]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
MFV r337182: 9330 stack overflow when creating a deeply nested dataset
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_swap.h"
75 #include "opt_vm.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/conf.h>
80 #include <sys/kernel.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/bio.h>
84 #include <sys/buf.h>
85 #include <sys/disk.h>
86 #include <sys/fcntl.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/vnode.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/blist.h>
100 #include <sys/lock.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES         PCTRIE_COUNT
134
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142         vm_pindex_t     p;
143         daddr_t         d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;  /* Allocate from here next */
150 static int nswapdev;            /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
153
154 static vm_ooffset_t swap_total;
155 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
156     "Total amount of available swap storage.");
157 static vm_ooffset_t swap_reserved;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 static int overcommit = 0;
161 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
162     "Configure virtual memory overcommit behavior. See tuning(7) "
163     "for details.");
164 static unsigned long swzone;
165 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
166     "Actual size of swap metadata zone");
167 static unsigned long swap_maxpages;
168 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
169     "Maximum amount of swap supported");
170
171 /* bits from overcommit */
172 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
173 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
174 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
175
176 int
177 swap_reserve(vm_ooffset_t incr)
178 {
179
180         return (swap_reserve_by_cred(incr, curthread->td_ucred));
181 }
182
183 int
184 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
185 {
186         vm_ooffset_t r, s;
187         int res, error;
188         static int curfail;
189         static struct timeval lastfail;
190         struct uidinfo *uip;
191
192         uip = cred->cr_ruidinfo;
193
194         if (incr & PAGE_MASK)
195                 panic("swap_reserve: & PAGE_MASK");
196
197 #ifdef RACCT
198         if (racct_enable) {
199                 PROC_LOCK(curproc);
200                 error = racct_add(curproc, RACCT_SWAP, incr);
201                 PROC_UNLOCK(curproc);
202                 if (error != 0)
203                         return (0);
204         }
205 #endif
206
207         res = 0;
208         mtx_lock(&sw_dev_mtx);
209         r = swap_reserved + incr;
210         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
211                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
212                     vm_wire_count();
213                 s *= PAGE_SIZE;
214         } else
215                 s = 0;
216         s += swap_total;
217         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
218             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
219                 res = 1;
220                 swap_reserved = r;
221         }
222         mtx_unlock(&sw_dev_mtx);
223
224         if (res) {
225                 UIDINFO_VMSIZE_LOCK(uip);
226                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
227                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
228                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
229                         res = 0;
230                 else
231                         uip->ui_vmsize += incr;
232                 UIDINFO_VMSIZE_UNLOCK(uip);
233                 if (!res) {
234                         mtx_lock(&sw_dev_mtx);
235                         swap_reserved -= incr;
236                         mtx_unlock(&sw_dev_mtx);
237                 }
238         }
239         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
240                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
241                     uip->ui_uid, curproc->p_pid, incr);
242         }
243
244 #ifdef RACCT
245         if (!res) {
246                 PROC_LOCK(curproc);
247                 racct_sub(curproc, RACCT_SWAP, incr);
248                 PROC_UNLOCK(curproc);
249         }
250 #endif
251
252         return (res);
253 }
254
255 void
256 swap_reserve_force(vm_ooffset_t incr)
257 {
258         struct uidinfo *uip;
259
260         mtx_lock(&sw_dev_mtx);
261         swap_reserved += incr;
262         mtx_unlock(&sw_dev_mtx);
263
264 #ifdef RACCT
265         PROC_LOCK(curproc);
266         racct_add_force(curproc, RACCT_SWAP, incr);
267         PROC_UNLOCK(curproc);
268 #endif
269
270         uip = curthread->td_ucred->cr_ruidinfo;
271         PROC_LOCK(curproc);
272         UIDINFO_VMSIZE_LOCK(uip);
273         uip->ui_vmsize += incr;
274         UIDINFO_VMSIZE_UNLOCK(uip);
275         PROC_UNLOCK(curproc);
276 }
277
278 void
279 swap_release(vm_ooffset_t decr)
280 {
281         struct ucred *cred;
282
283         PROC_LOCK(curproc);
284         cred = curthread->td_ucred;
285         swap_release_by_cred(decr, cred);
286         PROC_UNLOCK(curproc);
287 }
288
289 void
290 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
291 {
292         struct uidinfo *uip;
293
294         uip = cred->cr_ruidinfo;
295
296         if (decr & PAGE_MASK)
297                 panic("swap_release: & PAGE_MASK");
298
299         mtx_lock(&sw_dev_mtx);
300         if (swap_reserved < decr)
301                 panic("swap_reserved < decr");
302         swap_reserved -= decr;
303         mtx_unlock(&sw_dev_mtx);
304
305         UIDINFO_VMSIZE_LOCK(uip);
306         if (uip->ui_vmsize < decr)
307                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
308         uip->ui_vmsize -= decr;
309         UIDINFO_VMSIZE_UNLOCK(uip);
310
311         racct_sub_cred(cred, RACCT_SWAP, decr);
312 }
313
314 #define SWM_POP         0x01    /* pop out                      */
315
316 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
317 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
318 static int nsw_rcount;          /* free read buffers                    */
319 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
320 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
321 static int nsw_wcount_async_max;/* assigned maximum                     */
322 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
323
324 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
325 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
326     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
327     "Maximum running async swap ops");
328 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
329 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
330     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
331     "Swap Fragmentation Info");
332
333 static struct sx sw_alloc_sx;
334
335 /*
336  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
337  * of searching a named list by hashing it just a little.
338  */
339
340 #define NOBJLISTS               8
341
342 #define NOBJLIST(handle)        \
343         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
344
345 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
346 static uma_zone_t swblk_zone;
347 static uma_zone_t swpctrie_zone;
348
349 /*
350  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
351  * calls hooked from other parts of the VM system and do not appear here.
352  * (see vm/swap_pager.h).
353  */
354 static vm_object_t
355                 swap_pager_alloc(void *handle, vm_ooffset_t size,
356                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
357 static void     swap_pager_dealloc(vm_object_t object);
358 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
359     int *);
360 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
361     int *, pgo_getpages_iodone_t, void *);
362 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
363 static boolean_t
364                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
365 static void     swap_pager_init(void);
366 static void     swap_pager_unswapped(vm_page_t);
367 static void     swap_pager_swapoff(struct swdevt *sp);
368
369 struct pagerops swappagerops = {
370         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
371         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
372         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
373         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
374         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
375         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
376         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
377         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
378 };
379
380 /*
381  * swap_*() routines are externally accessible.  swp_*() routines are
382  * internal.
383  */
384 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
385 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
386
387 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
388     "Maximum size of a swap block in pages");
389
390 static void     swp_sizecheck(void);
391 static void     swp_pager_async_iodone(struct buf *bp);
392 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
393 static int      swapongeom(struct vnode *);
394 static int      swaponvp(struct thread *, struct vnode *, u_long);
395 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
396
397 /*
398  * Swap bitmap functions
399  */
400 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
401 static daddr_t  swp_pager_getswapspace(int npages);
402
403 /*
404  * Metadata functions
405  */
406 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
407 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
408 static void swp_pager_meta_free_all(vm_object_t);
409 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
410
411 static void *
412 swblk_trie_alloc(struct pctrie *ptree)
413 {
414
415         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
416             M_USE_RESERVE : 0)));
417 }
418
419 static void
420 swblk_trie_free(struct pctrie *ptree, void *node)
421 {
422
423         uma_zfree(swpctrie_zone, node);
424 }
425
426 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
427
428 /*
429  * SWP_SIZECHECK() -    update swap_pager_full indication
430  *
431  *      update the swap_pager_almost_full indication and warn when we are
432  *      about to run out of swap space, using lowat/hiwat hysteresis.
433  *
434  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
435  *
436  *      No restrictions on call
437  *      This routine may not block.
438  */
439 static void
440 swp_sizecheck(void)
441 {
442
443         if (swap_pager_avail < nswap_lowat) {
444                 if (swap_pager_almost_full == 0) {
445                         printf("swap_pager: out of swap space\n");
446                         swap_pager_almost_full = 1;
447                 }
448         } else {
449                 swap_pager_full = 0;
450                 if (swap_pager_avail > nswap_hiwat)
451                         swap_pager_almost_full = 0;
452         }
453 }
454
455 /*
456  * SWAP_PAGER_INIT() -  initialize the swap pager!
457  *
458  *      Expected to be started from system init.  NOTE:  This code is run
459  *      before much else so be careful what you depend on.  Most of the VM
460  *      system has yet to be initialized at this point.
461  */
462 static void
463 swap_pager_init(void)
464 {
465         /*
466          * Initialize object lists
467          */
468         int i;
469
470         for (i = 0; i < NOBJLISTS; ++i)
471                 TAILQ_INIT(&swap_pager_object_list[i]);
472         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
473         sx_init(&sw_alloc_sx, "swspsx");
474         sx_init(&swdev_syscall_lock, "swsysc");
475 }
476
477 /*
478  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
479  *
480  *      Expected to be started from pageout process once, prior to entering
481  *      its main loop.
482  */
483 void
484 swap_pager_swap_init(void)
485 {
486         unsigned long n, n2;
487
488         /*
489          * Number of in-transit swap bp operations.  Don't
490          * exhaust the pbufs completely.  Make sure we
491          * initialize workable values (0 will work for hysteresis
492          * but it isn't very efficient).
493          *
494          * The nsw_cluster_max is constrained by the bp->b_pages[]
495          * array (MAXPHYS/PAGE_SIZE) and our locally defined
496          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
497          * constrained by the swap device interleave stripe size.
498          *
499          * Currently we hardwire nsw_wcount_async to 4.  This limit is
500          * designed to prevent other I/O from having high latencies due to
501          * our pageout I/O.  The value 4 works well for one or two active swap
502          * devices but is probably a little low if you have more.  Even so,
503          * a higher value would probably generate only a limited improvement
504          * with three or four active swap devices since the system does not
505          * typically have to pageout at extreme bandwidths.   We will want
506          * at least 2 per swap devices, and 4 is a pretty good value if you
507          * have one NFS swap device due to the command/ack latency over NFS.
508          * So it all works out pretty well.
509          */
510         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
511
512         mtx_lock(&pbuf_mtx);
513         nsw_rcount = (nswbuf + 1) / 2;
514         nsw_wcount_sync = (nswbuf + 3) / 4;
515         nsw_wcount_async = 4;
516         nsw_wcount_async_max = nsw_wcount_async;
517         mtx_unlock(&pbuf_mtx);
518
519         /*
520          * Initialize our zone, guessing on the number we need based
521          * on the number of pages in the system.
