]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/swap_pager.c
Update to bmake-201802222
[FreeBSD/FreeBSD.git] / sys / vm / swap_pager.c
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *      The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *                              New Swap System
43  *                              Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *      - The new swapper uses the new radix bitmap code.  This should scale
48  *        to arbitrarily small or arbitrarily large swap spaces and an almost
49  *        arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *      - on the fly reallocation of swap during putpages.  The new system
54  *        does not try to keep previously allocated swap blocks for dirty
55  *        pages.
56  *
57  *      - on the fly deallocation of swap
58  *
59  *      - No more garbage collection required.  Unnecessarily allocated swap
60  *        blocks only exist for dirty vm_page_t's now and these are already
61  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *        removal of invalidated swap blocks when a page is destroyed
63  *        or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
68  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
69  */
70
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73
74 #include "opt_compat.h"
75 #include "opt_swap.h"
76 #include "opt_vm.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/conf.h>
81 #include <sys/kernel.h>
82 #include <sys/priv.h>
83 #include <sys/proc.h>
84 #include <sys/bio.h>
85 #include <sys/buf.h>
86 #include <sys/disk.h>
87 #include <sys/fcntl.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/vnode.h>
91 #include <sys/malloc.h>
92 #include <sys/pctrie.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/blist.h>
101 #include <sys/lock.h>
102 #include <sys/sx.h>
103 #include <sys/vmmeter.h>
104
105 #include <security/mac/mac_framework.h>
106
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119
120 #include <geom/geom.h>
121
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     32
128 #endif
129
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
132 #endif
133
134 #define SWAP_META_PAGES         PCTRIE_COUNT
135
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143         vm_pindex_t     p;
144         daddr_t         d[SWAP_META_PAGES];
145 };
146
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;  /* Allocate from here next */
151 static int nswapdev;            /* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;    /* serialize swap(on|off) */
154
155 static vm_ooffset_t swap_total;
156 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
157     "Total amount of available swap storage.");
158 static vm_ooffset_t swap_reserved;
159 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
160     "Amount of swap storage needed to back all allocated anonymous memory.");
161 static int overcommit = 0;
162 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
163     "Configure virtual memory overcommit behavior. See tuning(7) "
164     "for details.");
165 static unsigned long swzone;
166 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
167     "Actual size of swap metadata zone");
168 static unsigned long swap_maxpages;
169 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
170     "Maximum amount of swap supported");
171
172 /* bits from overcommit */
173 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
174 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
175 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
176
177 int
178 swap_reserve(vm_ooffset_t incr)
179 {
180
181         return (swap_reserve_by_cred(incr, curthread->td_ucred));
182 }
183
184 int
185 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
186 {
187         vm_ooffset_t r, s;
188         int res, error;
189         static int curfail;
190         static struct timeval lastfail;
191         struct uidinfo *uip;
192
193         uip = cred->cr_ruidinfo;
194
195         if (incr & PAGE_MASK)
196                 panic("swap_reserve: & PAGE_MASK");
197
198 #ifdef RACCT
199         if (racct_enable) {
200                 PROC_LOCK(curproc);
201                 error = racct_add(curproc, RACCT_SWAP, incr);
202                 PROC_UNLOCK(curproc);
203                 if (error != 0)
204                         return (0);
205         }
206 #endif
207
208         res = 0;
209         mtx_lock(&sw_dev_mtx);
210         r = swap_reserved + incr;
211         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
212                 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
213                     vm_wire_count();
214                 s *= PAGE_SIZE;
215         } else
216                 s = 0;
217         s += swap_total;
218         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
219             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
220                 res = 1;
221                 swap_reserved = r;
222         }
223         mtx_unlock(&sw_dev_mtx);
224
225         if (res) {
226                 UIDINFO_VMSIZE_LOCK(uip);
227                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
228                     uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
229                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
230                         res = 0;
231                 else
232                         uip->ui_vmsize += incr;
233                 UIDINFO_VMSIZE_UNLOCK(uip);
234                 if (!res) {
235                         mtx_lock(&sw_dev_mtx);
236                         swap_reserved -= incr;
237                         mtx_unlock(&sw_dev_mtx);
238                 }
239         }
240         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
241                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
242                     uip->ui_uid, curproc->p_pid, incr);
243         }
244
245 #ifdef RACCT
246         if (!res) {
247                 PROC_LOCK(curproc);
248                 racct_sub(curproc, RACCT_SWAP, incr);
249                 PROC_UNLOCK(curproc);
250         }
251 #endif
252
253         return (res);
254 }
255
256 void
257 swap_reserve_force(vm_ooffset_t incr)
258 {
259         struct uidinfo *uip;
260
261         mtx_lock(&sw_dev_mtx);
262         swap_reserved += incr;
263         mtx_unlock(&sw_dev_mtx);
264
265 #ifdef RACCT
266         PROC_LOCK(curproc);
267         racct_add_force(curproc, RACCT_SWAP, incr);
268         PROC_UNLOCK(curproc);
269 #endif
270
271         uip = curthread->td_ucred->cr_ruidinfo;
272         PROC_LOCK(curproc);
273         UIDINFO_VMSIZE_LOCK(uip);
274         uip->ui_vmsize += incr;
275         UIDINFO_VMSIZE_UNLOCK(uip);
276         PROC_UNLOCK(curproc);
277 }
278
279 void
280 swap_release(vm_ooffset_t decr)
281 {
282         struct ucred *cred;
283
284         PROC_LOCK(curproc);
285         cred = curthread->td_ucred;
286         swap_release_by_cred(decr, cred);
287         PROC_UNLOCK(curproc);
288 }
289
290 void
291 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
292 {
293         struct uidinfo *uip;
294
295         uip = cred->cr_ruidinfo;
296
297         if (decr & PAGE_MASK)
298                 panic("swap_release: & PAGE_MASK");
299
300         mtx_lock(&sw_dev_mtx);
301         if (swap_reserved < decr)
302                 panic("swap_reserved < decr");
303         swap_reserved -= decr;
304         mtx_unlock(&sw_dev_mtx);
305
306         UIDINFO_VMSIZE_LOCK(uip);
307         if (uip->ui_vmsize < decr)
308                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
309         uip->ui_vmsize -= decr;
310         UIDINFO_VMSIZE_UNLOCK(uip);
311
312         racct_sub_cred(cred, RACCT_SWAP, decr);
313 }
314
315 #define SWM_POP         0x01    /* pop out                      */
316
317 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */
318 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
319 static int nsw_rcount;          /* free read buffers                    */
320 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
321 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
322 static int nsw_wcount_async_max;/* assigned maximum                     */
323 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
324
325 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
326 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
327     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
328     "Maximum running async swap ops");
329 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
330 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
331     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
332     "Swap Fragmentation Info");
333
334 static struct sx sw_alloc_sx;
335
336 /*
337  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
338  * of searching a named list by hashing it just a little.
339  */
340
341 #define NOBJLISTS               8
342
343 #define NOBJLIST(handle)        \
344         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
345
346 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
347 static uma_zone_t swblk_zone;
348 static uma_zone_t swpctrie_zone;
349
350 /*
351  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
352  * calls hooked from other parts of the VM system and do not appear here.
353  * (see vm/swap_pager.h).
354  */
355 static vm_object_t
356                 swap_pager_alloc(void *handle, vm_ooffset_t size,
357                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
358 static void     swap_pager_dealloc(vm_object_t object);
359 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
360     int *);
361 static int      swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
362     int *, pgo_getpages_iodone_t, void *);
363 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
364 static boolean_t
365                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
366 static void     swap_pager_init(void);
367 static void     swap_pager_unswapped(vm_page_t);
368 static void     swap_pager_swapoff(struct swdevt *sp);
369
370 struct pagerops swappagerops = {
371         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
372         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
373         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
374         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
375         .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)              */
376         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
377         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
378         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
379 };
380
381 /*
382  * swap_*() routines are externally accessible.  swp_*() routines are
383  * internal.
384  */
385 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
386 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
387
388 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
389     "Maximum size of a swap block in pages");
390
391 static void     swp_sizecheck(void);
392 static void     swp_pager_async_iodone(struct buf *bp);
393 static bool     swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
394 static int      swapongeom(struct vnode *);
395 static int      swaponvp(struct thread *, struct vnode *, u_long);
396 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
397
398 /*
399  * Swap bitmap functions
400  */
401 static void     swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
402 static daddr_t  swp_pager_getswapspace(int npages);
403
404 /*
405  * Metadata functions
406  */
407 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
408 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
409 static void swp_pager_meta_free_all(vm_object_t);
410 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
411
412 static void *
413 swblk_trie_alloc(struct pctrie *ptree)
414 {
415
416         return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
417             M_USE_RESERVE : 0)));
418 }
419
420 static void
421 swblk_trie_free(struct pctrie *ptree, void *node)
422 {
423
424         uma_zfree(swpctrie_zone, node);
425 }
426
427 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
428
429 /*
430  * SWP_SIZECHECK() -    update swap_pager_full indication
431  *
432  *      update the swap_pager_almost_full indication and warn when we are
433  *      about to run out of swap space, using lowat/hiwat hysteresis.
434  *
435  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
436  *
437  *      No restrictions on call
438  *      This routine may not block.
439  */
440 static void
441 swp_sizecheck(void)
442 {
443
444         if (swap_pager_avail < nswap_lowat) {
445                 if (swap_pager_almost_full == 0) {
446                         printf("swap_pager: out of swap space\n");
447                         swap_pager_almost_full = 1;
448                 }
449         } else {
450                 swap_pager_full = 0;
451                 if (swap_pager_avail > nswap_hiwat)
452                         swap_pager_almost_full = 0;
453         }
454 }
455
456 /*
457  * SWAP_PAGER_INIT() -  initialize the swap pager!
458  *
459  *      Expected to be started from system init.  NOTE:  This code is run
460  *      before much else so be careful what you depend on.  Most of the VM
461  *      system has yet to be initialized at this point.
462  */
463 static void
464 swap_pager_init(void)
465 {
466         /*
467          * Initialize object lists
468          */
469         int i;
470
471         for (i = 0; i < NOBJLISTS; ++i)
472                 TAILQ_INIT(&swap_pager_object_list[i]);
473         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
474         sx_init(&sw_alloc_sx, "swspsx");
475         sx_init(&swdev_syscall_lock, "swsysc");
476 }
477
478 /*
479  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
480  *
481  *      Expected to be started from pageout process once, prior to entering
482  *      its main loop.
483  */
484 void
485 swap_pager_swap_init(void)
486 {
487         unsigned long n, n2;
488
489         /*
490          * Number of in-transit swap bp operations.  Don't
491          * exhaust the pbufs completely.  Make sure we
492          * initialize workable values (0 will work for hysteresis
493          * but it isn't very efficient).
494          *
495          * The nsw_cluster_max is constrained by the bp->b_pages[]
496          * array (MAXPHYS/PAGE_SIZE) and our locally defined
497          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
498          * constrained by the swap device interleave stripe size.
