]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Merge OpenSSL 1.0.2m.
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *      The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *                              New Swap System
41  *                              Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *      - The new swapper uses the new radix bitmap code.  This should scale
46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
47  *        arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *      - on the fly reallocation of swap during putpages.  The new system
52  *        does not try to keep previously allocated swap blocks for dirty
53  *        pages.
54  *
55  *      - on the fly deallocation of swap
56  *
57  *      - No more garbage collection required.  Unnecessarily allocated swap
58  *        blocks only exist for dirty vm_page_t's now and these are already
59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *        removal of invalidated swap blocks when a page is destroyed
61  *        or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
67  */
68
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71
72 #include "opt_compat.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/priv.h>
81 #include <sys/proc.h>
82 #include <sys/bio.h>
83 #include <sys/buf.h>
84 #include <sys/disk.h>
85 #include <sys/fcntl.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/vnode.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/racct.h>
92 #include <sys/resource.h>
93 #include <sys/resourcevar.h>
94 #include <sys/rwlock.h>
95 #include <sys/sbuf.h>
96 #include <sys/sysctl.h>
97 #include <sys/sysproto.h>
98 #include <sys/blist.h>
99 #include <sys/lock.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102
103 #include <security/mac/mac_framework.h>
104
105 #include <vm/vm.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_pageout.h>
113 #include <vm/vm_param.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 #include <geom/geom.h>
119
120 /*
121  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
122  * The 64-page limit is due to the radix code (kern/subr_blist.c).
123  */
124 #ifndef MAX_PAGEOUT_CLUSTER
125 #define MAX_PAGEOUT_CLUSTER     32
126 #endif
127
128 #if !defined(SWB_NPAGES)
129 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
130 #endif
131
132 #define SWAP_META_PAGES         PCTRIE_COUNT
133
134 /*
135  * A swblk structure maps each page index within a
136  * SWAP_META_PAGES-aligned and sized range to the address of an
137  * on-disk swap block (or SWAPBLK_NONE). The collection of these
138  * mappings for an entire vm object is implemented as a pc-trie.
139  */
140 struct swblk {
141         vm_pindex_t     p;
142         daddr_t         d[SWAP_META_PAGES];
143 };
144
145 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
146 static struct mtx sw_dev_mtx;
147 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
148 static struct swdevt *swdevhd;  /* Allocate from here next */
149 static int nswapdev;            /* Number of swap devices */
150 int swap_pager_avail;
151 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
152
153 static vm_ooffset_t swap_total;
154 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
155     "Total amount of available swap storage.");
156 static vm_ooffset_t swap_reserved;
157 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
158     "Amount of swap storage needed to back all allocated anonymous memory.");
159 static int overcommit = 0;
160 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
161     "Configure virtual memory overcommit behavior. See tuning(7) "
162     "for details.");
163 static unsigned long swzone;
164 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
165     "Actual size of swap metadata zone");
166 static unsigned long swap_maxpages;
167 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
168     "Maximum amount of swap supported");
169
170 /* bits from overcommit */
171 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
172 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
173 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
174
175 int
176 swap_reserve(vm_ooffset_t incr)
177 {
178
179         return (swap_reserve_by_cred(incr, curthread->td_ucred));
180 }
181
182 int
183 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
184 {
185         vm_ooffset_t r, s;
186         int res, error;
187         static int curfail;
188         static struct timeval lastfail;
189         struct uidinfo *uip;
190
191         uip = cred->cr_ruidinfo;
192
193         if (incr & PAGE_MASK)
194                 panic("swap_reserve: & PAGE_MASK");
195
196 #ifdef RACCT
197         if (racct_enable) {
198                 PROC_LOCK(curproc);
199                 error = racct_add(curproc, RACCT_SWAP, incr);
200                 PROC_UNLOCK(curproc);
201                 if (error != 0)
202                         return (0);
203         }
204 #endif
205
206         res = 0;
207         mtx_lock(&sw_dev_mtx);
208         r = swap_reserved + incr;
209         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
210                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
211                 s *= PAGE_SIZE;
212         } else
213                 s = 0;
214         s += swap_total;
215         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
216             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
217                 res = 1;
218                 swap_reserved = r;
219         }
220         mtx_unlock(&sw_dev_mtx);
221
222         if (res) {
223                 UIDINFO_VMSIZE_LOCK(uip);
224                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
225                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
226                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
227                         res = 0;
228                 else
229                         uip->ui_vmsize += incr;
230                 UIDINFO_VMSIZE_UNLOCK(uip);
231                 if (!res) {
232                         mtx_lock(&sw_dev_mtx);
233                         swap_reserved -= incr;
234                         mtx_unlock(&sw_dev_mtx);
235                 }
236         }
237         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
238                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
239                     uip->ui_uid, curproc->p_pid, incr);
240         }
241
242 #ifdef RACCT
243         if (!res) {
244                 PROC_LOCK(curproc);
245                 racct_sub(curproc, RACCT_SWAP, incr);
246                 PROC_UNLOCK(curproc);
247         }
248 #endif
249
250         return (res);
251 }
252
253 void
254 swap_reserve_force(vm_ooffset_t incr)
255 {
256         struct uidinfo *uip;
257
258         mtx_lock(&sw_dev_mtx);
259         swap_reserved += incr;
260         mtx_unlock(&sw_dev_mtx);
261
262 #ifdef RACCT
263         PROC_LOCK(curproc);
264         racct_add_force(curproc, RACCT_SWAP, incr);
265         PROC_UNLOCK(curproc);
266 #endif
267
268         uip = curthread->td_ucred->cr_ruidinfo;
269         PROC_LOCK(curproc);
270         UIDINFO_VMSIZE_LOCK(uip);
271         uip->ui_vmsize += incr;
272         UIDINFO_VMSIZE_UNLOCK(uip);
273         PROC_UNLOCK(curproc);
274 }
275
276 void
277 swap_release(vm_ooffset_t decr)
278 {
279         struct ucred *cred;
280
281         PROC_LOCK(curproc);
282         cred = curthread->td_ucred;
283         swap_release_by_cred(decr, cred);
284         PROC_UNLOCK(curproc);
285 }
286
287 void
288 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
289 {
290         struct uidinfo *uip;
291
292         uip = cred->cr_ruidinfo;
293
294         if (decr & PAGE_MASK)
295                 panic("swap_release: & PAGE_MASK");
296
297         mtx_lock(&sw_dev_mtx);
298         if (swap_reserved < decr)
299                 panic("swap_reserved < decr");
300         swap_reserved -= decr;
301         mtx_unlock(&sw_dev_mtx);
302
303         UIDINFO_VMSIZE_LOCK(uip);
304         if (uip->ui_vmsize < decr)
305                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
306         uip->ui_vmsize -= decr;
307         UIDINFO_VMSIZE_UNLOCK(uip);
308
309         racct_sub_cred(cred, RACCT_SWAP, decr);
310 }
311
312 #define SWM_FREE        0x02    /* free, period                 */
313 #define SWM_POP         0x04    /* pop out                      */
314
315 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
316 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
317 static int nsw_rcount;          /* free read buffers                    */
318 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
319 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
320 static int nsw_wcount_async_max;/* assigned maximum                     */
321 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
322
323 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
324 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
325     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
326     "Maximum running async swap ops");
327 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
328 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
329     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
330     "Swap Fragmentation Info");
331
332 static struct sx sw_alloc_sx;
333
334 /*
335  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
336  * of searching a named list by hashing it just a little.
337  */
338
339 #define NOBJLISTS               8
340
341 #define NOBJLIST(handle)        \
342         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
343
344 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
345 static uma_zone_t swblk_zone;
346 static uma_zone_t swpctrie_zone;
347
348 /*
349  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
350  * calls hooked from other parts of the VM system and do not appear here.
351  * (see vm/swap_pager.h).
352  */
353 static vm_object_t
354                 swap_pager_alloc(void *handle, vm_ooffset_t size,
355                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
356 static void     swap_pager_dealloc(vm_object_t object);
357 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
358     int *);
359 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
360     int *, pgo_getpages_iodone_t, void *);
361 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
362 static boolean_t
363                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
364 static void     swap_pager_init(void);
365 static void     swap_pager_unswapped(vm_page_t);
366 static void     swap_pager_swapoff(struct swdevt *sp);
367
368 struct pagerops swappagerops = {
369         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
370         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
371         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
372         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
373         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
374         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
375         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
376         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
377 };
378
379 /*
380  * swap_*() routines are externally accessible.  swp_*() routines are
381  * internal.
382  */
383 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
384 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
385
386 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
387     "Maximum size of a swap block in pages");
388
389 static void     swp_sizecheck(void);
390 static void     swp_pager_async_iodone(struct buf *bp);
391 static int      swapongeom(struct vnode *);
392 static int      swaponvp(struct thread *, struct vnode *, u_long);
393 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
394
395 /*
396  * Swap bitmap functions
397  */
398 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
399 static daddr_t  swp_pager_getswapspace(int npages);
400
401 /*
402  * Metadata functions
403  */
404 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
405 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
406 static void swp_pager_meta_free_all(vm_object_t);
407 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
408
409 static void *
410 swblk_trie_alloc(struct pctrie *ptree)
411 {
412
413         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
414             M_USE_RESERVE : 0)));
415 }
416
417 static void
418 swblk_trie_free(struct pctrie *ptree, void *node)
419 {
420
421         uma_zfree(swpctrie_zone, node);
422 }
423
424 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
425
426 /*
427  * SWP_SIZECHECK() -    update swap_pager_full indication
428  *
429  *      update the swap_pager_almost_full indication and warn when we are
430  *      about to run out of swap space, using lowat/hiwat hysteresis.
431  *
432  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
433  *
434  *      No restrictions on call
435  *      This routine may not block.
436  */
437 static void
438 swp_sizecheck(void)
439 {
440
441         if (swap_pager_avail < nswap_lowat) {
442                 if (swap_pager_almost_full == 0) {
443                         printf("swap_pager: out of swap space\n");
444                         swap_pager_almost_full = 1;
445                 }
446         } else {
447                 swap_pager_full = 0;
448                 if (swap_pager_avail > nswap_hiwat)
449                         swap_pager_almost_full = 0;
450         }
451 }
452
453 /*
454  * SWAP_PAGER_INIT() -  initialize the swap pager!
455  *
456  *      Expected to be started from system init.  NOTE:  This code is run
457  *      before much else so be careful what you depend on.  Most of the VM
458  *      system has yet to be initialized at this point.
459  */
460 static void
461 swap_pager_init(void)
462 {
463         /*
464          * Initialize object lists
465          */
466         int i;
467
468         for (i = 0; i < NOBJLISTS; ++i)
469                 TAILQ_INIT(&swap_pager_object_list[i]);
470         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
471         sx_init(&sw_alloc_sx, "swspsx");
472         sx_init(&swdev_syscall_lock, "swsysc");
473 }
474
475 /*
476  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
477  *
478  *      Expected to be started from pageout process once, prior to entering
479  *      its main loop.