522          */
523         n = vm_cnt.v_page_count / 2;
524         if (maxswzone && n > maxswzone / sizeof(struct swblk))
525                 n = maxswzone / sizeof(struct swblk);
526         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
527             pctrie_zone_init, NULL, UMA_ALIGN_PTR,
528             UMA_ZONE_NOFREE | UMA_ZONE_VM);
529         if (swpctrie_zone == NULL)
530                 panic("failed to create swap pctrie zone.");
531         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
532             NULL, NULL, _Alignof(struct swblk) - 1,
533             UMA_ZONE_NOFREE | UMA_ZONE_VM);
534         if (swblk_zone == NULL)
535                 panic("failed to create swap blk zone.");
536         n2 = n;
537         do {
538                 if (uma_zone_reserve_kva(swblk_zone, n))
539                         break;
540                 /*
541                  * if the allocation failed, try a zone two thirds the
542                  * size of the previous attempt.
543                  */
544                 n -= ((n + 2) / 3);
545         } while (n > 0);
546
547         /*
548          * Often uma_zone_reserve_kva() cannot reserve exactly the
549          * requested size.  Account for the difference when
550          * calculating swap_maxpages.
551          */
552         n = uma_zone_get_max(swblk_zone);
553
554         if (n < n2)
555                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
556                     n2, n);
557         swap_maxpages = n * SWAP_META_PAGES;
558         swzone = n * sizeof(struct swblk);
559         if (!uma_zone_reserve_kva(swpctrie_zone, n))
560                 printf("Cannot reserve swap pctrie zone, "
561                     "reduce kern.maxswzone.\n");
562 }
563
564 static vm_object_t
565 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
566     vm_ooffset_t offset)
567 {
568         vm_object_t object;
569
570         if (cred != NULL) {
571                 if (!swap_reserve_by_cred(size, cred))
572                         return (NULL);
573                 crhold(cred);
574         }
575
576         /*
577          * The un_pager.swp.swp_blks trie is initialized by
578          * vm_object_allocate() to ensure the correct order of
579          * visibility to other threads.
580          */
581         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
582             PAGE_MASK + size));
583
584         object->handle = handle;
585         if (cred != NULL) {
586                 object->cred = cred;
587                 object->charge = size;
588         }
589         return (object);
590 }
591
592 /*
593  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
594  *                      its metadata structures.
595  *
596  *      This routine is called from the mmap and fork code to create a new
597  *      OBJT_SWAP object.
598  *
599  *      This routine must ensure that no live duplicate is created for
600  *      the named object request, which is protected against by
601  *      holding the sw_alloc_sx lock in case handle != NULL.
602  */
603 static vm_object_t
604 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
605     vm_ooffset_t offset, struct ucred *cred)
606 {
607         vm_object_t object;
608
609         if (handle != NULL) {
610                 /*
611                  * Reference existing named region or allocate new one.  There
612                  * should not be a race here against swp_pager_meta_build()
613                  * as called from vm_page_remove() in regards to the lookup
614                  * of the handle.
615                  */
616                 sx_xlock(&sw_alloc_sx);
617                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
618                 if (object == NULL) {
619                         object = swap_pager_alloc_init(handle, cred, size,
620                             offset);
621                         if (object != NULL) {
622                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
623                                     object, pager_object_list);
624                         }
625                 }
626                 sx_xunlock(&sw_alloc_sx);
627         } else {
628                 object = swap_pager_alloc_init(handle, cred, size, offset);
629         }
630         return (object);
631 }
632
633 /*
634  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
635  *
636  *      The swap backing for the object is destroyed.  The code is
637  *      designed such that we can reinstantiate it later, but this
638  *      routine is typically called only when the entire object is
639  *      about to be destroyed.
640  *
641  *      The object must be locked.
642  */
643 static void
644 swap_pager_dealloc(vm_object_t object)
645 {
646
647         VM_OBJECT_ASSERT_WLOCKED(object);
648         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
649
650         /*
651          * Remove from list right away so lookups will fail if we block for
652          * pageout completion.
653          */
654         if (object->handle != NULL) {
655                 VM_OBJECT_WUNLOCK(object);
656                 sx_xlock(&sw_alloc_sx);
657                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
658                     pager_object_list);
659                 sx_xunlock(&sw_alloc_sx);
660                 VM_OBJECT_WLOCK(object);
661         }
662
663         vm_object_pip_wait(object, "swpdea");
664
665         /*
666          * Free all remaining metadata.  We only bother to free it from
667          * the swap meta data.  We do not attempt to free swapblk's still
668          * associated with vm_page_t's for this object.  We do not care
669          * if paging is still in progress on some objects.
670          */
671         swp_pager_meta_free_all(object);
672         object->handle = NULL;
673         object->type = OBJT_DEAD;
674 }
675
676 /************************************************************************
677  *                      SWAP PAGER BITMAP ROUTINES                      *
678  ************************************************************************/
679
680 /*
681  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
682  *
683  *      Allocate swap for the requested number of pages.  The starting
684  *      swap block number (a page index) is returned or SWAPBLK_NONE
685  *      if the allocation failed.
686  *
687  *      Also has the side effect of advising that somebody made a mistake
688  *      when they configured swap and didn't configure enough.
689  *
690  *      This routine may not sleep.
691  *
692  *      We allocate in round-robin fashion from the configured devices.
693  */
694 static daddr_t
695 swp_pager_getswapspace(int npages)
696 {
697         daddr_t blk;
698         struct swdevt *sp;
699         int i;
700
701         blk = SWAPBLK_NONE;
702         mtx_lock(&sw_dev_mtx);
703         sp = swdevhd;
704         for (i = 0; i < nswapdev; i++) {
705                 if (sp == NULL)
706                         sp = TAILQ_FIRST(&swtailq);
707                 if (!(sp->sw_flags & SW_CLOSING)) {
708                         blk = blist_alloc(sp->sw_blist, npages);
709                         if (blk != SWAPBLK_NONE) {
710                                 blk += sp->sw_first;
711                                 sp->sw_used += npages;
712                                 swap_pager_avail -= npages;
713                                 swp_sizecheck();
714                                 swdevhd = TAILQ_NEXT(sp, sw_list);
715                                 goto done;
716                         }
717                 }
718                 sp = TAILQ_NEXT(sp, sw_list);
719         }
720         if (swap_pager_full != 2) {
721                 printf("swap_pager_getswapspace(%d): failed\n", npages);
722                 swap_pager_full = 2;
723                 swap_pager_almost_full = 1;
724         }
725         swdevhd = NULL;
726 done:
727         mtx_unlock(&sw_dev_mtx);
728         return (blk);
729 }
730
731 static int
732 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
733 {
734
735         return (blk >= sp->sw_first && blk < sp->sw_end);
736 }
737
738 static void
739 swp_pager_strategy(struct buf *bp)
740 {
741         struct swdevt *sp;
742
743         mtx_lock(&sw_dev_mtx);
744         TAILQ_FOREACH(sp, &swtailq, sw_list) {
745                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
746                         mtx_unlock(&sw_dev_mtx);
747                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
748                             unmapped_buf_allowed) {
749                                 bp->b_data = unmapped_buf;
750                                 bp->b_offset = 0;
751                         } else {
752                                 pmap_qenter((vm_offset_t)bp->b_data,
753                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
754                         }
755                         sp->sw_strategy(bp, sp);
756                         return;
757                 }
758         }
759         panic("Swapdev not found");
760 }
761
762
763 /*
764  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
765  *
766  *      This routine returns the specified swap blocks back to the bitmap.
767  *
768  *      This routine may not sleep.
769  */
770 static void
771 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
772 {
773         struct swdevt *sp;
774
775         if (npages == 0)
776                 return;
777         mtx_lock(&sw_dev_mtx);
778         TAILQ_FOREACH(sp, &swtailq, sw_list) {
779                 if (blk >= sp->sw_first && blk < sp->sw_end) {
780                         sp->sw_used -= npages;
781                         /*
782                          * If we are attempting to stop swapping on
783                          * this device, we don't want to mark any
784                          * blocks free lest they be reused.
785                          */
786                         if ((sp->sw_flags & SW_CLOSING) == 0) {
787                                 blist_free(sp->sw_blist, blk - sp->sw_first,
788                                     npages);
789                                 swap_pager_avail += npages;
790                                 swp_sizecheck();
791                         }
792                         mtx_unlock(&sw_dev_mtx);
793                         return;
794                 }
795         }
796         panic("Swapdev not found");
797 }
798
799 /*
800  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
801  */
802 static int
803 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
804 {
805         struct sbuf sbuf;
806         struct swdevt *sp;
807         const char *devname;
808         int error;
809
810         error = sysctl_wire_old_buffer(req, 0);
811         if (error != 0)
812                 return (error);
813         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
814         mtx_lock(&sw_dev_mtx);
815         TAILQ_FOREACH(sp, &swtailq, sw_list) {
816                 if (vn_isdisk(sp->sw_vp, NULL))
817                         devname = devtoname(sp->sw_vp->v_rdev);
818                 else
819                         devname = "[file]";
820                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
821                 blist_stats(sp->sw_blist, &sbuf);
822         }
823         mtx_unlock(&sw_dev_mtx);
824         error = sbuf_finish(&sbuf);
825         sbuf_delete(&sbuf);
826         return (error);
827 }
828
829 /*
830  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
831  *                              range within an object.
832  *
833  *      This is a globally accessible routine.
834  *
835  *      This routine removes swapblk assignments from swap metadata.
836  *
837  *      The external callers of this routine typically have already destroyed
838  *      or renamed vm_page_t's associated with this range in the object so
839  *      we should be ok.
840  *
841  *      The object must be locked.
842  */
843 void
844 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
845 {
846
847         swp_pager_meta_free(object, start, size);
848 }
849
850 /*
851  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
852  *
853  *      Assigns swap blocks to the specified range within the object.  The
854  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
855  *
856  *      Returns 0 on success, -1 on failure.
857  */
858 int
859 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
860 {
861         int n = 0;
862         daddr_t blk = SWAPBLK_NONE;
863         vm_pindex_t beg = start;        /* save start index */
864
865         VM_OBJECT_WLOCK(object);
866         while (size) {
867                 if (n == 0) {
868                         n = BLIST_MAX_ALLOC;
869                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
870                                 n >>= 1;
871                                 if (n == 0) {
872                                         swp_pager_meta_free(object, beg, start - beg);
873                                         VM_OBJECT_WUNLOCK(object);
874                                         return (-1);
875                                 }
876                         }
877                 }
878                 swp_pager_meta_build(object, start, blk);
879                 --size;
880                 ++start;
881                 ++blk;
882                 --n;
883         }
884         swp_pager_meta_free(object, start, n);
885         VM_OBJECT_WUNLOCK(object);
886         return (0);
887 }
888
889 /*
890  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
891  *                      and destroy the source.