499          *
500          * Currently we hardwire nsw_wcount_async to 4.  This limit is
501          * designed to prevent other I/O from having high latencies due to
502          * our pageout I/O.  The value 4 works well for one or two active swap
503          * devices but is probably a little low if you have more.  Even so,
504          * a higher value would probably generate only a limited improvement
505          * with three or four active swap devices since the system does not
506          * typically have to pageout at extreme bandwidths.   We will want
507          * at least 2 per swap devices, and 4 is a pretty good value if you
508          * have one NFS swap device due to the command/ack latency over NFS.
509          * So it all works out pretty well.
510          */
511         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
512
513         mtx_lock(&pbuf_mtx);
514         nsw_rcount = (nswbuf + 1) / 2;
515         nsw_wcount_sync = (nswbuf + 3) / 4;
516         nsw_wcount_async = 4;
517         nsw_wcount_async_max = nsw_wcount_async;
518         mtx_unlock(&pbuf_mtx);
519
520         /*
521          * Initialize our zone, guessing on the number we need based
522          * on the number of pages in the system.
523          */
524         n = vm_cnt.v_page_count / 2;
525         if (maxswzone && n > maxswzone / sizeof(struct swblk))
526                 n = maxswzone / sizeof(struct swblk);
527         swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
528             pctrie_zone_init, NULL, UMA_ALIGN_PTR,
529             UMA_ZONE_NOFREE | UMA_ZONE_VM);
530         if (swpctrie_zone == NULL)
531                 panic("failed to create swap pctrie zone.");
532         swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
533             NULL, NULL, _Alignof(struct swblk) - 1,
534             UMA_ZONE_NOFREE | UMA_ZONE_VM);
535         if (swblk_zone == NULL)
536                 panic("failed to create swap blk zone.");
537         n2 = n;
538         do {
539                 if (uma_zone_reserve_kva(swblk_zone, n))
540                         break;
541                 /*
542                  * if the allocation failed, try a zone two thirds the
543                  * size of the previous attempt.
544                  */
545                 n -= ((n + 2) / 3);
546         } while (n > 0);
547
548         /*
549          * Often uma_zone_reserve_kva() cannot reserve exactly the
550          * requested size.  Account for the difference when
551          * calculating swap_maxpages.
552          */
553         n = uma_zone_get_max(swblk_zone);
554
555         if (n < n2)
556                 printf("Swap blk zone entries reduced from %lu to %lu.\n",
557                     n2, n);
558         swap_maxpages = n * SWAP_META_PAGES;
559         swzone = n * sizeof(struct swblk);
560         if (!uma_zone_reserve_kva(swpctrie_zone, n))
561                 printf("Cannot reserve swap pctrie zone, "
562                     "reduce kern.maxswzone.\n");
563 }
564
565 static vm_object_t
566 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
567     vm_ooffset_t offset)
568 {
569         vm_object_t object;
570
571         if (cred != NULL) {
572                 if (!swap_reserve_by_cred(size, cred))
573                         return (NULL);
574                 crhold(cred);
575         }
576
577         /*
578          * The un_pager.swp.swp_blks trie is initialized by
579          * vm_object_allocate() to ensure the correct order of
580          * visibility to other threads.
581          */
582         object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
583             PAGE_MASK + size));
584
585         object->handle = handle;
586         if (cred != NULL) {
587                 object->cred = cred;
588                 object->charge = size;
589         }
590         return (object);
591 }
592
593 /*
594  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
595  *                      its metadata structures.
596  *
597  *      This routine is called from the mmap and fork code to create a new
598  *      OBJT_SWAP object.
599  *
600  *      This routine must ensure that no live duplicate is created for
601  *      the named object request, which is protected against by
602  *      holding the sw_alloc_sx lock in case handle != NULL.
603  */
604 static vm_object_t
605 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
606     vm_ooffset_t offset, struct ucred *cred)
607 {
608         vm_object_t object;
609
610         if (handle != NULL) {
611                 /*
612                  * Reference existing named region or allocate new one.  There
613                  * should not be a race here against swp_pager_meta_build()
614                  * as called from vm_page_remove() in regards to the lookup
615                  * of the handle.
616                  */
617                 sx_xlock(&sw_alloc_sx);
618                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
619                 if (object == NULL) {
620                         object = swap_pager_alloc_init(handle, cred, size,
621                             offset);
622                         if (object != NULL) {
623                                 TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
624                                     object, pager_object_list);
625                         }
626                 }
627                 sx_xunlock(&sw_alloc_sx);
628         } else {
629                 object = swap_pager_alloc_init(handle, cred, size, offset);
630         }
631         return (object);
632 }
633
634 /*
635  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
636  *
637  *      The swap backing for the object is destroyed.  The code is
638  *      designed such that we can reinstantiate it later, but this
639  *      routine is typically called only when the entire object is
640  *      about to be destroyed.
641  *
642  *      The object must be locked.
643  */
644 static void
645 swap_pager_dealloc(vm_object_t object)
646 {
647
648         VM_OBJECT_ASSERT_WLOCKED(object);
649         KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
650
651         /*
652          * Remove from list right away so lookups will fail if we block for
653          * pageout completion.
654          */
655         if (object->handle != NULL) {
656                 VM_OBJECT_WUNLOCK(object);
657                 sx_xlock(&sw_alloc_sx);
658                 TAILQ_REMOVE(NOBJLIST(object->handle), object,
659                     pager_object_list);
660                 sx_xunlock(&sw_alloc_sx);
661                 VM_OBJECT_WLOCK(object);
662         }
663
664         vm_object_pip_wait(object, "swpdea");
665
666         /*
667          * Free all remaining metadata.  We only bother to free it from
668          * the swap meta data.  We do not attempt to free swapblk's still
669          * associated with vm_page_t's for this object.  We do not care
670          * if paging is still in progress on some objects.
671          */
672         swp_pager_meta_free_all(object);
673         object->handle = NULL;
674         object->type = OBJT_DEAD;
675 }
676
677 /************************************************************************
678  *                      SWAP PAGER BITMAP ROUTINES                      *
679  ************************************************************************/
680
681 /*
682  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
683  *
684  *      Allocate swap for the requested number of pages.  The starting
685  *      swap block number (a page index) is returned or SWAPBLK_NONE
686  *      if the allocation failed.
687  *
688  *      Also has the side effect of advising that somebody made a mistake
689  *      when they configured swap and didn't configure enough.
690  *
691  *      This routine may not sleep.
692  *
693  *      We allocate in round-robin fashion from the configured devices.
694  */
695 static daddr_t
696 swp_pager_getswapspace(int npages)
697 {
698         daddr_t blk;
699         struct swdevt *sp;
700         int i;
701
702         blk = SWAPBLK_NONE;
703         mtx_lock(&sw_dev_mtx);
704         sp = swdevhd;
705         for (i = 0; i < nswapdev; i++) {
706                 if (sp == NULL)
707                         sp = TAILQ_FIRST(&swtailq);
708                 if (!(sp->sw_flags & SW_CLOSING)) {
709                         blk = blist_alloc(sp->sw_blist, npages);
710                         if (blk != SWAPBLK_NONE) {
711                                 blk += sp->sw_first;
712                                 sp->sw_used += npages;
713                                 swap_pager_avail -= npages;
714                                 swp_sizecheck();
715                                 swdevhd = TAILQ_NEXT(sp, sw_list);
716                                 goto done;
717                         }
718                 }
719                 sp = TAILQ_NEXT(sp, sw_list);
720         }
721         if (swap_pager_full != 2) {
722                 printf("swap_pager_getswapspace(%d): failed\n", npages);
723                 swap_pager_full = 2;
724                 swap_pager_almost_full = 1;
725         }
726         swdevhd = NULL;
727 done:
728         mtx_unlock(&sw_dev_mtx);
729         return (blk);
730 }
731
732 static int
733 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
734 {
735
736         return (blk >= sp->sw_first && blk < sp->sw_end);
737 }
738
739 static void
740 swp_pager_strategy(struct buf *bp)
741 {
742         struct swdevt *sp;
743
744         mtx_lock(&sw_dev_mtx);
745         TAILQ_FOREACH(sp, &swtailq, sw_list) {
746                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
747                         mtx_unlock(&sw_dev_mtx);
748                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
749                             unmapped_buf_allowed) {
750                                 bp->b_data = unmapped_buf;
751                                 bp->b_offset = 0;
752                         } else {
753                                 pmap_qenter((vm_offset_t)bp->b_data,
754                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
755                         }
756                         sp->sw_strategy(bp, sp);
757                         return;
758                 }
759         }
760         panic("Swapdev not found");
761 }
762
763
764 /*
765  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space
766  *
767  *      This routine returns the specified swap blocks back to the bitmap.
768  *
769  *      This routine may not sleep.
770  */
771 static void
772 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
773 {
774         struct swdevt *sp;
775
776         if (npages == 0)
777                 return;
778         mtx_lock(&sw_dev_mtx);
779         TAILQ_FOREACH(sp, &swtailq, sw_list) {
780                 if (blk >= sp->sw_first && blk < sp->sw_end) {
781                         sp->sw_used -= npages;
782                         /*
783                          * If we are attempting to stop swapping on
784                          * this device, we don't want to mark any
785                          * blocks free lest they be reused.
786                          */
787                         if ((sp->sw_flags & SW_CLOSING) == 0) {
788                                 blist_free(sp->sw_blist, blk - sp->sw_first,
789                                     npages);
790                                 swap_pager_avail += npages;
791                                 swp_sizecheck();
792                         }
793                         mtx_unlock(&sw_dev_mtx);
794                         return;
795                 }
796         }
797         panic("Swapdev not found");
798 }
799
800 /*
801  * SYSCTL_SWAP_FRAGMENTATION() -        produce raw swap space stats
802  */
803 static int
804 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
805 {
806         struct sbuf sbuf;
807         struct swdevt *sp;
808         const char *devname;
809         int error;
810
811         error = sysctl_wire_old_buffer(req, 0);
812         if (error != 0)
813                 return (error);
814         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
815         mtx_lock(&sw_dev_mtx);
816         TAILQ_FOREACH(sp, &swtailq, sw_list) {
817                 if (vn_isdisk(sp->sw_vp, NULL))
818                         devname = devtoname(sp->sw_vp->v_rdev);
819                 else
820                         devname = "[file]";
821                 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
822                 blist_stats(sp->sw_blist, &sbuf);
823         }
824         mtx_unlock(&sw_dev_mtx);
825         error = sbuf_finish(&sbuf);
826         sbuf_delete(&sbuf);
827         return (error);
828 }
829
830 /*
831  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
832  *                              range within an object.
833  *
834  *      This is a globally accessible routine.
835  *
836  *      This routine removes swapblk assignments from swap metadata.
837  *
838  *      The external callers of this routine typically have already destroyed
839  *      or renamed vm_page_t's associated with this range in the object so
840  *      we should be ok.
841  *
842  *      The object must be locked.
