]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
MFV: r334448
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_swap.h"
75 #include "opt_vm.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/conf.h>
80 #include <sys/kernel.h>
81 #include <sys/priv.h>
82 #include <sys/proc.h>
83 #include <sys/bio.h>
84 #include <sys/buf.h>
85 #include <sys/disk.h>
86 #include <sys/fcntl.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/vnode.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/blist.h>
100 #include <sys/lock.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103
104 #include <security/mac/mac_framework.h>
105
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 #include <geom/geom.h>
120
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     32
127 #endif
128
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
131 #endif
132
133 #define SWAP_META_PAGES         PCTRIE_COUNT
134
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142         vm_pindex_t     p;
143         daddr_t         d[SWAP_META_PAGES];
144 };
145
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;  /* Allocate from here next */
150 static int nswapdev;            /* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
153
154 static vm_ooffset_t swap_total;
155 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
156     "Total amount of available swap storage.");
157 static vm_ooffset_t swap_reserved;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 static int overcommit = 0;
161 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
162     "Configure virtual memory overcommit behavior. See tuning(7) "
163     "for details.");
164 static unsigned long swzone;
165 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
166     "Actual size of swap metadata zone");
167 static unsigned long swap_maxpages;
168 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
169     "Maximum amount of swap supported");
170
171 /* bits from overcommit */
172 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
173 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
174 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
175
176 int
177 swap_reserve(vm_ooffset_t incr)
178 {
179
180         return (swap_reserve_by_cred(incr, curthread->td_ucred));
181 }
182
183 int
184 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
185 {
186         vm_ooffset_t r, s;
187         int res, error;
188         static int curfail;
189         static struct timeval lastfail;
190         struct uidinfo *uip;
191
192         uip = cred->cr_ruidinfo;
193
194         if (incr & PAGE_MASK)
195                 panic("swap_reserve: & PAGE_MASK");
196
197 #ifdef RACCT
198         if (racct_enable) {
199                 PROC_LOCK(curproc);
200                 error = racct_add(curproc, RACCT_SWAP, incr);
201                 PROC_UNLOCK(curproc);
202                 if (error != 0)
203                         return (0);
204         }
205 #endif
206
207         res = 0;
208         mtx_lock(&sw_dev_mtx);
209         r = swap_reserved + incr;
210         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
211                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
212                     vm_wire_count();
213                 s *= PAGE_SIZE;
214         } else
215                 s = 0;
216         s += swap_total;
217         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
218             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
219                 res = 1;
220                 swap_reserved = r;
221         }
222         mtx_unlock(&sw_dev_mtx);
223
224         if (res) {
225                 UIDINFO_VMSIZE_LOCK(uip);
226                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
227                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
228                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
229                         res = 0;
230                 else
231                         uip->ui_vmsize += incr;
232                 UIDINFO_VMSIZE_UNLOCK(uip);
233                 if (!res) {
234                         mtx_lock(&sw_dev_mtx);
235                         swap_reserved -= incr;
236                         mtx_unlock(&sw_dev_mtx);
237                 }
238         }
239         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
240                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
241                     uip->ui_uid, curproc->p_pid, incr);
242         }
243
244 #ifdef RACCT
245         if (!res) {
246                 PROC_LOCK(curproc);
247                 racct_sub(curproc, RACCT_SWAP, incr);
248                 PROC_UNLOCK(curproc);
249         }
250 #endif
251
252         return (res);
253 }
254
255 void
256 swap_reserve_force(vm_ooffset_t incr)
257 {
258         struct uidinfo *uip;
259
260         mtx_lock(&sw_dev_mtx);
261         swap_reserved += incr;
262         mtx_unlock(&sw_dev_mtx);
263
264 #ifdef RACCT
265         PROC_LOCK(curproc);
266         racct_add_force(curproc, RACCT_SWAP, incr);
267         PROC_UNLOCK(curproc);
268 #endif
269
270         uip = curthread->td_ucred->cr_ruidinfo;
271         PROC_LOCK(curproc);
272         UIDINFO_VMSIZE_LOCK(uip);
273         uip->ui_vmsize += incr;
274         UIDINFO_VMSIZE_UNLOCK(uip);
275         PROC_UNLOCK(curproc);
276 }
277
278 void
279 swap_release(vm_ooffset_t decr)
280 {
281         struct ucred *cred;
282
283         PROC_LOCK(curproc);
284         cred = curthread->td_ucred;
285         swap_release_by_cred(decr, cred);
286         PROC_UNLOCK(curproc);
287 }
288
289 void
290 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
291 {
292         struct uidinfo *uip;
293
294         uip = cred->cr_ruidinfo;
295
296         if (decr & PAGE_MASK)
297                 panic("swap_release: & PAGE_MASK");
298
299         mtx_lock(&sw_dev_mtx);
300         if (swap_reserved < decr)
301                 panic("swap_reserved < decr");
302         swap_reserved -= decr;
303         mtx_unlock(&sw_dev_mtx);
304
305         UIDINFO_VMSIZE_LOCK(uip);
306         if (uip->ui_vmsize < decr)
307                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
308         uip->ui_vmsize -= decr;
309         UIDINFO_VMSIZE_UNLOCK(uip);
310
311         racct_sub_cred(cred, RACCT_SWAP, decr);
312 }
313
314 #define SWM_POP         0x01    /* pop out                      */
315
316 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
317 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
318 static int nsw_rcount;          /* free read buffers                    */
319 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
320 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
321 static int nsw_wcount_async_max;/* assigned maximum                     */
322 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
323
324 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
325 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
326     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
327     "Maximum running async swap ops");
328 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
329 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
330     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
331     "Swap Fragmentation Info");
332
333 static struct sx sw_alloc_sx;
334
335 /*
336  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
337  * of searching a named list by hashing it just a little.
338  */
339
340 #define NOBJLISTS               8
341
342 #define NOBJLIST(handle)        \
343         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
344
345 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
346 static uma_zone_t swblk_zone;
347 static uma_zone_t swpctrie_zone;
348
349 /*
350  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
351  * calls hooked from other parts of the VM system and do not appear here.
352  * (see vm/swap_pager.h).
353  */
354 static vm_object_t
355                 swap_pager_alloc(void *handle, vm_ooffset_t size,
356                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
357 static void     swap_pager_dealloc(vm_object_t object);
358 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
359     int *);
360 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
361     int *, pgo_getpages_iodone_t, void *);
362 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
363 static boolean_t
364                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
365 static void     swap_pager_init(void);
366 static void     swap_pager_unswapped(vm_page_t);
367 static void     swap_pager_swapoff(struct swdevt *sp);
368
369 struct pagerops swappagerops = {
370         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
371         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
372         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
373         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
374         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
375         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
376         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
377         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
378 };
379
380 /*
381  * swap_*() routines are externally accessible.  swp_*() routines are
382  * internal.
383  */
384 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
385 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
386
387 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
388     "Maximum size of a swap block in pages");
389
390 static void     swp_sizecheck(void);
391 static void     swp_pager_async_iodone(struct buf *bp);
392 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
393 static int      swapongeom(struct vnode *);
394 static int      swaponvp(struct thread *, struct vnode *, u_long);
395 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
396
397 /*
398  * Swap bitmap functions
399  */
400 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
401 static daddr_t  swp_pager_getswapspace(int npages);
402
403 /*
404  * Metadata functions
405  */
406 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
407 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
408 static void swp_pager_meta_free_all(vm_object_t);
409 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
410
411 static void *
412 swblk_trie_alloc(struct pctrie *ptree)
413 {
414
415         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
416             M_USE_RESERVE : 0)));
417 }
418
419 static void
420 swblk_trie_free(struct pctrie *ptree, void *node)
421 {
422
423         uma_zfree(swpctrie_zone, node);
424 }
425
426 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
427
428 /*
429  * SWP_SIZECHECK() -    update swap_pager_full indication
430  *
431  *      update the swap_pager_almost_full indication and warn when we are
432  *      about to run out of swap space, using lowat/hiwat hysteresis.
433  *
434  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
435  *
436  *      No restrictions on call
437  *      This routine may not block.
438  */
439 static void
440 swp_sizecheck(void)
441 {
442
443         if (swap_pager_avail < nswap_lowat) {
444                 if (swap_pager_almost_full == 0) {
445                         printf("swap_pager: out of swap space\n");
446                         swap_pager_almost_full = 1;
447                 }
448         } else {
449                 swap_pager_full = 0;
450                 if (swap_pager_avail > nswap_hiwat)
451                         swap_pager_almost_full = 0;
452         }
453 }
454
455 /*
456  * SWAP_PAGER_INIT() -  initialize the swap pager!
457  *
458  *      Expected to be started from system init.  NOTE:  This code is run
459  *      before much else so be careful what you depend on.  Most of the VM
460  *      system has yet to be initialized at this point.
461  */
462 static void
463 swap_pager_init(void)
464 {
465         /*
466          * Initialize object lists
467          */
468         int i;
469
470         for (i = 0; i < NOBJLISTS; ++i)
471                 TAILQ_INIT(&swap_pager_object_list[i]);
472         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
473         sx_init(&sw_alloc_sx, "swspsx");
474         sx_init(&swdev_syscall_lock, "swsysc");
475 }
476
477 /*
478  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
479  *
480  *      Expected to be started from pageout process once, prior to entering
481  *      its main loop.
482  */
483 void
484 swap_pager_swap_init(void)
485 {
486         unsigned long n, n2;
487
488         /*
489          * Number of in-transit swap bp operations.  Don't
490          * exhaust the pbufs completely.  Make sure we
491          * initialize workable values (0 will work for hysteresis
492          * but it isn't very efficient).
493          *
494          * The nsw_cluster_max is constrained by the bp->b_pages[]
495          * array (MAXPHYS/PAGE_SIZE) and our locally defined
496          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
497          * constrained by the swap device interleave stripe size.
498          *
499          * Currently we hardwire nsw_wcount_async to 4.  This limit is
500          * designed to prevent other I/O from having high latencies due to
501          * our pageout I/O.  The value 4 works well for one or two active swap
502          * devices but is probably a little low if you have more.  Even so,
503          * a higher value would probably generate only a limited improvement
504          * with three or four active swap devices since the system does not
505          * typically have to pageout at extreme bandwidths.   We will want
506          * at least 2 per swap devices, and 4 is a pretty good value if you
507          * have one NFS swap device due to the command/ack latency over NFS.
508          * So it all works out pretty well.