892  *
893  *      Copy any valid swapblks from the source to the destination.  In
894  *      cases where both the source and destination have a valid swapblk,
895  *      we keep the destination's.
896  *
897  *      This routine is allowed to sleep.  It may sleep allocating metadata
898  *      indirectly through swp_pager_meta_build() or if paging is still in
899  *      progress on the source.
900  *
901  *      The source object contains no vm_page_t's (which is just as well)
902  *
903  *      The source object is of type OBJT_SWAP.
904  *
905  *      The source and destination objects must be locked.
906  *      Both object locks may temporarily be released.
907  */
908 void
909 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
910     vm_pindex_t offset, int destroysource)
911 {
912         vm_pindex_t i;
913         daddr_t dstaddr, first_free, num_free, srcaddr;
914
915         VM_OBJECT_ASSERT_WLOCKED(srcobject);
916         VM_OBJECT_ASSERT_WLOCKED(dstobject);
917
918         /*
919          * If destroysource is set, we remove the source object from the
920          * swap_pager internal queue now.
921          */
922         if (destroysource && srcobject->handle != NULL) {
923                 vm_object_pip_add(srcobject, 1);
924                 VM_OBJECT_WUNLOCK(srcobject);
925                 vm_object_pip_add(dstobject, 1);
926                 VM_OBJECT_WUNLOCK(dstobject);
927                 sx_xlock(&sw_alloc_sx);
928                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
929                     pager_object_list);
930                 sx_xunlock(&sw_alloc_sx);
931                 VM_OBJECT_WLOCK(dstobject);
932                 vm_object_pip_wakeup(dstobject);
933                 VM_OBJECT_WLOCK(srcobject);
934                 vm_object_pip_wakeup(srcobject);
935         }
936
937         /*
938          * Transfer source to destination.
939          */
940         first_free = SWAPBLK_NONE;
941         num_free = 0;
942         for (i = 0; i < dstobject->size; ++i) {
943                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
944                 if (srcaddr == SWAPBLK_NONE)
945                         continue;
946                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
947                 if (dstaddr == SWAPBLK_NONE) {
948                         /*
949                          * Destination has no swapblk and is not resident,
950                          * copy source.
951                          *
952                          * swp_pager_meta_build() can sleep.
953                          */
954                         vm_object_pip_add(srcobject, 1);
955                         VM_OBJECT_WUNLOCK(srcobject);
956                         vm_object_pip_add(dstobject, 1);
957                         swp_pager_meta_build(dstobject, i, srcaddr);
958                         vm_object_pip_wakeup(dstobject);
959                         VM_OBJECT_WLOCK(srcobject);
960                         vm_object_pip_wakeup(srcobject);
961                 } else {
962                         /*
963                          * Destination has valid swapblk or it is represented
964                          * by a resident page.  We destroy the sourceblock.
965                          */
966                         if (first_free + num_free == srcaddr)
967                                 num_free++;
968                         else {
969                                 swp_pager_freeswapspace(first_free, num_free);
970                                 first_free = srcaddr;
971                                 num_free = 1;
972                         }
973                 }
974         }
975         swp_pager_freeswapspace(first_free, num_free);
976
977         /*
978          * Free left over swap blocks in source.
979          *
980          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
981          * double-remove the object from the swap queues.
982          */
983         if (destroysource) {
984                 swp_pager_meta_free_all(srcobject);
985                 /*
986                  * Reverting the type is not necessary, the caller is going
987                  * to destroy srcobject directly, but I'm doing it here
988                  * for consistency since we've removed the object from its
989                  * queues.
990                  */
991                 srcobject->type = OBJT_DEFAULT;
992         }
993 }
994
995 /*
996  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
997  *                              the requested page.
998  *
999  *      We determine whether good backing store exists for the requested
1000  *      page and return TRUE if it does, FALSE if it doesn't.
1001  *
1002  *      If TRUE, we also try to determine how much valid, contiguous backing
1003  *      store exists before and after the requested page.
1004  */
1005 static boolean_t
1006 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1007     int *after)
1008 {
1009         daddr_t blk, blk0;
1010         int i;
1011
1012         VM_OBJECT_ASSERT_LOCKED(object);
1013
1014         /*
1015          * do we have good backing store at the requested index ?
1016          */
1017         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1018         if (blk0 == SWAPBLK_NONE) {
1019                 if (before)
1020                         *before = 0;
1021                 if (after)
1022                         *after = 0;
1023                 return (FALSE);
1024         }
1025
1026         /*
1027          * find backwards-looking contiguous good backing store
1028          */
1029         if (before != NULL) {
1030                 for (i = 1; i < SWB_NPAGES; i++) {
1031                         if (i > pindex)
1032                                 break;
1033                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1034                         if (blk != blk0 - i)
1035                                 break;
1036                 }
1037                 *before = i - 1;
1038         }
1039
1040         /*
1041          * find forward-looking contiguous good backing store
1042          */
1043         if (after != NULL) {
1044                 for (i = 1; i < SWB_NPAGES; i++) {
1045                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1046                         if (blk != blk0 + i)
1047                                 break;
1048                 }
1049                 *after = i - 1;
1050         }
1051         return (TRUE);
1052 }
1053
1054 /*
1055  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1056  *
1057  *      This removes any associated swap backing store, whether valid or
1058  *      not, from the page.
1059  *
1060  *      This routine is typically called when a page is made dirty, at
1061  *      which point any associated swap can be freed.  MADV_FREE also
1062  *      calls us in a special-case situation
1063  *
1064  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1065  *      should make the page dirty before calling this routine.  This routine
1066  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1067  *      depends on it.
1068  *
1069  *      This routine may not sleep.
1070  *
1071  *      The object containing the page must be locked.
1072  */
1073 static void
1074 swap_pager_unswapped(vm_page_t m)
1075 {
1076         daddr_t srcaddr;
1077
1078         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1079         if (srcaddr != SWAPBLK_NONE)
1080                 swp_pager_freeswapspace(srcaddr, 1);
1081 }
1082
1083 /*
1084  * swap_pager_getpages() - bring pages in from swap
1085  *
1086  *      Attempt to page in the pages in array "ma" of length "count".  The
1087  *      caller may optionally specify that additional pages preceding and
1088  *      succeeding the specified range be paged in.  The number of such pages
1089  *      is returned in the "rbehind" and "rahead" parameters, and they will
1090  *      be in the inactive queue upon return.
1091  *
1092  *      The pages in "ma" must be busied and will remain busied upon return.
1093  */
1094 static int
1095 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1096     int *rahead)
1097 {
1098         struct buf *bp;
1099         vm_page_t bm, mpred, msucc, p;
1100         vm_pindex_t pindex;
1101         daddr_t blk;
1102         int i, maxahead, maxbehind, reqcount;
1103
1104         reqcount = count;
1105
1106         /*
1107          * Determine the final number of read-behind pages and
1108          * allocate them BEFORE releasing the object lock.  Otherwise,
1109          * there can be a problematic race with vm_object_split().
1110          * Specifically, vm_object_split() might first transfer pages
1111          * that precede ma[0] in the current object to a new object,
1112          * and then this function incorrectly recreates those pages as
1113          * read-behind pages in the current object.
1114          */
1115         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1116                 return (VM_PAGER_FAIL);
1117
1118         /*
1119          * Clip the readahead and readbehind ranges to exclude resident pages.
1120          */
1121         if (rahead != NULL) {
1122                 KASSERT(reqcount - 1 <= maxahead,
1123                     ("page count %d extends beyond swap block", reqcount));
1124                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1125                 pindex = ma[reqcount - 1]->pindex;
1126                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1127                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1128                         *rahead = msucc->pindex - pindex - 1;
1129         }
1130         if (rbehind != NULL) {
1131                 *rbehind = imin(*rbehind, maxbehind);
1132                 pindex = ma[0]->pindex;
1133                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1134                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1135                         *rbehind = pindex - mpred->pindex - 1;
1136         }
1137
1138         bm = ma[0];
1139         for (i = 0; i < count; i++)
1140                 ma[i]->oflags |= VPO_SWAPINPROG;
1141
1142         /*
1143          * Allocate readahead and readbehind pages.
1144          */
1145         if (rbehind != NULL) {
1146                 for (i = 1; i <= *rbehind; i++) {
1147                         p = vm_page_alloc(object, ma[0]->pindex - i,
1148                             VM_ALLOC_NORMAL);
1149                         if (p == NULL)
1150                                 break;
1151                         p->oflags |= VPO_SWAPINPROG;
1152                         bm = p;
1153                 }
1154                 *rbehind = i - 1;
1155         }
1156         if (rahead != NULL) {
1157                 for (i = 0; i < *rahead; i++) {
1158                         p = vm_page_alloc(object,
1159                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1160                         if (p == NULL)
1161                                 break;
1162                         p->oflags |= VPO_SWAPINPROG;
1163                 }
1164                 *rahead = i;
1165         }
1166         if (rbehind != NULL)
1167                 count += *rbehind;
1168         if (rahead != NULL)
1169                 count += *rahead;
1170
1171         vm_object_pip_add(object, count);
1172
1173         pindex = bm->pindex;
1174         blk = swp_pager_meta_ctl(object, pindex, 0);
1175         KASSERT(blk != SWAPBLK_NONE,
1176             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1177
1178         VM_OBJECT_WUNLOCK(object);
1179         bp = getpbuf(&nsw_rcount);
1180         /* Pages cannot leave the object while busy. */
1181         for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1182                 MPASS(p->pindex == bm->pindex + i);
1183                 bp->b_pages[i] = p;
1184         }
1185
1186         bp->b_flags |= B_PAGING;
1187         bp->b_iocmd = BIO_READ;
1188         bp->b_iodone = swp_pager_async_iodone;
1189         bp->b_rcred = crhold(thread0.td_ucred);
1190         bp->b_wcred = crhold(thread0.td_ucred);
1191         bp->b_blkno = blk;
1192         bp->b_bcount = PAGE_SIZE * count;
1193         bp->b_bufsize = PAGE_SIZE * count;
1194         bp->b_npages = count;
1195         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1196         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1197
1198         VM_CNT_INC(v_swapin);
1199         VM_CNT_ADD(v_swappgsin, count);
1200
1201         /*
1202          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1203          * this point because we automatically release it on completion.
