SWAP) {
1430                 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1431                 KASSERT(addr == SWAPBLK_NONE,
1432                     ("unexpected object swap block"));
1433         }
1434         VM_OBJECT_WUNLOCK(object);
1435         async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1436         swp_pager_init_freerange(&s_free, &n_free);
1437
1438         /*
1439          * Step 2
1440          *
1441          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1442          * The page is left dirty until the pageout operation completes
1443          * successfully.
1444          */
1445         for (i = 0; i < count; i += n) {
1446                 /* Maximum I/O size is limited by maximum swap block size. */
1447                 n = min(count - i, nsw_cluster_max);
1448
1449                 if (async) {
1450                         mtx_lock(&swbuf_mtx);
1451                         while (nsw_wcount_async == 0)
1452                                 msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1453                                     "swbufa", 0);
1454                         nsw_wcount_async--;
1455                         mtx_unlock(&swbuf_mtx);
1456                 }
1457
1458                 /* Get a block of swap of size up to size n. */
1459                 VM_OBJECT_WLOCK(object);
1460                 blk = swp_pager_getswapspace(&n);
1461                 if (blk == SWAPBLK_NONE) {
1462                         VM_OBJECT_WUNLOCK(object);
1463                         mtx_lock(&swbuf_mtx);
1464                         if (++nsw_wcount_async == 1)
1465                                 wakeup(&nsw_wcount_async);
1466                         mtx_unlock(&swbuf_mtx);
1467                         for (j = 0; j < n; ++j)
1468                                 rtvals[i + j] = VM_PAGER_FAIL;
1469                         continue;
1470                 }
1471                 for (j = 0; j < n; ++j) {
1472                         mreq = ma[i + j];
1473                         vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1474                         addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1475                             blk + j);
1476                         if (addr != SWAPBLK_NONE)
1477                                 swp_pager_update_freerange(&s_free, &n_free,
1478                                     addr);
1479                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1480                         mreq->oflags |= VPO_SWAPINPROG;
1481                 }
1482                 VM_OBJECT_WUNLOCK(object);
1483
1484                 bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1485                 if (async)
1486                         bp->b_flags = B_ASYNC;
1487                 bp->b_flags |= B_PAGING;
1488                 bp->b_iocmd = BIO_WRITE;
1489
1490                 bp->b_rcred = crhold(thread0.td_ucred);
1491                 bp->b_wcred = crhold(thread0.td_ucred);
1492                 bp->b_bcount = PAGE_SIZE * n;
1493                 bp->b_bufsize = PAGE_SIZE * n;
1494                 bp->b_blkno = blk;
1495                 for (j = 0; j < n; j++)
1496                         bp->b_pages[j] = ma[i + j];
1497                 bp->b_npages = n;
1498
1499                 /*
1500                  * Must set dirty range for NFS to work.
1501                  */
1502                 bp->b_dirtyoff = 0;
1503                 bp->b_dirtyend = bp->b_bcount;
1504
1505                 VM_CNT_INC(v_swapout);
1506                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1507
1508                 /*
1509                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1510                  * can call the async completion routine at the end of a
1511                  * synchronous I/O operation.  Otherwise, our caller would
1512                  * perform duplicate unbusy and wakeup operations on the page
1513                  * and object, respectively.
1514                  */
1515                 for (j = 0; j < n; j++)
1516                         rtvals[i + j] = VM_PAGER_PEND;
1517
1518                 /*
1519                  * asynchronous
1520                  *
1521                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1522                  */
1523                 if (async) {
1524                         bp->b_iodone = swp_pager_async_iodone;
1525                         BUF_KERNPROC(bp);
1526                         swp_pager_strategy(bp);
1527                         continue;
1528                 }
1529
1530                 /*
1531                  * synchronous
1532                  *
1533                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1534                  */
1535                 bp->b_iodone = bdone;
1536                 swp_pager_strategy(bp);
1537
1538                 /*
1539                  * Wait for the sync I/O to complete.
1540                  */
1541                 bwait(bp, PVM, "swwrt");
1542
1543                 /*
1544                  * Now that we are through with the bp, we can call the
1545                  * normal async completion, which frees everything up.
1546                  */
1547                 swp_pager_async_iodone(bp);
1548         }
1549         swp_pager_freeswapspace(s_free, n_free);
1550         VM_OBJECT_WLOCK(object);
1551 }
1552
1553 /*
1554  *      swp_pager_async_iodone:
1555  *
1556  *      Completion routine for asynchronous reads and writes from/to swap.
1557  *      Also called manually by synchronous code to finish up a bp.
1558  *
1559  *      This routine may not sleep.
1560  */
1561 static void
1562 swp_pager_async_iodone(struct buf *bp)
1563 {
1564         int i;
1565         vm_object_t object = NULL;
1566
1567         /*
1568          * Report error - unless we ran out of memory, in which case
1569          * we've already logged it in swapgeom_strategy().
1570          */
1571         if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1572                 printf(
1573                     "swap_pager: I/O error - %s failed; blkno %ld,"
1574                         "size %ld, error %d\n",
1575                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1576                     (long)bp->b_blkno,
1577                     (long)bp->b_bcount,
1578                     bp->b_error
1579                 );
1580         }
1581
1582         /*
1583          * remove the mapping for kernel virtual
1584          */
1585         if (buf_mapped(bp))
1586                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1587         else
1588                 bp->b_data = bp->b_kvabase;
1589
1590         if (bp->b_npages) {
1591                 object = bp->b_pages[0]->object;
1592                 VM_OBJECT_WLOCK(object);
1593         }
1594
1595         /*
1596          * cleanup pages.  If an error occurs writing to swap, we are in
1597          * very serious trouble.  If it happens to be a disk error, though,
1598          * we may be able to recover by reassigning the swap later on.  So
1599          * in this case we remove the m->swapblk assignment for the page
1600          * but do not free it in the rlist.  The errornous block(s) are thus
1601          * never reallocated as swap.  Redirty the page and continue.
1602          */
1603         for (i = 0; i < bp->b_npages; ++i) {
1604                 vm_page_t m = bp->b_pages[i];
1605
1606                 m->oflags &= ~VPO_SWAPINPROG;
1607                 if (m->oflags & VPO_SWAPSLEEP) {
1608                         m->oflags &= ~VPO_SWAPSLEEP;
1609                         wakeup(&object->handle);
1610                 }
1611
1612                 /* We always have space after I/O, successful or not. */
1613                 vm_page_aflag_set(m, PGA_SWAP_SPACE);
1614
1615                 if (bp->b_ioflags & BIO_ERROR) {
1616                         /*
1617                          * If an error occurs I'd love to throw the swapblk
1618                          * away without freeing it back to swapspace, so it
1619                          * can never be used again.  But I can't from an
1620                          * interrupt.