509          */
510         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
511
512         mtx_lock(&pbuf_mtx);
513         nsw_rcount = (nswbuf + 1) / 2;
514         nsw_wcount_sync = (nswbuf + 3) / 4;
515         nsw_wcount_async = 4;
516         nsw_wcount_async_max = nsw_wcount_async;
517         mtx_unlock(&pbuf_mtx);
518
519         /*
520          * Initialize our zone, guessing on the number we need based
521          * on the number of pages in the system.
522          */
523         n = vm_cnt.v_page_count / 2;
524         if (maxswzone && n > maxswzone / sizeof(struct swblk))
525                 n = maxswzone / sizeof(struct swblk);
526         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
527             pctrie_zone_init, NULL, UMA_ALIGN_PTR,
528             UMA_ZONE_NOFREE | UMA_ZONE_VM);
529         if (swpctrie_zone == NULL)
530                 panic("failed to create swap pctrie zone.");
531         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
532             NULL, NULL, _Alignof(struct swblk) - 1,
533             UMA_ZONE_NOFREE | UMA_ZONE_VM);
534         if (swblk_zone == NULL)
535                 panic("failed to create swap blk zone.");
536         n2 = n;
537         do {
538                 if (uma_zone_reserve_kva(swblk_zone, n))
539                         break;
540                 /*
541                  * if the allocation failed, try a zone two thirds the
542                  * size of the previous attempt.
543                  */
544                 n -= ((n + 2) / 3);
545         } while (n > 0);
546
547         /*
548          * Often uma_zone_reserve_kva() cannot reserve exactly the
549          * requested size.  Account for the difference when
550          * calculating swap_maxpages.
551          */
552         n = uma_zone_get_max(swblk_zone);
553
554         if (n < n2)
555                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
556                     n2, n);
557         swap_maxpages = n * SWAP_META_PAGES;
558         swzone = n * sizeof(struct swblk);
559         if (!uma_zone_reserve_kva(swpctrie_zone, n))
560                 printf("Cannot reserve swap pctrie zone, "
561                     "reduce kern.maxswzone.\n");
562 }
563
564 static vm_object_t
565 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
566     vm_ooffset_t offset)
567 {
568         vm_object_t object;
569
570         if (cred != NULL) {
571                 if (!swap_reserve_by_cred(size, cred))
572                         return (NULL);
573                 crhold(cred);
574         }
575
576         /*
577          * The un_pager.swp.swp_blks trie is initialized by
578          * vm_object_allocate() to ensure the correct order of
579          * visibility to other threads.
580          */
581         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
582             PAGE_MASK + size));
583
584         object->handle = handle;
585         if (cred != NULL) {
586                 object->cred = cred;
587                 object->charge = size;
588         }
589         return (object);
590 }
591
592 /*
593  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
594  *                      its metadata structures.
595  *
596  *      This routine is called from the mmap and fork code to create a new
597  *      OBJT_SWAP object.
598  *
599  *      This routine must ensure that no live duplicate is created for
600  *      the named object request, which is protected against by
601  *      holding the sw_alloc_sx lock in case handle != NULL.
602  */
603 static vm_object_t
604 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
605     vm_ooffset_t offset, struct ucred *cred)
606 {
607         vm_object_t object;
608
609         if (handle != NULL) {
610                 /*
611                  * Reference existing named region or allocate new one.  There
612                  * should not be a race here against swp_pager_meta_build()
613                  * as called from vm_page_remove() in regards to the lookup
614                  * of the handle.
615                  */
616                 sx_xlock(&sw_alloc_sx);
617                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
618                 if (object == NULL) {
619                         object = swap_pager_alloc_init(handle, cred, size,
620                             offset);
621                         if (object != NULL) {
622                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
623                                     object, pager_object_list);
624                         }
625                 }
626                 sx_xunlock(&sw_alloc_sx);
627         } else {
628                 object = swap_pager_alloc_init(handle, cred, size, offset);
629         }
630         return (object);
631 }
632
633 /*
634  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
635  *
636  *      The swap backing for the object is destroyed.  The code is
637  *      designed such that we can reinstantiate it later, but this
638  *      routine is typically called only when the entire object is
639  *      about to be destroyed.
640  *
641  *      The object must be locked.
642  */
643 static void
644 swap_pager_dealloc(vm_object_t object)
645 {
646
647         VM_OBJECT_ASSERT_WLOCKED(object);
648         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
649
650         /*
651          * Remove from list right away so lookups will fail if we block for
652          * pageout completion.
653          */
654         if (object->handle != NULL) {
655                 VM_OBJECT_WUNLOCK(object);
656                 sx_xlock(&sw_alloc_sx);
657                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
658                     pager_object_list);
659                 sx_xunlock(&sw_alloc_sx);
660                 VM_OBJECT_WLOCK(object);
661         }
662
663         vm_object_pip_wait(object, "swpdea");
664
665         /*
666          * Free all remaining metadata.  We only bother to free it from
667          * the swap meta data.  We do not attempt to free swapblk's still
668          * associated with vm_page_t's for this object.  We do not care
669          * if paging is still in progress on some objects.
670          */
671         swp_pager_meta_free_all(object);
672         object->handle = NULL;
673         object->type = OBJT_DEAD;
674 }
675
676 /************************************************************************
677  *                      SWAP PAGER BITMAP ROUTINES                      *
678  ************************************************************************/
679
680 /*
681  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
682  *
683  *      Allocate swap for the requested number of pages.  The starting
684  *      swap block number (a page index) is returned or SWAPBLK_NONE
685  *      if the allocation failed.
686  *
687  *      Also has the side effect of advising that somebody made a mistake
688  *      when they configured swap and didn't configure enough.
689  *
690  *      This routine may not sleep.
691  *
692  *      We allocate in round-robin fashion from the configured devices.
693  */
694 static daddr_t
695 swp_pager_getswapspace(int npages)
696 {
697         daddr_t blk;
698         struct swdevt *sp;
699         int i;
700
701         blk = SWAPBLK_NONE;
702         mtx_lock(&sw_dev_mtx);
703         sp = swdevhd;
704         for (i = 0; i < nswapdev; i++) {
705                 if (sp == NULL)
706                         sp = TAILQ_FIRST(&swtailq);
707                 if (!(sp->sw_flags & SW_CLOSING)) {
708                         blk = blist_alloc(sp->sw_blist, npages);
709                         if (blk != SWAPBLK_NONE) {
710                                 blk += sp->sw_first;
711                                 sp->sw_used += npages;
712                                 swap_pager_avail -= npages;
713                                 swp_sizecheck();
714                                 swdevhd = TAILQ_NEXT(sp, sw_list);
715                                 goto done;
716                         }
717                 }
718                 sp = TAILQ_NEXT(sp, sw_list);
719         }
720         if (swap_pager_full != 2) {
721                 printf("swap_pager_getswapspace(%d): failed\n", npages);
722                 swap_pager_full = 2;
723                 swap_pager_almost_full = 1;
724         }
725         swdevhd = NULL;
726 done:
727         mtx_unlock(&sw_dev_mtx);
728         return (blk);
729 }
730
731 static int
732 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
733 {
734
735         return (blk >= sp->sw_first && blk < sp->sw_end);
736 }
737
738 static void
739 swp_pager_strategy(struct buf *bp)
740 {
741         struct swdevt *sp;
742
743         mtx_lock(&sw_dev_mtx);
744         TAILQ_FOREACH(sp, &swtailq, sw_list) {
745                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
746                         mtx_unlock(&sw_dev_mtx);
747                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
748                             unmapped_buf_allowed) {
749                                 bp->b_data = unmapped_buf;
750                                 bp->b_offset = 0;
751                         } else {
752                                 pmap_qenter((vm_offset_t)bp->b_data,
753                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
754                         }
755                         sp->sw_strategy(bp, sp);
756                         return;
757                 }
758         }
759         panic("Swapdev not found");
760 }
761
762
763 /*
764  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
765  *
766  *      This routine returns the specified swap blocks back to the bitmap.
767  *
768  *      This routine may not sleep.
769  */
770 static void
771 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
772 {
773         struct swdevt *sp;
774
775         if (npages == 0)
776                 return;
777         mtx_lock(&sw_dev_mtx);
778         TAILQ_FOREACH(sp, &swtailq, sw_list) {
779                 if (blk >= sp->sw_first && blk < sp->sw_end) {
780                         sp->sw_used -= npages;
781                         /*
782                          * If we are attempting to stop swapping on
783                          * this device, we don't want to mark any
784                          * blocks free lest they be reused.
785                          */
786                         if ((sp->sw_flags & SW_CLOSING) == 0) {
787                                 blist_free(sp->sw_blist, blk - sp->sw_first,
788                                     npages);
789                                 swap_pager_avail += npages;
790                                 swp_sizecheck();
791                         }
792                         mtx_unlock(&sw_dev_mtx);
793                         return;
794                 }
795         }
796         panic("Swapdev not found");
797 }
798
799 /*
800  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
801  */
802 static int
803 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
804 {
805         struct sbuf sbuf;
806         struct swdevt *sp;
807         const char *devname;
808         int error;
809
810         error = sysctl_wire_old_buffer(req, 0);
811         if (error != 0)
812                 return (error);
813         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
814         mtx_lock(&sw_dev_mtx);
815         TAILQ_FOREACH(sp, &swtailq, sw_list) {
816                 if (vn_isdisk(sp->sw_vp, NULL))
817                         devname = devtoname(sp->sw_vp->v_rdev);
818                 else
819                         devname = "[file]";
820                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
821                 blist_stats(sp->sw_blist, &sbuf);
822         }
823         mtx_unlock(&sw_dev_mtx);
824         error = sbuf_finish(&sbuf);
825         sbuf_delete(&sbuf);
826         return (error);
827 }
828
829 /*
830  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
831  *                              range within an object.
832  *
833  *      This is a globally accessible routine.
834  *
835  *      This routine removes swapblk assignments from swap metadata.
836  *
837  *      The external callers of this routine typically have already destroyed
838  *      or renamed vm_page_t's associated with this range in the object so
839  *      we should be ok.
840  *
841  *      The object must be locked.
842  */
843 void
844 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
845 {
846
847         swp_pager_meta_free(object, start, size);
848 }
849
850 /*
851  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
852  *
853  *      Assigns swap blocks to the specified range within the object.  The
854  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
855  *
856  *      Returns 0 on success, -1 on failure.