1204          * Instead, we look at the one page we are interested in which we
1205          * still hold a lock on even through the I/O completion.
1206          *
1207          * The other pages in our ma[] array are also released on completion,
1208          * so we cannot assume they are valid anymore either.
1209          *
1210          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1211          */
1212         BUF_KERNPROC(bp);
1213         swp_pager_strategy(bp);
1214
1215         /*
1216          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1217          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1218          * is set in the metadata for each page in the request.
1219          */
1220         VM_OBJECT_WLOCK(object);
1221         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1222                 ma[0]->oflags |= VPO_SWAPSLEEP;
1223                 VM_CNT_INC(v_intrans);
1224                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1225                     "swread", hz * 20)) {
1226                         printf(
1227 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1228                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1229                 }
1230         }
1231
1232         /*
1233          * If we had an unrecoverable read error pages will not be valid.
1234          */
1235         for (i = 0; i < reqcount; i++)
1236                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1237                         return (VM_PAGER_ERROR);
1238
1239         return (VM_PAGER_OK);
1240
1241         /*
1242          * A final note: in a low swap situation, we cannot deallocate swap
1243          * and mark a page dirty here because the caller is likely to mark
1244          * the page clean when we return, causing the page to possibly revert
1245          * to all-zero's later.
1246          */
1247 }
1248
1249 /*
1250  *      swap_pager_getpages_async():
1251  *
1252  *      Right now this is emulation of asynchronous operation on top of
1253  *      swap_pager_getpages().
1254  */
1255 static int
1256 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1257     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1258 {
1259         int r, error;
1260
1261         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1262         VM_OBJECT_WUNLOCK(object);
1263         switch (r) {
1264         case VM_PAGER_OK:
1265                 error = 0;
1266                 break;
1267         case VM_PAGER_ERROR:
1268                 error = EIO;
1269                 break;
1270         case VM_PAGER_FAIL:
1271                 error = EINVAL;
1272                 break;
1273         default:
1274                 panic("unhandled swap_pager_getpages() error %d", r);
1275         }
1276         (iodone)(arg, ma, count, error);
1277         VM_OBJECT_WLOCK(object);
1278
1279         return (r);
1280 }
1281
1282 /*
1283  *      swap_pager_putpages:
1284  *
1285  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1286  *
1287  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1288  *      are automatically converted to SWAP objects.
1289  *
1290  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1291  *      vm_page reservation system coupled with properly written VFS devices
1292  *      should ensure that no low-memory deadlock occurs.  This is an area
1293  *      which needs work.
1294  *
1295  *      The parent has N vm_object_pip_add() references prior to
1296  *      calling us and will remove references for rtvals[] that are
1297  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1298  *      completion.
1299  *
1300  *      The parent has soft-busy'd the pages it passes us and will unbusy
1301  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1302  *      We need to unbusy the rest on I/O completion.
1303  */
1304 static void
1305 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1306     int flags, int *rtvals)
1307 {
1308         int i, n;
1309         boolean_t sync;
1310
1311         if (count && ma[0]->object != object) {
1312                 panic("swap_pager_putpages: object mismatch %p/%p",
1313                     object,
1314                     ma[0]->object
1315                 );
1316         }
1317
1318         /*
1319          * Step 1
1320          *
1321          * Turn object into OBJT_SWAP
1322          * check for bogus sysops
1323          * force sync if not pageout process
1324          */
1325         if (object->type != OBJT_SWAP)
1326                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1327         VM_OBJECT_WUNLOCK(object);
1328
1329         n = 0;
1330         if (curproc != pageproc)
1331                 sync = TRUE;
1332         else
1333                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1334
1335         /*
1336          * Step 2
1337          *
1338          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1339          * The page is left dirty until the pageout operation completes
1340          * successfully.
1341          */
1342         for (i = 0; i < count; i += n) {
1343                 int j;
1344                 struct buf *bp;
1345                 daddr_t blk;
1346
1347                 /*
1348                  * Maximum I/O size is limited by a number of factors.
1349                  */
1350                 n = min(BLIST_MAX_ALLOC, count - i);
1351                 n = min(n, nsw_cluster_max);
1352
1353                 /*
1354                  * Get biggest block of swap we can.  If we fail, fall
1355                  * back and try to allocate a smaller block.  Don't go
1356                  * overboard trying to allocate space if it would overly
1357                  * fragment swap.
1358                  */
1359                 while (
1360                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1361                     n > 4
1362                 ) {
1363                         n >>= 1;
1364                 }
1365                 if (blk == SWAPBLK_NONE) {
1366                         for (j = 0; j < n; ++j)
1367                                 rtvals[i+j] = VM_PAGER_FAIL;
1368                         continue;
1369                 }
1370
1371                 /*
1372                  * All I/O parameters have been satisfied, build the I/O
1373                  * request and assign the swap space.
1374                  */
1375                 if (sync == TRUE) {
1376                         bp = getpbuf(&nsw_wcount_sync);
1377                 } else {
1378                         bp = getpbuf(&nsw_wcount_async);
1379                         bp->b_flags = B_ASYNC;
1380                 }
1381                 bp->b_flags |= B_PAGING;
1382                 bp->b_iocmd = BIO_WRITE;
1383
1384                 bp->b_rcred = crhold(thread0.td_ucred);
1385                 bp->b_wcred = crhold(thread0.td_ucred);
1386                 bp->b_bcount = PAGE_SIZE * n;
1387                 bp->b_bufsize = PAGE_SIZE * n;
1388                 bp->b_blkno = blk;
1389
1390                 VM_OBJECT_WLOCK(object);
1391                 for (j = 0; j < n; ++j) {
1392                         vm_page_t mreq = ma[i+j];
1393
1394                         swp_pager_meta_build(
1395                             mreq->object,
1396                             mreq->pindex,
1397                             blk + j
1398                         );
1399                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1400                         mreq->oflags |= VPO_SWAPINPROG;
1401                         bp->b_pages[j] = mreq;
1402                 }
1403                 VM_OBJECT_WUNLOCK(object);
1404                 bp->b_npages = n;
1405                 /*
1406                  * Must set dirty range for NFS to work.
1407                  */
1408                 bp->b_dirtyoff = 0;
1409                 bp->b_dirtyend = bp->b_bcount;
1410
1411                 VM_CNT_INC(v_swapout);
1412                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1413
1414                 /*
1415                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1416                  * can call the async completion routine at the end of a
1417                  * synchronous I/O operation.  Otherwise, our caller would
1418                  * perform duplicate unbusy and wakeup operations on the page
1419                  * and object, respectively.
1420                  */
1421                 for (j = 0; j < n; j++)
1422                         rtvals[i + j] = VM_PAGER_PEND;
1423
1424                 /*
1425                  * asynchronous
1426                  *
1427                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1428                  */
1429                 if (sync == FALSE) {
1430                         bp->b_iodone = swp_pager_async_iodone;
1431                         BUF_KERNPROC(bp);
1432                         swp_pager_strategy(bp);
1433                         continue;
1434                 }
1435
1436                 /*
1437                  * synchronous
1438                  *
1439                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1440                  */
1441                 bp->b_iodone = bdone;
1442                 swp_pager_strategy(bp);
1443
1444                 /*
1445                  * Wait for the sync I/O to complete.
1446                  */
1447                 bwait(bp, PVM, "swwrt");
1448
1449                 /*
1450                  * Now that we are through with the bp, we can call the
1451                  * normal async completion, which frees everything up.
1452                  */
1453                 swp_pager_async_iodone(bp);
1454         }
1455         VM_OBJECT_WLOCK(object);
1456 }
1457
1458 /*
1459  *      swp_pager_async_iodone:
1460  *
1461  *      Completion routine for asynchronous reads and writes from/to swap.
1462  *      Also called manually by synchronous code to finish up a bp.
1463  *
1464  *      This routine may not sleep.
1465  */
1466 static void
1467 swp_pager_async_iodone(struct buf *bp)
1468 {
1469         int i;
1470         vm_object_t object = NULL;
1471
1472         /*
1473          * report error
1474          */
1475         if (bp->b_ioflags & BIO_ERROR) {
1476                 printf(
1477                     "swap_pager: I/O error - %s failed; blkno %ld,"
1478                         "size %ld, error %d\n",
1479                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1480                     (long)bp->b_blkno,
1481                     (long)bp->b_bcount,
1482                     bp->b_error
1483                 );
1484         }
1485
1486         /*
1487          * remove the mapping for kernel virtual
1488          */
1489         if (buf_mapped(bp))
1490                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1491         else
1492                 bp->b_data = bp->b_kvabase;
1493
1494         if (bp->b_npages) {
1495                 object = bp->b_pages[0]->object;
1496                 VM_OBJECT_WLOCK(object);
1497         }
1498
1499         /*
1500          * cleanup pages.  If an error occurs writing to swap, we are in
1501          * very serious trouble.  If it happens to be a disk error, though,
1502          * we may be able to recover by reassigning the swap later on.  So
1503          * in this case we remove the m->swapblk assignment for the page
1504          * but do not free it in the rlist.  The errornous block(s) are thus
1505          * never reallocated as swap.  Redirty the page and continue.
1506          */
1507         for (i = 0; i < bp->b_npages; ++i) {
1508                 vm_page_t m = bp->b_pages[i];
1509
1510                 m->oflags &= ~VPO_SWAPINPROG;
1511                 if (m->oflags & VPO_SWAPSLEEP) {
1512                         m->oflags &= ~VPO_SWAPSLEEP;
1513                         wakeup(&object->paging_in_progress);
1514                 }
1515
1516                 if (bp->b_ioflags & BIO_ERROR) {
1517                         /*
1518                          * If an error occurs I'd love to throw the swapblk
1519                          * away without freeing it back to swapspace, so it
1520                          * can never be used again.  But I can't from an
1521                          * interrupt.
1522                          */
1523                         if (bp->b_iocmd == BIO_READ) {
1524                                 /*
1525                                  * NOTE: for reads, m->dirty will probably
1526                                  * be overridden by the original caller of
1527                                  * getpages so don't play cute tricks here.
1528                                  */
1529                                 m->valid = 0;
1530                         } else {
1531                                 /*
1532                                  * If a write error occurs, reactivate page
1533                                  * so it doesn't clog the inactive list,
1534                                  * then finish the I/O.