1621                          */
1622                         if (bp->b_iocmd == BIO_READ) {
1623                                 /*
1624                                  * NOTE: for reads, m->dirty will probably
1625                                  * be overridden by the original caller of
1626                                  * getpages so don't play cute tricks here.
1627                                  */
1628                                 vm_page_invalid(m);
1629                         } else {
1630                                 /*
1631                                  * If a write error occurs, reactivate page
1632                                  * so it doesn't clog the inactive list,
1633                                  * then finish the I/O.
1634                                  */
1635                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1636
1637                                 /* PQ_UNSWAPPABLE? */
1638                                 vm_page_activate(m);
1639                                 vm_page_sunbusy(m);
1640                         }
1641                 } else if (bp->b_iocmd == BIO_READ) {
1642                         /*
1643                          * NOTE: for reads, m->dirty will probably be
1644                          * overridden by the original caller of getpages so
1645                          * we cannot set them in order to free the underlying
1646                          * swap in a low-swap situation.  I don't think we'd
1647                          * want to do that anyway, but it was an optimization
1648                          * that existed in the old swapper for a time before
1649                          * it got ripped out due to precisely this problem.
1650                          */
1651                         KASSERT(!pmap_page_is_mapped(m),
1652                             ("swp_pager_async_iodone: page %p is mapped", m));
1653                         KASSERT(m->dirty == 0,
1654                             ("swp_pager_async_iodone: page %p is dirty", m));
1655
1656                         vm_page_valid(m);
1657                         if (i < bp->b_pgbefore ||
1658                             i >= bp->b_npages - bp->b_pgafter)
1659                                 vm_page_readahead_finish(m);
1660                 } else {
1661                         /*
1662                          * For write success, clear the dirty
1663                          * status, then finish the I/O ( which decrements the
1664                          * busy count and possibly wakes waiter's up ).
1665                          * A page is only written to swap after a period of
1666                          * inactivity.  Therefore, we do not expect it to be
1667                          * reused.
1668                          */
1669                         KASSERT(!pmap_page_is_write_mapped(m),
1670                             ("swp_pager_async_iodone: page %p is not write"
1671                             " protected", m));
1672                         vm_page_undirty(m);
1673                         vm_page_deactivate_noreuse(m);
1674                         vm_page_sunbusy(m);
1675                 }
1676         }
1677
1678         /*
1679          * adjust pip.  NOTE: the original parent may still have its own
1680          * pip refs on the object.
1681          */
1682         if (object != NULL) {
1683                 vm_object_pip_wakeupn(object, bp->b_npages);
1684                 VM_OBJECT_WUNLOCK(object);
1685         }
1686
1687         /*
1688          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1689          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1690          * trigger a KASSERT in relpbuf().
1691          */
1692         if (bp->b_vp) {
1693                     bp->b_vp = NULL;
1694                     bp->b_bufobj = NULL;
1695         }
1696         /*
1697          * release the physical I/O buffer
1698          */
1699         if (bp->b_flags & B_ASYNC) {
1700                 mtx_lock(&swbuf_mtx);
1701                 if (++nsw_wcount_async == 1)
1702                         wakeup(&nsw_wcount_async);
1703                 mtx_unlock(&swbuf_mtx);
1704         }
1705         uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1706 }
1707
1708 int
1709 swap_pager_nswapdev(void)
1710 {
1711
1712         return (nswapdev);
1713 }
1714
1715 static void
1716 swp_pager_force_dirty(vm_page_t m)
1717 {
1718
1719         vm_page_dirty(m);
1720         swap_pager_unswapped(m);
1721         vm_page_launder(m);
1722 }
1723
1724 /*
1725  *      swap_pager_swapoff_object:
1726  *
1727  *      Page in all of the pages that have been paged out for an object
1728  *      to a swap device.
1729  */
1730 static void
1731 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1732 {
1733         struct swblk *sb;
1734         vm_page_t m;
1735         vm_pindex_t pi;
1736         daddr_t blk;
1737         int i, nv, rahead, rv;
1738
1739         KASSERT(object->type == OBJT_SWAP,
1740             ("%s: Object not swappable", __func__));
1741
1742         for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1743             &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1744                 if ((object->flags & OBJ_DEAD) != 0) {
1745                         /*
1746                          * Make sure that pending writes finish before
1747                          * returning.
1748                          */
1749                         vm_object_pip_wait(object, "swpoff");
1750                         swp_pager_meta_free_all(object);
1751                         break;
1752                 }
1753                 for (i = 0; i < SWAP_META_PAGES; i++) {
1754                         /*
1755                          * Count the number of contiguous valid blocks.
1756                          */
1757                         for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1758                                 blk = sb->d[i + nv];
1759                                 if (!swp_pager_isondev(blk, sp) ||
1760                                     blk == SWAPBLK_NONE)
1761                                         break;
1762                         }
1763                         if (nv == 0)
1764                                 continue;
1765
1766                         /*
1767                          * Look for a page corresponding to the first
1768                          * valid block and ensure that any pending paging
1769                          * operations on it are complete.  If the page is valid,
1770                          * mark it dirty and free the swap block.  Try to batch
1771                          * this operation since it may cause sp to be freed,
1772                          * meaning that we must restart the scan.  Avoid busying
1773                          * valid pages since we may block forever on kernel
1774                          * stack pages.
1775                          */
1776                         m = vm_page_lookup(object, sb->p + i);
1777                         if (m == NULL) {
1778                                 m = vm_page_alloc(object, sb->p + i,
1779                                     VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1780                                 if (m == NULL)
1781                                         break;
1782                         } else {
1783                                 if ((m->oflags & VPO_SWAPINPROG) != 0) {
1784                                         m->oflags |= VPO_SWAPSLEEP;
1785                                         VM_OBJECT_SLEEP(object, &object->handle,
1786                                             PSWP, "swpoff", 0);
1787                                         break;
1788                                 }
1789                                 if (vm_page_all_valid(m)) {
1790                                         do {
1791                                                 swp_pager_force_dirty(m);
1792                                         } while (--nv > 0 &&
1793                                             (m = vm_page_next(m)) != NULL &&
1794                                             vm_page_all_valid(m) &&
1795                                             (m->oflags & VPO_SWAPINPROG) == 0);
1796                                         break;
1797                                 }
1798                                 if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1799                                         break;
1800                         }
1801
1802                         vm_object_pip_add(object, 1);
1803                         rahead = SWAP_META_PAGES;
1804                         rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1805                             &rahead);
1806                         if (rv != VM_PAGER_OK)
1807                                 panic("%s: read from swap failed: %d",
1808                                     __func__, rv);
1809                         vm_object_pip_wakeupn(object, 1);
1810                         VM_OBJECT_WLOCK(object);
1811                         vm_page_xunbusy(m);
1812
1813                         /*
1814                          * The object lock was dropped so we must restart the
1815                          * scan of this swap block.  Pages paged in during this
1816                          * iteration will be marked dirty in a future iteration.