857  */
858 int
859 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
860 {
861         int n = 0;
862         daddr_t blk = SWAPBLK_NONE;
863         vm_pindex_t beg = start;        /* save start index */
864
865         VM_OBJECT_WLOCK(object);
866         while (size) {
867                 if (n == 0) {
868                         n = BLIST_MAX_ALLOC;
869                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
870                                 n >>= 1;
871                                 if (n == 0) {
872                                         swp_pager_meta_free(object, beg, start - beg);
873                                         VM_OBJECT_WUNLOCK(object);
874                                         return (-1);
875                                 }
876                         }
877                 }
878                 swp_pager_meta_build(object, start, blk);
879                 --size;
880                 ++start;
881                 ++blk;
882                 --n;
883         }
884         swp_pager_meta_free(object, start, n);
885         VM_OBJECT_WUNLOCK(object);
886         return (0);
887 }
888
889 /*
890  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
891  *                      and destroy the source.
892  *
893  *      Copy any valid swapblks from the source to the destination.  In
894  *      cases where both the source and destination have a valid swapblk,
895  *      we keep the destination's.
896  *
897  *      This routine is allowed to sleep.  It may sleep allocating metadata
898  *      indirectly through swp_pager_meta_build() or if paging is still in
899  *      progress on the source.
900  *
901  *      The source object contains no vm_page_t's (which is just as well)
902  *
903  *      The source object is of type OBJT_SWAP.
904  *
905  *      The source and destination objects must be locked.
906  *      Both object locks may temporarily be released.
907  */
908 void
909 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
910     vm_pindex_t offset, int destroysource)
911 {
912         vm_pindex_t i;
913         daddr_t dstaddr, first_free, num_free, srcaddr;
914
915         VM_OBJECT_ASSERT_WLOCKED(srcobject);
916         VM_OBJECT_ASSERT_WLOCKED(dstobject);
917
918         /*
919          * If destroysource is set, we remove the source object from the
920          * swap_pager internal queue now.
921          */
922         if (destroysource && srcobject->handle != NULL) {
923                 vm_object_pip_add(srcobject, 1);
924                 VM_OBJECT_WUNLOCK(srcobject);
925                 vm_object_pip_add(dstobject, 1);
926                 VM_OBJECT_WUNLOCK(dstobject);
927                 sx_xlock(&sw_alloc_sx);
928                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
929                     pager_object_list);
930                 sx_xunlock(&sw_alloc_sx);
931                 VM_OBJECT_WLOCK(dstobject);
932                 vm_object_pip_wakeup(dstobject);
933                 VM_OBJECT_WLOCK(srcobject);
934                 vm_object_pip_wakeup(srcobject);
935         }
936
937         /*
938          * Transfer source to destination.
939          */
940         first_free = SWAPBLK_NONE;
941         num_free = 0;
942         for (i = 0; i < dstobject->size; ++i) {
943                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
944                 if (srcaddr == SWAPBLK_NONE)
945                         continue;
946                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
947                 if (dstaddr == SWAPBLK_NONE) {
948                         /*
949                          * Destination has no swapblk and is not resident,
950                          * copy source.
951                          *
952                          * swp_pager_meta_build() can sleep.
953                          */
954                         vm_object_pip_add(srcobject, 1);
955                         VM_OBJECT_WUNLOCK(srcobject);
956                         vm_object_pip_add(dstobject, 1);
957                         swp_pager_meta_build(dstobject, i, srcaddr);
958                         vm_object_pip_wakeup(dstobject);
959                         VM_OBJECT_WLOCK(srcobject);
960                         vm_object_pip_wakeup(srcobject);
961                 } else {
962                         /*
963                          * Destination has valid swapblk or it is represented
964                          * by a resident page.  We destroy the sourceblock.
965                          */
966                         if (first_free + num_free == srcaddr)
967                                 num_free++;
968                         else {
969                                 swp_pager_freeswapspace(first_free, num_free);
970                                 first_free = srcaddr;
971                                 num_free = 1;
972                         }
973                 }
974         }
975         swp_pager_freeswapspace(first_free, num_free);
976
977         /*
978          * Free left over swap blocks in source.
979          *
980          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
981          * double-remove the object from the swap queues.
982          */
983         if (destroysource) {
984                 swp_pager_meta_free_all(srcobject);
985                 /*
986                  * Reverting the type is not necessary, the caller is going
987                  * to destroy srcobject directly, but I'm doing it here
988                  * for consistency since we've removed the object from its
989                  * queues.
990                  */
991                 srcobject->type = OBJT_DEFAULT;
992         }
993 }
994
995 /*
996  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
997  *                              the requested page.
998  *
999  *      We determine whether good backing store exists for the requested
1000  *      page and return TRUE if it does, FALSE if it doesn't.
1001  *
1002  *      If TRUE, we also try to determine how much valid, contiguous backing
1003  *      store exists before and after the requested page.
1004  */
1005 static boolean_t
1006 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1007     int *after)
1008 {
1009         daddr_t blk, blk0;
1010         int i;
1011
1012         VM_OBJECT_ASSERT_LOCKED(object);
1013
1014         /*
1015          * do we have good backing store at the requested index ?
1016          */
1017         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1018         if (blk0 == SWAPBLK_NONE) {
1019                 if (before)
1020                         *before = 0;
1021                 if (after)
1022                         *after = 0;
1023                 return (FALSE);
1024         }
1025
1026         /*
1027          * find backwards-looking contiguous good backing store
1028          */
1029         if (before != NULL) {
1030                 for (i = 1; i < SWB_NPAGES; i++) {
1031                         if (i > pindex)
1032                                 break;
1033                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1034                         if (blk != blk0 - i)
1035                                 break;
1036                 }
1037                 *before = i - 1;
1038         }
1039
1040         /*
1041          * find forward-looking contiguous good backing store
1042          */
1043         if (after != NULL) {
1044                 for (i = 1; i < SWB_NPAGES; i++) {
1045                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1046                         if (blk != blk0 + i)
1047                                 break;
1048                 }
1049                 *after = i - 1;
1050         }
1051         return (TRUE);
1052 }
1053
1054 /*
1055  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1056  *
1057  *      This removes any associated swap backing store, whether valid or
1058  *      not, from the page.
1059  *
1060  *      This routine is typically called when a page is made dirty, at
1061  *      which point any associated swap can be freed.  MADV_FREE also
1062  *      calls us in a special-case situation
1063  *
1064  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1065  *      should make the page dirty before calling this routine.  This routine
1066  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1067  *      depends on it.
1068  *
1069  *      This routine may not sleep.
1070  *
1071  *      The object containing the page must be locked.
1072  */
1073 static void
1074 swap_pager_unswapped(vm_page_t m)
1075 {
1076         daddr_t srcaddr;
1077
1078         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1079         if (srcaddr != SWAPBLK_NONE)
1080                 swp_pager_freeswapspace(srcaddr, 1);
1081 }
1082
1083 /*
1084  * swap_pager_getpages() - bring pages in from swap
1085  *
1086  *      Attempt to page in the pages in array "ma" of length "count".  The
1087  *      caller may optionally specify that additional pages preceding and
1088  *      succeeding the specified range be paged in.  The number of such pages
1089  *      is returned in the "rbehind" and "rahead" parameters, and they will
1090  *      be in the inactive queue upon return.
1091  *
1092  *      The pages in "ma" must be busied and will remain busied upon return.
1093  */
1094 static int
1095 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1096     int *rahead)
1097 {
1098         struct buf *bp;
1099         vm_page_t mpred, msucc, p;
1100         vm_pindex_t pindex;
1101         daddr_t blk;
1102         int i, j, maxahead, maxbehind, reqcount, shift;
1103
1104         reqcount = count;
1105
1106         VM_OBJECT_WUNLOCK(object);
1107         bp = getpbuf(&nsw_rcount);
1108         VM_OBJECT_WLOCK(object);
1109
1110         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1111                 relpbuf(bp, &nsw_rcount);
1112                 return (VM_PAGER_FAIL);
1113         }
1114
1115         /*
1116          * Clip the readahead and readbehind ranges to exclude resident pages.
1117          */
1118         if (rahead != NULL) {
1119                 KASSERT(reqcount - 1 <= maxahead,
1120                     ("page count %d extends beyond swap block", reqcount));
1121                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1122                 pindex = ma[reqcount - 1]->pindex;
1123                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1124                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1125                         *rahead = msucc->pindex - pindex - 1;
1126         }
1127         if (rbehind != NULL) {
1128                 *rbehind = imin(*rbehind, maxbehind);
1129                 pindex = ma[0]->pindex;
1130                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1131                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1132                         *rbehind = pindex - mpred->pindex - 1;
1133         }
1134
1135         /*
1136          * Allocate readahead and readbehind pages.
1137          */
1138         shift = rbehind != NULL ? *rbehind : 0;
1139         if (shift != 0) {
1140                 for (i = 1; i <= shift; i++) {
1141                         p = vm_page_alloc(object, ma[0]->pindex - i,
1142                             VM_ALLOC_NORMAL);
1143                         if (p == NULL) {
1144                                 /* Shift allocated pages to the left. */
1145                                 for (j = 0; j < i - 1; j++)
1146                                         bp->b_pages[j] =
1147                                             bp->b_pages[j + shift - i + 1];
1148                                 break;
1149                         }
1150                         bp->b_pages[shift - i] = p;
1151                 }
1152                 shift = i - 1;
1153                 *rbehind = shift;
1154         }
1155         for (i = 0; i < reqcount; i++)
1156                 bp->b_pages[i + shift] = ma[i];
1157         if (rahead != NULL) {
1158                 for (i = 0; i < *rahead; i++) {
1159                         p = vm_page_alloc(object,
1160                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1161                         if (p == NULL)
1162                                 break;
1163                         bp->b_pages[shift + reqcount + i] = p;
1164                 }
1165                 *rahead = i;
1166         }
1167         if (rbehind != NULL)
1168                 count += *rbehind;
1169         if (rahead != NULL)
1170                 count += *rahead;
1171
1172         vm_object_pip_add(object, count);
1173
1174         for (i = 0; i < count; i++)
1175                 bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1176
1177         pindex = bp->b_pages[0]->pindex;
1178         blk = swp_pager_meta_ctl(object, pindex, 0);
1179         KASSERT(blk != SWAPBLK_NONE,
1180             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1181
1182         VM_OBJECT_WUNLOCK(object);
1183
1184         bp->b_flags |= B_PAGING;
1185         bp->b_iocmd = BIO_READ;
1186         bp->b_iodone = swp_pager_async_iodone;
1187         bp->b_rcred = crhold(thread0.td_ucred);
1188         bp->b_wcred = crhold(thread0.td_ucred);
1189         bp->b_blkno = blk;
1190         bp->b_bcount = PAGE_SIZE * count;
1191         bp->b_bufsize = PAGE_SIZE * count;
1192         bp->b_npages = count;
1193         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1194         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1195
1196         VM_CNT_INC(v_swapin);
1197         VM_CNT_ADD(v_swappgsin, count);
1198
1199         /*
1200          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1201          * this point because we automatically release it on completion.