1535                                  */
1536                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1537                                 vm_page_lock(m);
1538                                 vm_page_activate(m);
1539                                 vm_page_unlock(m);
1540                                 vm_page_sunbusy(m);
1541                         }
1542                 } else if (bp->b_iocmd == BIO_READ) {
1543                         /*
1544                          * NOTE: for reads, m->dirty will probably be
1545                          * overridden by the original caller of getpages so
1546                          * we cannot set them in order to free the underlying
1547                          * swap in a low-swap situation.  I don't think we'd
1548                          * want to do that anyway, but it was an optimization
1549                          * that existed in the old swapper for a time before
1550                          * it got ripped out due to precisely this problem.
1551                          */
1552                         KASSERT(!pmap_page_is_mapped(m),
1553                             ("swp_pager_async_iodone: page %p is mapped", m));
1554                         KASSERT(m->dirty == 0,
1555                             ("swp_pager_async_iodone: page %p is dirty", m));
1556
1557                         m->valid = VM_PAGE_BITS_ALL;
1558                         if (i < bp->b_pgbefore ||
1559                             i >= bp->b_npages - bp->b_pgafter)
1560                                 vm_page_readahead_finish(m);
1561                 } else {
1562                         /*
1563                          * For write success, clear the dirty
1564                          * status, then finish the I/O ( which decrements the
1565                          * busy count and possibly wakes waiter's up ).
1566                          * A page is only written to swap after a period of
1567                          * inactivity.  Therefore, we do not expect it to be
1568                          * reused.
1569                          */
1570                         KASSERT(!pmap_page_is_write_mapped(m),
1571                             ("swp_pager_async_iodone: page %p is not write"
1572                             " protected", m));
1573                         vm_page_undirty(m);
1574                         vm_page_lock(m);
1575                         vm_page_deactivate_noreuse(m);
1576                         vm_page_unlock(m);
1577                         vm_page_sunbusy(m);
1578                 }
1579         }
1580
1581         /*
1582          * adjust pip.  NOTE: the original parent may still have its own
1583          * pip refs on the object.
1584          */
1585         if (object != NULL) {
1586                 vm_object_pip_wakeupn(object, bp->b_npages);
1587                 VM_OBJECT_WUNLOCK(object);
1588         }
1589
1590         /*
1591          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1592          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1593          * trigger a KASSERT in relpbuf().
1594          */
1595         if (bp->b_vp) {
1596                     bp->b_vp = NULL;
1597                     bp->b_bufobj = NULL;
1598         }
1599         /*
1600          * release the physical I/O buffer
1601          */
1602         relpbuf(
1603             bp,
1604             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1605                 ((bp->b_flags & B_ASYNC) ?
1606                     &nsw_wcount_async :
1607                     &nsw_wcount_sync
1608                 )
1609             )
1610         );
1611 }
1612
1613 int
1614 swap_pager_nswapdev(void)
1615 {
1616
1617         return (nswapdev);
1618 }
1619
1620 /*
1621  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1622  *
1623  *      This routine dissociates the page at the given index within an object
1624  *      from its backing store, paging it in if it does not reside in memory.
1625  *      If the page is paged in, it is marked dirty and placed in the laundry
1626  *      queue.  The page is marked dirty because it no longer has backing
1627  *      store.  It is placed in the laundry queue because it has not been
1628  *      accessed recently.  Otherwise, it would already reside in memory.
1629  *
1630  *      We also attempt to swap in all other pages in the swap block.
1631  *      However, we only guarantee that the one at the specified index is
1632  *      paged in.
1633  *
1634  *      XXX - The code to page the whole block in doesn't work, so we
1635  *            revert to the one-by-one behavior for now.  Sigh.
1636  */
1637 static inline void
1638 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1639 {
1640         vm_page_t m;
1641
1642         vm_object_pip_add(object, 1);
1643         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1644         if (m->valid == VM_PAGE_BITS_ALL) {
1645                 vm_object_pip_wakeup(object);
1646                 vm_page_dirty(m);
1647 #ifdef INVARIANTS
1648                 vm_page_lock(m);
1649                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1650                         panic("page %p is neither wired nor queued", m);
1651                 vm_page_unlock(m);
1652 #endif
1653                 vm_page_xunbusy(m);
1654                 vm_pager_page_unswapped(m);
1655                 return;
1656         }
1657
1658         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1659                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1660         vm_object_pip_wakeup(object);
1661         vm_page_dirty(m);
1662         vm_page_lock(m);
1663         vm_page_launder(m);
1664         vm_page_unlock(m);
1665         vm_page_xunbusy(m);
1666         vm_pager_page_unswapped(m);
1667 }
1668
1669 /*
1670  *      swap_pager_swapoff:
1671  *
1672  *      Page in all of the pages that have been paged out to the
1673  *      given device.  The corresponding blocks in the bitmap must be
1674  *      marked as allocated and the device must be flagged SW_CLOSING.
1675  *      There may be no processes swapped out to the device.
1676  *
1677  *      This routine may block.
1678  */
1679 static void
1680 swap_pager_swapoff(struct swdevt *sp)
1681 {
1682         struct swblk *sb;
1683         vm_object_t object;
1684         vm_pindex_t pi;
1685         int i, retries;
1686
1687         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1688
1689         retries = 0;
1690 full_rescan:
1691         mtx_lock(&vm_object_list_mtx);
1692         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1693                 if (object->type != OBJT_SWAP)
1694                         continue;
1695                 mtx_unlock(&vm_object_list_mtx);
1696                 /* Depends on type-stability. */
1697                 VM_OBJECT_WLOCK(object);
1698
1699                 /*
1700                  * Dead objects are eventually terminated on their own.
1701                  */
1702                 if ((object->flags & OBJ_DEAD) != 0)
1703                         goto next_obj;
1704
1705                 /*
1706                  * Sync with fences placed after pctrie
1707                  * initialization.  We must not access pctrie below
1708                  * unless we checked that our object is swap and not
1709                  * dead.
1710                  */
1711                 atomic_thread_fence_acq();
1712                 if (object->type != OBJT_SWAP)
1713                         goto next_obj;
1714
1715                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1716                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1717                         pi = sb->p + SWAP_META_PAGES;
1718                         for (i = 0; i < SWAP_META_PAGES; i++) {
1719                                 if (sb->d[i] == SWAPBLK_NONE)
1720                                         continue;
1721                                 if (swp_pager_isondev(sb->d[i], sp))
1722                                         swp_pager_force_pagein(object,
1723                                             sb->p + i);
1724                         }
1725                 }
1726 next_obj:
1727                 VM_OBJECT_WUNLOCK(object);
1728                 mtx_lock(&vm_object_list_mtx);
1729         }
1730         mtx_unlock(&vm_object_list_mtx);
1731
1732         if (sp->sw_used) {
1733                 /*
1734                  * Objects may be locked or paging to the device being
1735                  * removed, so we will miss their pages and need to
1736                  * make another pass.  We have marked this device as
1737                  * SW_CLOSING, so the activity should finish soon.
1738                  */
1739                 retries++;
1740                 if (retries > 100) {
1741                         panic("swapoff: failed to locate %d swap blocks",
1742                             sp->sw_used);
1743                 }
1744                 pause("swpoff", hz / 20);
1745                 goto full_rescan;
1746         }
1747         EVENTHANDLER_INVOKE(swapoff, sp);
1748 }
1749
1750 /************************************************************************
1751  *                              SWAP META DATA                          *
1752  ************************************************************************
1753  *
1754  *      These routines manipulate the swap metadata stored in the
1755  *      OBJT_SWAP object.
1756  *
1757  *      Swap metadata is implemented with a global hash and not directly
1758  *      linked into the object.  Instead the object simply contains
1759  *      appropriate tracking counters.
1760  */
1761
1762 /*
1763  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1764  */
1765 static bool
1766 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1767 {
1768         int i;
1769
1770         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1771         for (i = start; i < limit; i++) {
1772                 if (sb->d[i] != SWAPBLK_NONE)
1773                         return (false);
1774         }
1775         return (true);
1776 }
1777    
1778 /*
1779  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1780  *
1781  *      We first convert the object to a swap object if it is a default
1782  *      object.
1783  *
1784  *      The specified swapblk is added to the object's swap metadata.  If
1785  *      the swapblk is not valid, it is freed instead.  Any previously
1786  *      assigned swapblk is freed.
1787  */
1788 static void
1789 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1790 {
1791         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1792         struct swblk *sb, *sb1;
1793         vm_pindex_t modpi, rdpi;
1794         int error, i;
1795
1796         VM_OBJECT_ASSERT_WLOCKED(object);
1797
1798         /*
1799          * Convert default object to swap object if necessary
1800          */
1801         if (object->type != OBJT_SWAP) {
1802                 pctrie_init(&object->un_pager.swp.swp_blks);
1803
1804                 /*
1805                  * Ensure that swap_pager_swapoff()'s iteration over
1806                  * object_list does not see a garbage pctrie.
1807                  */
1808                 atomic_thread_fence_rel();
1809
1810                 object->type = OBJT_SWAP;
1811                 KASSERT(object->handle == NULL, ("default pager with handle"));
1812         }
1813
1814         rdpi = rounddown(pindex, SWAP_META_PAGES);
1815         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1816         if (sb == NULL) {
1817                 if (swapblk == SWAPBLK_NONE)
1818                         return;
1819                 for (;;) {
1820                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1821                             pageproc ? M_USE_RESERVE : 0));
1822                         if (sb != NULL) {
1823                                 sb->p = rdpi;
1824                                 for (i = 0; i < SWAP_META_PAGES; i++)
1825                                         sb->d[i] = SWAPBLK_NONE;
1826                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1827                                     1, 0))
1828                                         printf("swblk zone ok\n");
1829                                 break;
1830                         }
1831                         VM_OBJECT_WUNLOCK(object);
1832                         if (uma_zone_exhausted(swblk_zone)) {
1833                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1834                                     0, 1))
1835                                         printf("swap blk zone exhausted, "
1836                                             "increase kern.maxswzone\n");
1837                                 vm_pageout_oom(VM_OOM_SWAPZ);
1838                                 pause("swzonxb", 10);
1839                         } else
1840                                 uma_zwait(swblk_zone);
1841                         VM_OBJECT_WLOCK(object);
1842                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1843                             rdpi);
1844                         if (sb != NULL)
1845                                 /*
1846                                  * Somebody swapped out a nearby page,
1847                                  * allocating swblk at the rdpi index,
1848                                  * while we dropped the object lock.