480  */
481 void
482 swap_pager_swap_init(void)
483 {
484         unsigned long n, n2;
485
486         /*
487          * Number of in-transit swap bp operations.  Don't
488          * exhaust the pbufs completely.  Make sure we
489          * initialize workable values (0 will work for hysteresis
490          * but it isn't very efficient).
491          *
492          * The nsw_cluster_max is constrained by the bp->b_pages[]
493          * array (MAXPHYS/PAGE_SIZE) and our locally defined
494          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
495          * constrained by the swap device interleave stripe size.
496          *
497          * Currently we hardwire nsw_wcount_async to 4.  This limit is
498          * designed to prevent other I/O from having high latencies due to
499          * our pageout I/O.  The value 4 works well for one or two active swap
500          * devices but is probably a little low if you have more.  Even so,
501          * a higher value would probably generate only a limited improvement
502          * with three or four active swap devices since the system does not
503          * typically have to pageout at extreme bandwidths.   We will want
504          * at least 2 per swap devices, and 4 is a pretty good value if you
505          * have one NFS swap device due to the command/ack latency over NFS.
506          * So it all works out pretty well.
507          */
508         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
509
510         mtx_lock(&pbuf_mtx);
511         nsw_rcount = (nswbuf + 1) / 2;
512         nsw_wcount_sync = (nswbuf + 3) / 4;
513         nsw_wcount_async = 4;
514         nsw_wcount_async_max = nsw_wcount_async;
515         mtx_unlock(&pbuf_mtx);
516
517         /*
518          * Initialize our zone, guessing on the number we need based
519          * on the number of pages in the system.
520          */
521         n = vm_cnt.v_page_count / 2;
522         if (maxswzone && n > maxswzone / sizeof(struct swblk))
523                 n = maxswzone / sizeof(struct swblk);
524         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
525             pctrie_zone_init, NULL, UMA_ALIGN_PTR,
526             UMA_ZONE_NOFREE | UMA_ZONE_VM);
527         if (swpctrie_zone == NULL)
528                 panic("failed to create swap pctrie zone.");
529         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
530             NULL, NULL, _Alignof(struct swblk) - 1,
531             UMA_ZONE_NOFREE | UMA_ZONE_VM);
532         if (swblk_zone == NULL)
533                 panic("failed to create swap blk zone.");
534         n2 = n;
535         do {
536                 if (uma_zone_reserve_kva(swblk_zone, n))
537                         break;
538                 /*
539                  * if the allocation failed, try a zone two thirds the
540                  * size of the previous attempt.
541                  */
542                 n -= ((n + 2) / 3);
543         } while (n > 0);
544
545         /*
546          * Often uma_zone_reserve_kva() cannot reserve exactly the
547          * requested size.  Account for the difference when
548          * calculating swap_maxpages.
549          */
550         n = uma_zone_get_max(swblk_zone);
551
552         if (n < n2)
553                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
554                     n2, n);
555         swap_maxpages = n * SWAP_META_PAGES;
556         swzone = n * sizeof(struct swblk);
557         if (!uma_zone_reserve_kva(swpctrie_zone, n))
558                 printf("Cannot reserve swap pctrie zone, "
559                     "reduce kern.maxswzone.\n");
560 }
561
562 static vm_object_t
563 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
564     vm_ooffset_t offset)
565 {
566         vm_object_t object;
567
568         if (cred != NULL) {
569                 if (!swap_reserve_by_cred(size, cred))
570                         return (NULL);
571                 crhold(cred);
572         }
573
574         /*
575          * The un_pager.swp.swp_blks trie is initialized by
576          * vm_object_allocate() to ensure the correct order of
577          * visibility to other threads.
578          */
579         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
580             PAGE_MASK + size));
581
582         object->handle = handle;
583         if (cred != NULL) {
584                 object->cred = cred;
585                 object->charge = size;
586         }
587         return (object);
588 }
589
590 /*
591  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
592  *                      its metadata structures.
593  *
594  *      This routine is called from the mmap and fork code to create a new
595  *      OBJT_SWAP object.
596  *
597  *      This routine must ensure that no live duplicate is created for
598  *      the named object request, which is protected against by
599  *      holding the sw_alloc_sx lock in case handle != NULL.
600  */
601 static vm_object_t
602 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
603     vm_ooffset_t offset, struct ucred *cred)
604 {
605         vm_object_t object;
606
607         if (handle != NULL) {
608                 /*
609                  * Reference existing named region or allocate new one.  There
610                  * should not be a race here against swp_pager_meta_build()
611                  * as called from vm_page_remove() in regards to the lookup
612                  * of the handle.
613                  */
614                 sx_xlock(&sw_alloc_sx);
615                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
616                 if (object == NULL) {
617                         object = swap_pager_alloc_init(handle, cred, size,
618                             offset);
619                         if (object != NULL) {
620                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
621                                     object, pager_object_list);
622                         }
623                 }
624                 sx_xunlock(&sw_alloc_sx);
625         } else {
626                 object = swap_pager_alloc_init(handle, cred, size, offset);
627         }
628         return (object);
629 }
630
631 /*
632  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
633  *
634  *      The swap backing for the object is destroyed.  The code is
635  *      designed such that we can reinstantiate it later, but this
636  *      routine is typically called only when the entire object is
637  *      about to be destroyed.
638  *
639  *      The object must be locked.
640  */
641 static void
642 swap_pager_dealloc(vm_object_t object)
643 {
644
645         VM_OBJECT_ASSERT_WLOCKED(object);
646         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
647
648         /*
649          * Remove from list right away so lookups will fail if we block for
650          * pageout completion.
651          */
652         if (object->handle != NULL) {
653                 VM_OBJECT_WUNLOCK(object);
654                 sx_xlock(&sw_alloc_sx);
655                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
656                     pager_object_list);
657                 sx_xunlock(&sw_alloc_sx);
658                 VM_OBJECT_WLOCK(object);
659         }
660
661         vm_object_pip_wait(object, "swpdea");
662
663         /*
664          * Free all remaining metadata.  We only bother to free it from
665          * the swap meta data.  We do not attempt to free swapblk's still
666          * associated with vm_page_t's for this object.  We do not care
667          * if paging is still in progress on some objects.
668          */
669         swp_pager_meta_free_all(object);
670         object->handle = NULL;
671         object->type = OBJT_DEAD;
672 }
673
674 /************************************************************************
675  *                      SWAP PAGER BITMAP ROUTINES                      *
676  ************************************************************************/
677
678 /*
679  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
680  *
681  *      Allocate swap for the requested number of pages.  The starting
682  *      swap block number (a page index) is returned or SWAPBLK_NONE
683  *      if the allocation failed.
684  *
685  *      Also has the side effect of advising that somebody made a mistake
686  *      when they configured swap and didn't configure enough.
687  *
688  *      This routine may not sleep.
689  *
690  *      We allocate in round-robin fashion from the configured devices.
691  */
692 static daddr_t
693 swp_pager_getswapspace(int npages)
694 {
695         daddr_t blk;
696         struct swdevt *sp;
697         int i;
698
699         blk = SWAPBLK_NONE;
700         mtx_lock(&sw_dev_mtx);
701         sp = swdevhd;
702         for (i = 0; i < nswapdev; i++) {
703                 if (sp == NULL)
704                         sp = TAILQ_FIRST(&swtailq);
705                 if (!(sp->sw_flags & SW_CLOSING)) {
706                         blk = blist_alloc(sp->sw_blist, npages);
707                         if (blk != SWAPBLK_NONE) {
708                                 blk += sp->sw_first;
709                                 sp->sw_used += npages;
710                                 swap_pager_avail -= npages;
711                                 swp_sizecheck();
712                                 swdevhd = TAILQ_NEXT(sp, sw_list);
713                                 goto done;
714                         }
715                 }
716                 sp = TAILQ_NEXT(sp, sw_list);
717         }
718         if (swap_pager_full != 2) {
719                 printf("swap_pager_getswapspace(%d): failed\n", npages);
720                 swap_pager_full = 2;
721                 swap_pager_almost_full = 1;
722         }
723         swdevhd = NULL;
724 done:
725         mtx_unlock(&sw_dev_mtx);
726         return (blk);
727 }
728
729 static int
730 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
731 {
732
733         return (blk >= sp->sw_first && blk < sp->sw_end);
734 }
735
736 static void
737 swp_pager_strategy(struct buf *bp)
738 {
739         struct swdevt *sp;
740
741         mtx_lock(&sw_dev_mtx);
742         TAILQ_FOREACH(sp, &swtailq, sw_list) {
743                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
744                         mtx_unlock(&sw_dev_mtx);
745                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
746                             unmapped_buf_allowed) {
747                                 bp->b_data = unmapped_buf;
748                                 bp->b_offset = 0;
749                         } else {
750                                 pmap_qenter((vm_offset_t)bp->b_data,
751                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
752                         }
753                         sp->sw_strategy(bp, sp);
754                         return;
755                 }
756         }
757         panic("Swapdev not found");
758 }
759
760
761 /*
762  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
763  *
764  *      This routine returns the specified swap blocks back to the bitmap.
765  *
766  *      This routine may not sleep.
767  */
768 static void
769 swp_pager_freeswapspace(daddr_t blk, int npages)
770 {
771         struct swdevt *sp;
772
773         mtx_lock(&sw_dev_mtx);
774         TAILQ_FOREACH(sp, &swtailq, sw_list) {
775                 if (blk >= sp->sw_first && blk < sp->sw_end) {
776                         sp->sw_used -= npages;
777                         /*
778                          * If we are attempting to stop swapping on
779                          * this device, we don't want to mark any
780                          * blocks free lest they be reused.
781                          */
782                         if ((sp->sw_flags & SW_CLOSING) == 0) {
783                                 blist_free(sp->sw_blist, blk - sp->sw_first,
784                                     npages);
785                                 swap_pager_avail += npages;
786                                 swp_sizecheck();
787                         }
788                         mtx_unlock(&sw_dev_mtx);
789                         return;
790                 }
791         }
792         panic("Swapdev not found");
793 }
794
795 /*
796  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
797  */
798 static int
799 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
800 {
801         struct sbuf sbuf;
802         struct swdevt *sp;
803         const char *devname;
804         int error;
805
806         error = sysctl_wire_old_buffer(req, 0);
807         if (error != 0)
808                 return (error);
809         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
810         mtx_lock(&sw_dev_mtx);
811         TAILQ_FOREACH(sp, &swtailq, sw_list) {
812                 if (vn_isdisk(sp->sw_vp, NULL))
813                         devname = devtoname(sp->sw_vp->v_rdev);
814                 else
815                         devname = "[file]";
816                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
817                 blist_stats(sp->sw_blist, &sbuf);
818         }
819         mtx_unlock(&sw_dev_mtx);
820         error = sbuf_finish(&sbuf);
821         sbuf_delete(&sbuf);
822         return (error);
823 }
824
825 /*
826  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
827  *                              range within an object.