1202          * Instead, we look at the one page we are interested in which we
1203          * still hold a lock on even through the I/O completion.
1204          *
1205          * The other pages in our ma[] array are also released on completion,
1206          * so we cannot assume they are valid anymore either.
1207          *
1208          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1209          */
1210         BUF_KERNPROC(bp);
1211         swp_pager_strategy(bp);
1212
1213         /*
1214          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1215          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1216          * is set in the metadata for each page in the request.
1217          */
1218         VM_OBJECT_WLOCK(object);
1219         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1220                 ma[0]->oflags |= VPO_SWAPSLEEP;
1221                 VM_CNT_INC(v_intrans);
1222                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1223                     "swread", hz * 20)) {
1224                         printf(
1225 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1226                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1227                 }
1228         }
1229
1230         /*
1231          * If we had an unrecoverable read error pages will not be valid.
1232          */
1233         for (i = 0; i < reqcount; i++)
1234                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1235                         return (VM_PAGER_ERROR);
1236
1237         return (VM_PAGER_OK);
1238
1239         /*
1240          * A final note: in a low swap situation, we cannot deallocate swap
1241          * and mark a page dirty here because the caller is likely to mark
1242          * the page clean when we return, causing the page to possibly revert
1243          * to all-zero's later.
1244          */
1245 }
1246
1247 /*
1248  *      swap_pager_getpages_async():
1249  *
1250  *      Right now this is emulation of asynchronous operation on top of
1251  *      swap_pager_getpages().
1252  */
1253 static int
1254 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1255     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1256 {
1257         int r, error;
1258
1259         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1260         VM_OBJECT_WUNLOCK(object);
1261         switch (r) {
1262         case VM_PAGER_OK:
1263                 error = 0;
1264                 break;
1265         case VM_PAGER_ERROR:
1266                 error = EIO;
1267                 break;
1268         case VM_PAGER_FAIL:
1269                 error = EINVAL;
1270                 break;
1271         default:
1272                 panic("unhandled swap_pager_getpages() error %d", r);
1273         }
1274         (iodone)(arg, ma, count, error);
1275         VM_OBJECT_WLOCK(object);
1276
1277         return (r);
1278 }
1279
1280 /*
1281  *      swap_pager_putpages:
1282  *
1283  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1284  *
1285  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1286  *      are automatically converted to SWAP objects.
1287  *
1288  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1289  *      vm_page reservation system coupled with properly written VFS devices
1290  *      should ensure that no low-memory deadlock occurs.  This is an area
1291  *      which needs work.
1292  *
1293  *      The parent has N vm_object_pip_add() references prior to
1294  *      calling us and will remove references for rtvals[] that are
1295  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1296  *      completion.
1297  *
1298  *      The parent has soft-busy'd the pages it passes us and will unbusy
1299  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1300  *      We need to unbusy the rest on I/O completion.
1301  */
1302 static void
1303 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1304     int flags, int *rtvals)
1305 {
1306         int i, n;
1307         boolean_t sync;
1308
1309         if (count && ma[0]->object != object) {
1310                 panic("swap_pager_putpages: object mismatch %p/%p",
1311                     object,
1312                     ma[0]->object
1313                 );
1314         }
1315
1316         /*
1317          * Step 1
1318          *
1319          * Turn object into OBJT_SWAP
1320          * check for bogus sysops
1321          * force sync if not pageout process
1322          */
1323         if (object->type != OBJT_SWAP)
1324                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1325         VM_OBJECT_WUNLOCK(object);
1326
1327         n = 0;
1328         if (curproc != pageproc)
1329                 sync = TRUE;
1330         else
1331                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1332
1333         /*
1334          * Step 2
1335          *
1336          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1337          * The page is left dirty until the pageout operation completes
1338          * successfully.
1339          */
1340         for (i = 0; i < count; i += n) {
1341                 int j;
1342                 struct buf *bp;
1343                 daddr_t blk;
1344
1345                 /*
1346                  * Maximum I/O size is limited by a number of factors.
1347                  */
1348                 n = min(BLIST_MAX_ALLOC, count - i);
1349                 n = min(n, nsw_cluster_max);
1350
1351                 /*
1352                  * Get biggest block of swap we can.  If we fail, fall
1353                  * back and try to allocate a smaller block.  Don't go
1354                  * overboard trying to allocate space if it would overly
1355                  * fragment swap.
1356                  */
1357                 while (
1358                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1359                     n > 4
1360                 ) {
1361                         n >>= 1;
1362                 }
1363                 if (blk == SWAPBLK_NONE) {
1364                         for (j = 0; j < n; ++j)
1365                                 rtvals[i+j] = VM_PAGER_FAIL;
1366                         continue;
1367                 }
1368
1369                 /*
1370                  * All I/O parameters have been satisfied, build the I/O
1371                  * request and assign the swap space.
1372                  */
1373                 if (sync == TRUE) {
1374                         bp = getpbuf(&nsw_wcount_sync);
1375                 } else {
1376                         bp = getpbuf(&nsw_wcount_async);
1377                         bp->b_flags = B_ASYNC;
1378                 }
1379                 bp->b_flags |= B_PAGING;
1380                 bp->b_iocmd = BIO_WRITE;
1381
1382                 bp->b_rcred = crhold(thread0.td_ucred);
1383                 bp->b_wcred = crhold(thread0.td_ucred);
1384                 bp->b_bcount = PAGE_SIZE * n;
1385                 bp->b_bufsize = PAGE_SIZE * n;
1386                 bp->b_blkno = blk;
1387
1388                 VM_OBJECT_WLOCK(object);
1389                 for (j = 0; j < n; ++j) {
1390                         vm_page_t mreq = ma[i+j];
1391
1392                         swp_pager_meta_build(
1393                             mreq->object,
1394                             mreq->pindex,
1395                             blk + j
1396                         );
1397                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1398                         mreq->oflags |= VPO_SWAPINPROG;
1399                         bp->b_pages[j] = mreq;
1400                 }
1401                 VM_OBJECT_WUNLOCK(object);
1402                 bp->b_npages = n;
1403                 /*
1404                  * Must set dirty range for NFS to work.
1405                  */
1406                 bp->b_dirtyoff = 0;
1407                 bp->b_dirtyend = bp->b_bcount;
1408
1409                 VM_CNT_INC(v_swapout);
1410                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1411
1412                 /*
1413                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1414                  * can call the async completion routine at the end of a
1415                  * synchronous I/O operation.  Otherwise, our caller would
1416                  * perform duplicate unbusy and wakeup operations on the page
1417                  * and object, respectively.
1418                  */
1419                 for (j = 0; j < n; j++)
1420                         rtvals[i + j] = VM_PAGER_PEND;
1421
1422                 /*
1423                  * asynchronous
1424                  *
1425                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1426                  */
1427                 if (sync == FALSE) {
1428                         bp->b_iodone = swp_pager_async_iodone;
1429                         BUF_KERNPROC(bp);
1430                         swp_pager_strategy(bp);
1431                         continue;
1432                 }
1433
1434                 /*
1435                  * synchronous
1436                  *
1437                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1438                  */
1439                 bp->b_iodone = bdone;
1440                 swp_pager_strategy(bp);
1441
1442                 /*
1443                  * Wait for the sync I/O to complete.
1444                  */
1445                 bwait(bp, PVM, "swwrt");
1446
1447                 /*
1448                  * Now that we are through with the bp, we can call the
1449                  * normal async completion, which frees everything up.
1450                  */
1451                 swp_pager_async_iodone(bp);
1452         }
1453         VM_OBJECT_WLOCK(object);
1454 }
1455
1456 /*
1457  *      swp_pager_async_iodone:
1458  *
1459  *      Completion routine for asynchronous reads and writes from/to swap.
1460  *      Also called manually by synchronous code to finish up a bp.
1461  *
1462  *      This routine may not sleep.
1463  */
1464 static void
1465 swp_pager_async_iodone(struct buf *bp)
1466 {
1467         int i;
1468         vm_object_t object = NULL;
1469
1470         /*
1471          * report error
1472          */
1473         if (bp->b_ioflags & BIO_ERROR) {
1474                 printf(
1475                     "swap_pager: I/O error - %s failed; blkno %ld,"
1476                         "size %ld, error %d\n",
1477                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1478                     (long)bp->b_blkno,
1479                     (long)bp->b_bcount,
1480                     bp->b_error
1481                 );
1482         }
1483
1484         /*
1485          * remove the mapping for kernel virtual
1486          */
1487         if (buf_mapped(bp))
1488                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1489         else
1490                 bp->b_data = bp->b_kvabase;
1491
1492         if (bp->b_npages) {
1493                 object = bp->b_pages[0]->object;
1494                 VM_OBJECT_WLOCK(object);
1495         }
1496
1497         /*
1498          * cleanup pages.  If an error occurs writing to swap, we are in
1499          * very serious trouble.  If it happens to be a disk error, though,
1500          * we may be able to recover by reassigning the swap later on.  So
1501          * in this case we remove the m->swapblk assignment for the page
1502          * but do not free it in the rlist.  The errornous block(s) are thus
1503          * never reallocated as swap.  Redirty the page and continue.
1504          */
1505         for (i = 0; i < bp->b_npages; ++i) {
1506                 vm_page_t m = bp->b_pages[i];
1507
1508                 m->oflags &= ~VPO_SWAPINPROG;
1509                 if (m->oflags & VPO_SWAPSLEEP) {
1510                         m->oflags &= ~VPO_SWAPSLEEP;
1511                         wakeup(&object->paging_in_progress);
1512                 }
1513
1514                 if (bp->b_ioflags & BIO_ERROR) {
1515                         /*
1516                          * If an error occurs I'd love to throw the swapblk
1517                          * away without freeing it back to swapspace, so it
1518                          * can never be used again.  But I can't from an
1519                          * interrupt.
1520                          */
1521                         if (bp->b_iocmd == BIO_READ) {
1522                                 /*
1523                                  * NOTE: for reads, m->dirty will probably
1524                                  * be overridden by the original caller of
1525                                  * getpages so don't play cute tricks here.
1526                                  */
1527                                 m->valid = 0;
1528                         } else {
1529                                 /*
1530                                  * If a write error occurs, reactivate page
1531                                  * so it doesn't clog the inactive list,
1532                                  * then finish the I/O.