1849                                  */
1850                                 goto allocated;
1851                 }
1852                 for (;;) {
1853                         error = SWAP_PCTRIE_INSERT(
1854                             &object->un_pager.swp.swp_blks, sb);
1855                         if (error == 0) {
1856                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1857                                     1, 0))
1858                                         printf("swpctrie zone ok\n");
1859                                 break;
1860                         }
1861                         VM_OBJECT_WUNLOCK(object);
1862                         if (uma_zone_exhausted(swpctrie_zone)) {
1863                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1864                                     0, 1))
1865                                         printf("swap pctrie zone exhausted, "
1866                                             "increase kern.maxswzone\n");
1867                                 vm_pageout_oom(VM_OOM_SWAPZ);
1868                                 pause("swzonxp", 10);
1869                         } else
1870                                 uma_zwait(swpctrie_zone);
1871                         VM_OBJECT_WLOCK(object);
1872                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1873                             rdpi);
1874                         if (sb1 != NULL) {
1875                                 uma_zfree(swblk_zone, sb);
1876                                 sb = sb1;
1877                                 goto allocated;
1878                         }
1879                 }
1880         }
1881 allocated:
1882         MPASS(sb->p == rdpi);
1883
1884         modpi = pindex % SWAP_META_PAGES;
1885         /* Delete prior contents of metadata. */
1886         if (sb->d[modpi] != SWAPBLK_NONE)
1887                 swp_pager_freeswapspace(sb->d[modpi], 1);
1888         /* Enter block into metadata. */
1889         sb->d[modpi] = swapblk;
1890
1891         /*
1892          * Free the swblk if we end up with the empty page run.
1893          */
1894         if (swapblk == SWAPBLK_NONE &&
1895             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1896                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1897                 uma_zfree(swblk_zone, sb);
1898         }
1899 }
1900
1901 /*
1902  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1903  *
1904  *      The requested range of blocks is freed, with any associated swap
1905  *      returned to the swap bitmap.
1906  *
1907  *      This routine will free swap metadata structures as they are cleaned
1908  *      out.  This routine does *NOT* operate on swap metadata associated
1909  *      with resident pages.
1910  */
1911 static void
1912 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1913 {
1914         struct swblk *sb;
1915         daddr_t first_free, num_free;
1916         vm_pindex_t last;
1917         int i, limit, start;
1918
1919         VM_OBJECT_ASSERT_WLOCKED(object);
1920         if (object->type != OBJT_SWAP || count == 0)
1921                 return;
1922
1923         first_free = SWAPBLK_NONE;
1924         num_free = 0;
1925         last = pindex + count;
1926         for (;;) {
1927                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1928                     rounddown(pindex, SWAP_META_PAGES));
1929                 if (sb == NULL || sb->p >= last)
1930                         break;
1931                 start = pindex > sb->p ? pindex - sb->p : 0;
1932                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1933                     SWAP_META_PAGES;
1934                 for (i = start; i < limit; i++) {
1935                         if (sb->d[i] == SWAPBLK_NONE)
1936                                 continue;
1937                         if (first_free + num_free == sb->d[i])
1938                                 num_free++;
1939                         else {
1940                                 swp_pager_freeswapspace(first_free, num_free);
1941                                 first_free = sb->d[i];
1942                                 num_free = 1;
1943                         }
1944                         sb->d[i] = SWAPBLK_NONE;
1945                 }
1946                 if (swp_pager_swblk_empty(sb, 0, start) &&
1947                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1948                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1949                             sb->p);
1950                         uma_zfree(swblk_zone, sb);
1951                 }
1952                 pindex = sb->p + SWAP_META_PAGES;
1953         }
1954         swp_pager_freeswapspace(first_free, num_free);
1955 }
1956
1957 /*
1958  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1959  *
1960  *      This routine locates and destroys all swap metadata associated with
1961  *      an object.
1962  */
1963 static void
1964 swp_pager_meta_free_all(vm_object_t object)
1965 {
1966         struct swblk *sb;
1967         daddr_t first_free, num_free;
1968         vm_pindex_t pindex;
1969         int i;
1970
1971         VM_OBJECT_ASSERT_WLOCKED(object);
1972         if (object->type != OBJT_SWAP)
1973                 return;
1974
1975         first_free = SWAPBLK_NONE;
1976         num_free = 0;
1977         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1978             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
1979                 pindex = sb->p + SWAP_META_PAGES;
1980                 for (i = 0; i < SWAP_META_PAGES; i++) {
1981                         if (sb->d[i] == SWAPBLK_NONE)
1982                                 continue;
1983                         if (first_free + num_free == sb->d[i])
1984                                 num_free++;
1985                         else {
1986                                 swp_pager_freeswapspace(first_free, num_free);
1987                                 first_free = sb->d[i];
1988                                 num_free = 1;
1989                         }
1990                 }
1991                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1992                 uma_zfree(swblk_zone, sb);
1993         }
1994         swp_pager_freeswapspace(first_free, num_free);
1995 }
1996
1997 /*
1998  * SWP_PAGER_METACTL() -  misc control of swap meta data.
1999  *
2000  *      This routine is capable of looking up, or removing swapblk
2001  *      assignments in the swap meta data.  It returns the swapblk being
2002  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2003  *
2004  *      When acting on a busy resident page and paging is in progress, we
2005  *      have to wait until paging is complete but otherwise can act on the
2006  *      busy page.
2007  *
2008  *      SWM_POP         remove from meta data but do not free it
2009  */
2010 static daddr_t
2011 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2012 {
2013         struct swblk *sb;
2014         daddr_t r1;
2015
2016         if ((flags & SWM_POP) != 0)
2017                 VM_OBJECT_ASSERT_WLOCKED(object);
2018         else
2019                 VM_OBJECT_ASSERT_LOCKED(object);
2020
2021         /*
2022          * The meta data only exists if the object is OBJT_SWAP
2023          * and even then might not be allocated yet.
2024          */
2025         if (object->type != OBJT_SWAP)
2026                 return (SWAPBLK_NONE);
2027
2028         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2029             rounddown(pindex, SWAP_META_PAGES));
2030         if (sb == NULL)
2031                 return (SWAPBLK_NONE);
2032         r1 = sb->d[pindex % SWAP_META_PAGES];
2033         if (r1 == SWAPBLK_NONE)
2034                 return (SWAPBLK_NONE);
2035         if ((flags & SWM_POP) != 0) {
2036                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2037                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2038                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2039                             rounddown(pindex, SWAP_META_PAGES));
2040                         uma_zfree(swblk_zone, sb);
2041                 }
2042         }
2043         return (r1);
2044 }
2045
2046 /*
2047  * Returns the least page index which is greater than or equal to the
2048  * parameter pindex and for which there is a swap block allocated.
2049  * Returns object's size if the object's type is not swap or if there
2050  * are no allocated swap blocks for the object after the requested
2051  * pindex.
2052  */
2053 vm_pindex_t
2054 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2055 {
2056         struct swblk *sb;
2057         int i;
2058
2059         VM_OBJECT_ASSERT_LOCKED(object);
2060         if (object->type != OBJT_SWAP)
2061                 return (object->size);
2062
2063         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2064             rounddown(pindex, SWAP_META_PAGES));
2065         if (sb == NULL)
2066                 return (object->size);
2067         if (sb->p < pindex) {
2068                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2069                         if (sb->d[i] != SWAPBLK_NONE)
2070                                 return (sb->p + i);
2071                 }
2072                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2073                     roundup(pindex, SWAP_META_PAGES));
2074                 if (sb == NULL)
2075                         return (object->size);
2076         }
2077         for (i = 0; i < SWAP_META_PAGES; i++) {
2078                 if (sb->d[i] != SWAPBLK_NONE)
2079                         return (sb->p + i);
2080         }
2081
2082         /*
2083          * We get here if a swblk is present in the trie but it
2084          * doesn't map any blocks.
2085          */
2086         MPASS(0);
2087         return (object->size);
2088 }
2089
2090 /*
2091  * System call swapon(name) enables swapping on device name,
2092  * which must be in the swdevsw.  Return EBUSY
2093  * if already swapping on this device.
2094  */
2095 #ifndef _SYS_SYSPROTO_H_
2096 struct swapon_args {
2097         char *name;
2098 };
2099 #endif
2100
2101 /*
2102  * MPSAFE
2103  */
2104 /* ARGSUSED */
2105 int
2106 sys_swapon(struct thread *td, struct swapon_args *uap)
2107 {
2108         struct vattr attr;
2109         struct vnode *vp;
2110         struct nameidata nd;
2111         int error;
2112
2113         error = priv_check(td, PRIV_SWAPON);
2114         if (error)
2115                 return (error);
2116
2117         sx_xlock(&swdev_syscall_lock);
2118
2119         /*
2120          * Swap metadata may not fit in the KVM if we have physical
2121          * memory of >1GB.
2122          */
2123         if (swblk_zone == NULL) {
2124                 error = ENOMEM;
2125                 goto done;
2126         }
2127
2128         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2129             uap->name, td);
2130         error = namei(&nd);
2131         if (error)
2132                 goto done;
2133
2134         NDFREE(&nd, NDF_ONLY_PNBUF);
2135         vp = nd.ni_vp;
2136
2137         if (vn_isdisk(vp, &error)) {
2138                 error = swapongeom(vp);
2139         } else if (vp->v_type == VREG &&
2140             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2141             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2142                 /*
2143                  * Allow direct swapping to NFS regular files in the same
2144                  * way that nfs_mountroot() sets up diskless swapping.
2145                  */
2146                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2147         }
2148
2149         if (error)
2150                 vrele(vp);
2151 done:
2152         sx_xunlock(&swdev_syscall_lock);
2153         return (error);
2154 }
2155
2156 /*
2157  * Check that the total amount of swap currently configured does not
2158  * exceed half the theoretical maximum.  If it does, print a warning
2159  * message.
2160  */
2161 static void
2162 swapon_check_swzone(void)
2163 {
2164         unsigned long maxpages, npages;
2165
2166         npages = swap_total / PAGE_SIZE;
2167         /* absolute maximum we can handle assuming 100% efficiency */
2168         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2169
2170         /* recommend using no more than half that amount */
2171         if (npages > maxpages / 2) {
2172                 printf("warning: total configured swap (%lu pages) "
2173                     "exceeds maximum recommended amount (%lu pages).\n",
2174                     npages, maxpages / 2);
2175                 printf("warning: increase kern.maxswzone "
2176                     "or reduce amount of swap.\n");
2177         }
2178 }
2179
2180 static void
2181 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2182     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2183 {
2184         struct swdevt *sp, *tsp;
2185         swblk_t dvbase;
2186         u_long mblocks;
2187
2188         /*
2189          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2190          * First chop nblks off to page-align it, then convert.
2191          *
2192          * sw->sw_nblks is in page-sized chunks now too.