843  */
844 void
845 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
846 {
847
848         swp_pager_meta_free(object, start, size);
849 }
850
851 /*
852  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
853  *
854  *      Assigns swap blocks to the specified range within the object.  The
855  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
856  *
857  *      Returns 0 on success, -1 on failure.
858  */
859 int
860 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
861 {
862         int n = 0;
863         daddr_t blk = SWAPBLK_NONE;
864         vm_pindex_t beg = start;        /* save start index */
865
866         VM_OBJECT_WLOCK(object);
867         while (size) {
868                 if (n == 0) {
869                         n = BLIST_MAX_ALLOC;
870                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
871                                 n >>= 1;
872                                 if (n == 0) {
873                                         swp_pager_meta_free(object, beg, start - beg);
874                                         VM_OBJECT_WUNLOCK(object);
875                                         return (-1);
876                                 }
877                         }
878                 }
879                 swp_pager_meta_build(object, start, blk);
880                 --size;
881                 ++start;
882                 ++blk;
883                 --n;
884         }
885         swp_pager_meta_free(object, start, n);
886         VM_OBJECT_WUNLOCK(object);
887         return (0);
888 }
889
890 /*
891  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
892  *                      and destroy the source.
893  *
894  *      Copy any valid swapblks from the source to the destination.  In
895  *      cases where both the source and destination have a valid swapblk,
896  *      we keep the destination's.
897  *
898  *      This routine is allowed to sleep.  It may sleep allocating metadata
899  *      indirectly through swp_pager_meta_build() or if paging is still in
900  *      progress on the source.
901  *
902  *      The source object contains no vm_page_t's (which is just as well)
903  *
904  *      The source object is of type OBJT_SWAP.
905  *
906  *      The source and destination objects must be locked.
907  *      Both object locks may temporarily be released.
908  */
909 void
910 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
911     vm_pindex_t offset, int destroysource)
912 {
913         vm_pindex_t i;
914         daddr_t dstaddr, first_free, num_free, srcaddr;
915
916         VM_OBJECT_ASSERT_WLOCKED(srcobject);
917         VM_OBJECT_ASSERT_WLOCKED(dstobject);
918
919         /*
920          * If destroysource is set, we remove the source object from the
921          * swap_pager internal queue now.
922          */
923         if (destroysource && srcobject->handle != NULL) {
924                 vm_object_pip_add(srcobject, 1);
925                 VM_OBJECT_WUNLOCK(srcobject);
926                 vm_object_pip_add(dstobject, 1);
927                 VM_OBJECT_WUNLOCK(dstobject);
928                 sx_xlock(&sw_alloc_sx);
929                 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
930                     pager_object_list);
931                 sx_xunlock(&sw_alloc_sx);
932                 VM_OBJECT_WLOCK(dstobject);
933                 vm_object_pip_wakeup(dstobject);
934                 VM_OBJECT_WLOCK(srcobject);
935                 vm_object_pip_wakeup(srcobject);
936         }
937
938         /*
939          * Transfer source to destination.
940          */
941         first_free = SWAPBLK_NONE;
942         num_free = 0;
943         for (i = 0; i < dstobject->size; ++i) {
944                 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
945                 if (srcaddr == SWAPBLK_NONE)
946                         continue;
947                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
948                 if (dstaddr == SWAPBLK_NONE) {
949                         /*
950                          * Destination has no swapblk and is not resident,
951                          * copy source.
952                          *
953                          * swp_pager_meta_build() can sleep.
954                          */
955                         vm_object_pip_add(srcobject, 1);
956                         VM_OBJECT_WUNLOCK(srcobject);
957                         vm_object_pip_add(dstobject, 1);
958                         swp_pager_meta_build(dstobject, i, srcaddr);
959                         vm_object_pip_wakeup(dstobject);
960                         VM_OBJECT_WLOCK(srcobject);
961                         vm_object_pip_wakeup(srcobject);
962                 } else {
963                         /*
964                          * Destination has valid swapblk or it is represented
965                          * by a resident page.  We destroy the sourceblock.
966                          */
967                         if (first_free + num_free == srcaddr)
968                                 num_free++;
969                         else {
970                                 swp_pager_freeswapspace(first_free, num_free);
971                                 first_free = srcaddr;
972                                 num_free = 1;
973                         }
974                 }
975         }
976         swp_pager_freeswapspace(first_free, num_free);
977
978         /*
979          * Free left over swap blocks in source.
980          *
981          * We have to revert the type to OBJT_DEFAULT so we do not accidentally
982          * double-remove the object from the swap queues.
983          */
984         if (destroysource) {
985                 swp_pager_meta_free_all(srcobject);
986                 /*
987                  * Reverting the type is not necessary, the caller is going
988                  * to destroy srcobject directly, but I'm doing it here
989                  * for consistency since we've removed the object from its
990                  * queues.
991                  */
992                 srcobject->type = OBJT_DEFAULT;
993         }
994 }
995
996 /*
997  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
998  *                              the requested page.
999  *
1000  *      We determine whether good backing store exists for the requested
1001  *      page and return TRUE if it does, FALSE if it doesn't.
1002  *
1003  *      If TRUE, we also try to determine how much valid, contiguous backing
1004  *      store exists before and after the requested page.
1005  */
1006 static boolean_t
1007 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1008     int *after)
1009 {
1010         daddr_t blk, blk0;
1011         int i;
1012
1013         VM_OBJECT_ASSERT_LOCKED(object);
1014
1015         /*
1016          * do we have good backing store at the requested index ?
1017          */
1018         blk0 = swp_pager_meta_ctl(object, pindex, 0);
1019         if (blk0 == SWAPBLK_NONE) {
1020                 if (before)
1021                         *before = 0;
1022                 if (after)
1023                         *after = 0;
1024                 return (FALSE);
1025         }
1026
1027         /*
1028          * find backwards-looking contiguous good backing store
1029          */
1030         if (before != NULL) {
1031                 for (i = 1; i < SWB_NPAGES; i++) {
1032                         if (i > pindex)
1033                                 break;
1034                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
1035                         if (blk != blk0 - i)
1036                                 break;
1037                 }
1038                 *before = i - 1;
1039         }
1040
1041         /*
1042          * find forward-looking contiguous good backing store
1043          */
1044         if (after != NULL) {
1045                 for (i = 1; i < SWB_NPAGES; i++) {
1046                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
1047                         if (blk != blk0 + i)
1048                                 break;
1049                 }
1050                 *after = i - 1;
1051         }
1052         return (TRUE);
1053 }
1054
1055 /*
1056  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1057  *
1058  *      This removes any associated swap backing store, whether valid or
1059  *      not, from the page.
1060  *
1061  *      This routine is typically called when a page is made dirty, at
1062  *      which point any associated swap can be freed.  MADV_FREE also
1063  *      calls us in a special-case situation
1064  *
1065  *      NOTE!!!  If the page is clean and the swap was valid, the caller
1066  *      should make the page dirty before calling this routine.  This routine
1067  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
1068  *      depends on it.
1069  *
1070  *      This routine may not sleep.
1071  *
1072  *      The object containing the page must be locked.
1073  */
1074 static void
1075 swap_pager_unswapped(vm_page_t m)
1076 {
1077         daddr_t srcaddr;
1078
1079         srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1080         if (srcaddr != SWAPBLK_NONE)
1081                 swp_pager_freeswapspace(srcaddr, 1);
1082 }
1083
1084 /*
1085  * swap_pager_getpages() - bring pages in from swap
1086  *
1087  *      Attempt to page in the pages in array "ma" of length "count".  The
1088  *      caller may optionally specify that additional pages preceding and
1089  *      succeeding the specified range be paged in.  The number of such pages
1090  *      is returned in the "rbehind" and "rahead" parameters, and they will
1091  *      be in the inactive queue upon return.
1092  *
1093  *      The pages in "ma" must be busied and will remain busied upon return.
1094  */
1095 static int
1096 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1097     int *rahead)
1098 {
1099         struct buf *bp;
1100         vm_page_t mpred, msucc, p;
1101         vm_pindex_t pindex;
1102         daddr_t blk;
1103         int i, j, maxahead, maxbehind, reqcount, shift;
1104
1105         reqcount = count;
1106
1107         VM_OBJECT_WUNLOCK(object);
1108         bp = getpbuf(&nsw_rcount);
1109         VM_OBJECT_WLOCK(object);
1110
1111         if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1112                 relpbuf(bp, &nsw_rcount);
1113                 return (VM_PAGER_FAIL);
1114         }
1115
1116         /*
1117          * Clip the readahead and readbehind ranges to exclude resident pages.
1118          */
1119         if (rahead != NULL) {
1120                 KASSERT(reqcount - 1 <= maxahead,
1121                     ("page count %d extends beyond swap block", reqcount));
1122                 *rahead = imin(*rahead, maxahead - (reqcount - 1));
1123                 pindex = ma[reqcount - 1]->pindex;
1124                 msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1125                 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1126                         *rahead = msucc->pindex - pindex - 1;
1127         }
1128         if (rbehind != NULL) {
1129                 *rbehind = imin(*rbehind, maxbehind);
1130                 pindex = ma[0]->pindex;
1131                 mpred = TAILQ_PREV(ma[0], pglist, listq);
1132                 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1133                         *rbehind = pindex - mpred->pindex - 1;
1134         }
1135
1136         /*
1137          * Allocate readahead and readbehind pages.
1138          */
1139         shift = rbehind != NULL ? *rbehind : 0;
1140         if (shift != 0) {
1141                 for (i = 1; i <= shift; i++) {
1142                         p = vm_page_alloc(object, ma[0]->pindex - i,
1143                             VM_ALLOC_NORMAL);
1144                         if (p == NULL) {
1145                                 /* Shift allocated pages to the left. */
1146                                 for (j = 0; j < i - 1; j++)
1147                                         bp->b_pages[j] =
1148                                             bp->b_pages[j + shift - i + 1];
1149                                 break;
1150                         }
1151                         bp->b_pages[shift - i] = p;
1152                 }
1153                 shift = i - 1;
1154                 *rbehind = shift;
1155         }
1156         for (i = 0; i < reqcount; i++)
1157                 bp->b_pages[i + shift] = ma[i];
1158         if (rahead != NULL) {
1159                 for (i = 0; i < *rahead; i++) {
1160                         p = vm_page_alloc(object,
1161                             ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1162                         if (p == NULL)
1163                                 break;
1164                         bp->b_pages[shift + reqcount + i] = p;
1165                 }
1166                 *rahead = i;
1167         }
1168         if (rbehind != NULL)
1169                 count += *rbehind;
1170         if (rahead != NULL)
1171                 count += *rahead;
1172
1173         vm_object_pip_add(object, count);
1174
1175         for (i = 0; i < count; i++)
1176                 bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1177
1178         pindex = bp->b_pages[0]->pindex;
1179         blk = swp_pager_meta_ctl(object, pindex, 0);
1180         KASSERT(blk != SWAPBLK_NONE,
1181             ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1182
1183         VM_OBJECT_WUNLOCK(object);
1184
1185         bp->b_flags |= B_PAGING;
1186         bp->b_iocmd = BIO_READ;
1187         bp->b_iodone = swp_pager_async_iodone;
1188         bp->b_rcred = crhold(thread0.td_ucred);
1189         bp->b_wcred = crhold(thread0.td_ucred);
1190         bp->b_blkno = blk;
1191         bp->b_bcount = PAGE_SIZE * count;
1192         bp->b_bufsize = PAGE_SIZE * count;
1193         bp->b_npages = count;
1194         bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1195         bp->b_pgafter = rahead != NULL ? *rahead : 0;
1196
1197         VM_CNT_INC(v_swapin);
1198         VM_CNT_ADD(v_swappgsin, count);
1199
1200         /*
1201          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1202          * this point because we automatically release it on completion.