828  *
829  *      This is a globally accessible routine.
830  *
831  *      This routine removes swapblk assignments from swap metadata.
832  *
833  *      The external callers of this routine typically have already destroyed
834  *      or renamed vm_page_t's associated with this range in the object so
835  *      we should be ok.
836  *
837  *      The object must be locked.
838  */
839 void
840 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
841 {
842
843         swp_pager_meta_free(object, start, size);
844 }
845
846 /*
847  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
848  *
849  *      Assigns swap blocks to the specified range within the object.  The
850  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
851  *
852  *      Returns 0 on success, -1 on failure.
853  */
854 int
855 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
856 {
857         int n = 0;
858         daddr_t blk = SWAPBLK_NONE;
859         vm_pindex_t beg = start;        /* save start index */
860
861         VM_OBJECT_WLOCK(object);
862         while (size) {
863                 if (n == 0) {
864                         n = BLIST_MAX_ALLOC;
865                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
866                                 n >>= 1;
867                                 if (n == 0) {
868                                         swp_pager_meta_free(object, beg, start - beg);
869                                         VM_OBJECT_WUNLOCK(object);
870                                         return (-1);
871                                 }
872                         }
873                 }
874                 swp_pager_meta_build(object, start, blk);
875                 --size;
876                 ++start;
877                 ++blk;
878                 --n;
879         }
880         swp_pager_meta_free(object, start, n);
881         VM_OBJECT_WUNLOCK(object);
882         return (0);
883 }
884
885 /*
886  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
887  *                      and destroy the source.
888  *
889  *      Copy any valid swapblks from the source to the destination.  In
890  *      cases where both the source and destination have a valid swapblk,
891  *      we keep the destination's.
892  *
893  *      This routine is allowed to sleep.  It may sleep allocating metadata
894  *      indirectly through swp_pager_meta_build() or if paging is still in
895  *      progress on the source.
896  *
897  *      The source object contains no vm_page_t's (which is just as well)
898  *
899  *      The source object is of type OBJT_SWAP.
900  *
901  *      The source and destination objects must be locked.
902  *      Both object locks may temporarily be released.
903  */
904 void
905 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
906     vm_pindex_t offset, int destroysource)
907 {
908         vm_pindex_t i;
909
910         VM_OBJECT_ASSERT_WLOCKED(srcobject);
911         VM_OBJECT_ASSERT_WLOCKED(dstobject);
912
913         /*
914          * If destroysource is set, we remove the source object from the
915          * swap_pager internal queue now.
916          */
917         if (destroysource && srcobject->handle != NULL) {
918                 vm_object_pip_add(srcobject, 1);
919                 VM_OBJECT_WUNLOCK(srcobject);
920                 vm_object_pip_add(dstobject, 1);
921                 VM_OBJECT_WUNLOCK(dstobject);
922                 sx_xlock(&sw_alloc_sx);
923                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
924                     pager_object_list);
925                 sx_xunlock(&sw_alloc_sx);
926                 VM_OBJECT_WLOCK(dstobject);
927                 vm_object_pip_wakeup(dstobject);
928                 VM_OBJECT_WLOCK(srcobject);
929                 vm_object_pip_wakeup(srcobject);
930         }
931
932         /*
933          * transfer source to destination.
934          */
935         for (i = 0; i < dstobject->size; ++i) {
936                 daddr_t dstaddr;
937
938                 /*
939                  * Locate (without changing) the swapblk on the destination,
940                  * unless it is invalid in which case free it silently, or
941                  * if the destination is a resident page, in which case the
942                  * source is thrown away.
943                  */
944                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
945
946                 if (dstaddr == SWAPBLK_NONE) {
947                         /*
948                          * Destination has no swapblk and is not resident,
949                          * copy source.
950                          */
951                         daddr_t srcaddr;
952
953                         srcaddr = swp_pager_meta_ctl(
954                             srcobject,
955                             i + offset,
956                             SWM_POP
957                         );
958
959                         if (srcaddr != SWAPBLK_NONE) {
960                                 /*
961                                  * swp_pager_meta_build() can sleep.
962                                  */
963                                 vm_object_pip_add(srcobject, 1);
964                                 VM_OBJECT_WUNLOCK(srcobject);
965                                 vm_object_pip_add(dstobject, 1);
966                                 swp_pager_meta_build(dstobject, i, srcaddr);
967                                 vm_object_pip_wakeup(dstobject);
968                                 VM_OBJECT_WLOCK(srcobject);
969                                 vm_object_pip_wakeup(srcobject);
970                         }
971                 } else {
972                         /*
973                          * Destination has valid swapblk or it is represented
974                          * by a resident page.  We destroy the sourceblock.
975                          */
976
977                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
978                 }
979         }
980
981         /*
982          * Free left over swap blocks in source.
983          *
984          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
985          * double-remove the object from the swap queues.
986          */
987         if (destroysource) {
988                 swp_pager_meta_free_all(srcobject);
989                 /*
990                  * Reverting the type is not necessary, the caller is going
991                  * to destroy srcobject directly, but I'm doing it here
992                  * for consistency since we've removed the object from its
993                  * queues.
994                  */
995                 srcobject->type = OBJT_DEFAULT;
996         }
997 }
998
999 /*
1000  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
1001  *                              the requested page.
1002  *
1003  *      We determine whether good backing store exists for the requested
1004  *      page and return TRUE if it does, FALSE if it doesn't.
1005  *
1006  *      If TRUE, we also try to determine how much valid, contiguous backing
1007  *      store exists before and after the requested page.
1008  */
1009 static boolean_t
1010 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1011     int *after)
1012 {
1013         daddr_t blk, blk0;
1014         int i;
1015
1016         VM_OBJECT_ASSERT_LOCKED(object);
1017
1018         /*
1019          * do we have good backing store at the requested index ?
1020          */
1021         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1022         if (blk0 == SWAPBLK_NONE) {
1023                 if (before)
1024                         *before = 0;
1025                 if (after)
1026                         *after = 0;
1027                 return (FALSE);
1028         }
1029
1030         /*
1031          * find backwards-looking contiguous good backing store
1032          */
1033         if (before != NULL) {
1034                 for (i = 1; i < SWB_NPAGES; i++) {
1035                         if (i > pindex)
1036                                 break;
1037                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1038                         if (blk != blk0 - i)
1039                                 break;
1040                 }
1041                 *before = i - 1;
1042         }
1043
1044         /*
1045          * find forward-looking contiguous good backing store
1046          */
1047         if (after != NULL) {
1048                 for (i = 1; i < SWB_NPAGES; i++) {
1049                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1050                         if (blk != blk0 + i)
1051                                 break;
1052                 }
1053                 *after = i - 1;
1054         }
1055         return (TRUE);
1056 }
1057
1058 /*
1059  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1060  *
1061  *      This removes any associated swap backing store, whether valid or
1062  *      not, from the page.
1063  *
1064  *      This routine is typically called when a page is made dirty, at
1065  *      which point any associated swap can be freed.  MADV_FREE also
1066  *      calls us in a special-case situation
1067  *
1068  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1069  *      should make the page dirty before calling this routine.  This routine
1070  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1071  *      depends on it.
1072  *
1073  *      This routine may not sleep.
1074  *
1075  *      The object containing the page must be locked.
1076  */
1077 static void
1078 swap_pager_unswapped(vm_page_t m)
1079 {
1080
1081         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1082 }
1083
1084 /*
1085  * swap_pager_getpages() - bring pages in from swap
1086  *
1087  *      Attempt to page in the pages in array "m" of length "count".  The caller
1088  *      may optionally specify that additional pages preceding and succeeding
1089  *      the specified range be paged in.  The number of such pages is returned
1090  *      in the "rbehind" and "rahead" parameters, and they will be in the
1091  *      inactive queue upon return.
1092  *
1093  *      The pages in "m" must be busied and will remain busied upon return.
1094  */
1095 static int
1096 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1097     int *rahead)
1098 {
1099         struct buf *bp;
1100         vm_page_t mpred, msucc, p;
1101         vm_pindex_t pindex;
1102         daddr_t blk;
1103         int i, j, maxahead, maxbehind, reqcount, shift;
1104
1105         reqcount = count;
1106
1107         VM_OBJECT_WUNLOCK(object);
1108         bp = getpbuf(&nsw_rcount);
1109         VM_OBJECT_WLOCK(object);
1110
1111         if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) {
1112                 relpbuf(bp, &nsw_rcount);
1113                 return (VM_PAGER_FAIL);
1114         }
1115
1116         /*
1117          * Clip the readahead and readbehind ranges to exclude resident pages.
1118          */
1119         if (rahead != NULL) {
1120                 KASSERT(reqcount - 1 <= maxahead,
1121                     ("page count %d extends beyond swap block", reqcount));
1122                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1123                 pindex = m[reqcount - 1]->pindex;
1124                 msucc = TAILQ_NEXT(m[reqcount - 1], listq);
1125                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1126                         *rahead = msucc->pindex - pindex - 1;
1127         }
1128         if (rbehind != NULL) {
1129                 *rbehind = imin(*rbehind, maxbehind);
1130                 pindex = m[0]->pindex;
1131                 mpred = TAILQ_PREV(m[0], pglist, listq);
1132                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1133                         *rbehind = pindex - mpred->pindex - 1;
1134         }
1135
1136         /*
1137          * Allocate readahead and readbehind pages.