1817                          */
1818                         break;
1819                 }
1820                 if (i == SWAP_META_PAGES)
1821                         pi = sb->p + SWAP_META_PAGES;
1822         }
1823 }
1824
1825 /*
1826  *      swap_pager_swapoff:
1827  *
1828  *      Page in all of the pages that have been paged out to the
1829  *      given device.  The corresponding blocks in the bitmap must be
1830  *      marked as allocated and the device must be flagged SW_CLOSING.
1831  *      There may be no processes swapped out to the device.
1832  *
1833  *      This routine may block.
1834  */
1835 static void
1836 swap_pager_swapoff(struct swdevt *sp)
1837 {
1838         vm_object_t object;
1839         int retries;
1840
1841         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1842
1843         retries = 0;
1844 full_rescan:
1845         mtx_lock(&vm_object_list_mtx);
1846         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1847                 if (object->type != OBJT_SWAP)
1848                         continue;
1849                 mtx_unlock(&vm_object_list_mtx);
1850                 /* Depends on type-stability. */
1851                 VM_OBJECT_WLOCK(object);
1852
1853                 /*
1854                  * Dead objects are eventually terminated on their own.
1855                  */
1856                 if ((object->flags & OBJ_DEAD) != 0)
1857                         goto next_obj;
1858
1859                 /*
1860                  * Sync with fences placed after pctrie
1861                  * initialization.  We must not access pctrie below
1862                  * unless we checked that our object is swap and not
1863                  * dead.
1864                  */
1865                 atomic_thread_fence_acq();
1866                 if (object->type != OBJT_SWAP)
1867                         goto next_obj;
1868
1869                 swap_pager_swapoff_object(sp, object);
1870 next_obj:
1871                 VM_OBJECT_WUNLOCK(object);
1872                 mtx_lock(&vm_object_list_mtx);
1873         }
1874         mtx_unlock(&vm_object_list_mtx);
1875
1876         if (sp->sw_used) {
1877                 /*
1878                  * Objects may be locked or paging to the device being
1879                  * removed, so we will miss their pages and need to
1880                  * make another pass.  We have marked this device as
1881                  * SW_CLOSING, so the activity should finish soon.
1882                  */
1883                 retries++;
1884                 if (retries > 100) {
1885                         panic("swapoff: failed to locate %d swap blocks",
1886                             sp->sw_used);
1887                 }
1888                 pause("swpoff", hz / 20);
1889                 goto full_rescan;
1890         }
1891         EVENTHANDLER_INVOKE(swapoff, sp);
1892 }
1893
1894 /************************************************************************
1895  *                              SWAP META DATA                          *
1896  ************************************************************************
1897  *
1898  *      These routines manipulate the swap metadata stored in the
1899  *      OBJT_SWAP object.
1900  *
1901  *      Swap metadata is implemented with a global hash and not directly
1902  *      linked into the object.  Instead the object simply contains
1903  *      appropriate tracking counters.
1904  */
1905
1906 /*
1907  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1908  */
1909 static bool
1910 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1911 {
1912         int i;
1913
1914         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1915         for (i = start; i < limit; i++) {
1916                 if (sb->d[i] != SWAPBLK_NONE)
1917                         return (false);
1918         }
1919         return (true);
1920 }
1921
1922 /*
1923  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1924  *
1925  *  Nothing is done if the block is still in use.
1926  */
1927 static void
1928 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1929 {
1930
1931         if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1932                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1933                 uma_zfree(swblk_zone, sb);
1934         }
1935 }
1936    
1937 /*
1938  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1939  *
1940  *      We first convert the object to a swap object if it is a default
1941  *      object.
1942  *
1943  *      The specified swapblk is added to the object's swap metadata.  If
1944  *      the swapblk is not valid, it is freed instead.  Any previously
1945  *      assigned swapblk is returned.
1946  */
1947 static daddr_t
1948 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1949 {
1950         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1951         struct swblk *sb, *sb1;
1952         vm_pindex_t modpi, rdpi;
1953         daddr_t prev_swapblk;
1954         int error, i;
1955
1956         VM_OBJECT_ASSERT_WLOCKED(object);
1957
1958         /*
1959          * Convert default object to swap object if necessary
1960          */
1961         if (object->type != OBJT_SWAP) {
1962                 pctrie_init(&object->un_pager.swp.swp_blks);
1963
1964                 /*
1965                  * Ensure that swap_pager_swapoff()'s iteration over
1966                  * object_list does not see a garbage pctrie.
1967                  */
1968                 atomic_thread_fence_rel();
1969
1970                 object->type = OBJT_SWAP;
1971                 object->un_pager.swp.writemappings = 0;
1972                 KASSERT((object->flags & OBJ_ANON) != 0 ||
1973                     object->handle == NULL,
1974                     ("default pager %p with handle %p",
1975                     object, object->handle));
1976         }
1977
1978         rdpi = rounddown(pindex, SWAP_META_PAGES);
1979         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1980         if (sb == NULL) {
1981                 if (swapblk == SWAPBLK_NONE)
1982                         return (SWAPBLK_NONE);
1983                 for (;;) {
1984                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1985                             pageproc ? M_USE_RESERVE : 0));
1986                         if (sb != NULL) {
1987                                 sb->p = rdpi;
1988                                 for (i = 0; i < SWAP_META_PAGES; i++)
1989                                         sb->d[i] = SWAPBLK_NONE;
1990                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1991                                     1, 0))
1992                                         printf("swblk zone ok\n");
1993                                 break;
1994                         }
1995                         VM_OBJECT_WUNLOCK(object);
1996                         if (uma_zone_exhausted(swblk_zone)) {
1997                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1998                                     0, 1))
1999                                         printf("swap blk zone exhausted, "
2000                                             "increase kern.maxswzone\n");
2001                                 vm_pageout_oom(VM_OOM_SWAPZ);
2002                                 pause("swzonxb", 10);
2003                         } else
2004                                 uma_zwait(swblk_zone);
2005                         VM_OBJECT_WLOCK(object);
2006                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2007                             rdpi);
2008                         if (sb != NULL)
2009                                 /*
2010                                  * Somebody swapped out a nearby page,
2011                                  * allocating swblk at the rdpi index,
2012                                  * while we dropped the object lock.