1533                                  */
1534                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1535                                 vm_page_lock(m);
1536                                 vm_page_activate(m);
1537                                 vm_page_unlock(m);
1538                                 vm_page_sunbusy(m);
1539                         }
1540                 } else if (bp->b_iocmd == BIO_READ) {
1541                         /*
1542                          * NOTE: for reads, m->dirty will probably be
1543                          * overridden by the original caller of getpages so
1544                          * we cannot set them in order to free the underlying
1545                          * swap in a low-swap situation.  I don't think we'd
1546                          * want to do that anyway, but it was an optimization
1547                          * that existed in the old swapper for a time before
1548                          * it got ripped out due to precisely this problem.
1549                          */
1550                         KASSERT(!pmap_page_is_mapped(m),
1551                             ("swp_pager_async_iodone: page %p is mapped", m));
1552                         KASSERT(m->dirty == 0,
1553                             ("swp_pager_async_iodone: page %p is dirty", m));
1554
1555                         m->valid = VM_PAGE_BITS_ALL;
1556                         if (i < bp->b_pgbefore ||
1557                             i >= bp->b_npages - bp->b_pgafter)
1558                                 vm_page_readahead_finish(m);
1559                 } else {
1560                         /*
1561                          * For write success, clear the dirty
1562                          * status, then finish the I/O ( which decrements the
1563                          * busy count and possibly wakes waiter's up ).
1564                          * A page is only written to swap after a period of
1565                          * inactivity.  Therefore, we do not expect it to be
1566                          * reused.
1567                          */
1568                         KASSERT(!pmap_page_is_write_mapped(m),
1569                             ("swp_pager_async_iodone: page %p is not write"
1570                             " protected", m));
1571                         vm_page_undirty(m);
1572                         vm_page_lock(m);
1573                         vm_page_deactivate_noreuse(m);
1574                         vm_page_unlock(m);
1575                         vm_page_sunbusy(m);
1576                 }
1577         }
1578
1579         /*
1580          * adjust pip.  NOTE: the original parent may still have its own
1581          * pip refs on the object.
1582          */
1583         if (object != NULL) {
1584                 vm_object_pip_wakeupn(object, bp->b_npages);
1585                 VM_OBJECT_WUNLOCK(object);
1586         }
1587
1588         /*
1589          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1590          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1591          * trigger a KASSERT in relpbuf().
1592          */
1593         if (bp->b_vp) {
1594                     bp->b_vp = NULL;
1595                     bp->b_bufobj = NULL;
1596         }
1597         /*
1598          * release the physical I/O buffer
1599          */
1600         relpbuf(
1601             bp,
1602             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1603                 ((bp->b_flags & B_ASYNC) ?
1604                     &nsw_wcount_async :
1605                     &nsw_wcount_sync
1606                 )
1607             )
1608         );
1609 }
1610
1611 int
1612 swap_pager_nswapdev(void)
1613 {
1614
1615         return (nswapdev);
1616 }
1617
1618 /*
1619  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1620  *
1621  *      This routine dissociates the page at the given index within an object
1622  *      from its backing store, paging it in if it does not reside in memory.
1623  *      If the page is paged in, it is marked dirty and placed in the laundry
1624  *      queue.  The page is marked dirty because it no longer has backing
1625  *      store.  It is placed in the laundry queue because it has not been
1626  *      accessed recently.  Otherwise, it would already reside in memory.
1627  *
1628  *      We also attempt to swap in all other pages in the swap block.
1629  *      However, we only guarantee that the one at the specified index is
1630  *      paged in.
1631  *
1632  *      XXX - The code to page the whole block in doesn't work, so we
1633  *            revert to the one-by-one behavior for now.  Sigh.
1634  */
1635 static inline void
1636 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1637 {
1638         vm_page_t m;
1639
1640         vm_object_pip_add(object, 1);
1641         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1642         if (m->valid == VM_PAGE_BITS_ALL) {
1643                 vm_object_pip_wakeup(object);
1644                 vm_page_dirty(m);
1645 #ifdef INVARIANTS
1646                 vm_page_lock(m);
1647                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1648                         panic("page %p is neither wired nor queued", m);
1649                 vm_page_unlock(m);
1650 #endif
1651                 vm_page_xunbusy(m);
1652                 vm_pager_page_unswapped(m);
1653                 return;
1654         }
1655
1656         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1657                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1658         vm_object_pip_wakeup(object);
1659         vm_page_dirty(m);
1660         vm_page_lock(m);
1661         vm_page_launder(m);
1662         vm_page_unlock(m);
1663         vm_page_xunbusy(m);
1664         vm_pager_page_unswapped(m);
1665 }
1666
1667 /*
1668  *      swap_pager_swapoff:
1669  *
1670  *      Page in all of the pages that have been paged out to the
1671  *      given device.  The corresponding blocks in the bitmap must be
1672  *      marked as allocated and the device must be flagged SW_CLOSING.
1673  *      There may be no processes swapped out to the device.
1674  *
1675  *      This routine may block.
1676  */
1677 static void
1678 swap_pager_swapoff(struct swdevt *sp)
1679 {
1680         struct swblk *sb;
1681         vm_object_t object;
1682         vm_pindex_t pi;
1683         int i, retries;
1684
1685         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1686
1687         retries = 0;
1688 full_rescan:
1689         mtx_lock(&vm_object_list_mtx);
1690         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1691                 if (object->type != OBJT_SWAP)
1692                         continue;
1693                 mtx_unlock(&vm_object_list_mtx);
1694                 /* Depends on type-stability. */
1695                 VM_OBJECT_WLOCK(object);
1696
1697                 /*
1698                  * Dead objects are eventually terminated on their own.
1699                  */
1700                 if ((object->flags & OBJ_DEAD) != 0)
1701                         goto next_obj;
1702
1703                 /*
1704                  * Sync with fences placed after pctrie
1705                  * initialization.  We must not access pctrie below
1706                  * unless we checked that our object is swap and not
1707                  * dead.
1708                  */
1709                 atomic_thread_fence_acq();
1710                 if (object->type != OBJT_SWAP)
1711                         goto next_obj;
1712
1713                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1714                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1715                         pi = sb->p + SWAP_META_PAGES;
1716                         for (i = 0; i < SWAP_META_PAGES; i++) {
1717                                 if (sb->d[i] == SWAPBLK_NONE)
1718                                         continue;
1719                                 if (swp_pager_isondev(sb->d[i], sp))
1720                                         swp_pager_force_pagein(object,
1721                                             sb->p + i);
1722                         }
1723                 }
1724 next_obj:
1725                 VM_OBJECT_WUNLOCK(object);
1726                 mtx_lock(&vm_object_list_mtx);
1727         }
1728         mtx_unlock(&vm_object_list_mtx);
1729
1730         if (sp->sw_used) {
1731                 /*
1732                  * Objects may be locked or paging to the device being
1733                  * removed, so we will miss their pages and need to
1734                  * make another pass.  We have marked this device as
1735                  * SW_CLOSING, so the activity should finish soon.
1736                  */
1737                 retries++;
1738                 if (retries > 100) {
1739                         panic("swapoff: failed to locate %d swap blocks",
1740                             sp->sw_used);
1741                 }
1742                 pause("swpoff", hz / 20);
1743                 goto full_rescan;
1744         }
1745         EVENTHANDLER_INVOKE(swapoff, sp);
1746 }
1747
1748 /************************************************************************
1749  *                              SWAP META DATA                          *
1750  ************************************************************************
1751  *
1752  *      These routines manipulate the swap metadata stored in the
1753  *      OBJT_SWAP object.
1754  *
1755  *      Swap metadata is implemented with a global hash and not directly
1756  *      linked into the object.  Instead the object simply contains
1757  *      appropriate tracking counters.
1758  */
1759
1760 /*
1761  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1762  */
1763 static bool
1764 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1765 {
1766         int i;
1767
1768         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1769         for (i = start; i < limit; i++) {
1770                 if (sb->d[i] != SWAPBLK_NONE)
1771                         return (false);
1772         }
1773         return (true);
1774 }
1775    
1776 /*
1777  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1778  *
1779  *      We first convert the object to a swap object if it is a default
1780  *      object.
1781  *
1782  *      The specified swapblk is added to the object's swap metadata.  If
1783  *      the swapblk is not valid, it is freed instead.  Any previously
1784  *      assigned swapblk is freed.
1785  */
1786 static void
1787 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1788 {
1789         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1790         struct swblk *sb, *sb1;
1791         vm_pindex_t modpi, rdpi;
1792         int error, i;
1793
1794         VM_OBJECT_ASSERT_WLOCKED(object);
1795
1796         /*
1797          * Convert default object to swap object if necessary
1798          */
1799         if (object->type != OBJT_SWAP) {
1800                 pctrie_init(&object->un_pager.swp.swp_blks);
1801
1802                 /*
1803                  * Ensure that swap_pager_swapoff()'s iteration over
1804                  * object_list does not see a garbage pctrie.
1805                  */
1806                 atomic_thread_fence_rel();
1807
1808                 object->type = OBJT_SWAP;
1809                 KASSERT(object->handle == NULL, ("default pager with handle"));
1810         }
1811
1812         rdpi = rounddown(pindex, SWAP_META_PAGES);
1813         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1814         if (sb == NULL) {
1815                 if (swapblk == SWAPBLK_NONE)
1816                         return;
1817                 for (;;) {
1818                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1819                             pageproc ? M_USE_RESERVE : 0));
1820                         if (sb != NULL) {
1821                                 sb->p = rdpi;
1822                                 for (i = 0; i < SWAP_META_PAGES; i++)
1823                                         sb->d[i] = SWAPBLK_NONE;
1824                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1825                                     1, 0))
1826                                         printf("swblk zone ok\n");
1827                                 break;
1828                         }
1829                         VM_OBJECT_WUNLOCK(object);
1830                         if (uma_zone_exhausted(swblk_zone)) {
1831                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1832                                     0, 1))
1833                                         printf("swap blk zone exhausted, "
1834                                             "increase kern.maxswzone\n");
1835                                 vm_pageout_oom(VM_OOM_SWAPZ);
1836                                 pause("swzonxb", 10);
1837                         } else
1838                                 uma_zwait(swblk_zone);
1839                         VM_OBJECT_WLOCK(object);
1840                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1841                             rdpi);
1842                         if (sb != NULL)
1843                                 /*
1844                                  * Somebody swapped out a nearby page,
1845                                  * allocating swblk at the rdpi index,
1846                                  * while we dropped the object lock.