1203          * Instead, we look at the one page we are interested in which we
1204          * still hold a lock on even through the I/O completion.
1205          *
1206          * The other pages in our ma[] array are also released on completion,
1207          * so we cannot assume they are valid anymore either.
1208          *
1209          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1210          */
1211         BUF_KERNPROC(bp);
1212         swp_pager_strategy(bp);
1213
1214         /*
1215          * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1216          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1217          * is set in the metadata for each page in the request.
1218          */
1219         VM_OBJECT_WLOCK(object);
1220         while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1221                 ma[0]->oflags |= VPO_SWAPSLEEP;
1222                 VM_CNT_INC(v_intrans);
1223                 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1224                     "swread", hz * 20)) {
1225                         printf(
1226 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1227                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1228                 }
1229         }
1230
1231         /*
1232          * If we had an unrecoverable read error pages will not be valid.
1233          */
1234         for (i = 0; i < reqcount; i++)
1235                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
1236                         return (VM_PAGER_ERROR);
1237
1238         return (VM_PAGER_OK);
1239
1240         /*
1241          * A final note: in a low swap situation, we cannot deallocate swap
1242          * and mark a page dirty here because the caller is likely to mark
1243          * the page clean when we return, causing the page to possibly revert
1244          * to all-zero's later.
1245          */
1246 }
1247
1248 /*
1249  *      swap_pager_getpages_async():
1250  *
1251  *      Right now this is emulation of asynchronous operation on top of
1252  *      swap_pager_getpages().
1253  */
1254 static int
1255 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1256     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1257 {
1258         int r, error;
1259
1260         r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1261         VM_OBJECT_WUNLOCK(object);
1262         switch (r) {
1263         case VM_PAGER_OK:
1264                 error = 0;
1265                 break;
1266         case VM_PAGER_ERROR:
1267                 error = EIO;
1268                 break;
1269         case VM_PAGER_FAIL:
1270                 error = EINVAL;
1271                 break;
1272         default:
1273                 panic("unhandled swap_pager_getpages() error %d", r);
1274         }
1275         (iodone)(arg, ma, count, error);
1276         VM_OBJECT_WLOCK(object);
1277
1278         return (r);
1279 }
1280
1281 /*
1282  *      swap_pager_putpages:
1283  *
1284  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1285  *
1286  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1287  *      are automatically converted to SWAP objects.
1288  *
1289  *      In a low memory situation we may block in VOP_STRATEGY(), but the new
1290  *      vm_page reservation system coupled with properly written VFS devices
1291  *      should ensure that no low-memory deadlock occurs.  This is an area
1292  *      which needs work.
1293  *
1294  *      The parent has N vm_object_pip_add() references prior to
1295  *      calling us and will remove references for rtvals[] that are
1296  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1297  *      completion.
1298  *
1299  *      The parent has soft-busy'd the pages it passes us and will unbusy
1300  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1301  *      We need to unbusy the rest on I/O completion.
1302  */
1303 static void
1304 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1305     int flags, int *rtvals)
1306 {
1307         int i, n;
1308         boolean_t sync;
1309
1310         if (count && ma[0]->object != object) {
1311                 panic("swap_pager_putpages: object mismatch %p/%p",
1312                     object,
1313                     ma[0]->object
1314                 );
1315         }
1316
1317         /*
1318          * Step 1
1319          *
1320          * Turn object into OBJT_SWAP
1321          * check for bogus sysops
1322          * force sync if not pageout process
1323          */
1324         if (object->type != OBJT_SWAP)
1325                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1326         VM_OBJECT_WUNLOCK(object);
1327
1328         n = 0;
1329         if (curproc != pageproc)
1330                 sync = TRUE;
1331         else
1332                 sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1333
1334         /*
1335          * Step 2
1336          *
1337          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1338          * The page is left dirty until the pageout operation completes
1339          * successfully.
1340          */
1341         for (i = 0; i < count; i += n) {
1342                 int j;
1343                 struct buf *bp;
1344                 daddr_t blk;
1345
1346                 /*
1347                  * Maximum I/O size is limited by a number of factors.
1348                  */
1349                 n = min(BLIST_MAX_ALLOC, count - i);
1350                 n = min(n, nsw_cluster_max);
1351
1352                 /*
1353                  * Get biggest block of swap we can.  If we fail, fall
1354                  * back and try to allocate a smaller block.  Don't go
1355                  * overboard trying to allocate space if it would overly
1356                  * fragment swap.
1357                  */
1358                 while (
1359                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1360                     n > 4
1361                 ) {
1362                         n >>= 1;
1363                 }
1364                 if (blk == SWAPBLK_NONE) {
1365                         for (j = 0; j < n; ++j)
1366                                 rtvals[i+j] = VM_PAGER_FAIL;
1367                         continue;
1368                 }
1369
1370                 /*
1371                  * All I/O parameters have been satisfied, build the I/O
1372                  * request and assign the swap space.
1373                  */
1374                 if (sync == TRUE) {
1375                         bp = getpbuf(&nsw_wcount_sync);
1376                 } else {
1377                         bp = getpbuf(&nsw_wcount_async);
1378                         bp->b_flags = B_ASYNC;
1379                 }
1380                 bp->b_flags |= B_PAGING;
1381                 bp->b_iocmd = BIO_WRITE;
1382
1383                 bp->b_rcred = crhold(thread0.td_ucred);
1384                 bp->b_wcred = crhold(thread0.td_ucred);
1385                 bp->b_bcount = PAGE_SIZE * n;
1386                 bp->b_bufsize = PAGE_SIZE * n;
1387                 bp->b_blkno = blk;
1388
1389                 VM_OBJECT_WLOCK(object);
1390                 for (j = 0; j < n; ++j) {
1391                         vm_page_t mreq = ma[i+j];
1392
1393                         swp_pager_meta_build(
1394                             mreq->object,
1395                             mreq->pindex,
1396                             blk + j
1397                         );
1398                         MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1399                         mreq->oflags |= VPO_SWAPINPROG;
1400                         bp->b_pages[j] = mreq;
1401                 }
1402                 VM_OBJECT_WUNLOCK(object);
1403                 bp->b_npages = n;
1404                 /*
1405                  * Must set dirty range for NFS to work.
1406                  */
1407                 bp->b_dirtyoff = 0;
1408                 bp->b_dirtyend = bp->b_bcount;
1409
1410                 VM_CNT_INC(v_swapout);
1411                 VM_CNT_ADD(v_swappgsout, bp->b_npages);
1412
1413                 /*
1414                  * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1415                  * can call the async completion routine at the end of a
1416                  * synchronous I/O operation.  Otherwise, our caller would
1417                  * perform duplicate unbusy and wakeup operations on the page
1418                  * and object, respectively.
1419                  */
1420                 for (j = 0; j < n; j++)
1421                         rtvals[i + j] = VM_PAGER_PEND;
1422
1423                 /*
1424                  * asynchronous
1425                  *
1426                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1427                  */
1428                 if (sync == FALSE) {
1429                         bp->b_iodone = swp_pager_async_iodone;
1430                         BUF_KERNPROC(bp);
1431                         swp_pager_strategy(bp);
1432                         continue;
1433                 }
1434
1435                 /*
1436                  * synchronous
1437                  *
1438                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1439                  */
1440                 bp->b_iodone = bdone;
1441                 swp_pager_strategy(bp);
1442
1443                 /*
1444                  * Wait for the sync I/O to complete.
1445                  */
1446                 bwait(bp, PVM, "swwrt");
1447
1448                 /*
1449                  * Now that we are through with the bp, we can call the
1450                  * normal async completion, which frees everything up.
1451                  */
1452                 swp_pager_async_iodone(bp);
1453         }
1454         VM_OBJECT_WLOCK(object);
1455 }
1456
1457 /*
1458  *      swp_pager_async_iodone:
1459  *
1460  *      Completion routine for asynchronous reads and writes from/to swap.
1461  *      Also called manually by synchronous code to finish up a bp.
1462  *
1463  *      This routine may not sleep.
1464  */
1465 static void
1466 swp_pager_async_iodone(struct buf *bp)
1467 {
1468         int i;
1469         vm_object_t object = NULL;
1470
1471         /*
1472          * report error
1473          */
1474         if (bp->b_ioflags & BIO_ERROR) {
1475                 printf(
1476                     "swap_pager: I/O error - %s failed; blkno %ld,"
1477                         "size %ld, error %d\n",
1478                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1479                     (long)bp->b_blkno,
1480                     (long)bp->b_bcount,
1481                     bp->b_error
1482                 );
1483         }
1484
1485         /*
1486          * remove the mapping for kernel virtual
1487          */
1488         if (buf_mapped(bp))
1489                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1490         else
1491                 bp->b_data = bp->b_kvabase;
1492
1493         if (bp->b_npages) {
1494                 object = bp->b_pages[0]->object;
1495                 VM_OBJECT_WLOCK(object);
1496         }
1497
1498         /*
1499          * cleanup pages.  If an error occurs writing to swap, we are in
1500          * very serious trouble.  If it happens to be a disk error, though,
1501          * we may be able to recover by reassigning the swap later on.  So
1502          * in this case we remove the m->swapblk assignment for the page
1503          * but do not free it in the rlist.  The errornous block(s) are thus
1504          * never reallocated as swap.  Redirty the page and continue.
1505          */
1506         for (i = 0; i < bp->b_npages; ++i) {
1507                 vm_page_t m = bp->b_pages[i];
1508
1509                 m->oflags &= ~VPO_SWAPINPROG;
1510                 if (m->oflags & VPO_SWAPSLEEP) {
1511                         m->oflags &= ~VPO_SWAPSLEEP;
1512                         wakeup(&object->paging_in_progress);
1513                 }
1514
1515                 if (bp->b_ioflags & BIO_ERROR) {
1516                         /*
1517                          * If an error occurs I'd love to throw the swapblk
1518                          * away without freeing it back to swapspace, so it
1519                          * can never be used again.  But I can't from an
1520                          * interrupt.