1138          */
1139         shift = rbehind != NULL ? *rbehind : 0;
1140         if (shift != 0) {
1141                 for (i = 1; i <= shift; i++) {
1142                         p = vm_page_alloc(object, m[0]->pindex - i,
1143                             VM_ALLOC_NORMAL);
1144                         if (p == NULL) {
1145                                 /* Shift allocated pages to the left. */
1146                                 for (j = 0; j < i - 1; j++)
1147                                         bp->b_pages[j] =
1148                                             bp->b_pages[j + shift - i + 1];
1149                                 break;
1150                         }
1151                         bp->b_pages[shift - i] = p;
1152                 }
1153                 shift = i - 1;
1154                 *rbehind = shift;
1155         }
1156         for (i = 0; i < reqcount; i++)
1157                 bp->b_pages[i + shift] = m[i];
1158         if (rahead != NULL) {
1159                 for (i = 0; i < *rahead; i++) {
1160                         p = vm_page_alloc(object,
1161                             m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1162                         if (p == NULL)
1163                                 break;
1164                         bp->b_pages[shift + reqcount + i] = p;
1165                 }
1166                 *rahead = i;
1167         }
1168         if (rbehind != NULL)
1169                 count += *rbehind;
1170         if (rahead != NULL)
1171                 count += *rahead;
1172
1173         vm_object_pip_add(object, count);
1174
1175         for (i = 0; i < count; i++)
1176                 bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1177
1178         pindex = bp->b_pages[0]->pindex;
1179         blk = swp_pager_meta_ctl(object, pindex, 0);
1180         KASSERT(blk != SWAPBLK_NONE,
1181             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1182
1183         VM_OBJECT_WUNLOCK(object);
1184
1185         bp->b_flags |= B_PAGING;
1186         bp->b_iocmd = BIO_READ;
1187         bp->b_iodone = swp_pager_async_iodone;
1188         bp->b_rcred = crhold(thread0.td_ucred);
1189         bp->b_wcred = crhold(thread0.td_ucred);
1190         bp->b_blkno = blk;
1191         bp->b_bcount = PAGE_SIZE * count;
1192         bp->b_bufsize = PAGE_SIZE * count;
1193         bp->b_npages = count;
1194         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1195         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1196
1197         VM_CNT_INC(v_swapin);
1198         VM_CNT_ADD(v_swappgsin, count);
1199
1200         /*
1201          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1202          * this point because we automatically release it on completion.
1203          * Instead, we look at the one page we are interested in which we
1204          * still hold a lock on even through the I/O completion.
1205          *
1206          * The other pages in our m[] array are also released on completion,
1207          * so we cannot assume they are valid anymore either.
1208          *
1209          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1210          */
1211         BUF_KERNPROC(bp);
1212         swp_pager_strategy(bp);
1213
1214         /*
1215          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1216          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1217          * is set in the metadata for each page in the request.
1218          */
1219         VM_OBJECT_WLOCK(object);
1220         while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1221                 m[0]->oflags |= VPO_SWAPSLEEP;
1222                 VM_CNT_INC(v_intrans);
1223                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1224                     "swread", hz * 20)) {
1225                         printf(
1226 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1227                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1228                 }
1229         }
1230
1231         /*
1232          * If we had an unrecoverable read error pages will not be valid.
1233          */
1234         for (i = 0; i < reqcount; i++)
1235                 if (m[i]->valid != VM_PAGE_BITS_ALL)
1236                         return (VM_PAGER_ERROR);
1237
1238         return (VM_PAGER_OK);
1239
1240         /*
1241          * A final note: in a low swap situation, we cannot deallocate swap
1242          * and mark a page dirty here because the caller is likely to mark
1243          * the page clean when we return, causing the page to possibly revert
1244          * to all-zero's later.
1245          */
1246 }
1247
1248 /*
1249  *      swap_pager_getpages_async():
1250  *
1251  *      Right now this is emulation of asynchronous operation on top of
1252  *      swap_pager_getpages().
1253  */
1254 static int
1255 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1256     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1257 {
1258         int r, error;
1259
1260         r = swap_pager_getpages(object, m, count, rbehind, rahead);
1261         VM_OBJECT_WUNLOCK(object);
1262         switch (r) {
1263         case VM_PAGER_OK:
1264                 error = 0;
1265                 break;
1266         case VM_PAGER_ERROR:
1267                 error = EIO;
1268                 break;
1269         case VM_PAGER_FAIL:
1270                 error = EINVAL;
1271                 break;
1272         default:
1273                 panic("unhandled swap_pager_getpages() error %d", r);
1274         }
1275         (iodone)(arg, m, count, error);
1276         VM_OBJECT_WLOCK(object);
1277
1278         return (r);
1279 }
1280
1281 /*
1282  *      swap_pager_putpages:
1283  *
1284  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1285  *
1286  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1287  *      are automatically converted to SWAP objects.
1288  *
1289  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1290  *      vm_page reservation system coupled with properly written VFS devices
1291  *      should ensure that no low-memory deadlock occurs.  This is an area
1292  *      which needs work.
1293  *
1294  *      The parent has N vm_object_pip_add() references prior to
1295  *      calling us and will remove references for rtvals[] that are
1296  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1297  *      completion.
1298  *
1299  *      The parent has soft-busy'd the pages it passes us and will unbusy
1300  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1301  *      We need to unbusy the rest on I/O completion.
1302  */
1303 static void
1304 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1305     int flags, int *rtvals)
1306 {
1307         int i, n;
1308         boolean_t sync;
1309
1310         if (count && m[0]->object != object) {
1311                 panic("swap_pager_putpages: object mismatch %p/%p",
1312                     object,
1313                     m[0]->object
1314                 );
1315         }
1316
1317         /*
1318          * Step 1
1319          *
1320          * Turn object into OBJT_SWAP
1321          * check for bogus sysops
1322          * force sync if not pageout process
1323          */
1324         if (object->type != OBJT_SWAP)
1325                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1326         VM_OBJECT_WUNLOCK(object);
1327
1328         n = 0;
1329         if (curproc != pageproc)
1330                 sync = TRUE;
1331         else
1332                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1333
1334         /*
1335          * Step 2
1336          *
1337          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1338          * The page is left dirty until the pageout operation completes
1339          * successfully.
1340          */
1341         for (i = 0; i < count; i += n) {
1342                 int j;
1343                 struct buf *bp;
1344                 daddr_t blk;
1345
1346                 /*
1347                  * Maximum I/O size is limited by a number of factors.
1348                  */
1349                 n = min(BLIST_MAX_ALLOC, count - i);
1350                 n = min(n, nsw_cluster_max);
1351
1352                 /*
1353                  * Get biggest block of swap we can.  If we fail, fall
1354                  * back and try to allocate a smaller block.  Don't go
1355                  * overboard trying to allocate space if it would overly
1356                  * fragment swap.
1357                  */
1358                 while (
1359                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1360                     n > 4
1361                 ) {
1362                         n >>= 1;
1363                 }
1364                 if (blk == SWAPBLK_NONE) {
1365                         for (j = 0; j < n; ++j)
1366                                 rtvals[i+j] = VM_PAGER_FAIL;
1367                         continue;
1368                 }
1369
1370                 /*
1371                  * All I/O parameters have been satisfied, build the I/O
1372                  * request and assign the swap space.
1373                  */
1374                 if (sync == TRUE) {
1375                         bp = getpbuf(&nsw_wcount_sync);
1376                 } else {
1377                         bp = getpbuf(&nsw_wcount_async);
1378                         bp->b_flags = B_ASYNC;
1379                 }
1380                 bp->b_flags |= B_PAGING;
1381                 bp->b_iocmd = BIO_WRITE;
1382
1383                 bp->b_rcred = crhold(thread0.td_ucred);
1384                 bp->b_wcred = crhold(thread0.td_ucred);
1385                 bp->b_bcount = PAGE_SIZE * n;
1386                 bp->b_bufsize = PAGE_SIZE * n;
1387                 bp->b_blkno = blk;
1388
1389                 VM_OBJECT_WLOCK(object);
1390                 for (j = 0; j < n; ++j) {
1391                         vm_page_t mreq = m[i+j];
1392
1393                         swp_pager_meta_build(
1394                             mreq->object,
1395                             mreq->pindex,
1396                             blk + j
1397                         );
1398                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1399                         mreq->oflags |= VPO_SWAPINPROG;
1400                         bp->b_pages[j] = mreq;
1401                 }
1402                 VM_OBJECT_WUNLOCK(object);
1403                 bp->b_npages = n;
1404                 /*
1405                  * Must set dirty range for NFS to work.
1406                  */
1407                 bp->b_dirtyoff = 0;
1408                 bp->b_dirtyend = bp->b_bcount;
1409
1410                 VM_CNT_INC(v_swapout);
1411                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1412
1413                 /*
1414                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1415                  * can call the async completion routine at the end of a
1416                  * synchronous I/O operation.  Otherwise, our caller would
1417                  * perform duplicate unbusy and wakeup operations on the page
1418                  * and object, respectively.
1419                  */
1420                 for (j = 0; j < n; j++)
1421                         rtvals[i + j] = VM_PAGER_PEND;
1422
1423                 /*
1424                  * asynchronous
1425                  *
1426                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1427                  */
1428                 if (sync == FALSE) {
1429                         bp->b_iodone = swp_pager_async_iodone;
1430                         BUF_KERNPROC(bp);
1431                         swp_pager_strategy(bp);
1432                         continue;
1433                 }
1434
1435                 /*
1436                  * synchronous
1437                  *
1438                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1439                  */
1440                 bp->b_iodone = bdone;
1441                 swp_pager_strategy(bp);
1442
1443                 /*
1444                  * Wait for the sync I/O to complete.
1445                  */
1446                 bwait(bp, PVM, "swwrt");
1447
1448                 /*
1449                  * Now that we are through with the bp, we can call the
1450                  * normal async completion, which frees everything up.
1451                  */
1452                 swp_pager_async_iodone(bp);
1453         }
1454         VM_OBJECT_WLOCK(object);
1455 }
1456
1457 /*
1458  *      swp_pager_async_iodone:
1459  *
1460  *      Completion routine for asynchronous reads and writes from/to swap.
1461  *      Also called manually by synchronous code to finish up a bp.
1462  *
1463  *      This routine may not sleep.
1464  */
1465 static void
1466 swp_pager_async_iodone(struct buf *bp)
1467 {
1468         int i;
1469         vm_object_t object = NULL;
1470
1471         /*
1472          * report error
1473          */
1474         if (bp->b_ioflags & BIO_ERROR) {
1475                 printf(
1476                     "swap_pager: I/O error - %s failed; blkno %ld,"
1477                         "size %ld, error %d\n",
1478                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1479                     (long)bp->b_blkno,
1480                     (long)bp->b_bcount,
1481                     bp->b_error
1482                 );
1483         }
1484
1485         /*
1486          * remove the mapping for kernel virtual
1487          */
1488         if (buf_mapped(bp))
1489                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1490         else
1491                 bp->b_data = bp->b_kvabase;
1492
1493         if (bp->b_npages) {
1494                 object = bp->b_pages[0]->object;
1495                 VM_OBJECT_WLOCK(object);
1496         }
1497
1498         /*
1499          * cleanup pages.  If an error occurs writing to swap, we are in
1500          * very serious trouble.  If it happens to be a disk error, though,
1501          * we may be able to recover by reassigning the swap later on.  So
1502          * in this case we remove the m->swapblk assignment for the page
1503          * but do not free it in the rlist.  The errornous block(s) are thus
1504          * never reallocated as swap.  Redirty the page and continue.