1847                                  */
1848                                 goto allocated;
1849                 }
1850                 for (;;) {
1851                         error = SWAP_PCTRIE_INSERT(
1852                             &object->un_pager.swp.swp_blks, sb);
1853                         if (error == 0) {
1854                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1855                                     1, 0))
1856                                         printf("swpctrie zone ok\n");
1857                                 break;
1858                         }
1859                         VM_OBJECT_WUNLOCK(object);
1860                         if (uma_zone_exhausted(swpctrie_zone)) {
1861                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1862                                     0, 1))
1863                                         printf("swap pctrie zone exhausted, "
1864                                             "increase kern.maxswzone\n");
1865                                 vm_pageout_oom(VM_OOM_SWAPZ);
1866                                 pause("swzonxp", 10);
1867                         } else
1868                                 uma_zwait(swpctrie_zone);
1869                         VM_OBJECT_WLOCK(object);
1870                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1871                             rdpi);
1872                         if (sb1 != NULL) {
1873                                 uma_zfree(swblk_zone, sb);
1874                                 sb = sb1;
1875                                 goto allocated;
1876                         }
1877                 }
1878         }
1879 allocated:
1880         MPASS(sb->p == rdpi);
1881
1882         modpi = pindex % SWAP_META_PAGES;
1883         /* Delete prior contents of metadata. */
1884         if (sb->d[modpi] != SWAPBLK_NONE)
1885                 swp_pager_freeswapspace(sb->d[modpi], 1);
1886         /* Enter block into metadata. */
1887         sb->d[modpi] = swapblk;
1888
1889         /*
1890          * Free the swblk if we end up with the empty page run.
1891          */
1892         if (swapblk == SWAPBLK_NONE &&
1893             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1894                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1895                 uma_zfree(swblk_zone, sb);
1896         }
1897 }
1898
1899 /*
1900  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1901  *
1902  *      The requested range of blocks is freed, with any associated swap
1903  *      returned to the swap bitmap.
1904  *
1905  *      This routine will free swap metadata structures as they are cleaned
1906  *      out.  This routine does *NOT* operate on swap metadata associated
1907  *      with resident pages.
1908  */
1909 static void
1910 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1911 {
1912         struct swblk *sb;
1913         daddr_t first_free, num_free;
1914         vm_pindex_t last;
1915         int i, limit, start;
1916
1917         VM_OBJECT_ASSERT_WLOCKED(object);
1918         if (object->type != OBJT_SWAP || count == 0)
1919                 return;
1920
1921         first_free = SWAPBLK_NONE;
1922         num_free = 0;
1923         last = pindex + count;
1924         for (;;) {
1925                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1926                     rounddown(pindex, SWAP_META_PAGES));
1927                 if (sb == NULL || sb->p >= last)
1928                         break;
1929                 start = pindex > sb->p ? pindex - sb->p : 0;
1930                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1931                     SWAP_META_PAGES;
1932                 for (i = start; i < limit; i++) {
1933                         if (sb->d[i] == SWAPBLK_NONE)
1934                                 continue;
1935                         if (first_free + num_free == sb->d[i])
1936                                 num_free++;
1937                         else {
1938                                 swp_pager_freeswapspace(first_free, num_free);
1939                                 first_free = sb->d[i];
1940                                 num_free = 1;
1941                         }
1942                         sb->d[i] = SWAPBLK_NONE;
1943                 }
1944                 if (swp_pager_swblk_empty(sb, 0, start) &&
1945                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1946                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1947                             sb->p);
1948                         uma_zfree(swblk_zone, sb);
1949                 }
1950                 pindex = sb->p + SWAP_META_PAGES;
1951         }
1952         swp_pager_freeswapspace(first_free, num_free);
1953 }
1954
1955 /*
1956  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1957  *
1958  *      This routine locates and destroys all swap metadata associated with
1959  *      an object.
1960  */
1961 static void
1962 swp_pager_meta_free_all(vm_object_t object)
1963 {
1964         struct swblk *sb;
1965         daddr_t first_free, num_free;
1966         vm_pindex_t pindex;
1967         int i;
1968
1969         VM_OBJECT_ASSERT_WLOCKED(object);
1970         if (object->type != OBJT_SWAP)
1971                 return;
1972
1973         first_free = SWAPBLK_NONE;
1974         num_free = 0;
1975         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1976             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
1977                 pindex = sb->p + SWAP_META_PAGES;
1978                 for (i = 0; i < SWAP_META_PAGES; i++) {
1979                         if (sb->d[i] == SWAPBLK_NONE)
1980                                 continue;
1981                         if (first_free + num_free == sb->d[i])
1982                                 num_free++;
1983                         else {
1984                                 swp_pager_freeswapspace(first_free, num_free);
1985                                 first_free = sb->d[i];
1986                                 num_free = 1;
1987                         }
1988                 }
1989                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1990                 uma_zfree(swblk_zone, sb);
1991         }
1992         swp_pager_freeswapspace(first_free, num_free);
1993 }
1994
1995 /*
1996  * SWP_PAGER_METACTL() -  misc control of swap meta data.
1997  *
1998  *      This routine is capable of looking up, or removing swapblk
1999  *      assignments in the swap meta data.  It returns the swapblk being
2000  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2001  *
2002  *      When acting on a busy resident page and paging is in progress, we
2003  *      have to wait until paging is complete but otherwise can act on the
2004  *      busy page.
2005  *
2006  *      SWM_POP         remove from meta data but do not free it
2007  */
2008 static daddr_t
2009 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2010 {
2011         struct swblk *sb;
2012         daddr_t r1;
2013
2014         if ((flags & SWM_POP) != 0)
2015                 VM_OBJECT_ASSERT_WLOCKED(object);
2016         else
2017                 VM_OBJECT_ASSERT_LOCKED(object);
2018
2019         /*
2020          * The meta data only exists if the object is OBJT_SWAP
2021          * and even then might not be allocated yet.
2022          */
2023         if (object->type != OBJT_SWAP)
2024                 return (SWAPBLK_NONE);
2025
2026         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2027             rounddown(pindex, SWAP_META_PAGES));
2028         if (sb == NULL)
2029                 return (SWAPBLK_NONE);
2030         r1 = sb->d[pindex % SWAP_META_PAGES];
2031         if (r1 == SWAPBLK_NONE)
2032                 return (SWAPBLK_NONE);
2033         if ((flags & SWM_POP) != 0) {
2034                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2035                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2036                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2037                             rounddown(pindex, SWAP_META_PAGES));
2038                         uma_zfree(swblk_zone, sb);
2039                 }
2040         }
2041         return (r1);
2042 }
2043
2044 /*
2045  * Returns the least page index which is greater than or equal to the
2046  * parameter pindex and for which there is a swap block allocated.
2047  * Returns object's size if the object's type is not swap or if there
2048  * are no allocated swap blocks for the object after the requested
2049  * pindex.
2050  */
2051 vm_pindex_t
2052 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2053 {
2054         struct swblk *sb;
2055         int i;
2056
2057         VM_OBJECT_ASSERT_LOCKED(object);
2058         if (object->type != OBJT_SWAP)
2059                 return (object->size);
2060
2061         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2062             rounddown(pindex, SWAP_META_PAGES));
2063         if (sb == NULL)
2064                 return (object->size);
2065         if (sb->p < pindex) {
2066                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2067                         if (sb->d[i] != SWAPBLK_NONE)
2068                                 return (sb->p + i);
2069                 }
2070                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2071                     roundup(pindex, SWAP_META_PAGES));
2072                 if (sb == NULL)
2073                         return (object->size);
2074         }
2075         for (i = 0; i < SWAP_META_PAGES; i++) {
2076                 if (sb->d[i] != SWAPBLK_NONE)
2077                         return (sb->p + i);
2078         }
2079
2080         /*
2081          * We get here if a swblk is present in the trie but it
2082          * doesn't map any blocks.
2083          */
2084         MPASS(0);
2085         return (object->size);
2086 }
2087
2088 /*
2089  * System call swapon(name) enables swapping on device name,
2090  * which must be in the swdevsw.  Return EBUSY
2091  * if already swapping on this device.
2092  */
2093 #ifndef _SYS_SYSPROTO_H_
2094 struct swapon_args {
2095         char *name;
2096 };
2097 #endif
2098
2099 /*
2100  * MPSAFE
2101  */
2102 /* ARGSUSED */
2103 int
2104 sys_swapon(struct thread *td, struct swapon_args *uap)
2105 {
2106         struct vattr attr;
2107         struct vnode *vp;
2108         struct nameidata nd;
2109         int error;
2110
2111         error = priv_check(td, PRIV_SWAPON);
2112         if (error)
2113                 return (error);
2114
2115         sx_xlock(&swdev_syscall_lock);
2116
2117         /*
2118          * Swap metadata may not fit in the KVM if we have physical
2119          * memory of >1GB.
2120          */
2121         if (swblk_zone == NULL) {
2122                 error = ENOMEM;
2123                 goto done;
2124         }
2125
2126         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2127             uap->name, td);
2128         error = namei(&nd);
2129         if (error)
2130                 goto done;
2131
2132         NDFREE(&nd, NDF_ONLY_PNBUF);
2133         vp = nd.ni_vp;
2134
2135         if (vn_isdisk(vp, &error)) {
2136                 error = swapongeom(vp);
2137         } else if (vp->v_type == VREG &&
2138             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2139             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2140                 /*
2141                  * Allow direct swapping to NFS regular files in the same
2142                  * way that nfs_mountroot() sets up diskless swapping.
2143                  */
2144                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2145         }
2146
2147         if (error)
2148                 vrele(vp);
2149 done:
2150         sx_xunlock(&swdev_syscall_lock);
2151         return (error);
2152 }
2153
2154 /*
2155  * Check that the total amount of swap currently configured does not
2156  * exceed half the theoretical maximum.  If it does, print a warning
2157  * message.
2158  */
2159 static void
2160 swapon_check_swzone(void)
2161 {
2162         unsigned long maxpages, npages;
2163
2164         npages = swap_total / PAGE_SIZE;
2165         /* absolute maximum we can handle assuming 100% efficiency */
2166         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2167
2168         /* recommend using no more than half that amount */
2169         if (npages > maxpages / 2) {
2170                 printf("warning: total configured swap (%lu pages) "
2171                     "exceeds maximum recommended amount (%lu pages).\n",
2172                     npages, maxpages / 2);
2173                 printf("warning: increase kern.maxswzone "
2174                     "or reduce amount of swap.\n");
2175         }
2176 }
2177
2178 static void
2179 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2180     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2181 {
2182         struct swdevt *sp, *tsp;
2183         swblk_t dvbase;
2184         u_long mblocks;
2185
2186         /*
2187          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2188          * First chop nblks off to page-align it, then convert.
2189          *
2190          * sw->sw_nblks is in page-sized chunks now too.