1521                          */
1522                         if (bp->b_iocmd == BIO_READ) {
1523                                 /*
1524                                  * NOTE: for reads, m->dirty will probably
1525                                  * be overridden by the original caller of
1526                                  * getpages so don't play cute tricks here.
1527                                  */
1528                                 m->valid = 0;
1529                         } else {
1530                                 /*
1531                                  * If a write error occurs, reactivate page
1532                                  * so it doesn't clog the inactive list,
1533                                  * then finish the I/O.
1534                                  */
1535                                 MPASS(m->dirty == VM_PAGE_BITS_ALL);
1536                                 vm_page_lock(m);
1537                                 vm_page_activate(m);
1538                                 vm_page_unlock(m);
1539                                 vm_page_sunbusy(m);
1540                         }
1541                 } else if (bp->b_iocmd == BIO_READ) {
1542                         /*
1543                          * NOTE: for reads, m->dirty will probably be
1544                          * overridden by the original caller of getpages so
1545                          * we cannot set them in order to free the underlying
1546                          * swap in a low-swap situation.  I don't think we'd
1547                          * want to do that anyway, but it was an optimization
1548                          * that existed in the old swapper for a time before
1549                          * it got ripped out due to precisely this problem.
1550                          */
1551                         KASSERT(!pmap_page_is_mapped(m),
1552                             ("swp_pager_async_iodone: page %p is mapped", m));
1553                         KASSERT(m->dirty == 0,
1554                             ("swp_pager_async_iodone: page %p is dirty", m));
1555
1556                         m->valid = VM_PAGE_BITS_ALL;
1557                         if (i < bp->b_pgbefore ||
1558                             i >= bp->b_npages - bp->b_pgafter)
1559                                 vm_page_readahead_finish(m);
1560                 } else {
1561                         /*
1562                          * For write success, clear the dirty
1563                          * status, then finish the I/O ( which decrements the
1564                          * busy count and possibly wakes waiter's up ).
1565                          * A page is only written to swap after a period of
1566                          * inactivity.  Therefore, we do not expect it to be
1567                          * reused.
1568                          */
1569                         KASSERT(!pmap_page_is_write_mapped(m),
1570                             ("swp_pager_async_iodone: page %p is not write"
1571                             " protected", m));
1572                         vm_page_undirty(m);
1573                         vm_page_lock(m);
1574                         vm_page_deactivate_noreuse(m);
1575                         vm_page_unlock(m);
1576                         vm_page_sunbusy(m);
1577                 }
1578         }
1579
1580         /*
1581          * adjust pip.  NOTE: the original parent may still have its own
1582          * pip refs on the object.
1583          */
1584         if (object != NULL) {
1585                 vm_object_pip_wakeupn(object, bp->b_npages);
1586                 VM_OBJECT_WUNLOCK(object);
1587         }
1588
1589         /*
1590          * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1591          * bstrategy(). Set them back to NULL now we're done with it, or we'll
1592          * trigger a KASSERT in relpbuf().
1593          */
1594         if (bp->b_vp) {
1595                     bp->b_vp = NULL;
1596                     bp->b_bufobj = NULL;
1597         }
1598         /*
1599          * release the physical I/O buffer
1600          */
1601         relpbuf(
1602             bp,
1603             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1604                 ((bp->b_flags & B_ASYNC) ?
1605                     &nsw_wcount_async :
1606                     &nsw_wcount_sync
1607                 )
1608             )
1609         );
1610 }
1611
1612 int
1613 swap_pager_nswapdev(void)
1614 {
1615
1616         return (nswapdev);
1617 }
1618
1619 /*
1620  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1621  *
1622  *      This routine dissociates the page at the given index within an object
1623  *      from its backing store, paging it in if it does not reside in memory.
1624  *      If the page is paged in, it is marked dirty and placed in the laundry
1625  *      queue.  The page is marked dirty because it no longer has backing
1626  *      store.  It is placed in the laundry queue because it has not been
1627  *      accessed recently.  Otherwise, it would already reside in memory.
1628  *
1629  *      We also attempt to swap in all other pages in the swap block.
1630  *      However, we only guarantee that the one at the specified index is
1631  *      paged in.
1632  *
1633  *      XXX - The code to page the whole block in doesn't work, so we
1634  *            revert to the one-by-one behavior for now.  Sigh.
1635  */
1636 static inline void
1637 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1638 {
1639         vm_page_t m;
1640
1641         vm_object_pip_add(object, 1);
1642         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1643         if (m->valid == VM_PAGE_BITS_ALL) {
1644                 vm_object_pip_wakeup(object);
1645                 vm_page_dirty(m);
1646 #ifdef INVARIANTS
1647                 vm_page_lock(m);
1648                 if (m->wire_count == 0 && m->queue == PQ_NONE)
1649                         panic("page %p is neither wired nor queued", m);
1650                 vm_page_unlock(m);
1651 #endif
1652                 vm_page_xunbusy(m);
1653                 vm_pager_page_unswapped(m);
1654                 return;
1655         }
1656
1657         if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1658                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1659         vm_object_pip_wakeup(object);
1660         vm_page_dirty(m);
1661         vm_page_lock(m);
1662         vm_page_launder(m);
1663         vm_page_unlock(m);
1664         vm_page_xunbusy(m);
1665         vm_pager_page_unswapped(m);
1666 }
1667
1668 /*
1669  *      swap_pager_swapoff:
1670  *
1671  *      Page in all of the pages that have been paged out to the
1672  *      given device.  The corresponding blocks in the bitmap must be
1673  *      marked as allocated and the device must be flagged SW_CLOSING.
1674  *      There may be no processes swapped out to the device.
1675  *
1676  *      This routine may block.
1677  */
1678 static void
1679 swap_pager_swapoff(struct swdevt *sp)
1680 {
1681         struct swblk *sb;
1682         vm_object_t object;
1683         vm_pindex_t pi;
1684         int i, retries;
1685
1686         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1687
1688         retries = 0;
1689 full_rescan:
1690         mtx_lock(&vm_object_list_mtx);
1691         TAILQ_FOREACH(object, &vm_object_list, object_list) {
1692                 if (object->type != OBJT_SWAP)
1693                         continue;
1694                 mtx_unlock(&vm_object_list_mtx);
1695                 /* Depends on type-stability. */
1696                 VM_OBJECT_WLOCK(object);
1697
1698                 /*
1699                  * Dead objects are eventually terminated on their own.
1700                  */
1701                 if ((object->flags & OBJ_DEAD) != 0)
1702                         goto next_obj;
1703
1704                 /*
1705                  * Sync with fences placed after pctrie
1706                  * initialization.  We must not access pctrie below
1707                  * unless we checked that our object is swap and not
1708                  * dead.
1709                  */
1710                 atomic_thread_fence_acq();
1711                 if (object->type != OBJT_SWAP)
1712                         goto next_obj;
1713
1714                 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1715                     &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1716                         pi = sb->p + SWAP_META_PAGES;
1717                         for (i = 0; i < SWAP_META_PAGES; i++) {
1718                                 if (sb->d[i] == SWAPBLK_NONE)
1719                                         continue;
1720                                 if (swp_pager_isondev(sb->d[i], sp))
1721                                         swp_pager_force_pagein(object,
1722                                             sb->p + i);
1723                         }
1724                 }
1725 next_obj:
1726                 VM_OBJECT_WUNLOCK(object);
1727                 mtx_lock(&vm_object_list_mtx);
1728         }
1729         mtx_unlock(&vm_object_list_mtx);
1730
1731         if (sp->sw_used) {
1732                 /*
1733                  * Objects may be locked or paging to the device being
1734                  * removed, so we will miss their pages and need to
1735                  * make another pass.  We have marked this device as
1736                  * SW_CLOSING, so the activity should finish soon.
1737                  */
1738                 retries++;
1739                 if (retries > 100) {
1740                         panic("swapoff: failed to locate %d swap blocks",
1741                             sp->sw_used);
1742                 }
1743                 pause("swpoff", hz / 20);
1744                 goto full_rescan;
1745         }
1746         EVENTHANDLER_INVOKE(swapoff, sp);
1747 }
1748
1749 /************************************************************************
1750  *                              SWAP META DATA                          *
1751  ************************************************************************
1752  *
1753  *      These routines manipulate the swap metadata stored in the
1754  *      OBJT_SWAP object.
1755  *
1756  *      Swap metadata is implemented with a global hash and not directly
1757  *      linked into the object.  Instead the object simply contains
1758  *      appropriate tracking counters.
1759  */
1760
1761 /*
1762  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1763  */
1764 static bool
1765 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1766 {
1767         int i;
1768
1769         MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1770         for (i = start; i < limit; i++) {
1771                 if (sb->d[i] != SWAPBLK_NONE)
1772                         return (false);
1773         }
1774         return (true);
1775 }
1776    
1777 /*
1778  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
1779  *
1780  *      We first convert the object to a swap object if it is a default
1781  *      object.
1782  *
1783  *      The specified swapblk is added to the object's swap metadata.  If
1784  *      the swapblk is not valid, it is freed instead.  Any previously
1785  *      assigned swapblk is freed.
1786  */
1787 static void
1788 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1789 {
1790         static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1791         struct swblk *sb, *sb1;
1792         vm_pindex_t modpi, rdpi;
1793         int error, i;
1794
1795         VM_OBJECT_ASSERT_WLOCKED(object);
1796
1797         /*
1798          * Convert default object to swap object if necessary
1799          */
1800         if (object->type != OBJT_SWAP) {
1801                 pctrie_init(&object->un_pager.swp.swp_blks);
1802
1803                 /*
1804                  * Ensure that swap_pager_swapoff()'s iteration over
1805                  * object_list does not see a garbage pctrie.
1806                  */
1807                 atomic_thread_fence_rel();
1808
1809                 object->type = OBJT_SWAP;
1810                 KASSERT(object->handle == NULL, ("default pager with handle"));
1811         }
1812
1813         rdpi = rounddown(pindex, SWAP_META_PAGES);
1814         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1815         if (sb == NULL) {
1816                 if (swapblk == SWAPBLK_NONE)
1817                         return;
1818                 for (;;) {
1819                         sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1820                             pageproc ? M_USE_RESERVE : 0));
1821                         if (sb != NULL) {
1822                                 sb->p = rdpi;
1823                                 for (i = 0; i < SWAP_META_PAGES; i++)
1824                                         sb->d[i] = SWAPBLK_NONE;
1825                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1826                                     1, 0))
1827                                         printf("swblk zone ok\n");
1828                                 break;
1829                         }
1830                         VM_OBJECT_WUNLOCK(object);
1831                         if (uma_zone_exhausted(swblk_zone)) {
1832                                 if (atomic_cmpset_int(&swblk_zone_exhausted,
1833                                     0, 1))
1834                                         printf("swap blk zone exhausted, "
1835                                             "increase kern.maxswzone\n");
1836                                 vm_pageout_oom(VM_OOM_SWAPZ);
1837                                 pause("swzonxb", 10);
1838                         } else
1839                                 uma_zwait(swblk_zone);
1840                         VM_OBJECT_WLOCK(object);
1841                         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1842                             rdpi);
1843                         if (sb != NULL)
1844                                 /*
1845                                  * Somebody swapped out a nearby page,
1846                                  * allocating swblk at the rdpi index,
1847                                  * while we dropped the object lock.