1505          */
1506         for (i = 0; i < bp->b_npages; ++i) {
1507                 vm_page_t m = bp->b_pages[i];
1508
1509                 m->oflags &= ~VPO_SWAPINPROG;
1510                 if (m->oflags & VPO_SWAPSLEEP) {
1511                         m->oflags &= ~VPO_SWAPSLEEP;
1512                         wakeup(&object->paging_in_progress);
1513                 }
1514
1515                 if (bp->b_ioflags & BIO_ERROR) {
1516                         /*
1517                          * If an error occurs I'd love to throw the swapblk
1518                          * away without freeing it back to swapspace, so it
1519                          * can never be used again.  But I can't from an
1520                          * interrupt.
1521                          */
1522                         if (bp->b_iocmd == BIO_READ) {
1523                                 /*
1524                                  * NOTE: for reads, m->dirty will probably
1525                                  * be overridden by the original caller of
1526                                  * getpages so don't play cute tricks here.
1527                                  */
1528                                 m->valid = 0;
1529                         } else {
1530                                 /*
1531                                  * If a write error occurs, reactivate page
1532                                  * so it doesn't clog the inactive list,
1533                                  * then finish the I/O.
1534                                  */
1535                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1536                                 vm_page_lock(m);
1537                                 vm_page_activate(m);
1538                                 vm_page_unlock(m);
1539                                 vm_page_sunbusy(m);
1540                         }
1541                 } else if (bp->b_iocmd == BIO_READ) {
1542                         /*
1543                          * NOTE: for reads, m->dirty will probably be
1544                          * overridden by the original caller of getpages so
1545                          * we cannot set them in order to free the underlying
1546                          * swap in a low-swap situation.  I don't think we'd
1547                          * want to do that anyway, but it was an optimization
1548                          * that existed in the old swapper for a time before
1549                          * it got ripped out due to precisely this problem.
1550                          */
1551                         KASSERT(!pmap_page_is_mapped(m),
1552                             ("swp_pager_async_iodone: page %p is mapped", m));
1553                         KASSERT(m->dirty == 0,
1554                             ("swp_pager_async_iodone: page %p is dirty", m));
1555
1556                         m->valid = VM_PAGE_BITS_ALL;
1557                         if (i < bp->b_pgbefore ||
1558                             i >= bp->b_npages - bp->b_pgafter)
1559                                 vm_page_readahead_finish(m);
1560                 } else {
1561                         /*
1562                          * For write success, clear the dirty
1563                          * status, then finish the I/O ( which decrements the
1564                          * busy count and possibly wakes waiter's up ).
1565                          * A page is only written to swap after a period of
1566                          * inactivity.  Therefore, we do not expect it to be
1567                          * reused.
1568                          */
1569                         KASSERT(!pmap_page_is_write_mapped(m),
1570                             ("swp_pager_async_iodone: page %p is not write"
1571                             " protected", m));
1572                         vm_page_undirty(m);
1573                         vm_page_lock(m);
1574                         vm_page_deactivate_noreuse(m);
1575                         vm_page_unlock(m);
1576                         vm_page_sunbusy(m);
1577                 }
1578         }
1579
1580         /*
1581          * adjust pip.  NOTE: the original parent may still have its own
1582          * pip refs on the object.
1583          */
1584         if (object != NULL) {
1585                 vm_object_pip_wakeupn(object, bp->b_npages);
1586                 VM_OBJECT_WUNLOCK(object);
1587         }
1588
1589         /*
1590          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1591          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1592          * trigger a KASSERT in relpbuf().
1593          */
1594         if (bp->b_vp) {
1595                     bp->b_vp = NULL;
1596                     bp->b_bufobj = NULL;
1597         }
1598         /*
1599          * release the physical I/O buffer
1600          */
1601         relpbuf(
1602             bp,
1603             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1604                 ((bp->b_flags & B_ASYNC) ?
1605                     &nsw_wcount_async :
1606                     &nsw_wcount_sync
1607                 )
1608             )
1609         );
1610 }
1611
1612 int
1613 swap_pager_nswapdev(void)
1614 {
1615
1616         return (nswapdev);
1617 }
1618
1619 /*
1620  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1621  *
1622  *      This routine dissociates the page at the given index within an object
1623  *      from its backing store, paging it in if it does not reside in memory.
1624  *      If the page is paged in, it is marked dirty and placed in the laundry
1625  *      queue.  The page is marked dirty because it no longer has backing
1626  *      store.  It is placed in the laundry queue because it has not been
1627  *      accessed recently.  Otherwise, it would already reside in memory.
1628  *
1629  *      We also attempt to swap in all other pages in the swap block.
1630  *      However, we only guarantee that the one at the specified index is
1631  *      paged in.
1632  *
1633  *      XXX - The code to page the whole block in doesn't work, so we
1634  *            revert to the one-by-one behavior for now.  Sigh.
1635  */
1636 static inline void
1637 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1638 {
1639         vm_page_t m;
1640
1641         vm_object_pip_add(object, 1);
1642         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1643         if (m->valid == VM_PAGE_BITS_ALL) {
1644                 vm_object_pip_wakeup(object);
1645                 vm_page_dirty(m);
1646 #ifdef INVARIANTS
1647                 vm_page_lock(m);
1648                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1649                         panic("page %p is neither wired nor queued", m);
1650                 vm_page_unlock(m);
1651 #endif
1652                 vm_page_xunbusy(m);
1653                 vm_pager_page_unswapped(m);
1654                 return;
1655         }
1656
1657         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1658                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1659         vm_object_pip_wakeup(object);
1660         vm_page_dirty(m);
1661         vm_page_lock(m);
1662         vm_page_launder(m);
1663         vm_page_unlock(m);
1664         vm_page_xunbusy(m);
1665         vm_pager_page_unswapped(m);
1666 }
1667
1668 /*
1669  *      swap_pager_swapoff:
1670  *
1671  *      Page in all of the pages that have been paged out to the
1672  *      given device.  The corresponding blocks in the bitmap must be
1673  *      marked as allocated and the device must be flagged SW_CLOSING.
1674  *      There may be no processes swapped out to the device.
1675  *
1676  *      This routine may block.
1677  */
1678 static void
1679 swap_pager_swapoff(struct swdevt *sp)
1680 {
1681         struct swblk *sb;
1682         vm_object_t object;
1683         vm_pindex_t pi;
1684         int i, retries;
1685
1686         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1687
1688         retries = 0;
1689 full_rescan:
1690         mtx_lock(&vm_object_list_mtx);
1691         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1692                 if (object->type != OBJT_SWAP)
1693                         continue;
1694                 mtx_unlock(&vm_object_list_mtx);
1695                 /* Depends on type-stability. */
1696                 VM_OBJECT_WLOCK(object);
1697
1698                 /*
1699                  * Dead objects are eventually terminated on their own.
1700                  */
1701                 if ((object->flags & OBJ_DEAD) != 0)
1702                         goto next_obj;
1703
1704                 /*
1705                  * Sync with fences placed after pctrie
1706                  * initialization.  We must not access pctrie below
1707                  * unless we checked that our object is swap and not
1708                  * dead.
1709                  */
1710                 atomic_thread_fence_acq();
1711                 if (object->type != OBJT_SWAP)
1712                         goto next_obj;
1713
1714                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1715                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1716                         pi = sb->p + SWAP_META_PAGES;
1717                         for (i = 0; i < SWAP_META_PAGES; i++) {
1718                                 if (sb->d[i] == SWAPBLK_NONE)
1719                                         continue;
1720                                 if (swp_pager_isondev(sb->d[i], sp))
1721                                         swp_pager_force_pagein(object,
1722                                             sb->p + i);
1723                         }
1724                 }
1725 next_obj:
1726                 VM_OBJECT_WUNLOCK(object);
1727                 mtx_lock(&vm_object_list_mtx);
1728         }
1729         mtx_unlock(&vm_object_list_mtx);
1730
1731         if (sp->sw_used) {
1732                 /*
1733                  * Objects may be locked or paging to the device being
1734                  * removed, so we will miss their pages and need to
1735                  * make another pass.  We have marked this device as
1736                  * SW_CLOSING, so the activity should finish soon.
1737                  */
1738                 retries++;
1739                 if (retries > 100) {
1740                         panic("swapoff: failed to locate %d swap blocks",
1741                             sp->sw_used);
1742                 }
1743                 pause("swpoff", hz / 20);
1744                 goto full_rescan;
1745         }
1746         EVENTHANDLER_INVOKE(swapoff, sp);
1747 }
1748
1749 /************************************************************************
1750  *                              SWAP META DATA                          *
1751  ************************************************************************
1752  *
1753  *      These routines manipulate the swap metadata stored in the
1754  *      OBJT_SWAP object.
1755  *
1756  *      Swap metadata is implemented with a global hash and not directly
1757  *      linked into the object.  Instead the object simply contains
1758  *      appropriate tracking counters.
1759  */
1760
1761 /*
1762  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1763  *
1764  *      We first convert the object to a swap object if it is a default
1765  *      object.
1766  *
1767  *      The specified swapblk is added to the object's swap metadata.  If
1768  *      the swapblk is not valid, it is freed instead.  Any previously
1769  *      assigned swapblk is freed.
1770  */
1771 static void
1772 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1773 {
1774         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1775         struct swblk *sb, *sb1;
1776         vm_pindex_t modpi, rdpi;
1777         int error, i;
1778
1779         VM_OBJECT_ASSERT_WLOCKED(object);
1780
1781         /*
1782          * Convert default object to swap object if necessary
1783          */
1784         if (object->type != OBJT_SWAP) {
1785                 pctrie_init(&object->un_pager.swp.swp_blks);
1786
1787                 /*
1788                  * Ensure that swap_pager_swapoff()'s iteration over
1789                  * object_list does not see a garbage pctrie.
1790                  */
1791                 atomic_thread_fence_rel();
1792
1793                 object->type = OBJT_SWAP;
1794                 KASSERT(object->handle == NULL, ("default pager with handle"));
1795         }
1796
1797         rdpi = rounddown(pindex, SWAP_META_PAGES);
1798         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1799         if (sb == NULL) {
1800                 if (swapblk == SWAPBLK_NONE)
1801                         return;
1802                 for (;;) {
1803                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1804                             pageproc ? M_USE_RESERVE : 0));
1805                         if (sb != NULL) {
1806                                 sb->p = rdpi;
1807                                 for (i = 0; i < SWAP_META_PAGES; i++)
1808                                         sb->d[i] = SWAPBLK_NONE;
1809                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1810                                     1, 0))
1811                                         printf("swblk zone ok\n");
1812                                 break;
1813                         }
1814                         VM_OBJECT_WUNLOCK(object);
1815                         if (uma_zone_exhausted(swblk_zone)) {
1816                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1817                                     0, 1))
1818                                         printf("swap blk zone exhausted, "
1819                                             "increase kern.maxswzone\n");
1820                                 vm_pageout_oom(VM_OOM_SWAPZ);
1821                                 pause("swzonxb", 10);
1822                         } else
1823                                 VM_WAIT;
1824                         VM_OBJECT_WLOCK(object);
1825                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1826                             rdpi);
1827                         if (sb != NULL)
1828                                 /*
1829                                  * Somebody swapped out a nearby page,
1830                                  * allocating swblk at the rdpi index,
1831                                  * while we dropped the object lock.