2013                                  */
2014                                 goto allocated;
2015                 }
2016                 for (;;) {
2017                         error = SWAP_PCTRIE_INSERT(
2018                             &object->un_pager.swp.swp_blks, sb);
2019                         if (error == 0) {
2020                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2021                                     1, 0))
2022                                         printf("swpctrie zone ok\n");
2023                                 break;
2024                         }
2025                         VM_OBJECT_WUNLOCK(object);
2026                         if (uma_zone_exhausted(swpctrie_zone)) {
2027                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2028                                     0, 1))
2029                                         printf("swap pctrie zone exhausted, "
2030                                             "increase kern.maxswzone\n");
2031                                 vm_pageout_oom(VM_OOM_SWAPZ);
2032                                 pause("swzonxp", 10);
2033                         } else
2034                                 uma_zwait(swpctrie_zone);
2035                         VM_OBJECT_WLOCK(object);
2036                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2037                             rdpi);
2038                         if (sb1 != NULL) {
2039                                 uma_zfree(swblk_zone, sb);
2040                                 sb = sb1;
2041                                 goto allocated;
2042                         }
2043                 }
2044         }
2045 allocated:
2046         MPASS(sb->p == rdpi);
2047
2048         modpi = pindex % SWAP_META_PAGES;
2049         /* Return prior contents of metadata. */
2050         prev_swapblk = sb->d[modpi];
2051         /* Enter block into metadata. */
2052         sb->d[modpi] = swapblk;
2053
2054         /*
2055          * Free the swblk if we end up with the empty page run.
2056          */
2057         if (swapblk == SWAPBLK_NONE)
2058                 swp_pager_free_empty_swblk(object, sb);
2059         return (prev_swapblk);
2060 }
2061
2062 /*
2063  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2064  * metadata, or transfer it into dstobject.
2065  *
2066  *      This routine will free swap metadata structures as they are cleaned
2067  *      out.
2068  */
2069 static void
2070 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2071     vm_pindex_t pindex, vm_pindex_t count)
2072 {
2073         struct swblk *sb;
2074         daddr_t n_free, s_free;
2075         vm_pindex_t offset, last;
2076         int i, limit, start;
2077
2078         VM_OBJECT_ASSERT_WLOCKED(srcobject);
2079         if (srcobject->type != OBJT_SWAP || count == 0)
2080                 return;
2081
2082         swp_pager_init_freerange(&s_free, &n_free);
2083         offset = pindex;
2084         last = pindex + count;
2085         for (;;) {
2086                 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2087                     rounddown(pindex, SWAP_META_PAGES));
2088                 if (sb == NULL || sb->p >= last)
2089                         break;
2090                 start = pindex > sb->p ? pindex - sb->p : 0;
2091                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2092                     SWAP_META_PAGES;
2093                 for (i = start; i < limit; i++) {
2094                         if (sb->d[i] == SWAPBLK_NONE)
2095                                 continue;
2096                         if (dstobject == NULL ||
2097                             !swp_pager_xfer_source(srcobject, dstobject, 
2098                             sb->p + i - offset, sb->d[i])) {
2099                                 swp_pager_update_freerange(&s_free, &n_free,
2100                                     sb->d[i]);
2101                         }
2102                         sb->d[i] = SWAPBLK_NONE;
2103                 }
2104                 pindex = sb->p + SWAP_META_PAGES;
2105                 if (swp_pager_swblk_empty(sb, 0, start) &&
2106                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2107                         SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2108                             sb->p);
2109                         uma_zfree(swblk_zone, sb);
2110                 }
2111         }
2112         swp_pager_freeswapspace(s_free, n_free);
2113 }
2114
2115 /*
2116  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2117  *
2118  *      The requested range of blocks is freed, with any associated swap
2119  *      returned to the swap bitmap.
2120  *
2121  *      This routine will free swap metadata structures as they are cleaned
2122  *      out.  This routine does *NOT* operate on swap metadata associated
2123  *      with resident pages.
2124  */
2125 static void
2126 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2127 {
2128         swp_pager_meta_transfer(object, NULL, pindex, count);
2129 }
2130
2131 /*
2132  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2133  *
2134  *      This routine locates and destroys all swap metadata associated with
2135  *      an object.
2136  */
2137 static void
2138 swp_pager_meta_free_all(vm_object_t object)
2139 {
2140         struct swblk *sb;
2141         daddr_t n_free, s_free;
2142         vm_pindex_t pindex;
2143         int i;
2144
2145         VM_OBJECT_ASSERT_WLOCKED(object);
2146         if (object->type != OBJT_SWAP)
2147                 return;
2148
2149         swp_pager_init_freerange(&s_free, &n_free);
2150         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2151             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2152                 pindex = sb->p + SWAP_META_PAGES;
2153                 for (i = 0; i < SWAP_META_PAGES; i++) {
2154                         if (sb->d[i] == SWAPBLK_NONE)
2155                                 continue;
2156                         swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2157                 }
2158                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2159                 uma_zfree(swblk_zone, sb);
2160         }
2161         swp_pager_freeswapspace(s_free, n_free);
2162 }
2163
2164 /*
2165  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2166  *
2167  *      This routine is capable of looking up, or removing swapblk
2168  *      assignments in the swap meta data.  It returns the swapblk being
2169  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2170  *
2171  *      When acting on a busy resident page and paging is in progress, we
2172  *      have to wait until paging is complete but otherwise can act on the
2173  *      busy page.
2174  */
2175 static daddr_t
2176 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2177 {
2178         struct swblk *sb;
2179
2180         VM_OBJECT_ASSERT_LOCKED(object);
2181
2182         /*
2183          * The meta data only exists if the object is OBJT_SWAP
2184          * and even then might not be allocated yet.
2185          */
2186         KASSERT(object->type == OBJT_SWAP,
2187             ("Lookup object not swappable"));
2188
2189         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2190             rounddown(pindex, SWAP_META_PAGES));
2191         if (sb == NULL)
2192                 return (SWAPBLK_NONE);
2193         return (sb->d[pindex % SWAP_META_PAGES]);
2194 }
2195
2196 /*
2197  * Returns the least page index which is greater than or equal to the
2198  * parameter pindex and for which there is a swap block allocated.
2199  * Returns object's size if the object's type is not swap or if there
2200  * are no allocated swap blocks for the object after the requested
2201  * pindex.