1848                                  */
1849                                 goto allocated;
1850                 }
1851                 for (;;) {
1852                         error = SWAP_PCTRIE_INSERT(
1853                             &object->un_pager.swp.swp_blks, sb);
1854                         if (error == 0) {
1855                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1856                                     1, 0))
1857                                         printf("swpctrie zone ok\n");
1858                                 break;
1859                         }
1860                         VM_OBJECT_WUNLOCK(object);
1861                         if (uma_zone_exhausted(swpctrie_zone)) {
1862                                 if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1863                                     0, 1))
1864                                         printf("swap pctrie zone exhausted, "
1865                                             "increase kern.maxswzone\n");
1866                                 vm_pageout_oom(VM_OOM_SWAPZ);
1867                                 pause("swzonxp", 10);
1868                         } else
1869                                 uma_zwait(swpctrie_zone);
1870                         VM_OBJECT_WLOCK(object);
1871                         sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1872                             rdpi);
1873                         if (sb1 != NULL) {
1874                                 uma_zfree(swblk_zone, sb);
1875                                 sb = sb1;
1876                                 goto allocated;
1877                         }
1878                 }
1879         }
1880 allocated:
1881         MPASS(sb->p == rdpi);
1882
1883         modpi = pindex % SWAP_META_PAGES;
1884         /* Delete prior contents of metadata. */
1885         if (sb->d[modpi] != SWAPBLK_NONE)
1886                 swp_pager_freeswapspace(sb->d[modpi], 1);
1887         /* Enter block into metadata. */
1888         sb->d[modpi] = swapblk;
1889
1890         /*
1891          * Free the swblk if we end up with the empty page run.
1892          */
1893         if (swapblk == SWAPBLK_NONE &&
1894             swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1895                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1896                 uma_zfree(swblk_zone, sb);
1897         }
1898 }
1899
1900 /*
1901  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1902  *
1903  *      The requested range of blocks is freed, with any associated swap
1904  *      returned to the swap bitmap.
1905  *
1906  *      This routine will free swap metadata structures as they are cleaned
1907  *      out.  This routine does *NOT* operate on swap metadata associated
1908  *      with resident pages.
1909  */
1910 static void
1911 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1912 {
1913         struct swblk *sb;
1914         daddr_t first_free, num_free;
1915         vm_pindex_t last;
1916         int i, limit, start;
1917
1918         VM_OBJECT_ASSERT_WLOCKED(object);
1919         if (object->type != OBJT_SWAP || count == 0)
1920                 return;
1921
1922         first_free = SWAPBLK_NONE;
1923         num_free = 0;
1924         last = pindex + count;
1925         for (;;) {
1926                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1927                     rounddown(pindex, SWAP_META_PAGES));
1928                 if (sb == NULL || sb->p >= last)
1929                         break;
1930                 start = pindex > sb->p ? pindex - sb->p : 0;
1931                 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1932                     SWAP_META_PAGES;
1933                 for (i = start; i < limit; i++) {
1934                         if (sb->d[i] == SWAPBLK_NONE)
1935                                 continue;
1936                         if (first_free + num_free == sb->d[i])
1937                                 num_free++;
1938                         else {
1939                                 swp_pager_freeswapspace(first_free, num_free);
1940                                 first_free = sb->d[i];
1941                                 num_free = 1;
1942                         }
1943                         sb->d[i] = SWAPBLK_NONE;
1944                 }
1945                 if (swp_pager_swblk_empty(sb, 0, start) &&
1946                     swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1947                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1948                             sb->p);
1949                         uma_zfree(swblk_zone, sb);
1950                 }
1951                 pindex = sb->p + SWAP_META_PAGES;
1952         }
1953         swp_pager_freeswapspace(first_free, num_free);
1954 }
1955
1956 /*
1957  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1958  *
1959  *      This routine locates and destroys all swap metadata associated with
1960  *      an object.
1961  */
1962 static void
1963 swp_pager_meta_free_all(vm_object_t object)
1964 {
1965         struct swblk *sb;
1966         daddr_t first_free, num_free;
1967         vm_pindex_t pindex;
1968         int i;
1969
1970         VM_OBJECT_ASSERT_WLOCKED(object);
1971         if (object->type != OBJT_SWAP)
1972                 return;
1973
1974         first_free = SWAPBLK_NONE;
1975         num_free = 0;
1976         for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1977             &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
1978                 pindex = sb->p + SWAP_META_PAGES;
1979                 for (i = 0; i < SWAP_META_PAGES; i++) {
1980                         if (sb->d[i] == SWAPBLK_NONE)
1981                                 continue;
1982                         if (first_free + num_free == sb->d[i])
1983                                 num_free++;
1984                         else {
1985                                 swp_pager_freeswapspace(first_free, num_free);
1986                                 first_free = sb->d[i];
1987                                 num_free = 1;
1988                         }
1989                 }
1990                 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1991                 uma_zfree(swblk_zone, sb);
1992         }
1993         swp_pager_freeswapspace(first_free, num_free);
1994 }
1995
1996 /*
1997  * SWP_PAGER_METACTL() -  misc control of swap meta data.
1998  *
1999  *      This routine is capable of looking up, or removing swapblk
2000  *      assignments in the swap meta data.  It returns the swapblk being
2001  *      looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2002  *
2003  *      When acting on a busy resident page and paging is in progress, we
2004  *      have to wait until paging is complete but otherwise can act on the
2005  *      busy page.
2006  *
2007  *      SWM_POP         remove from meta data but do not free it
2008  */
2009 static daddr_t
2010 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2011 {
2012         struct swblk *sb;
2013         daddr_t r1;
2014
2015         if ((flags & SWM_POP) != 0)
2016                 VM_OBJECT_ASSERT_WLOCKED(object);
2017         else
2018                 VM_OBJECT_ASSERT_LOCKED(object);
2019
2020         /*
2021          * The meta data only exists if the object is OBJT_SWAP
2022          * and even then might not be allocated yet.
2023          */
2024         if (object->type != OBJT_SWAP)
2025                 return (SWAPBLK_NONE);
2026
2027         sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2028             rounddown(pindex, SWAP_META_PAGES));
2029         if (sb == NULL)
2030                 return (SWAPBLK_NONE);
2031         r1 = sb->d[pindex % SWAP_META_PAGES];
2032         if (r1 == SWAPBLK_NONE)
2033                 return (SWAPBLK_NONE);
2034         if ((flags & SWM_POP) != 0) {
2035                 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2036                 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2037                         SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2038                             rounddown(pindex, SWAP_META_PAGES));
2039                         uma_zfree(swblk_zone, sb);
2040                 }
2041         }
2042         return (r1);
2043 }
2044
2045 /*
2046  * Returns the least page index which is greater than or equal to the
2047  * parameter pindex and for which there is a swap block allocated.
2048  * Returns object's size if the object's type is not swap or if there
2049  * are no allocated swap blocks for the object after the requested
2050  * pindex.
2051  */
2052 vm_pindex_t
2053 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2054 {
2055         struct swblk *sb;
2056         int i;
2057
2058         VM_OBJECT_ASSERT_LOCKED(object);
2059         if (object->type != OBJT_SWAP)
2060                 return (object->size);
2061
2062         sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2063             rounddown(pindex, SWAP_META_PAGES));
2064         if (sb == NULL)
2065                 return (object->size);
2066         if (sb->p < pindex) {
2067                 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2068                         if (sb->d[i] != SWAPBLK_NONE)
2069                                 return (sb->p + i);
2070                 }
2071                 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2072                     roundup(pindex, SWAP_META_PAGES));
2073                 if (sb == NULL)
2074                         return (object->size);
2075         }
2076         for (i = 0; i < SWAP_META_PAGES; i++) {
2077                 if (sb->d[i] != SWAPBLK_NONE)
2078                         return (sb->p + i);
2079         }
2080
2081         /*
2082          * We get here if a swblk is present in the trie but it
2083          * doesn't map any blocks.
2084          */
2085         MPASS(0);
2086         return (object->size);
2087 }
2088
2089 /*
2090  * System call swapon(name) enables swapping on device name,
2091  * which must be in the swdevsw.  Return EBUSY
2092  * if already swapping on this device.
2093  */
2094 #ifndef _SYS_SYSPROTO_H_
2095 struct swapon_args {
2096         char *name;
2097 };
2098 #endif
2099
2100 /*
2101  * MPSAFE
2102  */
2103 /* ARGSUSED */
2104 int
2105 sys_swapon(struct thread *td, struct swapon_args *uap)
2106 {
2107         struct vattr attr;
2108         struct vnode *vp;
2109         struct nameidata nd;
2110         int error;
2111
2112         error = priv_check(td, PRIV_SWAPON);
2113         if (error)
2114                 return (error);
2115
2116         sx_xlock(&swdev_syscall_lock);
2117
2118         /*
2119          * Swap metadata may not fit in the KVM if we have physical
2120          * memory of >1GB.
2121          */
2122         if (swblk_zone == NULL) {
2123                 error = ENOMEM;
2124                 goto done;
2125         }
2126
2127         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2128             uap->name, td);
2129         error = namei(&nd);
2130         if (error)
2131                 goto done;
2132
2133         NDFREE(&nd, NDF_ONLY_PNBUF);
2134         vp = nd.ni_vp;
2135
2136         if (vn_isdisk(vp, &error)) {
2137                 error = swapongeom(vp);
2138         } else if (vp->v_type == VREG &&
2139             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2140             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2141                 /*
2142                  * Allow direct swapping to NFS regular files in the same
2143                  * way that nfs_mountroot() sets up diskless swapping.
2144                  */
2145                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2146         }
2147
2148         if (error)
2149                 vrele(vp);
2150 done:
2151         sx_xunlock(&swdev_syscall_lock);
2152         return (error);
2153 }
2154
2155 /*
2156  * Check that the total amount of swap currently configured does not
2157  * exceed half the theoretical maximum.  If it does, print a warning
2158  * message.
2159  */
2160 static void
2161 swapon_check_swzone(void)
2162 {
2163         unsigned long maxpages, npages;
2164
2165         npages = swap_total / PAGE_SIZE;
2166         /* absolute maximum we can handle assuming 100% efficiency */
2167         maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2168
2169         /* recommend using no more than half that amount */
2170         if (npages > maxpages / 2) {
2171                 printf("warning: total configured swap (%lu pages) "
2172                     "exceeds maximum recommended amount (%lu pages).\n",
2173                     npages, maxpages / 2);
2174                 printf("warning: increase kern.maxswzone "
2175                     "or reduce amount of swap.\n");
2176         }
2177 }
2178
2179 static void
2180 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2181     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2182 {
2183         struct swdevt *sp, *tsp;
2184         swblk_t dvbase;
2185         u_long mblocks;
2186
2187         /*
2188          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2189          * First chop nblks off to page-align it, then convert.