1832                                  */
1833                                 goto allocated;
1834                 }
1835                 for (;;) {
1836                         error = SWAP_PCTRIE_INSERT(
1837                             &object->un_pager.swp.swp_blks, sb);
1838                         if (error == 0) {
1839                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1840                                     1, 0))
1841                                         printf("swpctrie zone ok\n");
1842                                 break;
1843                         }
1844                         VM_OBJECT_WUNLOCK(object);
1845                         if (uma_zone_exhausted(swpctrie_zone)) {
1846                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1847                                     0, 1))
1848                                         printf("swap pctrie zone exhausted, "
1849                                             "increase kern.maxswzone\n");
1850                                 vm_pageout_oom(VM_OOM_SWAPZ);
1851                                 pause("swzonxp", 10);
1852                         } else
1853                                 VM_WAIT;
1854                         VM_OBJECT_WLOCK(object);
1855                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1856                             rdpi);
1857                         if (sb1 != NULL) {
1858                                 uma_zfree(swblk_zone, sb);
1859                                 sb = sb1;
1860                                 goto allocated;
1861                         }
1862                 }
1863         }
1864 allocated:
1865         MPASS(sb->p == rdpi);
1866
1867         modpi = pindex % SWAP_META_PAGES;
1868         /* Delete prior contents of metadata. */
1869         if (sb->d[modpi] != SWAPBLK_NONE)
1870                 swp_pager_freeswapspace(sb->d[modpi], 1);
1871         /* Enter block into metadata. */
1872         sb->d[modpi] = swapblk;
1873
1874         /*
1875          * Free the swblk if we end up with the empty page run.
1876          */
1877         if (swapblk == SWAPBLK_NONE) {
1878                 for (i = 0; i < SWAP_META_PAGES; i++) {
1879                         if (sb->d[i] != SWAPBLK_NONE)
1880                                 break;
1881                 }
1882                 if (i == SWAP_META_PAGES) {
1883                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1884                             rdpi);
1885                         uma_zfree(swblk_zone, sb);
1886                 }
1887         }
1888 }
1889
1890 /*
1891  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1892  *
1893  *      The requested range of blocks is freed, with any associated swap
1894  *      returned to the swap bitmap.
1895  *
1896  *      This routine will free swap metadata structures as they are cleaned
1897  *      out.  This routine does *NOT* operate on swap metadata associated
1898  *      with resident pages.
1899  */
1900 static void
1901 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1902 {
1903         struct swblk *sb;
1904         vm_pindex_t last;
1905         int i;
1906         bool empty;
1907
1908         VM_OBJECT_ASSERT_WLOCKED(object);
1909         if (object->type != OBJT_SWAP || count == 0)
1910                 return;
1911
1912         last = pindex + count - 1;
1913         for (;;) {
1914                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1915                     rounddown(pindex, SWAP_META_PAGES));
1916                 if (sb == NULL || sb->p > last)
1917                         break;
1918                 empty = true;
1919                 for (i = 0; i < SWAP_META_PAGES; i++) {
1920                         if (sb->d[i] == SWAPBLK_NONE)
1921                                 continue;
1922                         if (pindex <= sb->p + i && sb->p + i <= last) {
1923                                 swp_pager_freeswapspace(sb->d[i], 1);
1924                                 sb->d[i] = SWAPBLK_NONE;
1925                         } else
1926                                 empty = false;
1927                 }
1928                 pindex = sb->p + SWAP_META_PAGES;
1929                 if (empty) {
1930                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1931                             sb->p);
1932                         uma_zfree(swblk_zone, sb);
1933                 }
1934         }
1935 }
1936
1937 /*
1938  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1939  *
1940  *      This routine locates and destroys all swap metadata associated with
1941  *      an object.
1942  */
1943 static void
1944 swp_pager_meta_free_all(vm_object_t object)
1945 {
1946         struct swblk *sb;
1947         vm_pindex_t pindex;
1948         int i;
1949
1950         VM_OBJECT_ASSERT_WLOCKED(object);
1951         if (object->type != OBJT_SWAP)
1952                 return;
1953
1954         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1955             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
1956                 pindex = sb->p + SWAP_META_PAGES;
1957                 for (i = 0; i < SWAP_META_PAGES; i++) {
1958                         if (sb->d[i] != SWAPBLK_NONE)
1959                                 swp_pager_freeswapspace(sb->d[i], 1);
1960                 }
1961                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1962                 uma_zfree(swblk_zone, sb);
1963         }
1964 }
1965
1966 /*
1967  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1968  *
1969  *      This routine is capable of looking up, popping, or freeing
1970  *      swapblk assignments in the swap meta data or in the vm_page_t.
1971  *      The routine typically returns the swapblk being looked-up, or popped,
1972  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1973  *      was invalid.  This routine will automatically free any invalid
1974  *      meta-data swapblks.
1975  *
1976  *      When acting on a busy resident page and paging is in progress, we
1977  *      have to wait until paging is complete but otherwise can act on the
1978  *      busy page.
1979  *
1980  *      SWM_FREE        remove and free swap block from metadata
1981  *      SWM_POP         remove from meta data but do not free.. pop it out
1982  */
1983 static daddr_t
1984 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1985 {
1986         struct swblk *sb;
1987         daddr_t r1;
1988         int i;
1989
1990         if ((flags & (SWM_FREE | SWM_POP)) != 0)
1991                 VM_OBJECT_ASSERT_WLOCKED(object);
1992         else
1993                 VM_OBJECT_ASSERT_LOCKED(object);
1994
1995         /*
1996          * The meta data only exists if the object is OBJT_SWAP
1997          * and even then might not be allocated yet.
1998          */
1999         if (object->type != OBJT_SWAP)
2000                 return (SWAPBLK_NONE);
2001
2002         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2003             rounddown(pindex, SWAP_META_PAGES));
2004         if (sb == NULL)
2005                 return (SWAPBLK_NONE);
2006         r1 = sb->d[pindex % SWAP_META_PAGES];
2007         if (r1 == SWAPBLK_NONE)
2008                 return (SWAPBLK_NONE);
2009         if ((flags & (SWM_FREE | SWM_POP)) != 0) {
2010                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2011                 for (i = 0; i < SWAP_META_PAGES; i++) {
2012                         if (sb->d[i] != SWAPBLK_NONE)
2013                                 break;
2014                 }
2015                 if (i == SWAP_META_PAGES) {
2016                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2017                             rounddown(pindex, SWAP_META_PAGES));
2018                         uma_zfree(swblk_zone, sb);
2019                 }
2020         }
2021         if ((flags & SWM_FREE) != 0) {
2022                 swp_pager_freeswapspace(r1, 1);
2023                 r1 = SWAPBLK_NONE;
2024         }
2025         return (r1);
2026 }
2027
2028 /*
2029  * Returns the least page index which is greater than or equal to the
2030  * parameter pindex and for which there is a swap block allocated.
2031  * Returns object's size if the object's type is not swap or if there
2032  * are no allocated swap blocks for the object after the requested
2033  * pindex.
2034  */
2035 vm_pindex_t
2036 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2037 {
2038         struct swblk *sb;
2039         int i;
2040
2041         VM_OBJECT_ASSERT_LOCKED(object);
2042         if (object->type != OBJT_SWAP)
2043                 return (object->size);
2044
2045         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2046             rounddown(pindex, SWAP_META_PAGES));
2047         if (sb == NULL)
2048                 return (object->size);
2049         if (sb->p < pindex) {
2050                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2051                         if (sb->d[i] != SWAPBLK_NONE)
2052                                 return (sb->p + i);
2053                 }
2054                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2055                     roundup(pindex, SWAP_META_PAGES));
2056                 if (sb == NULL)
2057                         return (object->size);
2058         }
2059         for (i = 0; i < SWAP_META_PAGES; i++) {
2060                 if (sb->d[i] != SWAPBLK_NONE)
2061                         return (sb->p + i);
2062         }
2063
2064         /*
2065          * We get here if a swblk is present in the trie but it
2066          * doesn't map any blocks.
2067          */
2068         MPASS(0);
2069         return (object->size);
2070 }
2071
2072 /*
2073  * System call swapon(name) enables swapping on device name,
2074  * which must be in the swdevsw.  Return EBUSY
2075  * if already swapping on this device.
2076  */
2077 #ifndef _SYS_SYSPROTO_H_
2078 struct swapon_args {
2079         char *name;
2080 };
2081 #endif
2082
2083 /*
2084  * MPSAFE
2085  */
2086 /* ARGSUSED */
2087 int
2088 sys_swapon(struct thread *td, struct swapon_args *uap)
2089 {
2090         struct vattr attr;
2091         struct vnode *vp;
2092         struct nameidata nd;
2093         int error;
2094
2095         error = priv_check(td, PRIV_SWAPON);
2096         if (error)
2097                 return (error);
2098
2099         sx_xlock(&swdev_syscall_lock);
2100
2101         /*
2102          * Swap metadata may not fit in the KVM if we have physical
2103          * memory of >1GB.
2104          */
2105         if (swblk_zone == NULL) {
2106                 error = ENOMEM;
2107                 goto done;
2108         }
2109
2110         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2111             uap->name, td);
2112         error = namei(&nd);
2113         if (error)
2114                 goto done;
2115
2116         NDFREE(&nd, NDF_ONLY_PNBUF);
2117         vp = nd.ni_vp;
2118
2119         if (vn_isdisk(vp, &error)) {
2120                 error = swapongeom(vp);
2121         } else if (vp->v_type == VREG &&
2122             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2123             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2124                 /*
2125                  * Allow direct swapping to NFS regular files in the same
2126                  * way that nfs_mountroot() sets up diskless swapping.
2127                  */
2128                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2129         }
2130
2131         if (error)
2132                 vrele(vp);
2133 done:
2134         sx_xunlock(&swdev_syscall_lock);
2135         return (error);
2136 }
2137
2138 /*
2139  * Check that the total amount of swap currently configured does not
2140  * exceed half the theoretical maximum.  If it does, print a warning
2141  * message.
2142  */
2143 static void
2144 swapon_check_swzone(void)
2145 {
2146         unsigned long maxpages, npages;
2147
2148         npages = swap_total / PAGE_SIZE;
2149         /* absolute maximum we can handle assuming 100% efficiency */
2150         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2151
2152         /* recommend using no more than half that amount */
2153         if (npages > maxpages / 2) {
2154                 printf("warning: total configured swap (%lu pages) "
2155                     "exceeds maximum recommended amount (%lu pages).\n",
2156                     npages, maxpages / 2);
2157                 printf("warning: increase kern.maxswzone "
2158                     "or reduce amount of swap.\n");
2159         }
2160 }
2161
2162 static void
2163 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2164     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2165 {
2166         struct swdevt *sp, *tsp;
2167         swblk_t dvbase;
2168         u_long mblocks;
2169
2170         /*
2171          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2172          * First chop nblks off to page-align it, then convert.