2193          */
2194         nblks &= ~(ctodb(1) - 1);
2195         nblks = dbtoc(nblks);
2196
2197         /*
2198          * If we go beyond this, we get overflows in the radix
2199          * tree bitmap code.
2200          */
2201         mblocks = 0x40000000 / BLIST_META_RADIX;
2202         if (nblks > mblocks) {
2203                 printf(
2204     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2205                     mblocks / 1024 / 1024 * PAGE_SIZE);
2206                 nblks = mblocks;
2207         }
2208
2209         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2210         sp->sw_vp = vp;
2211         sp->sw_id = id;
2212         sp->sw_dev = dev;
2213         sp->sw_flags = 0;
2214         sp->sw_nblks = nblks;
2215         sp->sw_used = 0;
2216         sp->sw_strategy = strategy;
2217         sp->sw_close = close;
2218         sp->sw_flags = flags;
2219
2220         sp->sw_blist = blist_create(nblks, M_WAITOK);
2221         /*
2222          * Do not free the first two block in order to avoid overwriting
2223          * any bsd label at the front of the partition
2224          */
2225         blist_free(sp->sw_blist, 2, nblks - 2);
2226
2227         dvbase = 0;
2228         mtx_lock(&sw_dev_mtx);
2229         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2230                 if (tsp->sw_end >= dvbase) {
2231                         /*
2232                          * We put one uncovered page between the devices
2233                          * in order to definitively prevent any cross-device
2234                          * I/O requests
2235                          */
2236                         dvbase = tsp->sw_end + 1;
2237                 }
2238         }
2239         sp->sw_first = dvbase;
2240         sp->sw_end = dvbase + nblks;
2241         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2242         nswapdev++;
2243         swap_pager_avail += nblks - 2;
2244         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2245         swapon_check_swzone();
2246         swp_sizecheck();
2247         mtx_unlock(&sw_dev_mtx);
2248         EVENTHANDLER_INVOKE(swapon, sp);
2249 }
2250
2251 /*
2252  * SYSCALL: swapoff(devname)
2253  *
2254  * Disable swapping on the given device.
2255  *
2256  * XXX: Badly designed system call: it should use a device index
2257  * rather than filename as specification.  We keep sw_vp around
2258  * only to make this work.
2259  */
2260 #ifndef _SYS_SYSPROTO_H_
2261 struct swapoff_args {
2262         char *name;
2263 };
2264 #endif
2265
2266 /*
2267  * MPSAFE
2268  */
2269 /* ARGSUSED */
2270 int
2271 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2272 {
2273         struct vnode *vp;
2274         struct nameidata nd;
2275         struct swdevt *sp;
2276         int error;
2277
2278         error = priv_check(td, PRIV_SWAPOFF);
2279         if (error)
2280                 return (error);
2281
2282         sx_xlock(&swdev_syscall_lock);
2283
2284         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2285             td);
2286         error = namei(&nd);
2287         if (error)
2288                 goto done;
2289         NDFREE(&nd, NDF_ONLY_PNBUF);
2290         vp = nd.ni_vp;
2291
2292         mtx_lock(&sw_dev_mtx);
2293         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2294                 if (sp->sw_vp == vp)
2295                         break;
2296         }
2297         mtx_unlock(&sw_dev_mtx);
2298         if (sp == NULL) {
2299                 error = EINVAL;
2300                 goto done;
2301         }
2302         error = swapoff_one(sp, td->td_ucred);
2303 done:
2304         sx_xunlock(&swdev_syscall_lock);
2305         return (error);
2306 }
2307
2308 static int
2309 swapoff_one(struct swdevt *sp, struct ucred *cred)
2310 {
2311         u_long nblks;
2312 #ifdef MAC
2313         int error;
2314 #endif
2315
2316         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2317 #ifdef MAC
2318         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2319         error = mac_system_check_swapoff(cred, sp->sw_vp);
2320         (void) VOP_UNLOCK(sp->sw_vp, 0);
2321         if (error != 0)
2322                 return (error);
2323 #endif
2324         nblks = sp->sw_nblks;
2325
2326         /*
2327          * We can turn off this swap device safely only if the
2328          * available virtual memory in the system will fit the amount
2329          * of data we will have to page back in, plus an epsilon so
2330          * the system doesn't become critically low on swap space.
2331          */
2332         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2333                 return (ENOMEM);
2334
2335         /*
2336          * Prevent further allocations on this device.
2337          */
2338         mtx_lock(&sw_dev_mtx);
2339         sp->sw_flags |= SW_CLOSING;
2340         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2341         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2342         mtx_unlock(&sw_dev_mtx);
2343
2344         /*
2345          * Page in the contents of the device and close it.
2346          */
2347         swap_pager_swapoff(sp);
2348
2349         sp->sw_close(curthread, sp);
2350         mtx_lock(&sw_dev_mtx);
2351         sp->sw_id = NULL;
2352         TAILQ_REMOVE(&swtailq, sp, sw_list);
2353         nswapdev--;
2354         if (nswapdev == 0) {
2355                 swap_pager_full = 2;
2356                 swap_pager_almost_full = 1;
2357         }
2358         if (swdevhd == sp)
2359                 swdevhd = NULL;
2360         mtx_unlock(&sw_dev_mtx);
2361         blist_destroy(sp->sw_blist);
2362         free(sp, M_VMPGDATA);
2363         return (0);
2364 }
2365
2366 void
2367 swapoff_all(void)
2368 {
2369         struct swdevt *sp, *spt;
2370         const char *devname;
2371         int error;
2372
2373         sx_xlock(&swdev_syscall_lock);
2374
2375         mtx_lock(&sw_dev_mtx);
2376         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2377                 mtx_unlock(&sw_dev_mtx);
2378                 if (vn_isdisk(sp->sw_vp, NULL))
2379                         devname = devtoname(sp->sw_vp->v_rdev);
2380                 else
2381                         devname = "[file]";
2382                 error = swapoff_one(sp, thread0.td_ucred);
2383                 if (error != 0) {
2384                         printf("Cannot remove swap device %s (error=%d), "
2385                             "skipping.\n", devname, error);
2386                 } else if (bootverbose) {
2387                         printf("Swap device %s removed.\n", devname);
2388                 }
2389                 mtx_lock(&sw_dev_mtx);
2390         }
2391         mtx_unlock(&sw_dev_mtx);
2392
2393         sx_xunlock(&swdev_syscall_lock);
2394 }
2395
2396 void
2397 swap_pager_status(int *total, int *used)
2398 {
2399         struct swdevt *sp;
2400
2401         *total = 0;
2402         *used = 0;
2403         mtx_lock(&sw_dev_mtx);
2404         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2405                 *total += sp->sw_nblks;
2406                 *used += sp->sw_used;
2407         }
2408         mtx_unlock(&sw_dev_mtx);
2409 }
2410
2411 int
2412 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2413 {
2414         struct swdevt *sp;
2415         const char *tmp_devname;
2416         int error, n;
2417
2418         n = 0;
2419         error = ENOENT;
2420         mtx_lock(&sw_dev_mtx);
2421         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2422                 if (n != name) {
2423                         n++;
2424                         continue;
2425                 }
2426                 xs->xsw_version = XSWDEV_VERSION;
2427                 xs->xsw_dev = sp->sw_dev;
2428                 xs->xsw_flags = sp->sw_flags;
2429                 xs->xsw_nblks = sp->sw_nblks;
2430                 xs->xsw_used = sp->sw_used;
2431                 if (devname != NULL) {
2432                         if (vn_isdisk(sp->sw_vp, NULL))
2433                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2434                         else
2435                                 tmp_devname = "[file]";
2436                         strncpy(devname, tmp_devname, len);
2437                 }
2438                 error = 0;
2439                 break;
2440         }
2441         mtx_unlock(&sw_dev_mtx);
2442         return (error);
2443 }
2444
2445 #if defined(COMPAT_FREEBSD11)
2446 #define XSWDEV_VERSION_11       1
2447 struct xswdev11 {
2448         u_int   xsw_version;
2449         uint32_t xsw_dev;
2450         int     xsw_flags;
2451         int     xsw_nblks;
2452         int     xsw_used;
2453 };
2454 #endif
2455
2456 static int
2457 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2458 {
2459         struct xswdev xs;
2460 #if defined(COMPAT_FREEBSD11)
2461         struct xswdev11 xs11;
2462 #endif
2463         int error;
2464
2465         if (arg2 != 1)                  /* name length */
2466                 return (EINVAL);
2467         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2468         if (error != 0)
2469                 return (error);
2470 #if defined(COMPAT_FREEBSD11)
2471         if (req->oldlen == sizeof(xs11)) {
2472                 xs11.xsw_version = XSWDEV_VERSION_11;
2473                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2474                 xs11.xsw_flags = xs.xsw_flags;
2475                 xs11.xsw_nblks = xs.xsw_nblks;
2476                 xs11.xsw_used = xs.xsw_used;
2477                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2478         } else
2479 #endif
2480                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2481         return (error);
2482 }
2483
2484 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2485     "Number of swap devices");
2486 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2487     sysctl_vm_swap_info,
2488     "Swap statistics by device");
2489
2490 /*
2491  * Count the approximate swap usage in pages for a vmspace.  The
2492  * shadowed or not yet copied on write swap blocks are not accounted.
2493  * The map must be locked.
2494  */
2495 long
2496 vmspace_swap_count(struct vmspace *vmspace)
2497 {
2498         vm_map_t map;
2499         vm_map_entry_t cur;
2500         vm_object_t object;
2501         struct swblk *sb;
2502         vm_pindex_t e, pi;
2503         long count;
2504         int i;
2505
2506         map = &vmspace->vm_map;
2507         count = 0;
2508
2509         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2510                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2511                         continue;
2512                 object = cur->object.vm_object;
2513                 if (object == NULL || object->type != OBJT_SWAP)
2514                         continue;
2515                 VM_OBJECT_RLOCK(object);
2516                 if (object->type != OBJT_SWAP)
2517                         goto unlock;
2518                 pi = OFF_TO_IDX(cur->offset);
2519                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2520                 for (;; pi = sb->p + SWAP_META_PAGES) {
2521                         sb = SWAP_PCTRIE_LOOKUP_GE(
2522                             &object->un_pager.swp.swp_blks, pi);
2523                         if (sb == NULL || sb->p >= e)
2524                                 break;
2525                         for (i = 0; i < SWAP_META_PAGES; i++) {
2526                                 if (sb->p + i < e &&
2527                                     sb->d[i] != SWAPBLK_NONE)
2528                                         count++;
2529                         }
2530                 }
2531 unlock:
2532                 VM_OBJECT_RUNLOCK(object);
2533         }
2534         return (count);
2535 }
2536
2537 /*
2538  * GEOM backend
2539  *
2540  * Swapping onto disk devices.