2190          *
2191          * sw->sw_nblks is in page-sized chunks now too.
2192          */
2193         nblks &= ~(ctodb(1) - 1);
2194         nblks = dbtoc(nblks);
2195
2196         /*
2197          * If we go beyond this, we get overflows in the radix
2198          * tree bitmap code.
2199          */
2200         mblocks = 0x40000000 / BLIST_META_RADIX;
2201         if (nblks > mblocks) {
2202                 printf(
2203     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2204                     mblocks / 1024 / 1024 * PAGE_SIZE);
2205                 nblks = mblocks;
2206         }
2207
2208         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2209         sp->sw_vp = vp;
2210         sp->sw_id = id;
2211         sp->sw_dev = dev;
2212         sp->sw_flags = 0;
2213         sp->sw_nblks = nblks;
2214         sp->sw_used = 0;
2215         sp->sw_strategy = strategy;
2216         sp->sw_close = close;
2217         sp->sw_flags = flags;
2218
2219         sp->sw_blist = blist_create(nblks, M_WAITOK);
2220         /*
2221          * Do not free the first two block in order to avoid overwriting
2222          * any bsd label at the front of the partition
2223          */
2224         blist_free(sp->sw_blist, 2, nblks - 2);
2225
2226         dvbase = 0;
2227         mtx_lock(&sw_dev_mtx);
2228         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2229                 if (tsp->sw_end >= dvbase) {
2230                         /*
2231                          * We put one uncovered page between the devices
2232                          * in order to definitively prevent any cross-device
2233                          * I/O requests
2234                          */
2235                         dvbase = tsp->sw_end + 1;
2236                 }
2237         }
2238         sp->sw_first = dvbase;
2239         sp->sw_end = dvbase + nblks;
2240         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2241         nswapdev++;
2242         swap_pager_avail += nblks - 2;
2243         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2244         swapon_check_swzone();
2245         swp_sizecheck();
2246         mtx_unlock(&sw_dev_mtx);
2247         EVENTHANDLER_INVOKE(swapon, sp);
2248 }
2249
2250 /*
2251  * SYSCALL: swapoff(devname)
2252  *
2253  * Disable swapping on the given device.
2254  *
2255  * XXX: Badly designed system call: it should use a device index
2256  * rather than filename as specification.  We keep sw_vp around
2257  * only to make this work.
2258  */
2259 #ifndef _SYS_SYSPROTO_H_
2260 struct swapoff_args {
2261         char *name;
2262 };
2263 #endif
2264
2265 /*
2266  * MPSAFE
2267  */
2268 /* ARGSUSED */
2269 int
2270 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2271 {
2272         struct vnode *vp;
2273         struct nameidata nd;
2274         struct swdevt *sp;
2275         int error;
2276
2277         error = priv_check(td, PRIV_SWAPOFF);
2278         if (error)
2279                 return (error);
2280
2281         sx_xlock(&swdev_syscall_lock);
2282
2283         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2284             td);
2285         error = namei(&nd);
2286         if (error)
2287                 goto done;
2288         NDFREE(&nd, NDF_ONLY_PNBUF);
2289         vp = nd.ni_vp;
2290
2291         mtx_lock(&sw_dev_mtx);
2292         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2293                 if (sp->sw_vp == vp)
2294                         break;
2295         }
2296         mtx_unlock(&sw_dev_mtx);
2297         if (sp == NULL) {
2298                 error = EINVAL;
2299                 goto done;
2300         }
2301         error = swapoff_one(sp, td->td_ucred);
2302 done:
2303         sx_xunlock(&swdev_syscall_lock);
2304         return (error);
2305 }
2306
2307 static int
2308 swapoff_one(struct swdevt *sp, struct ucred *cred)
2309 {
2310         u_long nblks;
2311 #ifdef MAC
2312         int error;
2313 #endif
2314
2315         sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2316 #ifdef MAC
2317         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2318         error = mac_system_check_swapoff(cred, sp->sw_vp);
2319         (void) VOP_UNLOCK(sp->sw_vp, 0);
2320         if (error != 0)
2321                 return (error);
2322 #endif
2323         nblks = sp->sw_nblks;
2324
2325         /*
2326          * We can turn off this swap device safely only if the
2327          * available virtual memory in the system will fit the amount
2328          * of data we will have to page back in, plus an epsilon so
2329          * the system doesn't become critically low on swap space.
2330          */
2331         if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2332                 return (ENOMEM);
2333
2334         /*
2335          * Prevent further allocations on this device.
2336          */
2337         mtx_lock(&sw_dev_mtx);
2338         sp->sw_flags |= SW_CLOSING;
2339         swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2340         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2341         mtx_unlock(&sw_dev_mtx);
2342
2343         /*
2344          * Page in the contents of the device and close it.
2345          */
2346         swap_pager_swapoff(sp);
2347
2348         sp->sw_close(curthread, sp);
2349         mtx_lock(&sw_dev_mtx);
2350         sp->sw_id = NULL;
2351         TAILQ_REMOVE(&swtailq, sp, sw_list);
2352         nswapdev--;
2353         if (nswapdev == 0) {
2354                 swap_pager_full = 2;
2355                 swap_pager_almost_full = 1;
2356         }
2357         if (swdevhd == sp)
2358                 swdevhd = NULL;
2359         mtx_unlock(&sw_dev_mtx);
2360         blist_destroy(sp->sw_blist);
2361         free(sp, M_VMPGDATA);
2362         return (0);
2363 }
2364
2365 void
2366 swapoff_all(void)
2367 {
2368         struct swdevt *sp, *spt;
2369         const char *devname;
2370         int error;
2371
2372         sx_xlock(&swdev_syscall_lock);
2373
2374         mtx_lock(&sw_dev_mtx);
2375         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2376                 mtx_unlock(&sw_dev_mtx);
2377                 if (vn_isdisk(sp->sw_vp, NULL))
2378                         devname = devtoname(sp->sw_vp->v_rdev);
2379                 else
2380                         devname = "[file]";
2381                 error = swapoff_one(sp, thread0.td_ucred);
2382                 if (error != 0) {
2383                         printf("Cannot remove swap device %s (error=%d), "
2384                             "skipping.\n", devname, error);
2385                 } else if (bootverbose) {
2386                         printf("Swap device %s removed.\n", devname);
2387                 }
2388                 mtx_lock(&sw_dev_mtx);
2389         }
2390         mtx_unlock(&sw_dev_mtx);
2391
2392         sx_xunlock(&swdev_syscall_lock);
2393 }
2394
2395 void
2396 swap_pager_status(int *total, int *used)
2397 {
2398         struct swdevt *sp;
2399
2400         *total = 0;
2401         *used = 0;
2402         mtx_lock(&sw_dev_mtx);
2403         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2404                 *total += sp->sw_nblks;
2405                 *used += sp->sw_used;
2406         }
2407         mtx_unlock(&sw_dev_mtx);
2408 }
2409
2410 int
2411 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2412 {
2413         struct swdevt *sp;
2414         const char *tmp_devname;
2415         int error, n;
2416
2417         n = 0;
2418         error = ENOENT;
2419         mtx_lock(&sw_dev_mtx);
2420         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2421                 if (n != name) {
2422                         n++;
2423                         continue;
2424                 }
2425                 xs->xsw_version = XSWDEV_VERSION;
2426                 xs->xsw_dev = sp->sw_dev;
2427                 xs->xsw_flags = sp->sw_flags;
2428                 xs->xsw_nblks = sp->sw_nblks;
2429                 xs->xsw_used = sp->sw_used;
2430                 if (devname != NULL) {
2431                         if (vn_isdisk(sp->sw_vp, NULL))
2432                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
2433                         else
2434                                 tmp_devname = "[file]";
2435                         strncpy(devname, tmp_devname, len);
2436                 }
2437                 error = 0;
2438                 break;
2439         }
2440         mtx_unlock(&sw_dev_mtx);
2441         return (error);
2442 }
2443
2444 #if defined(COMPAT_FREEBSD11)
2445 #define XSWDEV_VERSION_11       1
2446 struct xswdev11 {
2447         u_int   xsw_version;
2448         uint32_t xsw_dev;
2449         int     xsw_flags;
2450         int     xsw_nblks;
2451         int     xsw_used;
2452 };
2453 #endif
2454
2455 static int
2456 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2457 {
2458         struct xswdev xs;
2459 #if defined(COMPAT_FREEBSD11)
2460         struct xswdev11 xs11;
2461 #endif
2462         int error;
2463
2464         if (arg2 != 1)                  /* name length */
2465                 return (EINVAL);
2466         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2467         if (error != 0)
2468                 return (error);
2469 #if defined(COMPAT_FREEBSD11)
2470         if (req->oldlen == sizeof(xs11)) {
2471                 xs11.xsw_version = XSWDEV_VERSION_11;
2472                 xs11.xsw_dev = xs.xsw_dev; /* truncation */
2473                 xs11.xsw_flags = xs.xsw_flags;
2474                 xs11.xsw_nblks = xs.xsw_nblks;
2475                 xs11.xsw_used = xs.xsw_used;
2476                 error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2477         } else
2478 #endif
2479                 error = SYSCTL_OUT(req, &xs, sizeof(xs));
2480         return (error);
2481 }
2482
2483 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2484     "Number of swap devices");
2485 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2486     sysctl_vm_swap_info,
2487     "Swap statistics by device");
2488
2489 /*
2490  * Count the approximate swap usage in pages for a vmspace.  The
2491  * shadowed or not yet copied on write swap blocks are not accounted.
2492  * The map must be locked.
2493  */
2494 long
2495 vmspace_swap_count(struct vmspace *vmspace)
2496 {
2497         vm_map_t map;
2498         vm_map_entry_t cur;
2499         vm_object_t object;
2500         struct swblk *sb;
2501         vm_pindex_t e, pi;
2502         long count;
2503         int i;
2504
2505         map = &vmspace->vm_map;
2506         count = 0;
2507
2508         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2509                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2510                         continue;
2511                 object = cur->object.vm_object;
2512                 if (object == NULL || object->type != OBJT_SWAP)
2513                         continue;
2514                 VM_OBJECT_RLOCK(object);
2515                 if (object->type != OBJT_SWAP)
2516                         goto unlock;
2517                 pi = OFF_TO_IDX(cur->offset);
2518                 e = pi + OFF_TO_IDX(cur->end - cur->start);
2519                 for (;; pi = sb->p + SWAP_META_PAGES) {
2520                         sb = SWAP_PCTRIE_LOOKUP_GE(
2521                             &object->un_pager.swp.swp_blks, pi);
2522                         if (sb == NULL || sb->p >= e)
2523                                 break;
2524                         for (i = 0; i < SWAP_META_PAGES; i++) {
2525                                 if (sb->p + i < e &&
2526                                     sb->d[i] != SWAPBLK_NONE)
2527                                         count++;
2528                         }
2529                 }
2530 unlock:
2531                 VM_OBJECT_RUNLOCK(object);
2532         }
2533         return (count);
2534 }
2535
2536 /*
2537  * GEOM backend
2538  *
2539  * Swapping onto disk devices.