2202  */
2203 vm_pindex_t
2204 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2205 {
2206         struct swblk *sb;
2207         int i;
2208
2209         VM_OBJECT_ASSERT_LOCKED(object);
2210         if (object->type != OBJT_SWAP)
2211                 return (object->size);
2212
2213         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2214             rounddown(pindex, SWAP_META_PAGES));
2215         if (sb == NULL)
2216                 return (object->size);
2217         if (sb->p < pindex) {
2218                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2219                         if (sb->d[i] != SWAPBLK_NONE)
2220                                 return (sb->p + i);
2221                 }
2222                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2223                     roundup(pindex, SWAP_META_PAGES));
2224                 if (sb == NULL)
2225                         return (object->size);
2226         }
2227         for (i = 0; i < SWAP_META_PAGES; i++) {
2228                 if (sb->d[i] != SWAPBLK_NONE)
2229                         return (sb->p + i);
2230         }
2231
2232         /*
2233          * We get here if a swblk is present in the trie but it
2234          * doesn't map any blocks.
2235          */
2236         MPASS(0);
2237         return (object->size);
2238 }
2239
2240 /*
2241  * System call swapon(name) enables swapping on device name,
2242  * which must be in the swdevsw.  Return EBUSY
2243  * if already swapping on this device.
2244  */
2245 #ifndef _SYS_SYSPROTO_H_
2246 struct swapon_args {
2247         char *name;
2248 };
2249 #endif
2250
2251 /*
2252  * MPSAFE
2253  */
2254 /* ARGSUSED */
2255 int
2256 sys_swapon(struct thread *td, struct swapon_args *uap)
2257 {
2258         struct vattr attr;
2259         struct vnode *vp;
2260         struct nameidata nd;
2261         int error;
2262
2263         error = priv_check(td, PRIV_SWAPON);
2264         if (error)
2265                 return (error);
2266
2267         sx_xlock(&swdev_syscall_lock);
2268
2269         /*
2270          * Swap metadata may not fit in the KVM if we have physical
2271          * memory of >1GB.
2272          */
2273         if (swblk_zone == NULL) {
2274                 error = ENOMEM;
2275                 goto done;
2276         }
2277
2278         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2279             uap->name, td);
2280         error = namei(&nd);
2281         if (error)
2282                 goto done;
2283
2284         NDFREE(&nd, NDF_ONLY_PNBUF);
2285         vp = nd.ni_vp;
2286
2287         if (vn_isdisk(vp, &error)) {
2288                 error = swapongeom(vp);
2289         } else if (vp->v_type == VREG &&
2290             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2291             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2292                 /*
2293                  * Allow direct swapping to NFS regular files in the same
2294                  * way that nfs_mountroot() sets up diskless swapping.
2295                  */
2296                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2297         }
2298
2299         if (error)
2300                 vrele(vp);
2301 done:
2302         sx_xunlock(&swdev_syscall_lock);
2303         return (error);
2304 }
2305
2306 /*
2307  * Check that the total amount of swap currently configured does not
2308  * exceed half the theoretical maximum.  If it does, print a warning
2309  * message.
2310  */
2311 static void
2312 swapon_check_swzone(void)
2313 {
2314
2315         /* recommend using no more than half that amount */
2316         if (swap_total > swap_maxpages / 2) {
2317                 printf("warning: total configured swap (%lu pages) "
2318                     "exceeds maximum recommended amount (%lu pages).\n",
2319                     swap_total, swap_maxpages / 2);
2320                 printf("warning: increase kern.maxswzone "
2321                     "or reduce amount of swap.\n");
2322         }
2323 }
2324
2325 static void
2326 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2327     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2328 {
2329         struct swdevt *sp, *tsp;
2330         daddr_t dvbase;
2331         u_long mblocks;
2332
2333         /*
2334          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2335          * First chop nblks off to page-align it, then convert.
2336          *
2337          * sw->sw_nblks is in page-sized chunks now too.
2338          */
2339         nblks &= ~(ctodb(1) - 1);
2340         nblks = dbtoc(nblks);
2341
2342         /*
2343          * If we go beyond this, we get overflows in the radix
2344          * tree bitmap code.
2345          */
2346         mblocks = 0x40000000 / BLIST_META_RADIX;
2347         if (nblks > mblocks) {
2348                 printf(
2349     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2350                     mblocks / 1024 / 1024 * PAGE_SIZE);
2351                 nblks = mblocks;
2352         }
2353
2354         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2355         sp->sw_vp = vp;
2356         sp->sw_id = id;
2357         sp->sw_dev = dev;
2358         sp->sw_nblks = nblks;
2359         sp->sw_used = 0;
2360         sp->sw_strategy = strategy;
2361         sp->sw_close = close;
2362         sp->sw_flags = flags;
2363
2364         sp->sw_blist = blist_create(nblks, M_WAITOK);
2365         /*
2366          * Do not free the first blocks in order to avoid overwriting
2367          * any bsd label at the front of the partition
2368          */
2369         blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2370             nblks - howmany(BBSIZE, PAGE_SIZE));
2371
2372         dvbase = 0;
2373         mtx_lock(&sw_dev_mtx);
2374         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2375                 if (tsp->sw_end >= dvbase) {
2376                         /*
2377                          * We put one uncovered page between the devices
2378                          * in order to definitively prevent any cross-device
2379                          * I/O requests
2380                          */
2381                         dvbase = tsp->sw_end + 1;
2382                 }
2383         }
2384         sp->sw_first = dvbase;
2385         sp->sw_end = dvbase + nblks;
2386         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2387         nswapdev++;
2388         swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2389         swap_total += nblks;
2390         swapon_check_swzone();
2391         swp_sizecheck();
2392         mtx_unlock(&sw_dev_mtx);
2393         EVENTHANDLER_INVOKE(swapon, sp);
2394 }
2395
2396 /*
2397  * SYSCALL: swapoff(devname)
2398  *
2399  * Disable swapping on the given device.
2400  *
2401  * XXX: Badly designed system call: it should use a device index
2402  * rather than filename as specification.  We keep sw_vp around
2403  * only to make this work.