2191          */
2192         nblks &= ~(ctodb(1) - 1);
2193         nblks = dbtoc(nblks);
2194
2195         /*
2196          * If we go beyond this, we get overflows in the radix
2197          * tree bitmap code.
2198          */
2199         mblocks = 0x40000000 / BLIST_META_RADIX;
2200         if (nblks > mblocks) {
2201                 printf(
2202     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2203                     mblocks / 1024 / 1024 * PAGE_SIZE);
2204                 nblks = mblocks;
2205         }
2206
2207         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2208         sp->sw_vp = vp;
2209         sp->sw_id = id;
2210         sp->sw_dev = dev;
2211         sp->sw_flags = 0;
2212         sp->sw_nblks = nblks;
2213         sp->sw_used = 0;
2214         sp->sw_strategy = strategy;
2215         sp->sw_close = close;
2216         sp->sw_flags = flags;
2217
2218         sp->sw_blist = blist_create(nblks, M_WAITOK);
2219         /*
2220          * Do not free the first two block in order to avoid overwriting
2221          * any bsd label at the front of the partition
2222          */
2223         blist_free(sp->sw_blist, 2, nblks - 2);
2224
2225         dvbase = 0;
2226         mtx_lock(&sw_dev_mtx);
2227         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2228                 if (tsp->sw_end >= dvbase) {
2229                         /*
2230                          * We put one uncovered page between the devices
2231                          * in order to definitively prevent any cross-device
2232                          * I/O requests
2233                          */
2234                         dvbase = tsp->sw_end + 1;
2235                 }
2236         }
2237         sp->sw_first = dvbase;
2238         sp->sw_end = dvbase + nblks;
2239         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2240         nswapdev++;
2241         swap_pager_avail += nblks - 2;
2242         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2243         swapon_check_swzone();
2244         swp_sizecheck();
2245         mtx_unlock(&sw_dev_mtx);
2246         EVENTHANDLER_INVOKE(swapon, sp);
2247 }
2248
2249 /*
2250  * SYSCALL: swapoff(devname)
2251  *
2252  * Disable swapping on the given device.
2253  *
2254  * XXX: Badly designed system call: it should use a device index
2255  * rather than filename as specification.  We keep sw_vp around
2256  * only to make this work.
2257  */
2258 #ifndef _SYS_SYSPROTO_H_
2259 struct swapoff_args {
2260         char *name;
2261 };
2262 #endif
2263
2264 /*
2265  * MPSAFE
2266  */
2267 /* ARGSUSED */
2268 int
2269 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2270 {
2271         struct vnode *vp;
2272         struct nameidata nd;
2273         struct swdevt *sp;
2274         int error;
2275
2276         error = priv_check(td, PRIV_SWAPOFF);
2277         if (error)
2278                 return (error);
2279
2280         sx_xlock(&swdev_syscall_lock);
2281
2282         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2283             td);
2284         error = namei(&nd);
2285         if (error)
2286                 goto done;
2287         NDFREE(&nd, NDF_ONLY_PNBUF);
2288         vp = nd.ni_vp;
2289
2290         mtx_lock(&sw_dev_mtx);
2291         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2292                 if (sp->sw_vp == vp)
2293                         break;
2294         }
2295         mtx_unlock(&sw_dev_mtx);
2296         if (sp == NULL) {
2297                 error = EINVAL;
2298                 goto done;
2299         }
2300         error = swapoff_one(sp, td->td_ucred);
2301 done:
2302         sx_xunlock(&swdev_syscall_lock);
2303         return (error);
2304 }
2305
2306 static int
2307 swapoff_one(struct swdevt *sp, struct ucred *cred)
2308 {
2309         u_long nblks;
2310 #ifdef MAC
2311         int error;
2312 #endif
2313
2314         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2315 #ifdef MAC
2316         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2317         error = mac_system_check_swapoff(cred, sp->sw_vp);
2318         (void) VOP_UNLOCK(sp->sw_vp, 0);
2319         if (error != 0)
2320                 return (error);
2321 #endif
2322         nblks = sp->sw_nblks;
2323
2324         /*
2325          * We can turn off this swap device safely only if the
2326          * available virtual memory in the system will fit the amount
2327          * of data we will have to page back in, plus an epsilon so
2328          * the system doesn't become critically low on swap space.
2329          */
2330         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2331                 return (ENOMEM);
2332
2333         /*
2334          * Prevent further allocations on this device.
2335          */
2336         mtx_lock(&sw_dev_mtx);
2337         sp->sw_flags |= SW_CLOSING;
2338         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2339         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2340         mtx_unlock(&sw_dev_mtx);
2341
2342         /*
2343          * Page in the contents of the device and close it.
2344          */
2345         swap_pager_swapoff(sp);
2346
2347         sp->sw_close(curthread, sp);
2348         mtx_lock(&sw_dev_mtx);
2349         sp->sw_id = NULL;
2350         TAILQ_REMOVE(&swtailq, sp, sw_list);
2351         nswapdev--;
2352         if (nswapdev == 0) {
2353                 swap_pager_full = 2;
2354                 swap_pager_almost_full = 1;
2355         }
2356         if (swdevhd == sp)
2357                 swdevhd = NULL;
2358         mtx_unlock(&sw_dev_mtx);
2359         blist_destroy(sp->sw_blist);
2360         free(sp, M_VMPGDATA);
2361         return (0);
2362 }
2363
2364 void
2365 swapoff_all(void)
2366 {
2367         struct swdevt *sp, *spt;
2368         const char *devname;
2369         int error;
2370
2371         sx_xlock(&swdev_syscall_lock);
2372
2373         mtx_lock(&sw_dev_mtx);
2374         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2375                 mtx_unlock(&sw_dev_mtx);
2376                 if (vn_isdisk(sp->sw_vp, NULL))
2377                         devname = devtoname(sp->sw_vp->v_rdev);
2378                 else
2379                         devname = "[file]";
2380                 error = swapoff_one(sp, thread0.td_ucred);
2381                 if (error != 0) {
2382                         printf("Cannot remove swap device %s (error=%d), "
2383                             "skipping.\n", devname, error);
2384                 } else if (bootverbose) {
2385                         printf("Swap device %s removed.\n", devname);
2386                 }
2387                 mtx_lock(&sw_dev_mtx);
2388         }
2389         mtx_unlock(&sw_dev_mtx);
2390
2391         sx_xunlock(&swdev_syscall_lock);
2392 }
2393
2394 void
2395 swap_pager_status(int *total, int *used)
2396 {
2397         struct swdevt *sp;
2398
2399         *total = 0;
2400         *used = 0;
2401         mtx_lock(&sw_dev_mtx);
2402         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2403                 *total += sp->sw_nblks;
2404                 *used += sp->sw_used;
2405         }
2406         mtx_unlock(&sw_dev_mtx);
2407 }
2408
2409 int
2410 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2411 {
2412         struct swdevt *sp;
2413         const char *tmp_devname;
2414         int error, n;
2415
2416         n = 0;
2417         error = ENOENT;
2418         mtx_lock(&sw_dev_mtx);
2419         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2420                 if (n != name) {
2421                         n++;
2422                         continue;
2423                 }
2424                 xs->xsw_version = XSWDEV_VERSION;
2425                 xs->xsw_dev = sp->sw_dev;
2426                 xs->xsw_flags = sp->sw_flags;
2427                 xs->xsw_nblks = sp->sw_nblks;
2428                 xs->xsw_used = sp->sw_used;
2429                 if (devname != NULL) {
2430                         if (vn_isdisk(sp->sw_vp, NULL))
2431                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2432                         else
2433                                 tmp_devname = "[file]";
2434                         strncpy(devname, tmp_devname, len);
2435                 }
2436                 error = 0;
2437                 break;
2438         }
2439         mtx_unlock(&sw_dev_mtx);
2440         return (error);
2441 }
2442
2443 #if defined(COMPAT_FREEBSD11)
2444 #define XSWDEV_VERSION_11       1
2445 struct xswdev11 {
2446         u_int   xsw_version;
2447         uint32_t xsw_dev;
2448         int     xsw_flags;
2449         int     xsw_nblks;
2450         int     xsw_used;
2451 };
2452 #endif
2453
2454 static int
2455 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2456 {
2457         struct xswdev xs;
2458 #if defined(COMPAT_FREEBSD11)
2459         struct xswdev11 xs11;
2460 #endif
2461         int error;
2462
2463         if (arg2 != 1)                  /* name length */
2464                 return (EINVAL);
2465         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2466         if (error != 0)
2467                 return (error);
2468 #if defined(COMPAT_FREEBSD11)
2469         if (req->oldlen == sizeof(xs11)) {
2470                 xs11.xsw_version = XSWDEV_VERSION_11;
2471                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2472                 xs11.xsw_flags = xs.xsw_flags;
2473                 xs11.xsw_nblks = xs.xsw_nblks;
2474                 xs11.xsw_used = xs.xsw_used;
2475                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2476         } else
2477 #endif
2478                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2479         return (error);
2480 }
2481
2482 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2483     "Number of swap devices");
2484 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2485     sysctl_vm_swap_info,
2486     "Swap statistics by device");
2487
2488 /*
2489  * Count the approximate swap usage in pages for a vmspace.  The
2490  * shadowed or not yet copied on write swap blocks are not accounted.
2491  * The map must be locked.
2492  */
2493 long
2494 vmspace_swap_count(struct vmspace *vmspace)
2495 {
2496         vm_map_t map;
2497         vm_map_entry_t cur;
2498         vm_object_t object;
2499         struct swblk *sb;
2500         vm_pindex_t e, pi;
2501         long count;
2502         int i;
2503
2504         map = &vmspace->vm_map;
2505         count = 0;
2506
2507         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2508                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2509                         continue;
2510                 object = cur->object.vm_object;
2511                 if (object == NULL || object->type != OBJT_SWAP)
2512                         continue;
2513                 VM_OBJECT_RLOCK(object);
2514                 if (object->type != OBJT_SWAP)
2515                         goto unlock;
2516                 pi = OFF_TO_IDX(cur->offset);
2517                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2518                 for (;; pi = sb->p + SWAP_META_PAGES) {
2519                         sb = SWAP_PCTRIE_LOOKUP_GE(
2520                             &object->un_pager.swp.swp_blks, pi);
2521                         if (sb == NULL || sb->p >= e)
2522                                 break;
2523                         for (i = 0; i < SWAP_META_PAGES; i++) {
2524                                 if (sb->p + i < e &&
2525                                     sb->d[i] != SWAPBLK_NONE)
2526                                         count++;
2527                         }
2528                 }
2529 unlock:
2530                 VM_OBJECT_RUNLOCK(object);
2531         }
2532         return (count);
2533 }
2534
2535 /*
2536  * GEOM backend
2537  *
2538  * Swapping onto disk devices.