2173          *
2174          * sw->sw_nblks is in page-sized chunks now too.
2175          */
2176         nblks &= ~(ctodb(1) - 1);
2177         nblks = dbtoc(nblks);
2178
2179         /*
2180          * If we go beyond this, we get overflows in the radix
2181          * tree bitmap code.
2182          */
2183         mblocks = 0x40000000 / BLIST_META_RADIX;
2184         if (nblks > mblocks) {
2185                 printf(
2186     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2187                     mblocks / 1024 / 1024 * PAGE_SIZE);
2188                 nblks = mblocks;
2189         }
2190
2191         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2192         sp->sw_vp = vp;
2193         sp->sw_id = id;
2194         sp->sw_dev = dev;
2195         sp->sw_flags = 0;
2196         sp->sw_nblks = nblks;
2197         sp->sw_used = 0;
2198         sp->sw_strategy = strategy;
2199         sp->sw_close = close;
2200         sp->sw_flags = flags;
2201
2202         sp->sw_blist = blist_create(nblks, M_WAITOK);
2203         /*
2204          * Do not free the first two block in order to avoid overwriting
2205          * any bsd label at the front of the partition
2206          */
2207         blist_free(sp->sw_blist, 2, nblks - 2);
2208
2209         dvbase = 0;
2210         mtx_lock(&sw_dev_mtx);
2211         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2212                 if (tsp->sw_end >= dvbase) {
2213                         /*
2214                          * We put one uncovered page between the devices
2215                          * in order to definitively prevent any cross-device
2216                          * I/O requests
2217                          */
2218                         dvbase = tsp->sw_end + 1;
2219                 }
2220         }
2221         sp->sw_first = dvbase;
2222         sp->sw_end = dvbase + nblks;
2223         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2224         nswapdev++;
2225         swap_pager_avail += nblks - 2;
2226         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2227         swapon_check_swzone();
2228         swp_sizecheck();
2229         mtx_unlock(&sw_dev_mtx);
2230         EVENTHANDLER_INVOKE(swapon, sp);
2231 }
2232
2233 /*
2234  * SYSCALL: swapoff(devname)
2235  *
2236  * Disable swapping on the given device.
2237  *
2238  * XXX: Badly designed system call: it should use a device index
2239  * rather than filename as specification.  We keep sw_vp around
2240  * only to make this work.
2241  */
2242 #ifndef _SYS_SYSPROTO_H_
2243 struct swapoff_args {
2244         char *name;
2245 };
2246 #endif
2247
2248 /*
2249  * MPSAFE
2250  */
2251 /* ARGSUSED */
2252 int
2253 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2254 {
2255         struct vnode *vp;
2256         struct nameidata nd;
2257         struct swdevt *sp;
2258         int error;
2259
2260         error = priv_check(td, PRIV_SWAPOFF);
2261         if (error)
2262                 return (error);
2263
2264         sx_xlock(&swdev_syscall_lock);
2265
2266         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2267             td);
2268         error = namei(&nd);
2269         if (error)
2270                 goto done;
2271         NDFREE(&nd, NDF_ONLY_PNBUF);
2272         vp = nd.ni_vp;
2273
2274         mtx_lock(&sw_dev_mtx);
2275         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2276                 if (sp->sw_vp == vp)
2277                         break;
2278         }
2279         mtx_unlock(&sw_dev_mtx);
2280         if (sp == NULL) {
2281                 error = EINVAL;
2282                 goto done;
2283         }
2284         error = swapoff_one(sp, td->td_ucred);
2285 done:
2286         sx_xunlock(&swdev_syscall_lock);
2287         return (error);
2288 }
2289
2290 static int
2291 swapoff_one(struct swdevt *sp, struct ucred *cred)
2292 {
2293         u_long nblks;
2294 #ifdef MAC
2295         int error;
2296 #endif
2297
2298         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2299 #ifdef MAC
2300         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2301         error = mac_system_check_swapoff(cred, sp->sw_vp);
2302         (void) VOP_UNLOCK(sp->sw_vp, 0);
2303         if (error != 0)
2304                 return (error);
2305 #endif
2306         nblks = sp->sw_nblks;
2307
2308         /*
2309          * We can turn off this swap device safely only if the
2310          * available virtual memory in the system will fit the amount
2311          * of data we will have to page back in, plus an epsilon so
2312          * the system doesn't become critically low on swap space.
2313          */
2314         if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat)
2315                 return (ENOMEM);
2316
2317         /*
2318          * Prevent further allocations on this device.
2319          */
2320         mtx_lock(&sw_dev_mtx);
2321         sp->sw_flags |= SW_CLOSING;
2322         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2323         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2324         mtx_unlock(&sw_dev_mtx);
2325
2326         /*
2327          * Page in the contents of the device and close it.
2328          */
2329         swap_pager_swapoff(sp);
2330
2331         sp->sw_close(curthread, sp);
2332         mtx_lock(&sw_dev_mtx);
2333         sp->sw_id = NULL;
2334         TAILQ_REMOVE(&swtailq, sp, sw_list);
2335         nswapdev--;
2336         if (nswapdev == 0) {
2337                 swap_pager_full = 2;
2338                 swap_pager_almost_full = 1;
2339         }
2340         if (swdevhd == sp)
2341                 swdevhd = NULL;
2342         mtx_unlock(&sw_dev_mtx);
2343         blist_destroy(sp->sw_blist);
2344         free(sp, M_VMPGDATA);
2345         return (0);
2346 }
2347
2348 void
2349 swapoff_all(void)
2350 {
2351         struct swdevt *sp, *spt;
2352         const char *devname;
2353         int error;
2354
2355         sx_xlock(&swdev_syscall_lock);
2356
2357         mtx_lock(&sw_dev_mtx);
2358         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2359                 mtx_unlock(&sw_dev_mtx);
2360                 if (vn_isdisk(sp->sw_vp, NULL))
2361                         devname = devtoname(sp->sw_vp->v_rdev);
2362                 else
2363                         devname = "[file]";
2364                 error = swapoff_one(sp, thread0.td_ucred);
2365                 if (error != 0) {
2366                         printf("Cannot remove swap device %s (error=%d), "
2367                             "skipping.\n", devname, error);
2368                 } else if (bootverbose) {
2369                         printf("Swap device %s removed.\n", devname);
2370                 }
2371                 mtx_lock(&sw_dev_mtx);
2372         }
2373         mtx_unlock(&sw_dev_mtx);
2374
2375         sx_xunlock(&swdev_syscall_lock);
2376 }
2377
2378 void
2379 swap_pager_status(int *total, int *used)
2380 {
2381         struct swdevt *sp;
2382
2383         *total = 0;
2384         *used = 0;
2385         mtx_lock(&sw_dev_mtx);
2386         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2387                 *total += sp->sw_nblks;
2388                 *used += sp->sw_used;
2389         }
2390         mtx_unlock(&sw_dev_mtx);
2391 }
2392
2393 int
2394 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2395 {
2396         struct swdevt *sp;
2397         const char *tmp_devname;
2398         int error, n;
2399
2400         n = 0;
2401         error = ENOENT;
2402         mtx_lock(&sw_dev_mtx);
2403         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2404                 if (n != name) {
2405                         n++;
2406                         continue;
2407                 }
2408                 xs->xsw_version = XSWDEV_VERSION;
2409                 xs->xsw_dev = sp->sw_dev;
2410                 xs->xsw_flags = sp->sw_flags;
2411                 xs->xsw_nblks = sp->sw_nblks;
2412                 xs->xsw_used = sp->sw_used;
2413                 if (devname != NULL) {
2414                         if (vn_isdisk(sp->sw_vp, NULL))
2415                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2416                         else
2417                                 tmp_devname = "[file]";
2418                         strncpy(devname, tmp_devname, len);
2419                 }
2420                 error = 0;
2421                 break;
2422         }
2423         mtx_unlock(&sw_dev_mtx);
2424         return (error);
2425 }
2426
2427 #if defined(COMPAT_FREEBSD11)
2428 #define XSWDEV_VERSION_11       1
2429 struct xswdev11 {
2430         u_int   xsw_version;
2431         uint32_t xsw_dev;
2432         int     xsw_flags;
2433         int     xsw_nblks;
2434         int     xsw_used;
2435 };
2436 #endif
2437
2438 static int
2439 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2440 {
2441         struct xswdev xs;
2442 #if defined(COMPAT_FREEBSD11)
2443         struct xswdev11 xs11;
2444 #endif
2445         int error;
2446
2447         if (arg2 != 1)                  /* name length */
2448                 return (EINVAL);
2449         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2450         if (error != 0)
2451                 return (error);
2452 #if defined(COMPAT_FREEBSD11)
2453         if (req->oldlen == sizeof(xs11)) {
2454                 xs11.xsw_version = XSWDEV_VERSION_11;
2455                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2456                 xs11.xsw_flags = xs.xsw_flags;
2457                 xs11.xsw_nblks = xs.xsw_nblks;
2458                 xs11.xsw_used = xs.xsw_used;
2459                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2460         } else
2461 #endif
2462                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2463         return (error);
2464 }
2465
2466 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2467     "Number of swap devices");
2468 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2469     sysctl_vm_swap_info,
2470     "Swap statistics by device");
2471
2472 /*
2473  * Count the approximate swap usage in pages for a vmspace.  The
2474  * shadowed or not yet copied on write swap blocks are not accounted.
2475  * The map must be locked.
2476  */
2477 long
2478 vmspace_swap_count(struct vmspace *vmspace)
2479 {
2480         vm_map_t map;
2481         vm_map_entry_t cur;
2482         vm_object_t object;
2483         struct swblk *sb;
2484         vm_pindex_t e, pi;
2485         long count;
2486         int i;
2487
2488         map = &vmspace->vm_map;
2489         count = 0;
2490
2491         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2492                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2493                         continue;
2494                 object = cur->object.vm_object;
2495                 if (object == NULL || object->type != OBJT_SWAP)
2496                         continue;
2497                 VM_OBJECT_RLOCK(object);
2498                 if (object->type != OBJT_SWAP)
2499                         goto unlock;
2500                 pi = OFF_TO_IDX(cur->offset);
2501                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2502                 for (;; pi = sb->p + SWAP_META_PAGES) {
2503                         sb = SWAP_PCTRIE_LOOKUP_GE(
2504                             &object->un_pager.swp.swp_blks, pi);
2505                         if (sb == NULL || sb->p >= e)
2506                                 break;
2507                         for (i = 0; i < SWAP_META_PAGES; i++) {
2508                                 if (sb->p + i < e &&
2509                                     sb->d[i] != SWAPBLK_NONE)
2510                                         count++;
2511                         }
2512                 }
2513 unlock:
2514                 VM_OBJECT_RUNLOCK(object);
2515         }
2516         return (count);
2517 }
2518
2519 /*
2520  * GEOM backend
2521  *
2522  * Swapping onto disk devices.