2404  */
2405 #ifndef _SYS_SYSPROTO_H_
2406 struct swapoff_args {
2407         char *name;
2408 };
2409 #endif
2410
2411 /*
2412  * MPSAFE
2413  */
2414 /* ARGSUSED */
2415 int
2416 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2417 {
2418         struct vnode *vp;
2419         struct nameidata nd;
2420         struct swdevt *sp;
2421         int error;
2422
2423         error = priv_check(td, PRIV_SWAPOFF);
2424         if (error)
2425                 return (error);
2426
2427         sx_xlock(&swdev_syscall_lock);
2428
2429         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2430             td);
2431         error = namei(&nd);
2432         if (error)
2433                 goto done;
2434         NDFREE(&nd, NDF_ONLY_PNBUF);
2435         vp = nd.ni_vp;
2436
2437         mtx_lock(&sw_dev_mtx);
2438         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2439                 if (sp->sw_vp == vp)
2440                         break;
2441         }
2442         mtx_unlock(&sw_dev_mtx);
2443         if (sp == NULL) {
2444                 error = EINVAL;
2445                 goto done;
2446         }
2447         error = swapoff_one(sp, td->td_ucred);
2448 done:
2449         sx_xunlock(&swdev_syscall_lock);
2450         return (error);
2451 }
2452
2453 static int
2454 swapoff_one(struct swdevt *sp, struct ucred *cred)
2455 {
2456         u_long nblks;
2457 #ifdef MAC
2458         int error;
2459 #endif
2460
2461         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2462 #ifdef MAC
2463         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2464         error = mac_system_check_swapoff(cred, sp->sw_vp);
2465         (void) VOP_UNLOCK(sp->sw_vp);
2466         if (error != 0)
2467                 return (error);
2468 #endif
2469         nblks = sp->sw_nblks;
2470
2471         /*
2472          * We can turn off this swap device safely only if the
2473          * available virtual memory in the system will fit the amount
2474          * of data we will have to page back in, plus an epsilon so
2475          * the system doesn't become critically low on swap space.
2476          */
2477         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2478                 return (ENOMEM);
2479
2480         /*
2481          * Prevent further allocations on this device.
2482          */
2483         mtx_lock(&sw_dev_mtx);
2484         sp->sw_flags |= SW_CLOSING;
2485         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2486         swap_total -= nblks;
2487         mtx_unlock(&sw_dev_mtx);
2488
2489         /*
2490          * Page in the contents of the device and close it.
2491          */
2492         swap_pager_swapoff(sp);
2493
2494         sp->sw_close(curthread, sp);
2495         mtx_lock(&sw_dev_mtx);
2496         sp->sw_id = NULL;
2497         TAILQ_REMOVE(&swtailq, sp, sw_list);
2498         nswapdev--;
2499         if (nswapdev == 0) {
2500                 swap_pager_full = 2;
2501                 swap_pager_almost_full = 1;
2502         }
2503         if (swdevhd == sp)
2504                 swdevhd = NULL;
2505         mtx_unlock(&sw_dev_mtx);
2506         blist_destroy(sp->sw_blist);
2507         free(sp, M_VMPGDATA);
2508         return (0);
2509 }
2510
2511 void
2512 swapoff_all(void)
2513 {
2514         struct swdevt *sp, *spt;
2515         const char *devname;
2516         int error;
2517
2518         sx_xlock(&swdev_syscall_lock);
2519
2520         mtx_lock(&sw_dev_mtx);
2521         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2522                 mtx_unlock(&sw_dev_mtx);
2523                 if (vn_isdisk(sp->sw_vp, NULL))
2524                         devname = devtoname(sp->sw_vp->v_rdev);
2525                 else
2526                         devname = "[file]";
2527                 error = swapoff_one(sp, thread0.td_ucred);
2528                 if (error != 0) {
2529                         printf("Cannot remove swap device %s (error=%d), "
2530                             "skipping.\n", devname, error);
2531                 } else if (bootverbose) {
2532                         printf("Swap device %s removed.\n", devname);
2533                 }
2534                 mtx_lock(&sw_dev_mtx);
2535         }
2536         mtx_unlock(&sw_dev_mtx);
2537
2538         sx_xunlock(&swdev_syscall_lock);
2539 }
2540
2541 void
2542 swap_pager_status(int *total, int *used)
2543 {
2544
2545         *total = swap_total;
2546         *used = swap_total - swap_pager_avail -
2547             nswapdev * howmany(BBSIZE, PAGE_SIZE);
2548 }
2549
2550 int
2551 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2552 {
2553         struct swdevt *sp;
2554         const char *tmp_devname;
2555         int error, n;
2556
2557         n = 0;
2558         error = ENOENT;
2559         mtx_lock(&sw_dev_mtx);
2560         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2561                 if (n != name) {
2562                         n++;
2563                         continue;
2564                 }
2565                 xs->xsw_version = XSWDEV_VERSION;
2566                 xs->xsw_dev = sp->sw_dev;
2567                 xs->xsw_flags = sp->sw_flags;
2568                 xs->xsw_nblks = sp->sw_nblks;
2569                 xs->xsw_used = sp->sw_used;
2570                 if (devname != NULL) {
2571                         if (vn_isdisk(sp->sw_vp, NULL))
2572                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2573                         else
2574                                 tmp_devname = "[file]";
2575                         strncpy(devname, tmp_devname, len);
2576                 }
2577                 error = 0;
2578                 break;
2579         }
2580         mtx_unlock(&sw_dev_mtx);
2581         return (error);
2582 }
2583
2584 #if defined(COMPAT_FREEBSD11)
2585 #define XSWDEV_VERSION_11       1
2586 struct xswdev11 {
2587         u_int   xsw_version;
2588         uint32_t xsw_dev;
2589         int     xsw_flags;
2590         int     xsw_nblks;
2591         int     xsw_used;
2592 };
2593 #endif
2594
2595 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2596 struct xswdev32 {
2597         u_int   xsw_version;
2598         u_int   xsw_dev1, xsw_dev2;
2599         int     xsw_flags;
2600         int     xsw_nblks;
2601         int     xsw_used;
2602 };
2603 #endif
2604
2605 static int
2606 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2607 {
2608         struct xswdev xs;
2609 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2610         struct xswdev32 xs32;
2611 #endif
2612 #if defined(COMPAT_FREEBSD11)
2613         struct xswdev11 xs11;
2614 #endif
2615         int error;
2616
2617         if (arg2 != 1)                  /* name length */
2618                 return (EINVAL);
2619         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2620         if (error != 0)
2621                 return (error);
2622 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2623         if (req->oldlen == sizeof(xs32)) {
2624                 xs32.xsw_version = XSWDEV_VERSION;
2625                 xs32.xsw_dev1 = xs.xsw_dev;
2626                 xs32.xsw_dev2 = xs.xsw_dev >> 32;
2627                 xs32.xsw_flags = xs.xsw_flags;
2628                 xs32.xsw_nblks = xs.xsw_nblks;
2629                 xs32.xsw_used = xs.xsw_used;
2630                 error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2631                 return (error);
2632         }
2633 #endif
2634 #if defined(COMPAT_FREEBSD11)
2635         if (req->oldlen == sizeof(xs11)) {
2636                 xs11.xsw_version = XSWDEV_VERSION_11;
2637                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2638                 xs11.xsw_flags = xs.xsw_flags;
2639                 xs11.xsw_nblks = xs.xsw_nblks;
2640                 xs11.xsw_used = xs.xsw_used;
2641                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2642                 return (error);
2643         }
2644 #endif
2645         error = SYSCTL_OUT(req, &xs, sizeof(xs));
2646         return (error);
2647 }
2648
2649 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2650     "Number of swap devices");
2651 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2652     sysctl_vm_swap_info,
2653     "Swap statistics by device");
2654
2655 /*
2656  * Count the approximate swap usage in pages for a vmspace.  The
2657  * shadowed or not yet copied on write swap blocks are not accounted.