2540  *
2541  */
2542
2543 static g_orphan_t swapgeom_orphan;
2544
2545 static struct g_class g_swap_class = {
2546         .name = "SWAP",
2547         .version = G_VERSION,
2548         .orphan = swapgeom_orphan,
2549 };
2550
2551 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2552
2553
2554 static void
2555 swapgeom_close_ev(void *arg, int flags)
2556 {
2557         struct g_consumer *cp;
2558
2559         cp = arg;
2560         g_access(cp, -1, -1, 0);
2561         g_detach(cp);
2562         g_destroy_consumer(cp);
2563 }
2564
2565 /*
2566  * Add a reference to the g_consumer for an inflight transaction.
2567  */
2568 static void
2569 swapgeom_acquire(struct g_consumer *cp)
2570 {
2571
2572         mtx_assert(&sw_dev_mtx, MA_OWNED);
2573         cp->index++;
2574 }
2575
2576 /*
2577  * Remove a reference from the g_consumer.  Post a close event if all
2578  * references go away, since the function might be called from the
2579  * biodone context.
2580  */
2581 static void
2582 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2583 {
2584
2585         mtx_assert(&sw_dev_mtx, MA_OWNED);
2586         cp->index--;
2587         if (cp->index == 0) {
2588                 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2589                         sp->sw_id = NULL;
2590         }
2591 }
2592
2593 static void
2594 swapgeom_done(struct bio *bp2)
2595 {
2596         struct swdevt *sp;
2597         struct buf *bp;
2598         struct g_consumer *cp;
2599
2600         bp = bp2->bio_caller2;
2601         cp = bp2->bio_from;
2602         bp->b_ioflags = bp2->bio_flags;
2603         if (bp2->bio_error)
2604                 bp->b_ioflags |= BIO_ERROR;
2605         bp->b_resid = bp->b_bcount - bp2->bio_completed;
2606         bp->b_error = bp2->bio_error;
2607         bufdone(bp);
2608         sp = bp2->bio_caller1;
2609         mtx_lock(&sw_dev_mtx);
2610         swapgeom_release(cp, sp);
2611         mtx_unlock(&sw_dev_mtx);
2612         g_destroy_bio(bp2);
2613 }
2614
2615 static void
2616 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2617 {
2618         struct bio *bio;
2619         struct g_consumer *cp;
2620
2621         mtx_lock(&sw_dev_mtx);
2622         cp = sp->sw_id;
2623         if (cp == NULL) {
2624                 mtx_unlock(&sw_dev_mtx);
2625                 bp->b_error = ENXIO;
2626                 bp->b_ioflags |= BIO_ERROR;
2627                 bufdone(bp);
2628                 return;
2629         }
2630         swapgeom_acquire(cp);
2631         mtx_unlock(&sw_dev_mtx);
2632         if (bp->b_iocmd == BIO_WRITE)
2633                 bio = g_new_bio();
2634         else
2635                 bio = g_alloc_bio();
2636         if (bio == NULL) {
2637                 mtx_lock(&sw_dev_mtx);
2638                 swapgeom_release(cp, sp);
2639                 mtx_unlock(&sw_dev_mtx);
2640                 bp->b_error = ENOMEM;
2641                 bp->b_ioflags |= BIO_ERROR;
2642                 bufdone(bp);
2643                 return;
2644         }
2645
2646         bio->bio_caller1 = sp;
2647         bio->bio_caller2 = bp;
2648         bio->bio_cmd = bp->b_iocmd;
2649         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2650         bio->bio_length = bp->b_bcount;
2651         bio->bio_done = swapgeom_done;
2652         if (!buf_mapped(bp)) {
2653                 bio->bio_ma = bp->b_pages;
2654                 bio->bio_data = unmapped_buf;
2655                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2656                 bio->bio_ma_n = bp->b_npages;
2657                 bio->bio_flags |= BIO_UNMAPPED;
2658         } else {
2659                 bio->bio_data = bp->b_data;
2660                 bio->bio_ma = NULL;
2661         }
2662         g_io_request(bio, cp);
2663         return;
2664 }
2665
2666 static void
2667 swapgeom_orphan(struct g_consumer *cp)
2668 {
2669         struct swdevt *sp;
2670         int destroy;
2671
2672         mtx_lock(&sw_dev_mtx);
2673         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2674                 if (sp->sw_id == cp) {
2675                         sp->sw_flags |= SW_CLOSING;
2676                         break;
2677                 }
2678         }
2679         /*
2680          * Drop reference we were created with. Do directly since we're in a
2681          * special context where we don't have to queue the call to
2682          * swapgeom_close_ev().
2683          */
2684         cp->index--;
2685         destroy = ((sp != NULL) && (cp->index == 0));
2686         if (destroy)
2687                 sp->sw_id = NULL;
2688         mtx_unlock(&sw_dev_mtx);
2689         if (destroy)
2690                 swapgeom_close_ev(cp, 0);
2691 }
2692
2693 static void
2694 swapgeom_close(struct thread *td, struct swdevt *sw)
2695 {
2696         struct g_consumer *cp;
2697
2698         mtx_lock(&sw_dev_mtx);
2699         cp = sw->sw_id;
2700         sw->sw_id = NULL;
2701         mtx_unlock(&sw_dev_mtx);
2702
2703         /*
2704          * swapgeom_close() may be called from the biodone context,
2705          * where we cannot perform topology changes.  Delegate the
2706          * work to the events thread.
2707          */
2708         if (cp != NULL)
2709                 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2710 }
2711
2712 static int
2713 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2714 {
2715         struct g_provider *pp;
2716         struct g_consumer *cp;
2717         static struct g_geom *gp;
2718         struct swdevt *sp;
2719         u_long nblks;
2720         int error;
2721
2722         pp = g_dev_getprovider(dev);
2723         if (pp == NULL)
2724                 return (ENODEV);
2725         mtx_lock(&sw_dev_mtx);
2726         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2727                 cp = sp->sw_id;
2728                 if (cp != NULL && cp->provider == pp) {
2729                         mtx_unlock(&sw_dev_mtx);
2730                         return (EBUSY);
2731                 }
2732         }
2733         mtx_unlock(&sw_dev_mtx);
2734         if (gp == NULL)
2735                 gp = g_new_geomf(&g_swap_class, "swap");
2736         cp = g_new_consumer(gp);
2737         cp->index = 1;  /* Number of active I/Os, plus one for being active. */
2738         cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2739         g_attach(cp, pp);
2740         /*
2741          * XXX: Every time you think you can improve the margin for
2742          * footshooting, somebody depends on the ability to do so:
2743          * savecore(8) wants to write to our swapdev so we cannot
2744          * set an exclusive count :-(
2745          */
2746         error = g_access(cp, 1, 1, 0);
2747         if (error != 0) {
2748                 g_detach(cp);
2749                 g_destroy_consumer(cp);
2750                 return (error);
2751         }
2752         nblks = pp->mediasize / DEV_BSIZE;
2753         swaponsomething(vp, cp, nblks, swapgeom_strategy,
2754             swapgeom_close, dev2udev(dev),
2755             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2756         return (0);
2757 }
2758
2759 static int
2760 swapongeom(struct vnode *vp)
2761 {
2762         int error;
2763
2764         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2765         if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2766                 error = ENOENT;
2767         } else {
2768                 g_topology_lock();
2769                 error = swapongeom_locked(vp->v_rdev, vp);
2770                 g_topology_unlock();
2771         }
2772         VOP_UNLOCK(vp, 0);
2773         return (error);
2774 }
2775
2776 /*
2777  * VNODE backend
2778  *
2779  * This is used mainly for network filesystem (read: probably only tested
2780  * with NFS) swapfiles.
2781  *
2782  */
2783
2784 static void
2785 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2786 {
2787         struct vnode *vp2;
2788
2789         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2790
2791         vp2 = sp->sw_id;
2792         vhold(vp2);
2793         if (bp->b_iocmd == BIO_WRITE) {
2794                 if (bp->b_bufobj)
2795                         bufobj_wdrop(bp->b_bufobj);
2796                 bufobj_wref(&vp2->v_bufobj);
2797         }
2798         if (bp->b_bufobj != &vp2->v_bufobj)
2799                 bp->b_bufobj = &vp2->v_bufobj;
2800         bp->b_vp = vp2;
2801         bp->b_iooffset = dbtob(bp->b_blkno);
2802         bstrategy(bp);
2803         return;
2804 }
2805
2806 static void
2807 swapdev_close(struct thread *td, struct swdevt *sp)
2808 {
2809
2810         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2811         vrele(sp->sw_vp);
2812 }
2813
2814
2815 static int
2816 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2817 {
2818         struct swdevt *sp;
2819         int error;
2820
2821         if (nblks == 0)
2822                 return (ENXIO);
2823         mtx_lock(&sw_dev_mtx);
2824         TAILQ_FOREACH(sp, &swtailq, sw_list) {
2825                 if (sp->sw_id == vp) {
2826                         mtx_unlock(&sw_dev_mtx);
2827                         return (EBUSY);
2828                 }
2829         }
2830         mtx_unlock(&sw_dev_mtx);
2831
2832         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2833 #ifdef MAC
2834         error = mac_system_check_swapon(td->td_ucred, vp);
2835         if (error == 0)
2836 #endif
2837                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2838         (void) VOP_UNLOCK(vp, 0);
2839         if (error)
2840                 return (error);
2841
2842         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2843             NODEV, 0);
2844         return (0);
2845 }
2846
2847 static int
2848 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2849 {
2850         int error, new, n;
2851
2852         new = nsw_wcount_async_max;
2853         error = sysctl_handle_int(oidp, &new, 0, req);
2854         if (error != 0 || req->newptr == NULL)
2855                 return (error);
2856
2857         if (new > nswbuf / 2 || new < 1)
2858                 return (EINVAL);
2859
2860         mtx_lock(&pbuf_mtx);
2861         while (nsw_wcount_async_max != new) {
2862                 /*
2863                  * Adjust difference.  If the current async count is too low,
2864                  * we will need to sqeeze our update slowly in.  Sleep with a
2865                  * higher priority than getpbuf() to finish faster.
2866                  */
2867                 n = new - nsw_wcount_async_max;
2868                 if (nsw_wcount_async + n >= 0) {
2869                         nsw_wcount_async += n;
2870                         nsw_wcount_async_max += n;
2871                         wakeup(&nsw_wcount_async);
2872                 } else {
2873                         nsw_wcount_async_max -= nsw_wcount_async;
2874                         nsw_wcount_async = 0;
2875                         msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2876                             "swpsysctl", 0);
2877                 }
2878         }
2879         mtx_unlock(&pbuf_mtx);
2880
2881         return (0);
2882 }