2523  *
2524  */
2525
2526 static g_orphan_t swapgeom_orphan;
2527
2528 static struct g_class g_swap_class = {
2529         .name = "SWAP",
2530         .version = G_VERSION,
2531         .orphan = swapgeom_orphan,
2532 };
2533
2534 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2535
2536
2537 static void
2538 swapgeom_close_ev(void *arg, int flags)
2539 {
2540         struct g_consumer *cp;
2541
2542         cp = arg;
2543         g_access(cp, -1, -1, 0);
2544         g_detach(cp);
2545         g_destroy_consumer(cp);
2546 }
2547
2548 /*
2549  * Add a reference to the g_consumer for an inflight transaction.
2550  */
2551 static void
2552 swapgeom_acquire(struct g_consumer *cp)
2553 {
2554
2555         mtx_assert(&sw_dev_mtx, MA_OWNED);
2556         cp->index++;
2557 }
2558
2559 /*
2560  * Remove a reference from the g_consumer.  Post a close event if all
2561  * references go away, since the function might be called from the
2562  * biodone context.
2563  */
2564 static void
2565 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2566 {
2567
2568         mtx_assert(&sw_dev_mtx, MA_OWNED);
2569         cp->index--;
2570         if (cp->index == 0) {
2571                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2572                         sp->sw_id = NULL;
2573         }
2574 }
2575
2576 static void
2577 swapgeom_done(struct bio *bp2)
2578 {
2579         struct swdevt *sp;
2580         struct buf *bp;
2581         struct g_consumer *cp;
2582
2583         bp = bp2->bio_caller2;
2584         cp = bp2->bio_from;
2585         bp->b_ioflags = bp2->bio_flags;
2586         if (bp2->bio_error)
2587                 bp->b_ioflags |= BIO_ERROR;
2588         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2589         bp->b_error = bp2->bio_error;
2590         bufdone(bp);
2591         sp = bp2->bio_caller1;
2592         mtx_lock(&sw_dev_mtx);
2593         swapgeom_release(cp, sp);
2594         mtx_unlock(&sw_dev_mtx);
2595         g_destroy_bio(bp2);
2596 }
2597
2598 static void
2599 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2600 {
2601         struct bio *bio;
2602         struct g_consumer *cp;
2603
2604         mtx_lock(&sw_dev_mtx);
2605         cp = sp->sw_id;
2606         if (cp == NULL) {
2607                 mtx_unlock(&sw_dev_mtx);
2608                 bp->b_error = ENXIO;
2609                 bp->b_ioflags |= BIO_ERROR;
2610                 bufdone(bp);
2611                 return;
2612         }
2613         swapgeom_acquire(cp);
2614         mtx_unlock(&sw_dev_mtx);
2615         if (bp->b_iocmd == BIO_WRITE)
2616                 bio = g_new_bio();
2617         else
2618                 bio = g_alloc_bio();
2619         if (bio == NULL) {
2620                 mtx_lock(&sw_dev_mtx);
2621                 swapgeom_release(cp, sp);
2622                 mtx_unlock(&sw_dev_mtx);
2623                 bp->b_error = ENOMEM;
2624                 bp->b_ioflags |= BIO_ERROR;
2625                 bufdone(bp);
2626                 return;
2627         }
2628
2629         bio->bio_caller1 = sp;
2630         bio->bio_caller2 = bp;
2631         bio->bio_cmd = bp->b_iocmd;
2632         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2633         bio->bio_length = bp->b_bcount;
2634         bio->bio_done = swapgeom_done;
2635         if (!buf_mapped(bp)) {
2636                 bio->bio_ma = bp->b_pages;
2637                 bio->bio_data = unmapped_buf;
2638                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2639                 bio->bio_ma_n = bp->b_npages;
2640                 bio->bio_flags |= BIO_UNMAPPED;
2641         } else {
2642                 bio->bio_data = bp->b_data;
2643                 bio->bio_ma = NULL;
2644         }
2645         g_io_request(bio, cp);
2646         return;
2647 }
2648
2649 static void
2650 swapgeom_orphan(struct g_consumer *cp)
2651 {
2652         struct swdevt *sp;
2653         int destroy;
2654
2655         mtx_lock(&sw_dev_mtx);
2656         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2657                 if (sp->sw_id == cp) {
2658                         sp->sw_flags |= SW_CLOSING;
2659                         break;
2660                 }
2661         }
2662         /*
2663          * Drop reference we were created with. Do directly since we're in a
2664          * special context where we don't have to queue the call to
2665          * swapgeom_close_ev().
2666          */
2667         cp->index--;
2668         destroy = ((sp != NULL) && (cp->index == 0));
2669         if (destroy)
2670                 sp->sw_id = NULL;
2671         mtx_unlock(&sw_dev_mtx);
2672         if (destroy)
2673                 swapgeom_close_ev(cp, 0);
2674 }
2675
2676 static void
2677 swapgeom_close(struct thread *td, struct swdevt *sw)
2678 {
2679         struct g_consumer *cp;
2680
2681         mtx_lock(&sw_dev_mtx);
2682         cp = sw->sw_id;
2683         sw->sw_id = NULL;
2684         mtx_unlock(&sw_dev_mtx);
2685
2686         /*
2687          * swapgeom_close() may be called from the biodone context,
2688          * where we cannot perform topology changes.  Delegate the
2689          * work to the events thread.
2690          */
2691         if (cp != NULL)
2692                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2693 }
2694
2695 static int
2696 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2697 {
2698         struct g_provider *pp;
2699         struct g_consumer *cp;
2700         static struct g_geom *gp;
2701         struct swdevt *sp;
2702         u_long nblks;
2703         int error;
2704
2705         pp = g_dev_getprovider(dev);
2706         if (pp == NULL)
2707                 return (ENODEV);
2708         mtx_lock(&sw_dev_mtx);
2709         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2710                 cp = sp->sw_id;
2711                 if (cp != NULL && cp->provider == pp) {
2712                         mtx_unlock(&sw_dev_mtx);
2713                         return (EBUSY);
2714                 }
2715         }
2716         mtx_unlock(&sw_dev_mtx);
2717         if (gp == NULL)
2718                 gp = g_new_geomf(&g_swap_class, "swap");
2719         cp = g_new_consumer(gp);
2720         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2721         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2722         g_attach(cp, pp);
2723         /*
2724          * XXX: Every time you think you can improve the margin for
2725          * footshooting, somebody depends on the ability to do so:
2726          * savecore(8) wants to write to our swapdev so we cannot
2727          * set an exclusive count :-(
2728          */
2729         error = g_access(cp, 1, 1, 0);
2730         if (error != 0) {
2731                 g_detach(cp);
2732                 g_destroy_consumer(cp);
2733                 return (error);
2734         }
2735         nblks = pp->mediasize / DEV_BSIZE;
2736         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2737             swapgeom_close, dev2udev(dev),
2738             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2739         return (0);
2740 }
2741
2742 static int
2743 swapongeom(struct vnode *vp)
2744 {
2745         int error;
2746
2747         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2748         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2749                 error = ENOENT;
2750         } else {
2751                 g_topology_lock();
2752                 error = swapongeom_locked(vp->v_rdev, vp);
2753                 g_topology_unlock();
2754         }
2755         VOP_UNLOCK(vp, 0);
2756         return (error);
2757 }
2758
2759 /*
2760  * VNODE backend
2761  *
2762  * This is used mainly for network filesystem (read: probably only tested
2763  * with NFS) swapfiles.
2764  *
2765  */
2766
2767 static void
2768 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2769 {
2770         struct vnode *vp2;
2771
2772         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2773
2774         vp2 = sp->sw_id;
2775         vhold(vp2);
2776         if (bp->b_iocmd == BIO_WRITE) {
2777                 if (bp->b_bufobj)
2778                         bufobj_wdrop(bp->b_bufobj);
2779                 bufobj_wref(&vp2->v_bufobj);
2780         }
2781         if (bp->b_bufobj != &vp2->v_bufobj)
2782                 bp->b_bufobj = &vp2->v_bufobj;
2783         bp->b_vp = vp2;
2784         bp->b_iooffset = dbtob(bp->b_blkno);
2785         bstrategy(bp);
2786         return;
2787 }
2788
2789 static void
2790 swapdev_close(struct thread *td, struct swdevt *sp)
2791 {
2792
2793         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2794         vrele(sp->sw_vp);
2795 }
2796
2797
2798 static int
2799 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2800 {
2801         struct swdevt *sp;
2802         int error;
2803
2804         if (nblks == 0)
2805                 return (ENXIO);
2806         mtx_lock(&sw_dev_mtx);
2807         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2808                 if (sp->sw_id == vp) {
2809                         mtx_unlock(&sw_dev_mtx);
2810                         return (EBUSY);
2811                 }
2812         }
2813         mtx_unlock(&sw_dev_mtx);
2814
2815         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2816 #ifdef MAC
2817         error = mac_system_check_swapon(td->td_ucred, vp);
2818         if (error == 0)
2819 #endif
2820                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2821         (void) VOP_UNLOCK(vp, 0);
2822         if (error)
2823                 return (error);
2824
2825         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2826             NODEV, 0);
2827         return (0);
2828 }
2829
2830 static int
2831 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2832 {
2833         int error, new, n;
2834
2835         new = nsw_wcount_async_max;
2836         error = sysctl_handle_int(oidp, &new, 0, req);
2837         if (error != 0 || req->newptr == NULL)
2838                 return (error);
2839
2840         if (new > nswbuf / 2 || new < 1)
2841                 return (EINVAL);
2842
2843         mtx_lock(&pbuf_mtx);
2844         while (nsw_wcount_async_max != new) {
2845                 /*
2846                  * Adjust difference.  If the current async count is too low,
2847                  * we will need to sqeeze our update slowly in.  Sleep with a
2848                  * higher priority than getpbuf() to finish faster.
2849                  */
2850                 n = new - nsw_wcount_async_max;
2851                 if (nsw_wcount_async + n >= 0) {
2852                         nsw_wcount_async += n;
2853                         nsw_wcount_async_max += n;
2854                         wakeup(&nsw_wcount_async);
2855                 } else {
2856                         nsw_wcount_async_max -= nsw_wcount_async;
2857                         nsw_wcount_async = 0;
2858                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2859                             "swpsysctl", 0);
2860                 }
2861         }
2862         mtx_unlock(&pbuf_mtx);
2863
2864         return (0);
2865 }