2658  * The map must be locked.
2659  */
2660 long
2661 vmspace_swap_count(struct vmspace *vmspace)
2662 {
2663         vm_map_t map;
2664         vm_map_entry_t cur;
2665         vm_object_t object;
2666         struct swblk *sb;
2667         vm_pindex_t e, pi;
2668         long count;
2669         int i;
2670
2671         map = &vmspace->vm_map;
2672         count = 0;
2673
2674         VM_MAP_ENTRY_FOREACH(cur, map) {
2675                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2676                         continue;
2677                 object = cur->object.vm_object;
2678                 if (object == NULL || object->type != OBJT_SWAP)
2679                         continue;
2680                 VM_OBJECT_RLOCK(object);
2681                 if (object->type != OBJT_SWAP)
2682                         goto unlock;
2683                 pi = OFF_TO_IDX(cur->offset);
2684                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2685                 for (;; pi = sb->p + SWAP_META_PAGES) {
2686                         sb = SWAP_PCTRIE_LOOKUP_GE(
2687                             &object->un_pager.swp.swp_blks, pi);
2688                         if (sb == NULL || sb->p >= e)
2689                                 break;
2690                         for (i = 0; i < SWAP_META_PAGES; i++) {
2691                                 if (sb->p + i < e &&
2692                                     sb->d[i] != SWAPBLK_NONE)
2693                                         count++;
2694                         }
2695                 }
2696 unlock:
2697                 VM_OBJECT_RUNLOCK(object);
2698         }
2699         return (count);
2700 }
2701
2702 /*
2703  * GEOM backend
2704  *
2705  * Swapping onto disk devices.
2706  *
2707  */
2708
2709 static g_orphan_t swapgeom_orphan;
2710
2711 static struct g_class g_swap_class = {
2712         .name = "SWAP",
2713         .version = G_VERSION,
2714         .orphan = swapgeom_orphan,
2715 };
2716
2717 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2718
2719
2720 static void
2721 swapgeom_close_ev(void *arg, int flags)
2722 {
2723         struct g_consumer *cp;
2724
2725         cp = arg;
2726         g_access(cp, -1, -1, 0);
2727         g_detach(cp);
2728         g_destroy_consumer(cp);
2729 }
2730
2731 /*
2732  * Add a reference to the g_consumer for an inflight transaction.
2733  */
2734 static void
2735 swapgeom_acquire(struct g_consumer *cp)
2736 {
2737
2738         mtx_assert(&sw_dev_mtx, MA_OWNED);
2739         cp->index++;
2740 }
2741
2742 /*
2743  * Remove a reference from the g_consumer.  Post a close event if all
2744  * references go away, since the function might be called from the
2745  * biodone context.
2746  */
2747 static void
2748 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2749 {
2750
2751         mtx_assert(&sw_dev_mtx, MA_OWNED);
2752         cp->index--;
2753         if (cp->index == 0) {
2754                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2755                         sp->sw_id = NULL;
2756         }
2757 }
2758
2759 static void
2760 swapgeom_done(struct bio *bp2)
2761 {
2762         struct swdevt *sp;
2763         struct buf *bp;
2764         struct g_consumer *cp;
2765
2766         bp = bp2->bio_caller2;
2767         cp = bp2->bio_from;
2768         bp->b_ioflags = bp2->bio_flags;
2769         if (bp2->bio_error)
2770                 bp->b_ioflags |= BIO_ERROR;
2771         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2772         bp->b_error = bp2->bio_error;
2773         bp->b_caller1 = NULL;
2774         bufdone(bp);
2775         sp = bp2->bio_caller1;
2776         mtx_lock(&sw_dev_mtx);
2777         swapgeom_release(cp, sp);
2778         mtx_unlock(&sw_dev_mtx);
2779         g_destroy_bio(bp2);
2780 }
2781
2782 static void
2783 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2784 {
2785         struct bio *bio;
2786         struct g_consumer *cp;
2787
2788         mtx_lock(&sw_dev_mtx);
2789         cp = sp->sw_id;
2790         if (cp == NULL) {
2791                 mtx_unlock(&sw_dev_mtx);
2792                 bp->b_error = ENXIO;
2793                 bp->b_ioflags |= BIO_ERROR;
2794                 bufdone(bp);
2795                 return;
2796         }
2797         swapgeom_acquire(cp);
2798         mtx_unlock(&sw_dev_mtx);
2799         if (bp->b_iocmd == BIO_WRITE)
2800                 bio = g_new_bio();
2801         else
2802                 bio = g_alloc_bio();
2803         if (bio == NULL) {
2804                 mtx_lock(&sw_dev_mtx);
2805                 swapgeom_release(cp, sp);
2806                 mtx_unlock(&sw_dev_mtx);
2807                 bp->b_error = ENOMEM;
2808                 bp->b_ioflags |= BIO_ERROR;
2809                 printf("swap_pager: cannot allocate bio\n");
2810                 bufdone(bp);
2811                 return;
2812         }
2813
2814         bp->b_caller1 = bio;
2815         bio->bio_caller1 = sp;
2816         bio->bio_caller2 = bp;
2817         bio->bio_cmd = bp->b_iocmd;
2818         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2819         bio->bio_length = bp->b_bcount;
2820         bio->bio_done = swapgeom_done;
2821         if (!buf_mapped(bp)) {
2822                 bio->bio_ma = bp->b_pages;
2823                 bio->bio_data = unmapped_buf;
2824                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2825                 bio->bio_ma_n = bp->b_npages;
2826                 bio->bio_flags |= BIO_UNMAPPED;
2827         } else {
2828                 bio->bio_data = bp->b_data;
2829                 bio->bio_ma = NULL;
2830         }
2831         g_io_request(bio, cp);
2832         return;
2833 }
2834
2835 static void
2836 swapgeom_orphan(struct g_consumer *cp)
2837 {
2838         struct swdevt *sp;
2839         int destroy;
2840
2841         mtx_lock(&sw_dev_mtx);
2842         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2843                 if (sp->sw_id == cp) {
2844                         sp->sw_flags |= SW_CLOSING;
2845                         break;
2846                 }
2847         }
2848         /*
2849          * Drop reference we were created with. Do directly since we're in a
2850          * special context where we don't have to queue the call to
2851          * swapgeom_close_ev().