2539  *
2540  */
2541
2542 static g_orphan_t swapgeom_orphan;
2543
2544 static struct g_class g_swap_class = {
2545         .name = "SWAP",
2546         .version = G_VERSION,
2547         .orphan = swapgeom_orphan,
2548 };
2549
2550 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2551
2552
2553 static void
2554 swapgeom_close_ev(void *arg, int flags)
2555 {
2556         struct g_consumer *cp;
2557
2558         cp = arg;
2559         g_access(cp, -1, -1, 0);
2560         g_detach(cp);
2561         g_destroy_consumer(cp);
2562 }
2563
2564 /*
2565  * Add a reference to the g_consumer for an inflight transaction.
2566  */
2567 static void
2568 swapgeom_acquire(struct g_consumer *cp)
2569 {
2570
2571         mtx_assert(&sw_dev_mtx, MA_OWNED);
2572         cp->index++;
2573 }
2574
2575 /*
2576  * Remove a reference from the g_consumer.  Post a close event if all
2577  * references go away, since the function might be called from the
2578  * biodone context.
2579  */
2580 static void
2581 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2582 {
2583
2584         mtx_assert(&sw_dev_mtx, MA_OWNED);
2585         cp->index--;
2586         if (cp->index == 0) {
2587                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2588                         sp->sw_id = NULL;
2589         }
2590 }
2591
2592 static void
2593 swapgeom_done(struct bio *bp2)
2594 {
2595         struct swdevt *sp;
2596         struct buf *bp;
2597         struct g_consumer *cp;
2598
2599         bp = bp2->bio_caller2;
2600         cp = bp2->bio_from;
2601         bp->b_ioflags = bp2->bio_flags;
2602         if (bp2->bio_error)
2603                 bp->b_ioflags |= BIO_ERROR;
2604         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2605         bp->b_error = bp2->bio_error;
2606         bufdone(bp);
2607         sp = bp2->bio_caller1;
2608         mtx_lock(&sw_dev_mtx);
2609         swapgeom_release(cp, sp);
2610         mtx_unlock(&sw_dev_mtx);
2611         g_destroy_bio(bp2);
2612 }
2613
2614 static void
2615 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2616 {
2617         struct bio *bio;
2618         struct g_consumer *cp;
2619
2620         mtx_lock(&sw_dev_mtx);
2621         cp = sp->sw_id;
2622         if (cp == NULL) {
2623                 mtx_unlock(&sw_dev_mtx);
2624                 bp->b_error = ENXIO;
2625                 bp->b_ioflags |= BIO_ERROR;
2626                 bufdone(bp);
2627                 return;
2628         }
2629         swapgeom_acquire(cp);
2630         mtx_unlock(&sw_dev_mtx);
2631         if (bp->b_iocmd == BIO_WRITE)
2632                 bio = g_new_bio();
2633         else
2634                 bio = g_alloc_bio();
2635         if (bio == NULL) {
2636                 mtx_lock(&sw_dev_mtx);
2637                 swapgeom_release(cp, sp);
2638                 mtx_unlock(&sw_dev_mtx);
2639                 bp->b_error = ENOMEM;
2640                 bp->b_ioflags |= BIO_ERROR;
2641                 bufdone(bp);
2642                 return;
2643         }
2644
2645         bio->bio_caller1 = sp;
2646         bio->bio_caller2 = bp;
2647         bio->bio_cmd = bp->b_iocmd;
2648         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2649         bio->bio_length = bp->b_bcount;
2650         bio->bio_done = swapgeom_done;
2651         if (!buf_mapped(bp)) {
2652                 bio->bio_ma = bp->b_pages;
2653                 bio->bio_data = unmapped_buf;
2654                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2655                 bio->bio_ma_n = bp->b_npages;
2656                 bio->bio_flags |= BIO_UNMAPPED;
2657         } else {
2658                 bio->bio_data = bp->b_data;
2659                 bio->bio_ma = NULL;
2660         }
2661         g_io_request(bio, cp);
2662         return;
2663 }
2664
2665 static void
2666 swapgeom_orphan(struct g_consumer *cp)
2667 {
2668         struct swdevt *sp;
2669         int destroy;
2670
2671         mtx_lock(&sw_dev_mtx);
2672         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2673                 if (sp->sw_id == cp) {
2674                         sp->sw_flags |= SW_CLOSING;
2675                         break;
2676                 }
2677         }
2678         /*
2679          * Drop reference we were created with. Do directly since we're in a
2680          * special context where we don't have to queue the call to
2681          * swapgeom_close_ev().
2682          */
2683         cp->index--;
2684         destroy = ((sp != NULL) && (cp->index == 0));
2685         if (destroy)
2686                 sp->sw_id = NULL;
2687         mtx_unlock(&sw_dev_mtx);
2688         if (destroy)
2689                 swapgeom_close_ev(cp, 0);
2690 }
2691
2692 static void
2693 swapgeom_close(struct thread *td, struct swdevt *sw)
2694 {
2695         struct g_consumer *cp;
2696
2697         mtx_lock(&sw_dev_mtx);
2698         cp = sw->sw_id;
2699         sw->sw_id = NULL;
2700         mtx_unlock(&sw_dev_mtx);
2701
2702         /*
2703          * swapgeom_close() may be called from the biodone context,
2704          * where we cannot perform topology changes.  Delegate the
2705          * work to the events thread.
2706          */
2707         if (cp != NULL)
2708                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2709 }
2710
2711 static int
2712 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2713 {
2714         struct g_provider *pp;
2715         struct g_consumer *cp;
2716         static struct g_geom *gp;
2717         struct swdevt *sp;
2718         u_long nblks;
2719         int error;
2720
2721         pp = g_dev_getprovider(dev);
2722         if (pp == NULL)
2723                 return (ENODEV);
2724         mtx_lock(&sw_dev_mtx);
2725         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2726                 cp = sp->sw_id;
2727                 if (cp != NULL && cp->provider == pp) {
2728                         mtx_unlock(&sw_dev_mtx);
2729                         return (EBUSY);
2730                 }
2731         }
2732         mtx_unlock(&sw_dev_mtx);
2733         if (gp == NULL)
2734                 gp = g_new_geomf(&g_swap_class, "swap");
2735         cp = g_new_consumer(gp);
2736         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2737         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2738         g_attach(cp, pp);
2739         /*
2740          * XXX: Every time you think you can improve the margin for
2741          * footshooting, somebody depends on the ability to do so:
2742          * savecore(8) wants to write to our swapdev so we cannot
2743          * set an exclusive count :-(
2744          */
2745         error = g_access(cp, 1, 1, 0);
2746         if (error != 0) {
2747                 g_detach(cp);
2748                 g_destroy_consumer(cp);
2749                 return (error);
2750         }
2751         nblks = pp->mediasize / DEV_BSIZE;
2752         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2753             swapgeom_close, dev2udev(dev),
2754             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2755         return (0);
2756 }
2757
2758 static int
2759 swapongeom(struct vnode *vp)
2760 {
2761         int error;
2762
2763         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2764         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2765                 error = ENOENT;
2766         } else {
2767                 g_topology_lock();
2768                 error = swapongeom_locked(vp->v_rdev, vp);
2769                 g_topology_unlock();
2770         }
2771         VOP_UNLOCK(vp, 0);
2772         return (error);
2773 }
2774
2775 /*
2776  * VNODE backend
2777  *
2778  * This is used mainly for network filesystem (read: probably only tested
2779  * with NFS) swapfiles.
2780  *
2781  */
2782
2783 static void
2784 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2785 {
2786         struct vnode *vp2;
2787
2788         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2789
2790         vp2 = sp->sw_id;
2791         vhold(vp2);
2792         if (bp->b_iocmd == BIO_WRITE) {
2793                 if (bp->b_bufobj)
2794                         bufobj_wdrop(bp->b_bufobj);
2795                 bufobj_wref(&vp2->v_bufobj);
2796         }
2797         if (bp->b_bufobj != &vp2->v_bufobj)
2798                 bp->b_bufobj = &vp2->v_bufobj;
2799         bp->b_vp = vp2;
2800         bp->b_iooffset = dbtob(bp->b_blkno);
2801         bstrategy(bp);
2802         return;
2803 }
2804
2805 static void
2806 swapdev_close(struct thread *td, struct swdevt *sp)
2807 {
2808
2809         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2810         vrele(sp->sw_vp);
2811 }
2812
2813
2814 static int
2815 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2816 {
2817         struct swdevt *sp;
2818         int error;
2819
2820         if (nblks == 0)
2821                 return (ENXIO);
2822         mtx_lock(&sw_dev_mtx);
2823         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2824                 if (sp->sw_id == vp) {
2825                         mtx_unlock(&sw_dev_mtx);
2826                         return (EBUSY);
2827                 }
2828         }
2829         mtx_unlock(&sw_dev_mtx);
2830
2831         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2832 #ifdef MAC
2833         error = mac_system_check_swapon(td->td_ucred, vp);
2834         if (error == 0)
2835 #endif
2836                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2837         (void) VOP_UNLOCK(vp, 0);
2838         if (error)
2839                 return (error);
2840
2841         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2842             NODEV, 0);
2843         return (0);
2844 }
2845
2846 static int
2847 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2848 {
2849         int error, new, n;
2850
2851         new = nsw_wcount_async_max;
2852         error = sysctl_handle_int(oidp, &new, 0, req);
2853         if (error != 0 || req->newptr == NULL)
2854                 return (error);
2855
2856         if (new > nswbuf / 2 || new < 1)
2857                 return (EINVAL);
2858
2859         mtx_lock(&pbuf_mtx);
2860         while (nsw_wcount_async_max != new) {
2861                 /*
2862                  * Adjust difference.  If the current async count is too low,
2863                  * we will need to sqeeze our update slowly in.  Sleep with a
2864                  * higher priority than getpbuf() to finish faster.
2865                  */
2866                 n = new - nsw_wcount_async_max;
2867                 if (nsw_wcount_async + n >= 0) {
2868                         nsw_wcount_async += n;
2869                         nsw_wcount_async_max += n;
2870                         wakeup(&nsw_wcount_async);
2871                 } else {
2872                         nsw_wcount_async_max -= nsw_wcount_async;
2873                         nsw_wcount_async = 0;
2874                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2875                             "swpsysctl", 0);
2876                 }
2877         }
2878         mtx_unlock(&pbuf_mtx);
2879
2880         return (0);
2881 }