2541  *
2542  */
2543
2544 static g_orphan_t swapgeom_orphan;
2545
2546 static struct g_class g_swap_class = {
2547         .name = "SWAP",
2548         .version = G_VERSION,
2549         .orphan = swapgeom_orphan,
2550 };
2551
2552 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2553
2554
2555 static void
2556 swapgeom_close_ev(void *arg, int flags)
2557 {
2558         struct g_consumer *cp;
2559
2560         cp = arg;
2561         g_access(cp, -1, -1, 0);
2562         g_detach(cp);
2563         g_destroy_consumer(cp);
2564 }
2565
2566 /*
2567  * Add a reference to the g_consumer for an inflight transaction.
2568  */
2569 static void
2570 swapgeom_acquire(struct g_consumer *cp)
2571 {
2572
2573         mtx_assert(&sw_dev_mtx, MA_OWNED);
2574         cp->index++;
2575 }
2576
2577 /*
2578  * Remove a reference from the g_consumer.  Post a close event if all
2579  * references go away, since the function might be called from the
2580  * biodone context.
2581  */
2582 static void
2583 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2584 {
2585
2586         mtx_assert(&sw_dev_mtx, MA_OWNED);
2587         cp->index--;
2588         if (cp->index == 0) {
2589                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2590                         sp->sw_id = NULL;
2591         }
2592 }
2593
2594 static void
2595 swapgeom_done(struct bio *bp2)
2596 {
2597         struct swdevt *sp;
2598         struct buf *bp;
2599         struct g_consumer *cp;
2600
2601         bp = bp2->bio_caller2;
2602         cp = bp2->bio_from;
2603         bp->b_ioflags = bp2->bio_flags;
2604         if (bp2->bio_error)
2605                 bp->b_ioflags |= BIO_ERROR;
2606         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2607         bp->b_error = bp2->bio_error;
2608         bufdone(bp);
2609         sp = bp2->bio_caller1;
2610         mtx_lock(&sw_dev_mtx);
2611         swapgeom_release(cp, sp);
2612         mtx_unlock(&sw_dev_mtx);
2613         g_destroy_bio(bp2);
2614 }
2615
2616 static void
2617 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2618 {
2619         struct bio *bio;
2620         struct g_consumer *cp;
2621
2622         mtx_lock(&sw_dev_mtx);
2623         cp = sp->sw_id;
2624         if (cp == NULL) {
2625                 mtx_unlock(&sw_dev_mtx);
2626                 bp->b_error = ENXIO;
2627                 bp->b_ioflags |= BIO_ERROR;
2628                 bufdone(bp);
2629                 return;
2630         }
2631         swapgeom_acquire(cp);
2632         mtx_unlock(&sw_dev_mtx);
2633         if (bp->b_iocmd == BIO_WRITE)
2634                 bio = g_new_bio();
2635         else
2636                 bio = g_alloc_bio();
2637         if (bio == NULL) {
2638                 mtx_lock(&sw_dev_mtx);
2639                 swapgeom_release(cp, sp);
2640                 mtx_unlock(&sw_dev_mtx);
2641                 bp->b_error = ENOMEM;
2642                 bp->b_ioflags |= BIO_ERROR;
2643                 bufdone(bp);
2644                 return;
2645         }
2646
2647         bio->bio_caller1 = sp;
2648         bio->bio_caller2 = bp;
2649         bio->bio_cmd = bp->b_iocmd;
2650         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2651         bio->bio_length = bp->b_bcount;
2652         bio->bio_done = swapgeom_done;
2653         if (!buf_mapped(bp)) {
2654                 bio->bio_ma = bp->b_pages;
2655                 bio->bio_data = unmapped_buf;
2656                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2657                 bio->bio_ma_n = bp->b_npages;
2658                 bio->bio_flags |= BIO_UNMAPPED;
2659         } else {
2660                 bio->bio_data = bp->b_data;
2661                 bio->bio_ma = NULL;
2662         }
2663         g_io_request(bio, cp);
2664         return;
2665 }
2666
2667 static void
2668 swapgeom_orphan(struct g_consumer *cp)
2669 {
2670         struct swdevt *sp;
2671         int destroy;
2672
2673         mtx_lock(&sw_dev_mtx);
2674         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2675                 if (sp->sw_id == cp) {
2676                         sp->sw_flags |= SW_CLOSING;
2677                         break;
2678                 }
2679         }
2680         /*
2681          * Drop reference we were created with. Do directly since we're in a
2682          * special context where we don't have to queue the call to
2683          * swapgeom_close_ev().
2684          */
2685         cp->index--;
2686         destroy = ((sp != NULL) && (cp->index == 0));
2687         if (destroy)
2688                 sp->sw_id = NULL;
2689         mtx_unlock(&sw_dev_mtx);
2690         if (destroy)
2691                 swapgeom_close_ev(cp, 0);
2692 }
2693
2694 static void
2695 swapgeom_close(struct thread *td, struct swdevt *sw)
2696 {
2697         struct g_consumer *cp;
2698
2699         mtx_lock(&sw_dev_mtx);
2700         cp = sw->sw_id;
2701         sw->sw_id = NULL;
2702         mtx_unlock(&sw_dev_mtx);
2703
2704         /*
2705          * swapgeom_close() may be called from the biodone context,
2706          * where we cannot perform topology changes.  Delegate the
2707          * work to the events thread.
2708          */
2709         if (cp != NULL)
2710                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2711 }
2712
2713 static int
2714 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2715 {
2716         struct g_provider *pp;
2717         struct g_consumer *cp;
2718         static struct g_geom *gp;
2719         struct swdevt *sp;
2720         u_long nblks;
2721         int error;
2722
2723         pp = g_dev_getprovider(dev);
2724         if (pp == NULL)
2725                 return (ENODEV);
2726         mtx_lock(&sw_dev_mtx);
2727         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2728                 cp = sp->sw_id;
2729                 if (cp != NULL && cp->provider == pp) {
2730                         mtx_unlock(&sw_dev_mtx);
2731                         return (EBUSY);
2732                 }
2733         }
2734         mtx_unlock(&sw_dev_mtx);
2735         if (gp == NULL)
2736                 gp = g_new_geomf(&g_swap_class, "swap");
2737         cp = g_new_consumer(gp);
2738         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2739         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2740         g_attach(cp, pp);
2741         /*
2742          * XXX: Every time you think you can improve the margin for
2743          * footshooting, somebody depends on the ability to do so:
2744          * savecore(8) wants to write to our swapdev so we cannot
2745          * set an exclusive count :-(
2746          */
2747         error = g_access(cp, 1, 1, 0);
2748         if (error != 0) {
2749                 g_detach(cp);
2750                 g_destroy_consumer(cp);
2751                 return (error);
2752         }
2753         nblks = pp->mediasize / DEV_BSIZE;
2754         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2755             swapgeom_close, dev2udev(dev),
2756             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2757         return (0);
2758 }
2759
2760 static int
2761 swapongeom(struct vnode *vp)
2762 {
2763         int error;
2764
2765         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2766         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2767                 error = ENOENT;
2768         } else {
2769                 g_topology_lock();
2770                 error = swapongeom_locked(vp->v_rdev, vp);
2771                 g_topology_unlock();
2772         }
2773         VOP_UNLOCK(vp, 0);
2774         return (error);
2775 }
2776
2777 /*
2778  * VNODE backend
2779  *
2780  * This is used mainly for network filesystem (read: probably only tested
2781  * with NFS) swapfiles.
2782  *
2783  */
2784
2785 static void
2786 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2787 {
2788         struct vnode *vp2;
2789
2790         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2791
2792         vp2 = sp->sw_id;
2793         vhold(vp2);
2794         if (bp->b_iocmd == BIO_WRITE) {
2795                 if (bp->b_bufobj)
2796                         bufobj_wdrop(bp->b_bufobj);
2797                 bufobj_wref(&vp2->v_bufobj);
2798         }
2799         if (bp->b_bufobj != &vp2->v_bufobj)
2800                 bp->b_bufobj = &vp2->v_bufobj;
2801         bp->b_vp = vp2;
2802         bp->b_iooffset = dbtob(bp->b_blkno);
2803         bstrategy(bp);
2804         return;
2805 }
2806
2807 static void
2808 swapdev_close(struct thread *td, struct swdevt *sp)
2809 {
2810
2811         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2812         vrele(sp->sw_vp);
2813 }
2814
2815
2816 static int
2817 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2818 {
2819         struct swdevt *sp;
2820         int error;
2821
2822         if (nblks == 0)
2823                 return (ENXIO);
2824         mtx_lock(&sw_dev_mtx);
2825         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2826                 if (sp->sw_id == vp) {
2827                         mtx_unlock(&sw_dev_mtx);
2828                         return (EBUSY);
2829                 }
2830         }
2831         mtx_unlock(&sw_dev_mtx);
2832
2833         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2834 #ifdef MAC
2835         error = mac_system_check_swapon(td->td_ucred, vp);
2836         if (error == 0)
2837 #endif
2838                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2839         (void) VOP_UNLOCK(vp, 0);
2840         if (error)
2841                 return (error);
2842
2843         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2844             NODEV, 0);
2845         return (0);
2846 }
2847
2848 static int
2849 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2850 {
2851         int error, new, n;
2852
2853         new = nsw_wcount_async_max;
2854         error = sysctl_handle_int(oidp, &new, 0, req);
2855         if (error != 0 || req->newptr == NULL)
2856                 return (error);
2857
2858         if (new > nswbuf / 2 || new < 1)
2859                 return (EINVAL);
2860
2861         mtx_lock(&pbuf_mtx);
2862         while (nsw_wcount_async_max != new) {
2863                 /*
2864                  * Adjust difference.  If the current async count is too low,
2865                  * we will need to sqeeze our update slowly in.  Sleep with a
2866                  * higher priority than getpbuf() to finish faster.
2867                  */
2868                 n = new - nsw_wcount_async_max;
2869                 if (nsw_wcount_async + n >= 0) {
2870                         nsw_wcount_async += n;
2871                         nsw_wcount_async_max += n;
2872                         wakeup(&nsw_wcount_async);
2873                 } else {
2874                         nsw_wcount_async_max -= nsw_wcount_async;
2875                         nsw_wcount_async = 0;
2876                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2877                             "swpsysctl", 0);
2878                 }
2879         }
2880         mtx_unlock(&pbuf_mtx);
2881
2882         return (0);
2883 }