2852          */
2853         cp->index--;
2854         destroy = ((sp != NULL) && (cp->index == 0));
2855         if (destroy)
2856                 sp->sw_id = NULL;
2857         mtx_unlock(&sw_dev_mtx);
2858         if (destroy)
2859                 swapgeom_close_ev(cp, 0);
2860 }
2861
2862 static void
2863 swapgeom_close(struct thread *td, struct swdevt *sw)
2864 {
2865         struct g_consumer *cp;
2866
2867         mtx_lock(&sw_dev_mtx);
2868         cp = sw->sw_id;
2869         sw->sw_id = NULL;
2870         mtx_unlock(&sw_dev_mtx);
2871
2872         /*
2873          * swapgeom_close() may be called from the biodone context,
2874          * where we cannot perform topology changes.  Delegate the
2875          * work to the events thread.
2876          */
2877         if (cp != NULL)
2878                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2879 }
2880
2881 static int
2882 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2883 {
2884         struct g_provider *pp;
2885         struct g_consumer *cp;
2886         static struct g_geom *gp;
2887         struct swdevt *sp;
2888         u_long nblks;
2889         int error;
2890
2891         pp = g_dev_getprovider(dev);
2892         if (pp == NULL)
2893                 return (ENODEV);
2894         mtx_lock(&sw_dev_mtx);
2895         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2896                 cp = sp->sw_id;
2897                 if (cp != NULL && cp->provider == pp) {
2898                         mtx_unlock(&sw_dev_mtx);
2899                         return (EBUSY);
2900                 }
2901         }
2902         mtx_unlock(&sw_dev_mtx);
2903         if (gp == NULL)
2904                 gp = g_new_geomf(&g_swap_class, "swap");
2905         cp = g_new_consumer(gp);
2906         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2907         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2908         g_attach(cp, pp);
2909         /*
2910          * XXX: Every time you think you can improve the margin for
2911          * footshooting, somebody depends on the ability to do so:
2912          * savecore(8) wants to write to our swapdev so we cannot
2913          * set an exclusive count :-(
2914          */
2915         error = g_access(cp, 1, 1, 0);
2916         if (error != 0) {
2917                 g_detach(cp);
2918                 g_destroy_consumer(cp);
2919                 return (error);
2920         }
2921         nblks = pp->mediasize / DEV_BSIZE;
2922         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2923             swapgeom_close, dev2udev(dev),
2924             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2925         return (0);
2926 }
2927
2928 static int
2929 swapongeom(struct vnode *vp)
2930 {
2931         int error;
2932
2933         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2934         if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2935                 error = ENOENT;
2936         } else {
2937                 g_topology_lock();
2938                 error = swapongeom_locked(vp->v_rdev, vp);
2939                 g_topology_unlock();
2940         }
2941         VOP_UNLOCK(vp);
2942         return (error);
2943 }
2944
2945 /*
2946  * VNODE backend
2947  *
2948  * This is used mainly for network filesystem (read: probably only tested
2949  * with NFS) swapfiles.
2950  *
2951  */
2952
2953 static void
2954 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2955 {
2956         struct vnode *vp2;
2957
2958         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2959
2960         vp2 = sp->sw_id;
2961         vhold(vp2);
2962         if (bp->b_iocmd == BIO_WRITE) {
2963                 if (bp->b_bufobj)
2964                         bufobj_wdrop(bp->b_bufobj);
2965                 bufobj_wref(&vp2->v_bufobj);
2966         }
2967         if (bp->b_bufobj != &vp2->v_bufobj)
2968                 bp->b_bufobj = &vp2->v_bufobj;
2969         bp->b_vp = vp2;
2970         bp->b_iooffset = dbtob(bp->b_blkno);
2971         bstrategy(bp);
2972         return;
2973 }
2974
2975 static void
2976 swapdev_close(struct thread *td, struct swdevt *sp)
2977 {
2978
2979         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2980         vrele(sp->sw_vp);
2981 }
2982
2983
2984 static int
2985 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2986 {
2987         struct swdevt *sp;
2988         int error;
2989
2990         if (nblks == 0)
2991                 return (ENXIO);
2992         mtx_lock(&sw_dev_mtx);
2993         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2994                 if (sp->sw_id == vp) {
2995                         mtx_unlock(&sw_dev_mtx);
2996                         return (EBUSY);
2997                 }
2998         }
2999         mtx_unlock(&sw_dev_mtx);
3000
3001         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3002 #ifdef MAC
3003         error = mac_system_check_swapon(td->td_ucred, vp);
3004         if (error == 0)
3005 #endif
3006                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3007         (void) VOP_UNLOCK(vp);
3008         if (error)
3009                 return (error);
3010
3011         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3012             NODEV, 0);
3013         return (0);
3014 }
3015
3016 static int
3017 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3018 {
3019         int error, new, n;
3020
3021         new = nsw_wcount_async_max;
3022         error = sysctl_handle_int(oidp, &new, 0, req);
3023         if (error != 0 || req->newptr == NULL)
3024                 return (error);
3025
3026         if (new > nswbuf / 2 || new < 1)
3027                 return (EINVAL);
3028
3029         mtx_lock(&swbuf_mtx);
3030         while (nsw_wcount_async_max != new) {
3031                 /*
3032                  * Adjust difference.  If the current async count is too low,
3033                  * we will need to sqeeze our update slowly in.  Sleep with a
3034                  * higher priority than getpbuf() to finish faster.
3035                  */
3036                 n = new - nsw_wcount_async_max;
3037                 if (nsw_wcount_async + n >= 0) {
3038                         nsw_wcount_async += n;
3039                         nsw_wcount_async_max += n;
3040                         wakeup(&nsw_wcount_async);
3041                 } else {
3042                         nsw_wcount_async_max -= nsw_wcount_async;
3043                         nsw_wcount_async = 0;
3044                         msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3045                             "swpsysctl", 0);
3046                 }
3047         }
3048         mtx_unlock(&swbuf_mtx);
3049
3050         return (0);
3051 }
3052
3053 static void
3054 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3055     vm_offset_t end)
3056 {
3057
3058         VM_OBJECT_WLOCK(object);
3059         KASSERT((object->flags & OBJ_ANON) == 0,
3060             ("Splittable object with writecount"));
3061         object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3062         VM_OBJECT_WUNLOCK(object);
3063 }
3064
3065 static void
3066 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3067     vm_offset_t end)
3068 {
3069
3070         VM_OBJECT_WLOCK(object);
3071         KASSERT((object->flags & OBJ_ANON) == 0,
3072             ("Splittable object with writecount"));
3073         object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3074         VM_OBJECT_WUNLOCK(object);
3075 }